WO2018140809A1 - Modulators of estrogen receptor proteolysis and associated methods of use - Google Patents
Modulators of estrogen receptor proteolysis and associated methods of use Download PDFInfo
- Publication number
- WO2018140809A1 WO2018140809A1 PCT/US2018/015574 US2018015574W WO2018140809A1 WO 2018140809 A1 WO2018140809 A1 WO 2018140809A1 US 2018015574 W US2018015574 W US 2018015574W WO 2018140809 A1 WO2018140809 A1 WO 2018140809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optionally substituted
- alkyl
- group
- substituted
- ulm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 CC*=C([C@](C)NC)N Chemical compound CC*=C([C@](C)NC)N 0.000 description 82
- CWXPZXBSDSIRCS-UHFFFAOYSA-N CC(C)(C)OC(N1CCNCC1)=O Chemical compound CC(C)(C)OC(N1CCNCC1)=O CWXPZXBSDSIRCS-UHFFFAOYSA-N 0.000 description 2
- YASHDLKDHPTIKC-UHFFFAOYSA-N CC(C)N1CC(CN(C2)CC2[n]2ncc(C)c2)CC1 Chemical compound CC(C)N1CC(CN(C2)CC2[n]2ncc(C)c2)CC1 YASHDLKDHPTIKC-UHFFFAOYSA-N 0.000 description 2
- RKBLAXHVQYRXFV-UHFFFAOYSA-N CCCN(C)C(OC(C)(C)C)=O Chemical compound CCCN(C)C(OC(C)(C)C)=O RKBLAXHVQYRXFV-UHFFFAOYSA-N 0.000 description 2
- IXPJPATXOIENTF-UHFFFAOYSA-N CCOCCN(C1)CC11CN(CCOC(C)C)C1 Chemical compound CCOCCN(C1)CC11CN(CCOC(C)C)C1 IXPJPATXOIENTF-UHFFFAOYSA-N 0.000 description 2
- JORAJHODHKZJNA-HXUWFJFHSA-N C[C@H](COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2c1ccc(O)c2)N1CCN(CC(OC)=O)CC1 Chemical compound C[C@H](COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2c1ccc(O)c2)N1CCN(CC(OC)=O)CC1 JORAJHODHKZJNA-HXUWFJFHSA-N 0.000 description 2
- UWSONZCNXUSTKW-UHFFFAOYSA-N Cc1c(C)[s]cn1 Chemical compound Cc1c(C)[s]cn1 UWSONZCNXUSTKW-UHFFFAOYSA-N 0.000 description 2
- XKVUYEYANWFIJX-UHFFFAOYSA-N Cc1ccn[nH]1 Chemical compound Cc1ccn[nH]1 XKVUYEYANWFIJX-UHFFFAOYSA-N 0.000 description 2
- VYQNWZOUAUKGHI-UHFFFAOYSA-N Oc(cc1)ccc1OCc1ccccc1 Chemical compound Oc(cc1)ccc1OCc1ccccc1 VYQNWZOUAUKGHI-UHFFFAOYSA-N 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N C(C1)Cc2c1cccc2 Chemical compound C(C1)Cc2c1cccc2 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 1
- LPAGFVYQRIESJQ-UHFFFAOYSA-N C1c2ccccc2NC1 Chemical compound C1c2ccccc2NC1 LPAGFVYQRIESJQ-UHFFFAOYSA-N 0.000 description 1
- CTPFOILEWOHSMJ-UHFFFAOYSA-N C=C(C1)NC(N2CCN(CC(CC3)CCN3c(c(F)cc(Oc3c(-c(cc4)ccc4Br)[s]c4c3ccc(OCc3ccccc3)c4)c3)c3F)CC2)OCN1C(CCC(N1)=O)C1=O Chemical compound C=C(C1)NC(N2CCN(CC(CC3)CCN3c(c(F)cc(Oc3c(-c(cc4)ccc4Br)[s]c4c3ccc(OCc3ccccc3)c4)c3)c3F)CC2)OCN1C(CCC(N1)=O)C1=O CTPFOILEWOHSMJ-UHFFFAOYSA-N 0.000 description 1
- SHFMHGXDJOMGAL-UHFFFAOYSA-N C=Cc1cc(Oc2c(-c(cc3)ccc3Br)[s]c3cc(OCc4ccccc4)ccc23)cc(F)c1N(CC1)CCC1C=O Chemical compound C=Cc1cc(Oc2c(-c(cc3)ccc3Br)[s]c3cc(OCc4ccccc4)ccc23)cc(F)c1N(CC1)CCC1C=O SHFMHGXDJOMGAL-UHFFFAOYSA-N 0.000 description 1
- SEFLAEAXHCIXJQ-UHFFFAOYSA-N CC(C)(C)OC(COCCOC1CN(C)C1)=O Chemical compound CC(C)(C)OC(COCCOC1CN(C)C1)=O SEFLAEAXHCIXJQ-UHFFFAOYSA-N 0.000 description 1
- KFOTYOINGKWEDB-UHFFFAOYSA-N CC(C)(C)OC(COCCOC1CN(CCOc(cc2)ccc2Oc2c(-c(cc3)ccc3F)[s]c3c2ccc(O)c3)C1)=O Chemical compound CC(C)(C)OC(COCCOC1CN(CCOc(cc2)ccc2Oc2c(-c(cc3)ccc3F)[s]c3c2ccc(O)c3)C1)=O KFOTYOINGKWEDB-UHFFFAOYSA-N 0.000 description 1
- CRSBLTWJSIHCIB-UHFFFAOYSA-N CC(C)(C)OC(COCCOC1CN(CCOc(cc2)ccc2Oc2c(-c(cc3)ccc3F)[s]c3c2ccc(OCc2ccccc2)c3)C1)=O Chemical compound CC(C)(C)OC(COCCOC1CN(CCOc(cc2)ccc2Oc2c(-c(cc3)ccc3F)[s]c3c2ccc(OCc2ccccc2)c3)C1)=O CRSBLTWJSIHCIB-UHFFFAOYSA-N 0.000 description 1
- MTOWWRRVWFJSHX-UHFFFAOYSA-N CC(C)(C)OC(N(CC1)CCN1c(c(F)c1)cc(CO)c1C(O)=O)=O Chemical compound CC(C)(C)OC(N(CC1)CCN1c(c(F)c1)cc(CO)c1C(O)=O)=O MTOWWRRVWFJSHX-UHFFFAOYSA-N 0.000 description 1
- VIMOIXDJYZXHHJ-UHFFFAOYSA-N CC(C)(C)OC(N(CC1)CCN1c(cc(COC1=O)c1c1)c1F)=O Chemical compound CC(C)(C)OC(N(CC1)CCN1c(cc(COC1=O)c1c1)c1F)=O VIMOIXDJYZXHHJ-UHFFFAOYSA-N 0.000 description 1
- RBVBZAUCOSHGJQ-UHFFFAOYSA-N CC(C)(C)OC(N1CCC(CCCNc(cc2CN3C(CCC(N4)=O)C4=O)ccc2C3=O)CC1)=O Chemical compound CC(C)(C)OC(N1CCC(CCCNc(cc2CN3C(CCC(N4)=O)C4=O)ccc2C3=O)CC1)=O RBVBZAUCOSHGJQ-UHFFFAOYSA-N 0.000 description 1
- FNFRJHHJVRYWFQ-UHFFFAOYSA-N CC(C)(C)OC(N1CCN(CCOc(cc2)ccc2O)CC1)=O Chemical compound CC(C)(C)OC(N1CCN(CCOc(cc2)ccc2O)CC1)=O FNFRJHHJVRYWFQ-UHFFFAOYSA-N 0.000 description 1
- YEGLLYOZXDZFTK-UHFFFAOYSA-N CC(C)(CC(C)(C)OC)CN1CCNCC1 Chemical compound CC(C)(CC(C)(C)OC)CN1CCNCC1 YEGLLYOZXDZFTK-UHFFFAOYSA-N 0.000 description 1
- GRHWXEHZURZQAG-UHFFFAOYSA-N CC(C)N1CCN(CC2CCN(C)CC2)CC1 Chemical compound CC(C)N1CCN(CC2CCN(C)CC2)CC1 GRHWXEHZURZQAG-UHFFFAOYSA-N 0.000 description 1
- AAPJDMLAYXIIPC-UHFFFAOYSA-N CC(C)OCCOCCOCCOCCOCCNC(C)(C)C Chemical compound CC(C)OCCOCCOCCOCCOCCNC(C)(C)C AAPJDMLAYXIIPC-UHFFFAOYSA-N 0.000 description 1
- KSILGMOBWDKRIZ-UHFFFAOYSA-N CC(C)c1c(C)[s]cn1 Chemical compound CC(C)c1c(C)[s]cn1 KSILGMOBWDKRIZ-UHFFFAOYSA-N 0.000 description 1
- NKVBUTIKVYYFPT-UHFFFAOYSA-N CC(COc(cc1)ccc1O)N(CC1)CCN1C(OC(C)(C)C)=O Chemical compound CC(COc(cc1)ccc1O)N(CC1)CCN1C(OC(C)(C)C)=O NKVBUTIKVYYFPT-UHFFFAOYSA-N 0.000 description 1
- GSBVTOLHPAYBBF-UHFFFAOYSA-N CC(COc(cc1)ccc1OC(c(cc1)c2cc1OC)=C(c(cc1)ccc1Br)S2(C)O)N(CC1)CCN1C(OC(C)(C)C)=O Chemical compound CC(COc(cc1)ccc1OC(c(cc1)c2cc1OC)=C(c(cc1)ccc1Br)S2(C)O)N(CC1)CCN1C(OC(C)(C)C)=O GSBVTOLHPAYBBF-UHFFFAOYSA-N 0.000 description 1
- HDRWIUBKALJNBT-UHFFFAOYSA-N CC(COc(cc1)ccc1OCc1ccccc1)=O Chemical compound CC(COc(cc1)ccc1OCc1ccccc1)=O HDRWIUBKALJNBT-UHFFFAOYSA-N 0.000 description 1
- MLMJOXZWWATZHL-UHFFFAOYSA-N CC(COc(cc1)ccc1OCc1ccccc1)N(CC1)CCN1C(OC(C)(C)C)=O Chemical compound CC(COc(cc1)ccc1OCc1ccccc1)N(CC1)CCN1C(OC(C)(C)C)=O MLMJOXZWWATZHL-UHFFFAOYSA-N 0.000 description 1
- FYRFYVBBABSDJK-UHFFFAOYSA-N CC(COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2c1ccc(O)c2)N1CCN(CC(O)=O)CC1 Chemical compound CC(COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2c1ccc(O)c2)N1CCN(CC(O)=O)CC1 FYRFYVBBABSDJK-UHFFFAOYSA-N 0.000 description 1
- RMLMRPGXSDNELS-UHFFFAOYSA-N CC(COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2c1ccc(OC)c2)N1CCN(CC(OC)=O)CC1 Chemical compound CC(COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2c1ccc(OC)c2)N1CCN(CC(OC)=O)CC1 RMLMRPGXSDNELS-UHFFFAOYSA-N 0.000 description 1
- MYBAFCXXCPERNI-UHFFFAOYSA-N CC(COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2c1ccc(OC)c2)N1CCNCC1 Chemical compound CC(COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2c1ccc(OC)c2)N1CCNCC1 MYBAFCXXCPERNI-UHFFFAOYSA-N 0.000 description 1
- VLQBHCCFMVELML-UHFFFAOYSA-N CC(COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2cc(OC)ccc12)N(CC1)CCN1C(OC(C)(C)C)=O Chemical compound CC(COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2cc(OC)ccc12)N(CC1)CCN1C(OC(C)(C)C)=O VLQBHCCFMVELML-UHFFFAOYSA-N 0.000 description 1
- ZUIBLNDXSUIGOI-UHFFFAOYSA-N CC1(C)OB(c(cc2F)cc(F)c2N(CC2)CCC2C(OC)OC)OC1(C)C Chemical compound CC1(C)OB(c(cc2F)cc(F)c2N(CC2)CCC2C(OC)OC)OC1(C)C ZUIBLNDXSUIGOI-UHFFFAOYSA-N 0.000 description 1
- OISPSAFNEUYIAW-UHFFFAOYSA-N CC1=C(CCCI)C(C2)=CC2C1 Chemical compound CC1=C(CCCI)C(C2)=CC2C1 OISPSAFNEUYIAW-UHFFFAOYSA-N 0.000 description 1
- QCIOXFPPEGZRFY-UHFFFAOYSA-N CCc1c(C)[s]cn1 Chemical compound CCc1c(C)[s]cn1 QCIOXFPPEGZRFY-UHFFFAOYSA-N 0.000 description 1
- FJVAQPINJBFBLI-UHFFFAOYSA-N CN(C=Nc1ccccc11)C1=O Chemical compound CN(C=Nc1ccccc11)C1=O FJVAQPINJBFBLI-UHFFFAOYSA-N 0.000 description 1
- ORNYXYUMLMRMFR-UHFFFAOYSA-N CN(CC1)CCC11OCCNC1 Chemical compound CN(CC1)CCC11OCCNC1 ORNYXYUMLMRMFR-UHFFFAOYSA-N 0.000 description 1
- KRPODXOQVKCLPD-UHFFFAOYSA-N CN(CC1)CCC1[IH]C Chemical compound CN(CC1)CCC1[IH]C KRPODXOQVKCLPD-UHFFFAOYSA-N 0.000 description 1
- VUTIWAFBUBZZRJ-UHFFFAOYSA-N CN1CCN(CCCCOCC(COC)(F)F)CC1 Chemical compound CN1CCN(CCCCOCC(COC)(F)F)CC1 VUTIWAFBUBZZRJ-UHFFFAOYSA-N 0.000 description 1
- HVNVLIZPOLDPQE-UHFFFAOYSA-N COC(C(CC1)CCN1c(c(C=C)cc(OC(c(c1c2)ccc2OCc2ccccc2)=C(c(cc2)ccc2Br)S1O)c1)c1F)OC Chemical compound COC(C(CC1)CCN1c(c(C=C)cc(OC(c(c1c2)ccc2OCc2ccccc2)=C(c(cc2)ccc2Br)S1O)c1)c1F)OC HVNVLIZPOLDPQE-UHFFFAOYSA-N 0.000 description 1
- UJKQZRYFHIIUDK-UHFFFAOYSA-N COC(C(CC1)CCN1c(c(F)cc(I)c1)c1F)OC Chemical compound COC(C(CC1)CCN1c(c(F)cc(I)c1)c1F)OC UJKQZRYFHIIUDK-UHFFFAOYSA-N 0.000 description 1
- HLPLRRGNDDWSKI-UHFFFAOYSA-N COC(C(CC1)CCN1c(c(F)cc(N)c1)c1F)OC Chemical compound COC(C(CC1)CCN1c(c(F)cc(N)c1)c1F)OC HLPLRRGNDDWSKI-UHFFFAOYSA-N 0.000 description 1
- NASWPRMOFXVJMM-UHFFFAOYSA-N COC(C(CC1)CCN1c(c(F)cc(O)c1)c1F)OC Chemical compound COC(C(CC1)CCN1c(c(F)cc(O)c1)c1F)OC NASWPRMOFXVJMM-UHFFFAOYSA-N 0.000 description 1
- SKKFQCIMHMUXLR-UHFFFAOYSA-N COC(C(CC1)CCN1c(c(F)cc([N+]([O-])=O)c1)c1F)OC Chemical compound COC(C(CC1)CCN1c(c(F)cc([N+]([O-])=O)c1)c1F)OC SKKFQCIMHMUXLR-UHFFFAOYSA-N 0.000 description 1
- XYPNDIREOHZKFS-UHFFFAOYSA-N COC(C1CCNCC1)OC Chemical compound COC(C1CCNCC1)OC XYPNDIREOHZKFS-UHFFFAOYSA-N 0.000 description 1
- DJNGYAHXVGQUCI-UHFFFAOYSA-N COc(cc1)cc2c1C(Br)=C(c(cc1)ccc1Br)[S+]2O Chemical compound COc(cc1)cc2c1C(Br)=C(c(cc1)ccc1Br)[S+]2O DJNGYAHXVGQUCI-UHFFFAOYSA-N 0.000 description 1
- JORAJHODHKZJNA-FQEVSTJZSA-N C[C@@H](COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2c1ccc(O)c2)N1CCN(CC(OC)=O)CC1 Chemical compound C[C@@H](COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2c1ccc(O)c2)N1CCN(CC(OC)=O)CC1 JORAJHODHKZJNA-FQEVSTJZSA-N 0.000 description 1
- XYOZYUOKYIQBQE-IERCKHOLSA-N C[C@H](COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2c1ccc(O)c2)N1CCN(CC(NCc(cc2CN3C(CCC(N4)=O)C4=O)ccc2C3=O)=O)CC1 Chemical compound C[C@H](COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2c1ccc(O)c2)N1CCN(CC(NCc(cc2CN3C(CCC(N4)=O)C4=O)ccc2C3=O)=O)CC1 XYOZYUOKYIQBQE-IERCKHOLSA-N 0.000 description 1
- FYRFYVBBABSDJK-LJQANCHMSA-N C[C@H](COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2c1ccc(O)c2)N1CCN(CC(O)=O)CC1 Chemical compound C[C@H](COc(cc1)ccc1Oc1c(-c(cc2)ccc2Br)[s]c2c1ccc(O)c2)N1CCN(CC(O)=O)CC1 FYRFYVBBABSDJK-LJQANCHMSA-N 0.000 description 1
- WRQCSSUELRMWQX-UHFFFAOYSA-N C[O+](C)CC(CO[IH]C)(F)F Chemical compound C[O+](C)CC(CO[IH]C)(F)F WRQCSSUELRMWQX-UHFFFAOYSA-N 0.000 description 1
- LRILZCVGYPGQPW-UHFFFAOYSA-N Cc([s]cn1)c1F Chemical compound Cc([s]cn1)c1F LRILZCVGYPGQPW-UHFFFAOYSA-N 0.000 description 1
- JFKCONIETVOFGV-UHFFFAOYSA-N Cc(cc1)ncc1OCC(COC)(F)F Chemical compound Cc(cc1)ncc1OCC(COC)(F)F JFKCONIETVOFGV-UHFFFAOYSA-N 0.000 description 1
- YVORRVFKHZLJGZ-UHFFFAOYSA-N Cc1c(C)[o]cn1 Chemical compound Cc1c(C)[o]cn1 YVORRVFKHZLJGZ-UHFFFAOYSA-N 0.000 description 1
- YSWBFLWKAIRHEI-UHFFFAOYSA-N Cc1c(C)nc[nH]1 Chemical compound Cc1c(C)nc[nH]1 YSWBFLWKAIRHEI-UHFFFAOYSA-N 0.000 description 1
- AKPLNWMNZBVXMA-UHFFFAOYSA-N Cc1c(C2CC2)nc[s]1 Chemical compound Cc1c(C2CC2)nc[s]1 AKPLNWMNZBVXMA-UHFFFAOYSA-N 0.000 description 1
- AKUSZFPCJFNRSZ-UHFFFAOYSA-N Cc1c[o]nc1C Chemical compound Cc1c[o]nc1C AKUSZFPCJFNRSZ-UHFFFAOYSA-N 0.000 description 1
- HPAZMVITMFARMX-MGCOHNPYSA-N Cc1cc(O[C@H](C2)C[C@@H]2NC)ncc1 Chemical compound Cc1cc(O[C@H](C2)C[C@@H]2NC)ncc1 HPAZMVITMFARMX-MGCOHNPYSA-N 0.000 description 1
- XLSZMDLNRCVEIJ-UHFFFAOYSA-N Cc1cnc[nH]1 Chemical compound Cc1cnc[nH]1 XLSZMDLNRCVEIJ-UHFFFAOYSA-N 0.000 description 1
- GIWQSPITLQVMSG-UHFFFAOYSA-N Cc1ncc[n]1C Chemical compound Cc1ncc[n]1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 1
- YZHWXWGSUKLUBP-UHFFFAOYSA-N Fc(cc1)ccc1-c([s]c1c2ccc(OCc3ccccc3)c1)c2Oc(cc1)ccc1OCCBr Chemical compound Fc(cc1)ccc1-c([s]c1c2ccc(OCc3ccccc3)c1)c2Oc(cc1)ccc1OCCBr YZHWXWGSUKLUBP-UHFFFAOYSA-N 0.000 description 1
- FVGIAVVEPXXDAS-UHFFFAOYSA-N N=NCc(cc1CN2C(CCC(N3)=O)C3=O)ccc1C2=O Chemical compound N=NCc(cc1CN2C(CCC(N3)=O)C3=O)ccc1C2=O FVGIAVVEPXXDAS-UHFFFAOYSA-N 0.000 description 1
- WLUIQUZGNPAKRL-UHFFFAOYSA-N Nc(cc1CN2C(CCC(N3)=O)C3=O)ccc1C2=O Chemical compound Nc(cc1CN2C(CCC(N3)=O)C3=O)ccc1C2=O WLUIQUZGNPAKRL-UHFFFAOYSA-N 0.000 description 1
- FADLDNDLDIPGKW-UHFFFAOYSA-N O=C(c(c(C1)c2)ccc2NCCCC2CCNCC2)N1C(CCC(N1)=O)C1=O Chemical compound O=C(c(c(C1)c2)ccc2NCCCC2CCNCC2)N1C(CCC(N1)=O)C1=O FADLDNDLDIPGKW-UHFFFAOYSA-N 0.000 description 1
- HIEHRYVOCKDFBK-UHFFFAOYSA-N O=C(c(cc1)c(C2)nc1N1CCNCC1)N2C(CCC(N1)=O)C1=O Chemical compound O=C(c(cc1)c(C2)nc1N1CCNCC1)N2C(CCC(N1)=O)C1=O HIEHRYVOCKDFBK-UHFFFAOYSA-N 0.000 description 1
- XFEYETKTESHPGS-UHFFFAOYSA-N O=C(c1c2)OCc1cc(F)c2F Chemical compound O=C(c1c2)OCc1cc(F)c2F XFEYETKTESHPGS-UHFFFAOYSA-N 0.000 description 1
- NGQWLJWMSAFWFI-UHFFFAOYSA-N O=C(c1c2cccc1)N(C(CCC(N1)=O)C1=O)S2(=O)=O Chemical compound O=C(c1c2cccc1)N(C(CCC(N1)=O)C1=O)S2(=O)=O NGQWLJWMSAFWFI-UHFFFAOYSA-N 0.000 description 1
- PXZQEOJJUGGUIB-UHFFFAOYSA-M O=C1[N-]Cc2ccccc12 Chemical compound O=C1[N-]Cc2ccccc12 PXZQEOJJUGGUIB-UHFFFAOYSA-M 0.000 description 1
- SROFROVHDASYNC-UHFFFAOYSA-N OC(COCCOC1CN(CCOc(cc2)ccc2Oc2c(-c(cc3)ccc3F)[s]c3c2ccc(O)c3)C1)=O Chemical compound OC(COCCOC1CN(CCOc(cc2)ccc2Oc2c(-c(cc3)ccc3F)[s]c3c2ccc(O)c3)C1)=O SROFROVHDASYNC-UHFFFAOYSA-N 0.000 description 1
- FPENCTDAQQQKNY-UHFFFAOYSA-N OC(c(cc1)cc(F)c1F)=O Chemical compound OC(c(cc1)cc(F)c1F)=O FPENCTDAQQQKNY-UHFFFAOYSA-N 0.000 description 1
- USLZACMOQWLSOE-UHFFFAOYSA-N OS(c1cc(OCc2ccccc2)ccc11)C(c(cc2)ccc2Br)=C1Br Chemical compound OS(c1cc(OCc2ccccc2)ccc11)C(c(cc2)ccc2Br)=C1Br USLZACMOQWLSOE-UHFFFAOYSA-N 0.000 description 1
- CQNOQJIPIZJDTG-UHFFFAOYSA-N Oc(cc1)cc2c1c(Oc(cc1F)cc(F)c1N1CCC(CN(CC3)CCN3c(nc3CN4C(CCC(N5)=O)C5=O)ccc3C4=O)CC1)c(-c(cc1)ccc1Br)[s]2 Chemical compound Oc(cc1)cc2c1c(Oc(cc1F)cc(F)c1N1CCC(CN(CC3)CCN3c(nc3CN4C(CCC(N5)=O)C5=O)ccc3C4=O)CC1)c(-c(cc1)ccc1Br)[s]2 CQNOQJIPIZJDTG-UHFFFAOYSA-N 0.000 description 1
- PTTUMBGORBMNBN-UHFFFAOYSA-N [O-][N+](c(cc1F)cc(F)c1F)=O Chemical compound [O-][N+](c(cc1F)cc(F)c1F)=O PTTUMBGORBMNBN-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/55—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/06—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/08—Bridged systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/10—Spiro-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06008—Dipeptides with the first amino acid being neutral
