WO2022143329A1 - 一种光源模组及包括该光源模组的照明装置 - Google Patents

一种光源模组及包括该光源模组的照明装置 Download PDF

Info

Publication number
WO2022143329A1
WO2022143329A1 PCT/CN2021/140413 CN2021140413W WO2022143329A1 WO 2022143329 A1 WO2022143329 A1 WO 2022143329A1 CN 2021140413 W CN2021140413 W CN 2021140413W WO 2022143329 A1 WO2022143329 A1 WO 2022143329A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
source module
peak
light source
spectral
Prior art date
Application number
PCT/CN2021/140413
Other languages
English (en)
French (fr)
Inventor
周志贤
范晓鸣
Original Assignee
欧普照明股份有限公司
苏州欧普照明有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011630919.0A external-priority patent/CN112747263A/zh
Priority claimed from CN202023313680.2U external-priority patent/CN214619092U/zh
Application filed by 欧普照明股份有限公司, 苏州欧普照明有限公司 filed Critical 欧普照明股份有限公司
Publication of WO2022143329A1 publication Critical patent/WO2022143329A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present application relates to a light source module and a lighting device including the light source module.
  • LED lighting fixtures have been widely used.
  • Existing LED lighting products mainly solve the problems of energy saving, illuminance, color and color rendering, but more and more manufacturers will pay attention to users' preferences. They noticed that in the choice of home lighting, people prefer warm white light, which can create a warm family atmosphere.
  • the purpose of the present application is to solve the above problems, and to find a light source module that can attract people's attention and a lighting device including the light source module.
  • the technical solution adopted in the present application is to provide a light source module, which includes a first light-emitting element and an encapsulation portion covering the first light-emitting element,
  • the first light-emitting element emits a first color light with a peak wavelength of 435-465 nm;
  • the encapsulation part includes:
  • the first additional light-emitting body is arranged to receive part of the light emitted by the first light-emitting element and convert it into a second color light with a peak wavelength of 485-520 nm, the first additional light-emitting body
  • the emission spectrum of the additional illuminant is fully covered by the melanopsin light sensitivity curve
  • the second additional light-emitting body is arranged to receive part of the light emitted by the first light-emitting element and convert it into a third color light with a peak wavelength of 520-580 nm;
  • the third additional light-emitting body is arranged to receive part of the light emitted by the first light-emitting element and convert it into a fourth color light with a peak wavelength of 610-690 nm,
  • the spectral energy in the wavelength range [380-780nm] is the entire spectral energy of the emission light, and the emission light spectrum is in the wavelength range (470-515nm].
  • the spectral energy accounts for 10.0% to 25.0% of the entire spectral energy.
  • the spectral energy in the wavelength range (470-515 nm) of the spectrum of the emitted light accounts for 11.0%-20.0% of the entire spectral energy.
  • the spectral energy in the wavelength range [380 ⁇ 470nm] accounts for 4.0% ⁇ 14.0% of the whole spectral energy
  • the spectral energy in the wavelength range (470 ⁇ 560nm) accounts for 25.0% ⁇ 45.0% of the whole spectral energy
  • the spectral energy in the wavelength range [600 ⁇ 780nm] accounts for 45.0% ⁇ 65.0% of the whole spectral energy.
  • the spectral energy in the wavelength range [380 ⁇ 470nm] accounts for 5.0% ⁇ 10.0% of the whole spectral energy
  • the spectral energy in the wavelength range (470 ⁇ 560nm) accounts for 25.0% ⁇ 37.0% of the whole spectral energy
  • the spectral energy in the wavelength range [600 ⁇ 780nm] accounts for 50.0% ⁇ 60.0% of the whole spectral energy.
  • the spectrum of the emitted light is continuously distributed in the visible light range of 380-780 nm, including at least three spectral emission peaks, and there is one spectral emission peak in the blue light region 435-465 nm, which is called the first peak; blue-green There is one spectral emission peak in the light region 470-510nm, which is called the second peak; there is one spectral emission peak in the red light region 610-690nm, which is called the third peak, among which:
  • the ratio of the spectral intensity of the first peak to the spectral intensity of the third peak is between 22.0% and 70.0%;
  • the ratio of the spectral intensity of the second peak to the spectral intensity of the third peak is between 45.0% and 80.0%.
  • the ratio of the spectral intensity of the first peak to the spectral intensity of the third peak is between 27.0% and 60.0%;
  • the ratio of the spectral intensity of the second peak to the spectral intensity of the third peak is between 50.0% and 70.0%.
  • the first light-emitting element is a blue LED with an emission peak wavelength of 435-465 nm; the first additional light-emitting body is a cyan phosphor with a peak wavelength of 485-520 nm and a half-width of 25-65 nm.
  • the cyan phosphor is any one or a mixture of two or more of nitrogen oxide phosphor, Ga-doped garnet phosphor, and silicate phosphor.
  • the second additional luminous body is a yellow-green phosphor with a peak wavelength of 520-580 nm and a half width of 90 to 115 nm; the third additional luminous body is of a peak wavelength of 610 to 690 nm and a half width of 80 to 120 nm. Red or orange phosphors.
  • the yellow-green fluorescent powder is any one or a mixture of two or more of garnet structure fluorescent powder and aluminate fluorescent powder.
  • the yellow-green phosphor includes at least one yellow phosphor and at least one green phosphor.
  • the red or orange phosphor is any one or a mixture of two or more of 1113 structure nitride red powder, 258 structure nitride red powder, and fluorosilicate red powder. .
  • the melanopsin photosensitive efficiency ratio Kmel of the emitted light of the light source module is above 0.52.
  • the melanopsin photosensitive efficiency ratio Kmel of the light emitted by the light source module is above 0.57.
  • the light color of the light emitted by the light source module is in the CIE1931 color space, which is located in the four colors of P1 (0.4313, 0.4171), P2 (0.4159, 0.3819), P3 (0.4352, 0.3887), and P4 (0.4538, 0.4252). within the quadrilateral area enclosed by the vertices.
  • the color rendering index of the emitted light of the light source module CRI ⁇ 90.0, R9 ⁇ 70.0 is a color rendering index of the emitted light of the light source module CRI ⁇ 90.0, R9 ⁇ 70.0.
  • the present application also provides a lighting device including the above-mentioned light source module.
  • the light source module provided by this application specifically optimizes the spectral distribution for the special needs of preventing myopia, and adds narrow-band red light phosphors to change the energy distribution in a specific area of the red light region.
  • Working, living and studying in the light environment provided by the light source module and the lamps of the present application can relieve visual fatigue, thereby preventing the occurrence of myopia and delaying the progression of myopia.
  • FIG. 1 is a schematic structural diagram of a light source module according to a preferred embodiment of the present application.
  • Fig. 2 is the relative spectrum comparison diagram of the light sensitivity curve of cyan fluorescent powder, cyan LED and melanopsin;
  • Fig. 4 is the emission light spectrogram of preferred embodiment 1 in this application.
  • Fig. 5 is the emission light spectrogram of preferred embodiment 2 in this application.
  • Fig. 6 is the emission light spectrogram of preferred embodiment 3 in this application.
  • Fig. 7 is the emission light spectrogram of preferred embodiment 4 in this application.
  • Fig. 8 is the emission light spectrogram of preferred embodiment 5 in this application.
  • Fig. 9 is the emission light spectrogram of preferred embodiment 6 in this application.
  • FIG. 10 is a schematic structural diagram of a lighting device according to a preferred embodiment of the present application.
  • ipRGCs melanopsin retinal ganglion cells
  • EML Equivalent Melanopic Lux
  • lux lx
  • lux lx
  • the melanopsin illuminance value (EML) is weighted according to the response of ipRGCs to light, and the spectral stimulus of the light source is converted to quantitatively describe the biological effect of light on people. Light with a higher EML increases alertness, prevents drowsiness, and increases productivity.
  • the embodiment of this application is to provide a lighting product with high EML. Since EML cannot be directly measured, the indicator we use here is the melanopsin photosensitive efficiency ratio Kmel. By measuring the relative intensity of each wavelength, weighted with a specified formula To calculate the EML ratio, the specific formula is as follows:
  • EDI_mel(D65) The melanin sensitivity of the equivalent D65 light source
  • the calculation formula is based on the parameter definition and calculation method published by CIE S026.
