WO2018142683A1 - サスペンションブッシュ及びサスペンション装置 - Google Patents

サスペンションブッシュ及びサスペンション装置 Download PDF

Info

Publication number
WO2018142683A1
WO2018142683A1 PCT/JP2017/037623 JP2017037623W WO2018142683A1 WO 2018142683 A1 WO2018142683 A1 WO 2018142683A1 JP 2017037623 W JP2017037623 W JP 2017037623W WO 2018142683 A1 WO2018142683 A1 WO 2018142683A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
outer cylinder
suspension bush
suspension
inner cylinder
Prior art date
Application number
PCT/JP2017/037623
Other languages
English (en)
French (fr)
Inventor
西村哲志
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2018565929A priority Critical patent/JP6728408B2/ja
Priority to US16/481,612 priority patent/US10821793B2/en
Priority to BR112019015581-3A priority patent/BR112019015581A2/pt
Priority to CN201780085256.9A priority patent/CN110290948B/zh
Publication of WO2018142683A1 publication Critical patent/WO2018142683A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/02Attaching arms to sprung part of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/051Trailing arm twist beam axles
    • B60G21/052Mounting means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G9/00Resilient suspensions of a rigid axle or axle housing for two or more wheels
    • B60G9/04Resilient suspensions of a rigid axle or axle housing for two or more wheels the axle or housing not being pivotally mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2200/00Indexing codes relating to suspension types
    • B60G2200/20Semi-rigid axle suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/14Mounting of suspension arms
    • B60G2204/143Mounting of suspension arms on the vehicle body or chassis
    • B60G2204/1434Mounting of suspension arms on the vehicle body or chassis in twist-beam axles arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/41Elastic mounts, e.g. bushings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/41Elastic mounts, e.g. bushings
    • B60G2204/4104Bushings having modified rigidity in particular directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/41Elastic mounts, e.g. bushings
    • B60G2204/4106Elastokinematic mounts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/18Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with floating brasses or brushing, rotatable at a reduced speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/22Sliding surface consisting mainly of rubber or synthetic rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/387Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type comprising means for modifying the rigidity in particular directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal

Definitions

  • This invention relates to a suspension bush mounted between a vehicle body and a suspension arm, and a torsion beam type suspension device using the suspension bush.
  • Japanese Patent Application Laid-Open No. 2014-077771 discloses a torsion beam type suspension device used as a rear suspension for a front-wheel drive vehicle. This suspension device is supported by a suspension bush so as to be swingable in the vertical direction with respect to the vehicle body.
  • the suspension bush includes an inner cylinder mounted on the vehicle body side, an outer cylinder mounted on the suspension arm side, and an elastic member filled between the inner cylinder and the outer cylinder.
  • Japanese Patent Application Laid-Open Nos. 2008-189078 and 2010-054017 disclose a suspension bush having a protrusion on the outer periphery of an inner cylinder as one form of the suspension bush.
  • a lateral force acts on the rear wheels.
  • the suspension device When the vehicle is turning, a lateral force (lateral force) acts on the rear wheels.
  • the suspension device When the suspension device is laterally displaced by receiving a lateral force, the operability of the vehicle is degraded. In order to maintain the operability of the vehicle, the suspension device needs to resist lateral force when turning.
  • the suspension device In order for the vehicle to travel stably during a turn, it is necessary to change the toe angle of the rear wheel to the inside of the turn. In other words, in order to achieve both operability and stability during turning of the vehicle, the rear suspension device needs to change the toe angle to the inside of the turn while resisting lateral force.
  • the suspension device disclosed in Japanese Patent Application Laid-Open No. 2014-077771 cannot resist lateral force. For this reason, the operability of the vehicle is reduced. If the suspension bushes shown in Japanese Patent Application Laid-Open Nos. 2008-189078 and 2010-054017 are used in the suspension device shown in Japanese Patent Application Laid-Open No. 2014-077771, lateral force may be resisted. On the other hand, it becomes difficult to change the toe angle to the inside of the turn. Therefore, the conventional suspension device and suspension bush cannot achieve both operability and stability of the vehicle when turning.
  • the present invention has been made in consideration of such problems, and an object of the present invention is to provide a suspension bush and a suspension device capable of achieving both operability and stability of a vehicle when turning.
  • the present invention is a suspension bushing including an inner cylinder and an outer cylinder arranged on the same axis, and an elastic member interposed between the inner cylinder and the outer cylinder, and protrudes from the outer periphery of the inner cylinder A portion is formed, a guide is formed on the inner periphery of the outer cylinder, and a slit is formed in the guide along an extending direction including a parallel direction component parallel to the axis and a circumferential component centered on the axis.
  • the convex portion is disposed in the slit, and a screw mechanism is formed by the convex portion and the slit.
  • the convex portion regulates the operation of the guide, so that the outer cylinder moves in the parallel direction.
  • the convex portion regulates the operation of the guide, so that the outer cylinder moves in the circumferential direction. Displacement along the parallel direction while rotating.
  • the outer cylinder may be formed by a plurality of divided members divided in the radial direction of the outer cylinder. According to the said structure, the convex part of an inner cylinder can be easily arrange
  • the guide wall surface located on the slit side in the plane cross section including the axis and parallel to the axis is inclined with respect to the radial direction of the outer cylinder and located on the slit side.
  • the convex wall surface may be inclined with respect to the radial direction of the inner cylinder, and the guide wall surface and the convex wall surface facing each other may be inclined in the same direction.
  • the elastic member interposed between a guide wall surface and a convex part wall surface receives a compressive load from a guide wall surface and a convex part wall surface.
  • the present invention is a torsion beam suspension device that supports a pair of left and right trailing arms swingably with respect to a vehicle body by means of a suspension bush, wherein the axis of the suspension bush advances from the vehicle width inward direction to the outward direction.
  • the suspension bush extends in a rearward direction of the vehicle body, and the suspension bush is disposed on the same axis as the inner tube, and the outer tube is mounted on the trailing arm,
  • a slit is formed along an extending direction including a parallel direction component and a circumferential component centered on the axis, and the convex portion is disposed in the slit, and the convex portion and the front
  • a screw mechanism is formed by a slit, and the screw mechanism of the suspension bush disposed on the left trailing arm provided on the left side of the vehicle body of the pair of left and right trailing arms forms a left-handed screw structure,
  • the screw mechanism of the suspension bush disposed on the right trailing arm provided on the right side of the vehicle body has a right-handed screw structure.
  • the present invention is a torsion beam type suspension device in which a pair of left and right trailing arms are swingably supported by a suspension bush with respect to a vehicle body, and the axis of the suspension bush advances from the vehicle width inward direction to the outward direction.
  • the suspension bush extends along the front direction of the vehicle body, and the suspension bush is disposed on the same axis as the inner cylinder, and the outer cylinder is mounted on the trailing arm.
  • the screw mechanism of the suspension bush disposed on the right trailing arm provided on the right side of the vehicle body has a left-handed screw structure.
  • the suspension device can change the toe angle to the inside of the turn while resisting the lateral force generated during the turn. Therefore, it becomes possible to achieve both operability and stability of the vehicle when turning.
  • FIG. 1 is a plan view of a suspension device according to the present invention.
  • FIG. 2 is a perspective view of a suspension bush according to the present invention.
  • FIG. 3 is a plan view of the suspension bush according to the present invention.
  • 4 is a cross-sectional view of the suspension bush of the first embodiment, and corresponds to a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a view showing the inner peripheral side of the outer cylinder of the first embodiment.
  • 6A is a right side view of the inner cylinder of the first embodiment
  • FIG. 6B is a front view of the inner cylinder.
  • FIG. 7 is a plan view of a convex portion formed on the inner cylinder of the first embodiment.
  • FIG. 8A is an operation explanatory diagram of the suspension bush disposed on the left side of the suspension device
  • FIG. 8B is an operation explanatory diagram of the suspension bush disposed on the right side of the suspension device.
  • FIG. 9 is a cross-sectional view of the suspension bush of the second embodiment, and corresponds to a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 10 is a view showing the inner peripheral side of the outer cylinder of the second embodiment.
  • FIG. 11A is a right side view of the inner cylinder of the second embodiment
  • FIG. 11B is a front view of the inner cylinder.
  • FIG. 12 is a plan view of a convex portion formed on the inner cylinder of the second embodiment.
  • FIG. 13 is a plan view of a suspension device different from FIG.
  • VF upward on the paper surface
  • VB downward on the paper surface
  • Direction indicates the right direction of the vehicle body
  • VL left direction on the paper
  • VU front side of the paper surface
  • VD backward direction on the paper surface
  • the suspension device 10 includes a pair of left and right trailing arms 14R, 14L, a torsion beam 16 that connects the pair of trailing arms 14R, 14L to each other, and a pair of spring receivers 18R, 18L that support the lower end of a coil spring (not shown). .
  • Cylindrical portions 20R and 20L are formed at the front end VF of the trailing arms 14R and 14L.
  • the pair of cylindrical portions 20 ⁇ / b> R and 20 ⁇ / b> L is also referred to as a cylindrical portion 20.
  • An axis (not shown) of the cylindrical portion 20R extends so as to advance in the rearward direction VB of the vehicle body 12 as the vehicle body 12 advances in the right direction VR.
  • An axis (not shown) of the cylindrical portion 20L extends so as to advance in the rearward direction VB of the vehicle body 12 as the vehicle body 12 advances in the left direction VL.
  • Suspension bushes 28R and 28L are press-fitted into the cylindrical portions 20R and 20L.
  • the pair of suspension bushes 28R and 28L is also referred to as a suspension bush 28.
  • the outer cylinder 30 (see FIG. 2 and the like) of the suspension bush 28 is attached to the suspension device 10 side when the suspension bush 28 is press-fitted into the cylindrical portion 20.
  • the inner cylinder 50 (see FIG. 4 and the like) of the suspension bush 28 is attached to, for example, the bracket 24 on the vehicle body 12 side with bolts or the like.
  • the axis A of the suspension bush 28R advances from the inner side in the vehicle width direction to the outer side, that is, the rear direction VB of the vehicle body 12 as it goes to the right direction VR of the vehicle body 12.
  • the inclination angle of the axis A of the suspension bush 28R with respect to the vehicle width direction is about + 27 ° to + 33 °, preferably about + 30 °, when the clockwise direction when viewed from the upper direction VU is the + direction.
  • the axis A of the suspension bush 28L moves from the inner side in the vehicle width direction to the outer side, that is, in the rearward direction VB of the vehicle body 12 as the vehicle body 12 moves to the left direction VL. Extend to advance.
  • the inclination angle of the axis A of the suspension bush 28L with respect to the vehicle width direction is about ⁇ 27 ° to ⁇ 33 °, preferably about ⁇ 30 °, when the clockwise direction when viewed from the upper direction VU is the + direction. .
  • the suspension device 10 can rotate around the virtual rotation center point C set in the backward direction VB with respect to the torsion beam 16.
  • the suspension bush 28 according to two embodiments (first embodiment and second embodiment) will be described below.
  • the radial direction R used in the following description refers to the radial direction of the suspension bush 28, the outer cylinder 30, and the inner cylinder 50. Also.
  • the inner direction of the radial direction R refers to the direction along the radial direction R toward the center (the axis A of the suspension bush 28), and the outer direction of the radial direction R refers to the center along the radial direction R.
  • the suspension bush 28 has an outer cylinder 30, an inner cylinder 50, and an elastic member 70.
  • the outer cylinder 30 and the inner cylinder 50 are disposed on the same axis A, and this is the axis A of the suspension bush 28.
  • the inner cylinder 50 is supported by an elastic member 70 inside the outer cylinder 30.
  • a screw mechanism is formed by the convex portion 54 of the inner cylinder 50 and the slit 38 of the outer cylinder 30.
  • the outer cylinder 30 corresponds to a female screw
  • the inner cylinder 50 corresponds to a male screw. For this reason, the outer cylinder 30 and the inner cylinder 50 are relatively rotatable around the axis A within a range in which the elastic member 70 extends.
  • the outer cylinder 30 is formed of semi-cylindrical divided members 32 and 32 that are divided in the radial direction R around the axis A.
  • the division of the outer cylinder 30 may be three or more.
  • the outer cylinder 30 is preferably divided equally around the axis A. For example, in the case of three divisions, the outer cylinder 30 is preferably divided at 120 ° around the axis A, and in the case of four divisions, the outer cylinder 30 is preferably divided at 90 ° around the axis A.
  • a gap G is formed at a portion where the outer cylinder 30 is divided.
  • the divided members 32 and 32 are pressed inward in the radial direction R by the cylindrical portion 20.
  • the gap G is closed.
  • the split members 32 and 32 are pressed outward in the radial direction R by the elastic member 70.
  • the outer peripheral surfaces of the dividing members 32 and 32 are in close contact with the inner peripheral surface of the cylindrical portion 20.
  • the dividing member 32 is made of metal or resin, and a cylindrical portion 34 that defines an outer peripheral shape and a guide 36 that protrudes inward in the radial direction R from the cylindrical portion 34 are integrally formed.
  • the guide 36 is formed in a range of approximately 90 ° with the axis A of the outer cylinder 30 as the center. This range can be set as appropriate.
  • the thickness of the guide 36 in the radial direction R is such that the inner cylinder 50 and the elastic member 70 can be accommodated in the inner direction of the radial direction R with respect to the guide 36.
  • a plurality of guides 36 may be provided along a parallel direction P1 parallel to the axis A.
  • a slit 38 is formed in the guide 36.
  • the slit 38 corresponds to a screw groove of a screw mechanism.
  • the slit 38 has an extending direction D1 in which a center line C1 along the longitudinal direction of the slit 38 includes a component CP1 in the parallel direction P1 parallel to the axis A and a component CR1 in the circumferential direction R1 of the outer cylinder 30 centering on the axis A. It is formed so as to follow.
  • the center line C1 of the slit 38 is inclined with respect to the parallel direction P1 and the circumferential direction R1.
  • the angle ⁇ 1a at which the center line C1 of the slit 38 is inclined with respect to the circumferential direction R1 is smaller than the angle ⁇ 1b at which the center line C1 of the slit 38 is inclined with respect to the parallel direction P1.
  • the angle ⁇ 1a is set within a range of 5 ° to 30 °, and preferably within a range of 10 ° to 20 °.
  • stretching direction D1 becomes a linear form or spiral shape which follows the outer cylinder 30 centering on the axis line A, for example.
  • the slit 38 is formed by a pair of guide wall surfaces 40, 40 extending in parallel with each other along the extending direction D1.