- C07K5/06017—Dipeptides with the first amino acid being neutral and aliphatic
- C07K5/06034—Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- Breast cancer is the most common malignancy to affect women and worldwide, the incidence of the disease is increasing.
- Estrogens in particular, act as endocrine growth factors for at least one-third of breast cancers, and depriving the tumor of this stimulus is a recognized therapy for advanced disease in premenopausal women, this is achieved by the ablation of ovarian function through surgical, radio therapeutics, or medical means and, in postmenopausal women, by the use of aromatase inhibitors.
- Cereblon is a protein that in humans is encoded by the CRBN gene. CRBN orthologs are highly conserved from plants to humans, which underscores its physiological importance. Cereblon forms an E3 ubiquitin ligase complex with damaged DNA binding protein 1 (DDB 1), Cullin-4A (CUL4A), and regulator of cullins 1 (ROC1). This complex ubiquitinates a number of other proteins. Through a mechanism which has not been completely elucidated, cereblon ubquitination of target proteins results in increased levels of fibroblast growth factor 8 (FGF8) and fibroblast growth factor 10 (FGF10). FGF8 in turn regulates a number of developmental processes, such as limb and auditory vesicle formation. The net result is that this ubiquitin ligase complex is important for limb outgrowth in embryos. In the absence of cereblon, DDB 1 forms a complex with DDB2 that functions as a DNA damage-binding protein.
- DDB1 forms a complex
- the present disclosure describes bifunctional compounds which function to recruit endogenous proteins to an E3 ubiquitin ligase for degradation, and methods of using the same.
- the present disclosure provides bifunctional or proteolysis targeting chimeric (PROTAC) compounds, which find utility as modulators of targeted ubiquitination of a variety of polypeptides and other proteins, such as estrogen receptor, which are then degraded and/or otherwise inhibited by the bifunctional compounds as described herein.
- An advantage of the compounds provided herein is that a broad range of pharmacological activities is possible, consistent with the degradation/inhibition of targeted polypeptides from virtually any protein class or family.
- the description provides methods of using an effective amount of the compounds as described herein for the treatment or amelioration of a disease condition, such as cancer, e.g., breast cancer.
- the ubiquitin ligase is involved in polyubiquitination such that a second ubiquitin is attached to the first; a third is attached to the second, and so forth.
- Polyubiquitination marks proteins for degradation by the proteasome.
- Mono- ubiquitinated proteins are not targeted to the proteasome for degradation, but may instead be altered in their cellular location or function, for example, via binding other proteins that have domains capable of binding ubiquitin.
- different lysines on ubiquitin can be targeted by an E3 to make chains. The most common lysine is Lys48 on the ubiquitin chain. This is the lysine used to make polyubiquitin, which is recognized by the proteasome.
- the bifunctional compound further comprises a chemical linker ("L").
- L a chemical linker
- the ULM (e.g., a ILM, a CLM, a VLM, or a MLM) shows activity or binds to the E3 ubiquitin ligase (e.g., IAP E3 ubiquitin ligase, cereblon E3 ubiquitin ligase, VHL, or MDM2 E3 ubiquitin ligase) with an IC 50 of less than about 200 ⁇ .
- the IC 50 can be determined according to any method known in the art, e.g., a fluorescent polarization assay.
- R for Formulas (I), (II), (III), (IV), and (V) is selected from cycloalkyl, cycloalkylalkyl, heterocycloalkyl, heterocycloalkylalkyl, aryl, arylalkyl, heteroaryl or heteroarylalkyl, each one further optionally substituted with 1-3 substituents selected from halogen, alkyl, haloalkyl, hydroxyl, alkoxy, cyano, (hetero)cycloalkyl or (hetero)aryl, or R is -
- Rio of Formula (VI) is selected from H, -CH 3 . -CF 3 , -CH 2 OH, or -CH 2 C1;
- X of Formula (VII) is selected from the group -CH and N;
- R e of Formula (VII) is selected from the group Ci-g-alkyl and alkylidene, and each Re is either unsubstituted or substituted;
- Q is selected from the group N, O, S, S(O), and S(0) 2 ;
- R f and R g of Formula (VII) are independently selected from H, -Cl-10-alkyl, Ct-jo-alkylaryl, -OH, -O-Ci -io-alkyl, - (CH 2 )o-6-C 3-7 -cycloalky, -0-(CH 2 )o-6-aryl, phenyl, aryl, phenyl - phenyl, -(CH 2 )i-6-het, -0-(CH 2 )i-6-het, -OR13, -C(Q)-R B .
- R is selected from the group H, unsubstituted or substituted Ci -7 -alkyl, aryl, unsubstituted or substituted -0-(C 1-7 -cycloalkyl), -C(0)-C 1-1 o-aIkyl, - C(0)-Co-io-alkyl-aryI, -C-O-Coi- 10-alkyl, -C-O-Co-io-alkyl-aryl, -S0 2 -C 1-1 o-alkyL or -SQ 2 -iCo-io- alkylaryl);
- Re and R 14 of Formula (VII) are independently selected from the group H, Cj-io-alkyl, - (CH 2 )o-6-C 3 -7-cycIoalkyl, -(CH 2 ) 0 . 6 - (Ci ! ),, ; -i ar> i ) ; , -C(O)-Ci..
- the compound further comprises an independently selected second ILM attached to the ILM of Formula (VI), or an unnatural mimetic thereof, by way of at least one additional independently selected linker group.
- the second ILM is a derivative of Formula (VI), or an unnatural mimetic thereof.
- the at least one additional independently selected linker group comprises two additional independently selected linker groups chemically linking the ILM and the second ILM.
- the at least one additional linker group for an ILM of the Formula (VI) , or an unnatural mimetic thereof chemically links groups selected from R 4 and R5.
- an ILM of Formula (VI) and a second ILM of Formula (VI) can be linked as shown below:
- the ILM can have the structure of Formula (IX), which is derived from the chemotypes cross-referenced in Mannhold, R., et al. IAP antagonists: promising candidates for cancer therapy, Drug Discov. Today, 15 (5-6), 210-9 ( 2010), or an unnatural mimetic thereof:
- R 1 of Formula (XII) is selected from:
- R 1 of Formula (XIII) is selected from:
- the ILM can have the structure of Formula (XVI), which is based on the IAP ligand described in WO Pub. No. 2006/069063, or an unnatural mimetic thereof:
- R of Formula (XVI) is selected from alkyl, cycloalkyl and heterocycloalkyl; more preferably, from isopropyl, tert-butyl, cyclohexyl and tetrahydropyranyl, most preferably from cyclohexyl;
- X of Formula (XVII) is selected from the group O or CH2.
- the ILM can have the structure of Formula (XVIII), which is based on the IAP ligands described in Cohen, F. et al., Antogonists of inhibitors of apoptosis proteins based on thiazole amide isosteres, Bioorg. Med. Chem. Lett., 20(7), 2229-33 (2010), or an unnatural mimetic thereof: (xviii),
- the ILM of the composition is selected from the group consistin of:
- the ILM of the composition is selected from the group consisting of:
- R of Formula (XXI) is selected from: b and ;
- the ILM of the compound is selected from the group consisting of:
- v is an integer from 1-3;
- R 21 of -CH 2 CHR 21 COR 2 is selected from the group NR 24 R 25 ;
- R 23 of -CH 2 R 23 is sleeted from optionally substituted aryl or optionally substituted heterocyclyl, where the optional substituents include alkyl and halogen;
- R 24 of NR 24 R 25 is selected from hydrogen or optionally substituted alkyl
- R 26 of OR 26 is selected from optionally substituted alkyl, wherein the optional substituents are OH, halogen or NH 2 ;
- n is an integer from 1-8;
- R 3 and R 4 of Formula (XXII) or (XXIII) are independently selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted heteroaryl, optionally substituted heterocyclyl, optionally substituted heteroarylalkyl or optionally substituted heterocycloalkyl, wherein the substituents are alkyl, halogen or OH;
- R 5 , R 6 , R 7 and R 8 of Formula (XXII) or (XXIII) are independently selected from hydrogen, optionally substituted alkyl or optionally substituted cycloalkyl;
- X is a bond or is selected from the group consisting of:
- the ILM can have the structure of Formula (XXIV) or (XXVI), which are derived from the IAP ligands described in WO Pub. No. 2015/006524 and Perez HL, Discovery of potent heterodimeric antagonists of inhibitor of apoptosis proteins (IAPs) with sustained antitumor activity. J. Med. Chem. 58(3), 1556-62 (2015), or an unnatural mimetic thereof, and the chemical linker to linker group L as shown: r
- n is an integer from 1-8;
- R 5 and R 6 are selected from the group comprising:
- R" of Formula (XXVII) and (XXVIII) is selected from H or an optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted arylalkyl or optionally substituted aryl; or alternatively,
- R 23 of -CH 2 R 23 is selected from an optionally substituted aryl or optionally substituted heterocyclyl, where the optional substituents include alkyl and halogen;
- X of Formulas (XXVII) and (XXVIII) is selected from -(CR sl R s ) m -, optionally substituted heteroaryl or heterocyclyl,
- R of Formula (XXIX) through (XXXII) is selected from H, an optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted arylalkyl or optionally substituted aryl; or alternatively;
- v is an integer from 1-3;
- R 21 of -CH 2 CHR 21 COR 22 is selected from NR 24 R 25 ;
- R 25 of NR 24 R 25 is selected from hydrogen, optionally substituted alkyl, optionally substituted branched alkyl, optionally substituted arylalkyl, optionally substituted heterocyclyl, - CH 2 CH 2 (OCH 2 CH 2 ) m CH 3 , or a polyamine chain
- R 26 of OR 26 is an optionally substituted alkyl, wherein the optional substituents are OH, halogen or NH 2; m is an integer from 1-8;
- R 6 and R 8 of Formula (XXIX) through (XXXII) are independently selected from hydrogen, optionally substituted alkyl or optionally substituted cycloalkyl;
- the ILM of the compound is:
- the ILM can have the structure of Formula (XXXIII), which are derived from the IAP ligands described in WO Pub. No. 2014/074658 and WO Pub. No. 2013 71035, or an unnatural mimetic thereof:
- R of Formula (XXXIII) is selected from H, an optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted heterocyclyl, optionally substituted arylalkyl or optionally substituted aryl;
- R 6 and R 8 of Formula (XXXIII) are independently selected from hydrogen, optionally substituted alkyl or optionally substituted cycloalkyl;
- R 32 of Formula (XXXIII) is selected from (C1-C4 alkylene)-R 33 wherein R 33 is selected from hydrogen, aryl, heteroaryl or cycloalkyl optionally further substituted;
- Y of Formula (XXXIII) is selected from:
- X is selected from:
- n is an integer from 1-3;
- R 12 and R 13 taken together with the nitrogen atom to which they are commonly bound to form a saturated heterocyclyl optionally comprising one additional heteroatom selected from N, O and S, and wherein the saturated heterocycle is optionally substituted with methyl.
- the ILM can have the structure of Formula (XXXIV) or (XXXV), which are derived from the IAP ligands described in WO Pub. No. 2014/047024, or an unnatural mimetic thereof:
- R 21 of -CH 2 CHR 21 COR 22 is selected from NR 24 R 25 ;
- R 24 of NR 24 R 25 is selected from hydrogen or optionally substituted alkyl
- R 26 is an optionally substituted alkyl, wherein the optional substituents are OH, halogen or NH 2 ;
- R 14 and are independently selected from hydrogen, halogen, optionally substituted alkyl or OR 19 ;
- R 19 of OR 19 is selected from hydrogen, optionally substituted alkyl or optionally substituted cycloalkyl;
- n and n of -(CR 10 R n ) m - are independently 0, 1, 2, 3, or 4;
- q of -(CR 10 R n ) m - is 0, 1, 2, 3, or 4; r is 0 or 1;
- the ILM can have the structure of
- a of Formula (XXXVI) is selected from: or where the dotted line represents an optional double bond;
- X of Formula (XXXVI) is selected from: -(CR M R zz ) m -,
- Y and Z of Formula (XXXVI) are independently selected from -0-, -NR - or are absent;
- W of Formula (XXXVI) is selected from -CH- or -N-;
- R 3 and R 4 of Formula (XXXVI) are independently selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocyclyl, optionally substituted arylalkyl, optionally substituted heteroarylalkyl or optionally substituted heterocycloalkyl;
- R 5 , R 6 , R 7 and R 8 of Formula (XXIV), (XXV) or (XXVI) are independently selected from hydrogen, optionally substituted alkyl or optionally substituted cycloalkyl, or preferably methyl;
- R y and R 1U are independently selected from hydrogen, halogen or optionally substituted alkyl, or 9 and R 10 can be taken together to form a ring;
- R 15 of OR 15 is selected from hydrogen, optionally substituted alkyl or optionally substituted cycloalk l;
- n and n of -(CR) are independently selected from 0, 1, 2, 3, or 4;
- r of is selected from 0 or 1, and/or or a pharmaceutically acceptable salt, tautomer or stereoisomer thereof.
- the ILM can have the structure of
- R 3 and R 4 of Formula (XXXVII) and (XXXVIII) are independently selected from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted arylalkyl or optionally substituted aryl;
- R 5 and R 6 of Formula (XXXVII) and (XXXVIII) are independently selected from optionally substituted alkyl or optionally substituted cycloalkyl; 7 8
- R 15 of OR 15 is selected from hydrogen, optionally substituted alkyl or optionally substituted cycloalkyl;
- R and R of -(CR R ) m - are independently selected from hydrogen, halogen or optionally substituted alkyl;
- R 50 and R 51 of Formula (XXXVII) and (XXXVIII) are independently selected from optionally substituted alkyl, or R 50 and R 51 are taken together to form a ring;
- o and of are inde endently an integer from 0-3;
- R 1 and R 2 of the ILM of Formula (XXXVII) or (XXXVIII) are t-butyl and R 3 and R 4 of the ILM of Formula (XXXVII) or (XXXVIII) are tetrahydronaphtalene.
