WO2018142567A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2018142567A1
WO2018142567A1 PCT/JP2017/003921 JP2017003921W WO2018142567A1 WO 2018142567 A1 WO2018142567 A1 WO 2018142567A1 JP 2017003921 W JP2017003921 W JP 2017003921W WO 2018142567 A1 WO2018142567 A1 WO 2018142567A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
heat transfer
condenser
refrigerant
row
Prior art date
Application number
PCT/JP2017/003921
Other languages
English (en)
French (fr)
Inventor
友博 永野
和彦 河合
裕右 小山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/003921 priority Critical patent/WO2018142567A1/ja
Priority to JP2018565192A priority patent/JP6707152B2/ja
Publication of WO2018142567A1 publication Critical patent/WO2018142567A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/38Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being staggered to form tortuous fluid passages

Definitions

  • the present invention relates to an air conditioner, and more particularly to the structure of a condenser.
  • Some condensers used in natural circulation type air conditioners have a refrigerant flow path formed by folding a plurality of heat transfer tubes (see, for example, Patent Document 1).
  • the present invention has been made in order to solve the above-described problems. Even when the condenser is installed at an angle with respect to the vertical direction, the air that can suppress the liquid refrigerant from staying in the condenser is provided. It aims to provide a harmony device.
  • An air conditioner includes a refrigerant circuit in which a condenser and an evaporator are connected by piping, and a refrigerant circulates between the condenser and the evaporator.
  • the condenser is arranged in a staggered manner.
  • a first flow path having a plurality of heat transfer tubes, and leading the liquid refrigerant from the heat transfer tubes arranged in one outer row to the heat transfer tubes arranged in the other outer row;
  • the condenser has a plurality of heat transfer tubes arranged in a staggered manner, and the liquid refrigerant is arranged from the heat transfer tube arranged in one outer row to the other outer row.
  • the refrigerant flow path is composed of a first flow path that leads to the heat transfer pipe and a second flow path that leads the liquid refrigerant from the heat transfer pipe arranged in the other outer row to the heat transfer pipe arranged in one row.
  • the flow path is formed by alternately forming the first flow path and the second flow path from the inflow port formed in the upper heat transfer tube to the outflow port formed in the lower heat transfer tube.
  • the first flow path and the second flow path are inclined downward from the upstream side toward the downstream side. Therefore, even if the condenser is installed at an angle with respect to the vertical direction, the liquid refrigerant can be prevented from staying in the condenser.
  • FIG. 1 is a diagram illustrating a refrigerant circuit of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the arrow in FIG. 1 has shown the flow of the refrigerant
  • the air conditioner according to Embodiment 1 is a natural circulation type, and includes a condenser 1 installed outdoors and an evaporator 3 installed indoors, as shown in FIG. Further, in the air conditioner according to Embodiment 1, the condenser 1 and the evaporator 3 are connected by the liquid pipe 2 and the gas pipe 4, and the refrigerant circulates between the condenser 1 and the evaporator 3. It has a circuit.
  • FIG. 2 is a schematic diagram showing the structure of the outdoor unit 10 of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the arrow in FIG. 2 has shown the flow of air.
  • the condenser 1 according to the first embodiment is provided inside an outdoor unit 10
  • the evaporator 3 is provided inside an indoor unit (not shown).
  • the outdoor unit 10 constitutes an outer shell, and a casing 11 in which a blow-out port 13 is formed in the upper part and a suction port 12 is formed in the lower part, and the interior of the casing 11 is inclined with respect to the vertical direction.
  • a blower 14 installed on the secondary air passage side between the condenser 1 and the outlet 13.
  • FIG. 3 is a diagram illustrating the condenser 1 of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the right side of FIG. 3 is an enlarged view of a part of the condenser 1.
  • the arrow in the enlarged figure has shown the flow of the refrigerant
  • the condenser 1 is a fin tube type, and linear portions of hairpin tubes 16a described later are staggered in four rows.
  • the condenser 1 includes a plurality of plate-like fins 15 stacked in the same direction, a hairpin tube 16 a inserted into a through hole (not shown) of the plate-like fins 15, and a hairpin adjacent to the outside of the plate-like fins 15.
  • the first U-shaped tube 16b that connects the ends of the tube 16a, and the end of the hairpin tube 16a arranged in the first row (the left side of FIG. 3) that is one outer row and the other outer row
  • the second U-shaped tube 16c is connected to the end of the hairpin tube 16a arranged in a certain fourth row (right side in FIG. 3).
  • the straight portion of the hairpin tube 16a corresponds to the “heat transfer tube” of the present invention.
  • the hairpin tube 16a is used as a component of the condenser 1.
  • the hairpin tube 16a may be configured by a linear heat transfer tube and the first U-shaped tube 16b. .
  • the second U-shaped tube 16c connects the end of the hairpin tube 16a arranged in the first row and the end of the hairpin tube 16a arranged in the fourth row, but is arranged in the first row.
  • the end portion of the hairpin tube 16a is arranged three steps below the end portion of the hairpin tube 16a arranged in the fourth row.
  • the second U-shaped tube 16c has the end of the hairpin tube 16a arranged in the fourth row and the end of the hairpin tube 16a arranged in the first row of the hairpin tube 16a arranged in the fourth row.
  • the end part three steps below the end part is connected.
  • the flow path of the refrigerant flowing in the condenser 1 is formed by the hairpin tube 16a and the first U-shaped tube 16b, and is formed by the first flow path for guiding the liquid refrigerant from the first row to the fourth row and the second U-shaped tube 16c. And a second flow path for guiding the liquid refrigerant from the fourth row to the first row.
  • coolant is a 1st flow path from the inflow port (not shown) formed in the upper stage of the 1st row to the outflow port (not shown) formed in the lower stage of the 4th row. And the second flow path are alternately formed.
  • the end portion of the hairpin tube 16a arranged in the first row that is upstream of the first flow path is above the end portion of the hairpin tube 16a that is arranged in the fourth row that is downstream of the first flow path.
  • column which is an upstream of a 2nd flow path is rather than the edge part of the hairpin pipe
  • first refrigerant flow path flows through the first + 3x stage first flow path
  • second refrigerant flow path is the second + 3x stage.
