WO2018142440A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2018142440A1
WO2018142440A1 PCT/JP2017/003276 JP2017003276W WO2018142440A1 WO 2018142440 A1 WO2018142440 A1 WO 2018142440A1 JP 2017003276 W JP2017003276 W JP 2017003276W WO 2018142440 A1 WO2018142440 A1 WO 2018142440A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
phosphor
region
emitting device
Prior art date
Application number
PCT/JP2017/003276
Other languages
English (en)
French (fr)
Inventor
勉 横田
貴也 上野
匡紀 星野
芳憲 田中
仁 室伏
Original Assignee
サンケン電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンケン電気株式会社 filed Critical サンケン電気株式会社
Priority to US16/087,687 priority Critical patent/US10770629B2/en
Priority to PCT/JP2017/003276 priority patent/WO2018142440A1/ja
Priority to JP2018565086A priority patent/JP6583572B2/ja
Publication of WO2018142440A1 publication Critical patent/WO2018142440A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • the present invention relates to a light emitting device that excites a phosphor and outputs light.
  • a light emitting device using a light emitting element such as a light emitting diode (LED) and a phosphor excited by the light emitting element has been put into practical use.
  • the light emitting device outputs light of a predetermined chromaticity by combining emission spectra of light emitted from the LED and the phosphor.
  • COB chip-on-board
  • An object of the present invention is to provide a COB type light emitting device capable of obtaining high color rendering output light.
  • a substrate having a first arrangement area and a second arrangement area defined on a main surface, a plurality of blue light emitting elements arranged on the main surface of the substrate, and a plurality of blue light emitting elements
  • a phosphor sheet that is excited by light emitted from the light source and emits excitation light, and is disposed above the plurality of blue light emitting elements, and the plurality of blue light emitting elements are disposed in the first arrangement region.
  • a first blue light emitting element that emits a first emitted light that is arranged and has a first wavelength as a peak wavelength of an emission spectrum; and a first blue light emitting element that is arranged in the second arrangement region and is at least 10 nm from the first wavelength.
  • a light emitting device including a second blue light emitting element that emits second emitted light having a second wavelength of a long wavelength having a wavelength difference as a peak wavelength of an emission spectrum.
  • FIG. 6 It is typical sectional drawing which shows the structure of the light-emitting device which concerns on the 1st Embodiment of this invention. It is xy chromaticity diagram for demonstrating the chromaticity difference of a blue light emitting element. It is a schematic diagram which shows the structure of SMD of a reference example. It is a table
  • surface which shows the color rendering evaluation number of the output light of the light-emitting device shown in FIG. 6 is a graph showing an emission spectrum of output light of the SMD shown in FIG. 3 and the light emitting device shown in FIG.
  • the light emitting device according to the first embodiment of the present invention is disposed above a substrate 40, a plurality of blue light emitting elements 10 disposed on the main surface of the substrate 40, and the blue light emitting element 10.
  • the phosphor sheet 30 is provided.
  • the intermediate layer 20 is disposed between the substrate 40 and the phosphor sheet 30 so as to cover the first blue light emitting element 11 and the second blue light emitting element 12.
  • the blue light emitting element 10 includes a plurality of first blue light emitting elements 11 and a plurality of second blue light emitting elements 12.
  • “Blue light-emitting element 10” is a generic name for the first blue light-emitting element 11 and the second blue light-emitting element 12.
  • the first blue light emitting element 11 emits outgoing light having the first wavelength as the peak wavelength of the emission spectrum (hereinafter referred to as “first outgoing light”).
  • the second blue light emitting element 12 emits outgoing light having a second wavelength longer than the first wavelength as the peak wavelength of the emission spectrum (hereinafter referred to as “second outgoing light”).
  • the “peak wavelength” is the wavelength of the peak value of intensity in the emission spectrum.
  • the difference between the first wavelength and the second wavelength is preferably 20 nm to 40 nm.
  • a first arrangement area 41 and a second arrangement area 42 are defined on the main surface of the substrate 40.
  • the first blue light emitting element 11 is arranged in the first arrangement area 41
  • the second blue light emitting element 12 is arranged in the second arrangement area 42.
  • the first blue light emitting element 11 and the second blue light emitting element 12 are separately disposed in different regions of the main surface of the substrate 40.
  • the phosphor sheet 30 is a sheet containing a phosphor that is excited by the light emitted from the blue light emitting element 10, and is, for example, a silicone resin sheet.
  • the phosphor contained in the phosphor sheet 30 is excited by the first emission light and emits the first excitation light, and is excited by the second emission light and emits the second excitation light.
  • the phosphor sheet 30 includes phosphors such as a green phosphor and a red phosphor with components and blending ratios set so that output light having a desired chromaticity is output from the light emitting device. For example, the first chromaticity white light mixed with the first outgoing light and the first excitation light, and the second chromaticity white light mixed with the second outgoing light and the second excitation light. The mixed light is output from the light emitting device.
  • the phosphor sheet 30 is affixed to the intermediate layer 20.
  • the phosphor sheet 30 is in close contact with the intermediate layer 20, and the substrate 40 and the phosphor sheet 30 are integrated via the intermediate layer 20.
  • the outgoing light from the blue light emitting element 10 passes through the intermediate layer 20 and enters the phosphor sheet 30.
  • the intermediate layer 20 is formed by, for example, applying a translucent resin to the substrate 40.
  • a silicone resin film or the like is preferably used.
  • the blue light emitting elements 10 are connected in order by wires 50.
  • the wire 50 is connected to a drive power supply (not shown).
  • the blue light emitting element 10 emits light by the drive current supplied from the drive power supply. As shown in FIG. 1, the wire 50 can be protected by embedding it in the intermediate layer 20.
  • the selection condition is that the chromaticity (first chromaticity) of light obtained by mixing the first outgoing light and the first excitation light and the color of light obtained by mixing the second outgoing light and the second excitation light.
  • the degree (second chromaticity) is located symmetrically in the xy chromaticity diagram with respect to a predetermined target chromaticity. Furthermore, the difference between the first chromaticity and the second chromaticity and the target chromaticity is 0.04 or less.
  • the output light of the target chromaticity can be obtained by mixing the two lights with the respective chromaticities set symmetrically with respect to the target chromaticity.
  • the overall color rendering index of output light can be increased. This is because the intensity of two blue light emitting elements having different peak wavelengths is controlled as follows.
  • the present inventors have high color rendering properties when the chromaticity difference in the xy chromaticity diagram between the first chromaticity and the second chromaticity and the target chromaticity is in the range of 0.03 to 0.04. It was found that can be obtained.
  • the chromaticity difference is larger than 0.04, the color rendering performance is lowered and the color rendering evaluation number varies.
  • the color rendering index R12 is greatly reduced. Therefore, in order to output light with high color rendering properties, the chromaticity difference is preferably 0.04 or less.
  • FIG. 2 shows the relationship between the first chromaticity C1 and the second chromaticity C2 and the target chromaticity C0.
  • the wavelength difference between the first wavelength and the second wavelength is at least 10 nm, and preferably 20 nm to 40 nm.
  • the peak of the first blue light emitting element 11 and the peak of the second blue light emitting element 12 are completely separated.
  • the first blue light emitting element 11 and the second blue light emitting element 12 are, for example, blue LEDs.
  • An InGaN-based blue LED or the like is preferably used for the blue light emitting element 10.
  • the phosphor sheet 30 contains a green phosphor that emits green light when excited by the emitted light of the first blue light emitting element 11 and the second blue light emitting element 12, and a red phosphor that emits red light.
  • the phosphor components and blending ratios contained in the phosphor sheet 30 are set so as to satisfy the above selection conditions. That is, the first emission light of the first blue light emitting element 11 and the first excitation light emitted from the phosphor excited by the first emission light are mixed to form light having the first chromaticity C1. In this manner, the phosphor components and blending ratio contained in the phosphor sheet 30 are set.
  • the second emitted light of the second blue light emitting element 12 and the second excitation light emitted from the phosphor excited by the second emitted light are mixed to produce light of the second chromaticity C2.
  • the phosphor components and blending ratio contained in the phosphor sheet 30 are set.
  • a phosphor that emits green light having an emission spectrum having a first wavelength indicating a first intensity and a second wavelength indicating a second intensity smaller than the first intensity is used as the green phosphor.
  • emits the red light of an absorption spectrum with less absorption in a 2nd wavelength than a 1st wavelength with respect to a green light is used for a red fluorescent substance. Since the red phosphor consumes more green light at the first wavelength than at the second wavelength, the intensity of the first wavelength and the intensity of the second wavelength are reversed. As a result, output light having an emission spectrum with a balanced wavelength and a small unevenness in the wavelength distribution can be obtained.
  • the example of the fluorescent substance contained in the fluorescent substance sheet 30 is shown.
  • a scandate-based oxide or scandium-based oxide whose activator is Ce 3+ is used.
  • scandium oxides such as CaSc 2 O 4 : Ce 3+ and the like
  • scandium silicates such as Ca 3 Sc 2 Si 3 O 12 : Ce 3 and the like
  • general phosphors such as YAG, LuAG, and BOSS excited by blue light can be used.
  • YAG-based Y 3 Al 5 O 12 : Ce 3+ Y 3 (Al, Ga) 5 O 12 : Ce 3+ , (Y, Gd) 3 Al 5 O 12 : Ce 3+, etc.
  • BOSS-based (Ba, Sr, Ca) 2 SiO 4 : Eu 2+ and the like such as Lu 3 Al 5 O 12 : Ce 3+
  • LSN-based La 3 Si 6 N 11 : Ce 3+ can be used.
  • a nitride-based phosphor having a wide band is used.
  • CaAlSiN that are activated by Eu 2+ 3: Eu 2+ or (Sr, Ca) AlSiN 3: Eu 2+ can be used an aluminum nitride-based fluorescent material such as.
  • FIG. 3 shows a reference example of a surface mount device (SMD) using the first blue light emitting element 11 and the second blue light emitting element 12 that satisfy the above selection conditions.
  • the SMD of the reference example is a 2-in-1 type SMD in which one first blue light emitting element 11 and one second blue light emitting element 12 are mounted on the bottom surface of the recess of the package 40A.
  • the first blue light emitting element 11 and the second blue light emitting element 12 are covered with the phosphor-containing resin 30A filled in the recess of the package 40A.
  • the phosphor-containing resin 30A is excited by the first emission light to emit the first excitation light, and is excited by the second emission light to emit the second excitation light. Ingredients and blending ratios are set.
  • the SMD shown in FIG. 3 has the first chromaticity obtained by mixing the first outgoing light and the first excitation light, and the second chromaticity obtained by mixing the second outgoing light and the second excitation light. Are mixed with each other to output light having a predetermined chromaticity.
  • FIG. 4 shows the average color rendering index Ra and the special color rendering index Ri of the output light of the SMD shown in FIG.
  • the present inventors arrange the plurality of first blue light emitting elements 11 and the plurality of second blue light emitting elements 12 on the main surface of the substrate 40 and cover them with the phosphor-containing resin 30A.
  • a COB type light emitting device was prototyped.
  • a prototype light emitting device is shown in FIG.
  • FIG. 5 is a plan view in which the first blue light emitting element 11 and the second blue light emitting element 12 are displayed through the phosphor-containing resin 30A (not shown).