- the ILM can have the structure of
- R and R of Formulas (XXXIX) and (XL) are independently selected from hydrogen, alkyl, aryl, arylalkyl, heteroaryl, heteroarylalkyl, cycloalkyl, cycloalkylalkyl further optionally substituted, and
- R 6 and R 8 of Formula (XXXIX) and (XL) are independently selected from hydrogen, optionally substituted alkyl or optionally substituted cycloalkyl.
- each X of Formulas (XXXIX) and (XL) is independently selected from: e Z of Formulas (XXXIX) and (XL) is selected from wherein each represents a point of attachment to the compound; and
- each Y is selected from:
- ⁇ represents a second point of attachment to Z
- R 3 of -C(0)R 3 is selected from OH, NHCN, NHS0 2 R 10 , NHOR 11 or N(R 12 )(R 13 );
- R 10 and R 11 of NHS0 2 R 10 and NHOR 11 are independently selected from -C C 4 alkyl, cycloalkyl, aryl, heteroaryl, or heterocycloalkyl, any of which are optionally substituted, and hydrogen;
- each of R and R of N(R )(R ) are independently selected from hydrogen, -Ci-C 4 alkyl, -
- the ILM can have the structure of
- W 1 of Formula (XLI) is selected from O, S, N-R A , or C(R 8a )(R 8b );
- R 1 of Formula (XLI) is selected from H, Ci-C 6 alkyl, C 3 -C 6 cycloalkyl, -Ci-C 6 alkyl-
- X 1 and X 2 of Formula (XLI) are independently selected from C and N, and are members of a fused substituted or unsubstituted saturated or partially saturated 3-10 membered cycloalkyl ring, a fused substituted or unsubstituted saturated or partially saturated 3-10 membered heterocycloalkyl ring, a fused substituted or unsubstituted 5-10 membered aryl ring, or a fused substituted or unsubstituted 5-10 membered heteroaryl ring;
- R 2a , R 2b , R 2c , R 2d of CR 2c R 2d and CR 2a R 2b are independently selected from H, substituted or unsubstituted C l-C6alkyl, substituted or unsubstituted Ci-Ceheteroalkyl, substituted or unsubstituted C3-C 6 cycloalkyl, substituted or unsubstituted Ci-Csheterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, -Ci-C 6 alkyl- (substituted or unsubstituted C 3 - Cecycloalkyl), -Ci-C 6 alkyl-(substituted or unsubstituted C 2 -C 5 heterocycloalkyl), -Ci-C 6 alkyl- (substituted or unsubstituted aryl), -Ci-C
- R" and R of NR R are independently selected from H, substituted or unsubstituted Q- C 6 alkyl, substituted or unsubstituted C 3 -C 6 cycloalkyl, substituted or unsubstituted C 2 - Csheterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, -Ci-C 6 aLkyl- (substituted or unsubstituted C 3 -C 6 cycloalkyl), -Ci-C 6 aLkyl- (substituted or unsubstituted C 2 - Csheterocycloalkyl), -Ci-C 6 alkyl-(substituted or unsubstituted aryl), or -Ci-C 6 alkyl- (substituted or unsubstituted heteroaryl);
- R of Formula (XLI) is selected from Ci-C 3 alkyl, or Ci-C 3 fluoroalkyl;
- R 4 of Formula (XLI) is selected from -NHR 5 , -N(R 5 )2, -N+(R 5 )3 or -OR 5 ;
- each R 5 of -NHR 5 , -N(R 5 )2, -N+(R 5 )3 and -OR 5 is independently selected from H, Ci-C 3 alkyl,
- R 8a and R 8d are as defined above, and R 8b and R 8c together form a bond; or:
- R 8a and R 8d are as defined above, and R 8b and R 8c together with the atoms to which they are attached form a substituted or unsubstituted fused 5-7 membered saturated, or partially saturated carbocyclic ring or heterocyclic ring comprising 1 -3 heteroatoms selected from S, O and N, a substituted or unsubstituted fused 5-10 membered aryl ring, or a substituted or unsubstituted fused 5-10 membered heteroaryl ring comprising 1 -3 heteroatoms selected from S, O and N;
- R 8c and R 8d are as defined above, and R 8a and R 8b together with the atoms to which they are attached form a substituted or unsubstituted saturated, or partially saturated 3 -7 membered spirocycle or heterospirocycle comprising 1 -3 heteroatoms selected from S, O and N;
- the ILM can have the structure of
- W 1 of Formula (XLII) is O, S, N-R A , or C(R 8a )(R 8b );
- W 2 of Formula (XLII) is O, S, N-R A , or C(R 8c )(R 8d ); provided that W 1 and W 2 are not both O, or both S;
- X 1 of Formula (XLII) is CH 3
- X 2 is selected from O, N-R A , S, S(O), or S(0) 2
- X 3 is CR 2a R 2b ;
- each R c is independently selected from H, -CN, -OH, alkoxy, substituted or unsubstituted Cl-C6alkyl, substituted or unsubstituted C 3 -C 6 cycloalkyl, substituted or unsubstituted C 2 -C 5 heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, -Ci-C 6 alkyl-(substituted or unsubstituted C 3 -C 6 cycloalkyl), -Ci- C 6 alkyl-(substituted or unsubstituted C 2 - Csheterocycloalkyl), -Ci-C 6 alkyl-(substituted or unsubstituted aryl), or -Ci-C 6 alkyl- (substituted or unsubstituted heteroaryl); or:
- R D" and R E of NR D R E are independently selected from H, substituted or unsubstituted Ci- C 6 alkyl, substituted or unsubstituted C 3 -C 6 cycloalkyl, substituted or unsubstituted C 2 - Csheterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, -Ci-C 6 alkyl- (substituted or unsubstituted C 3 -C 6 cycloalkyl), -Ci-C 6 alkyl- (substituted or unsubstituted C 2 - Csheterocycloalkyl), -Ci-C 6 alkyl-(substituted or unsubstituted aryl), or -Ci-C 6 alkyl- (substituted or unsubstituted heteroaryl);
- n 1 or 2;
- R 4 of Formula (XLII) is selected from -NHR 5 , -N(R 5 ) 2 , -N+(R 5 ) 3 or -OR 5 ;
- R of Formula (XLII) is bonded to a nitrogen atom of U to form a substituted or unsubstituted 5-7 membered ring;
- p of R is selected from 0, 1 or 2;
- R 8a , R 8b , R 8c , and R 8d of C(R 8a )(R 8b ) and C(R 8c )(R 8d ) are independently selected from H, C Cealkyl, Ci-Cefluoroalkyl, Ci-C 6 alkoxy, Ci-Ceheteroalkyl, and substituted or unsubstituted aryl;
- R 8a and R 8d are as defined above, and R 8b and R 8c together form a bond;
- R 8a and R 8d are as defined above, and R 8b and R 8c together with the atoms to which they are attached form a substituted or unsubstituted fused 5-7 membered saturated, or partially saturated carbocyclic ring or heterocyclic ring comprising 1 -3 heteroatoms selected from S, O and N, a substituted or unsubstituted fused 5-10 membered aryl ring, or a substituted or unsubstituted fused 5-10 membered heteroaryl ring comprising 1 -3 heteroatoms selected from S, O and N;
- R 8a and R 8b are as defined above, and R 8c and R 8d together with the atoms to which they are attached form a substituted or unsubstituted saturated, or partially saturated 3 -7 membered spirocycle or heterospirocycle comprising 1 -3 heteroatoms selected from S, O and N;
- the ILM can have the structure of
- W 1 of Formula (XLIII) is selected from O, S, N-R A , or C(R 8a )(R 8b );
- W 2 of Formula (XLIII) is selected from O, S, N-R A , or C(R 8c )(R 8d ); provided that W 1 and W 2 are not both O, or both S;
- R 1 of Formula (XLIII) is selected from H, Ci-C 6 alkyl, C 3 -C 6 cycloalkyl, -Ci-C 6 alkyl-
- X 1 of Formula (XLIII) is O
- X 2 of Formula (XLIII) is selected from O, N-R A , S, S(O), or S(0) 2
- X 3 of Formula (XLIII) is CR 2a R 2b ;
- X 1 and X 2 of Formula (XLIII) are independently selected from C and N, and are members of a fused substituted or unsubstituted saturated or partially saturated 3-10 membered cycloalkyl ring, a fused substituted or unsubstituted saturated or partially saturated 3-10 membered heterocycloalkyl ring, a fused substituted or unsubstituted 5-10 membered aryl ring, or a fused substituted or unsubstituted 5-10 membered heteroaryl ring, and X of Formula (XLIII) is CR 2a R 2b ;
- X 2 and X 3 of Formula (XLIII) are independently selected from C and N, and are members of a fused substituted or unsubstituted saturated or partially saturated 3-10 membered cycloalkyl ring, a fused substituted or unsubstituted saturated or partially saturated 3-10 membered heterocycloalkyl ring, a fused substituted or unsubstituted 5-10 membered aryl ring, or a fused substituted or unsubstituted 5- 10 membered heteroaryl ring, and X 1 of Formula (VLII) is CR 2e R 2f ;
- R 2a , R 2b , R 2c , R 2d , R 2e , and R 2f of CR 2c R 2d , CR 2a R 2b and CR 2e R 2f are independently selected from H, substituted or unsubstituted C Cealkyl, substituted or unsubstituted Q- Ceheteroalkyl, substituted or unsubstituted C3-C 6 cycloalkyl, substituted or unsubstituted C 2 -C 5 heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, -Ci-C 6 alkyl-(substituted or unsubstituted C 3 - Cecycloalkyl), -Q-CeaLkyl- (substituted or unsubstituted C 2 -Csheterocycloalkyl), -Ci-C 6 alkyl-(substituted
- n of Formula (XLIII) is 0, 1 or 2;
- R 3 of Formula (XLIII) is d-C 3 alkyl, or Ci-C 3 fluoroalkyl
- R 4 of Formula (XLIII) is -NHR 5 , -N(R 5 ) 2 , -N+(R 5 ) 3 or -OR 5 ;
- each R 5 of -NHR 5 , -N(R 5 ) 2 , -N+(R 5 ) 3 and -OR 5 is independently selected from H, Ci-C 3 alkyl, Ci-C haloalkyl, Ci-C heteroalkyl and -Ci-C alkyl-(C -C 5 cycloalkyl);
- R of Formula (XLIII) is bonded to a nitrogen atom of U to form a substituted or unsubstituted 5-7 membered ring;
- R 7 is 0, 1 or 2;
- R 8a , R 8b , R 8c , and R 8d of C(R 8a )(R 8b ) and C(R 8c )(R 8d ) are independently selected from H, C Cealkyl, Ci-Cefluoroalkyl, Ci-C 6 alkoxy, Ci-Ceheteroalkyl, and substituted or unsubstituted aryl;
- R 8a and R 8d are as defined above, and R 8b and R 8c together with the atoms to which they are attached form a substituted or unsubstituted fused 5-7 membered saturated, or partially saturated carbocyclic ring or heterocyclic ring comprising 1 -3 heteroatoms selected from S, O and N, a substituted or unsubstituted fused 5-10 membered aryl ring, or a substituted or unsubstituted fused 5-10 membered heteroaryl ring comprising 1 -3 heteroatoms selected from S, O and N;
- R 8a and R 8b are as defined above, and R 8c and R 8d together with the atoms to which they are attached form a substituted or unsubstituted saturated, or partially saturated 3 -7 membered spirocycle or heterospirocycle comprising 1 -3 heteroatoms selected from S, O and N;
- the ILM can have the structure of
- W 1 of Formula (XLIV) is selected from O, S, N-R A , or C(R 8a )(R 8b );
- W 2 of Formula (XLIV) is selected from O, S, N-R A , or C(R 8c )(R 8d ); provided that W 1 and W 2 are not both O, or both S;
- W 3 of Formula (XLIV) is selected from O, S, N-R A , or C(R 8e )(R 8f ), providing that the ring comprising W 1 , W2 , and W 3 does not comprise two adjacent oxygen atoms or sulfer atoms;
- X 1 of Formula (XLIV) is O
- X 2 of Formula (XLIV) is selected from CR 2c R 2d and N-R A
- X 3 of Formula (XLIV) is CR 2a R 2b ;
- X 1 of Formula (XLIV) is CH 2
- X 2 of Formula (XLIV) is selected from O, N-R A , S, S(O), or S(0) 2
- X 3 of Formula (XLIV) is CR 2a R 2b ; or:
- each R c is independently selected from H, -CN, -OH, alkoxy, substituted or unsubstituted Ci-C 6 alkyl, substituted or unsubstituted C 3 -C 6 cycloalkyl, substituted or unsubstituted C 2 -C 5 heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, -Ci-C 6 alkyl-(substituted or unsubstituted C 3 -C 6 cycloalkyl), -Ci- C 6 alkyl-(substituted or unsubstituted C 2 - Csheterocycloalkyl), -Ci-C 6 alkyl-(substituted or unsubstituted aryl), or -Ci-C 6 alkyl- (substituted or unsubstituted heteroaryl);
- X 1 and X 2 of Formula (XLIV) are independently selected from C and N, and are members of a fused substituted or unsubstituted saturated or partially saturated 3-10 membered cycloalkyl ring, a fused substituted or unsubstituted saturated or partially saturated 3-10 membered heterocycloalkyl ring, a fused substituted or unsubstituted 5-10 membered aryl ring, or a fused substituted or unsubstituted 5-10 membered heteroaryl ring, and X of Formula (XLIV) is CR 2a R 2b ;
- X 3 of Formula (XLIV) are independently selected from C and N, and are members of a fused substituted or unsubstituted saturated or partially saturated 3-10 membered cycloalkyl ring, a fused substituted or unsubstituted saturated or partially saturated 3-10 membered heterocycloalkyl ring, a fused substituted or unsubstituted 5-10 membered aryl ring, or a fused substituted or unsubstituted 5-10 membered heteroaryl ring, and X 1 of Formula (VLIV) is CR 2e R 2f ;
- R 2a , R 2b , R 2c , R 2d , R 2e , and R 2f of CR 2c R 2d , CR 2a R 2b and CR 2e R 2f are independently selected from H, substituted or unsubstituted Ci-C 6 alkyl, substituted or unsubstituted Q- Ceheteroalkyl, substituted or unsubstituted C 3 -C 6 cycloalkyl, substituted or unsubstituted C 2 -C 5 heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, -Ci-C 6 alkyl-(substituted or unsubstituted C 3 - Cecycloalkyl), -Ci-C 6 alkyl- (substituted or unsubstituted C 2 -C 5 heterocycloalkyl), -Ci-C 6 alkyl-(substitute
- R D" and R E of NR D R E are independently selected from H, substituted or unsubstituted Ci- C 6 alkyl, substituted or unsubstituted C 3 -C 6 cycloalkyl, substituted or unsubstituted C 2 - Csheterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, -Ci-C 6 aLkyl- (substituted or unsubstituted C 3 -C 6 cycloalkyl), -Ci-C 6 aLkyl- (substituted or unsubstituted C 2 - Csheterocycloalkyl), -Ci-C 6 alkyl-(substituted or unsubstituted aryl), or -Q-Cealkyl- (substituted or unsubstituted heteroaryl);
- n 1 or 2;
- R of Formula (XLIV) is selected from Ci-C 3 alkyl, or Ci-C 3 fluoroalkyl;
- R 4 of Formula (XLIV) is selected from -NHR 5 , -N(R 5 ) 2 , -N+(R 5 ) 3 or -OR 5 ;
- each R 5 of -NHR 5 , -N(R 5 ) 2 , -N+(R 5 ) 3 and -OR 5 is independently selected from H, Ci-C 3 alkyl,
- R of Formula (XLIII) is bonded to a nitrogen atom of U to form a substituted or unsubstituted 5-7 membered ring;
- R 8a , R 8b , R 8c , R 8d , R 8e , and R 8f of C(R 8a )(R 8b ), C(R 8c )(R 8d ) and C(R 8e )(R 8f ) are independently selected from H, Ci-C 6 alkyl, Ci-Cefluoroalkyl, Ci-C 6 alkoxy, Ci-Ceheteroalkyl, and substituted or unsubstituted aryl;
- R 8a , R 8d , R 8e , and R 8f of C(R 8a )(R 8b ), C(R 8c )(R 8d ) and C(R 8e )(R 8f ) are as defined above, and R 8b and R 8c together form a bond;
- R 8a , R 8b , R 8d , and R 8f of C(R 8a )(R 8b ), C(R 8c )(R 8d ) and C(R 8e )(R 8f ) are as defined above, and R 8c and R 8e together form a bond;
- R 8a , R 8b , R 8d , and R 8f of C(R 8a )(R 8b ), C(R 8c )(R 8d ) and C(R 8e )(R 8f ) are as defined above, and R 8c and R 8e together with the atoms to which they are attached form a substituted or unsubstituted fused 5-7 membered saturated, or partially saturated carbocyclic ring or heterocyclic ring comprising 1 -3 heteroatoms selected from S, O and N, a substituted or unsubstituted fused 5-10 membered aryl ring, or a substituted or unsubstituted fused 5-10 membered heteroaryl ring comprising 1 -3 heteroatoms selected from S, O and N;
- R 8c , R 8d , R 8e , and R 8f of C(R 8c )(R 8d ) and C(R 8e )(R 8f ) are as defined above, and R 8a and R 8b together with the atoms to which they are attached form a substituted or unsubstituted saturated, or partially saturated 3-7 membered spirocycle or heterospirocycle comprising 1 -3 heteroatoms selected from S, O and N;
- R 8a , R 8b , R 8e , and R 8f of C(R 8a )(R 8b ) and C(R 8e )(R 8f ) are as defined above, and R 8c and R 8d together with the atoms to which they are attached form a substituted or unsubstituted saturated, or partially saturated 3-7 membered spirocycle or heterospirocycle comprising 1-3 heteroatoms selected from S, O and N;
- the ILM can have the structure of
- R 2 , R 3 and R 4 of Formula (XLV) are independently selected from H or ME;
- X of Formula (XLV) is independently selected from O or S;
- R 1 of Formula (XLV) is selected from:
- the ILM has a structure according to Formula XLVIII):
- R 3 and R 4 of Formula (XLVIII) are independently selected from H or ME;
- the ILM has a structure and attached to a linker group
- R 3 of Formula (XLIX), (L) or (LI) are independently selected from H or ME;
- L of Formula (XLIX), (L) or (LI) is selected from:
- the ILM according to Formula (LII) is chemically linked to the linker group L in the area denoted with , and as shown below
- the ILM can have the structure of
- R 1 of Formulas (LIII) and (LIV) is selected from:
- R of Formulas (LIII) and (LIV) is selected from:
- X of is selected from H, halogen, methyl, methoxy, hydroxy, nitro or trifluoromethyl.