  • the liquid refrigerant flowing through the first flow path of the first stage passes through the hairpin tube 16a and the first U-shaped pipe 16b and reaches the first stage of the fourth row from the first row of the first row. After that, it passes through the second U-shaped tube 16c and reaches the fourth stage, which is three stages below the first stage in the first row. Thereafter, the liquid refrigerant flowing through the fourth flow path of the first flow path passes through the hairpin tube 16a and the first U-shaped tube 16b and reaches the fourth row of the fourth row from the fourth row of the first row. After that, it passes through the second U-shaped tube 16c and reaches the seventh stage, which is three stages lower than the fourth stage in the first row. Thereafter, the liquid refrigerant repeats this flow until it reaches the outlet.
  • FIG. 3 is the angle between the second U-shaped tube 16c and the horizontal direction, that is, the angle between the second flow path and the horizontal direction, and the angle ⁇ illustrated in FIG. 3 is the hairpin tube 16a and the first U-shaped tube.
  • the angle between 16b and the horizontal direction that is, the angle between the first flow path and the horizontal direction.
  • the condenser 1 is installed inside the casing 11 of the outdoor unit 10 such that the inclination L with respect to the vertical direction is 0 ⁇ L ⁇ or ⁇ ⁇ L ⁇ 0, that is, ⁇ ⁇ L ⁇ .
  • the condenser 1 Since the condenser 1 is installed in the housing 11 of the outdoor unit 10 so that ⁇ ⁇ L ⁇ , the first flow path and the second flow path do not become horizontal, and the first flow The path and the second flow path can be tilted downward. Therefore, even if the condenser 1 is installed to be inclined with respect to the vertical direction, the liquid refrigerant is less likely to flow and can be prevented from staying in the condenser 1.
  • the condenser 1 gasifies with the evaporator 3 and condenses the gas refrigerant that has passed through the gas pipe 4 into a liquid refrigerant. Since the condenser 1 is installed in an inclined manner with respect to the vertical direction inside the casing 11 of the outdoor unit 10, no trap is formed in the refrigerant flow path, and the liquid refrigerant is retained in the condenser 1. Without any problem, it is guided to the liquid pipe 2 connected to the outlet side of the condenser 1 to realize natural circulation.
  • the air-conditioning apparatus includes the refrigerant circuit in which the condenser 1 and the evaporator 3 are connected by piping, and the refrigerant circulates between the condenser 1 and the evaporator 3.
  • 1 has a plurality of heat transfer tubes arranged in a staggered manner, a first flow path for guiding liquid refrigerant from a heat transfer tube arranged in one outer row to a heat transfer tube arranged in the other outer row, A refrigerant flow path composed of a second flow path that guides the refrigerant from the heat transfer tubes arranged in the other outer row to the heat transfer tubes arranged in the one row, and the flow paths are formed in the upper stage. From the inlet formed in the heat pipe to the outlet formed in the lower heat transfer pipe, the first flow path and the second flow path are alternately formed, and the first flow path and the second flow path are formed.
  • the flow path is inclined downward from the upstream side toward the downstream side.
  • the condenser 1 has a plurality of heat transfer tubes arranged in a staggered manner, and the liquid refrigerant is transferred from the heat transfer tubes arranged in one outer row to the other outer side.
  • the first flow path and the second flow path are inclined downward from the upstream side toward the downstream side. Therefore, even if the condenser 1 is installed to be inclined with respect to the vertical direction, the liquid refrigerant can be prevented from staying in the condenser 1.
  • the distribution of the liquid refrigerant in the refrigerant circuit can be controlled.
  • the condenser 1 according to the first embodiment does not need to be provided with a pass-extracting pipe, highly efficient heat exchange can be realized.
  • the stage pitch Dp of the condenser 1 is 20.4 mm and the line pitch Lp is 17.7 mm.
  • the present invention is not limited to this, and other stage pitches and line pitches may be used.
  • the number of columns of the condenser 1 is four, the number of columns is not limited to this and may be other numbers.
  • Embodiment 2 of the present invention will be described, but the description overlapping with Embodiment 1 will be omitted, and the same reference numerals will be given to the same or corresponding parts as those in Embodiment 1.
  • FIG. 4 is a diagram illustrating a refrigerant circuit of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the arrow in FIG. 4 has shown the flow of the refrigerant
  • the air conditioner according to the second embodiment is a circulation type using a liquid pump 5, and as shown in FIG. 4, a liquid pump that circulates refrigerant through the liquid pipe 2 with respect to the refrigerant circuit according to the first embodiment. 5 is provided.
  • the suction side of the liquid pump 5 and the condenser 1, and the discharge side of the liquid pump 5 and the evaporator 3 are connected by a liquid pipe 2.
  • FIG. 5 is a schematic diagram showing the structure of the outdoor unit 10a of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the arrow in FIG. 5 has shown the flow of air.
  • the condenser 1 according to the second embodiment is provided in the outdoor unit 10a, and the evaporator 3 is provided in the indoor unit (not shown).
  • the outdoor unit 10a constitutes an outer shell, and a casing 11 in which a blow-out port 13 is formed in the upper part and a suction port 12 is formed in the lower part, and the interior of the casing 11 is inclined with respect to the vertical direction.
  • the condenser 1, the blower 14 installed on the secondary air passage side between the condenser 1 and the outlet 13, and the liquid pump installed on the primary air passage side between the suction port 12 and the condenser 1 5 is provided.
  • FIG. 6 is a diagram illustrating the condenser 1 of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the right side of FIG. 6 is an enlarged view of a part of the condenser 1.
  • the arrow in the enlarged figure has shown the flow of the refrigerant
  • the condenser 1 is a fin tube type, and the straight portions of the hairpin tubes 16a described later are staggered in six rows.
  • the condenser 1 includes a plurality of plate-like fins 15 stacked in the same direction, a hairpin tube 16 a inserted into a through hole (not shown) of the plate-like fins 15, and a hairpin adjacent to the outside of the plate-like fins 15.
  • the first U-shaped tube 16b that connects the ends of the tube 16a, the end of the hairpin tube 16a arranged in the first row (the left side of FIG.
  • the second U-shaped tube 16c connects the end of the hairpin tube 16a arranged in the first row and the end of the hairpin tube 16a arranged in the sixth row, but is arranged in the first row.
  • the end portion of the hairpin tube 16a is arranged five steps below the end portion of the hairpin tube 16a arranged in the sixth row.
  • the second U-shaped tube 16c has the end of the hairpin tube 16a arranged in the sixth row and the end of the hairpin tube 16a arranged in the first row of the hairpin tube 16a arranged in the sixth row.
  • the end part 5 steps below the end part is connected.