  • the wire 50 for supplying a driving current to the blue light emitting element 10 is not shown.
  • the first blue light emitting elements 11 and the second blue light emitting elements 12 are alternately arranged on the main surface of the substrate 40. That is, this is a hybrid mounting in which the arrangement region of the first blue light emitting element 11 and the arrangement region of the second blue light emitting element 12 are not separated.
  • FIG. 6 shows the average color rendering index Ra and the special color rendering index Ri of the light emitting device shown in FIG.
  • the first blue light emitting element 11, the second blue light emitting element 12, and the phosphor-containing resin 30A which are the same as the SMD shown in FIG. 3, were used.
  • output light with an extremely high color rendering could not be obtained.
  • the brightness of the output light of the light emitting device of the comparative example was about 1/3 of the brightness predicted from the brightness of the SMD output light.
  • FIG. 7 shows the emission spectrum of the output light of the SMD shown in FIG. 3 as “characteristic S1”, and the emission spectrum of the light emitting device of the comparative example shown in FIG. 5 as “characteristic S2”.
  • the horizontal axis in FIG. 7 is the wavelength, and the vertical axis is the intensity normalized with the peak value being 1 for each of the characteristics S1 and S2.
  • the peak wavelength P ⁇ b> 1 is the peak wavelength of the first blue light emitting element 11
  • the peak wavelength P ⁇ b> 2 is the peak wavelength of the second blue light emitting element 12.
  • the magnitude relation between the peak wavelength P1 on the short wave side and the peak wavelength P2 on the long wave side is reversed as compared with the characteristic S1. That is, in the characteristic S1, the intensity at the peak wavelength P1 is higher than the intensity at the peak wavelength P2, but in the characteristic S2, the intensity at the peak wavelength P1 is lower than the intensity at the peak wavelength P2.
  • the light output is about 1/3 of the short wave side of the long wave side. Furthermore, in the characteristic S2, the peak wavelength P2 on the long wave side is shifted to the long wave side.
  • first phenomenon a phenomenon in which the intensity at the peak wavelength P1 on the short wave side greatly decreases
  • second phenomenon a phenomenon in which the peak wavelength P2 becomes longer
  • the first phenomenon is caused by the first blue light emitting element 11 and the second blue light emitting element 12 being mixedly mounted on the substrate 40 in the light emitting device of the comparative example shown in FIG.
  • the first emitted light from the first blue light emitting element 11 having a short peak wavelength is easily absorbed by the second blue light emitting element 12 having a long peak wavelength. That is, most of the first emitted light emitted from the first blue light emitting element 11 having a relatively wide band gap is absorbed by the second blue light emitting element 12 having a relatively narrow band gap. For this reason, in the light emitting device of the comparative example in which the first blue light emitting element 11 and the second blue light emitting element 12 are densely mixed, the first emitted light is greatly reduced.
  • the main surface of the substrate 40 is divided into two areas, a first arrangement area 41 and a second arrangement area 42, and the first arrangement area 41 has a first area.
  • Only the blue light emitting element 11 is arranged, and only the second blue light emitting element 12 is arranged in the second arrangement region 42.
  • decrease of 1st emitted light can be suppressed. That is, by arranging the first blue light emitting element 11 and the second blue light emitting element 12 separately, the first emitted light can be made difficult to be absorbed by the second blue light emitting element 12. As a result, the first phenomenon can be suppressed.
  • the boundary line between the first arrangement region 41 and the second arrangement region 42 is preferably as short as possible.
  • the main surface of the substrate 40 is divided into a first arrangement region 41 and a second arrangement region 42 by one boundary line.
  • the first arrangement region 41 and the second arrangement region 42 are defined by dividing the main surface of the substrate 40 into two by a linear boundary line.
  • the phosphor sheet 30 covers the entire main surface of the substrate 40.
  • the ratio of the number of the first blue light emitting elements 11 and the second blue light emitting elements 12 is set to 3: 1.
  • the measure for changing the ratio of the numbers reduces the brightness of the output light of the light emitting device. Therefore, a countermeasure for separating the first blue light emitting element 11 and the second blue light emitting element 12 from each other is effective.
  • the first blue light emitting element 11 is attached to the main surface of the substrate 40 in order to suppress a decrease in intensity at the peak wavelength P1 caused by the first emitted light being absorbed by the second blue light emitting element 12. It is preferable that the second blue light emitting element 12 is disposed on the inner side.
  • semicircular first arrangement areas 41 are defined on both sides of the band-shaped second arrangement area 42.
  • the second phenomenon occurs because the second emitted light of the second blue light emitting element 12 consumes more on the short wave side than on the long wave side. This is remarkable because the phenomenon that a part of the excitation light excites the phosphor inside the phosphor-containing resin 30A (hereinafter referred to as “photon recycling”) is arranged densely. This is because.
  • the excitation light emitted from the green phosphor excites the red phosphor, or the excitation light emitted from the red phosphor further excites the red phosphor.
  • the photon recycling in which such excitation is repeated increases the consumption amount of the second outgoing light on the short wave side.
  • Photon recycling is a particular problem in light emitting devices in which the balance between the emitted light and the excitation light of the first blue light emitting element 11 and the second blue light emitting element 12 having different peak wavelengths is important. There may be a design that takes into account the deformation of the emission spectrum due to photon recycling, but the degree of freedom in design is low.
  • a conventional method of using a phosphor sheet in which the phosphor sheet is directly covered with the blue light emitting element 10 and is softened to enclose the blue light emitting element 10 is also possible.
  • the blue light emitting elements 10 are mounted at a high density, the blue light emitting elements 10 and the phosphor film adjacent to each other are affected, and the purpose of suppressing the influence of photon recycling cannot be satisfied. Therefore, a structure was studied in which blue light was completely emitted and converted by a phosphor film disposed above.
  • the phosphor film contained in the phosphor film had a higher density of phosphor and the average free length of blue transmitted light in the phosphor film was shortened by making the phosphor film thinner.
  • the effective use efficiency of phosphors was improved by thinning.
  • the amount of phosphor can be reduced by 20% to 30%, and the blending ratio of the green phosphor that particularly affects photon recycling can be reduced by about 10%. For this reason, it was confirmed that there was almost no change in the luminous flux even when the phosphor film was reduced to about 1/2 to 1/4 of the conventional volume ratio.
  • the plurality of first blue light emitting elements 11 arranged in the first arrangement region 41 and the second arrangement region 42 are arranged.
  • the plurality of second blue light emitting elements 12 to be formed are separately arranged on the main surface of the substrate 40. Since the first blue light emitting element 11 and the second blue light emitting element 12 are not mixedly arranged, the first emitted light is hardly absorbed by the second blue light emitting element 12. As a result, the first phenomenon in which the first emitted light is reduced can be suppressed. Further, by setting the film thickness T3 of the phosphor sheet 30 to 50 ⁇ m to 100 ⁇ m, photon recycling is suppressed.
  • the light output is comparable to that of the SMD shown in FIG. 3, and ultra-high color rendering output light can be obtained.
  • the drive current is supplied to the blue light emitting element 10 by the wire 50.
  • a light emitting element array composed of a plurality of blue light emitting elements 10 connected in series by wires 50 is connected in parallel.
  • the number of blue light emitting elements 10 included in the light emitting element array can be arbitrarily set.
  • the total value of the threshold voltages Vf of the blue light emitting elements 10 included in the light emitting element array is It is necessary to keep the same in all the light emitting element rows.
  • the number of first blue light-emitting elements 11 and the number of second blue light-emitting elements 12 included in each light-emitting element array are the same in the light-emitting element arrays.
  • the emitted light from the blue light emitting element 10 passes through the intermediate layer 20 and enters the phosphor sheet 30.
  • a light transmissive material is used for the intermediate layer 20.
  • a transparent resin film is used for the intermediate layer 20.
  • light may be scattered inside the intermediate layer 20 by using a resin film containing a filler.
  • prism-like protrusions having a substantially triangular cross section are formed at the interface between the intermediate layer 20 and the phosphor sheet 30, and light that has passed through the intermediate layer 20 easily enters the phosphor sheet 30. May be.
  • the refractive index of the intermediate layer 20 is lower than the refractive index of the phosphor sheet 30. Therefore, it is suppressed that the emitted light from the blue light emitting element 10 is reflected by the interface of the intermediate
  • the blue light is strong above the blue light emitting element 10 and the color of the excitation light from the phosphor is strong above the intermediate region between the blue light emitting element 10 and the blue light emitting element 10. This is because, when the film thickness T2 of the intermediate layer 20 is small, the amount of light emitted from the blue light emitting element 10 incident on the phosphor sheet 30 is lower above the intermediate region than the upper side of the blue light emitting element 10. is there.
  • the color unevenness of the light output surface of the phosphor sheet is not a problem when directly irradiating with the output light from the light emitting device.
  • color unevenness may appear as a color difference.
  • the film thickness T2 of the intermediate layer 20 is increased to such an extent that the color unevenness of the phosphor sheet 30 does not occur.
  • the incident angle at which the emitted light from the blue light emitting element 10 enters the phosphor sheet 30 is set to 45 degrees or less in the intermediate region.
  • the film thickness T2 of the intermediate layer 20 is made thicker than 1 ⁇ 2 of the arrangement interval W of the blue light emitting elements 10 (see FIG. 12).
  • the phosphor sheet 30 is divided into a first phosphor region 31 and a second phosphor region 32 in plan view.
  • the first phosphor region 31 and the second phosphor region 32 are different in at least one of the contained phosphor components and the blending ratio.
  • the phosphor sheet 30 is divided in such a manner that the entire main surface of the substrate 40 is covered with the phosphor sheet 30 containing the phosphor with a constant component and blending ratio. This is different from the light emitting device according to the first embodiment. About another structure, it is the same as that of 1st Embodiment.
  • each divided region of the phosphor sheet 30 is referred to as a “phosphor region”.
  • Each divided area of the main surface of the substrate 40 is referred to as an “arrangement area”.
  • the first phosphor region 31 is arranged over the first arrangement region 41, and the second phosphor region 32 is arranged in the second arrangement. It is arranged over the entire area 42.
  • the phosphor contained in the first phosphor region 31 is excited by the first emitted light of the first blue light emitting element 11, and the first excitation light is emitted. Then, the first outgoing light and the first excitation light are mixed to output light having chromaticity 1.
  • the phosphor contained in the second phosphor region 32 is excited by the second emission light of the second blue light emitting element 12, and the second excitation light is emitted. Then, the second outgoing light and the second excitation light are mixed to output light of chromaticity 2. As described above, in the light emitting device illustrated in FIG. 13, light of chromaticity 1 and light of chromaticity 2 are output.