  • the guide wall surface 40 located on the slit 38 side is parallel to the radial direction R in a cross section including the axis A and parallel to the axis A.
  • a hole 42 is formed at the bottom of the slit 38 so as to penetrate the outer peripheral surface of the dividing member 32 and extend in the extending direction D ⁇ b> 1.
  • the inner cylinder 50 is made of metal or resin, and a cylindrical portion 52 that defines an outer peripheral shape and two convex portions 54 and 54 that protrude outward from the cylindrical portion 52 in the radial direction R are integrally formed.
  • the number of convex portions 54 may be three or more.
  • the plurality of convex portions 54 are arranged at equal intervals along the outer periphery of the inner cylinder 50 around the axis A.
  • a plurality of convex portions 54 may be provided along a parallel direction P2 parallel to the axis A.
  • the convex portion 54 corresponds to a screw thread of a screw mechanism.
  • the convex part 54 has an inner cylinder 50 centered on the axis CP and the component CP2 in the parallel direction P2 in which the center line C2 along the longitudinal direction of the convex part 54 is parallel to the axis A. It is formed along the extending direction D2 including the component CR2 in the circumferential direction R2. In other words, the center line C2 of the convex portion 54 is inclined with respect to the parallel direction P2 and the circumferential direction R2.
  • the angle ⁇ 2a at which the center line C2 of the convex portion 54 is inclined with respect to the circumferential direction R2 is smaller than the angle ⁇ 2b at which the center line C2 of the convex portion 54 is inclined with respect to the parallel direction P2.
  • the angle ⁇ 2a is set to be the same as the angle ⁇ 1a at which the center line C1 of the slit 38 described above is inclined. Specifically, the angle ⁇ 2a is set within a range of 5 ° to 30 °, and preferably within a range of 10 ° to 20 °.
  • stretching direction D2 becomes a linear form or spiral shape which follows the inner cylinder 50 centering on the axis line A, for example.
  • the convex part 54 has a pair of convex part wall surfaces 56 and 56 extending in parallel with each other along the extending direction D2. As shown in FIG. 4, the convex wall surface 56 located on the slit 38 side is parallel to the radial direction R in a cross section including the axis A and parallel to the axis A.
  • an elastic member 70 is interposed between the outer cylinder 30 and the inner cylinder 50, that is, on the inner peripheral side of the outer cylinder 30 and the outer peripheral side of the inner cylinder 50.
  • the elastic member 70 is a member that elastically deforms, for example, rubber.
  • the rubber elastic member 70 is molded as follows. First, a cavity having a predetermined shape is formed between the outer cylinder 30 and the inner cylinder 50 by a mold. Next, the melted unvulcanized compounded rubber (rubber compound) is pressurized and injected into the cavity. The rubber is vulcanized and bonded to the outer cylinder 30 and the inner cylinder 50.
  • the ease of rotation of the inner cylinder 50 with respect to the outer cylinder 30 varies depending on the shape of the rubber and the filling location. For this reason, the shape and filling location of rubber are set appropriately.
  • the rubber is vulcanized on a part of the inner peripheral surface of the outer cylinder 30 (including the surface of the guide 36 and not including the periphery of the gap G) and the entire outer peripheral surface of the inner cylinder 50 (including the surface of the convex portion 54). Glued.
  • the convex portion 54 is disposed in the slit 38.
  • the convex wall surface 56 and the guide wall surface 40 face each other.
  • the elastic member 70 does not block the hole 42 of the outer cylinder 30. That is, a space S that is not filled with the elastic member 70 is formed in part of the hole 42 and the slit 38.
  • the suspension bush 28L provided on the left trailing arm 14L and the suspension bush 28R provided on the right trailing arm 14R are disposed in opposite directions.
  • the left suspension bush 28L is arranged in a direction that forms a left-hand screw mechanism.
  • FIG. 8A when viewed from one end surface direction, the convex portion 54 is displaced so as to be displaced in the other end surface direction when the inner cylinder 50 rotates counterclockwise around the axis A with respect to the outer cylinder 30. And the direction of the slit 38 is set.
  • the right suspension bush 28R is arranged in a direction that forms a right screw mechanism. Taking FIG.
  • the convex portion 54 is displaced so as to be displaced in the direction of the other end surface when the inner cylinder 50 rotates clockwise around the axis A with respect to the outer cylinder 30 when viewed from one end surface direction. And the direction of the slit 38 is set.
  • a lateral force SF in the rightward direction VR acts on the suspension device 10 at the beginning of turning.
  • an external force F1 in a parallel direction P1 parallel to the axis A is applied to the outer cylinder 30 of the suspension bush 28L disposed on the left side due to the lateral force SF as shown in FIG. 8A.
  • the outer cylinder 30 tends to be displaced in the vehicle inner side direction P1a according to the external force F1, but the convex wall surface 56 (see FIG. 4) contacts the guide wall surface 40 (see FIG. 4) via the elastic member 70. .
  • the convex portion 54 of the inner cylinder 50 attached to the vehicle body 12 restricts the operation of the guide 36 of the outer cylinder 30 attached to the suspension device 10. For this reason, the outer cylinder 30 hardly displaces in the vehicle inner side direction P1a.
  • the suspension bush 28R disposed on the right side operates in the same manner. Therefore, the displacement of the suspension device 10 in the right direction VR is suppressed.
  • the suspension bush 28 includes an inner cylinder 50 and an outer cylinder 30 that are disposed on the same axis A, and an elastic member 70 that is interposed between the inner cylinder 50 and the outer cylinder 30.
  • a convex portion 54 is formed on the outer periphery of the inner cylinder 50.
  • a guide 36 is formed on the inner periphery of the outer cylinder 30.
  • a slit 38 is formed in the guide 36 along the extending direction D1 including a component CP1 in the parallel direction P1 parallel to the axis A and a component CR1 in the circumferential direction R1 centering on the axis A.
  • the convex portion 54 is disposed in the slit 38, and a screw mechanism is formed by the convex portion 54 and the slit 38.
  • the angle ⁇ 1a at which the center line C1 of the slit 38 is inclined with respect to the circumferential direction R1 is smaller than the angle ⁇ 1b at which the center line C1 of the slit 38 is inclined with respect to the parallel direction P1. For this reason, it is possible to suppress the displacement of the outer cylinder 30 along the axis A with respect to the external force F1 in the parallel direction P1, and the axis A while rotating the outer cylinder 30 with respect to the external force F2 in the circumferential direction R1. Can be displaced along.
  • the outer cylinder 30 is formed by a plurality of divided members 32 divided in the radial direction R of the outer cylinder 30. According to the said structure, the convex part 54 of the inner cylinder 50 can be easily arrange
  • the suspension device 10 including the suspension bush 28 it is possible to suppress the outer cylinder 30 of the suspension bush 28 from being displaced along the axis A when the lateral force SF acts on the wheel at the initial turning. Further, when the external force F2 in the circumferential direction R1 acts on the outer cylinder 30 of the suspension bush 28 by bumping or rebounding the wheel, the outer cylinder 30 can be displaced along the axis A while rotating. . For this reason, the suspension device 10 can change the toe angle to the inside of the turn while resisting the lateral force SF generated during the turn. Therefore, it becomes possible to achieve both operability and stability of the vehicle when turning.
  • the suspension bush 28 according to the second embodiment has the shape of the guide 36 a formed on the outer cylinder 30 and the shape of the convex portion 54 a formed on the inner cylinder 50. Different. Specifically, the inclination angle of the guide wall surface 40a and the convex wall surface 56a with respect to the radial direction R is different from that of the suspension bush 28 according to the first embodiment.
  • the slit 38a of the split member 32 is formed by a pair of guide wall surfaces 40a and 40a.
  • the guide wall surface 40 a located on the slit 38 a side in the plane cross section including the axis A and parallel to the axis A is inclined with respect to the outer peripheral surface of the outer cylinder 30 and the radial direction R.
  • the inclination directions of the pair of guide wall surfaces 40a, 40a are different. Specifically, in the pair of guide wall surfaces 40a and 40a, the distance between the slits 38a is narrowed as it goes outward in the radial direction R, and conversely, the distance between the slits 38a is widened as it goes inward in the radial direction R. Tilt.
  • the convex part 54a of the inner cylinder 50 has a pair of convex part wall surface 56a, 56a. As shown in FIG. 9, in the plane cross section including the axis A and parallel to the axis A, the convex wall surface 56 a located on the slit 38 a side is inclined with respect to the outer peripheral surface of the inner cylinder 50 and the radial direction R. The inclination directions of the pair of convex wall surfaces 56a and 56a are different.
  • the width of the convex portion 54a becomes narrower as it proceeds in the outer direction of the radial direction R, and conversely, the width of the convex portion 54a becomes smaller as it proceeds in the inner direction of the radial direction R. Inclined to spread.
  • the convex portion 54a is disposed in the slit 38a.
  • the convex wall surface 56a and the guide wall surface 40a face each other.
  • the elastic member 70 does not block the hole 42 of the outer cylinder 30. That is, a space S in which the elastic member 70 is not filled is formed in a part of the hole 42 and the slit 38a.
  • the suspension bush 28 according to the second embodiment operates in the same manner as the suspension bush 28 according to the first embodiment.
  • the first embodiment see FIG. 4
  • the second embodiment see FIG. 9
  • shear stress acts on the elastic member 70 interposed between the guide wall surface 40 and the convex wall surface 56.
  • the suspension bush 28 of the second embodiment has the same effect as the suspension bush 28 of the first embodiment. Further, in the suspension bush 28 of the second embodiment, the guide wall surface 40a located on the slit 38a side in the plane cross section including the axis A and parallel to the axis A is inclined with respect to the radial direction R of the outer cylinder 30, The convex wall surface 56a located on the slit 38a side is inclined with respect to the radial direction R of the inner cylinder 50, and the guide wall surface 40a and the convex wall surface 56a facing each other are inclined in the same direction.
  • the elastic member 70 interposed between the guide wall surface 40a and the convex part wall surface 56a receives a compressive load from the guide wall surface 40a and the convex part wall surface 56a. Therefore, the guide wall surface 40 is not inclined with respect to the radial direction R of the outer cylinder 30 and the convex wall surface 56 is not inclined with respect to the radial direction R of the inner cylinder 50 (see FIG. 4). The durability of the elastic member 70 is improved.
  • the right suspension bush 28R is inclined in the + direction with respect to the vehicle width direction, and the left suspension bush 28L is inclined in the-direction with respect to the vehicle width direction. Conversely, the right suspension bush 28R may be inclined in the negative direction with respect to the vehicle width direction, and the left suspension bush 28L may be inclined in the positive direction with respect to the vehicle width direction.
  • symbol is attached
  • Cylindrical portions 120R and 120L are formed at the front ends VF of the trailing arms 14R and 14L.
  • An axis (not shown) of the cylindrical portion 120R extends so as to advance in the front direction VF of the vehicle body 12 as the vehicle body 12 advances in the right direction VR.
  • An axis (not shown) of the cylindrical portion 120L extends so as to advance in the front direction VF of the vehicle body 12 as the vehicle body 12 advances in the left direction VL.
  • Suspension bushes 28R and 28L are press-fitted into the cylindrical portions 120R and 120L.
  • the axis A of the suspension bush 28R advances from the inner side in the vehicle width direction to the outer side, that is, the forward direction VF of the vehicle body 12 as the vehicle body 12 moves to the right direction VR.
  • the inclination angle of the axis A of the suspension bush 28R with respect to the vehicle width direction is about ⁇ 27 ° to ⁇ 33 °, preferably about ⁇ 30 °, when the clockwise direction when viewed from the upper direction VU is the + direction. .
  • the suspension device 110 can rotate around a virtual rotation center point C ′ set in the forward direction VF with respect to the torsion beam 16.
  • the suspension bush 28L provided on the left trailing arm 14L and the suspension bush 28R provided on the right trailing arm 14R are disposed in opposite directions.
  • the left suspension bush 28L is arranged in a direction that forms a right screw mechanism.
  • the right suspension bush 28R is arranged in a direction that forms a left screw mechanism.
  • the convex part 54 formed in the inner cylinder 50 has a pair of convex part wall surface 56 parallel to the extending
  • the pair of convex wall surfaces 56 may not be parallel to the extending direction D2.
  • the convex portion 54 may be a columnar shape protruding in the outer direction of the radial direction R of the inner cylinder 50 or may be an elliptical column shape.
  • the suspension bush 28 is provided in the torsion beam type suspension device 10, but it can also be used in other types of suspension devices.
  • suspension bushing and the suspension device according to the present invention are not limited to the above-described embodiments, and various configurations can be adopted without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Springs (AREA)
  • Vehicle Body Suspensions (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