  • FIG. 2 shows the comparison graph of the light sensitivity curves of cyan phosphor, cyan LED and melanopsin, which is a relative spectral intensity graph. Each curve in the figure has been normalized, and the melanopsin light sensitivity curve is Curve formed according to the light-sensing function of Mel( ⁇ ) melanopsin photoreceptor cells (ipRGC).
  • a specific embodiment of the light source module L1 of the present application is a mixed light white LED package chip, which can be an LED chip with a general SMD package structure or a COB package structure. As shown in FIG. 1 , the light source module L1 includes at least one LED chip. The first light emitting element 1 and the encapsulation part 2 covering the first light emitting element.
  • the first light-emitting element 1 is a blue LED chip, which is directly excited by semiconductor materials to emit light.
  • the peak wavelength of the light emission is between 435 and 465 nm, and the light color is blue.
  • LED chip including front-mounted or flip-chip, a single LED Chip or multiple LED Chips are connected together in series, parallel or series-parallel.
  • the encapsulation part 2 uses transparent silica gel or transparent resin as the base material 204 , wherein the transparent resin can be selected from epoxy resin and urea resin.
  • the base material 204 is doped with the first additional light-emitting body 201, the second additional light-emitting body 202, and the third additional light-emitting body 203.
  • the first additional light-emitting body 201 is a cyan phosphor that receives part of the light emitted by the first light-emitting element 1 and converts it into a second color light with a peak wavelength of 485-520 nm and a half width of 25-65 nm. As mentioned earlier, its emission spectrum is fully covered by the melanopsin light sensitivity curve.
  • the second additional light-emitting body 202 is a yellow-green phosphor with a peak wavelength of 520-580 nm and a half-width of an emission spectrum of 60-115 nm, preferably a half-width of 90-115 nm. Since color is an intuitive feeling of the human body, it is impossible to accurately divide the spectral boundaries of yellow and green. In this application, we refer to green phosphors with a peak wavelength of 520-540 nm, and yellow fluorescent powder with a peak wavelength of 540-580 nm. pink. In the present application, the second additional light-emitting body 202 can be selected from one of yellow phosphor powder and green phosphor powder.
  • the second additional light-emitting body in this embodiment uses yellow phosphor powder plus green phosphor powder.
  • Scheme of green phosphor That is, the second additional light-emitting body 202 is a combination of yellow fluorescent powder and green fluorescent powder.
  • the combined yellow-green fluorescent powder receives part of the light emitted by the first light-emitting element 1 and converts it into a third light with a peak wavelength of 520-580 nm. Color light.
  • the third additional light-emitting body 203 is a red or orange phosphor that receives part of the light emitted by the first light-emitting element 1 and converts it into a fourth color light with a peak wavelength of 610-690 nm and a half-width of 5-120 nm. , the preferred half width is 80-120 nm.
  • the encapsulation part 2 may also include a light diffusing agent, and the light diffusing agent may be one of nano-scale titanium oxide, aluminum oxide or silicon oxide.
  • the above-mentioned various phosphors and light diffusing agents are weighed in proportion and mixed into the base material 204, and then fully stirred on the mixer to make the phosphors and light diffusing agents evenly distributed in the base material 204. After removing air bubbles, use a glue dispenser
  • the encapsulation part 2 is formed by covering the base material 204 mixed with the phosphor powder over the blue LED chip as the first light emitting element 1 .
  • the sum of the weights of the first additional luminous body, the second additional luminous body, and the third additional luminous body as the total phosphor weight.
  • the proportion of the total phosphor weight in the encapsulation part 2 is 35-85%.
  • the weight of the encapsulation part 2 is the total weight of the base material 204 mixed with the phosphor powder and the light diffusing agent.
  • the cyan phosphor as the first additional light-emitting body 201 accounts for 10.0-35.0% of the total phosphor weight, which can be selected from nitrogen oxide phosphor, Ga-doped garnet phosphor, and silicate phosphor. One or a combination of two or more.
  • the specific phosphors are as follows (in this application, the molar ratio is represented by x, and the given molecular formula is the general formula of the chemical composition of the same type of phosphor):
  • the combination of the yellow phosphor and the green phosphor as the second additional light-emitting body 202 accounts for 12.0-45.0% of the total phosphor weight.
  • yellow and green phosphors do not have a clear definition. They basically have the same general chemical formula, and the only difference lies in the molar ratio of the components.
  • two kinds of phosphors with different peak wavelengths are selected to be combined in the 520-580nm band, one of which is yellow phosphor, whose peak wavelength is defined as greater than 540nm, and the other is green phosphor, whose peak wavelength is less than 540nm.
  • two kinds of yellow and green phosphors with different peak wavelengths are selected to be combined, mainly to improve the color rendering.
  • selecting only one yellow or green phosphor does not affect the effect of the high Kmel proposed in this application, but the color rendering may be slightly worse than this embodiment.
  • the specific yellow phosphor/green phosphor can be any one or a mixture of two or more of the following phosphors:
  • Garnet structure phosphors include YAG phosphors, GaYAG phosphors, LuAG phosphors, etc. Ce3+ is the activator
  • M1 is at least one element in Y, Lu, Gd and La
  • the red or orange phosphor as the third additional light-emitting body 203 accounts for 15.0-55.0% of the total phosphor weight, which can be selected from among 1113 structure nitride red powder, 258 structure nitride red powder, and fluorosilicate red powder Any one or a mixture of two or more.
  • the specific phosphors are as follows (in this application, the molar ratio is represented by x, and the given molecular formula is the general formula of the chemical composition of the same type of phosphor):
  • the parameters in the above table are all for this kind of phosphor, x, y represent the coordinate value of the light color of the phosphor in the CIE1931 color space, Peak represents the peak wavelength, Hw represents the half width, the above values are all examples
  • the actual value of the phosphor used in this application is not a limitation of this application, because in actual production, due to the difference in the purity and particle size of the phosphor, its peak wavelength and half-width may slightly deviate from the above data. This deviation value Generally, it will be controlled between ⁇ 5nm. It should be considered that other solutions within this range are equivalent to the above phosphors.
  • Table 2 shows the eight embodiments of the present application, as well as the types of phosphors used in each embodiment and the weights of various types of phosphors.
  • the powder-to-weight ratio of each phosphor respectively refers to the proportion of the weight of multiple phosphors in each color phosphor to the total phosphor weight.
  • the total powder weight ratio refers to the total phosphor weight, that is, the proportion of all phosphors included in the three additional light emitters in the total weight of the encapsulation portion 2 after these phosphors are mixed with the base material 204 .
  • the base material 204 is all transparent silica gel, and the weight is 10 g.
  • the weights of the phosphors of the examples in Table 2 are all data when we were making the sample chips of the light source module L1. In actual mass production, the weights of phosphors will vary slightly due to different batches of phosphors, but the basic proportion is within a fixed interval.
  • the application of various types of phosphors is mainly to control the energy ratio of the mixed emitted light in the specified wavelength, because the energy distribution affects the calculation of the Kmel value of the emitted light, so we design the chip. Distribution has one basic requirement.
  • the entire spectral energy described below refers to the visible light range, that is, the sum of the spectral energy in the wavelength range [380-780nm].
  • melanopsin photoreceptor cells are most sensitive to the light in the 425-575 nm range, and the improvement of the Kmel value is mainly due to the energy distribution in this range. Therefore, the spectrum energy of the spectrum of the emitted light of the light source module L1 is required to account for 10.0% to 25.0% of the entire spectrum energy in the wavelength range (470 to 515 nm), preferably 11.0% to 20.0%.
  • the spectral energy in 470 ⁇ 560nm] accounts for 25.0% ⁇ 45.0% of the whole spectral energy, is preferably 25.0% ⁇ 37.0%.Such energy distribution can guarantee higher Kmel value.Except that the energy of this section has certain Requirements, in order to ensure that the emitted light of the light source module L1 is warm white light, we also have certain restrictions on the energy of the blue and red light sections.