  • the components and blending ratios of the phosphors contained in the first phosphor region 31 and the phosphors contained in the second phosphor region 32 can be changed independently. it can. For this reason, light can be output from the light emitting device with various combinations of the first chromaticity and the second chromaticity. Others are substantially the same as those in the first embodiment, and redundant description is omitted.
  • the phosphor sheet 30 can be easily processed into an arbitrary shape with high accuracy. For this reason, by using the phosphor sheet 30, the phosphor region can be easily set in accordance with the arrangement region of the substrate 40.
  • the phosphor sheet is formed by applying a resin containing a phosphor instead of arranging the phosphor sheet 30, it is difficult to form the phosphor region with high accuracy. For example, when resin is applied, it is necessary to form a partition wall in accordance with the boundary line of the arrangement region, but it is difficult to form the partition wall with high accuracy, and chromaticity variation occurs.
  • the thickness T2 of the intermediate layer 20 is smaller. preferable.
  • the film thickness T2 of the intermediate layer 20 is, for example, set to a thickness that allows the entire wire 50 to be embedded.
  • the film thickness T ⁇ b> 2 of the intermediate layer 20 is thicker than 1 ⁇ 2 of the arrangement interval W of the blue light emitting elements 10. preferable.
  • one phosphor region is arranged in one arrangement region.
  • the first phosphor region 31 is disposed so as to overlap the first placement region 41
  • the second phosphor region 32 is disposed so as to overlap the second placement region 42.
  • the phosphor region and the arrangement region do not have to correspond one-to-one. That is, a plurality of phosphor regions may be arranged for one arrangement region.
  • the first phosphor region 31 is continuously disposed in a part above the first placement region 41 and a part above the second placement region 42. . Then, the second phosphor region 32 is continuously arranged in another part above the first arrangement region 41 and another part above the second arrangement region 42.
  • the light mixed with the excitation light excited in the first phosphor region 31 is mixed and the output light of the color temperature A is obtained.
  • the light mixed with the excitation light excited in the second phosphor region 32 is mixed, and output light of the color temperature B is obtained.
  • the light emitting device shown in FIG. 15 a plurality of phosphor regions having different phosphor components and blending ratios are arranged in one arrangement region, and regions having different color temperatures are formed. For this reason, the light emitting device shown in FIGS. 8 and 13 outputs light of a predetermined color temperature designed, whereas the light emitting device shown in FIG. 15 adjusts the color temperature of the output light of the light emitting device. Toning is possible. That is, the intensity of the light emitted from the blue light emitting element 10 can be adjusted for each phosphor region by adjusting the magnitude of the drive current or the pulse period, and the output light of the light emitting device can be adjusted in a certain range. For example, by preparing phosphor regions set so that output light of 3000K and 5000K can be obtained, toning of output light in the range of 3000K to 5000K can be performed.
  • the first phosphor region 31 is disposed in a part above the first placement region 41, and the second part is disposed in the other portion above the first placement region 41.
  • a phosphor region 32 is disposed.
  • the third phosphor region 33 is arranged in a part above the second arrangement region 42, and the fourth phosphor region 34 is arranged in another part above the second arrangement region 42. Yes. That is, the phosphor sheet 30 is divided into four phosphor regions.
  • light of chromaticity 1A is output from the area where the first phosphor area 31 of the first arrangement area 41 is arranged, and the second phosphor area 32 of the first arrangement area 41 is arranged.
  • the light having the chromaticity of 1B is output from the region thus formed.
  • light having a chromaticity of 2A is output from the region where the third phosphor region 33 of the second arrangement region 42 is arranged, and the region where the fourth phosphor region 34 of the second arrangement region 42 is arranged.
  • Can output light of chromaticity 2B That is, light of four types of chromaticity can be output from the light emitting device illustrated in FIG.
  • the output light of the light emitting device can be toned by adjusting the intensity of the emitted light from the blue light emitting element 10, as in the light emitting device shown in FIG. .
  • FIG. 17 shows a table summarizing the chromaticity of the output light from the light-emitting device shown in FIG. 1, FIG. 13, FIG. 15 and FIG.
  • “1” to “4” described in the column of “light emitting device” correspond to the light emitting devices shown in FIG. 1, FIG. 13, FIG. 15, and FIG.
  • the column “phosphor region” is the number of phosphor regions into which the phosphor sheet 30 is divided. Note that “single color” in the “output light” column of FIG. 17 indicates that light of a predetermined target chromaticity is output from the light emitting device, and “toning” allows toning of the output light of the light emitting device. Indicates that
  • a plurality of lights having different chromaticities are output from the light emitting device by the combination of the arrangement region and the phosphor region.
  • the type of chromaticity can be arbitrarily set depending on how the phosphor region is divided. Compared with the case where a resin containing a phosphor is applied, by using the phosphor sheet 30 whose shape can be easily processed, it is possible to precisely set the region where each phosphor region is arranged. Thereby, the dispersion
  • the phosphor sheet 30 is divided has been described above for the light emitting device in which the main surface of the substrate 40 is divided into the first arrangement region 41 and the second arrangement region 42. As shown in FIG. 9, the phosphor sheet 30 can be similarly divided for a light emitting device in which three arrangement regions are defined.
  • FIG. 18 shows an example in which the phosphor sheet 30 is divided for each arrangement region in the light emitting device shown in FIG. That is, the first phosphor region 31 is disposed so as to overlap the two first placement regions 41 disposed on the outer side, and the second phosphor region 32 is disposed on the second placement region 42 disposed on the inner side. They are placed one on top of the other. As a result, light of chromaticity 1 is output in the region where the first phosphor region 31 is superimposed on the first arrangement region 41, and in the region where the second phosphor region 32 is superimposed on the second arrangement region 42. Light of chromaticity 2 is output.
  • FIG. 19 shows an example in which a plurality of phosphor regions are arranged in one arrangement region in the light emitting device shown in FIG.
  • the first phosphor region 31 is continuously arranged in a part above the first arrangement region 41 and a part above the second arrangement region 42.
  • the first fluorescence is superimposed on the right portion of the first arrangement region 41 and the second arrangement region 42 arranged on the right side (hereinafter, simply referred to as “right side”) in FIG.
  • a body region 31 is arranged.
  • the second phosphor region 32 is disposed so as to overlap the left portion of the first and second placement regions 41 and 42 arranged on the left side of the paper (hereinafter simply referred to as “left side”). ing.
  • FIG. 20 shows an example in which a plurality of different phosphor regions are arranged for each arrangement region in the light emitting device shown in FIG.
  • the first phosphor region 31 is disposed so as to overlap the first placement region 41 on the right side
  • the second phosphor region 32 is disposed on the first placement region 41 on the left side.
  • the third phosphor region 33 is disposed so as to overlap a part of the second placement region 42
  • the fourth phosphor region 34 is disposed so as to overlap another part of the second placement region 42.
  • the light emitting device shown in FIG. 20 outputs light of four types of chromaticity according to the combination of the arrangement region and the phosphor region, as in the light emitting device shown in FIG.
  • a plurality of lights and colors having different color temperatures can be obtained by combining the arrangement region and the phosphor region.
  • a plurality of lights having different degrees can be output.
  • Others are substantially the same as those of the second embodiment, and redundant description is omitted.
  • the phosphor sheet 30 is divided.
  • the phosphor sheet 30 is divided for a light emitting device in which two arrangement regions are defined concentrically.
  • FIG. 21 shows an example in which the phosphor sheet 30 is divided for each arrangement region in the light emitting device shown in FIG. That is, the first phosphor region 31 is disposed so as to overlap the first placement region 41 disposed on the outer side, and the second phosphor region 32 is disposed so as to be superimposed on the second placement region 42 disposed on the inner side.
  • light of chromaticity 1 is output in the region where the first phosphor region 31 is superimposed on the first arrangement region 41, and in the region where the second phosphor region 32 is superimposed on the second arrangement region 42.
  • Light of chromaticity 2 is output.
  • FIG. 22 shows an example in which a plurality of phosphor regions are arranged in one arrangement region in the light emitting device shown in FIG.
  • the first phosphor region 31 is continuously arranged in a part above the first arrangement region 41 and a part above the second arrangement region 42.
  • the first phosphor region 31 is arranged so as to overlap the arc-shaped region on the right side of the first arrangement region 41 and the semicircular region on the right side of the second arrangement region 42.
  • the second phosphor region 32 is arranged so as to overlap the arc-shaped region on the left side of the first arrangement region 41 and the semicircular region on the left side of the second arrangement region 42.
  • FIG. 23 shows an example in which a plurality of different phosphor regions are arranged for each arrangement region in the light emitting device shown in FIG.
  • the first phosphor region 31 is arranged so as to overlap the arc-shaped region on the right side of the first arrangement region 41, and the arc-shaped region on the left side of the first arrangement region 41 is arranged.
  • the second phosphor region 32 is disposed so as to overlap.
  • the third phosphor region 33 is arranged so as to overlap the semicircular region on the upper side of the paper of the second arrangement region 42, and the semicircular region on the lower side of the paper of the second arrangement region 42.
  • the fourth phosphor region 34 is disposed so as to overlap. From the light emitting device shown in FIG. 23, similarly to the light emitting device shown in FIG. 16, light of four types of chromaticity is output depending on the combination of the arrangement region and the phosphor region. In the light emitting device shown in FIG. 23, the wire 50 needs to be devised to adjust the intensity of the emitted light from the blue light emitting element 10 for each phosphor region.
  • a plurality of lights having different color temperatures and a plurality of lights having different chromaticities can be output by combining the arrangement region and the phosphor region.
  • Others are substantially the same as those in the second embodiment and the third embodiment, and redundant description is omitted.
  • the device was shown.
  • the first arrangement region 41 may be arranged on the inner side and the second arrangement region 42 may be arranged on the outer side.
  • a semicircular second arrangement region 42 is defined on both sides of the band-shaped first arrangement region 41.
  • a ring-shaped second arrangement region 42 is defined outside the circular first arrangement region 41 in plan view.
  • the second blue light emitting element 12 intentionally absorbs a part of the first emitted light by arranging the second arrangement region 42 outside the first arrangement region 41. Thereby, the light emission spectrum of the output light can be deformed, and light having a specific numerical value such as the average color rendering index Ra or the special color rendering index Ri increased can be output from the light emitting device. For example, this is effective when it is desired to reduce the intensity at the peak wavelength P1 on the short wave side at an extremely low color temperature.
  • a single phosphor sheet 30 may be arranged in the entire arrangement region shown in FIGS. 24 and 25, or the phosphor sheet 30 may be divided as shown in the second to fourth embodiments. May be.
  • positioned was shown above as the circular shape in the above, the outer edge of the area
  • the light-emitting device of the present invention can be used for a light-emitting device that emits light by exciting a phosphor with a light-emitting element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