旋回時に車両の操作性と安定性を両立させることができるサスペンションブッシュ(28)及びサスペンション装置(10、110)を提供する。内筒(50)の外周には凸部(54)が形成される。外筒(30)の内周にはガイド(36)が形成される。ガイド(36)には軸線(A)と平行する平行方向(P1)の成分(CP1)と軸線(A)を中心とする周方向(R1)の成分(CR1)とを含む延伸方向(D1)に沿ってスリット(38)が形成される。凸部(54)はスリット(38)に配置され、凸部(54)とスリット(38)によりねじ機構が形成される。

Description

サスペンションブッシュ及びサスペンション装置
 この発明は、車体とサスペンションアームとの間に装着されるサスペンションブッシュ、及び、サスペンションブッシュを使用するトーションビーム式のサスペンション装置に関する。
 特開2014-097771号公報には、前輪駆動車用のリアサスペンションとして使用されるトーションビーム式のサスペンション装置が示されている。このサスペンション装置はサスペンションブッシュにより車体に対して上下方向に揺動自在に支持される。サスペンションブッシュは、車体側に装着される内筒と、サスペンションアーム側に装着される外筒と、内筒と外筒との間に充填される弾性部材を備える。特開2008-189078号公報及び特開2010-054017号公報には、サスペンションブッシュの一形態として、内筒の外周に突起を備えるサスペンションブッシュが示されている。
 車両の旋回時には後輪に横方向(旋回内側の方向)の力(横力)が作用する。横力を受けてサスペンション装置が横方向に変位すると、車両の操作性が低下する。車両の操作性を維持するためには、旋回時にサスペンション装置が横力に抗する必要がある。一方、旋回時に車両を安定して走行させるためには、後輪のトー角を旋回内側に変化させる必要がある。つまり、車両の旋回時に操作性と安定性を両立するためには、リア側のサスペンション装置は横力に抗しつつトー角を旋回内側に変化させる必要がある。
 特開2014-097771号公報で示されるサスペンション装置は横力に抗することができない。このため車両の操作性が低下する。仮に、特開2014-097771号公報で示されるサスペンション装置に、特開2008-189078号公報及び特開2010-054017号公報で示されるサスペンションブッシュを用いたとすると、横力に抗することはできるかもしれないが、その一方でトー角を旋回内側に変化させることが難しくなる。したがって、従来のサスペンション装置及びサスペンションブッシュでは旋回時に車両の操作性と安定性を両立させることができない。
 本発明はこのような課題を考慮してなされたものであり、旋回時に車両の操作性と安定性を両立させることができるサスペンションブッシュ及びサスペンション装置を提供することを目的とする。
 本発明は、同一の軸線上に配置される内筒及び外筒と、前記内筒と前記外筒との間に介在する弾性部材とを備えるサスペンションブッシュであって、前記内筒の外周に凸部が形成され、前記外筒の内周にガイドが形成され、前記ガイドに前記軸線と平行する平行方向成分と前記軸線を中心とする周方向成分とを含む延伸方向に沿ってスリットが形成され、前記凸部は前記スリットに配置され、前記凸部と前記スリットによりねじ機構が形成されることを特徴とする。
 上記構成においては、前記外筒に対して前記軸線と平行する平行方向の外力が作用する場合には、前記凸部が前記ガイドの動作を規制することにより、前記外筒は前記平行方向への変位を抑制され、前記外筒に対して前記軸線を中心とする周方向の外力が作用する場合には、前記凸部が前記ガイドの動作を規制することにより、前記外筒が前記周方向に回転しつつ前記平行方向に沿って変位する。
 上記構成によれば、外筒に対して軸線と平行する方向の外力が作用する場合に、外筒が軸線に沿って変位することを抑制できる。また、外筒に対して周方向の外力が作用する場合に、外筒を回転させつつ軸線に沿って変位させることができる。このサスペンションブッシュをトーションビーム式のサスペンション装置に用いれば、旋回時に発生する横力に抗しつつトー角を旋回内側に変化させることができる。したがって、旋回時に車両の操作性と安定性を両立させることができるようになる。
 前記外筒は、前記外筒の径方向に分割された複数の分割部材により形成されてもよい。上記構成によれば、一体に形成される外筒と比較して、内筒の凸部を外筒のスリットに容易に配置することができる。
 本発明に係るサスペンションブッシュにおいて、前記軸線を含み且つ前記軸線と平行する平断面において、前記スリット側に位置するガイド壁面は、前記外筒の径方向に対して傾斜し、前記スリット側に位置する凸部壁面は、前記内筒の径方向に対して傾斜し、互いに対向する前記ガイド壁面と前記凸部壁面は同じ方向に傾斜するようにしてもよい。上記構成によれば、ガイド壁面と凸部壁面の間に介在する弾性部材がガイド壁面及び凸部壁面から圧縮荷重を受ける。このため、ガイド壁面が外筒の径方向に対して傾斜せず、且つ、凸部壁面が内筒の径方向に対して傾斜しない場合と比較して、弾性部材の耐久性が向上する。
 本発明は、サスペンションブッシュにより左右一対のトレーリングアームを車体に対して揺動自在に支持するトーションビーム式のサスペンション装置であって、前記サスペンションブッシュの軸線は車幅内方向から外方向に進むにつれて前記車体の後方向に進むように延び、前記サスペンションブッシュは、前記車体に装着される内筒と、前記内筒と同一の軸線上に配置され、前記トレーリングアームに装着される外筒と、前記内筒と前記外筒との間に介在する弾性部材とを備え、前記内筒の外周に凸部が形成され、前記外筒の内周にガイドが形成され、前記ガイドに前記軸線と平行する平行方向成分と前記軸線を中心とする周方向成分とを含む延伸方向に沿ってスリットが形成され、前記凸部は前記スリットに配置され、前記凸部と前記スリットによりねじ機構が形成され、前記左右一対のトレーリングアームのうち、前記車体の左側に設けられた左側トレーリングアームに配置された前記サスペンションブッシュの前記ねじ機構は左ねじ構造を成し、前記車体の右側に設けられた右側トレーリングアームに配置された前記サスペンションブッシュの前記ねじ機構は右ねじ構造を成すことを特徴とする。
 また、本発明は、サスペンションブッシュにより左右一対のトレーリングアームを車体に対して揺動自在に支持するトーションビーム式のサスペンション装置であって、前記サスペンションブッシュの軸線は車幅内方向から外方向に進むにつれて前記車体の前方向に進むように延び、前記サスペンションブッシュは、前記車体に装着される内筒と、前記内筒と同一の軸線上に配置され、前記トレーリングアームに装着される外筒と、前記内筒と前記外筒との間に介在する弾性部材とを備え、前記内筒の外周に凸部が形成され、前記外筒の内周にガイドが形成され、前記ガイドに前記軸線と平行する平行方向成分と前記軸線を中心とする周方向成分とを含む延伸方向に沿ってスリットが形成され、前記凸部は前記スリットに配置され、前記凸部と前記スリットによりねじ機構が形成され、前記左右一対のトレーリングアームのうち、前記車体の左側に設けられた左側トレーリングアームに配置された前記サスペンションブッシュの前記ねじ機構は右ねじ構造を成し、前記車体の右側に設けられた右側トレーリングアームに配置された前記サスペンションブッシュの前記ねじ機構は左ねじ構造を成すことを特徴とする。
 上記構成によれば、旋回初期時に車輪に対して横力が作用する場合に、サスペンションブッシュの外筒が軸線に沿って変位することを抑制できる。また、車輪がバンプ又はリバウンドすることにより、サスペンションブッシュの外筒に対して周方向の外力が作用する場合に、外筒を回転させつつ軸線に沿って変位させることができる。このため、サスペンション装置は、旋回時に発生する横力に抗しつつトー角を旋回内側に変化させることができる。したがって、旋回時に車両の操作性と安定性を両立させることができるようになる。
 本発明によれば、旋回時に車両の操作性と安定性を両立させることができるようになる。
図1は本発明に係るサスペンション装置の平面図である。 図2は本発明に係るサスペンションブッシュの斜視図である。 図3は本発明に係るサスペンションブッシュの平面図である。 図4は第1実施形態のサスペンションブッシュの断面図であり、図3のIV-IV線断面図に相当する。 図5は第1実施形態の外筒の内周側を示す図である。 図6Aは第1実施形態の内筒の右側面図であり、図6Bは内筒の正面図である。 図7は第1実施形態の内筒に形成される凸部の平面図である。 図8Aはサスペンション装置の左側に配置されるサスペンションブッシュの動作説明図であり、図8Bはサスペンション装置の右側に配置されるサスペンションブッシュの動作説明図である。 図9は第2実施形態のサスペンションブッシュの断面図であり、図3のIV-IV線断面図に相当する。 図10は第2実施形態の外筒の内周側を示す図である。 図11Aは第2実施形態の内筒の右側面図であり、図11Bは内筒の正面図である。 図12は第2実施形態の内筒に形成される凸部の平面図である。 図13は図1とは異なるサスペンション装置の平面図である。
 以下、本発明に係るサスペンションブッシュ及びサスペンション装置について好適な実施形態を挙げ、添付の図面を参照しながら説明する。
[1 サスペンション装置10の構成]
 図1を用いてトーションビーム式のサスペンション装置10の説明をする。図1において、VF(紙面上方向)はサスペンション装置10が設けられる車体12の前方向を示し、VB(紙面下方向)はサスペンション装置10が設けられる車体12の後方向を示し、VR(紙面右方向)は車体12の右方向を示し、VL(紙面左方向)は車体12の左方向を示し、VU(紙面手前方向)は車体12の上方向を示し、VD(紙面奥方向)は車体12の下方向を示す。
 サスペンション装置10は、左右一対のトレーリングアーム14R、14Lと、一対のトレーリングアーム14R、14Lを互いに連結するトーションビーム16と、図示しないコイルスプリングの下端を支持する一対のスプリング受け18R、18Lを有する。
 トレーリングアーム14R、14Lの前方向VFの先端には円筒部20R、20Lが形成される。以下では一対の円筒部20R、20Lを円筒部20ともいう。円筒部20Rの軸線(図示せず)は、車体12の右方向VRに進むにつれて車体12の後方向VBに進むように延びる。円筒部20Lの軸線(図示せず)は、車体12の左方向VLに進むにつれて車体12の後方向VBに進むように延びる。
 円筒部20R、20Lの内部にはサスペンションブッシュ28R、28Lが圧入される。以下では一対のサスペンションブッシュ28R、28Lをサスペンションブッシュ28ともいう。サスペンションブッシュ28の外筒30(図2等参照)は、サスペンションブッシュ28が円筒部20に圧入されることによりサスペンション装置10側に装着される。一方、サスペンションブッシュ28の内筒50(図4等参照)は、ボルト等により車体12側の例えばブラケット24に装着される。