  • the blue light section that is, the spectral energy in the wavelength range [380-470nm] accounts for the entire spectral energy. 4.0% ⁇ 14.0% of the total spectral energy, preferably 5.0% ⁇ 10.0%.
  • the spectral energy in the red light segment that is, the wavelength range [600 ⁇ 780nm], accounts for 45.0% ⁇ 65.0% of the entire spectral energy, preferably 50.0% ⁇ 60.0% %.
  • the phosphors we use are also prepared for this purpose.
  • the energy in the wavelength range [380-470nm] is provided by the first light-emitting element 1 blue LED chip. In fact, all the energy of the emitted light is provided by it. Originally, all the energy should be concentrated in this section, but due to the Part of the light is converted into other light colors by the phosphor, so the converted energy is distributed in other wavelength ranges, and the energy retained in this range is less than 30%.
  • the spectral energy is mainly provided by the first additional light-emitting body 201 and the second additional light-emitting body 202 after converting part of the outgoing light of the first light-emitting element 1.
  • the main reason here is that the spectrum is continuous , the outgoing light of the first light-emitting element 1 itself is not completely energy-free in this section, but the relatively converted energy is relatively small.
  • the measured energy must include the energy provided by each illuminant, but the first additional illuminant 201 and the second additional illuminator 202 play a major role in this section.
  • the spectral energy in the wavelength range [600-780nm] is mainly provided by the red or orange phosphor as the third additional luminous body 203.
  • the powder-to-weight ratio in Table 2 is only the value in the specific embodiment. Different phosphors, mainly adjust the specific gravity of various phosphors according to the energy of each segment in the measurement spectrum.
  • These phosphors can be coated on the LED chip by mixing transparent silica gel, or remote phosphors can be set at a distance The chips are farther away, or partially mixed with the encapsulant, and partially disposed on the outer surface, which is not limited in this application.
  • the spectra of the emitted light of Examples 1-6 are spectrally continuously distributed in the visible light range of 380-780 nm, including at least three spectral emission peaks. There is one spectral emission peak in the blue light region at 435-465 nm, which is called the first peak.
  • Peak1 represents the peak spectral position of the first peak. Since the light source module L1 uses the blue LED chip of the first light-emitting element 1 as the excitation light source, although a large part of the light emitted by the blue LED chip is wavelength-converted through the additional light-emitting body, there is still a part of the energy that has not been converted. These energies form the first peak in the wavelength region of 435-465nm.
  • This P1 point may be the same as the peak wavelength of the blue LED chip, because the main source of the energy of this peak is the first light-emitting element 1, but after the conversion of each additional light-emitting body The light may also have some energy in this wavelength range.
  • the first peak P1 does not necessarily completely coincide with the peak wavelength position of the original first light-emitting element 1 blue LED chip, and there may be a slight drift, but Still in the 435 ⁇ 465nm wavelength region.
  • the first peak is basically located in [380-470nm], so the energy of the wavelength in the [380-470nm] range is mainly the energy of the first peak.
  • the light source module L1 has another spectral emission peak in the blue-green light region of 470-510 nm, which is called the second peak.
  • Peak2 represents the peak spectral position of the second peak.
  • the energy of the second peak is mainly provided by the cyan fluorescent powder of the first additional light-emitting body 201 receiving part of the light emitted by the blue LED chip of the first light-emitting element 1 and converting it into cyan light.
  • the yellow-green phosphors of the two additional light-emitting bodies 202 will also enter this range, so that the peak wavelength of the second peak is not completely equal to the excitation wavelength of the cyan phosphors of the first additional light-emitting body 201, but its peak wavelength should remain the same after the shift.
  • the light source module L1 also has one spectral emission peak in the red light region of 610-690 nm, which is called the third peak.
  • Peak3 represents the peak spectral position of the third peak.
  • the energy of the third peak is mainly provided by the red or orange phosphor of the third additional light-emitting body 203 receiving part of the light emitted by the blue LED chip of the first light-emitting element 1 and converting it into red light.
  • I1/I2 in Table 3 represents the ratio of the spectral intensity of the first peak to the spectral intensity of the third peak, which is required in this application to be between 22.0% and 70.0%, preferably 27.0% to 60.0%.
  • I2/I2 represents the ratio of the spectral intensity of the second peak to the spectral intensity of the third peak. In this application, the value is required to be between 45.0% and 80.0%, preferably 50.0% to 70.0%.
  • the above peak positions can basically guarantee our energy ratio in each section. It is precisely because of the existence of these peaks that Examples 1-6 with these spectral characteristics can achieve the energy ratio in the limited section.
  • the last four columns in Table 3 show the proportion of energy in the specified segments of each spectrum of Examples 1-6.
  • I_ ⁇ [380-470]nm, I_ ⁇ (470-515]nm, I_ ⁇ (470-560]nm, I_ ⁇ [600-780]nm respectively represent the proportion of spectral energy in the listed wavelength range in the entire spectral energy, These ratios are expressed as percentages. From the table, we can see that in Examples 1-6, the energy ratios in these areas meet the design requirements we mentioned earlier, and can achieve the situation of emitting warm white light. A higher Kmel value is produced at lower temperatures.
  • the specific luminescence characteristics are shown in Table 4.
  • Example x y CCT duv CRI R9 Kmel Example 1 0.4337 0.4033 3048 0.000 94.6 95.4 0.57
  • Example 2 0.4319 0.4150 3175 0.005 93.3 96.4 0.59
  • Example 3 0.4223 0.3871 3120 0.005 90.9 84.7 0.62
  • Example 4 0.4344 0.3908 2933 -0.005 92.1 97.5 0.58
  • Example 5 0.4483 0.4196 2940 0.005 90.2 75.0 0.56
  • Example 6 0.4351 0.4092 3072 0.002 93.4 71.4 0.57
  • Table 4 lists the luminous characteristics of the light source module L1 in Examples 1-6, wherein x and y represent the coordinate values of the light color of the light emitted by the light source module L1 on the x and y axes on the CIE1931 color coordinate system .
  • the specific positions of each embodiment on the CIE1931 color coordinates are shown in Figure 3. We found that all points are located in the positions of ,0.4252) in the quadrilateral area enclosed by the four vertices, that is, the area 1 shown.
  • CCT is the color temperature
  • duv represents the distance and direction of the Planck locus of color shift in the color coordinate system.
  • the role of each additional luminous body in the light source module L1 is to receive part of the light emitted by the first light-emitting element 1 and convert it into light of other colors different from the first color. After the color light, the second color light, the third color light and the fourth color light are mixed, the emitted light of the light source module L1 is formed.
  • Example 1-6 The emitted light of the light source module L1 falls in the vicinity of the blackbody locus with a correlated color temperature of 5000 ⁇ 350K in the CIE1931 color space, and the distance from the blackbody locus BBL is less than 0.006, that is, the duv is in the range of -0.006 to 0.006. In the interval, it is warm white light color.
  • CRI and R9 are color rendering indices. From Table 4, we can see that the emitted light of the light source module L1 of all embodiments has a high color rendering index, CRI ⁇ 90.0, R9 ⁇ 70.0.
  • Kmel is the melanopsin light-sensing efficiency ratio, which is the main indicator of the light source module L1 of the present application, and the specific calculation method is described above. It can be seen from Table 4 that the Kmel values of Examples 1-6 of the light source module L1 made according to the above method are all above 0.52, and the preferred Kmel value is above 0.57.
  • the above-mentioned light source module L1 can be applied to various lamps.
  • FIG. 10 shows a lighting device according to a preferred embodiment of the present application.
  • the module L1 is set at the lamp head position.
  • the light source module L1 can also be applied to various lamps such as pendant lamps, ceiling lamps, down lamps, and spot lamps. This application does not limit this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