主面に第1の配置領域41と第2の配置領域42が定義された基板40と、基板40の主面に配置された複数の青色発光素子10と、複数の青色発光素子10からの出射光に励起されて励起光を出射する蛍光体を含有し、複数の青色発光素子60の上方に配置された蛍光体シート30とを備え、複数の青色発光素子10が、第1の配置領域41に配置されて第1の波長を発光スペクトルのピーク波長とする第1の出射光を出射する第1の青色発光素子11、及び、第2の配置領域42に配置されて第1の波長よりも少なくとも10nmの波長差を有する長波長の第2の波長を発光スペクトルのピーク波長とする第2の出射光を出射する第2の青色発光素子12を含む。

Description

発光装置
 本発明は、蛍光体を励起して光を出力する発光装置に関する。
 発光ダイオード(LED)などの発光素子と、発光素子によって励起される蛍光体とを用いた発光装置が実用化されている。この発光装置は、LEDと蛍光体からそれぞれ出射される光の発光スペクトルを組み合わせて、所定の色度の光を出力する。更に、複数の発光素子を配列したチップ・オン・ボード(Chip on board:COB)タイプの発光装置が開示されている(例えば特許文献1参照。)。
国際公開第13/15058号
 しかしながら、COBタイプの発光装置に関しては、高い演色性の光を出力するための検討が十分ではない。即ち、発光素子を密集して配置したことにより発光素子の出射光や蛍光体から出射される励起光の受ける影響が、十分に検討されていない。本発明は、高い演色性の出力光が得られるCOBタイプの発光装置を提供することを目的とする。
 本発明の一態様によれば、主面に第1の配置領域と第2の配置領域が定義された基板と、基板の主面に配置された複数の青色発光素子と、複数の青色発光素子からの出射光に励起されて励起光を出射する蛍光体を含有し、複数の青色発光素子の上方に配置された蛍光体シートとを備え、複数の青色発光素子が、第1の配置領域に配置されて第1の波長を発光スペクトルのピーク波長とする第1の出射光を出射する第1の青色発光素子、及び、第2の配置領域に配置されて第1の波長よりも少なくとも10nmの波長差を有する長波長の第2の波長を発光スペクトルのピーク波長とする第2の出射光を出射する第2の青色発光素子を含む発光装置が提供される。
 本発明によれば、高い演色性の出力光が得られるCOBタイプの発光装置を提供できる。
本発明の第1の実施形態に係る発光装置の構成を示す模式的な断面図である。 青色発光素子の色度差を説明するためのxy色度図である。 参考例のSMDの構成を示す模式図である。 図3に示したSMDの出力光の演色評価数を示す表である。 比較例の発光装置の構成を示す模式的な平面図である。 図5に示した発光装置の出力光の演色評価数を示す表である。 図3に示したSMDと図5に示した発光装置の出力光の発光スペクトルを示すグラフである。 本発明の第1の実施形態に係る発光装置の基板の配置領域の例示す模式的な平面図である。 本発明の第1の実施形態に係る発光装置の基板の配置領域の他の例を示す平面図である。 本発明の第1の実施形態に係る発光装置の基板の配置領域の他の例を示す平面図である。 本発明の第1の実施形態に係る発光装置の他の構成を示す模式的な断面図である。 本発明の第1の実施形態に係る発光装置の中間層の膜厚と青色発光素子の配置間隔を説明するための模式図である。 本発明の第2の実施形態に係る発光装置の構成を示す模式的な平面図である。 本発明の第2の実施形態に係る発光装置の構成を示す模式的な断面図である。 本発明の第2の実施形態の第1の変形例に係る発光装置の構成を示す模式的な平面図である。 本発明の第2の実施形態の第2の変形例に係る発光装置の構成を示す模式的な平面図である。 本発明の第1及び第2の実施形態に係る発光装置の出力光の例を示す表である。 本発明の第3の実施形態に係る発光装置の構成を示す模式的な平面図である。 本発明の第3の実施形態の第1の変形例に係る発光装置の構成を示す模式的な平面図である。 本発明の第3の実施形態の第2の変形例に係る発光装置の構成を示す模式的な平面図である。 本発明の第4の実施形態に係る発光装置の構成を示す模式的な平面図である。 本発明の第4の実施形態の第1の変形例に係る発光装置の構成を示す模式的な平面図である。 本発明の第4の実施形態の第2の変形例に係る発光装置の構成を示す模式的な平面図である。 本発明のその他の実施形態に係る発光装置の基板の配置領域の例を示す平面図である。 本発明のその他の実施形態に係る発光装置の基板の配置領域の他の例を示す平面図である。
 次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。また、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の形状、構造、配置などを下記のものに特定するものでない。この発明の実施形態は、請求の範囲において、種々の変更を加えることができる。
 (第1の実施形態)
 本発明の第1の実施形態に係る発光装置は、図1に示すように、基板40と、基板40の主面に配置された複数の青色発光素子10と、青色発光素子10の上方に配置された蛍光体シート30を備える。また、第1の青色発光素子11と第2の青色発光素子12を覆って、中間層20が基板40と蛍光体シート30の間に配置されている。
 青色発光素子10は、複数の第1の青色発光素子11と複数の第2の青色発光素子12を含む。「青色発光素子10」は、第1の青色発光素子11と第2の青色発光素子12の総称である。
 第1の青色発光素子11は、第1の波長を発光スペクトルのピーク波長とする出射光(以下において「第1の出射光」という。)を出射する。第2の青色発光素子12は、第1の波長よりも長波長の第2の波長を発光スペクトルのピーク波長とする出射光(以下において「第2の出射光」という。)を出射する。ここで、「ピーク波長」とは、発光スペクトルにおける強度のピーク値の波長である。なお、後述するように、第1の波長と第2の波長の差は、20nm~40nmであることが好ましい。
 基板40の主面には、第1の配置領域41及び第2の配置領域42が定義されている。第1の青色発光素子11は第1の配置領域41に配置され、第2の青色発光素子12は第2の配置領域42に配置されている。このように、第1の青色発光素子11と第2の青色発光素子12とは、基板40の主面の異なる領域に分離して配置されている。
 蛍光体シート30は、青色発光素子10の出射光によって励起される蛍光体を含有するシートであり、例えばシリコーン樹脂シートなどである。蛍光体シート30に含有される蛍光体は、第1の出射光に励起されて第1の励起光を出射し、第2の出射光に励起されて第2の励起光を出射する。蛍光体シート30には、発光装置から所望の色度の出力光が出力されるように設定された成分や配合比率で、緑色蛍光体や赤色蛍光体などの蛍光体が含まれている。例えば、第1の出射光と第1の励起光を混色した第1の色度の白色光と、第2の出射光と第2の励起光を混色した第2の色度の白色光とを混色した光が、発光装置から出力される。
 蛍光体シート30は、中間層20に貼り付けられている。蛍光体シート30は中間層20に密着し、中間層20を介して基板40と蛍光体シート30が一体化している。青色発光素子10からの出射光は、中間層20を透過して蛍光体シート30に入射する。中間層20は、例えば透光性の樹脂を基板40に塗布して形成される。中間層20には、シリコーン樹脂膜などが好適に使用される。
 ワイヤ50によって青色発光素子10の相互間が順に接続されている。ワイヤ50は、図示を省略する駆動電源に接続されている。この駆動電源から供給される駆動電流によって、青色発光素子10は発光する。図1に示すように中間層20に埋め込むことにより、ワイヤ50を保護することができる。
 以下に、ピーク波長の異なる第1の青色発光素子11と第2の青色発光素子12とを用いて所定の色度の光を出力する方法について説明する。
 太陽光が連続的なスペクトルであるのに対し、単一のピーク波長の青色発光素子のみを用いて実現した光は、スペクトルの組合せであることから、非連続な合成スペクトルである。これに対し、ピーク波長の異なる2つの青色発光素子を用い、緑色蛍光体と赤色蛍光体の励起特性を利用することによって、高い演色性の光を出力させることができる。
 本発明者らの検討によれば、以下の選択条件を満たす第1の青色発光素子11と第2の青色発光素子12を用いて、高い演色性の光を出力することができる。その選択条件は、第1の出射光と第1の励起光を混色させた光の色度(第1の色度)と第2の出射光と第2の励起光を混色させた光の色度(第2の色度)が、所定の狙い色度についてxy色度図で対称に位置することである。更に、第1の色度及び第2の色度と狙い色度との差が0.04以下であることである。
 狙い色度について対称にそれぞれの色度を設定した2つの光を混色させることによって、狙い色度の出力光が得られる。また、出力光の演色評価数を全体的に高くすることができる。これは、以下のように、ピーク波長が異なる2つの青色発光素子の強度が制御されることによる。
 低い色度の出力光を作る場合は、青色光を消費する蛍光体の量が少ないために、青色発光素子の出射光の減少が少なく、出力光における青色光の強度のピーク値が高い。一方、高い色度の出力光を作る場合は、蛍光体の量が多いために、出力光における青色光の強度のピーク値が低い。このように、色度を変えることにより、青色光の強度が調整される。これにより、2000K~10000Kの広い範囲で、高演色性の光を出力することができる。
 更に、本発明者らは、第1の色度及び第2の色度と狙い色度とのxy色度図における色度差が0.03~0.04の範囲の場合に、高い演色性が得られることを見出した。色度差が0.04よりも大きいと、演色性が低下し、演色評価数にばらつきが生じる。特に、演色評価数R12が大きく低下する。したがって、高演色性の光を出力するためには、色度差が0.04以下であることが好ましい。
 図2に、第1の色度C1及び第2の色度C2と狙い色度C0との関係を示す。色度差ΔCは、x座標の差Δxとy座標の差Δyを用いて、以下の式(1)で表される:

ΔC={(Δx)2+(Δy)21/2 ・・・(1)

 また、本発明者らは、第1の青色発光素子11のピーク波長が430nm~445nmの波長範囲に含まれ、第2の青色発光素子12のピーク波長が455nm~470nmの波長範囲に含まれる場合に、演色評価数を高くできることを確認した。このため、第1の波長と第2の波長の波長差は少なくとも10nmであり、20nm~40nmであることが好ましい。なお、出力光の演色性を高めるために、第1の青色発光素子11のピークと第2の青色発光素子12のピークは、完全に分離していることが好ましい。
 第1の青色発光素子11や第2の青色発光素子12は、例えば青色LEDである。InGaN系の青色LEDなどが、青色発光素子10に好適に使用される。
 蛍光体シート30は、第1の青色発光素子11及び第2の青色発光素子12の出射光に励起されて緑色光を出射する緑色蛍光体や赤色光を出射する赤色蛍光体を含有する。上記の選択条件を満たすように、蛍光体シート30に含有される蛍光体の成分や配合比率が設定される。即ち、第1の青色発光素子11の第1の出射光と、第1の出射光に励起された蛍光体から出射される第1の励起光を混色して第1の色度C1の光になるように、蛍光体シート30に含有される蛍光体の成分や配合比率を設定する。更に、第2の青色発光素子12の第2の出射光と、第2の出射光に励起された蛍光体から出射される第2の励起光を混色して第2の色度C2の光になるように、蛍光体シート30に含有される蛍光体の成分や配合比率を設定する。
 なお、すべての演色評価数が高い、所望の色度の出力光を得るためには、青色発光素子10によって励起される蛍光体によるスペクトル形状の制御も重要である。所定の発光スペクトルを有する出力光を得るために、蛍光体シート30に含有される蛍光体の種類が適宜選択される。
 例えば、緑色蛍光体に、第1の強度を示す第1の波長と第1の強度よりも小さい第2の強度を示す第2の波長を有する発光スペクトルの緑色光を出射する蛍光体を使用する。そして、赤色蛍光体に、緑色光に対して第1の波長よりも第2の波長における吸収が少ない吸収スペクトルの赤色光を出射する蛍光体を使用する。赤色蛍光体によって第2の波長よりも第1の波長において緑色光が多く消費されるため、第1の波長の強度と第2の波長の強度が逆転する。その結果、波長バランスの取れた、波長分布の凹凸の少ない発光スペクトルの出力光が得られる。以下に、蛍光体シート30に含有される蛍光体の例を示す。
 緑色蛍光体や黄色蛍光体には、賦活材がCe3+であるスカンデート系酸化物又はスカンジウム系酸化物を用いる。例えば、CaSc24:Ce3+などのスカンジウム系酸化物やこれに類するもの、Ca3Sc2Si312:Ce3などのスカンジウム系ケイ酸塩やこれに類するものを使用可能である。また、青色光によって励起されるYAG、LuAG、BOSSなどの一般的な蛍光体も使用可能である。例えば、YAG系のY3Al512:Ce3+、Y3(Al,Ga)512:Ce3+、(Y,Gd)3Al512:Ce3+など、LuAG系のLu3Al512:Ce3+など、BOSS系の(Ba,Sr,Ca)2SiO4:Eu2+などを使用可能である。また、LSN系のLa3Si611:Ce3+なども使用可能である。
 赤色蛍光体には、広い帯域を持つ窒化物系の蛍光体などを使用する。例えば、Eu2+で賦活されたCaAlSiN3:Eu2+や(Sr,Ca)AlSiN3:Eu2+などの窒化アルミニウム系蛍光体を使用可能である。
 図3に、上記の選択条件を満たす第1の青色発光素子11と第2の青色発光素子12を用いた表面実装デバイス(SMD)の参考例を示す。参考例のSMDは、パッケージ40Aの凹部の底面に第1の青色発光素子11と第2の青色発光素子12を1個ずつ搭載した2in1タイプのSMDである。パッケージ40Aの凹部に充填された蛍光体含有樹脂30Aによって、第1の青色発光素子11と第2の青色発光素子12は覆われている。
 蛍光体含有樹脂30Aは、第1の出射光に励起されて第1の励起光を出射し、第2の出射光に励起されて第2の励起光を出射するように、含有する蛍光体の成分や配合比率が設定されている。図3に示したSMDは、第1の出射光と第1の励起光を混色した第1の色度の光と、第2の出射光と第2の励起光を混色した第2の色度の光とを混色させて、所定の色度の光を出力する。
 図3に示したSMDにおいて、5000Kでの平均演色評価数Ra(R1~R8の平均)>95、及び特殊演色評価数Ri(i=9~15)>90のAAA級超高演色の出力光が得られた。図4に、図3に示したSMDの出力光の平均演色評価数Raと特殊演色評価数Riを示す。
 上記の結果を踏まえ、本発明者らは、複数の第1の青色発光素子11と複数の第2の青色発光素子12を基板40の主面に配置し、これらを蛍光体含有樹脂30Aで覆ったCOBタイプの発光装置を試作した。試作した発光装置を図5に示す。図5は平面図であり、蛍光体含有樹脂30A(図示略)を透過して第1の青色発光素子11と第2の青色発光素子12が表示されている。青色発光素子10に駆動電流を供給するワイヤ50は図示を省略している。
 図5に示す発光装置では、第1の青色発光素子11と第2の青色発光素子12が、基板40の主面に交互に配置されている。つまり、第1の青色発光素子11の配置領域と第2の青色発光素子12の配置領域とが分離されていない混成実装である。
 図6に、図5に示した発光装置の平均演色評価数Raと特殊演色評価数Riを示す。図5に示した発光装置において、図3に示したSMDと同じ第1の青色発光素子11、第2の青色発光素子12、及び蛍光体含有樹脂30Aを使用した。しかし、図6に示すように、超高演色の出力光を得ることができなかった。また、比較例の発光装置の出力光の明るさは、SMDの出力光の明るさから予測される明るさの1/3程度であった。
 図7に、図3に示したSMDの出力光の発光スペクトルを「特性S1」として示し、図5に示した比較例の発光装置の発光スペクトルを「特性S2」として示す。図7の横軸は波長であり、縦軸は、特性S1と特性S2のそれぞれについてピーク値を1として規格化した強度である。図7で、ピーク波長P1は第1の青色発光素子11のピーク波長であり、ピーク波長P2は第2の青色発光素子12のピーク波長である。
 特性S2で示した比較例の発光装置の発光スペクトルでは、特性S1と比較して、短波側のピーク波長P1と長波側のピーク波長P2での強度の大小関係が逆転している。つまり、特性S1ではピーク波長P1での強度がピーク波長P2での強度よりも高いが、特性S2ではピーク波長P1での強度がピーク波長P2での強度よりも低い。比較例の発光装置では、光出力は短波側が長波側の1/3程度である。更に、特性S2では、長波側のピーク波長P2が、より長波側にシフトしている。以下に、短波側のピーク波長P1での強度が大きく減少する現象(以下、「第1の現象」という。)と、ピーク波長P2がより長波長になる現象(以下、「第2の現象」という。)に関して、特性S2が特性S1から変化した原因について検討する。
 先ず、第1の現象は、図5に示した比較例の発光装置において、第1の青色発光素子11と第2の青色発光素子12が基板40に混成実装されていることに起因する。ピーク波長の短い第1の青色発光素子11の第1の出射光は、ピーク波長の長い第2の青色発光素子12に吸収されやすい。つまり、バンドギャップが相対的に広い第1の青色発光素子11から出射される第1の出射光の多くが、バンドギャップが相対的に狭い第2の青色発光素子12に吸収される。このため、第1の青色発光素子11と第2の青色発光素子12が密集して混在している比較例の発光装置では、第1の出射光が大きく減少する。
 これに対し、図1に示した発光装置では、基板40の主面を第1の配置領域41と第2の配置領域42の2つの領域に分割し、第1の配置領域41に第1の青色発光素子11のみを配置し、第2の配置領域42に第2の青色発光素子12のみを配置する。これにより、第1の出射光の減少を抑制できる。つまり、第1の青色発光素子11と第2の青色発光素子12とを分離して配置することにより、第1の出射光が第2の青色発光素子12に吸収され難くすることができる。その結果、第1の現象を抑制できる。
 なお、第1の出射光が第2の青色発光素子12に吸収されることを抑制するには、第1の配置領域41と第2の配置領域42との境界線は短いほどよい。このため、基板40の主面が、1の境界線によって第1の配置領域41と第2の配置領域42とに分割されていることがより好ましい。例えば、図8に示すように、基板40の主面を直線状の境界線によって2分割して第1の配置領域41と第2の配置領域42を定義する。なお、図8では蛍光体シート30が基板40の主面の全体を覆っている。
 ところで、第1の青色発光素子11の個数を第2の青色発光素子12の個数よりも多くすることによって、第2の青色発光素子12に吸収されることによる第1の出射光の減少を補うことができる。例えば、短波側が長波側の1/3程度の光出力である場合に、第1の青色発光素子11と第2の青色発光素子12の個数の比を3対1にする。しかしながら、個数の比を変更する対策では、発光装置の出力光の明るさが低下してしまう。したがって、第1の青色発光素子11と第2の青色発光素子12とを分離して配置する対策が有効である。
 なお、第1の出射光が第2の青色発光素子12に吸収されることに起因するピーク波長P1での強度の減少を抑制するために、第1の青色発光素子11を基板40の主面の外側に配置し、第2の青色発光素子12を内側に配置することが好ましい。例えば、図9に示すように、帯状の第2の配置領域42の両側に半円形状の第1の配置領域41を定義する。或いは、図10に示すように、第1の配置領域41と第2の配置領域42を平面視で同心円状に定義してもよい。即ち、平面視で円形状の第2の配置領域42の外側に、平面視で環形状の第1の配置領域41を定義する。
 次に、第2の現象の原因について検討する。第2の現象は、第2の青色発光素子12の第2の出射光において、長波側よりも短波側での消費量が多いために生じている。これは、蛍光体含有樹脂30Aの内部において励起光の一部が蛍光体を励起する現象(以下において「フォトンリサイクル」という。)が、青色発光素子10を密集して配置したことによって顕著になったためである。