 サスペンションブッシュ28Rが円筒部20Rに圧入された状態で、サスペンションブッシュ28Rの軸線Aは、車幅方向の内側から外側、すなわち車体12の右方向VRに進むにつれて車体12の後方向VBに進むように延びる。車幅方向に対するサスペンションブッシュ28Rの軸線Aの傾斜角度は、上方向VUから見て右回りの方向を+方向とした場合に、+27°~+33°程度、好ましくは+30°程度である。同様に、サスペンションブッシュ28Lが円筒部20Lに圧入された状態で、サスペンションブッシュ28Lの軸線Aは、車幅方向の内側から外側、すなわち車体12の左方向VLに進むにつれて車体12の後方向VBに進むように延びる。車幅方向に対するサスペンションブッシュ28Lの軸線Aの傾斜角度は、上方向VUから見て右回りの方向を+方向とした場合に、-27°~-33°程度、好ましくは-30°程度である。このような構造により、サスペンション装置10は、トーションビーム16よりも後方向VBに設定される仮想の回転中心点Cを中心にして回転可能となる。
 以下で2つの実施形態(第1実施形態及び第2実施形態)に係るサスペンションブッシュ28について説明する。
[2 第1実施形態]
[2.1 サスペンションブッシュ28の構成]
 図2~図5、図6A、図6B、図7を用いて第1実施形態に係るサスペンションブッシュ28の構成の説明をする。なお、図2、図3において内筒50の表面は弾性部材70で覆われており、外観上は内筒50を視認することはできない。このため、図2、図3においては、弾性部材70で覆われた内筒50の各構成に対し、破線の引き出し線にて参照符号を付している。
 以下の説明で使用する径方向Rというのは、サスペンションブッシュ28、外筒30、内筒50の径方向のことをいう。また。径方向Rの内側方向というのは、径方向Rに沿って中心(サスペンションブッシュ28の軸線A)に向かう方向のことをいい、径方向Rの外側方向というのは、径方向Rに沿って中心から放射する方向のことをいう。
 図2~図4で示されるように、サスペンションブッシュ28は、外筒30と、内筒50と、弾性部材70を有する。外筒30と内筒50は同一の軸線A上に配置され、これがサスペンションブッシュ28の軸線Aとなる。内筒50は外筒30の内側に弾性部材70で支持される。後述するが、内筒50の凸部54と外筒30のスリット38によりねじ機構が形成される。外筒30は雌ねじに相当し、内筒50は雄ねじに相当する。このため、外筒30と内筒50は、弾性部材70が延びる範囲内で、軸線Aを中心にして相対的に回転可能である。
 外筒30は、軸線Aを中心にして径方向Rに2分割された半円筒の分割部材32、32により形成される。外筒30の分割は3以上であってもよい。外筒30は軸線Aを中心にして均等に分割されることが好ましい。例えば、3分割であれば外筒30が軸線Aを中心にして120°に分割され、4分割であれば外筒30が軸線Aを中心にして90°に分割されることが好ましい。
 サスペンションブッシュ28の完成品において、外筒30の分割箇所にはギャップGが形成される。サスペンションブッシュ28が円筒部20に圧入されると、分割部材32、32は円筒部20により径方向Rの内側方向に押圧される。するとギャップGが閉じられる。この状態で、分割部材32、32は弾性部材70により径方向Rの外側方向に押圧される。すると分割部材32、32の外周面が円筒部20の内周面に密着する。
 先ず、分割部材32に関して、更に図5を用いて説明する。分割部材32は金属又は樹脂からなり、外周形状を規定する筒部34と、筒部34から径方向Rの内側方向に突出するガイド36と、が一体に形成される。ガイド36は外筒30の軸線Aを中心とする略90°の範囲に形成される。この範囲は適宜設定可能である。ガイド36の径方向Rの肉厚は、ガイド36よりも径方向Rの内側方向に内筒50及び弾性部材70を収容できる程度とされる。また、軸線Aと平行する平行方向P1に沿って複数のガイド36が設けられてもよい。
 ガイド36にはスリット38が形成される。スリット38はねじ機構のねじ溝に相当する。スリット38は、スリット38の長手方向に沿う中心線C1が、軸線Aと平行する平行方向P1の成分CP1と軸線Aを中心とする外筒30の周方向R1の成分CR1とを含む延伸方向D1に沿うようにして形成される。言い換えると、スリット38の中心線C1は平行方向P1及び周方向R1に対して傾斜する。スリット38の中心線C1が周方向R1に対して傾斜する角度θ1aは、スリット38の中心線C1が平行方向P1に対して傾斜する角度θ1bよりも小さい。具体的には、角度θ1aは5°~30°の範囲内で設定され、好ましくは10°~20°の範囲内で設定される。なお、延伸方向D1は、例えば軸線Aを中心とし且つ外筒30に沿う直線状又は螺線状になる。
 スリット38は、互いに並行して延伸方向D1に沿って拡がる一対のガイド壁面40、40により形成される。図4で示されるように、軸線Aを含み且つ軸線Aと平行する断面において、スリット38側に位置するガイド壁面40は径方向Rと平行する。図4、図5で示されるように、スリット38の底部には、分割部材32の外周面側に貫通し、延伸方向D1に沿った孔42が形成される。
 次に、内筒50に関して、更に図6A、図6B、図7を用いて説明する。内筒50は金属又は樹脂からなり、外周形状を規定する筒部52と、筒部52から径方向Rの外側方向に突出する2つの凸部54、54と、が一体に形成される。凸部54の数は3以上であってもよい。複数の凸部54は軸線Aを中心にして内筒50の外周に沿って等間隔に配置される。また、軸線Aと平行する平行方向P2に沿って複数の凸部54が設けられてもよい。
 凸部54はねじ機構のねじ山に相当する。凸部54は、外筒30のスリット38と同じように、凸部54の長手方向に沿う中心線C2が、軸線Aと平行する平行方向P2の成分CP2と軸線Aを中心とする内筒50の周方向R2の成分CR2とを含む延伸方向D2に沿うようにして形成される。言い換えると、凸部54の中心線C2は平行方向P2及び周方向R2に対して傾斜する。凸部54の中心線C2が周方向R2に対して傾斜する角度θ2aは、凸部54の中心線C2が平行方向P2に対して傾斜する角度θ2bよりも小さい。角度θ2aは、上述したスリット38の中心線C1が傾斜する角度θ1aと同一に設定される。具体的には、角度θ2aは5°~30°の範囲内で設定され、好ましくは10°~20°の範囲内で設定される。なお、延伸方向D2は、例えば軸線Aを中心とし且つ内筒50に沿う直線状又は螺線状になる。
 凸部54は、互いに並行して延伸方向D2に沿って拡がる一対の凸部壁面56、56を有する。図4で示されるように、軸線Aを含み且つ軸線Aと平行する断面において、スリット38側に位置する凸部壁面56は径方向Rと平行する。
 図4で示されるように、外筒30と内筒50の間、すなわち外筒30の内周側且つ内筒50の外周側には弾性部材70が介在する。弾性部材70は、弾性変形する部材、例えばゴムである。ゴム製の弾性部材70は次のようにして成形される。先ず金型により外筒30と内筒50との間に所定形状のキャビティが形成される。次に溶融された未加硫の配合ゴム(ゴムコンパウンド)がキャビティに加圧注入される。ゴムは外筒30及び内筒50に加硫接着される。なお、ゴムの形状や充填箇所に応じて外筒30に対する内筒50の回転のし易さが変わる。このため、ゴムの形状や充填箇所は適宜設定される。ここでは、ゴムは外筒30の一部内周面(ガイド36の表面を含み、ギャップG周辺を含まない。)及び内筒50の全外周面(凸部54の表面を含む。)に加硫接着される。
 図4で示されるように、サスペンションブッシュ28の完成品において、凸部54はスリット38に配置される。この状態で、凸部壁面56とガイド壁面40は互いに対向する。また、弾性部材70は外筒30の孔42を閉塞しない。つまり、孔42及びスリット38の一部には弾性部材70が充填されない空間Sが形成される。
 サスペンション装置10において、左側のトレーリングアーム14Lに設けられるサスペンションブッシュ28Lと右側のトレーリングアーム14Rに設けられるサスペンションブッシュ28Rは互いに逆向きに配置される。左側のサスペンションブッシュ28Lは左ねじ機構を成す向きで配置される。図8Aを例にすると、一方の端面方向からみて、内筒50が外筒30に対して軸線Aを中心にして左回りに回転する場合に他方の端面方向に変位するように、凸部54とスリット38の向きが設定される。また、右側のサスペンションブッシュ28Rは右ねじ機構を成す向きで配置される。図8Bを例にすると、一方の端面方向からみて、内筒50が外筒30に対して軸線Aを中心にして右回りに回転する場合に他方の端面方向に変位するように、凸部54とスリット38の向きが設定される。
[2.2 サスペンション装置10及びサスペンションブッシュ28の動作]
 図1、図4、図8A、図8Bを用いてサスペンション装置10及びサスペンションブッシュ28の動作を説明する。ここでは、図1で示されるように、車両が右方向VRに操舵されてT方向に旋回する場合を想定する。
[2.2.1 旋回初期時の動作]
 サスペンション装置10には旋回初期時に右方向VRの横力SFが作用する。すると、左側に配置されるサスペンションブッシュ28Lの外筒30には、図8Aで示されるように、横力SFに起因して軸線Aと平行する平行方向P1の外力F1が作用する。このとき、外筒30は外力F1に応じて車両内側方向P1aに変位しようとするが、凸部壁面56(図4参照)がガイド壁面40(図4参照)に弾性部材70を介して当接する。つまり、車体12に装着される内筒50の凸部54が、サスペンション装置10に装着される外筒30のガイド36の動作を規制する。このため、外筒30は車両内側方向P1aに殆ど変位しない。右側に配置されるサスペンションブッシュ28Rも同じように動作する。したがって、サスペンション装置10の右方向VRへの変位は抑制される。
[2.2.2 旋回進行後の動作]
 右方向VRの旋回が進行すると車両はロールする。車両がT方向に旋回してロールする場合、左側の車輪はバンプし、右側の車輪はリバウンドする。
<バンプ側のサスペンションブッシュ28の動作>
 図8Aで示されるように、左側に配置されるサスペンションブッシュ28Lの外筒30には、周方向R1のうちの一方向(図面右方向から見て右回り)の外力F2が作用する。このとき、外筒30は外力F2に応じて回転しようとするが、凸部壁面56(図4参照)がガイド壁面40(図4参照)に弾性部材70を介して当接する。つまり、車体12に装着される内筒50の凸部54が、サスペンション装置10に装着される外筒30のガイド36の動作を規制する。このとき、ガイド36は延伸方向D1に沿って変位する。その結果、外筒30は周方向R1の一方向R1aに回転しつつ車両内側方向P1aに変位する。
<リバウンド側のサスペンションブッシュ28の動作>
 図8Bで示されるように、右側に配置されるサスペンションブッシュ28Rの外筒30には、周方向R1のうちの他方向(図面右方向から見て左回り)の外力F2が作用する。このとき、外筒30は外力F2に応じて回転しようとするが、凸部壁面56(図4参照)がガイド壁面40(図4参照)に弾性部材70を介して当接する。つまり、車体12に装着される内筒50の凸部54が、サスペンション装置10に装着される外筒30のガイド36の動作を規制する。このとき、ガイド36は延伸方向D1に沿って変位する。その結果、外筒30は周方向R1の他方向R1bに回転しつつ車両外側方向P1bに変位する。