- the ILM can have the structure of
- Rl of Formulas (LVII) is selected from:
- the ILM is represented by the following structure:
- the ILM is selected from the group consisting of the structures below, which are based on the IAP ligands described in Asano, M, et al., Design, sterioselective synthesis, and biological evaluation of novel tri-cyclic compounds as inhibitor of apoptosis proteins (IAP) antagonists, Bioorg. Med. Chem., 21(18): 5725-37 (2013), or an unnatural mimetic thereof:
- the ILM is selected from the group consisting of, and which the chemical link between the ILM and linker group L is shown:
- the ILM can have the structure of
- Formula (LVIII) which is based on the IAP ligands described in Asano, M, et al., Design, sterioselective synthesis, and biological evaluation of novel tri-cyclic compounds as inhibitor of apoptosis proteins (IAP) antagonists, Bioorg. Med. Chem., 21(18): 5725-37 (2013), or an unnatural mimetic thereof:
- X of Formula (LVIII) is one or two substituents independently selected from H, halogen or cyano.
- the ILM can have the structure of and be chemically linked to the linker group L as shown in Formula (LIX) or (LX), or an unnatural mimetic thereof:
- X of Formula (LIX) and (LX) is one or two substituents independently selected from H, halogen or cyano, and ; and L of Formulas (LIX) and (LX) is a linker group as described herein.
- the ILM can have the structure of
- R 1 of Formula (LXI) is ;
- R of Formula (LXI) is selected from:
- the ILM can have the structure of and be chemically linked to the linker group L as shown in Formula (LXII) or (LLXIII), or an unnatural mimetic thereof:
- Formula (LXI) is a natural or unnatural amino acid
- L of Formula (LXI) is a linker group as described herein.
- the ILM can have the structure selected from the group consisting of, which is based on the IAP ligands described in Wang, J, et al., Discovery of novel second mitochondrial-derived activator of caspase mimetics as selective inhibitor or apoptosis protein inhibitors, J. Pharmacol. Exp. Ther., 349(2): 319-29 (2014), or an unnatural mimetic thereof:
- Formula (LXIX) which is based on the IAP ligands described in Hird, AW, et al., Structure- based design and synthesis of tricyclic IAP (Inhibitors of Apoptosis Proteins) inhibitors, Bioorg.
- R of Formula LIX is selected from the group consisting of:
- Rl of is selected from H or Me
- HET of * ⁇ is mono- or fused bicyclic heteroaryl
- — of Formula (LIX) is an optional double bond.
- the ILM of the compound has a chemical structure as re resented by:
- alkyl shall mean within its context a linear, branch-chained or cyclic fully saturated hydrocarbon radical or alkyl group, preferably a Ci-Cio, more preferably a Ci-C 6 , alternatively a C1-C3 alkyl group, which may be optionally substituted.
- alkyl groups are methyl, ethyl, n-butyl, sec-butyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, isopropyl, 2-methylpropyl, cyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclopen- tylethyl, cyclohexylethyl and cyclohexyl, among others.
- the alkyl group is end-capped with a halogen group (At, Br, CI, F, or I).
- compounds according to the present disclosure which may be used to covalently bind to dehalogenase enzymes.
- These compounds generally contain a side chain (often linked through a polyethylene glycol group) which terminates in an alkyl group which has a halogen substituent (often chlorine or bromine) on its distal end which results in covalent binding of the compound containing such a moiety to the protein.
- alkenyl refers to linear, branch-chained or cyclic C 2 -C 10 (preferably
- Alkynyl refers to linear, branch-chained or cyclic C 2 -C 10 (preferably
- alkylene when used, refers to a -(CH 2 ) n - group (n is an integer generally from 0-6), which may be optionally substituted.
- the alkylene group When substituted, the alkylene group preferably is substituted on one or more of the methylene groups with a Ci-C 6 alkyl group (including a cyclopropyl group or a t-butyl group), but may also be substituted with one or more halo groups, preferably from 1 to 3 halo groups or one or two hydroxyl groups, 0-(Ci-C 6 alkyl) groups or amino acid sidechains as otherwise disclosed herein.
- the alkylene (often, a methylene) group may be substituted with an amino acid sidechain group such as a sidechain group of a natural or unnatural amino acid, for example, alanine, ⁇ -alanine, arginine, asparagine, aspartic acid, cysteine, cystine, glutamic acid, glutamine, glycine, phenylalanine, histidine, isoleucine, lysine, leucine, methionine, proline, serine, threonine, valine, tryptophan or tyrosine.
- an amino acid sidechain group such as a sidechain group of a natural or unnatural amino acid, for example, alanine, ⁇ -alanine, arginine, asparagine, aspartic acid, cysteine, cystine, glutamic acid, glutamine, glycine, phenylalanine, histidine, isoleucine, lysine, leucine, methion
- the term "unsubstituted” shall mean substituted only with hydrogen atoms.
- a range of carbon atoms which includes Co means that carbon is absent and is replaced with H.
- a range of carbon atoms which is Co-C 6 includes carbons atoms of 1, 2, 3, 4, 5 and 6 and for Co, H stands in place of carbon.
- substituted or “optionally substituted” shall mean independently (i.e., where more than substituent occurs, each substituent is independent of another substituent) one or more substituents (independently up to five sub stitu tents, preferably up to three substituents, often 1 or 2 substituents on a moiety in a compound according to the present disclosure and may include substituents which themselves may be further substituted) at a carbon (or nitrogen) position anywhere on a molecule within context, and includes as substituents hydroxyl, thiol, carboxyl, cyano (C ⁇ N), nitro (N0 2 ), halogen (preferably, 1, 2 or 3 halogens, especially on an alkyl, especially a methyl group such as a trifluoromethyl), an alkyl group (preferably, Ci-Cio , more preferably, Ci-C 6 ), aryl (especially phenyl and substituted phenyl for example benzyl or benzoyl),
- Substituents according to the present disclosure may include, for example - SiRiR 2 R 3 groups where each of Ri and R 2 is as otherwise described herein and R 3 is H or a Q- C 6 alkyl group, preferably Ri, R 2 , R 3 in this context is a Ci-C 3 alkyl group (including an isopropyl or t-butyl group).
- Each of the above-described groups may be linked directly to the substituted moiety or alternatively, the substituent may be linked to the substituted moiety (preferably in the case of an aryl or heteraryl moiety) through an optionally substituted -(CH 2 ) m - or alternatively an optionally substituted -(OCH 2 ) m -, -(OCH 2 CH 2 ) m - or -(CH 2 CH 2 0) m - group, which may be substituted with any one or more of the above-described substituents.
- the alkylene group (often a single methylene group) is substituted with one or two optionally substituted Ci-C 6 alkyl groups, preferably Ci-C 4 alkyl group, most often methyl or O-methyl groups or a sidechain of an amino acid as otherwise described herein.
- a moiety in a molecule may be optionally substituted with up to five substituents, preferably up to three substituents. Most often, in the present disclosure moieties which are substituted are substituted with one or two substituents.
- Ri and R 2 are each, within context, H or a Ci-C 6 alkyl group (which may be optionally substituted with one or two hydroxyl groups or up to three halogen groups, preferably fluorine).
- substituted shall also mean, within the chemical context of the compound defined and substituent used, an optionally substituted aryl or heteroaryl group or an optionally substituted heterocyclic group as otherwise described herein.
- aryl or "aromatic”, in context, refers to a substituted (as otherwise described herein) or unsubstituted monovalent aromatic radical having a single ring (e.g., benzene, phenyl, benzyl) or condensed rings (e.g., naphthyl, anthracenyl, phenanthrenyl, etc.) and can be bound to the compound according to the present disclosure at any available stable position on the ring(s) or as otherwise indicated in the chemical structure presented.
- aryl groups in context, may include heterocyclic aromatic ring systems, "heteroaryl” groups having one or more nitrogen, oxygen, or sulfur atoms in the ring (moncyclic) such as imidazole, furyl, pyrrole, furanyl, thiene, thiazole, pyridine, pyrimidine, pyrazine, triazole, oxazole or fused ring systems such as indole, quinoline, indolizine, azaindolizine, benzofurazan, etc., among others, which may be optionally substituted as described above.
- heteroaryl groups having one or more nitrogen, oxygen, or sulfur atoms in the ring (moncyclic) such as imidazole, furyl, pyrrole, furanyl, thiene, thiazole, pyridine, pyrimidine, pyrazine, triazole, oxazole or fused ring systems such as indole, quinoline, indolizin
- substituted aryl refers to an aromatic carbocyclic group comprised of at least one aromatic ring or of multiple condensed rings at least one of which being aromatic, wherein the ring(s) are substituted with one or more substituents.
- an aryl group can comprise a substituent(s) selected from: -(CH 2 ) n OH, -(CH 2 ) n -0-(Ci-C 6 )alkyl, -(CH 2 ) n -0-(CH 2 ) n - (d-Q kyl, -(CH 2 ) compassion-C(0)(Co-C 6 ) alkyl, -(CH 2 ) n -C(O)O(C 0 -C 6 )alkyl, -(CH 2 ) n -OC(O)(C 0 - C 6 )alkyl, amine, mono- or di-(Ci-C 6 alkyl) amine wherein the alkyl group on the amine is optionally substituted with 1 or 2 hydroxyl groups or up to three halo (preferably F, CI) groups, OH, COOH, Ci-C 6 alkyl, preferably CH 3 , CF 3 , OMe,
- Carboxyl denotes the group— C(0)OR, where R is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl or substituted heteroaryl , whereas these generic substituents have meanings which are identical with definitions of the corresponding groups defined herein.
- S c is CHR , NR , or O;
- RTM 1 is H, CN, N0 2 , halo (preferably CI or F), optionally substituted Ci-C 6 alkyl (preferably substituted with one or two hydroxyl groups or up to three halo groups (e.g. CF 3 ), optionally substituted 0(Ci-C 6 alkyl) (preferably substituted with one or two hydroxyl groups or up to three halo groups) or an optionally substituted acetylenic group -C ⁇ C-R a where R a is H or a Ci-C 6 alkyl group (preferably C 1 -C 3 alkyl);
- R ss is H, CN, N0 2 , halo (preferably F or CI), optionally substituted Ci-C 6 alkyl (preferably substituted with one or two hydroxyl groups or up to three halo groups), optionally substituted 0-(Ci-C 6 alkyl) (preferably substituted with one or two hydroxyl groups or up to three halo groups) or an optionally substituted -C(0)(Ci-C 6 alkyl) (preferably substituted with one or two hydroxyl groups or up to three halo groups);
- R URE is H, a Ci-C 6 alkyl (preferably H or C 1 -C 3 alkyl) or a -C(0)(Ci-C 6 alkyl), each of which groups is optionally substituted with one or two hydroxyl groups or up to three halogen, preferably fluorine groups, or an optionally substituted heterocycle, for example piperidine, morpholine, pyrrolidine, tetrahydrofuran, tetrahydrothiophene, piperidine, piperazine, each of which is optionally substituted, and
- arylaikyi refers to an aryl group as defined above appended to an alkyl group defined above.
- the arylaikyi group is attached to the parent moiety through an alkyl group wherein the alkyl group is one to six carbon atoms.
- the aryl group in the arylaikyi group may be substituted as defined above.
- Heterocycle refers to a cyclic group which contains at least one heteroatom, e.g., N, O or S, and may be aromatic (heteroaryl) or non-aromatic. Thus, the heteroaryl moieties are subsumed under the definition of heterocycle, depending on the context of its use. Exemplary heteroaryl groups are described hereinabove. [00159] Exemplary heterocyclics include: azetidinyl, benzimidazolyl, 1,4- benzodioxanyl,
- Heterocyclic groups can be optionally substituted with a member selected from the group consisting of alkoxy, substituted alkoxy, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, acyl, acylamino, acyloxy, amino, substituted amino, aminoacyl, aminoacyloxy, oxyaminoacyl, azido, cyano, halogen, hydroxyl, keto, thioketo, carboxy, carboxyalkyl, thioaryloxy, thioheteroaryloxy, thioheterocyclooxy, thiol, thioalkoxy, substituted thioalkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, heterocyclic, heterocyclooxy, hydroxyamino, alkoxyamino, nitro, — SO-alkyl, — SO-substituted alkyl,
- heterocyclic groups can have a single ring or multiple condensed rings.
- nitrogen heterocycles and heteroaryls include, but are not limited to, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, piperidine, piperazine, indoline, morpholino, piperidinyl, tetrahydrofur
- heterocyclic also includes bicyciic groups in which any of the heterocyclic rings is fused to a benzene ring or a cyclohexane ring or another heterocyclic ring (for example, indolyl, quinolyl, isoquinoiyl, tetrahydroquinolyl, and the like).
- cycloalkyl can mean but is in no way limited to univalent groups derived from monocyclic or polycyclic alkyl groups or cycloalkanes, as defnied herein, e.g., saturated monocyclic hydrocarbon groups having from three to twenty carbon atoms in the ring, including, but not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and the like.
- substituted cycloalkyl can mean but is in no way limited to a monocyclic or polycyclic alkyl group and being substituted by one or more substituents, for example, amino, halogen, alkyl, substituted alkyl, carbyloxy, carbylmercapto, aryl, nitro, mercapto or sulfo, whereas these generic substituent groups have meanings which are identical with definitions of the corresponding groups as defined in this legend.
- Heterocycloalkyl refers to a monocyclic or polycyclic alkyl group in which at least one ring carbon atom of its cyclic structure being replaced with a heteroatom selected from the group consisting of N, O, S or P.
- Substituted heterocycloalkyl refers to a monocyclic or polycyclic alkyl group in which at least one ring carbon atom of its cyclic structure being replaced with a heteroatom selected from the group consisting of N, O, S or P and the group is containing one or more substituents selected from the group consisting of halogen, alkyl, substituted alkyl, carbyloxy, carbylmercapto, aryl, nitro, mercapto or sulfo, whereas these generic substituent group have meanings which are identical with definitions of the corresponding groups as defined in this legend.
- hydrocarbyl shall mean a compound which contains carbon and hydrogen and which may be fully saturated, partially unsaturated or aromatic and includes aryl groups, alkyl groups, alkenyl groups and alkynyl groups.
- lower alkyl refers to methyl, ethyl or propyl
- lower alkoxy refers to methoxy, ethoxy or propoxy.
- Q1-Q4, A, and Rn can independently be covalently coupled to a linker and/or a linker to which is attached one or more PTM, ULM, ILM or ILM' groups.
- the MLM of the bifunctional compound comprises chemical moieties such as substituted imidazolines, substituted spiro-indolinones, substituted pyrrolidines, substituted piperidinones, substituted morpholinones, substituted pyrrolopyrimidines, substituted imidazolopyridines, substituted thiazoloimidazoline, substituted pyrrolopyrrolidinones, and substituted isoquinolinones.
- chemical moieties such as substituted imidazolines, substituted spiro-indolinones, substituted pyrrolidines, substituted piperidinones, substituted morpholinones, substituted pyrrolopyrimidines, substituted imidazolopyridines, substituted thiazoloimidazoline, substituted pyrrolopyrrolidinones, and substituted isoquinolinones.
- the MLM comprises the core structures mentioned above with adjacent bis-aryl substitutions positioned as cis- or trans-configurations.
- the MLM comprises part of structural features as in RG7112, RG7388, SAR405838, AMG-232, AM-7209, DS-5272, MK-8242, and NVP-CGM- 097, and analogs or derivatives thereof.
- MLM is a derivative of substituted imidazoline represented as Formula (A-1), or thiazoloimidazoline represented as Formula (A-2), or spiro indolinone represented as Formula (A-3), or pyrollidine represented as Formula (A-4), or piperidinone / morphlinone represented as Formula (A-5), or isoquinolinone represented as Formula (A-6), or pyrollopyrimidine / imidazolopyridine represented as Formula (A-7), or pyrrolopyrrolidinone / imidazolopyrrolidinone represented as Formula (A-8).