一种光源模组(L1),包括第一发光元件(1)和覆盖于第一发光元件(1)的封装部(2),封装部(2)包括第一附加发光体(201)、第二附加发光体(202)、第三附加发光体(203),各发光元件及发光体的光混合形成光源模组(L1)的发射光,该发射光为暖白光,在波长范围(470~515nm]区间内的光谱能量占整个光谱能量的10.0%~25.0%。所提供的光源模组(L1)通过加入发射光谱被黑视素光敏感曲线全覆盖的荧光粉,使得整个光源模组(L1)的黑视素光感效率比值Kmel达到0.52以上。同时通过加入黄绿色荧光粉和红色荧光粉实现暖白光色,并保证较高的显色性。这种高Kmel值的发射光,在相同照度下,有提高专注力的作用,在提供暖白光温馨氛围的同时,特别适合人集中注意力进行学习和工作。

Description

一种光源模组及包括该光源模组的照明装置
本申请要求了申请日为2021年12月31日,申请号为202011630919.0和202023313680.2,发明名称为“一种光源模组及包括该光源模组的照明装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种光源模组及包括该光源模组的照明装置。
背景技术
随着第三次照明技术革命的到来和发展,白炽灯、卤素灯等由于光效低、不节能已经逐渐被世界各国禁止生产和销售,LED照明器具取而代之已被广泛的使用。现有的LED照明产品主要解决的是节能、照度、颜色和显色性问题,但是也有越来越多的厂商会关注用户的选择喜好。他们注意到在家用照明的选择中,人们更偏爱暖白光,可以营造出一种温馨的家庭氛围。
不过在提供温馨环境的同时,暖白光总是会令人昏昏欲睡,然而在家中并不完全是放松的地方,仍然会有一些工作、学习的任务需要在家中完成。因此,如何能够在不影响家庭温馨氛围的同时,提供一种适合人们集中注意力进行学习和工作的光源设备是本申请所要解决的问题。
发明内容
本申请的目的是为了解决上述问题,寻找一种可以使人集中注意力的光源模组及包括该光源模组的照明装置。
本申请为实现上述功能,所采用的技术方案是提供一种光源模组,其中,包括第一发光元件和覆盖于第一发光元件的封装部,
所述第一发光元件发出峰值波长位于435~465nm的第一颜色光;
所述封装部包括:
第一附加发光体,所述第一附加发光体被布置为接收所述第一发光元件所发射的部分光线,并将其转换为峰值波长位于485~520nm的第二颜色光,所述第一附加发光体的发射光谱被黑视素光敏感曲线全覆盖;
第二附加发光体,所述第二附加发光体被布置为接收所述第一发光元件所发射的部分光线,并将其转换为峰值波长位于520~580nm的第三颜色光;
第三附加发光体,所述第三附加发光体被布置为接收所述第一发光元件所发射的部分光线,并将其转换为峰值波长位于610~690nm的第四颜色光,
所述第一颜色、第二颜色光、第三颜色光和第四颜色光混合形成所述光源模组的发射光,所述发射光为暖白光,即所述发射光在CIE1931色空间上,位于相关色温3050±150K与黑体轨迹的距离duv=-0.006~0.006的点围成的区间内,
定义所述发射光光谱在可见光范围内,即波长范围[380~780nm]内的光谱能量为所述发射光的整个光谱能量,所述发射光的光谱在波长范围(470~515nm]区间内的光谱能量占整个光谱能量的10.0%~25.0%。
进一步地,所述发射光的光谱在波长范围(470~515nm]区间内的光谱能量占整个光谱能量的11.0%~20.0%。
进一步地,所述发射光的光谱:
在波长范围[380~470nm]内的光谱能量占整个光谱能量的4.0%~14.0%;
在波长范围(470~560nm]内的光谱能量占整个光谱能量的25.0%~45.0%;
在波长范围[600~780nm]内的光谱能量占整个光谱能量的45.0%~65.0%。
进一步地,所述发射光的光谱:
在波长范围[380~470nm]内的光谱能量占整个光谱能量的5.0%~10.0%;
在波长范围(470~560nm]内的光谱能量占整个光谱能量的25.0%~37.0%;
在波长范围[600~780nm]内的光谱能量占整个光谱能量的50.0%~60.0%。
进一步地,所述发射光的光谱在380~780nm可见光范围内光谱连续分布,包括至少三个光谱发射峰,在蓝光区435~465nm内有1个光谱发射峰,称为第一峰;蓝绿光区470~510nm内有1个光谱发射峰,称为第二峰;在红光区610~690nm内有1个光谱发射峰,称为第三峰,其中:
所述第一峰的光谱强度和所述第三峰的光谱强度的比值在22.0%~70.0%之间;
所述第二峰的光谱强度和所述第三峰的光谱强度的比值在45.0%~80.0%之间。
进一步地,所述发射光的光谱:
所述第一峰的光谱强度和所述第三峰的光谱强度的比值在27.0%~60.0%之间;
所述第二峰的光谱强度和所述第三峰的光谱强度的比值在50.0%~70.0%之间。
进一步地,所述第一发光元件为发射光峰值波长在435~465nm的蓝光LED;所述第一附加发光体为峰值波长在485~520nm,半宽度25~65nm的青色荧光粉。
进一步地,所述青色荧光粉为氮氧化物荧光粉、掺Ga石榴石荧光粉、硅酸盐荧光粉中的任意一种或两种以上的混合物。
进一步地,所述青色荧光粉为氮氧化物荧光粉Ba1-xSi2N2O2:Eux,(x=0.008~0.18)。
进一步地,所述第二附加发光体为峰值波长在520~580nm,半宽度90~115nm的黄绿色荧光粉;所述第三附加发光体为峰值波长在610~690nm,半宽度80~120nm的红色或橙色荧光粉。
进一步地,所述黄绿色荧光粉为石榴石结构荧光粉、铝酸盐荧光粉中的任意一种或两种以上的混合物。
进一步地,所述黄绿色荧光粉包括至少一种黄色荧光粉和至少一种绿色荧光粉。
进一步地,所述红色或橙色荧光粉为1113结构氮化物红粉、258结构氮化物红粉、氟 硅酸红粉中的任意一种或两种以上的混合物。。
进一步地,所述光源模组的发射光的黑视素光感效率比值Kmel在0.52以上。
进一步地,所述光源模组发射光的黑视素光感效率比值Kmel在0.57以上。
进一步地,所述光源模组发射光的光色在CIE1931色空间上,位于由P1(0.4313,0.4171)、P2(0.4159,0.3819)、P3(0.4352,0.3887)、P4(0.4538,0.4252)四个顶点围成的四边形区域内。
进一步地,所述光源模组发射光的光色在CIE1931色空间上,位于中心点x0=0.4338,y0=0.4030,长轴a=0.00278,短轴b=0.00136,倾角θ=53.1°,SDCM=5.0的椭圆范围内。
进一步地,所述光源模组的发射光的显色指数CRI≥90.0,R9≥70.0。
本申请还提供一种照明装置,包括上述光源模组。
本申请所提供的光源模组针对预防近视的特殊需求,专门优化了光谱分布,加入了窄带红光荧光粉,改变红光区特定区域的能量分布。在本申请光源模组及灯具提供的光环境下工作、生活、学习,可以缓解视疲劳,进而预防近视的发生以及延缓近视的进程。
附图说明
图1是符合本申请优选实施例的光源模组的结构示意图;
图2是青光荧光粉和青光LED、黑视素光敏感曲线的相对光谱对比图;
图3是符合本申请的优选实施例1~6的CIE1931色坐标图;
图4是本申请中优选实施例1的发射光光谱图;
图5是本申请中优选实施例2的发射光光谱图;
图6是本申请中优选实施例3的发射光光谱图;
图7是本申请中优选实施例4的发射光光谱图;
图8是本申请中优选实施例5的发射光光谱图;
图9是本申请中优选实施例6的发射光光谱图;
图10是本申请中优选实施例照明装置的结构示意图。
具体实施方式
以下结合附图和一些符合本申请的优选实施例对本申请提出的一种光源模组及照明装置作进一步详细的说明。
传统上认为我们眼睛的视网膜内有两种感光细胞,一种感光细胞能辨别光的明暗,另一种能区分颜色。如今科学家认为,视网膜内还有第三种感光细胞——黑视素视网膜神经节细胞(ipRGCs)的存在。黑视素视网膜神经节细胞(ipRGCs)负责感应光线强度,将信号传递给松果体。而人脑的松果体会分泌一种激素:褪黑素melatonin,它是“天然安眠药”,是我们身体自发的“休息信号”。体内褪黑素含量较多时,我们会昏昏欲睡;而褪黑素含量少时,就会清醒精神。于是,科学家们定义了一个用于量化光源对黑视素光响应的刺激程度全新的照度值EML(Equivalent Melanopic Lux)等值黑视素照度。常规的照度值勒克斯(lx)用来衡量锥状细胞的感光,定量描述能让人眼看见物体的光。而黑视素照度值(EML)按ipRGCs 对光的响应进行加权,转换光源的光谱刺激,以此定量描述光线对人的生物效应。EML较高的光会提高警觉度、防止困倦、提升工作效率。
本申请的实施例就是提供一种EML较高的照明产品,由于EML无法直接测定,我们这里采用的指标是黑视素光感效率比值Kmel,通过测量各个波长的相对强度,用指定的公式加权计算出EML比率,具体公式如下:
Figure PCTCN2021140413-appb-000001
其中:
EDI_mel(D65):等效D65光源的视黑素感光照度
Ev:明视觉感光照度
P(λ):光源光谱功率分布
V(λ):明视觉光视效率函数
Mel(λ):黑视素感光细胞(ipRGC)光敏感函数
计算公式依据CIE S026发布的参数定义和计算方法。
目前市场上常见的白光LED都是通过RGB混光来产生白光的,由蓝光芯片激发绿色及红色荧光粉,再将红、绿、蓝三色混合形成白光。而本申请为了提高Kmel的值,在传统芯片中增加青光荧光粉。图2展示了青光荧光粉、青光LED和黑视素光敏感曲线的比较图,其为相对光谱强度图,图中各曲线都进行了归一化处理,其中黑视素光敏感曲线为依据Mel(λ)黑视素感光细胞(ipRGC)光敏感函数说形成的曲线。从图中我们可以看到黑视素感光细胞(ipRGC)对于425~575nm光最为敏感,而青光荧光粉的光几乎全部为黑视素光敏感曲线所覆盖,因此可以最为有效地提升Kmel。另外,青光LED虽然也有可以提升Kmel,但是明显地青光荧光粉和黑视素光敏感曲线的重合度更好,在上图中,青光荧光粉与黑视素光敏感曲线重叠面积和青光LED的重叠面积比多41.2%。为了保证青光荧光粉的发射光谱被黑视素光敏感曲线全覆盖,其半宽度不宜太宽,发射峰值位于接近黑视素光敏感曲线峰值的位置,因此我们选择的青光荧光粉为峰值波长在485~520nm,半宽度25~65nm的青色荧光粉。
本申请的光源模组L1的一个具体实施方式为一个混光的白光LED封装芯片,其可以为具有一般贴片封装结构或COB封装结构LED芯片如图1所示,光源模组L1至少包括一个第一发光元件1和覆盖于第一发光元件的封装部2。
第一发光元件1为蓝光LED芯片,由半导体材料直接激发发光,其发光的峰值波长位于435~465nm,光色呈蓝色,这里我们称第一发光元件1发出的光为第一颜色光。LED芯片(LED Chip),包括正装或倒装,单颗LED Chip或者多颗LED Chip按串联、并联或串并联方式连接在一起。
封装部2以透明硅胶或透明树脂作为基底材料204,其中透明树脂可以选择环氧树脂、尿素树脂中的一种。基底材料204中掺入有第一附加发光体201、第二附加发光体202、第 三附加发光体203。其中第一附加发光体201为接收第一发光元件1所发射的部分光线,并将其转换为峰值波长在485~520nm,半宽度25~65nm的第二颜色光的青色荧光粉。如前所述,其发射发射光谱被黑视素光敏感曲线全覆盖。第二附加发光体202为包含至少一种峰值波长在520~580nm,发射光谱的半宽度60~115nm,优选半宽度在90~115nm的黄绿色荧光粉。由于颜色是一种人体的直观感受,无法精确划分黄色和绿色的光谱界限,在本申请中我们将峰值波长在520~540nm的称为绿色荧光粉,峰值波长在540~580nm的称为黄色荧光粉。在本申请中第二附加发光体202可以选择黄色荧光粉、绿色荧光粉中的一种,不过为了提供更好的显色性,本实施例中的第二附加发光体采用了黄色荧光粉加绿色荧光粉的方案。即第二附加发光体202为黄色荧光粉和绿色荧光粉的组合,组合后的黄绿色荧光粉接收第一发光元件1所发射的部分光线,将其转换为峰值波长位于520~580nm的第三颜色光。第三附加发光体203为接收所述第一发光元件1所发射的部分光线,并将其转换为峰值波长位于610~690nm的,半宽度5~120nm的第四颜色光的红色或橙色荧光粉,优选的半宽度为80~120nm。封装部2中还可以包括有光扩散剂,光扩散剂可以是纳米级氧化钛、氧化铝或氧化硅中的一种。上述各类荧光粉和光扩散剂按比例称重后混入基底材料204,再在搅拌机上充分搅拌均匀,使得荧光粉、光扩散剂均匀地分布在基底材料204中,排除气泡后,使用点胶机将混入荧光粉的基底材料204覆盖在作为第一发光元件1的蓝光LED芯片上方形成封装部2。
下面我们对我们所使用的各种荧光粉进行说明,为了便于描述方便,我们定义上第一附加发光体、第二附加发光体、第三附加发光体的重量之和为总荧光粉重量。总荧光粉重量在封装部2中的占比为35~85%。封装部2的重量为混入荧光粉、光扩散剂后的基底材料204的总重量。
作为第一附加发光体201的青色荧光粉在总荧光粉重量中的占比为10.0~35.0%,其可以选择氮氧化物荧光粉、掺Ga石榴石荧光粉、硅酸盐荧光粉中的任意一种或两种以上的混合而成。具体的荧光粉如下(在本申请中以x来表示摩尔比,其中给出的分子式是同一类荧光粉的化学组成通式):
(a)氮氧化物,Eu2+为激活剂
化学组成通式:(Ba,Ca)1-xSi2N2O2:Eux
其中x=0.005~0.200;
(b)掺Ga石榴石荧光粉,Eu2+为激活剂
化学组成通式:Ga-LuAG:Eu;
(c)硅酸盐荧光粉,Eu2+为激活剂
化学组成通式:Ba2SiO4:Eu。
本实施例中作为第二附加发光体202的黄色荧光粉、绿色荧光粉组合在总荧光粉重量中的占比为12.0~45.0%。如前所述,黄色和绿色并无明显界限,同样黄色和绿色荧光粉也并 没有一个明确的界定,这两者基本上具有相同的化学通式,其区别仅在于其中成分的摩尔比不同,本实施例在520~580nm波段中选用两种峰值波长不同的荧光粉进行组合,其中一种为黄色荧光粉,我们定义其峰值波长大于540nm,另一种为绿色荧光粉,峰值波长小于540nm。本实施例选用峰值波长不同的两种黄、绿色荧光粉进行组合,主要是为了提升显色性。在其他较佳实施例中,仅选用一种黄色或绿色荧光粉并不影响本申请提出的高Kmel的效果,但是可能显色性比本实施例稍差。具体的黄色荧光粉/绿色荧光粉可以为下述荧光粉中的任意一种或两种以上混合而成:
(a)石榴石结构荧光粉包括YAG荧光粉、GaYAG荧光粉、LuAG荧光粉等,Ce3+为激活剂
化学组成通式:(M1)3-x(M2)5O12:Cex
其中M1为Y、Lu、Gd及La中至少一种元素,M2为Al、Ga中至少一种元素,x=0.005~0.200;
(b)铝酸盐体系荧光粉,Eu2+为激活剂
化学组成通式:(Sr,Ba)2-xAl2O4:Eux或(Sr,Ba)4-xAl14O25:Eux
其中x=0.01~0.15。
作为第三附加发光体203的红色或橙色荧光粉在总荧光粉重量中的占比为15.0~55.0%,其可以选择为1113结构氮化物红粉、258结构氮化物红粉、氟硅酸红粉中的任意一种或两种以上的混合而成。具体的荧光粉如下(在本申请中以x来表示摩尔比,其中给出的分子式是同一类荧光粉的化学组成通式):
(a)具有1113晶体结构的氮化物红粉,Eu2+为激活剂
化学组成通式:(M3)1-xAlSiN3:Eux
其中M3为Ca、Sr、Ba中至少一种元素,x=0.005~0.300;
(b)具有258晶体结构的氮化物红粉,Eu2+为激活剂
化学组成通式:(M4)2-xSi5N8:Eux
其中M4为Ca、Sr、Ba、Mg中至少一种元素,x=0.005~0.300;
(c)氟硅酸红粉,Mn4+为激活剂
化学组成通式:K2SiF6:Mn4+。
以上给出的是可以选用的荧光粉种类,在本申请中我们提供了6个具体实施例,在这些实施例中一共选用了10种荧光粉,实施例选用的各荧光粉的参数及化学式见下表。为了便于描述,在表1中我们给荧光粉定义了代号,在后续的实施例说明中我们就以该代号来进行描述,不再在每个实施例中都详细描述荧光粉的峰值及化学式了。
表1
Figure PCTCN2021140413-appb-000002
在上表中参数都是针对该种荧光粉而言的,x、y表示荧光粉的光色在CIE1931色空间上的坐标值,Peak表示峰值波长,Hw表示半宽度,以上数值都是实施例中采用的荧光粉的实际数值,并不是对本申请的限定,因为在实际生产中由于荧光粉纯度、颗粒大小的不同其峰值波长和半宽度都有可能会和以上数据稍有偏差,这个偏差值一般会被控制在±5nm之间,应该认为在这个范围内的其他方案是等同于上述荧光粉的。其中,红粉、黄粉、绿粉可以选择的种类很多,其他选择对于本申请方案的影响不大,而青色荧光粉是本申请中特别关注的,优选的为实施例中所采用的氮氧化物荧光粉分子通式为Ba1-xSi2N2O2:Eux,(x=0.008~0.18)。
表2展示了本申请的8个实施例,以及各实施例中所采用的荧光粉种类和各类荧光粉的重量。其中各荧光粉的粉重比,分别是指各色荧光粉中多个荧光粉的重量在总荧光粉重量中的占比。而总粉重比是指总荧光粉重量,即三种附加发光体中包括的全部荧光粉在这些荧光粉和基底材料204混合后的封装部2的总重量中的占比。在这些实施例中基底材料204都是透明硅胶,重量为10g。
表2
Figure PCTCN2021140413-appb-000003