<サスペンション装置10の動作>
 左側の車輪がバンプし右側の車輪がリバウンドする場合、上述したように、左側に配置されるサスペンションブッシュ28Lの外筒30は車両内側方向P1aに変位し、右側に配置されるサスペンションブッシュ28Rの外筒30は車両外側方向P1bに変位する。すると、図1で示されるように、サスペンション装置10は、トーションビーム16よりも後方向VBに設定される仮想の回転中心点Cを中心にして右方向に回転する。その結果、後輪(図示せず)のトー角は旋回内側に向く。
[2.3 第1実施形態のまとめ]
 第1実施形態のサスペンションブッシュ28は、同一の軸線A上に配置される内筒50及び外筒30と、内筒50と外筒30との間に介在する弾性部材70とを備える。内筒50の外周には凸部54が形成される。外筒30の内周にはガイド36が形成される。図5で示されるように、ガイド36には軸線Aと平行する平行方向P1の成分CP1と軸線Aを中心とする周方向R1の成分CR1とを含む延伸方向D1に沿ってスリット38が形成される。凸部54はスリット38に配置され、凸部54とスリット38によりねじ機構が形成される。
 上記構成においては、図8A、図8Bで示されるように、外筒30に対して軸線Aと平行する平行方向P1の外力F1が作用する場合には、凸部54がガイド36の動作を規制することにより、外筒30は平行方向P1(車両内側方向P1a又は車両外側方向P1b)への変位を抑制される。また、外筒30に対して軸線Aを中心とする周方向R1の外力F2が作用する場合には、凸部54がガイド36の動作を規制することにより、外筒30が周方向R1の一方向R1a又は他方向R1bに回転しつつ平行方向P1に沿って変位する。
 上記構成によれば、外筒30に対して軸線Aと平行する平行方向P1の外力F1が作用する場合に、外筒30が軸線Aに沿って変位することを抑制できる。また、外筒30に対して周方向R1の外力F2が作用する場合に、外筒30を回転させつつ軸線Aに沿って変位させることができる。
 より具体的にいうと、スリット38の中心線C1が周方向R1に対して傾斜する角度θ1aは、スリット38の中心線C1が平行方向P1に対して傾斜する角度θ1bよりも小さい。このため、平行方向P1の外力F1に対しては、外筒30が軸線Aに沿って変位することを抑制でき、周方向R1の外力F2に対しては、外筒30を回転させつつ軸線Aに沿って変位させることができる。
 外筒30は、外筒30の径方向Rに分割された複数の分割部材32により形成される。上記構成によれば、一体に形成される外筒と比較して、内筒50の凸部54を外筒30のスリット38に容易に配置することができる。
 サスペンションブッシュ28を備えるサスペンション装置10によれば、旋回初期時に車輪に対して横力SFが作用する場合に、サスペンションブッシュ28の外筒30が軸線Aに沿って変位することを抑制できる。また、車輪がバンプ又はリバウンドすることにより、サスペンションブッシュ28の外筒30に対して周方向R1の外力F2が作用する場合に、外筒30を回転させつつ軸線Aに沿って変位させることができる。このため、サスペンション装置10は、旋回時に発生する横力SFに抗しつつトー角を旋回内側に変化させることができる。したがって、旋回時に車両の操作性と安定性を両立させることができるようになる。
 また、空間Sが設けられることにより、弾性部材70の過度な圧縮が抑制される。このため、外筒30と内筒50を相対的に回転しやすくすることができる。
[3 第2実施形態]
[3.1 サスペンションブッシュ28の構成]
 図9、図10、図11A、図11B、図12を用いて第2実施形態に係るサスペンションブッシュ28の構成の説明をする。なお、以下の説明では第1実施形態に係るサスペンションブッシュ28と一致する構成については同一の符号を付し、その説明を省略する。
 第2実施形態に係るサスペンションブッシュ28は、第1実施形態に係るサスペンションブッシュ28と比較して、外筒30に形成されるガイド36aの形状及び内筒50に形成される凸部54aの形状が異なる。具体的には、第1実施形態に係るサスペンションブッシュ28と比較して、径方向Rに対するガイド壁面40a及び凸部壁面56aの傾斜角度が異なる。
 分割部材32のスリット38aは一対のガイド壁面40a、40aにより形成される。図9で示されるように、軸線Aを含み且つ軸線Aと平行する平断面において、スリット38a側に位置するガイド壁面40aは、外筒30の外周面及び径方向Rに対して傾斜する。一対のガイド壁面40a、40aの傾斜方向は相違する。具体的には、一対のガイド壁面40a、40aは、径方向Rの外側方向に進むにつれてスリット38aの間隔が狭まり、逆に、径方向Rの内側方向に進むにつれてスリット38aの間隔が拡がるように傾斜する。
 内筒50の凸部54aは一対の凸部壁面56a、56aを有する。図9で示されるように、軸線Aを含み且つ軸線Aと平行する平断面において、スリット38a側に位置する凸部壁面56aは、内筒50の外周面及び径方向Rに対して傾斜する。一対の凸部壁面56a、56aの傾斜方向は相違する。具体的には、一対の凸部壁面56a、56aは、径方向Rの外側方向に進むにつれて凸部54aの幅が狭まり、逆に、径方向Rの内側方向に進むにつれて凸部54aの幅が拡がるように傾斜する。
 サスペンションブッシュ28の完成品において、凸部54aはスリット38aに配置される。この状態で、凸部壁面56aとガイド壁面40aは互いに対向する。また、弾性部材70は外筒30の孔42を閉塞しない。つまり、孔42及びスリット38aの一部には弾性部材70が充填されない空間Sが形成される。
[3.2 第1実施形態と第2実施形態の比較]
 第2実施形態に係るサスペンションブッシュ28は、第1実施形態に係るサスペンションブッシュ28と同様に動作する。ここでは弾性部材70に作用する力に着目し、第1実施形態(図4参照)と第2実施形態(図9参照)を比較する。サスペンションブッシュ28が円筒部20に圧入されると、分割部材32が径方向Rの内側方向に押圧される。この状態において、第1実施形態に係るサスペンションブッシュ28の場合、ガイド壁面40と凸部壁面56の間に介在する弾性部材70には剪断応力が作用する。一方、第2実施形態に係るサスペンションブッシュ28の場合、ガイド壁面40aと凸部壁面56aの間に介在する弾性部材70には圧縮荷重が作用する。このため、第2実施形態に係るサスペンションブッシュ28は、第1実施形態に係るサスペンションブッシュ28と比較して、弾性部材70の耐久性が向上する。
[3.3 第2実施形態のまとめ]
 第2実施形態のサスペンションブッシュ28は、第1実施形態のサスペンションブッシュ28と同等の効果を奏する。更に、第2実施形態のサスペンションブッシュ28において、軸線Aを含み且つ軸線Aと平行する平断面において、スリット38a側に位置するガイド壁面40aは、外筒30の径方向Rに対して傾斜し、スリット38a側に位置する凸部壁面56aは、内筒50の径方向Rに対して傾斜し、互いに対向するガイド壁面40aと凸部壁面56aは同じ方向に傾斜する。上記構成によれば、ガイド壁面40aと凸部壁面56aの間に介在する弾性部材70は、ガイド壁面40a及び凸部壁面56aから圧縮荷重を受ける。このため、ガイド壁面40が外筒30の径方向Rに対して傾斜せず、且つ、凸部壁面56が内筒50の径方向Rに対して傾斜しない場合(図4参照)と比較して、弾性部材70の耐久性が向上する。
[4 変形例]
 図1で示すサスペンション装置10では、右側のサスペンションブッシュ28Rが車幅方向に対して+方向に傾斜し、左側のサスペンションブッシュ28Lが車幅方向に対して-方向に傾斜する。逆に、右側のサスペンションブッシュ28Rが車幅方向に対して-方向に傾斜し、左側のサスペンションブッシュ28Lが車幅方向に対して+方向に傾斜してもよい。図13を用いてその実施形態を説明する。なお、図13で示すサスペンション装置110において、図1で示すサスペンション装置10と同一の構成には同一の符号を付し、その説明を省略する。
 トレーリングアーム14R、14Lの前方向VFの先端には円筒部120R、120Lが形成される。円筒部120Rの軸線(図示せず)は、車体12の右方向VRに進むにつれて車体12の前方向VFに進むように延びる。円筒部120Lの軸線(図示せず)は、車体12の左方向VLに進むにつれて車体12の前方向VFに進むように延びる。円筒部120R、120Lの内部にはサスペンションブッシュ28R、28Lが圧入される。
 サスペンションブッシュ28Rが円筒部120Rに圧入された状態で、サスペンションブッシュ28Rの軸線Aは、車幅方向の内側から外側、すなわち車体12の右方向VRに進むにつれて車体12の前方向VFに進むように延びる。車幅方向に対するサスペンションブッシュ28Rの軸線Aの傾斜角度は、上方向VUから見て右回りの方向を+方向とした場合に、-27°~-33°程度、好ましくは-30°程度である。同様に、サスペンションブッシュ28Lが円筒部120Lに圧入された状態で、サスペンションブッシュ28Lの軸線Aは、車幅方向の内側から外側、すなわち車体12の左方向VLに進むにつれて車体12の前方向VFに進むように延びる。車幅方向に対するサスペンションブッシュ28Lの軸線Aの傾斜角度は、上方向VUから見て右回りの方向を+方向とした場合に、+27°~+33°程度、好ましくは+30°程度である。このような構造により、サスペンション装置110は、トーションビーム16よりも前方向VFに設定される仮想の回転中心点C´を中心にして回転可能となる。
 サスペンション装置110において、左側のトレーリングアーム14Lに設けられるサスペンションブッシュ28Lと右側のトレーリングアーム14Rに設けられるサスペンションブッシュ28Rは互いに逆向きに配置される。左側のサスペンションブッシュ28Lは右ねじ機構を成す向きで配置される。また、右側のサスペンションブッシュ28Rは左ねじ機構を成す向きで配置される。
 このような構造により、左側の車輪がバンプし右側の車輪がリバウンドする場合、左側に配置されるサスペンションブッシュ28Lの外筒30は車両内側方向P2aに変位し、右側に配置されるサスペンションブッシュ28Rの外筒30は車両外側方向P2bに変位する。すると、図13で示されるように、サスペンション装置110は、トーションビーム16よりも前方向VFに設定される仮想の回転中心点C´を中心にして右方向に回転する。その結果、後輪(図示せず)のトー角は旋回内側に向く。
 内筒50に形成される凸部54は延伸方向D2に平行する一対の凸部壁面56を有する。しかし、一対の凸部壁面56は延伸方向D2に平行でなくてもよい。例えば、凸部54は内筒50の径方向Rの外側方向に突出する円柱状であってもよいし、楕円柱状であってもよい。
 第1実施形態及び第2実施形態において、サスペンションブッシュ28はトーションビーム式のサスペンション装置10に設けられるが、他の形式のサスペンション装置に用いることも可能である。
 なお、本発明に係るサスペンションブッシュ及びサスペンション装置は、上述の実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。