- X of Formula (A-1) through Formula (A-8) is selected from the group consisting of carbon, oxygen, sulfur, sulfoxide, sulfone, and N-R a ;
- R a is independently H or an alkyl group with carbon number 1 to 6;
- A, A' and A" of Formula (A-1) through Formula (A-8) are independently selected from C, N, O or S, can also be one or two atoms forming a fused bicyclic ring, or a 6,5- and 5,5-fused aromatic bicyclic group;
- R 2 of Formula (A-1) through Formula (A-8) are independently selected from the group consisting of an aryl or heteroaryl group, a heteroaryl group having one or two heteroatoms independently selected from sulfur or nitrogen, wherein the aryl or heteroaryl group can be mono-cyclic or bi-cyclic, or unsubstituted or substituted with one to three substituents independently selected from the group consisting of:
- R5 of Formula (A-1) through Formula (A-8) is selected from the group consisting of an aryl or heteroaryl group, a heteroaryl group having one or two heteroatoms independently selected from sulfur or nitrogen, wherein the aryl or heteroaryl group can be mono-cyclic or bi-cyclic, or unsubstituted or substituted with one to three substituents independently selected from the group consisting of:
- halogen -CN, CI to C6 alkyl group, C3 to C6 cycloalkyl, -OH, alkoxy with 1 to 6 carbons, fluorine substituted alkoxy with 1 to 6 carbons, sulfoxide with 1 to 6 carbons, sulfone with 1 to 6 carbons, ketone with 2 to 6 carbons, amides with 2 to 6 carbons, dialkyl amine with 2 to 6 carbons, alkyl ether (C2 to C6), alkyl ketone (C3 to C6), morpholinyl, alkyl ester (C3 to C6), alkyl cyanide (C3 to C6);
- R b of Formula (A-1) through Formula (A-8) is selected from the group consisting of alkyl, cycloalkyl, mono-, di- or tri-substituted aryl or heteroaryl, 4-morpholinyl, l-(3-oxopiperazunyl),
- R c of Formula (A-1) through Formula (A-8) is selected from the group consisting of alkyl, fluorine substituted alkyl, cyano alkyl, hydroxyl-substituted alkyl, cycloalkyl, alkoxyalkyl, amide alkyl, alkyl sulfone, alkyl sulfoxide, alkyl amide, aryl, heteroaryl, mono-, bis- and tri-substituted aryl or heteroaryl, CH2CH2R d , and CH2CH2CH2R d , wherein
- R 7 of Formula (A-1) through Formula (A-8) is selected from the group consisting of H, CI to C6 alkyl, cyclic alkyl, fluorine substituted alkyl, cyano substituted alkyl, 5- or 6-membered hetero aryl or aryl, substituted 5- or 6-membered hetero aryl or aryl;
- R e of Formula (A-1) through Formula (A-8) is an alkylene with 1 to 6 carbons, or a bond;
- R of Formula (A-1) through Formula (A-8) is a substituted 4- to 7-membered
- R g of Formula (A-l) through Formula (A-8) is selected from the group consisting of aryl, hetero aryl, substituted aryl or heteroaryl, and 4- to 7-membered heterocycle;
- R9 of Formula (A-l) through Formula (A-8) is selected from the group consisting of a mono-, bis- or tri-substituent on the fused bicyclic aromatic ring in Formula (A-3), wherein the substitutents are independently selected from the group consistin of halogen, alkene, alkyne, alkyl, unsubstituted or substituted with CI or F;
- Rio of Formula (A-l) through Formula (A-8) is selected from the group consistin of an aryl or heteroaryl group, wherein the heteroaryl group can contain one or two heteroatoms as sulfur or nitrogen, aryl or heteroaryl group can be mono-cyclic or bi-cyclic, the aryl or heteroaryl group can be unsubstituted or substituted with one to three substituents, including a halogen, F, CI, -CN, alkene, alkyne, CI to C6 alkyl group, CI to C6 cycloalkyl, -OH, alkoxy with 1 to 6 carbons, fluorine substituted alkoxy with 1 to 6 carbons, sulfoxide with 1 to 6 carbons, sulfone with 1 to 6 carbons, ketone with 2 to 6 carbons;
- substituents including a halogen, F, CI, -CN, alkene, alkyne, CI to C6 alkyl group, CI to C
- R11 of Formula (A-l) through Formula (A-8) is -C(0)-N(R h )(R i ), wherein R h and R ⁇ are selected from groups consisting of the following:
- R h and R 1 of Formula (A-l) through Formula (A-8) are independently selected from the group consisting of H, connected to form a ring, 4-hydroxycyclohehexane; mono- and di- hydroxy substituted alkyl (C3 to C6); 3-hydroxycyclobutane; phenyl-4-carboxylic acid, and substituted phenyl-4-carboxylic acid;
- R12 and Ri 3 of Formula (A-l) through Formula (A-8) are independently selected from H, lower alkyl (CI to C6), lower alkenyl (C2 to C6), lower alkynyl (C2 to C6), cycloalkyl (4, 5 and 6- membered ring), substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, 5- and 6- membered aryl and heteroaryl, R12 and R13 can be connected to form a 5- and 6-membered ring with or without substitution on the ring;
- Ri 4 of Formula (A-l) through Formula (A-8) is selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocycle, substituted heterocycle, cycloalkyl, substituted cycloalkyl, cycloalkenyl and substituted cycloalkenyl;
- Ri 5 of Formula (A-l) through Formula (A-8) is CN;
- heterocycloalkyl or heteroaryl group can contain from one to three heteroatoms independently selected from O, N or S, and the cycloalkyl, heterocycloalkyl, aryl or heteroaryl group can be unsubstituted or substituted with from one to three substituents independently selected from halogen, Cl-6 alkyl groups, hydroxylated Cl-6 alkyl, Cl-6 alkyl containing thioether, ether, sulfone, sulfoxide, fluorine substituted ether or cyano group;
- Ri 7 of Formula (A-l) through Formula (A-8) is selected from the group consisting of
- Ri 8 of Formula (A-l) through Formula (A-8) is selected from the group consisting of substituted aryl, heteroaryl, alkyl, cycloalkyl, the substitution is preferably -N(Cl-4 alkyl)(cycloalkyl), - N(Cl-4 alkyl)alkyl-cycloalkyl, and -N(Cl-4 alkyl)[(alkyl)-(heterocycle-substituted)-cycloalkyl];
- Ri9 of Formula (A-l) through Formula (A-8) is selected from the group consisting of aryl, heteroaryl, bicyclic heteroaryl, and these aryl or hetroaryl groups can be substituted with halogen, Cl-6 alkyl, Cl-6 cycloalkyl, CF 3 , F, CN, alkyne, alkyl sulfone, the halogen substitution can be mon- bis- or tri-substituted; R20 and R21 of Formula
- R23 of Formula (A-l) through Formula (A-8) is selected from aryl, heteroaryl, -O-aryl, -O- heteroaryl, -O-alkyl, -O-alkyl-cycloalkyl, -NH-alkyl, -NH-alkyl-cycloalkyl, -N(H)-aryl, -N(H)- heteroaryl, -N(alkyl)-aryl, -N(alkyl)-heteroaryl, the aryl or heteroaryl groups can be substituted with halogen, Cl-6 alkyl, hydoxylated Cl-6 alkyl, cycloalkyl, fluorine-substituted Cl-6 alkyl, CN, alkoxy, alkyl sulfone, amide and sulfonamide;
- R 24 of Formula (A-l) through Formula (A-8) is selected from the group consisting of -CH2-(C1- 6 alkyl), -CH2-cycloalkyl, -CH2-aryl, CH2-heteroaryl, where alkyl, cycloalkyl, aryl and heteroaryl can be substituted with halogen, alkoxy, hydoxylated alkyl, cyano-substituted alkyl, cycloalyl and substituted cycloalkyl;
- R25 of Formula (A-l) through Formula (A-8) is selected from the group consisting of Cl-6 alkyl, Cl-6 alkyl-cycloalkyl, alkoxy-substituted alkyl, hydroxylated alkyl, aryl, heteroaryl, substituted aryl or heteroaryl, 5, 6, and 7-membered nitrogen-containing saturated heterocycles, 5,6-fused and 6,6-fused nitrogen-containing saturated heterocycles and these saturated heterocycles can be substituted with Cl-6 alkyl, fluorine-substituted Cl-6 alkyl, alkoxy, aryl and heteroaryl group;
- R 2 6 of Formula (A-l) through Formula (A-8) is selected from the group consisting of Cl-6 alkyl, C3-6 cycloalkyl, the alkyl or cycloalkyl can be substituted with -OH, alkoxy, fluorine- substituted alkoxy, fluorine-substituted alkyl, -NH 2 ,
- R27 of Formula (A-l) through Formula (A-8) is selected from the group consisting of aryl, heteroaryl, bicyclic heteroaryl, wherein the aryl or heteroaryl groups can be substituted with Cl- 6 alkyl, alkoxy, NH2, NH-alkyl, halogen, or -CN, and the substitution can be independently mono-, bis- and tri-substitution;
- R 2 8 of Formula (A-l) through Formula (A-8) is selected from the group consisting of aryl, 5 and 6-membered heteroaryl, bicyclic heteroaryl, cycloalkyl, saturated heterocycle such as piperidine, piperidinone, tetrahydropyran, N-acyl-piperidine, wherein the cycloalkyl, saturated heterocycle, aryl or heteroaryl can be further substituted with -OH, alkoxy, mono-, bis- or tri- substitution including halogen, -CN, alkyl sulfone, and fluorine substitute
- Ri" of Formula (A-l) through Formula (A-8) is selected from the group consisting of alkyl, aryl substitituted alkyl, alkoxy substituted alkyl, cycloalkyl, aryl- substituted cycloalkyl, and alkoxy substituted cycloalkyl.
- Formula (A-8) are substituted pyrrolidine, substituted piperidine, substituted piperizine.
- MLMs include those shown below as well as those 'hybrid' molecules that arise from the combination of 1 or more of the different features shown in the molecules below.
- PROTACs can be prepared to target a particular protein for degradation, where 'L" is a connector (i.e. a linker group), and "PTM” is a ligand binding to a target protein.
- the description provides a bifunctional molecule comprising a structure selected from the roup consisting of:
- R4' of Formulas A-l-1 throught A-l-4 is selected from the group consisting of H, halogen, -CH 3 , -CF 3 , -OCH 3 , -C(CH 3 ) 3 , -CH(CH 3 ) 2 , -cyclopropyl, -CN, -C(CH 3 ) 2 OH, -C(CH 3 ) 2 OCH 2 CH 3 , - C(CH 3 ) 2 CH 2 OH, -C(CH 3 ) 2 CH 2 OCH 2 CH 3 , -C(CH 3 ) 2 CH 2 OCH 2 CH 2 OH, -C(CH 3 ) 2 CH 2 OCH 2 CH 3 , -C(CH 3 ) 2 CN, -C(CH 3 ) 2 C(0)CH 3 , -C(CH 3 ) 2 C(0)NHCH 3 , -C(CH 3 ) 2 C(0)N(CH 3 ) 2 , -SCH 3 , - SCH 2
- R4' can also serve as the linker attachment position.
- linker will be connected to the terminal atom of R4' groups shown above.
- the linker connection position of Formulas A-l-1 throught A-l-4 is at least one of R4' or R6' or both.
- R6' of Formulas A-l-1 throught A-l-4 is independently selected from the roup consisting of H,
- the linker of Formula A-4-1 through A-4-6 is attached to at least one of Rl ⁇ R2', R3', R4', R5', R6', or a combination thereof.
- the description provides bifunctional or chimeric molecules with the structure: PTM-L-MLM, wherein PTM is a protein target binding moiety coupled to an MLM by L, wherein L is a bond (i.e., absent) or a chemical linker.
- the MLM has a structure selected from the group consisting of A-4-1, A-4-2, A-4- 3, A-4-4, A-4-5, and A-4-6:
- R7' of Formula A-4-1 through A-4-6 is a member selected from the group consisting of halogen, mono-, and di- or tri-substituted halogen;
- R8' of Formula A-4-1 through A-4-6 is selected from the group consisting of H, -F, -CI, -Br, -I, - CN, -NO 2 , ethylnyl, cyclopropyl, methyl, ethyl, isopropyl, vinyl, methoxy, ethoxy, isopropoxy, - OH, other Cl-6 alkyl, other Cl-6 alkenyl, and Cl-6 alkynyl, mono-, di- or tri-substituted;
- R9' of Formula A-4-1 through A-4-6 is selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, hetero aryl, substituted heteroaryl, cycloalkyl, substituted cycloalkyl, alkenyl, and substituted cycloalkenyl;
- Z of Formula A-4-1 through A-4-6 is selected from the group consistin of H, -OCH 3 , -OCH 2 CH 3 , and halogen;
- RIO' and Rl l' of Formula A-4-1 through A-4-6 are each independently selected from the group consisting of H, (CH 2 ) compassion-R', (CH 2 ) compassion-NR'R", (CH 2 ) complicat-NR'COR", (CH 2 ) admir-NR'S0 2 R", (CH 2 ) admir-COOH, (CH 2 ) n -COOR', (CH) n -CONR'R", (CH 2 ) n -OR', (CH 2 ) n -SR', (CH 2 ) n -SOR', (CH 2 ) n -CH(OH)-R', (CH 2 ) n -COR', (CH 2 ) n -S0 2 R ⁇ (CH 2 ) n -SONR'R", (CH 2 ) n -S0 2 NR'R", (CH 2 CH 2 0) m -(CH 2 ) n -R', (CH 2 CH 2
- n, and p are independently 0 to 6;
- R12' of Formula A-4-1 through A-4-6 is selected from the group consisting of -O-(alkyl), -O- (alkyl)-akoxy, -C(0)-(alkyl), -C(OH)-alkyl-alkoxy, -C(0)-NH-(alkyl), -C(0)-N-(alkyl) 2 , -S(O)- (alkyl), S(0) 2 -(alkyl), -C(0)-(cyclic amine), and -O-aryl-(alkyl), -O-aryl-(alkoxy);
- Rl" of Formula A-4-1 through A-4-6 is selected from the group consisting of alkyl, aryl substitituted alkyl, aloxy substituted alkyl, cycloalkyl, ary- substituted cycloalkyl, and alkoxy substituted cycloalkyl.
- the alkyl, alkoxy or the like can be a lower alkyl or lower alkoxy.
- A-4-6 is at least one of Z, R8', R9', R10', Rl l", R12", or Rl".
- A-4-1 through A-4-6 can be applied to MLM with formula A-2, A-3, A-5, A-6, A-7 and A-8, wherein the solvent exposed area in the MLM can be connected to linker "L” which will be attached to target protein ligand "PTM", to construct PROTACs.
- Exemplary MDM2 binding moieties include, but not limited, the following: [00186] 1. The HDM2/MDM2 inhibitors identified in Vassilev, et al, In vivo activation of the p53 pathway by small-molecule antagonists of MDM2, SCIENCE vol:303, pag:844-848 (2004), and Schneekloth, et al, Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics, Bioorg. Med. Chem. Lett. 18 (2008) 5904-5908, including (or additionally) the compounds nutlin-3, nutlin-2, and nutlin-1 (derivatized) as described below, as well as all derivatives and analogs thereof:
- the description provides compounds useful for binding and/or inhibiting cereblon.
- the compound is selected from the group consisting of chemical structures:
- X of Formulas (a) through (f) is independently selected from the group O, S and H 2;
- Z of Formulas (a) through (f) is independently selected from the group O, and S or H 2 except that both X and Z cannot be H 2;
- G and G' of Formulas (a) through (f) are independently selected from the group H, alkyl
- Ql - Q4 of Formulas (a) through (f) represent a carbon C substituted with a group independently selected from R', N or N-oxide;
- a of Formulas (a) through (f) is independently selected from the group H, alkyl (linear, branched, optionally substituted), cycloalkyl, CI and F;
- R of Formulas (a) through (f) comprises, but is not limited to: -CONR'R", -OR', -NR'R", -SR', -S0 2 R', -S0 2 NR'R", -CR'R"-, -CR'NR'R”-, (-CR'0) n R", -aryl, -hetaryl, -alkyl (linear, branched, optionally substituted), -cycloalkyl, -heterocyclyl, -P(0)(OR')R", - P(0)R'R", -OP(0)(OR')R", -OP(0)R'R", -CI, -F, -Br, -I, -CF 3 , -CN, -NR'S0 2
- n of Formulas (a) through (f) is an integer from 1-10 (e.g., 1-4, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10); of Formulas (a) through (f) represents a bond that may be stereospecific ((R) or (S)) or non-stereospecific; and
- R n of Formulas (a) through (f) comprises 1-4 independent functional groups or atoms.
- the CLM comprises a chemical structure selected from the roup:
- X of Formulas (a) through (f) is independently selected from the group O, S and H2;
- G and G' of Formulas (a) through (f) are independently selected from the group H, alkyl
- Ql - Q4 of Formulas (a) through (f) represent a carbon C substituted with a group independently selected from R', N or N-oxide;
- a of Formulas (a) through (f) is independently selected from the group H, alkyl (linear, branched, optionally substituted), cycloalkyl, CI and F;
- the CLM or ULM comprises a chemical structure selected from the
- Formula (g) represents a bond that may be stereospecific ((R) or (S)) or non- stereospecific;
- Q1-Q4, A, and Rn of Formulas (a) through (g) can independently be covalently coupled to a linker and/or a linker to which is attached one or more PTM, ULM, CLM or CLM' groups.
- Qi, Q2, Q3, Q4, Q5 of Formulas (h) through (ab) are independently represent a carbon C substituted with a group independently selected from R', N or N-oxide;
- R 1 of Formulas (h) through (ab) is selected from H, CN, C1-C3 alkyl;
- R 5 of Formulas (h) through (ab) is H or lower alkyl
- X of Formulas (h) through (ab) is C, CH or N;
- R' of Formulas (h) through (ab) is selected from H, halogen, alkyl, substituted alkyl, alkoxy, substituted alkoxy;
- R of Formulas (h) through (ab) is H, OH, lower alkyl, lower alkoxy, cyano, halogenated lower alkoxy, or halogenated lower alkyl
- the CLM is covalently joined to a PTM, a chemical linker group (L), a ULM, CLM (or CLM') or combination thereof.
- the CLM or CLM' is covalently joined to a PTM, a chemical linker group (L), a ULM, a CLM, a CLM', or a combination thereof via an R group (such as, R, R 1 , R2 , R 3 , R 4 or R'), W, X, or a Q group (such as, Qi, Q 2 , Q 3 , Q 4 , or Q5) of Formulas (h) through (ab).