 例えば、緑色蛍光体から出射された励起光が赤色蛍光体を励起したり、赤色蛍光体から出射された励起光が赤色蛍光体を更に励起したりする。このような励起が繰り返されるフォトンリサイクルによって、第2の出射光の短波側での消費量が増大する。ピーク波長の異なる第1の青色発光素子11と第2の青色発光素子12の出射光及び励起光のバランスが重要な発光装置では、フォトンリサイクルは特に問題になる。フォトンリサイクルによる発光スペクトルの変形を考慮した設計もあり得るが、設計の自由度が低くなる。
 フォトンリサイクルを抑制するためには、蛍光体の存在する領域を光が速やかに通過することが有効である。つまり、蛍光体が含有された領域を光が通過する距離を短くすることにより、フォトンリサイクルの影響が抑制される。このため、図1に示した発光装置では、蛍光体シート30の膜厚T3を薄くすることによってフォトンリサイクルを抑制する。
 蛍光体の存在する領域を薄くする方法としては、蛍光体シートを青色発光素子10に直接被せ、軟化させて青色発光素子10を包み込むという従来の蛍光体シートの利用方法でも可能である。しかし、青色発光素子10が高密度実装された場合には、隣り合う青色発光素子10や蛍光体膜に影響されてしまうことになり、フォトンリサイクルの影響を抑制する目的を満たせない。そこで、青色光を出しきり、上方に配置した蛍光体膜で変換させるという構造を検討した。
 上記蛍光体膜は、薄くすることにより含有蛍光体密度が高くなり、蛍光体膜での青色透過光の平均自由長が短くなるというデメリットが予想された。しかし、薄くすることにより蛍光体の有効利用効率(機能しない蛍光体の減少)が向上した。これにより、蛍光体の20%~30%の減量が可能になり、且つ、フォトンリサイクルに特に影響する緑色蛍光体の配合比率を10%程度減らすことができた。このため、蛍光体膜を体積比で従来の1/2~1/4程度に減らしても、ほぼ光束に変化が無いことを確認した。具体的には、膜厚が50μm~100μmの蛍光体膜を青色発光素子10の上方に配置することにより、スペクトル波形の変化を抑え、且つ光束の減少の少ないCOBタイプの発光装置を得ることができた。
 上記のように、本発明者らが検討を重ねた結果、蛍光体シート30の膜厚T3を50μm~100μmにすることにより、第2の現象の発生が抑制されることを見出した。
 以上に説明したように、本発明の第1の実施形態に係る発光装置では、第1の配置領域41に配置される複数の第1の青色発光素子11と、第2の配置領域42に配置される複数の第2の青色発光素子12とが、基板40の主面において分離して配置される。第1の青色発光素子11と第2の青色発光素子12とが混在して配置されていないことにより、第1の出射光が第2の青色発光素子12に吸収され難い。その結果、第1の出射光が減少する第1の現象を抑制できる。更に、蛍光体シート30の膜厚T3を50μm~100μmにすることにより、フォトンリサイクルが抑制される。その結果、ピーク波長P2がより長波長になる第2の現象が抑制される。したがって、図1に示した発光装置によれば、光出力は図3に示したSMDと同程度であり、超高演色の出力光が得られる。
 既に述べたように、青色発光素子10への駆動電流の供給はワイヤ50によって行われる。例えば、ワイヤ50によって直列接続した複数個の青色発光素子10からなる発光素子列を並列接続する。このとき、発光素子列に含まれる青色発光素子10の個数は任意に設定できるが、これらを並列接続するために、発光素子列に含まれる青色発光素子10のしきい値電圧Vfのトータル値は、すべての発光素子列で同じにしておくことが必要である。例えば、それぞれの発光素子列に含まれる第1の青色発光素子11の個数と第2の青色発光素子12の個数を、発光素子列で同一にする。
 図1に示した発光装置では、青色発光素子10からの出射光は、中間層20を通過して蛍光体シート30に入射する。このため、中間層20には光透過性の材料を用いる。例えば、中間層20に透明の樹脂膜を使用する。或いは、フィラー入りの樹脂膜を使用するなどして、中間層20の内部で光が散乱されるようにしてもよい。また、図11に示すように中間層20と蛍光体シート30との界面に断面が略三角形状のプリズム状突起を形成して、中間層20を通過した光が蛍光体シート30に入射しやすくしてもよい。
 なお、中間層20の屈折率は、蛍光体シート30の屈折率よりも低いことが好ましい。これにより、青色発光素子10からの出射光が中間層20と蛍光体シート30との界面で反射されることが抑制され、発光装置の出力効率の低下を防止できる。
 ところで、青色発光素子10と蛍光体シート30との距離が一定程度よりも短い場合、即ち、中間層20の膜厚T2が薄い場合には、蛍光体シート30の光出力面に色むらが生じるおそれがある。具体的には、青色発光素子10の上方で青色光が強く、青色発光素子10と青色発光素子10の間の中間領域の上方で蛍光体からの励起光の色が強くなる。これは、中間層20の膜厚T2が薄い場合に、青色発光素子10の上方に比べて中間領域の上方で青色発光素子10からの出射光が蛍光体シート30に入射する量が少ないためである。
 蛍光体シートの光出力面の色むらは、発光装置からの出力光で直接に照射する場合はあまり問題にならない。しかし、発光装置からの出力光をレンズなどの光学素子を透過させて照射する場合には、色むらが色差として現れる可能性がある。
 蛍光体シート30の光出力面の色むらを抑制するためには、青色発光素子10と蛍光体シート30との距離を広くすることが有効である。つまり、中間層20の膜厚T2を、蛍光体シート30の色むらが生じない程度に厚くする。例えば、青色発光素子10からの出射光が蛍光体シート30に入射する入射角を、中間領域において45度以下にする。このためには、中間層20の膜厚T2を、青色発光素子10の配置間隔Wの1/2よりも厚くする(図12参照。)。これにより、中間領域の上方に入射する青色発光素子10からの出射光が少ないことに起因する蛍光体シート30の光出力面の色むらを抑制することができる。
 (第2の実施形態)
 本発明の第2の実施形態に係る発光装置は、図13に示すように、蛍光体シート30が平面視で第1の蛍光体領域31と第2の蛍光体領域32に分割されている。第1の蛍光体領域31と第2の蛍光体領域32は、含有される蛍光体の成分及び配合比率の少なくともいずれかが異なる。図13に示す発光装置は、蛍光体シート30が分割されている点が、一定の成分及び配合比率で蛍光体が含有される蛍光体シート30によって基板40の主面の全体が覆われた第1の実施形態に係る発光装置と異なる。その他の構成については、第1の実施形態と同様である。なお、以下において、蛍光体シート30の分割された個々の領域を「蛍光体領域」という。また、基板40の主面の分割された個々の領域を「配置領域」という。
 図13に示した発光装置では、図14に示すように、第1の蛍光体領域31が第1の配置領域41の上方の全体に配置され、第2の蛍光体領域32が第2の配置領域42の上方の全体に配置されている。第1の青色発光素子11の第1の出射光によって第1の蛍光体領域31に含有される蛍光体が励起されて、第1の励起光が出射される。そして、第1の出射光と第1の励起光とが混色されて、色度1の光が出力される。一方、第2の青色発光素子12の第2の出射光によって第2の蛍光体領域32に含有される蛍光体が励起されて、第2の励起光が出射される。そして、第2の出射光と第2の励起光とが混色されて、色度2の光が出力される。このように、図13に示した発光装置では、色度1の光と色度2の光が出力される。
 第2の実施形態に係る発光装置では、第1の蛍光体領域31に含有される蛍光体と第2の蛍光体領域32に含有される蛍光体の成分や配合比率を独立して変えることができる。このため、第1の色度と第2の色度の種々の組み合わせで、発光装置から光を出力させることができる。他は、第1の実施形態と実質的に同様であり、重複した記載を省略する。
 蛍光体シート30は、任意の形状に精度よく加工することが容易である。このため、蛍光体シート30を用いることにより、基板40の配置領域に合わせて蛍光体領域を容易に設定することができる。蛍光体シート30を配置するのではなく蛍光体を含有する樹脂を塗布して蛍光体膜を形成する場合には、蛍光体領域を精度よく形成することは困難である。例えば、樹脂を塗布する場合には配置領域の境界線に合わせて仕切り壁を形成する必要があるが、仕切り壁を高い精度で形成することは困難であり、色度ばらつきが生じる。
 なお、青色発光素子10からの出射光の第1の蛍光体領域31と第2の蛍光体領域32との境界面での混合を少なくするためには、中間層20の膜厚T2が薄いほど好ましい。このため、中間層20の膜厚T2は、例えば、ワイヤ50の全体が埋め込まれるぎりぎりの厚みにする。ただし、既に説明したように、蛍光体シート30の光出力面の色むらを抑制するために、中間層20の膜厚T2は青色発光素子10の配置間隔Wの1/2よりも厚いことが好ましい。
 <第1の変形例>
 図13に示した発光装置では、1つの配置領域に1つの蛍光体領域を配置している。即ち、第1の配置領域41に第1の蛍光体領域31が重ねて配置され、第2の配置領域42に第2の蛍光体領域32が重ねて配置されている。しかし、蛍光体領域と配置領域を1対1に対応させなくてもよい。即ち、1つの配置領域について複数の蛍光体領域を配置してもよい。
 例えば、図15に示した発光装置では、第1の配置領域41の上方の一部と第2の配置領域42の上方の一部に連続的に第1の蛍光体領域31が配置されている。そして、第1の配置領域41の上方の他の一部と第2の配置領域42の上方の他の一部に連続的に第2の蛍光体領域32が配置されている。
 このため、第1の出射光と第1の出射光に励起されて第1の蛍光体領域31で励起された励起光を混色した光と、第2の出射光と第2の出射光に励起されて第1の蛍光体領域31で励起された励起光を混色した光とが混色され、色温度Aの出力光が得られる。一方、第1の出射光と第1の出射光に励起されて第2の蛍光体領域32で励起された励起光を混色した光と、第2の出射光と第2の出射光に励起されて第2の蛍光体領域32で励起された励起光を混色した光とが混色され、色温度Bの出力光が得られる。
 上記のように、図15に示した発光装置では、1つの配置領域について蛍光体の成分や配合比率の異なる複数の蛍光体領域を配置して、異なる色温度の領域が形成される。このため、図8や図13に示した発光装置では設計した所定の色温度の光が出力されるのに対し、図15に示した発光装置では、発光装置の出力光の色温度を調整して調色が可能である。即ち、駆動電流の大きさやパルス周期の調整などにより青色発光素子10からの出射光の強度を蛍光体領域ごとに調整して、一定の範囲で発光装置の出力光の調色が可能である。例えば、3000Kと5000Kの出力光が得られるように設定された蛍光体領域をそれぞれ用意することにより、3000K~5000Kの範囲での出力光の調色ができる。