表2中的实施例荧光粉重量都是我们在制作光源模组L1的样例芯片时的数据,实际在批量生产中,由于荧光粉批次不同重量都会稍有差异,但是其基本占比是在一个固定的区间 内的。各类荧光粉应用的多少主要是为了控制混合后的发射光在指定波长内能量占比,因为能量分布影响到发射光的Kmel值的计算,因此我们在设计芯片时就对各区间内的能量分布有一个基本的要求。这里我们仅讨论可见光范围内的光谱,因此下面所述的整个光谱能量指可见光范围内,即波长范围[380~780nm]内的光谱能量总和。前面已经介绍了黑视素感光细胞(ipRGC)对于425~575nm区段的光最为敏感,对于Kmel值的提升也主要在于这一区段的能量分布。因此要求光源模组L1的发射光的光谱在波长范围(470~515nm]区间内的光谱能量占整个光谱能量的10.0%~25.0%。,优选地为11.0%~20.0%。而在波长范围(470~560nm]内的光谱能量占整个光谱能量的25.0%~45.0%,优选地为25.0%~37.0%。这样的能量分布可以保证较高的Kmel值。除了对该区段的能量有一定的要求,为了保证光源模组L1的发射光为暖白光,我们对蓝光和红光区段的能量也有一定的限制。其中蓝光区段即波长范围[380~470nm]内的光谱能量占整个光谱能量的4.0%~14.0%,优选地为5.0%~10.0%。红光区段即波长范围[600~780nm]内的光谱能量占整个光谱能量的45.0%~65.0%,优选地为50.0%~60.0%。
各光谱区段内的能量划分基本确定的情况下,我们采用的荧光粉也以此为目标进行调配。波长范围[380~470nm]的能量是由第一发光元件1蓝光LED芯片所提供的,实际上全部发射光的能量都是由其提供的,本来所有能量都应该集中在该区段,但是由于部分光被荧光粉转换为其他光色,因而转换后的能量分布于其他波长范围,保留在此区间内的能量低于30%。而波长范围(470~560nm]内光谱能量主要由第一附加发光体201和第二附加发光体202转换第一发光元件1的部分出射光后提供。这里说主要,这是由于光谱是连续的,第一发光元件1的出射光本身在该区段也不是完全没有能量,只是相对转换后的能量是较小的。在设计芯片时我们主要还是从荧光粉转换的部分考虑,选择较为合适的粉重占比,再实际测量该区段能量,测得的能量必然包含各发光体提供的能量,但是在该区段中起主要作用的还是第一附加发光体201和第二附加发光体202。波长范围[600~780nm]的光谱能量主要由作为第三附加发光体203的红色或橙色荧光粉提供。表2中的粉重比只是在具体实施例中的值,实际情况中由于采用的荧光粉不同,主要还是根据测量光谱中的各区段能量来对各种荧光粉的比重进行调整。这些荧光粉可以通过混入透明硅胶涂覆在LED芯片之上,也可以是远程荧光粉设置在距离芯片较远的位置,或者部分混入封装胶,部分设置在外部表面,本申请对此不作限定。
根据表2中的荧光粉配比称取相应的红色荧光粉,黄色荧光粉、绿色荧光粉和青色荧光粉,放入10.00g透明硅胶,在由搅拌机充分混合均匀,涂覆在蓝光LED芯片上,烘干除气泡后得到暖白色LED灯珠,即为光源模组L1的具体六个实施例。实施例1-6的光谱图分别为图3-图8的光谱图,其光谱特征如表3所示。
表3
Figure PCTCN2021140413-appb-000004
实施例1-6的发射光的光谱在380~780nm可见光范围内光谱连续分布,包括至少三个光谱发射峰。在蓝光区435~465nm内有1个光谱发射峰,称为第一峰,在表3中Peak1表示第一峰的峰值光谱位置。由于光源模组L1是由第一发光元件1蓝光LED芯片作为激发光源,虽然蓝光LED芯片发出的光有很大一部分发射光经过附加发光体进行了波长转换,但是仍有一部分能量未经转换,这些能量在435~465nm波长区域内形成了第一峰,这个P1点可能和蓝光LED芯片的峰值波长相同,因为这个峰的能量的主要来源为第一发光元件1,但是各附加发光体转换后的光在该波长段也可能会有部分能量,两者混合后,此第一峰P1并不一定和原第一发光元件1蓝光LED芯片的峰值波长位置完全重合,可能会稍有漂移,但仍然在435~465nm波长区域内。第一峰基本位于[380~470nm]内,所以波长在[380~470nm]区段内的能量主要就是第一峰的能量。光源模组L1在蓝绿光区470~510nm内又有1个光谱发射峰,称为第二峰,在表3中Peak2表示第二峰的峰值光谱位置。第二峰的能量主要是由第一附加发光体201的青色荧光粉接收第一发光元件1蓝光LED芯片所发射的部分光线转换成为的青光所提供的。当然二附加发光体202的黄绿色荧光粉也会进入该范围使得第二峰的峰值波长并不完全等同于第一附加发光体201青色荧光粉的激发波长,但是偏移后其峰值波长应仍在470~510nm之内。光源模组L1在在红光区610~690nm内还有1个光谱发射峰,称为第三峰,在表3中Peak3表示第三峰的峰值光谱位置。第三峰的能量主要是由第三附加发光体203的红色或橙色荧光粉接收第一发光元件1蓝光LED芯片所发射的部分光线转换成为的红光所提供的。表3中I1/I2表示第一峰的光谱强度和第三峰的光谱强度的比值,本申请中要求该值在22.0%~70.0%之间,优选的为27.0%~60.0%。I2/I2表示第二峰的光谱强度和第三峰的光谱强度的比值,本申请中要求该值在45.0%~80.0%之间,优选的为50.0%~70.0%。
以上的波峰位置基本可以保证我们在各区段内的能量占比,正是由于这些波峰的存在,具有这些光谱特征的实施例1-6可以实现在限定区段中的能量占比。表3中的最后四列示出了实施例1-6各光谱中指定区段中的能量占比情况。I_Σ[380-470]nm、I_Σ(470-515]nm、I_Σ(470-560]nm、I_Σ[600-780]nm分别表示所列波长范围内的光谱能量在整个光谱能量中的占比,这些比值都以百分比形式表示。从表中我们可以看到,在实施例1-6中,这些区域内 的能量占比,均符合我们前面提到的设计要求,可以实现在发出暖白光的情况下产生较高的Kmel值。具体发光特性见表4。
表4
实施例 x y CCT duv CRI R9 Kmel
实施例1 0.4337 0.4033 3048 0.000 94.6 95.4 0.57
实施例2 0.4319 0.4150 3175 0.005 93.3 96.4 0.59
实施例3 0.4223 0.3871 3120 0.005 90.9 84.7 0.62
实施例4 0.4344 0.3908 2933 -0.005 92.1 97.5 0.58
实施例5 0.4483 0.4196 2940 0.005 90.2 75.0 0.56
实施例6 0.4351 0.4092 3072 0.002 93.4 71.4 0.57
表4中列出了实施例1-6中光源模组L1的发光特性,其中x、y表示光源模组L1的发射光的光色在CIE1931色坐标系上的x、y轴上的坐标值。各实施例在CIE1931色坐标上的具体位置如图3所示,我们发现所有点均落在位于由P1(0.4313,0.4171)、P2(0.4159,0.3819)、P3(0.4352,0.3887)、P4(0.4538,0.4252)四个顶点围成的四边形区域内,即图示区域1。在后期对这些实施例进行用户实验后,我们发现实施例1、6的效果更好,而从图3中我们可以发现,这些点都落入图示区域2内,区域2为中心点x0=0.4338,y0=0.4030,长轴a=0.00278,短轴b=0.00136,倾角θ=53.1°,SDCM=5.0的椭圆。
表4中CCT为色温,duv表示在色坐标系里色彩偏移普朗克轨迹的距离与方向。各附加发光体在光源模组L1中的作用是接收所述第一发光元件1所发射的部分光线,并将其转换为不同于第一颜色的其他颜色的光,在本实施方式中第一颜色光、第二颜色光、第三颜色光和第四颜色光混合后即形成光源模组L1的发射光。实施例1-6光源模组L1的发射光为在CIE1931色空间上均落在相关色温5000±350K的黑体轨迹的附近,距黑体轨迹BBL距离均小于0.006,即duv在-0.006~0.006这一区间内,为暖白光色。
CRI、R9为显色指数。从表4中我们可以看到所有实施例的光源模组L1的发射光均具有较高的显色指数,CRI≥90.0,R9≥70.0。
Kmel为黑视素光感效率比值,是本申请光源模组L1的主要指标,具体计算方法见上文。从表4中可见,依据上述方法制成的光源模组L1的实施例1-6其Kmel值均在0.52以上,优选的Kmel值在0.57以上。
上述光源模组L1可应用各类灯具,图10示出了本申请一较佳实施例照明装置,该照明装置于该实施中具体为台灯,包括由灯头61、灯杆62、底座63,光源模组L1设置在灯头位置。在其他较佳实施例中光源模组L1也可应用于吊灯、吸顶灯、筒灯、射灯等各类灯具。本申请对此不作限定。
上文对本申请优选实施例的描述是为了说明和描述,并非想要把本申请穷尽或局限于所公开的具体形式,显然,可能做出许多修改和变化,这些修改和变化可能对于本领域技术人 员来说是显然的,应当包括在由所附权利要求书定义的本申请的范围之内。