- R group such as, R, R 1 , R2 , R 3 , R 4 or R'
- W X
- Q group such as, Qi, Q 2 , Q 3 , Q 4 , or Q5
- the CLM or CLM' is covalently joined to a PTM, a chemical linker group (L), a ULM, a CLM, a CLM', or a combination thereof via W, X, R, R 1 , R 2 , R 3 , R 4 , R 5 , R', Qi, Q 2 , Q 3 , Q 4 , and Q 5 of Formulas (h) through (ab).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Medicinal Preparation (AREA)
Priority Applications (16)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202311500675.8A CN117551089A (zh) | 2017-01-26 | 2018-01-26 | 雌激素受体蛋白水解调节剂及相关使用方法 |
| RU2019123537A RU2797808C2 (ru) | 2017-01-26 | 2018-01-26 | Модуляторы протеолиза эстрогеновых рецепторов и связанные с ними способы применения |
| BR112019015312-8A BR112019015312A2 (pt) | 2017-01-26 | 2018-01-26 | Moduladores da proteólise pelo receptor de estrogênio e métodos de uso associados |
| JP2019540457A JP7266526B6 (ja) | 2017-01-26 | 2018-01-26 | エストロゲン受容体タンパク質分解性の調節因子およびその関連方法 |
| EP18744416.1A EP3573977A4 (en) | 2017-01-26 | 2018-01-26 | Modulators of estrogen receptor proteolysis and associated methods of use |
| AU2018211975A AU2018211975B2 (en) | 2017-01-26 | 2018-01-26 | Modulators of estrogen receptor proteolysis and associated methods of use |
| KR1020197023986A KR102582886B1 (ko) | 2017-01-26 | 2018-01-26 | 에스트로겐 수용체 단백질 분해 조절제 및 관련 사용 방법 |
| KR1020237032355A KR20230140606A (ko) | 2017-01-26 | 2018-01-26 | 에스트로겐 수용체 단백질 분해 조절제 및 관련 사용 방법 |
| CA3049912A CA3049912A1 (en) | 2017-01-26 | 2018-01-26 | Modulators of estrogen receptor proteolysis and associated methods of use |
| MX2019008934A MX2019008934A (es) | 2017-01-26 | 2018-01-26 | Moduladores de la proteolisis del receptor de estrogeno y métodos asociados de uso,. |
| IL300417A IL300417A (en) | 2017-01-26 | 2018-01-26 | Bifunctional benzothiophene compounds, preparations containing them and their use in therapy |
| CN201880020007.6A CN110612297B (zh) | 2017-01-26 | 2018-01-26 | 雌激素受体蛋白水解调节剂及相关使用方法 |
| IL268011A IL268011B2 (en) | 2017-01-26 | 2019-07-11 | Bifunctional benzothiophene compounds, preparations containing them and their use in therapy |
| CONC2019/0009145A CO2019009145A2 (es) | 2017-01-26 | 2019-08-23 | Moduladores de la proteolisis del receptor de estrogeno y métodos asociados de uso |
| AU2022221407A AU2022221407B2 (en) | 2017-01-26 | 2022-08-23 | Modulators of estrogen receptor proteolysis and associated methods of use |
| JP2023005222A JP2023058503A (ja) | 2017-01-26 | 2023-01-17 | エストロゲン受容体タンパク質分解性の調節因子およびその関連方法 |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762450740P | 2017-01-26 | 2017-01-26 | |
| US62/450,740 | 2017-01-26 | ||
| US201762587378P | 2017-11-16 | 2017-11-16 | |
| US62/587,378 | 2017-11-16 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018140809A1 true WO2018140809A1 (en) | 2018-08-02 |
Family
ID=62978857
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2018/015574 Ceased WO2018140809A1 (en) | 2017-01-26 | 2018-01-26 | Modulators of estrogen receptor proteolysis and associated methods of use |
Country Status (12)
| Country | Link |
|---|---|
| US (3) | US10604506B2 (enExample) |
| EP (1) | EP3573977A4 (enExample) |
| JP (2) | JP7266526B6 (enExample) |
| KR (2) | KR20230140606A (enExample) |
| CN (2) | CN110612297B (enExample) |
| AU (2) | AU2018211975B2 (enExample) |
| BR (1) | BR112019015312A2 (enExample) |
| CA (1) | CA3049912A1 (enExample) |
| CO (1) | CO2019009145A2 (enExample) |
| IL (2) | IL300417A (enExample) |
| MX (2) | MX2019008934A (enExample) |
| WO (1) | WO2018140809A1 (enExample) |
Cited By (54)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019038717A1 (en) * | 2017-08-23 | 2019-02-28 | Novartis Ag | 3- (1-OXOISOINDOLIN-2-YL) PIPERIDINE-2,6-DIONE DERIVATIVES AND USES THEREOF |
| WO2019099868A2 (en) | 2017-11-16 | 2019-05-23 | C4 Therapeutics, Inc. | Degraders and degrons for targeted protein degradation |
| WO2019236483A1 (en) | 2018-06-04 | 2019-12-12 | C4 Therapeutics, Inc. | Spirocyclic compounds |
| WO2020027225A1 (ja) | 2018-07-31 | 2020-02-06 | ファイメクス株式会社 | 複素環化合物 |
| WO2020051235A1 (en) | 2018-09-04 | 2020-03-12 | C4 Therapeutics, Inc. | Compounds for the degradation of brd9 or mth1 |
| US10646575B2 (en) | 2016-05-10 | 2020-05-12 | C4 Therapeutics, Inc. | Heterocyclic degronimers for target protein degradation |
| US10660968B2 (en) | 2016-05-10 | 2020-05-26 | C4 Therapeutics, Inc. | Spirocyclic degronimers for target protein degradation |
| WO2020132561A1 (en) | 2018-12-20 | 2020-06-25 | C4 Therapeutics, Inc. | Targeted protein degradation |
| WO2020165833A1 (en) * | 2019-02-15 | 2020-08-20 | Novartis Ag | 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| WO2020165834A1 (en) * | 2019-02-15 | 2020-08-20 | Novartis Ag | Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| WO2020201080A1 (en) | 2019-03-29 | 2020-10-08 | Astrazeneca Ab | Estrogen receptor degrading protacs |
| WO2020214555A1 (en) | 2019-04-16 | 2020-10-22 | Northwestern University | Bifunctional compounds comprising apcin-a and their use in the treatment of cancer |
| US10849982B2 (en) | 2016-05-10 | 2020-12-01 | C4 Therapeutics, Inc. | C3-carbon linked glutarimide degronimers for target protein degradation |
| WO2021178920A1 (en) | 2020-03-05 | 2021-09-10 | C4 Therapeutics, Inc. | Compounds for targeted degradation of brd9 |
| US11185537B2 (en) | 2018-07-10 | 2021-11-30 | Novartis Ag | 3-(5-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| US11192877B2 (en) | 2018-07-10 | 2021-12-07 | Novartis Ag | 3-(5-hydroxy-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| WO2021252666A1 (en) | 2020-06-09 | 2021-12-16 | Prelude Therapeutics, Incorporated | Brm targeting compounds and associated methods of use |
| EP3931186A1 (en) * | 2019-02-25 | 2022-01-05 | CHDI Foundation, Inc. | Compounds for targeting mutant huntingtin protein and uses thereof |
| WO2022032026A1 (en) | 2020-08-05 | 2022-02-10 | C4 Therapeutics, Inc. | Compounds for targeted degradation of ret |
| EP3953332A1 (en) | 2019-04-12 | 2022-02-16 | C4 Therapeutics, Inc. | Tricyclic degraders of ikaros and aiolos |
| US11254672B2 (en) | 2017-09-04 | 2022-02-22 | C4 Therapeutics, Inc. | Dihydrobenzimidazolones for medical treatment |
| JP2022516401A (ja) * | 2018-11-30 | 2022-02-28 | カイメラ セラピューティクス, インコーポレイテッド | Irak分解剤およびそれらの使用 |
| JP2022516745A (ja) * | 2019-01-09 | 2022-03-02 | ダナ-ファーバー キャンサー インスティテュート,インコーポレイテッド | Dot1l分解剤およびその使用 |
| US11401256B2 (en) | 2017-09-04 | 2022-08-02 | C4 Therapeutics, Inc. | Dihydroquinolinones for medical treatment |
| JP2022534650A (ja) * | 2019-05-31 | 2022-08-03 | 海思科医▲薬▼有限公司 | Btk阻害薬環誘導体、その調製方法及びその医薬品適用 |
| US11459335B2 (en) | 2017-06-20 | 2022-10-04 | C4 Therapeutics, Inc. | N/O-linked Degrons and Degronimers for protein degradation |
| WO2022235945A1 (en) | 2021-05-05 | 2022-11-10 | Biogen Ma Inc. | Compounds for targeting degradation of bruton's tyrosine kinase |
| WO2022270994A1 (ko) | 2021-06-25 | 2022-12-29 | 한국화학연구원 | 유비퀴틴 프로테오좀 경로를 통해 비티케이 분해작용을 가지는 신규한 이작용성 헤테로사이클릭 화합물과 이의 용도 |
| WO2023283372A1 (en) | 2021-07-07 | 2023-01-12 | Biogen Ma Inc. | Compounds for targeting degradation of irak4 proteins |
| WO2023283610A1 (en) | 2021-07-07 | 2023-01-12 | Biogen Ma Inc. | Compounds for targeting degradation of irak4 proteins |
| US11566022B2 (en) | 2019-12-18 | 2023-01-31 | Novartis Ag | 3-(5-methoxy-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| US11584748B2 (en) | 2018-04-16 | 2023-02-21 | C4 Therapeutics, Inc. | Spirocyclic compounds |
| WO2023061445A1 (zh) | 2021-10-14 | 2023-04-20 | 首药控股(北京)股份有限公司 | 硼酸衍生物 |
| US11753397B2 (en) | 2018-03-26 | 2023-09-12 | C4 Therapeutics, Inc. | Cereblon binders for the degradation of ikaros |
| WO2023205701A1 (en) | 2022-04-20 | 2023-10-26 | Kumquat Biosciences Inc. | Macrocyclic heterocycles and uses thereof |
| US11802131B2 (en) | 2017-09-04 | 2023-10-31 | C4 Therapeutics, Inc. | Glutarimides for medical treatment |
| US11897862B2 (en) | 2022-03-17 | 2024-02-13 | Gilead Sciences, Inc. | IKAROS zinc finger family degraders and uses thereof |
| US11912682B2 (en) | 2021-01-13 | 2024-02-27 | Monte Rosa Therapeutics, Inc. | Isoindolinone compounds |
| WO2024064358A1 (en) | 2022-09-23 | 2024-03-28 | Ifm Due, Inc. | Compounds and compositions for treating conditions associated with sting activity |
| US11969472B2 (en) | 2018-08-22 | 2024-04-30 | Cullgen (Shanghai), Inc. | Tropomyosin receptor kinase (TRK) degradation compounds and methods of use |
| US12048747B2 (en) | 2016-05-10 | 2024-07-30 | C4 Therapeutics, Inc. | Substituted piperidine Degronimers for Target Protein degradation |
| US12065442B2 (en) | 2018-08-22 | 2024-08-20 | Cullgen (Shanghai), Inc. | Tropomyosin receptor kinase (TRK) degradation compounds and methods of use |
| US12103919B2 (en) | 2021-06-03 | 2024-10-01 | Novartis Ag | 3-(5-oxy)-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| US12122764B2 (en) | 2021-12-22 | 2024-10-22 | Gilead Sciences, Inc. | IKAROS zinc finger family degraders and uses thereof |
| US12150995B2 (en) | 2020-12-30 | 2024-11-26 | Kymera Therapeutics, Inc. | IRAK degraders and uses thereof |
| WO2024243441A1 (en) | 2023-05-24 | 2024-11-28 | Kumquat Biosciences Inc. | Heterocyclic compounds and uses thereof |
| WO2025007000A1 (en) | 2023-06-30 | 2025-01-02 | Kumquat Biosciences Inc. | Substituted condensed tricyclic amine compounds and uses thereof as ras inhibitors |
| US12226424B2 (en) | 2018-04-09 | 2025-02-18 | Shanghaitech University | Target protein degradation compounds, their anti-tumor use, their intermediates and use of intermediates |
| WO2025096855A1 (en) | 2023-11-02 | 2025-05-08 | Kumquat Biosciences Inc. | Degraders and uses thereof |
| WO2025114875A1 (en) | 2023-12-01 | 2025-06-05 | Astrazeneca Ab | Er degraders and uses thereof |
| US12410171B2 (en) | 2020-02-26 | 2025-09-09 | Cullgen (Shanghai), Inc. | Tropomyosin receptor kinase (TRK) degradation compounds and methods of use |
| US12421220B2 (en) | 2022-06-06 | 2025-09-23 | C4 Therapeutics, Inc. | Bicyclic-substituted glutarimide cereblon binders |
| US12448399B2 (en) | 2023-01-26 | 2025-10-21 | Arvinas Operations, Inc. | Cereblon-based KRAS degrading PROTACs and uses related thereto |
| US12497402B2 (en) | 2023-09-01 | 2025-12-16 | Kymera Therapeutics, Inc. | IRAK4 degraders and uses thereof |
Families Citing this family (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180228907A1 (en) | 2014-04-14 | 2018-08-16 | Arvinas, Inc. | Cereblon ligands and bifunctional compounds comprising the same |
| WO2016197114A1 (en) | 2015-06-05 | 2016-12-08 | Arvinas, Inc. | Tank-binding kinase-1 protacs and associated methods of use |
| US10772962B2 (en) | 2015-08-19 | 2020-09-15 | Arvinas Operations, Inc. | Compounds and methods for the targeted degradation of bromodomain-containing proteins |
| WO2018053354A1 (en) | 2016-09-15 | 2018-03-22 | Arvinas, Inc. | Indole derivatives as estrogen receptor degraders |
| KR20230127371A (ko) | 2016-11-01 | 2023-08-31 | 아비나스 오퍼레이션스, 인코포레이티드 | 타우(Tau)-단백질 표적화 프로탁(PROTAC) 및 관련 사용 방법 |
| IL297717A (en) | 2016-12-01 | 2022-12-01 | Arvinas Operations Inc | History of tetrahydronaphthalene and tetrahydroisoquinoline as estrogen receptor antagonists |
| WO2018119441A1 (en) | 2016-12-23 | 2018-06-28 | Arvinas, Inc. | Egfr proteolysis targeting chimeric molecules and associated methods of use |
| MX2019007649A (es) | 2016-12-23 | 2019-09-10 | Arvinas Operations Inc | Compuestos y metodos para la degradacion dirigida de polipeptidos de fibrosarcoma acelerado rapidamente. |
| US11173211B2 (en) | 2016-12-23 | 2021-11-16 | Arvinas Operations, Inc. | Compounds and methods for the targeted degradation of rapidly accelerated Fibrosarcoma polypeptides |
| WO2018118598A1 (en) | 2016-12-23 | 2018-06-28 | Arvinas, Inc. | Compounds and methods for the targeted degradation of fetal liver kinase polypeptides |
| US11191741B2 (en) | 2016-12-24 | 2021-12-07 | Arvinas Operations, Inc. | Compounds and methods for the targeted degradation of enhancer of zeste homolog 2 polypeptide |
| IL300417A (en) | 2017-01-26 | 2023-04-01 | Arvinas Operations Inc | Bifunctional benzothiophene compounds, preparations containing them and their use in therapy |
| EP3577109A4 (en) | 2017-01-31 | 2020-11-18 | Arvinas Operations, Inc. | CEREMONY LIGANDS AND BIFUNCTIONAL COMPOUNDS CONTAINING THEM |
| US11065231B2 (en) | 2017-11-17 | 2021-07-20 | Arvinas Operations, Inc. | Compounds and methods for the targeted degradation of interleukin-1 receptor- associated kinase 4 polypeptides |
| EP3743066A4 (en) | 2018-01-26 | 2021-09-08 | Yale University | IMIDE-BASED PROTEOLYSIS MODULATORS AND RELATED METHODS OF USE |
| JP7720698B2 (ja) | 2018-04-04 | 2025-08-08 | アルビナス・オペレーションズ・インコーポレイテッド | タンパク質分解の調節因子および関連する使用方法 |
| EP3774772A1 (en) * | 2018-04-13 | 2021-02-17 | Arvinas Operations, Inc. | Cereblon ligands and bifunctional compounds comprising the same |
| EP4272737A3 (en) | 2018-04-23 | 2024-01-17 | Celgene Corporation | Substituted 4-aminoisoindoline-1,3-dione compounds and their use for treating lymphoma |
| CN112912376A (zh) | 2018-08-20 | 2021-06-04 | 阿尔维纳斯运营股份有限公司 | 用于治疗神经变性疾病的具有E3泛素连接酶结合活性并靶向α-突触核蛋白的蛋白水解靶向嵌合(PROTAC)化合物 |
| WO2021007286A1 (en) * | 2019-07-08 | 2021-01-14 | Board Of Regents, The University Of Texas System | Compositions and methods for cancer therapy |
| US11912699B2 (en) | 2019-07-17 | 2024-02-27 | Arvinas Operations, Inc. | Tau-protein targeting compounds and associated |
| EP4021450B1 (en) | 2019-08-26 | 2025-11-05 | Arvinas Operations, Inc. | Methods of treating breast cancer with tetrahydronaphthalene derivatives as estrogen receptor degraders |
| AU2020368542B2 (en) | 2019-10-17 | 2024-02-29 | Arvinas Operations, Inc. | Bifunctional molecules containing an E3 ubiquitine ligase binding moiety linked to a BCL6 targeting moiety |
| IL293027A (en) * | 2019-11-19 | 2022-07-01 | Bristol Myers Squibb Co | Compounds useful as inhibitors of Helios protein |
| AU2020405129A1 (en) | 2019-12-19 | 2022-06-23 | Arvinas Operations, Inc. | Compounds and methods for the targeted degradation of androgen receptor |
| CN113387930B (zh) * | 2020-03-11 | 2022-07-12 | 苏州开拓药业股份有限公司 | 一种双官能化合物及其制备方法和用途 |
| WO2021207172A1 (en) * | 2020-04-06 | 2021-10-14 | Arvinas Operations, Inc. | Compounds and methods for targeted degradation of kras |
| CN111606868B (zh) * | 2020-06-23 | 2023-02-17 | 温州大学新材料与产业技术研究院 | 一种双齿噁唑啉手性配体的制备方法 |
| EP4204418A1 (en) | 2020-08-28 | 2023-07-05 | Arvinas Operations, Inc. | Rapidly accelerating fibrosarcoma protein degrading compounds and associated methods of use |
| AU2021341998A1 (en) * | 2020-09-09 | 2023-05-25 | Haisco Pharmaceuticals Pte. Ltd. | Salt of compound for degrading btk, crystal form thereof, and use thereof in medicine |
| EP4211128A1 (en) | 2020-09-14 | 2023-07-19 | Arvinas Operations, Inc. | Crystalline forms of a compound for the targeted degradation of estrogen receptor |
| CN116438177B (zh) * | 2021-01-28 | 2025-09-16 | 江苏亚虹医药科技股份有限公司 | 靶向嵌合化合物、含其的药物组合物及其制备方法和用途 |
| WO2022217010A1 (en) * | 2021-04-09 | 2022-10-13 | Endotarget Inc. | Compounds and methods for the targeted degradation of estrogen receptors |
| EP4323352A1 (en) | 2021-04-16 | 2024-02-21 | Arvinas Operations, Inc. | Modulators of bcl6 proteolysis and associated methods of use |
| EP4339181A4 (en) * | 2021-05-14 | 2025-06-04 | Jiangsu Yahong Meditech Co., Ltd. | Naphthalene ring-containing compound, pharmaceutical composition containing it and use thereof |
| EP4421071A1 (en) * | 2021-10-22 | 2024-08-28 | Gluetacs Therapeutics (Shanghai) Co., Ltd. | Crbn e3 ligase ligand compound, protein degrading agent developed on the basis of ligand compound, and their applications |
| CN115417913B (zh) * | 2022-08-26 | 2024-10-29 | 天津医科大学 | 靶向雌激素受体的谷胱甘肽响应protac降解剂的制备方法及应用 |
| TW202432544A (zh) | 2022-09-07 | 2024-08-16 | 美商亞文納營運公司 | 快速加速纖維肉瘤降解化合物及相關使用方法 |
| WO2024073507A1 (en) | 2022-09-28 | 2024-04-04 | Theseus Pharmaceuticals, Inc. | Macrocyclic compounds and uses thereof |