  • the flow path of the refrigerant flowing in the condenser 1 is formed by the hairpin tube 16a and the first U-shaped tube 16b, and is formed by the first flow path for guiding the liquid refrigerant from the first row to the sixth row and the second U-shaped tube 16c. And a second flow path for guiding the liquid refrigerant from the sixth row to the first row.
  • coolant is a 1st flow path from the inflow port (not shown) formed in the upper stage of the 1st row to the outflow port (not shown) formed in the lower stage of the 6th row. And the second flow path are alternately formed.
  • the end portion of the hairpin tube 16a arranged in the first row which is the upstream side of the first flow path is above the end portion of the hairpin tube 16a arranged in the sixth row which is the downstream side of the first flow channel.
  • column which is an upstream of a 2nd flow path is rather than the edge part of the hairpin tube
  • first refrigerant flow path flows through the first + 5x stage first flow path
  • second refrigerant flow path is the second + 5x stage.
  • the third refrigerant flow path flows through the third + 5x stage first flow path
  • the fourth refrigerant flow path flows through the 4 + 5x stage first flow path
  • the liquid refrigerant flowing through the first flow path of the first stage passes through the hairpin tube 16a and the first U-shaped pipe 16b and reaches the first stage of the fourth row from the first row of the first row. After that, it passes through the second U-shaped tube 16c and reaches the sixth stage, which is five stages below the first stage in the first row. Thereafter, the liquid refrigerant flowing through the first flow path of the sixth stage passes through the hairpin tube 16a and the first U-shaped pipe 16b and reaches the sixth stage of the fourth row from the sixth row of the first row. After that, it passes through the second U-shaped tube 16c and reaches the 11th stage, which is 5 stages below the 6th stage in the first row. Thereafter, the liquid refrigerant repeats this flow until it reaches the outlet.
  • FIG. 6 is the angle between the second U-shaped tube 16c and the horizontal direction, that is, the angle between the second flow path and the horizontal direction, and the angle ⁇ illustrated in FIG. 6 is the hairpin tube 16a and the first U-shaped tube.
  • the angle between 16b and the horizontal direction that is, the angle between the first flow path and the horizontal direction.
  • the condenser 1 is installed in the casing 11 of the outdoor unit 10a so that the inclination L with respect to the vertical direction is 0 ⁇ L ⁇ or ⁇ ⁇ L ⁇ 0, that is, ⁇ ⁇ L ⁇ .
  • the condenser 1 Since the condenser 1 is installed in the casing 11 of the outdoor unit 10a so that ⁇ ⁇ L ⁇ , the first flow path and the second flow path are not in the horizontal direction, and the first flow The path and the second flow path can be tilted downward. Therefore, even if the condenser 1 is installed to be inclined with respect to the vertical direction, the liquid refrigerant is less likely to flow and can be prevented from staying in the condenser 1.
  • the condenser 1 gasifies with the evaporator 3 and condenses the gas refrigerant that has passed through the gas pipe 4 into a liquid refrigerant. Since the condenser 1 is installed in the interior of the casing 11 of the outdoor unit 10a so as to be inclined with respect to the vertical direction, no trap is formed in the refrigerant flow path, and the liquid refrigerant is retained in the condenser 1. Without being guided, the liquid pump 5 provided in the liquid pipe 2 connected to the outlet side of the condenser 1 is led to the circulation by the liquid pump 5.
  • the refrigerant circuit of the air-conditioning apparatus according to Embodiment 2 includes the liquid pump 5, the suction side of the liquid pump 5 and the condenser 1 are connected by piping, and the discharge side of the liquid pump 5 and the evaporator 3. Are connected by piping. Therefore, according to the air conditioning apparatus according to Embodiment 2, in the refrigerant circuit, the refrigerant can be circulated by the liquid pump 5 without the liquid refrigerant remaining in the condenser 1.
  • the stage pitch Dp of the condenser 1 is 20.4 mm and the line pitch Lp is 17.7 mm.
  • the present invention is not limited to this, and other stage pitches and line pitches may be used.
  • the number of columns of the condenser 1 is six, the number of columns is not limited to this and may be other numbers.
  • Embodiment 3 FIG.
  • Embodiment 3 of the present invention will be described, but the description overlapping with Embodiments 1 and 2 will be omitted, and the same or corresponding parts as those in Embodiments 1 and 2 will be denoted by the same reference numerals. .
  • FIG. 7 is a diagram showing a refrigerant circuit of the air-conditioning apparatus according to Embodiment 3 of the present invention.
  • the arrow in FIG. 7 has shown the flow of the refrigerant
  • the air-conditioning apparatus according to the third embodiment is a combined circulation type using a liquid pump 5 and a compressor 6, and as shown in FIG. 6, a refrigerant is provided in the gas pipe 4 with respect to the refrigerant circuit according to the second embodiment. Is provided between the discharge side of the liquid pump 5 and the evaporator 3, and a throttle device 7 for reducing the pressure of the refrigerant is provided.
  • a receiver 9 is provided between the condenser 1 and the suction side of the liquid pump 5, and a supercooling heat for supercooling the refrigerant is provided between the receiver 9 and the suction side of the liquid pump 5.
  • An exchanger 17 is provided. Further, a first check valve 8 a for preventing the back flow of the liquid refrigerant is provided in parallel with the liquid pump 5, and a second check valve 8 b for preventing the back flow of the liquid refrigerant is provided in parallel with the compressor 6. Yes.
  • the condenser 1 gasifies with the evaporator 3 and condenses the gas refrigerant that has passed through the gas pipe 4 into a liquid refrigerant. Since the condenser 1 is installed in the interior of the casing 11 of the outdoor unit 10a so as to be inclined with respect to the vertical direction, no trap is formed in the refrigerant flow path, and the liquid refrigerant is retained in the condenser 1. Without any problem, it is guided to the receiver 9 provided in the liquid pipe 2 connected to the outlet side of the condenser 1, and the combined circulation by the liquid pump 5 and the compressor 6 is realized.
  • the refrigerant circuit of the air-conditioning apparatus according to Embodiment 3 includes the compressor 6 and the expansion device 7, and the suction side of the compressor 6 and the evaporator 3 are connected by piping, and the discharge of the compressor 6 is performed.
  • the side and the condenser 1 are connected by piping, and the expansion device 7 is provided between the liquid pump 5 and the evaporator 3. Therefore, according to the air conditioning apparatus according to Embodiment 3 of the present invention, in the refrigerant circuit, the liquid refrigerant is not retained in the condenser 1 and the combined circulation by the liquid pump 5 and the compressor 6 can be realized. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