 <第2の変形例>
 図15に示した発光装置では、異なる配置領域それぞれの一部について共通の蛍光体領域を配置している。これに対し、配置領域ごとに異なる複数の蛍光体領域を配置してもよい。
 例えば、図16に示す発光装置では、第1の配置領域41の上方の一部に第1の蛍光体領域31が配置され、第1の配置領域41の上方の他の一部に第2の蛍光体領域32が配置されている。そして、第2の配置領域42の上方の一部に第3の蛍光体領域33が配置され、第2の配置領域42の上方の他の一部に第4の蛍光体領域34が配置されている。即ち、蛍光体シート30が、4つの蛍光体領域に分割されている。
 これにより、例えば、第1の配置領域41の第1の蛍光体領域31が配置された領域から色度1Aの光を出力させ、第1の配置領域41の第2の蛍光体領域32が配置された領域から色度1Bの光を出力させられる。また、第2の配置領域42の第3の蛍光体領域33が配置された領域から色度2Aの光を出力させ、第2の配置領域42の第4の蛍光体領域34が配置された領域から色度2Bの光を出力させられる。つまり、図16に示した発光装置から、4種類の色度の光を出力させることができる。
 なお、図16に示した発光装置においても、図15に示した発光装置と同様に、青色発光素子10からの出射光の強度を調整することによって発光装置の出力光の調色が可能である。
 図17に、図1、図13、図15及び図16に示した発光装置からの出力光の色度についてまとめた表を示す。図17において、「発光装置」の欄に記載した「1」~「4」が、それぞれ図1、図13、図15、図16に示した発光装置に対応する。「蛍光体領域」の欄は、蛍光体シート30を分割した蛍光体領域の数である。なお、図17の「出力光」の欄における「単色」は、発光装置から所定の狙い色度の光が出力されることを示し、「調色」は発光装置の出力光の調色が可能であることを示す。
 上記のように、配置領域と蛍光体領域の組み合わせにより、色度の異なる複数の光が発光装置から出力される。蛍光体領域の分割の仕方によって、色度の種類は任意に設定可能である。蛍光体を含有する樹脂を塗布する場合と比べて、形状の加工が容易な蛍光体シート30を用いることにより、それぞれの蛍光体領域の配置される領域を精密に設定できる。これにより、色度のばらつきを抑制できる。
 (第3の実施形態)
 上記では、基板40の主面が第1の配置領域41と第2の配置領域42の2つに分割された発光装置について、蛍光体シート30を分割する場合について説明した。図9に示したように3つの配置領域が定義された発光装置についても、同様に蛍光体シート30を分割することができる。
 図18に、図9に示した発光装置において、配置領域ごとに蛍光体シート30を分割した例を示す。即ち、外側に配置された2つの第1の配置領域41に第1の蛍光体領域31がそれぞれ重ねて配置され、内側に配置された第2の配置領域42に第2の蛍光体領域32が重ねて配置されている。これにより、第1の配置領域41に第1の蛍光体領域31を重ねた領域では色度1の光が出力され、第2の配置領域42に第2の蛍光体領域32を重ねた領域では色度2の光が出力される。
 <第1の変形例>
 図19に、図9に示した発光装置において、1つの配置領域について複数の蛍光体領域を配置した例を示す。図19に示した発光装置では、第1の配置領域41の上方の一部と第2の配置領域42の上方の一部に連続的に第1の蛍光体領域31が配置されている。具体的には、図19の紙面の右側(以下において、単に「右側」という。)に配置された第1の配置領域41と第2の配置領域42の右側の部分に重ねて第1の蛍光体領域31が配置されている。そして、紙面の左側(以下において、単に「左側」という。)に配置された第1の配置領域41と第2の配置領域42の左側の部分に重ねて第2の蛍光体領域32が配置されている。
 図19に示した発光装置の右側の領域から、第1の出射光と第1の蛍光体領域31の励起光を混色した光と、第2の出射光と第1の蛍光体領域31の励起光を混色した光とが混色され、色温度Aの出力光が得られる。一方、発光装置の左側の領域から、第1の出射光と第2の蛍光体領域32の励起光を混色した光と、第2の出射光と第2の蛍光体領域32の励起光を混色した光とが混色され、色温度Bの出力光が得られる。
 <第2の変形例>
 図20に、図9に示した発光装置において、配置領域ごとに異なる複数の蛍光体領域を配置した例を示す。図20に示した発光装置では、右側の第1の配置領域41に第1の蛍光体領域31が重ねて配置され、左側の第1の配置領域41に第2の蛍光体領域32が重ねて配置されている。そして、第2の配置領域42の一部に第3の蛍光体領域33が重ねて配置され、第2の配置領域42の他の一部に第4の蛍光体領域34が重ねて配置されている。図20に示した発光装置からは、図16に示した発光装置と同様に、配置領域と蛍光体領域の組み合わせに応じて4種類の色度の光が出力される。
 以上に説明したように、第3の実施形態に係る発光装置では、第2の実施形態に係る発光装置と同様に、配置領域と蛍光体領域の組み合わせにより、色温度の異なる複数の光や色度の異なる複数の光を出力することができる。他は、第2の実施形態と実質的に同様であり、重複した記載を省略する。
 (第4の実施形態)
 本発明の第4の実施形態に係る発光装置では、基板40の主面に同心円状に2つの配置領域が定義され、且つ蛍光体シート30が分割される。例えば、図10に示したように同心円状に2つの配置領域が定義された発光装置について、蛍光体シート30を分割する。
 図21に、図10に示した発光装置において、配置領域ごとに蛍光体シート30を分割した例を示す。即ち、外側に配置された第1の配置領域41に第1の蛍光体領域31が重ねて配置され、内側に配置された第2の配置領域42に第2の蛍光体領域32が重ねて配置されている。これにより、第1の配置領域41に第1の蛍光体領域31を重ねた領域では色度1の光が出力され、第2の配置領域42に第2の蛍光体領域32を重ねた領域では色度2の光が出力される。
 <第1の変形例>
 図22に、図10に示した発光装置において、1つの配置領域について複数の蛍光体領域を配置した例を示す。図20に示した発光装置では、第1の配置領域41の上方の一部と第2の配置領域42の上方の一部に連続的に第1の蛍光体領域31が配置されている。具体的には、第1の配置領域41の右側の円弧形状の領域と第2の配置領域42の右側の半円形状の領域に重ねて第1の蛍光体領域31が配置されている。そして、第1の配置領域41の左側の円弧形状の領域と第2の配置領域42の左側の半円形状の領域に重ねて第2の蛍光体領域32が配置されている。
 図22に示した発光装置の右側の領域から、第1の出射光と第1の蛍光体領域31の励起光を混色した光と、第2の出射光と第1の蛍光体領域31の励起光を混色した光とが混色され、色温度Aの出力光が得られる。一方、発光装置の左側の領域から、第1の出射光と第2の蛍光体領域32の励起光を混色した光と、第2の出射光と第2の蛍光体領域32の励起光を混色した光とが混色され、色温度Bの出力光が得られる。
 <第2の変形例>
 図23に、図10に示した発光装置において、配置領域ごとに異なる複数の蛍光体領域を配置した例を示す。図23に示した発光装置では、第1の配置領域41の右側の円弧形状の領域に第1の蛍光体領域31が重ねて配置され、第1の配置領域41の左側の円弧形状の領域に第2の蛍光体領域32が重ねて配置されている。そして、第2の配置領域42の紙面の上側の半円形状の領域に第3の蛍光体領域33が重ねて配置され、第2の配置領域42の紙面の下側の半円形状の領域に第4の蛍光体領域34が重ねて配置されている。図23に示した発光装置からは、図16に示した発光装置と同様に、配置領域と蛍光体領域の組み合わせによって4種類の色度の光が出力される。なお、図23に示した発光装置では、蛍光体領域ごとに青色発光素子10の出射光の強度を調整するには、ワイヤ50の配線に工夫が必要である。
 以上に説明したように、第4の実施形態に係る発光装置においても配置領域と蛍光体領域の組み合わせにより、色温度の異なる複数の光や色度の異なる複数の光を出力することができる。他は、第2の実施形態や第3の実施形態と実質的に同様であり、重複した記載を省略する。
 (その他の実施形態)
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 例えば、上記の説明では、ピーク波長P1での強度の減少を抑制するために、図9や図10に示したように第2の配置領域42の外側に第1の配置領域41を配置する発光装置を示した。しかし、図24や図25に示すように、第1の配置領域41を内側に配置し、第2の配置領域42を外側に配置してもよい。図24に示した発光装置では、帯状の第1の配置領域41の両側に半円形状の第2の配置領域42を定義している。図25に示した発光装置では、平面視で円形状の第1の配置領域41の外側に、平面視で環形状の第2の配置領域42を定義している。
 上記のように第1の配置領域41の外側に第2の配置領域42を配置することにより、第1の出射光の一部を第2の青色発光素子12に意図的に吸収させる。これにより、出力光の発光スペクトルを変形させて、平均演色評価数Raや特殊演色評価数Riの特定の数値を高くした光を発光装置から出力させることができる。例えば、極低色温度で短波側のピーク波長P1での強度を小さくしたい場合などに有効である。
 なお、図24や図25に示した配置領域の全体に単一の蛍光体シート30を配置してもよいし、第2~第4の実施形態で示したように、蛍光体シート30を分割してもよい。
 また、上記では基板40の主面の青色発光素子10が配置される領域の外縁が円形状である例を示したが、青色発光素子10が配置される領域の外縁が矩形状や多角形状であってもよい。
 このように、本発明はここでは記載していない様々な実施形態などを含むことはもちろんである。したがって、本発明の技術的範囲は上記の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。
 本発明の発光装置は、発光素子によって蛍光体を励起して光を出力する発光装置の用途に利用可能である。