| TW202425989A (zh) * | 2022-10-20 | 2024-07-01 | 大陸商西藏海思科製藥有限公司 | 膦醯衍生物的製備方法 |
| CN116640119B (zh) * | 2023-05-29 | 2025-07-25 | 成都毓欣科技有限公司 | 一种泊马度胺衍生物的制备方法 |
| WO2025097092A1 (en) * | 2023-11-02 | 2025-05-08 | Neomorph, Inc. | Substituted 3-(5-(4-hydroxypiperidin-4-yl)-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and 3-(2-(4-hydroxypiperidin-4-yl)-5-oxo-5,7-dihydro-6h-pyrrolo[3,4-b]pyridin-6-yl)piperidine-2,6-dione derivatives and uses thereof |
| WO2025162221A1 (zh) * | 2024-02-04 | 2025-08-07 | 标新生物医药科技(上海)有限公司 | 基于取代的异吲哚啉酮新颖骨架化合物、含有其的双功能蛋白降解剂及它们的应用 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150291562A1 (en) * | 2014-04-14 | 2015-10-15 | Arvinas, Inc. | Imide-based modulators of proteolysis and associated methods of use |
| US20160045607A1 (en) * | 2014-08-11 | 2016-02-18 | Yale University | Estrogen-related receptor alpha based protac compounds and associated methods of use |
| WO2016169989A1 (en) * | 2015-04-22 | 2016-10-27 | Glaxosmithkline Intellectual Property Development Limited | Iap e3 ligase directed proteolysis targeting chimeric molecules |
| US20170008904A1 (en) * | 2015-07-10 | 2017-01-12 | Arvinas, Inc. | Mdm2-based modulators of proteolysis and associated methods of use |
| WO2017011590A1 (en) * | 2015-07-13 | 2017-01-19 | Arvinas, Inc. | Alanine-based modulators of proteolysis and associated methods of use |
Family Cites Families (111)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5681835A (en) | 1994-04-25 | 1997-10-28 | Glaxo Wellcome Inc. | Non-steroidal ligands for the estrogen receptor |
| US5510357A (en) | 1995-02-28 | 1996-04-23 | Eli Lilly And Company | Benzothiophene compounds as anti-estrogenic agents |
| PL195916B1 (pl) | 1996-07-24 | 2007-11-30 | Celgene Corp | Izomery optyczne podstawionej 1-okso-izoindoliny i 1,3-diokso-izoindoliny, kompozycje farmaceutyczne je zawierające oraz ich zastosowanie |
| ZA982877B (en) | 1997-04-09 | 1999-10-04 | Lilly Co Eli | Treatment of central nervous system disorders with selective estrogen receptor modulators. |
| JP4903922B2 (ja) | 1997-05-14 | 2012-03-28 | スローン − ケッタリング インスティチュート フォー キャンサー リサーチ | 選択された蛋白質を分解する複合化合物 |
| JP2001517664A (ja) * | 1997-09-23 | 2001-10-09 | イーライ・リリー・アンド・カンパニー | ベンゾチオフェン類 |
| US6306663B1 (en) | 1999-02-12 | 2001-10-23 | Proteinex, Inc. | Controlling protein levels in eucaryotic organisms |
| AU769652B2 (en) | 1999-05-05 | 2004-01-29 | Cubist Pharmaceuticals, Inc. | Novel prolines as antimicrobial agents |
| US7208157B2 (en) | 2000-09-08 | 2007-04-24 | California Institute Of Technology | Proteolysis targeting chimeric pharmaceutical |
| WO2002020740A2 (en) | 2000-09-08 | 2002-03-14 | California Institute Of Technology | Proteolysis targeting chimeric pharmaceutical |
| US20030045552A1 (en) | 2000-12-27 | 2003-03-06 | Robarge Michael J. | Isoindole-imide compounds, compositions, and uses thereof |
| JP2005507363A (ja) | 2001-02-16 | 2005-03-17 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 血管新生阻害トリペプチド、組成物およびそれらの使用方法 |
| HN2002000136A (es) | 2001-06-11 | 2003-07-31 | Basf Ag | Inhibidores de la proteasa del virus hiv, compuestos que contienen a los mismos, sus usos farmaceuticos y los materiales para su sintesis |
| US7030141B2 (en) | 2001-11-29 | 2006-04-18 | Christopher Franklin Bigge | Inhibitors of factor Xa and other serine proteases involved in the coagulation cascade |
| US20060128632A1 (en) | 2002-07-02 | 2006-06-15 | Sharma Sushil K | Peptide inhibitors of smac protein binding to inhibitor of apoptosis proteins (iap) |
| WO2005007621A2 (en) | 2003-05-30 | 2005-01-27 | Rigel Pharmaceuticals, Inc. | Ubiquitin ligase inhibitors |
| EP1718300A4 (en) | 2004-01-16 | 2008-05-14 | Univ Michigan | CONFORMATIVELY IMPROVED SMAC MIMETIKA AND ITS USES |
| AU2005228950B2 (en) | 2004-03-23 | 2012-02-02 | Genentech, Inc. | Azabicyclo-octane inhibitors of IAP |
| WO2005097791A1 (en) | 2004-04-07 | 2005-10-20 | Novartis Ag | Inhibitors of iap |
| WO2006014361A1 (en) | 2004-07-02 | 2006-02-09 | Genentech, Inc. | Inhibitors of iap |
| EA019420B1 (ru) | 2004-12-20 | 2014-03-31 | Дженентех, Инк. | Пирролидиновые ингибиторы иап (ингибиторов апоптоза) |
| DK1851200T3 (da) | 2005-02-25 | 2014-04-14 | Tetralogic Pharm Corp | Dimere iap-inhibitorer |
| CN100383139C (zh) | 2005-04-07 | 2008-04-23 | 天津和美生物技术有限公司 | 可抑制细胞释放肿瘤坏死因子的哌啶-2,6-二酮衍生物 |
| WO2006113942A2 (en) | 2005-04-20 | 2006-10-26 | Schering Corporation | Method of inhibiting cathepsin activity |
| BRPI0614995A2 (pt) | 2005-08-31 | 2010-01-12 | Celgene Corp | composto ou um sal, solvato ou estereoisemero farmaceuticamente aceitável do mesmo, composição farmacêutica, uso de uma quantidade terapêutica ou profilaticamente eficaz de um composto ou um sal, solvato ou estereoisemero farmaceuticamente aceitável do mesmo, e, forma de dosagem unitária única |
| CA2643267A1 (en) | 2006-03-03 | 2007-09-20 | Novartis Ag | N-formyl hydroxylamine compounds |
| WO2007101347A1 (en) | 2006-03-07 | 2007-09-13 | Aegera Therapeutics Inc. | Bir domain binding compounds |
| AU2007248473B2 (en) | 2006-05-05 | 2011-01-27 | The Regents Of The University Of Michigan | Bivalent Smac mimetics and the uses thereof |
| AU2007275415A1 (en) | 2006-07-20 | 2008-01-24 | Ligand Pharmaceuticals Incorporated | Proline urea CCR1 antagonists for the treatment of autoimmune diseases or inflammation |
| US20100056495A1 (en) | 2006-07-24 | 2010-03-04 | Tetralogic Pharmaceuticals Corporation | Dimeric iap inhibitors |
| CL2007002513A1 (es) * | 2006-08-30 | 2008-04-04 | Celgene Corp Soc Organizada Ba | Compuestos derivados de isoindolina sustituidos, compuestos intermediarios; composicion farmaceutica; y uso en el tratamiento y prevencion de enfermedades tales como cancer, dolor, degeneracion macular, entre otras. |
| RU2448101C2 (ru) | 2006-08-30 | 2012-04-20 | Селджин Корпорейшн | 5-замещенные изоиндолиновые соединения |
| EP2089391B1 (en) | 2006-11-03 | 2013-01-16 | Pharmacyclics, Inc. | Bruton's tyrosine kinase activity probe and method of using |
| WO2008109057A1 (en) | 2007-03-02 | 2008-09-12 | Dana-Farber Cancer Institute, Inc. | Organic compounds and their uses |
| EP2079309B1 (en) | 2007-04-12 | 2015-11-11 | Joyant Pharmaceuticals Inc | SMAC MIMEE DIMERS AND TRIMERS USEFUL AS ANTICANCER AGENTS |
| BRPI0810522B8 (pt) | 2007-04-13 | 2021-05-25 | Univ Michigan Regents | compostos miméticos diazo bicíclicos de smac, composição farmacêutica e kit compreendendo ditos compostos e uso dos mesmos para o tratamento de câncer |
| AR066348A1 (es) | 2007-04-30 | 2009-08-12 | Genentech Inc | Inhibidores de las iap |
| WO2008144925A1 (en) | 2007-05-30 | 2008-12-04 | Aegera Therapeutics Inc. | Iap bir domain binding compounds |
| KR20100038108A (ko) | 2007-07-25 | 2010-04-12 | 브리스톨-마이어스 스큅 컴퍼니 | 트리아진 키나제 억제제 |
| EP2058312A1 (en) | 2007-11-09 | 2009-05-13 | Universita' degli Studi di Milano | SMAC mimetic compounds as apoptosis inducers |
| PE20140963A1 (es) | 2008-10-29 | 2014-08-06 | Celgene Corp | Compuestos de isoindolina para el tratamiento de cancer |
| US20120135089A1 (en) | 2009-03-17 | 2012-05-31 | Stockwell Brent R | E3 ligase inhibitors |
| US8614201B2 (en) | 2009-06-05 | 2013-12-24 | Janssen Pharmaceutica Nv | Heterocyclic amides as modulators of TRPA1 |
| WO2011008260A2 (en) | 2009-07-13 | 2011-01-20 | President And Fellows Of Harvard College | Bifunctional stapled polypeptides and uses thereof |
| US8551955B2 (en) | 2009-10-28 | 2013-10-08 | Joyant Pharmaceuticals, Inc. | Dimeric Smac mimetics |
| SG10201501062SA (en) | 2010-02-11 | 2015-04-29 | Celgene Corp | Arylmethoxy isoindoline derivatives and compositions comprising and methods of using the same |
| AU2011272860A1 (en) | 2010-06-30 | 2013-02-07 | Brandeis University | Small-molecule-targeted protein degradation |
| CN103261169A (zh) | 2010-09-24 | 2013-08-21 | 密歇根大学董事会 | 脱泛素酶抑制剂及其应用方法 |
| CN102477033A (zh) | 2010-11-23 | 2012-05-30 | 苏州波锐生物医药科技有限公司 | 苯并噻酚类化合物及其在制备预防和/或治疗乳腺癌骨质疏松症药物中的用途 |
| EP2649099A4 (en) | 2010-12-07 | 2016-10-19 | Univ Yale | SMALL MOLECULAR HYDROPHOBIC LABELING OF FUSION PROTEINS AND INDUCED REMOVAL FROM THIS |
| US20140243282A1 (en) | 2010-12-31 | 2014-08-28 | Satish Reddy Kallam | Methods and compositions for designing novel conjugate therapeutics |
| CN103688176A (zh) | 2011-04-29 | 2014-03-26 | 细胞基因公司 | 利用cereblon作为预报因子治疗癌和炎性疾病的方法 |
| JP6093770B2 (ja) | 2011-09-27 | 2017-03-08 | アムジエン・インコーポレーテツド | 癌の治療のためのmdm2阻害剤としての複素環化合物 |
| JP2015504425A (ja) | 2011-11-09 | 2015-02-12 | アンサンブル・セラピューティクス | アポトーシスのインヒビターを阻害するための大環状化合物 |
| WO2013071039A1 (en) | 2011-11-09 | 2013-05-16 | Ensemble Therapeutics | Macrocyclic compounds for inhibition of inhibitors of apoptosis |
| KR102438072B1 (ko) | 2012-01-12 | 2022-08-31 | 예일 유니버시티 | E3 유비퀴틴 리가아제에 의한 표적 단백질 및 다른 폴리펩티드의 증진된 분해를 위한 화합물 및 방법 |
| WO2013106646A2 (en) | 2012-01-12 | 2013-07-18 | Yale University | Compounds and methods for the inhibition of vcb e3 ubiquitin ligase |
| EP2846784A4 (en) | 2012-05-11 | 2016-03-09 | Univ Yale | COMPOUNDS FOR PROMOTING PROTEIN REMOVAL AND PROCESS THEREFOR |
| WO2013175417A1 (en) | 2012-05-24 | 2013-11-28 | Novartis Ag | Pyrrolopyrrolidinone compounds |
| SG11201406889WA (en) | 2012-05-30 | 2015-02-27 | Hoffmann La Roche | Substituted pyrrolidine-2-carboxamides |
| US9345740B2 (en) | 2012-07-10 | 2016-05-24 | Bristol-Myers Squibb Company | IAP antagonists |
| SI2880447T1 (sl) | 2012-07-31 | 2019-09-30 | Novartis Ag | Označevalci povezani z občutljivostjo na inhibitorje humanega dvominutnega 2 proteina (mdm2) |
| US9453048B2 (en) | 2012-08-09 | 2016-09-27 | Bristol-Myers Squibb Company | IAP antagonists |
| TWI586668B (zh) | 2012-09-06 | 2017-06-11 | 第一三共股份有限公司 | 二螺吡咯啶衍生物之結晶 |
| EP2897949B1 (en) | 2012-09-18 | 2018-01-10 | Bristol-Myers Squibb Company | Iap antagonists |
| EP2903998B1 (en) | 2012-10-02 | 2017-03-15 | Bristol-Myers Squibb Company | Iap antagonists |
| EP2917218B1 (en) | 2012-11-09 | 2017-01-04 | Ensemble Therapeutics Corporation | Macrocyclic compounds for inhibition of inhibitors of apoptosis |
| AR094116A1 (es) | 2012-12-20 | 2015-07-08 | Merck Sharp & Dohme | Imidazopiridinas sustituidas como inhibidores de hdm2 |
| EP2934535B1 (en) | 2012-12-20 | 2017-07-19 | Merck Sharp & Dohme Corp. | Substituted pyrrolopyrimidines as hdm2 inhibitors |
| EP2752191A1 (en) | 2013-01-07 | 2014-07-09 | Sanofi | Compositions and methods using hdm2 antagonist and mek inhibitor |
| GB201311910D0 (en) | 2013-07-03 | 2013-08-14 | Glaxosmithkline Ip Dev Ltd | Novel Compounds |
| NL2011274C2 (en) | 2013-08-06 | 2015-02-09 | Illumicare Ip B V 51 | Groundbreaking platform technology for specific binding to necrotic cells. |
| AU2014223547B2 (en) | 2013-02-28 | 2017-11-16 | Amgen Inc. | A benzoic acid derivative MDM2 inhibitor for the treatment of cancer |
| JP6377123B2 (ja) | 2013-03-14 | 2018-08-22 | アムジエン・インコーポレーテツド | 癌の治療のためのmdm2阻害剤としてのヘテロアリール酸モルホリノン化合物 |
| GB201311888D0 (en) * | 2013-07-03 | 2013-08-14 | Glaxosmithkline Ip Dev Ltd | Novel compounds |
| GB201311891D0 (en) | 2013-07-03 | 2013-08-14 | Glaxosmithkline Ip Dev Ltd | Novel compound |
| EP3019517A1 (en) | 2013-07-12 | 2016-05-18 | Bristol-Myers Squibb Company | Iap antagonists |
| US20160058872A1 (en) | 2014-04-14 | 2016-03-03 | Arvinas, Inc. | Imide-based modulators of proteolysis and associated methods of use |
| US20180228907A1 (en) | 2014-04-14 | 2018-08-16 | Arvinas, Inc. | Cereblon ligands and bifunctional compounds comprising the same |
| TW201613916A (en) | 2014-06-03 | 2016-04-16 | Gilead Sciences Inc | TANK-binding kinase inhibitor compounds |
| US20160022642A1 (en) | 2014-07-25 | 2016-01-28 | Yale University | Compounds Useful for Promoting Protein Degradation and Methods Using Same |
| US9694084B2 (en) | 2014-12-23 | 2017-07-04 | Dana-Farber Cancer Institute, Inc. | Methods to induce targeted protein degradation through bifunctional molecules |
| JP6815318B2 (ja) | 2014-12-23 | 2021-01-20 | ダナ−ファーバー キャンサー インスティテュート,インコーポレイテッド | 二官能性分子によって標的化タンパク質分解を誘導する方法 |
| US11352351B2 (en) | 2015-01-20 | 2022-06-07 | Arvinas Operations, Inc. | Compounds and methods for the targeted degradation of androgen receptor |
| US12312316B2 (en) | 2015-01-20 | 2025-05-27 | Arvinas Operations, Inc. | Compounds and methods for the targeted degradation of androgen receptor |
| GB201504314D0 (en) | 2015-03-13 | 2015-04-29 | Univ Dundee | Small molecules |
| HK1249058A1 (zh) | 2015-03-18 | 2018-10-26 | Arvinas, Inc. | 用於增强靶向蛋白质降解的化合物和方法 |
| GB201506872D0 (en) | 2015-04-22 | 2015-06-03 | Ge Oil & Gas Uk Ltd | Novel compounds |
| WO2016197032A1 (en) * | 2015-06-04 | 2016-12-08 | Arvinas, Inc. | Imide-based modulators of proteolysis and associated methods of use |
| WO2016197114A1 (en) | 2015-06-05 | 2016-12-08 | Arvinas, Inc. | Tank-binding kinase-1 protacs and associated methods of use |
| EP3331905B1 (en) | 2015-08-06 | 2022-10-05 | Dana-Farber Cancer Institute, Inc. | Targeted protein degradation to attenuate adoptive t-cell therapy associated adverse inflammatory responses |
| US10772962B2 (en) | 2015-08-19 | 2020-09-15 | Arvinas Operations, Inc. | Compounds and methods for the targeted degradation of bromodomain-containing proteins |
| GB201516243D0 (en) | 2015-09-14 | 2015-10-28 | Glaxosmithkline Ip Dev Ltd | Novel compounds |
| CN108366992A (zh) | 2015-11-02 | 2018-08-03 | 耶鲁大学 | 蛋白水解靶向嵌合体化合物及其制备和应用方法 |
| CA3017740A1 (en) | 2016-03-16 | 2017-09-21 | Pearlie BURNETTE | Small molecules against cereblon to enhance effector t cell function |
| US20170281784A1 (en) | 2016-04-05 | 2017-10-05 | Arvinas, Inc. | Protein-protein interaction inducing technology |
| JP6968823B2 (ja) | 2016-04-22 | 2021-11-17 | ダナ−ファーバー キャンサー インスティテュート,インコーポレイテッド | Egfrの分解のための二官能性分子、及び使用方法 |
| EP3455219A4 (en) | 2016-05-10 | 2019-12-18 | C4 Therapeutics, Inc. | AMINE-RELATED C3-GLUTARIMIDE DEGRONIMERS FOR TARGET PROTEIN REDUCTION |
| US10646488B2 (en) | 2016-07-13 | 2020-05-12 | Araxes Pharma Llc | Conjugates of cereblon binding compounds and G12C mutant KRAS, HRAS or NRAS protein modulating compounds and methods of use thereof |
| WO2018053354A1 (en) | 2016-09-15 | 2018-03-22 | Arvinas, Inc. | Indole derivatives as estrogen receptor degraders |
| HUE070289T2 (hu) | 2016-10-11 | 2025-05-28 | Arvinas Operations Inc | Vegyületek és módszerek az androgénreceptor célzott lebontására |
| KR20230127371A (ko) | 2016-11-01 | 2023-08-31 | 아비나스 오퍼레이션스, 인코포레이티드 | 타우(Tau)-단백질 표적화 프로탁(PROTAC) 및 관련 사용 방법 |
| IL297717A (en) | 2016-12-01 | 2022-12-01 | Arvinas Operations Inc | History of tetrahydronaphthalene and tetrahydroisoquinoline as estrogen receptor antagonists |
| WO2018119441A1 (en) | 2016-12-23 | 2018-06-28 | Arvinas, Inc. | Egfr proteolysis targeting chimeric molecules and associated methods of use |
| MX2019007649A (es) | 2016-12-23 | 2019-09-10 | Arvinas Operations Inc | Compuestos y metodos para la degradacion dirigida de polipeptidos de fibrosarcoma acelerado rapidamente. |
| WO2018118598A1 (en) | 2016-12-23 | 2018-06-28 | Arvinas, Inc. | Compounds and methods for the targeted degradation of fetal liver kinase polypeptides |
| US11191741B2 (en) | 2016-12-24 | 2021-12-07 | Arvinas Operations, Inc. | Compounds and methods for the targeted degradation of enhancer of zeste homolog 2 polypeptide |
| IL300417A (en) | 2017-01-26 | 2023-04-01 | Arvinas Operations Inc | Bifunctional benzothiophene compounds, preparations containing them and their use in therapy |
| EP3577109A4 (en) | 2017-01-31 | 2020-11-18 | Arvinas Operations, Inc. | CEREMONY LIGANDS AND BIFUNCTIONAL COMPOUNDS CONTAINING THEM |
| JP7227912B2 (ja) | 2017-02-08 | 2023-02-24 | ダナ-ファーバー キャンサー インスティテュート,インコーポレイテッド | キメラ抗原受容体の調節 |
| WO2019060742A1 (en) | 2017-09-22 | 2019-03-28 | Kymera Therapeutics, Inc | AGENTS FOR DEGRADING PROTEINS AND USES THEREOF |
-
2018
- 2018-01-26 IL IL300417A patent/IL300417A/en unknown
- 2018-01-26 AU AU2018211975A patent/AU2018211975B2/en active Active