Claims (15)

  1. 一种光源模组,其中,包括第一发光元件和覆盖于第一发光元件的封装部,
    所述第一发光元件发出峰值波长位于435~465nm的第一颜色光;
    所述封装部包括:
    第一附加发光体,所述第一附加发光体被布置为接收所述第一发光元件所发射的部分光线,并将其转换为峰值波长位于485~520nm的第二颜色光,所述第一附加发光体的发射光谱被黑视素光敏感曲线全覆盖;
    第二附加发光体,所述第二附加发光体被布置为接收所述第一发光元件所发射的部分光线,并将其转换为峰值波长位于520~580nm的第三颜色光;
    第三附加发光体,所述第三附加发光体被布置为接收所述第一发光元件所发射的部分光线,并将其转换为峰值波长位于610~690nm的第四颜色光,
    所述第一颜色、第二颜色光、第三颜色光和第四颜色光混合形成所述光源模组的发射光,所述发射光为暖白光,即所述发射光在CIE1931色空间上,位于相关色温3050±150K与黑体轨迹的距离duv=-0.006~0.006的点围成的区间内,
    定义所述发射光光谱在可见光范围内,即波长范围[380~780nm]内的光谱能量为所述发射光的整个光谱能量,所述发射光的光谱在波长范围(470~515nm]区间内的光谱能量占整个光谱能量的10.0%~25.0%。
  2. 如权利要求1所述的光源模组,其中,所述发射光的光谱在波长范围(470~515nm]区间内的光谱能量占整个光谱能量的11.0%~20.0%。
  3. 如权利要求1所述的光源模组,其中,所述发射光的光谱:
    在波长范围[380~470nm]内的光谱能量占整个光谱能量的4.0%~14.0%;
    在波长范围(470~560nm]内的光谱能量占整个光谱能量的25.0%~45.0%;
    在波长范围[600~780nm]内的光谱能量占整个光谱能量的45.0%~65.0%。
  4. 如权利要求3所述的光源模组,其中,所述发射光的光谱:
    在波长范围[380~470nm]内的光谱能量占整个光谱能量的5.0%~10.0%;
    在波长范围(470~560nm]内的光谱能量占整个光谱能量的25.0%~37.0%;
    在波长范围[600~780nm]内的光谱能量占整个光谱能量的50.0%~60.0%。
  5. 如权利要求1所述的光源模组,其中,所述发射光的光谱在380~780nm可见光范围内光谱连续分布,包括至少三个光谱发射峰,在蓝光区435~465nm内有1个光谱发射峰,称为第一峰;蓝绿光区470~510nm内有1个光谱发射峰,称为第二峰;在红光区610~690nm内有1个光谱发射峰,称为第三峰,其中:
    所述第一峰的光谱强度和所述第三峰的光谱强度的比值在22.0%~70.0%之间;
    所述第二峰的光谱强度和所述第三峰的光谱强度的比值在45.0%~80.0%之间。
  6. 如权利要求5所述的光源模组,其中,所述发射光的光谱:
    所述第一峰的光谱强度和所述第三峰的光谱强度的比值在27.0%~60.0%之间;
    所述第二峰的光谱强度和所述第三峰的光谱强度的比值在50.0%~70.0%之间。
  7. 如权利要求1所述的光源模组,其中,所述第一发光元件为发射光峰值波长在435~465nm的蓝光LED;所述第一附加发光体为峰值波长在485~520nm,半宽度25~65nm的青色荧光粉,所述青色荧光粉为氮氧化物荧光粉、掺Ga石榴石荧光粉、硅酸盐荧光粉中的任意一种或两种以上的混合物。
  8. 如权利要求7所述的光源模组,其中,所述青色荧光粉为氮氧化物荧光粉Ba1-xSi2N2O2:Eux,(x=0.008~0.18)。
  9. 如权利要求7所述的光源模组,其中,所述第二附加发光体为峰值波长在520~580nm,半宽度90~115nm的黄绿色荧光粉,所述黄绿色荧光粉为石榴石结构荧光粉、铝酸盐荧光粉中的任意一种或两种以上的混合物;所述第三附加发光体为峰值波长在610~690nm,半宽度80~120nm的红色或橙色荧光粉。
  10. 如权利要求9所述的光源模组,其中,所述黄绿色荧光粉包括至少一种黄色荧光粉和至少一种绿色荧光粉。
  11. 如权利要求7所述的光源模组,其中,所述红色或橙色荧光粉为1113结构氮化物红粉、258结构氮化物红粉、氟硅酸红粉中的任意一种或两种以上的混合物。
  12. 如权利要求1-11任一所述的光源模组,其中,所述光源模组的发射光的黑视素光感效率比值Kmel在0.52以上,所述光源模组发射光的光色在CIE1931色空间上,位于由P1(0.4313,0.4171)、P2(0.4159,0.3819)、P3(0.4352,0.3887)、P4(0.4538,0.4252)四个顶点围成的四边形区域内,所述光源模组的发射光的显色指数CRI≥90.0,R9≥70.0。
  13. 如权利要求12所述的光源模组,其中,所述光源模组发射光的黑视素光感效率比值Kmel在0.57以上。
  14. 如权利要求12所述的光源模组,其中,所述光源模组发射光的光色在CIE1931色空间上,位于中心点x0=0.4338,y0=0.4030,长轴a=0.00278,短轴b=0.00136,倾角θ=53.1°,SDCM=5.0的椭圆范围内。
  15. 一种照明装置,其中,包括:如权利要求1至14中任意一项所述的光源模组。
PCT/CN2021/140413 2020-12-31 2021-12-22 一种光源模组及包括该光源模组的照明装置 WO2022143329A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011630919.0A CN112747263A (zh) 2020-12-31 2020-12-31 一种光源模组及包括该光源模组的照明装置
CN202011630919.0 2020-12-31
CN202023313680.2 2020-12-31
CN202023313680.2U CN214619092U (zh) 2020-12-31 2020-12-31 一种光源模组及包括该光源模组的照明装置