Claims (11)

  1.  主面に第1の配置領域と第2の配置領域が定義された基板と、
     前記基板の主面に配置された複数の青色発光素子と、
     前記複数の青色発光素子からの出射光に励起されて励起光を出射する蛍光体を含有し、前記複数の青色発光素子の上方に配置された蛍光体シートと
     を備え、
     前記複数の青色発光素子が、前記第1の配置領域に配置されて第1の波長を発光スペクトルのピーク波長とする第1の出射光を出射する第1の青色発光素子、及び、前記第2の配置領域に配置されて前記第1の波長よりも少なくとも10nmの波長差を有する長波長の第2の波長を発光スペクトルのピーク波長とする第2の出射光を出射する第2の青色発光素子を含むことを特徴とする発光装置。
  2.  前記蛍光体シートの膜厚が50μm~100μmであることを特徴とする請求項1に記載の発光装置。
  3.  前記主面が、1の境界線によって前記第1の配置領域と前記第2の配置領域とに分割されていることを特徴とする請求項1に記載の発光装置。
  4.  前記第2の配置領域の外側に前記第1の配置領域が配置されていることを特徴とする請求項1に記載の発光装置。
  5.  前記蛍光体シートが、平面視で、前記蛍光体の成分及び配合比率の少なくともいずれかが異なる複数の蛍光体領域に分割されていることを特徴とする請求項1に記載の発光装置。
  6.  前記複数の蛍光体領域が、
     前記第1の配置領域の上方の全体に配置された第1の蛍光体領域と、
     前記第2の配置領域の上方の全体に配置された第2の蛍光体領域と
     を含むことを特徴とする請求項5に記載の発光装置。
  7.  前記複数の蛍光体領域が、
     前記第1の配置領域の上方の一部と前記第2の配置領域の上方の一部に連続的に配置された第1の蛍光体領域と、
     前記第1の配置領域の上方の他の一部と前記第2の配置領域の上方の他の一部に連続的に配置された第2の蛍光体領域と
     を含むことを特徴とする請求項5に記載の発光装置。
  8.  前記複数の蛍光体領域が、
     前記第1の配置領域の上方の一部に配置された第1の蛍光体領域と、
     前記第1の配置領域の上方の他の一部に配置された第2の蛍光体領域と、
     前記第2の配置領域の上方の一部に配置された第3の蛍光体領域と、
     前記第2の配置領域の上方の他の一部に配置された第4の蛍光体領域と
     を含むことを特徴とする請求項5に記載の発光装置。
  9.  前記複数の青色発光素子を覆って前記基板と前記蛍光体シートの間に配置された中間層を更に備え、
     前記中間層の屈折率が、前記蛍光体シートの屈折率よりも低く、
     前記中間層の膜厚が、前記複数の青色発光素子の配置間隔の1/2よりも厚く、
     前記複数の青色発光素子の相互間を順に接続するワイヤが前記中間層に埋め込まれていることを特徴とする請求項1に記載の発光装置。
  10.  前記蛍光体シートに含有される前記蛍光体が、前記第1の出射光に励起されて第1の励起光を出射し、前記第2の出射光に励起されて第2の励起光を出射し、
     前記第1の出射光と前記第1の励起光を混色した第1の色度の光と、前記第2の出射光と前記第2の励起光を混色した第2の色度の光とを混色した光を出力することを特徴とする請求項1に記載の発光装置。
  11.  前記第1の色度と前記第2の色度がxy色度図において所定の色度について対称に位置し、且つ前記第1の色度及び前記第2の色度と前記所定の色度との差が0.04以下であることを特徴とする請求項10に記載の発光装置。
PCT/JP2017/003276 2017-01-31 2017-01-31 発光装置 WO2018142440A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/087,687 US10770629B2 (en) 2017-01-31 2017-01-31 Light emitting device
PCT/JP2017/003276 WO2018142440A1 (ja) 2017-01-31 2017-01-31 発光装置
JP2018565086A JP6583572B2 (ja) 2017-01-31 2017-01-31 発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003276 WO2018142440A1 (ja) 2017-01-31 2017-01-31 発光装置

Publications (1)

Publication Number Publication Date
WO2018142440A1 true WO2018142440A1 (ja) 2018-08-09

Family

ID=63040329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003276 WO2018142440A1 (ja) 2017-01-31 2017-01-31 発光装置

Country Status (3)

Country Link
US (1) US10770629B2 (ja)
JP (1) JP6583572B2 (ja)
WO (1) WO2018142440A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11145793B2 (en) 2019-05-09 2021-10-12 Lumileds Llc Light emitting diode with high melanopic spectral content
WO2022143329A1 (zh) * 2020-12-31 2022-07-07 欧普照明股份有限公司 一种光源模组及包括该光源模组的照明装置
CN113888991B (zh) * 2021-10-26 2023-11-17 厦门天马微电子有限公司 一种发光面板、显示面板、背光模组和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045839A (ja) * 2011-08-23 2013-03-04 Mitsubishi Electric Corp Ledモジュール及び発光装置及びledモジュールの製造方法
JP2016127145A (ja) * 2014-12-26 2016-07-11 シチズンホールディングス株式会社 発光装置および投射装置
JP2016129229A (ja) * 2015-01-05 2016-07-14 シチズン電子株式会社 Led発光装置
JP2016162860A (ja) * 2015-02-27 2016-09-05 シチズン電子株式会社 Led発光装置
WO2016159141A1 (ja) * 2015-04-03 2016-10-06 シャープ株式会社 発光装置
JP2016219519A (ja) * 2015-05-18 2016-12-22 サンケン電気株式会社 発光装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6611000B2 (en) * 2001-03-14 2003-08-26 Matsushita Electric Industrial Co., Ltd. Lighting device
TWI383345B (zh) * 2009-05-22 2013-01-21 Chunghwa Picture Tubes Ltd 顯示器與其所使用的光源裝置
US8905588B2 (en) * 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
EP2555261A1 (en) * 2010-03-30 2013-02-06 Mitsubishi Chemical Corporation Light-emitting device
US9004705B2 (en) * 2011-04-13 2015-04-14 Intematix Corporation LED-based light sources for light emitting devices and lighting arrangements with photoluminescence wavelength conversion
TWI436506B (zh) * 2011-04-20 2014-05-01 Lustrous Green Technology Of Lighting 使用預製螢光帽蓋的發光二極體封裝結構
US9412914B2 (en) 2011-07-25 2016-08-09 Nichia Corporation Light emitting device
CN104303595B (zh) * 2011-12-16 2017-06-09 马维尔国际贸易有限公司 用于基于发光二极管的照明系统的电流平衡电路
US20150055319A1 (en) * 2012-03-31 2015-02-26 Osram Sylvania Inc. Wavelength conversion structure for a light source
US10074635B2 (en) * 2015-07-17 2018-09-11 Cree, Inc. Solid state light emitter devices and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045839A (ja) * 2011-08-23 2013-03-04 Mitsubishi Electric Corp Ledモジュール及び発光装置及びledモジュールの製造方法
JP2016127145A (ja) * 2014-12-26 2016-07-11 シチズンホールディングス株式会社 発光装置および投射装置
JP2016129229A (ja) * 2015-01-05 2016-07-14 シチズン電子株式会社 Led発光装置
JP2016162860A (ja) * 2015-02-27 2016-09-05 シチズン電子株式会社 Led発光装置
WO2016159141A1 (ja) * 2015-04-03 2016-10-06 シャープ株式会社 発光装置
JP2016219519A (ja) * 2015-05-18 2016-12-22 サンケン電気株式会社 発光装置

Also Published As

Publication number Publication date
JP6583572B2 (ja) 2019-10-02
JPWO2018142440A1 (ja) 2019-03-14
US20190088835A1 (en) 2019-03-21
US10770629B2 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
JP5005712B2 (ja) 発光装置
RU2623682C2 (ru) Модуль излучения белого света
JP6262211B2 (ja) 照明装置、照明機器および表示装置
JP5105132B1 (ja) 半導体発光装置、半導体発光システムおよび照明器具
KR100946015B1 (ko) 백색 발광장치 및 이를 이용한 lcd 백라이트용 광원모듈
US10443791B2 (en) LED module having planar sectors for emitting different light spectra
US9923126B2 (en) Light emitting device having high color rendering using three phosphor types
US20120223660A1 (en) White light emitting device
JP2016219519A (ja) 発光装置
JP2008071806A (ja) 発光装置
JP2005244075A (ja) 発光装置
JP2008117879A (ja) 平面発光装置
KR20140005389U (ko) 2칩 발광 다이오드
KR20130017031A (ko) 백색 발광 다이오드 및 그 제조 방법
TW201306325A (zh) 白光發光元件、顯示裝置以及使用上述的照明裝置
JP2006303140A (ja) 発光装置の製造方法及び該発光装置を用いた発光装置ユニットの製造方法
JP2010147306A (ja) 発光装置、この発光装置を用いた照明器具及び表示器具
JP2009529231A (ja) 発光ダイオードモジュール
JP2017533549A (ja) 放射スペクトルが調整可能な光源
CN109148429B (zh) 发光二极管封装结构
JP6583572B2 (ja) 発光装置
JP2012191225A (ja) 発光装置
JP2015106660A (ja) 発光装置
JP2013182898A (ja) 発光装置およびそれを備えた照明装置
KR101144754B1 (ko) 백색 발광장치 및 이의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018565086

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894978

Country of ref document: EP

Kind code of ref document: A1