- 2018-01-26 KR KR1020237032355A patent/KR20230140606A/ko not_active Ceased
- 2018-01-26 CN CN201880020007.6A patent/CN110612297B/zh active Active
- 2018-01-26 KR KR1020197023986A patent/KR102582886B1/ko active Active
- 2018-01-26 US US15/881,318 patent/US10604506B2/en active Active
- 2018-01-26 JP JP2019540457A patent/JP7266526B6/ja active Active
- 2018-01-26 CN CN202311500675.8A patent/CN117551089A/zh active Pending
- 2018-01-26 MX MX2019008934A patent/MX2019008934A/es unknown
- 2018-01-26 CA CA3049912A patent/CA3049912A1/en active Pending
- 2018-01-26 WO PCT/US2018/015574 patent/WO2018140809A1/en not_active Ceased
- 2018-01-26 EP EP18744416.1A patent/EP3573977A4/en active Pending
- 2018-01-26 BR BR112019015312-8A patent/BR112019015312A2/pt not_active Application Discontinuation
-
2019
- 2019-07-11 IL IL268011A patent/IL268011B2/en unknown
- 2019-07-26 MX MX2023004018A patent/MX2023004018A/es unknown
- 2019-08-23 CO CONC2019/0009145A patent/CO2019009145A2/es unknown
-
2020
- 2020-03-05 US US16/810,764 patent/US11384063B2/en active Active
-
2022
- 2022-04-22 US US17/727,386 patent/US12275716B2/en active Active
- 2022-08-23 AU AU2022221407A patent/AU2022221407B2/en active Active
-
2023
- 2023-01-17 JP JP2023005222A patent/JP2023058503A/ja active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150291562A1 (en) * | 2014-04-14 | 2015-10-15 | Arvinas, Inc. | Imide-based modulators of proteolysis and associated methods of use |
| US20160045607A1 (en) * | 2014-08-11 | 2016-02-18 | Yale University | Estrogen-related receptor alpha based protac compounds and associated methods of use |
| WO2016169989A1 (en) * | 2015-04-22 | 2016-10-27 | Glaxosmithkline Intellectual Property Development Limited | Iap e3 ligase directed proteolysis targeting chimeric molecules |
| US20170008904A1 (en) * | 2015-07-10 | 2017-01-12 | Arvinas, Inc. | Mdm2-based modulators of proteolysis and associated methods of use |
| WO2017011590A1 (en) * | 2015-07-13 | 2017-01-19 | Arvinas, Inc. | Alanine-based modulators of proteolysis and associated methods of use |
Cited By (96)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10849982B2 (en) | 2016-05-10 | 2020-12-01 | C4 Therapeutics, Inc. | C3-carbon linked glutarimide degronimers for target protein degradation |
| US11185592B2 (en) | 2016-05-10 | 2021-11-30 | C4 Therapeutics, Inc. | Spirocyclic degronimers for target protein degradation |
| US11992531B2 (en) | 2016-05-10 | 2024-05-28 | C4 Therapeutics, Inc. | C3-carbon linked glutarimide degronimers for target protein degradation |
| US12048747B2 (en) | 2016-05-10 | 2024-07-30 | C4 Therapeutics, Inc. | Substituted piperidine Degronimers for Target Protein degradation |
| US12076405B2 (en) | 2016-05-10 | 2024-09-03 | C4 Therapeutics, Inc. | Heterocyclic degronimers for target protein degradation |
| US10646575B2 (en) | 2016-05-10 | 2020-05-12 | C4 Therapeutics, Inc. | Heterocyclic degronimers for target protein degradation |
| US10660968B2 (en) | 2016-05-10 | 2020-05-26 | C4 Therapeutics, Inc. | Spirocyclic degronimers for target protein degradation |
| US12048748B2 (en) | 2016-05-10 | 2024-07-30 | C4 Therapeutics, Inc. | Spirocyclic degronimers for target protein degradation |
| US10905768B1 (en) | 2016-05-10 | 2021-02-02 | C4 Therapeutics, Inc. | Heterocyclic degronimers for target protein degradation |
| US11459335B2 (en) | 2017-06-20 | 2022-10-04 | C4 Therapeutics, Inc. | N/O-linked Degrons and Degronimers for protein degradation |
| US12180225B2 (en) | 2017-06-20 | 2024-12-31 | C4 Therapeutics, Inc. | N/O-linked degrons and degronimers for protein degradation |
| US12441740B2 (en) | 2017-06-20 | 2025-10-14 | C4 Therapeutics, Inc. | N/O-linked degrons and degronimers for protein degradation |
| US10640489B2 (en) | 2017-08-23 | 2020-05-05 | Novartis Ag | 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| US10647701B2 (en) | 2017-08-23 | 2020-05-12 | Novartis Ag | 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| WO2019038717A1 (en) * | 2017-08-23 | 2019-02-28 | Novartis Ag | 3- (1-OXOISOINDOLIN-2-YL) PIPERIDINE-2,6-DIONE DERIVATIVES AND USES THEREOF |
| US10414755B2 (en) | 2017-08-23 | 2019-09-17 | Novartis Ag | 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| EP4183782A1 (en) * | 2017-08-23 | 2023-05-24 | Novartis AG | 3-(1-oxoisoindolin-2-yl)piperidine-2,6-di one derivatives and uses thereof |
| US11053218B2 (en) | 2017-08-23 | 2021-07-06 | Novartis Ag | 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| US11254672B2 (en) | 2017-09-04 | 2022-02-22 | C4 Therapeutics, Inc. | Dihydrobenzimidazolones for medical treatment |
| US11787802B2 (en) | 2017-09-04 | 2023-10-17 | C4 Therapeutics, Inc. | Dihydrobenzimidazolones for medical treatment |
| US12091397B2 (en) | 2017-09-04 | 2024-09-17 | C4 Therapeutics, Inc. | Dihydroquinolinones for medical treatment |
| US12365681B2 (en) | 2017-09-04 | 2025-07-22 | C4 Therapeutics, Inc. | Dihydrobenzimidazolones for medical treatment |
| US11802131B2 (en) | 2017-09-04 | 2023-10-31 | C4 Therapeutics, Inc. | Glutarimides for medical treatment |
| US11401256B2 (en) | 2017-09-04 | 2022-08-02 | C4 Therapeutics, Inc. | Dihydroquinolinones for medical treatment |
| US11524949B2 (en) | 2017-11-16 | 2022-12-13 | C4 Therapeutics, Inc. | Degraders and Degrons for targeted protein degradation |
| WO2019099868A2 (en) | 2017-11-16 | 2019-05-23 | C4 Therapeutics, Inc. | Degraders and degrons for targeted protein degradation |
| US11753397B2 (en) | 2018-03-26 | 2023-09-12 | C4 Therapeutics, Inc. | Cereblon binders for the degradation of ikaros |
| US12226424B2 (en) | 2018-04-09 | 2025-02-18 | Shanghaitech University | Target protein degradation compounds, their anti-tumor use, their intermediates and use of intermediates |
| US11584748B2 (en) | 2018-04-16 | 2023-02-21 | C4 Therapeutics, Inc. | Spirocyclic compounds |
| US12227504B2 (en) | 2018-04-16 | 2025-02-18 | C4 Therepeutics, Inc. | Spirocyclic compounds |
| WO2019236483A1 (en) | 2018-06-04 | 2019-12-12 | C4 Therapeutics, Inc. | Spirocyclic compounds |
| US11623929B2 (en) | 2018-06-04 | 2023-04-11 | C4 Therapeutics, Inc. | Spirocyclic compounds |
| US11192877B2 (en) | 2018-07-10 | 2021-12-07 | Novartis Ag | 3-(5-hydroxy-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| US11833142B2 (en) | 2018-07-10 | 2023-12-05 | Novartis Ag | 3-(5-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| US11185537B2 (en) | 2018-07-10 | 2021-11-30 | Novartis Ag | 3-(5-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| WO2020027225A1 (ja) | 2018-07-31 | 2020-02-06 | ファイメクス株式会社 | 複素環化合物 |
| US11639354B2 (en) | 2018-07-31 | 2023-05-02 | Fimecs, Inc. | Heterocyclic compound |
| US12202829B2 (en) | 2018-07-31 | 2025-01-21 | Fimecs, Inc. | Heterocyclic compound |
| US11969472B2 (en) | 2018-08-22 | 2024-04-30 | Cullgen (Shanghai), Inc. | Tropomyosin receptor kinase (TRK) degradation compounds and methods of use |
| US12065442B2 (en) | 2018-08-22 | 2024-08-20 | Cullgen (Shanghai), Inc. | Tropomyosin receptor kinase (TRK) degradation compounds and methods of use |
| WO2020051235A1 (en) | 2018-09-04 | 2020-03-12 | C4 Therapeutics, Inc. | Compounds for the degradation of brd9 or mth1 |
| JP7623943B2 (ja) | 2018-11-30 | 2025-01-29 | カイメラ セラピューティクス, インコーポレイテッド | Irak分解剤およびそれらの使用 |
| US12258341B2 (en) | 2018-11-30 | 2025-03-25 | Kymera Therapeutics, Inc. | IRAK degraders and uses thereof |
| JP2022516401A (ja) * | 2018-11-30 | 2022-02-28 | カイメラ セラピューティクス, インコーポレイテッド | Irak分解剤およびそれらの使用 |
| WO2020132561A1 (en) | 2018-12-20 | 2020-06-25 | C4 Therapeutics, Inc. | Targeted protein degradation |
| US12454521B2 (en) | 2018-12-20 | 2025-10-28 | C4 Therapeutics, Inc. | Targeted protein degradation |
| US12331069B2 (en) | 2019-01-09 | 2025-06-17 | Dana-Farber Cancer Institute, Inc. | DOT1L degraders and uses thereof |
| JP2022516745A (ja) * | 2019-01-09 | 2022-03-02 | ダナ-ファーバー キャンサー インスティテュート,インコーポレイテッド | Dot1l分解剤およびその使用 |
| WO2020165834A1 (en) * | 2019-02-15 | 2020-08-20 | Novartis Ag | Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| CN113329792A (zh) * | 2019-02-15 | 2021-08-31 | 诺华股份有限公司 | 取代的3-(1-氧代异吲哚啉-2-基)哌啶-2,6-二酮衍生物及其用途 |
| US12479817B2 (en) | 2019-02-15 | 2025-11-25 | Novartis Ag | Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| CN113490528A (zh) * | 2019-02-15 | 2021-10-08 | 诺华股份有限公司 | 3-(1-氧代-5-(哌啶-4-基)异吲哚啉-2-基)哌啶-2,6-二酮衍生物及其用途 |
| WO2020165833A1 (en) * | 2019-02-15 | 2020-08-20 | Novartis Ag | 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| AU2020222345B2 (en) * | 2019-02-15 | 2022-11-17 | Novartis Ag | 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| AU2020222346B2 (en) * | 2019-02-15 | 2021-12-09 | Novartis Ag | Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| JP2022520811A (ja) * | 2019-02-15 | 2022-04-01 | ノバルティス アーゲー | 3-(1-オキソ-5-(ピペリジン-4-イル)イソインドリン-2-イル)ピペリジン-2,6-ジオン誘導体及びその使用 |
| JP2022520448A (ja) * | 2019-02-15 | 2022-03-30 | ノバルティス アーゲー | 置換3-(1-オキソイソインドリン-2-イル)ピペリジン-2,6-ジオン誘導体及びその使用 |
| JP7488826B2 (ja) | 2019-02-15 | 2024-05-22 | ノバルティス アーゲー | 置換3-(1-オキソイソインドリン-2-イル)ピペリジン-2,6-ジオン誘導体及びその使用 |
| JP7483732B2 (ja) | 2019-02-15 | 2024-05-15 | ノバルティス アーゲー | 3-(1-オキソ-5-(ピペリジン-4-イル)イソインドリン-2-イル)ピペリジン-2,6-ジオン誘導体及びその使用 |
| US12083108B2 (en) | 2019-02-25 | 2024-09-10 | Chdi Foundation, Inc. | Compounds for targeting mutant huntingtin protein and uses thereof |
| EP3931186A1 (en) * | 2019-02-25 | 2022-01-05 | CHDI Foundation, Inc. | Compounds for targeting mutant huntingtin protein and uses thereof |
| AU2020252116B2 (en) * | 2019-03-29 | 2023-04-27 | Astrazeneca Ab | Estrogen receptor degrading protacs |
| CN113646306A (zh) * | 2019-03-29 | 2021-11-12 | 阿斯利康(瑞典)有限公司 | 雌激素受体降解protac |
| JP2022526370A (ja) * | 2019-03-29 | 2022-05-24 | アストラゼネカ・アクチエボラーグ | エストロゲン受容体分解性protac |
| WO2020201080A1 (en) | 2019-03-29 | 2020-10-08 | Astrazeneca Ab | Estrogen receptor degrading protacs |
| EP3953332A1 (en) | 2019-04-12 | 2022-02-16 | C4 Therapeutics, Inc. | Tricyclic degraders of ikaros and aiolos |
| WO2020214555A1 (en) | 2019-04-16 | 2020-10-22 | Northwestern University | Bifunctional compounds comprising apcin-a and their use in the treatment of cancer |
| JP2022534650A (ja) * | 2019-05-31 | 2022-08-03 | 海思科医▲薬▼有限公司 | Btk阻害薬環誘導体、その調製方法及びその医薬品適用 |
| US11566022B2 (en) | 2019-12-18 | 2023-01-31 | Novartis Ag | 3-(5-methoxy-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| US12410171B2 (en) | 2020-02-26 | 2025-09-09 | Cullgen (Shanghai), Inc. | Tropomyosin receptor kinase (TRK) degradation compounds and methods of use |
| WO2021178920A1 (en) | 2020-03-05 | 2021-09-10 | C4 Therapeutics, Inc. | Compounds for targeted degradation of brd9 |
| EP4570319A2 (en) | 2020-06-09 | 2025-06-18 | Prelude Therapeutics Incorporated | Brm targeting compounds and associated methods of use |
| WO2021252666A1 (en) | 2020-06-09 | 2021-12-16 | Prelude Therapeutics, Incorporated | Brm targeting compounds and associated methods of use |
| WO2022032026A1 (en) | 2020-08-05 | 2022-02-10 | C4 Therapeutics, Inc. | Compounds for targeted degradation of ret |
| US12150995B2 (en) | 2020-12-30 | 2024-11-26 | Kymera Therapeutics, Inc. | IRAK degraders and uses thereof |
| US12391663B2 (en) | 2021-01-13 | 2025-08-19 | Monte Rosa Therapeutics Ag | Isoindolinone compounds |
| US11912682B2 (en) | 2021-01-13 | 2024-02-27 | Monte Rosa Therapeutics, Inc. | Isoindolinone compounds |
| WO2022235945A1 (en) | 2021-05-05 | 2022-11-10 | Biogen Ma Inc. | Compounds for targeting degradation of bruton's tyrosine kinase |
| US12103919B2 (en) | 2021-06-03 | 2024-10-01 | Novartis Ag | 3-(5-oxy)-1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof |
| WO2022270994A1 (ko) | 2021-06-25 | 2022-12-29 | 한국화학연구원 | 유비퀴틴 프로테오좀 경로를 통해 비티케이 분해작용을 가지는 신규한 이작용성 헤테로사이클릭 화합물과 이의 용도 |
| US12161722B2 (en) | 2021-06-25 | 2024-12-10 | Korea Research Institute Of Chemical Technology | Bifunctional heterocyclic compound having BTK degradation function via ubiquitin proteasome pathway, and use thereof |
| WO2023283610A1 (en) | 2021-07-07 | 2023-01-12 | Biogen Ma Inc. | Compounds for targeting degradation of irak4 proteins |
| WO2023283372A1 (en) | 2021-07-07 | 2023-01-12 | Biogen Ma Inc. | Compounds for targeting degradation of irak4 proteins |
| WO2023061445A1 (zh) | 2021-10-14 | 2023-04-20 | 首药控股(北京)股份有限公司 | 硼酸衍生物 |
| US12122764B2 (en) | 2021-12-22 | 2024-10-22 | Gilead Sciences, Inc. | IKAROS zinc finger family degraders and uses thereof |
| US11897862B2 (en) | 2022-03-17 | 2024-02-13 | Gilead Sciences, Inc. | IKAROS zinc finger family degraders and uses thereof |
| US12358887B2 (en) | 2022-03-17 | 2025-07-15 | Gilead Sciences, Inc. | IKAROS Zinc Finger Family degraders and uses thereof |
| WO2023205701A1 (en) | 2022-04-20 | 2023-10-26 | Kumquat Biosciences Inc. | Macrocyclic heterocycles and uses thereof |
| US12421220B2 (en) | 2022-06-06 | 2025-09-23 | C4 Therapeutics, Inc. | Bicyclic-substituted glutarimide cereblon binders |
| WO2024064358A1 (en) | 2022-09-23 | 2024-03-28 | Ifm Due, Inc. | Compounds and compositions for treating conditions associated with sting activity |
| US12448399B2 (en) | 2023-01-26 | 2025-10-21 | Arvinas Operations, Inc. | Cereblon-based KRAS degrading PROTACs and uses related thereto |
| WO2024243441A1 (en) | 2023-05-24 | 2024-11-28 | Kumquat Biosciences Inc. | Heterocyclic compounds and uses thereof |
| WO2025007000A1 (en) | 2023-06-30 | 2025-01-02 | Kumquat Biosciences Inc. | Substituted condensed tricyclic amine compounds and uses thereof as ras inhibitors |
| US12497402B2 (en) | 2023-09-01 | 2025-12-16 | Kymera Therapeutics, Inc. | IRAK4 degraders and uses thereof |
| WO2025096855A1 (en) | 2023-11-02 | 2025-05-08 | Kumquat Biosciences Inc. | Degraders and uses thereof |
| WO2025114875A1 (en) | 2023-12-01 | 2025-06-05 | Astrazeneca Ab | Er degraders and uses thereof |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12275716B2 (en) | Modulators of estrogen receptor proteolysis and associated methods of use | |
| US20250320195A1 (en) | Tetrahydronaphthalene and tetrahydroisoquinoline derivatives as estrogen receptor degraders | |
| KR102839545B1 (ko) | 급속 진행성 섬유육종 폴리펩티드의 표적화 분해를 위한 화합물 및 방법 | |
| WO2018119357A1 (en) | Compounds and methods for the targeted degradation of enhancer of zeste homolog 2 polypeptide | |
| JP2020506914A5 (enExample) | ||
| RU2782458C2 (ru) | Соединения и способы нацеленного расщепления полипептидов быстропрогрессирующей фибросаркомы | |
| RU2797808C2 (ru) | Модуляторы протеолиза эстрогеновых рецепторов и связанные с ними способы применения | |
| RU2797244C2 (ru) | Производные тетрагидронафталина и тетрагидроизохинолина в качестве разрушителей эстрогенового рецептора | |
| HK40023198A (en) | Tetrahydronaphthalene and tetrahydroisoquinoline derivatives as estrogen receptor degraders |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18744416 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 3049912 Country of ref document: CA |
|
| ENP | Entry into the national phase |
Ref document number: 2018211975 Country of ref document: AU Date of ref document: 20180126 Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2019540457 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019015312 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 20197023986 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: NC2019/0009145 Country of ref document: CO |
|
| ENP | Entry into the national phase |
Ref document number: 2018744416 Country of ref document: EP Effective date: 20190826 |
|
| WWP | Wipo information: published in national office |
Ref document number: NC2019/0009145 Country of ref document: CO |
|
| ENP | Entry into the national phase |
Ref document number: 112019015312 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190725 |
|
| WWG | Wipo information: grant in national office |
Ref document number: NC2019/0009145 Country of ref document: CO |
|
| WWW | Wipo information: withdrawn in national office |
Ref document number: 300417 Country of ref document: IL |