空気調和装置は、凝縮器と蒸発器とが配管で接続され、凝縮器と蒸発器との間を冷媒が循環する冷媒回路を備え、凝縮器は、千鳥配置された複数の伝熱管を有し、液冷媒を一方の外側の列に配置された伝熱管から他方の外側の列へ配置された伝熱管へ導く第1流路と、液冷媒を他方の外側の列に配置された伝熱管から一方の列に配置された伝熱管へ導く第2流路とで構成される冷媒の流路を有し、流路は、上段の伝熱管に形成された流入口から下段の伝熱管に形成された流出口に至るまで、第1流路と第2流路とが交互に形成されているものであり、第1流路および第2流路は、上流側から下流側に向かって下方に傾いているものである。

Description

空気調和装置
 本発明は、空気調和装置に関し、特に凝縮器の構造に関するものである。
 自然循環式の空気調和装置に用いられる凝縮器において、伝熱管が複数折り返されて冷媒の流路が形成されているものがある(例えば、特許文献1参照)。
実公昭61-33428号公報
 従来、設置スペースが広くない場所に凝縮器を設置したいような場合、凝縮器を鉛直方向に対して傾けて設置することが考えられる。しかし、特許文献1に記載の凝縮器を鉛直方向に対して傾けて設置すると伝熱管の折り返された部分がトラップとなり、伝熱管によって形成された流路を液冷媒が流れにくくなって、液冷媒が凝縮器に滞留してしまうという課題があった。
 本発明は、以上のような課題を解決するためになされたもので、凝縮器を鉛直方向に対して傾けて設置しても、液冷媒が凝縮器に滞留するのを抑制することができる空気調和装置を提供することを目的としている。
 本発明に係る空気調和装置は、凝縮器と蒸発器とが配管で接続され、前記凝縮器と前記蒸発器との間を冷媒が循環する冷媒回路を備え、前記凝縮器は、千鳥配置された複数の伝熱管を有し、液冷媒を一方の外側の列に配置された前記伝熱管から他方の外側の列へ配置された前記伝熱管へ導く第1流路と、液冷媒を前記他方の外側の列に配置された前記伝熱管から前記一方の列に配置された前記伝熱管へ導く第2流路とで構成される冷媒の流路を有し、前記流路は、上段の前記伝熱管に形成された流入口から下段の前記伝熱管に形成された流出口に至るまで、前記第1流路と前記第2流路とが交互に形成されているものであり、前記第1流路および前記第2流路は、上流側から下流側に向かって下方に傾いているものである。
 本発明に係る空気調和装置によれば、凝縮器は、千鳥配置された複数の伝熱管を有し、液冷媒を一方の外側の列に配置された伝熱管から他方の外側の列へ配置された伝熱管へ導く第1流路と、液冷媒を他方の外側の列に配置された伝熱管から一方の列に配置された伝熱管へ導く第2流路とで構成される冷媒の流路を有し、その流路は、上段の伝熱管に形成された流入口から下段の伝熱管に形成された流出口に至るまで、第1流路と第2流路とが交互に形成されているものであり、第1流路および第2流路は、上流側から下流側に向かって下方に傾いている。そのため、凝縮器を鉛直方向に対して傾けて設置しても、液冷媒が凝縮器に滞留するのを抑制することができる。
本発明の実施の形態1に係る空気調和装置の冷媒回路を示す図である。 本発明の実施の形態1に係る空気調和装置の室外機の構造を示す模式図である。 本発明の実施の形態1に係る空気調和装置の凝縮器を説明する図である。 本発明の実施の形態2に係る空気調和装置の冷媒回路を示す図である。 本発明の実施の形態2に係る空気調和装置の室外機の構造を示す模式図である。 本発明の実施の形態2に係る空気調和装置の凝縮器を説明する図である。 本発明の実施の形態3に係る空気調和装置の冷媒回路を示す図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置の冷媒回路を示す図である。なお、図1中の矢印は冷媒の流れを示している。
 本実施の形態1に係る空気調和装置は、自然循環式であり、図1に示すように、屋外に設置される凝縮器1と、屋内に設置される蒸発器3とを備えている。また、本実施の形態1に係る空気調和装置は、凝縮器1と蒸発器3とが液管2およびガス管4で接続され、凝縮器1と蒸発器3との間を冷媒が循環する冷媒回路を備えている。
 図2は、本発明の実施の形態1に係る空気調和装置の室外機10の構造を示す模式図である。なお、図2中の矢印は空気の流れを示している。
 図2に示すように、本実施の形態1に係る凝縮器1は、室外機10の内部に設けられており、蒸発器3は、室内機(図示せず)の内部に設けられている。室外機10は、外郭を構成し、上部には吹き出し口13が形成され、下部には吸い込み口12が形成された筐体11と、筐体11の内部に鉛直方向に対して傾いて設置された凝縮器1と、凝縮器1と吹き出し口13との間の2次風路側に設置された送風機14と、を備えている。
 図3は、本発明の実施の形態1に係る空気調和装置の凝縮器1を説明する図である。なお、図3の右側は、凝縮器1の一部を拡大した図である。また、その拡大した図中の矢印は冷媒の流れを示している。