Publications (1)

Publication Number Publication Date
WO2022143329A1 true WO2022143329A1 (zh) 2022-07-07

Family

ID=82260198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140413 WO2022143329A1 (zh) 2020-12-31 2021-12-22 一种光源模组及包括该光源模组的照明装置

Country Status (1)

Country Link
WO (1) WO2022143329A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115595148A (zh) * 2022-11-21 2023-01-13 四川世纪和光科技发展有限公司(Cn) 全色仿生荧光组合物、全色仿生荧光膜和全色仿生光源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104633499A (zh) * 2015-02-04 2015-05-20 余建华 一种高显色指数的led光源模组及led灯具
CN107565006A (zh) * 2017-08-30 2018-01-09 合肥工业大学 一种具有日光可见光部分光谱结构的led光源及灯具
US20190088835A1 (en) * 2017-01-31 2019-03-21 Sanken Electric Co., Ltd. Light emitting device
CN109585433A (zh) * 2017-09-29 2019-04-05 三星电子株式会社 白光发射装置
CN107427687B (zh) * 2015-03-19 2019-11-01 飞利浦照明控股有限公司 一种照明装置及其用途
US20200357958A1 (en) * 2019-05-09 2020-11-12 Lumileds Llc Light emitting diode with high melanopic spectral content

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104633499A (zh) * 2015-02-04 2015-05-20 余建华 一种高显色指数的led光源模组及led灯具
CN107427687B (zh) * 2015-03-19 2019-11-01 飞利浦照明控股有限公司 一种照明装置及其用途
US20190088835A1 (en) * 2017-01-31 2019-03-21 Sanken Electric Co., Ltd. Light emitting device
CN107565006A (zh) * 2017-08-30 2018-01-09 合肥工业大学 一种具有日光可见光部分光谱结构的led光源及灯具
CN109585433A (zh) * 2017-09-29 2019-04-05 三星电子株式会社 白光发射装置
US20200357958A1 (en) * 2019-05-09 2020-11-12 Lumileds Llc Light emitting diode with high melanopic spectral content

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115595148A (zh) * 2022-11-21 2023-01-13 四川世纪和光科技发展有限公司(Cn) 全色仿生荧光组合物、全色仿生荧光膜和全色仿生光源

Similar Documents

Publication Publication Date Title
CN107565006B (zh) 一种具有日光可见光部分光谱结构的led光源及灯具
CN110212076B (zh) 一种光源模组及包括该光源模组的照明装置
CN108922955B (zh) 一种光源模组及包括该光源模组的照明装置
CN108598244B (zh) 一种光源模组及包括该光源模组的照明装置
WO2020034390A1 (zh) Led白光器件及其制备方法、led背光模组
JP7311818B2 (ja) 発光装置
US20230296213A1 (en) Light source module and lighting device comprising the light source module
CN207146291U (zh) 一种光源模组及包括该光源模组的照明装置
JP7125618B2 (ja) 発光装置
WO2022143329A1 (zh) 一种光源模组及包括该光源模组的照明装置
WO2020034391A1 (zh) Led白光器件及其制备方法、led背光模组
CN209963086U (zh) 一种光源模组及包括该光源模组的照明装置
CN108878624A (zh) 一种白光led光源及照明装置
CN110233197A (zh) 一种光源模组及包括该光源模组的照明装置
CN206708775U (zh) 一种光源模组及包括该光源模组的照明装置
CN206708740U (zh) 光源模组和照明装置
WO2022111307A1 (zh) 光源模组、灯具
CN209859973U (zh) 一种光源模组及包括该光源模组的照明装置
CN209496889U (zh) 一种光源模组及包括该光源模组的照明装置
CN209515728U (zh) 一种光源模组及包括该光源模组的照明装置
CN214619092U (zh) 一种光源模组及包括该光源模组的照明装置
WO2020001333A1 (zh) 一种光源模组及包括该光源模组的照明装置
WO2020244512A1 (zh) 一种光源模组及包括该光源模组的照明装置
WO2020244511A1 (zh) 一种光源模组及包括该光源模组的照明装置
CN113497012A (zh) 一种类太阳光谱封装结构及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914067

Country of ref document: EP

Kind code of ref document: A1