Claims (5)

  1.  同一の軸線上に配置される内筒(50)及び外筒(30)と、前記内筒(50)と前記外筒(30)との間に介在する弾性部材(70)とを備えるサスペンションブッシュ(28)であって、
     前記内筒(50)の外周に凸部(54、54a)が形成され、
     前記外筒(30)の内周にガイド(36、36a)が形成され、
     前記ガイド(36、36a)に前記軸線と平行する平行方向成分と前記軸線を中心とする周方向成分とを含む延伸方向に沿ってスリット(38、38a)が形成され、
     前記凸部(54、54a)は前記スリット(38、38a)に配置され、
     前記凸部(54、54a)と前記スリット(38、38a)によりねじ機構が形成される
     ことを特徴とするサスペンションブッシュ(28)。
  2.  請求項1に記載のサスペンションブッシュ(28)において、
     前記外筒(30)は、前記外筒(30)の径方向に分割された複数の分割部材(32)により形成される
     ことを特徴とするサスペンションブッシュ(28)。
  3.  請求項2に記載のサスペンションブッシュ(28)において、
     前記軸線を含み且つ前記軸線と平行する平断面において、
     前記スリット(38a)側に位置するガイド壁面(40a)は、前記外筒(30)の径方向に対して傾斜し、
     前記スリット(38a)側に位置する凸部壁面(56a)は、前記内筒(50)の径方向に対して傾斜し、
     互いに対向する前記ガイド壁面(40a)と前記凸部壁面(56a)は同じ方向に傾斜する
     ことを特徴とするサスペンションブッシュ(28)。
  4.  サスペンションブッシュ(28)により左右一対のトレーリングアーム(14R、14L)を車体(12)に対して揺動自在に支持するトーションビーム式のサスペンション装置(10、110)であって、
     前記サスペンションブッシュ(28)の軸線は車幅内方向から外方向に進むにつれて前記車体(12)の後方向に進むように延び、
     前記サスペンションブッシュ(28)は、
     前記車体(12)に装着される内筒(50)と、
     前記内筒(50)と同一の軸線上に配置され、前記トレーリングアーム(14R、14L)に装着される外筒(30)と、
     前記内筒(50)と前記外筒(30)との間に介在する弾性部材(70)とを備え、
     前記内筒(50)の外周に凸部(54、54a)が形成され、
     前記外筒(30)の内周にガイド(36、36a)が形成され、
     前記ガイド(36、36a)に前記軸線と平行する平行方向成分と前記軸線を中心とする周方向成分とを含む延伸方向に沿ってスリット(38、38a)が形成され、
     前記凸部(54、54a)は前記スリット(38、38a)に配置され、
     前記凸部(54、54a)と前記スリット(38、38a)によりねじ機構が形成され、
     前記左右一対のトレーリングアーム(14R、14L)のうち、前記車体(12)の左側に設けられた左側トレーリングアーム(14L)に配置された前記サスペンションブッシュ(28)の前記ねじ機構は左ねじ構造を成し、前記車体(12)の右側に設けられた右側トレーリングアーム(14R)に配置された前記サスペンションブッシュ(28)の前記ねじ機構は右ねじ構造を成す
     ことを特徴とするサスペンション装置(10、110)。
  5.  サスペンションブッシュ(28)により左右一対のトレーリングアーム(14R、14L)を車体(12)に対して揺動自在に支持するトーションビーム式のサスペンション装置(10、110)であって、
     前記サスペンションブッシュ(28)の軸線は車幅内方向から外方向に進むにつれて前記車体(12)の後方向に進むように延び、
     前記サスペンションブッシュ(28)は、
     前記車体(12)に装着される内筒(50)と、
     前記内筒(50)と同一の軸線上に配置され、前記トレーリングアーム(14R、14L)に装着される外筒(30)と、
     前記内筒(50)と前記外筒(30)との間に介在する弾性部材(70)とを備え、
     前記内筒(50)の外周に凸部(54、54a)が形成され、
     前記外筒(30)の内周にガイド(36、36a)が形成され、
     前記ガイド(36、36a)に前記軸線と平行する平行方向成分と前記軸線を中心とする周方向成分とを含む延伸方向に沿ってスリット(38、38a)が形成され、
     前記凸部(54、54a)は前記スリット(38、38a)に配置され、
     前記凸部(54、54a)と前記スリット(38、38a)によりねじ機構が形成され、
     前記左右一対のトレーリングアーム(14R、14L)のうち、前記車体(12)の左側に設けられた左側トレーリングアーム(14L)に配置された前記サスペンションブッシュ(28)の前記ねじ機構は右ねじ構造を成し、前記車体(12)の右側に設けられた右側トレーリングアーム(14R)に配置された前記サスペンションブッシュ(28)の前記ねじ機構は左ねじ構造を成す
     ことを特徴とするサスペンション装置(10、110)。
PCT/JP2017/037623 2017-01-31 2017-10-18 サスペンションブッシュ及びサスペンション装置 WO2018142683A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018565929A JP6728408B2 (ja) 2017-01-31 2017-10-18 サスペンションブッシュ及びサスペンション装置
US16/481,612 US10821793B2 (en) 2017-01-31 2017-10-18 Suspension bush and suspension device
BR112019015581-3A BR112019015581A2 (pt) 2017-01-31 2017-10-18 Bucha de suspensão e dispositivo de suspensão
CN201780085256.9A CN110290948B (zh) 2017-01-31 2017-10-18 悬架衬套和悬架装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-015337 2017-01-31
JP2017015337 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018142683A1 true WO2018142683A1 (ja) 2018-08-09