 図3に示すように、凝縮器1は、フィンチューブ型であり、後述するヘアピン管16aの直線部分が4列に千鳥配置されている。この凝縮器1は、同じ方向に複数積層された板状フィン15と、板状フィン15の貫通穴(図示せず)に挿通されるヘアピン管16aと、板状フィン15の外側において隣接するヘアピン管16aの端部同士を連結する第1U字管16bと、一方の外側の列である第1列(図3の紙面左側)に配置されたヘアピン管16aの端部と他方の外側の列である第4列(図3の紙面右側)に配置されたヘアピン管16aの端部とを連結する第2U字管16cとで構成されている。
 なお、ヘアピン管16aの直線部分は、本発明の「伝熱管」に相当する。また、本実施の形態1では、凝縮器1の構成要素としてヘアピン管16aを用いたが、ヘアピン管16aを直線形状の伝熱管と第1U字管16bとで構成し、それを用いてもよい。
 第2U字管16cは、上記の通り、第1列に配置されたヘアピン管16aの端部と第4列に配置されたヘアピン管16aの端部とを連結するが、第1列に配置されたヘアピン管16aの端部の方が第4列に配置されたヘアピン管16aの端部よりも3段下に配置されている。つまり、第2U字管16cは、第4列に配置されたヘアピン管16aの端部と、第1列に配置されたヘアピン管16aの端部のうち第4列に配置されたヘアピン管16aの端部よりも3段下の端部とを連結する。
 凝縮器1内を流れる冷媒の流路は、ヘアピン管16aおよび第1U字管16bにより形成され、液冷媒を第1列から第4列へ導く第1流路と、第2U字管16cにより形成され、液冷媒を第4列から第1列へ導く第2流路とで構成されている。そして、その冷媒の流路は、第1列の上段に形成された流入口(図示せず)から第4列の下段に形成された流出口(図示せず)に至るまで、第1流路と第2流路とが交互に形成されている。
 第1流路の上流側である第1列に配置されたヘアピン管16aの端部は、第1流路の下流側である第4列に配置されたヘアピン管16aの端部よりも上側に配置されている。また、第2流路の上流側である第4列に配置されたヘアピン管16aの端部は、第2流路の下流側である第1列に配置されたヘアピン管16aの端部よりも上側に配置されている。そのため、第1流路および第2流路は、上流側から下流側に向かって下方に傾いており、冷媒の流路は、液冷媒が流れやすい構造となっている。
 また、冷媒の流路は3つ並列に形成されており、1つ目の冷媒の流路は第1+3x段目の第1流路を流れ、2つ目の冷媒の流路は第2+3x段目の第1流路を流れ、3つ目の冷媒の流路は第3+3x段目の第1流路を流れる。なお、x=0、1、2、3・・・である。
 つまり、例えば、第1段目の第1流路を流れる液冷媒は、ヘアピン管16aおよび第1U字管16bを通過して第1列の第1段から第4列の第1段目に到達した後、第2U字管16cを通過して第1列の前記第1段目よりも3段下の第4段目に到達する。その後、第4段目の第1流路を流れる液冷媒は、ヘアピン管16aおよび第1U字管16bを通過して第1列の第4段目から第4列の第4段目に到達した後、第2U字管16cを通過して第1列の前記第4段目よりも3段下の第7段目に到達する。以後、液冷媒は、流出口に至るまでこの流れを繰り返す。
 図3に示す角度αは、第2U字管16cと水平方向との角度、つまり第2流路と水平方向との角度であり、図3に示す角度βは、ヘアピン管16aおよび第1U字管16bと水平方向との角度、つまり第1流路と水平方向との角度である。
 凝縮器1は、室外機10の筐体11の内部において、鉛直方向に対する傾きLが0≦L<αまたはβ<L≦0、つまりβ<L<αとなるように設置されている。ここで、凝縮器1は、段ピッチDp=20.4mm、列ピッチLp=17.7mmの千鳥配列を有しており、α=30°、β=-30°である。
 凝縮器1が、室外機10の筐体11の内部において、β<L<αとなるように設置されることで、第1流路および第2流路が水平方向とならず、第1流路および第2流路を下方に傾けることができる。そのため、凝縮器1を鉛直方向に対して傾けて設置しても、液冷媒が流れにくくなって凝縮器1に滞留するのを抑制することができる。
 次に、凝縮器1の動作について説明する。
 屋外温度<屋内温度である条件において、凝縮器1は、蒸発器3でガス化し、ガス管4を通過したガス冷媒を、凝縮して液冷媒にする。この凝縮器1は、室外機10の筐体11の内部において鉛直方向に対して傾いて設置されているため、冷媒の流路にトラップが形成されず、液冷媒が凝縮器1に滞留されることなく、凝縮器1の流出口側に接続された液管2に導かれるようになっており、自然循環が実現される。
 以上、本実施の形態1に係る空気調和装置は、凝縮器1と蒸発器3とが配管で接続され、凝縮器1と蒸発器3との間を冷媒が循環する冷媒回路を備え、凝縮器1は、千鳥配置された複数の伝熱管を有し、液冷媒を一方の外側の列に配置された伝熱管から他方の外側の列へ配置された伝熱管へ導く第1流路と、液冷媒を他方の外側の列に配置された伝熱管から一方の列に配置された伝熱管へ導く第2流路とで構成される冷媒の流路を有し、その流路は、上段の伝熱管に形成された流入口から下段の伝熱管に形成された流出口に至るまで、第1流路と第2流路とが交互に形成されているものであり、第1流路および第2流路は、上流側から下流側に向かって下方に傾いているものである。
 本実施の形態1に係る空気調和装置によれば、凝縮器1は、千鳥配置された複数の伝熱管を有し、液冷媒を一方の外側の列に配置された伝熱管から他方の外側の列へ配置された伝熱管へ導く第1流路と、液冷媒を他方の外側の列に配置された伝熱管から一方の列に配置された伝熱管へ導く第2流路とで構成される冷媒の流路を有し、その流路は、上段の伝熱管に形成された流入口から下段の伝熱管に形成された流出口に至るまで、第1流路と第2流路とが交互に形成されているものであり、第1流路および第2流路は、上流側から下流側に向かって下方に傾いている。そのため、凝縮器1を鉛直方向に対して傾けて設置しても、液冷媒が凝縮器1に滞留するのを抑制することができる。
 また、自然循環において、凝縮器1に滞留するのを抑制することができるため、冷媒回路内の液冷媒の分布を制御することができる。
 また、本実施の形態1に係る凝縮器1は、パス抜き配管を設ける必要がないため、高効率熱交換を実現することができる。
 なお、本実施の形態1では、凝縮器1の段ピッチDp=20.4mm、列ピッチLp=17.7mmとしたが、それに限定されず、他の段ピッチおよび列ピッチでもよい。また、凝縮器1の列数を4列としたが、それに限定されず、他の列数でもよい。
 実施の形態2.
 以下、本発明の実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 図4は、本発明の実施の形態2に係る空気調和装置の冷媒回路を示す図である。なお、図4中の矢印は冷媒の流れを示している。
 本実施の形態2に係る空気調和装置は、液ポンプ5による循環式であり、図4に示すように、実施の形態1に係る冷媒回路に対して、液管2に冷媒を循環させる液ポンプ5が設けられている。具体的には、液ポンプ5の吸入側と凝縮器1、および、液ポンプ5の吐出側と蒸発器3とが、それぞれ液管2で接続されている。
 図5は、本発明の実施の形態2に係る空気調和装置の室外機10aの構造を示す模式図である。なお、図5中の矢印は空気の流れを示している。
 図5に示すように、本実施の形態2に係る凝縮器1は、室外機10aの内部に設けられており、蒸発器3は、室内機(図示せず)の内部に設けられている。室外機10aは、外郭を構成し、上部には吹き出し口13が形成され、下部には吸い込み口12が形成された筐体11と、筐体11の内部に鉛直方向に対して傾いて設置された凝縮器1と、凝縮器1と吹き出し口13との間の2次風路側に設置された送風機14と、吸い込み口12と凝縮器1との間の1次風路側に設置された液ポンプ5と、を備えている。
 図6は、本発明の実施の形態2に係る空気調和装置の凝縮器1を説明する図である。なお、図6の右側は、凝縮器1の一部を拡大した図である。また、その拡大した図中の矢印は冷媒の流れを示している。
 図6に示すように、凝縮器1は、フィンチューブ型であり、後述するヘアピン管16aの直線部分が6列に千鳥配置されている。この凝縮器1は、同じ方向に複数積層された板状フィン15と、板状フィン15の貫通穴(図示せず)に挿通されるヘアピン管16aと、板状フィン15の外側において隣接するヘアピン管16aの端部同士を連結する第1U字管16bと、一方の外側の列である第1列(図6の紙面左側)に配置されたヘアピン管16aの端部と他方の外側の列である第6列(図6の紙面右側)に配置されたヘアピン管16aの端部とを連結する第2U字管16cとで構成されている。
 第2U字管16cは、上記の通り、第1列に配置されたヘアピン管16aの端部と第6列に配置されたヘアピン管16aの端部とを連結するが、第1列に配置されたヘアピン管16aの端部の方が第6列に配置されたヘアピン管16aの端部よりも5段下に配置されている。つまり、第2U字管16cは、第6列に配置されたヘアピン管16aの端部と、第1列に配置されたヘアピン管16aの端部のうち第6列に配置されたヘアピン管16aの端部よりも5段下の端部とを連結する。
 凝縮器1内を流れる冷媒の流路は、ヘアピン管16aおよび第1U字管16bにより形成され、液冷媒を第1列から第6列へ導く第1流路と、第2U字管16cにより形成され、液冷媒を第6列から第1列へ導く第2流路とで構成されている。そして、その冷媒の流路は、第1列の上段に形成された流入口(図示せず)から第6列の下段に形成された流出口(図示せず)に至るまで、第1流路と第2流路とが交互に形成されている。
 第1流路の上流側である第1列に配置されたヘアピン管16aの端部は、第1流路の下流側である第6列に配置されたヘアピン管16aの端部よりも上側に配置されている。また、第2流路の上流側である第6列に配置されたヘアピン管16aの端部は、第2流路の下流側である第1列に配置されたヘアピン管16aの端部よりも上側に配置されている。そのため、第1流路および第2流路は、上流側から下流側に向かって下方に傾いており、冷媒の流路は、液冷媒が流れやすい構造となっている。
 また、冷媒の流路は5つ並列に形成されており、1つ目の冷媒の流路は第1+5x段目の第1流路を流れ、2つ目の冷媒の流路は第2+5x段目の第1流路を流れ、3つ目の冷媒の流路は第3+5x段目の第1流路を流れ、4つ目の冷媒の流路は第4+5x段目の第1流路を流れ、5つ目の冷媒の流路は第5+5x段目の第1流路を流れる。なお、x=0、1、2、3・・・である。