Family

ID=63040541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037623 WO2018142683A1 (ja) 2017-01-31 2017-10-18 サスペンションブッシュ及びサスペンション装置

Country Status (5)

Country Link
US (1) US10821793B2 (ja)
JP (1) JP6728408B2 (ja)
CN (1) CN110290948B (ja)
BR (1) BR112019015581A2 (ja)
WO (1) WO2018142683A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210010205A (ko) * 2019-07-19 2021-01-27 현대자동차주식회사 튜닝 자유도 개선형 부시 및 현가 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392632A (ja) * 1989-09-04 1991-04-17 Boge Ag サイレントブロツク
JPH0558990U (ja) * 1992-01-24 1993-08-03 エヌ・オー・ケー・メグラスティック株式会社 防振ブッシュ
JPH08132836A (ja) * 1994-11-07 1996-05-28 Toyota Motor Corp サスペンション装置
JPH09210107A (ja) * 1996-02-07 1997-08-12 Tokai Rubber Ind Ltd 防振ブッシュ
JP2008201241A (ja) * 2007-02-20 2008-09-04 Honda Motor Co Ltd トーションビーム式サスペンション
JP2013050176A (ja) * 2011-08-31 2013-03-14 Tokai Rubber Ind Ltd 筒型防振装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3392971A (en) * 1967-02-28 1968-07-16 Trw Inc Suspension bushing
US3561830A (en) * 1968-04-22 1971-02-09 Goodrich Co B F Bearing assembly
US4290656A (en) * 1979-10-26 1981-09-22 The United States Of America As Represented By The Secretary Of The Navy Hydrodynamic bearing with extended pressure gradient
FR2769060B1 (fr) 1997-09-26 2000-10-13 Peugeot Articulation elastique, notamment pour un train roulant de vehicule automobile
JP2002098191A (ja) 2000-09-25 2002-04-05 Koyo Seiko Co Ltd 防振ブッシュ及び防振装置
JP4855832B2 (ja) * 2006-05-23 2012-01-18 株式会社ブリヂストン トーコレクトブッシュ
JP5057434B2 (ja) 2007-02-02 2012-10-24 富士重工業株式会社 サスペンション装置
JP5056366B2 (ja) * 2007-11-20 2012-10-24 日産自動車株式会社 サスペンション装置
JP5137751B2 (ja) 2008-08-29 2013-02-06 倉敷化工株式会社 防振装置
JP5461350B2 (ja) * 2010-09-08 2014-04-02 株式会社ショーワ 滑り軸受
JP5246297B2 (ja) * 2011-05-16 2013-07-24 日産自動車株式会社 サスペンション組み付け構造、スプリングシート、サスペンション組み付け方法
JP5780638B2 (ja) * 2011-06-21 2015-09-16 住友理工株式会社 防振ブッシュおよびその製造方法
JP6036206B2 (ja) 2012-11-15 2016-11-30 スズキ株式会社 車両のトーションビーム式サスペンション
JP6190638B2 (ja) * 2013-06-27 2017-08-30 住友理工株式会社 防振ブッシュおよび防振ブッシュの製造方法
JP2016223512A (ja) * 2015-05-29 2016-12-28 ダイハツ工業株式会社 サスペンションブッシュ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392632A (ja) * 1989-09-04 1991-04-17 Boge Ag サイレントブロツク
JPH0558990U (ja) * 1992-01-24 1993-08-03 エヌ・オー・ケー・メグラスティック株式会社 防振ブッシュ
JPH08132836A (ja) * 1994-11-07 1996-05-28 Toyota Motor Corp サスペンション装置
JPH09210107A (ja) * 1996-02-07 1997-08-12 Tokai Rubber Ind Ltd 防振ブッシュ
JP2008201241A (ja) * 2007-02-20 2008-09-04 Honda Motor Co Ltd トーションビーム式サスペンション
JP2013050176A (ja) * 2011-08-31 2013-03-14 Tokai Rubber Ind Ltd 筒型防振装置

Also Published As

Publication number Publication date
US20190366788A1 (en) 2019-12-05
US10821793B2 (en) 2020-11-03
JPWO2018142683A1 (ja) 2019-11-07
JP6728408B2 (ja) 2020-07-22
CN110290948A (zh) 2019-09-27
BR112019015581A2 (pt) 2020-03-17
CN110290948B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
JP4822289B2 (ja) サポートヨーク間隙自動調整装置
US20100122595A1 (en) Rack bar supporting device of steering apparatus for vehicle
US8465034B2 (en) Rack bar supporting device of steering apparatus for vehicle
JP7008823B2 (ja) サスペンションブッシュ及びサスペンション装置
WO2018142683A1 (ja) サスペンションブッシュ及びサスペンション装置
JP2017067293A (ja) シャーシ軸受
WO2020116484A1 (ja) ストラット式サスペンション装置
CN105599852B (zh) 车轮固定轴和自行车轮毂组件
KR20150141453A (ko) 커플드 토션 빔 액슬타입 현가장치
KR102016956B1 (ko) 차량의 캠볼트 조립체
JP7122222B2 (ja) ダンパマウント取付構造
KR101807011B1 (ko) 볼 조인트 유닛
JP6719163B2 (ja) リヤサスペンション
WO2020116483A1 (ja) ストラットマウント
KR100957160B1 (ko) 커플드 토션 빔 액슬타입 현가장치
KR100461380B1 (ko) 자동차용 조향장치의 링크기구
JP2017096681A (ja) トー変化量調整方法
KR102400070B1 (ko) 자동차의 휠얼라이먼트 조절장치
KR20170033500A (ko) 요크 유격 보상장치
CN110626451A (zh) 一种前轮转向机构
JP5472197B2 (ja) 車両用サスペンションのブッシュ装置
KR101339213B1 (ko) 차량의 서스펜션 암용 부시유닛
KR100482087B1 (ko) 차량의 안티롤 기능이 부가된 서스펜션
JP2010269640A (ja) 操舵機構
JP2020059298A (ja) ブッシュ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565929

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019015581

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 17894837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112019015581

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190729