 つまり、例えば、第1段目の第1流路を流れる液冷媒は、ヘアピン管16aおよび第1U字管16bを通過して第1列の第1段から第4列の第1段目に到達した後、第2U字管16cを通過して第1列の前記第1段目よりも5段下の第6段目に到達する。その後、第6段目の第1流路を流れる液冷媒は、ヘアピン管16aおよび第1U字管16bを通過して第1列の第6段目から第4列の第6段目に到達した後、第2U字管16cを通過して第1列の前記第6段目よりも5段下の第11段目に到達する。以後、液冷媒は、流出口に至るまでこの流れを繰り返す。
 図6に示す角度αは、第2U字管16cと水平方向との角度、つまり第2流路と水平方向との角度であり、図6に示す角度βは、ヘアピン管16aおよび第1U字管16bと水平方向との角度、つまり第1流路と水平方向との角度である。
 凝縮器1は、室外機10aの筐体11の内部において、鉛直方向に対する傾きLが0≦L<αまたはβ<L≦0、つまりβ<L<αとなるように設置されている。ここで、凝縮器1は、段ピッチDp=20.4mm、列ピッチLp=17.7mmの千鳥配列を有しており、α=30°、β=-30°である。
 凝縮器1が、室外機10aの筐体11の内部において、β<L<αとなるように設置されることで、第1流路および第2流路が水平方向とならず、第1流路および第2流路を下方に傾けることができる。そのため、凝縮器1を鉛直方向に対して傾けて設置しても、液冷媒が流れにくくなって凝縮器1に滞留するのを抑制することができる。
 次に、凝縮器1の動作について説明する。
 屋外温度<屋内温度である条件において、凝縮器1は、蒸発器3でガス化し、ガス管4を通過したガス冷媒を、凝縮して液冷媒にする。この凝縮器1は、室外機10aの筐体11の内部において鉛直方向に対して傾いて設置されているため、冷媒の流路にトラップが形成されず、液冷媒が凝縮器1に滞留されることなく、凝縮器1の流出口側に接続された液管2に設けられた液ポンプ5に導かれるようになっており、液ポンプ5による循環が実現される。
 以上、本実施の形態2に係る空気調和装置の冷媒回路は、液ポンプ5を備え、液ポンプ5の吸入側と凝縮器1とが配管で接続され、液ポンプ5の吐出側と蒸発器3とが配管で接続されているものである。そのため、本実施の形態2に係る空気調和装置によれば、冷媒回路において、液冷媒が凝縮器1に滞留されることなく、液ポンプ5による冷媒の循環を実現することができる。
 なお、本実施の形態2では、凝縮器1の段ピッチDp=20.4mm、列ピッチLp=17.7mmとしたが、それに限定されず、他の段ピッチおよび列ピッチでもよい。また、凝縮器1の列数を6列としたが、それに限定されず、他の列数でもよい。
 実施の形態3.
 以下、本発明の実施の形態3について説明するが、実施の形態1および2と重複するものについては説明を省略し、実施の形態1および2と同じ部分または相当する部分には同じ符号を付す。
 図7は、本発明の実施の形態3に係る空気調和装置の冷媒回路を示す図である。なお、図7中の矢印は冷媒の流れを示している。
 本実施の形態3に係る空気調和装置は、液ポンプ5および圧縮機6による複合循環式であり、図6に示すように、実施の形態2に係る冷媒回路に対して、ガス管4に冷媒を圧縮する圧縮機6が設けられており、液ポンプ5の吐出側と蒸発器3との間に冷媒を減圧させる絞り装置7が設けられている。また、凝縮器1と液ポンプ5の吸入側との間に液冷媒を溜めるレシーバ9が設けられており、そのレシーバ9と液ポンプ5の吸入側との間に冷媒を過冷却する過冷却熱交換器17が設けられている。さらに、液ポンプ5と並列に液冷媒の逆流を防止する第1逆止弁8aが設けられており、圧縮機6と並列に液冷媒の逆流を防止する第2逆止弁8bが設けられている。
 次に、凝縮器1の動作について説明する。
 屋外温度<屋内温度である条件において、凝縮器1は、蒸発器3でガス化し、ガス管4を通過したガス冷媒を、凝縮して液冷媒にする。この凝縮器1は、室外機10aの筐体11の内部において鉛直方向に対して傾いて設置されているため、冷媒の流路にトラップが形成されず、液冷媒が凝縮器1に滞留されることなく、凝縮器1の流出口側に接続された液管2に設けられたレシーバ9に導かれるようになっており、液ポンプ5および圧縮機6による複合循環が実現される。
 以上、本実施の形態3に係る空気調和装置の冷媒回路は、圧縮機6と絞り装置7とを備え、圧縮機6の吸入側と蒸発器3とが配管で接続され、圧縮機6の吐出側と凝縮器1とが配管で接続されており、液ポンプ5と蒸発器3との間に絞り装置7が設けられているものである。そのため、本発明の実施の形態3に係る空気調和装置によれば、冷媒回路において、液冷媒が凝縮器1に滞留されることなく、液ポンプ5および圧縮機6による複合循環を実現することができる。
 1 凝縮器、2 液管、3 蒸発器、4 ガス管、5 液ポンプ、6 圧縮機、7 絞り装置、8a 第1逆止弁、8b 第2逆止弁、9 レシーバ、10 室外機、10a 室外機、11 筐体、12 吸い込み口、13 吹き出し口、14 送風機、15 板状フィン、16a ヘアピン管、16b 第1U字管、16c 第2U字管、17 過冷却熱交換器。

Claims (4)

  1.  凝縮器と蒸発器とが配管で接続され、前記凝縮器と前記蒸発器との間を冷媒が循環する冷媒回路を備え、
     前記凝縮器は、
     千鳥配置された複数の伝熱管を有し、
     液冷媒を一方の外側の列に配置された前記伝熱管から他方の外側の列へ配置された前記伝熱管へ導く第1流路と、液冷媒を前記他方の外側の列に配置された前記伝熱管から前記一方の列に配置された前記伝熱管へ導く第2流路とで構成される冷媒の流路を有し、前記流路は、上段の前記伝熱管に形成された流入口から下段の前記伝熱管に形成された流出口に至るまで、前記第1流路と前記第2流路とが交互に形成されているものであり、
     前記第1流路および前記第2流路は、上流側から下流側に向かって下方に傾いているものである
     空気調和装置。
  2.  前記第1流路は、
     複数の前記伝熱管と、隣接する前記伝熱管の端部同士を連結する第1U字管とで形成されており、
     前記第2流路は、
     前記一方の外側の列に配置された前記伝熱管の端部と前記他方の外側の列に配置された前記伝熱管の端部とを連結する第2U字管で形成されている
     請求項1に記載の空気調和装置。
  3.  前記冷媒回路は、
     液ポンプを備え、
     前記液ポンプの吸入側と前記凝縮器とが配管で接続され、前記液ポンプの吐出側と前記蒸発器とが配管で接続されている
     請求項1または2に記載の空気調和装置。
  4.  前記冷媒回路は、
     圧縮機と絞り装置とを備え、
     前記圧縮機の吸入側と前記蒸発器とが配管で接続され、前記圧縮機の吐出側と前記凝縮器とが配管で接続されており、
     前記液ポンプと前記蒸発器との間に前記絞り装置が設けられている
     請求項3に記載の空気調和装置。
PCT/JP2017/003921 2017-02-03 2017-02-03 空気調和装置 WO2018142567A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/003921 WO2018142567A1 (ja) 2017-02-03 2017-02-03 空気調和装置
JP2018565192A JP6707152B2 (ja) 2017-02-03 2017-02-03 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003921 WO2018142567A1 (ja) 2017-02-03 2017-02-03 空気調和装置

Publications (1)

Publication Number Publication Date
WO2018142567A1 true WO2018142567A1 (ja) 2018-08-09

Family

ID=63039398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003921 WO2018142567A1 (ja) 2017-02-03 2017-02-03 空気調和装置

Country Status (2)

Country Link
JP (1) JP6707152B2 (ja)
WO (1) WO2018142567A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345779A (zh) * 2019-08-13 2019-10-18 江苏天舒电器有限公司 一种防冻型双流道翅片式换热器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106986A (ja) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp 空気調和装置およびその制御方法
JP2015516061A (ja) * 2012-05-08 2015-06-04 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツングInficon GmbH 流体用除去装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561063U (ja) * 1980-06-19 1981-01-07
JP2010249402A (ja) * 2009-04-15 2010-11-04 Daikin Ind Ltd 吸着熱交換器
EP2444751B1 (en) * 2009-06-19 2019-01-30 Daikin Industries, Ltd. Ceiling-mounted air conditioning unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106986A (ja) * 2000-09-29 2002-04-10 Mitsubishi Electric Corp 空気調和装置およびその制御方法
JP2015516061A (ja) * 2012-05-08 2015-06-04 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツングInficon GmbH 流体用除去装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345779A (zh) * 2019-08-13 2019-10-18 江苏天舒电器有限公司 一种防冻型双流道翅片式换热器

Also Published As

Publication number Publication date
JPWO2018142567A1 (ja) 2019-11-07
JP6707152B2 (ja) 2020-06-10

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
CN107429975B (zh) 热交换器及空调机
US8205470B2 (en) Indoor unit for air conditioner
US9702637B2 (en) Heat exchanger, indoor unit, and refrigeration cycle apparatus
CN108139089B (zh) 空气调节机的室外机及室内机
US20130220584A1 (en) Heat exchanger, and all-in-one air conditioner equipped therewith
JP6223596B2 (ja) 空気調和装置の室内機
EP3540318B1 (en) Indoor unit for air conditioner, and air conditioner
WO2015004720A1 (ja) 熱交換器、及び空気調和機
JP6576577B1 (ja) 冷媒分配器、熱交換器及び空気調和装置
WO2019077744A1 (ja) 空気調和機
JP2010078287A (ja) 空気調和機
JP2007255785A (ja) フィン付き熱交換器及び空気調和機
WO2018142567A1 (ja) 空気調和装置
JP2012167913A (ja) 空気調和機
JP4785670B2 (ja) 空気調和機の室内機
JP2016050718A (ja) 空気調和機
JP2011064338A (ja) 空気調和機
US20170074564A1 (en) Heat exchanger and refrigeration cycle apparatus including the heat exchanger
JPWO2019116820A1 (ja) 空気調和機
WO2023199466A1 (ja) 熱交換器及びこれを有する空気調和装置
JP4734915B2 (ja) 熱交換器およびそれを備えた空気調和機の室内機
US20240175643A1 (en) Heat exchanger and outdoor unit comprising said heat exchanger
JP7414961B2 (ja) 室内機および空気調和機
JP2012042128A (ja) 熱交換器及びそれを搭載した空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565192

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895450

Country of ref document: EP

Kind code of ref document: A1