WO2018139481A1 - 眼科測定装置 - Google Patents

眼科測定装置 Download PDF

Info

Publication number
WO2018139481A1
WO2018139481A1 PCT/JP2018/002102 JP2018002102W WO2018139481A1 WO 2018139481 A1 WO2018139481 A1 WO 2018139481A1 JP 2018002102 W JP2018002102 W JP 2018002102W WO 2018139481 A1 WO2018139481 A1 WO 2018139481A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
light
illumination
eye
examined
Prior art date
Application number
PCT/JP2018/002102
Other languages
English (en)
French (fr)
Inventor
三橋 俊文
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Priority to US16/478,191 priority Critical patent/US11109754B2/en
Publication of WO2018139481A1 publication Critical patent/WO2018139481A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Definitions

  • the present invention relates to an ophthalmologic measuring apparatus characterized by an illumination optical system.
  • An ophthalmologic measurement device that measures information related to the refraction characteristics of the eye to be examined by measuring the refractive wavefront of the reflected light reflected from the eye to be examined is known.
  • this ophthalmologic measurement device the illumination optical system and the light receiving optics A configuration that can be adjusted independently of the system is known (see, for example, Patent Document 1).
  • the invention according to claim 1 includes an illumination optical system having an illumination light source that illuminates the fundus of the eye to be examined, a Hartmann plate that divides a reflected light beam reflected from the fundus of the eye to be examined into a plurality of light beams, and the Hartmann plate
  • a light-receiving optical system having a light-receiving unit that receives the divided divided light beam, and a calculation unit that calculates optical characteristics of the eye to be inspected based on tilt angle data of the light beam obtained by the light-receiving optical system
  • the light source is an ophthalmic measuring apparatus that is disposed at a predetermined position and does not have a moving unit that moves the light collection positions of the illumination optical system and the light receiving optical system.
  • the invention according to claim 2 includes an illumination optical system having an illumination light source that illuminates the fundus of the eye to be examined, a Hartmann plate that divides a reflected light beam reflected from the fundus of the eye to be examined into a plurality of light beams, and the Hartmann plate.
  • a light-receiving optical system having a light-receiving unit that receives the divided divided light beam, and a calculation unit that calculates optical characteristics of the eye to be inspected based on tilt angle data of the light beam obtained by the light-receiving optical system,
  • An ophthalmologic measurement apparatus in which a measurable refraction value is secured within a predetermined range without moving a light collection position of the illumination optical system and the light receiving optical system by arranging a light source at a predetermined position.
  • the optical path length of the illumination optical system is fixed, and the predetermined position of the illumination light source is located on the fundus during the measurement of the 0D eye to be examined.
  • the optical path length is shorter than the condensing position.
  • the invention according to claim 4 is characterized in that, in the invention according to claim 3, the optical path length is set in a range shorter by 2.5 mm to 3 mm than when measuring an eye to be examined with 0D.
  • the arithmetic unit performs image processing on the image obtained by the light receiving optical system, and performs the image processing.
  • the tilt angle data is obtained from the obtained image.
  • the invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the illumination optical system has a plurality of illumination light sources arranged so as to have different condensing positions.
  • the invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the illumination optical system has a plurality of optical paths having different lengths.
  • an ophthalmologic measurement apparatus that can ensure a measurable range without moving an optical system.
  • DESCRIPTION OF SYMBOLS 100 Ophthalmological measuring apparatus, 102 ... Lens system, 104 ... Polarizing beam splitter, 105 ... Optical aperture, 106 ... Lens system, 107 ... Dichroic mirror, 108 ... Objective lens, 109 ... Dichroic mirror, 112 ... Light source, 113 ... Lens system , 114 ... light receiving part, 115 ... image data output part, 116 ... calculating part, 150 ... eye to be examined, 120 ... lens system, 121 ... Hartmann plate, 122 ... light receiving part, 200 ... illumination optical system, 211 ... different in length An optical component obtained by bundling a plurality of optical fibers, 212... MEMS optical switch, 213.
  • FIG. 1 is a conceptual diagram of an embodiment using the invention.
  • FIG. 1 shows an ophthalmic measurement apparatus 100 according to an embodiment.
  • the ophthalmologic measurement apparatus 100 has a function of acquiring information on refractive wavefront aberration included in reflected light from the eyeball.
  • the ophthalmologic measurement apparatus 100 includes an illumination optical system 200 that irradiates illumination light to the fundus 151 of the eye 150 to be examined.
  • the illumination optical system 200 includes light sources 201 and 202, a half mirror 203, a lens system 102, a polarizing beam splitter 104, an optical aperture 105, a dichroic mirror 107, an objective lens 108, and a dichroic mirror 109.
  • the light sources 201 and 202 output illumination light that irradiates the fundus 151.
  • the light sources 201 and 202 are laser diodes that emit infrared light having a wavelength of 830 nm.
  • the half mirror 203 transmits light from the light source 201 toward the objective lens 102 and reflects light from the light source 202 toward the lens system 102.
  • the distance between the light source 201 and the half mirror 203 is set to be shorter than the distance between the light source 202 and the half mirror 203. Accordingly, the optical path length of the illumination optical system 200 when the light source 201 is selected is different from the optical path length of the illumination optical system 200 when the light source 202 is selected.
  • One of the light sources 201 and 202 emits light, and at that time, the other stops emitting light. By switching which one emits light, the above-described selection of the optical path length is performed. The light emission can be switched by switching the optical shutter.
  • the lens system 102 is a lens system that adjusts the light flux from the light source 201 or 202. Although the lens system 102 is a simplified description, it is actually an optical system in which a plurality of lenses are combined. The same applies to other lens systems described later.
  • the illumination light from the light source 201 or 202 is incident on the dichroic mirror 107 via the lens system 102, the polarization beam splitter 104, the optical aperture 105, and the lens system 106. This incident light is reflected by the dichroic mirror 107 upward in FIG.
  • the dichroic mirror 107 is set to reflect light having a wavelength of 830 nm from the light source 201 or 202 and transmit light having a wavelength of 940 nm.
  • the illumination light reflected upward in FIG. 1 by the dichroic mirror 107 enters the dichroic mirror 109 through the objective lens 108.
  • the illumination light incident on the dichroic mirror 109 is reflected in the left direction (the direction of the eye 150 to be examined) in FIG.
  • the dichroic mirror 109 has a structure in which the direction of the eye of the subject is open, transmits visible light in a region where the wavelength is shorter than approximately 800 nm, and reflects infrared light that exceeds the wavelength of 800 nm. Has been. Illumination light reflected in the left direction in the figure by the dichroic mirror 109 is applied to the fundus 151 of the eye 150 to be examined.
  • the above is the configuration of the illumination optical system 200.
  • the illumination optical system 200 is set so that the optical path length is slightly shorter than the optical path length when the illumination light is collected on the fundus 151 during the measurement of the 0D eye. Further, as described above, by setting the distance between the light sources 201 and 202 to be different from the half mirror 203, it is possible to set two types of the optical path lengths and select one of them. Details of the setting of the optical path length will be described later.
  • FIG. 2 is a conceptual diagram showing another example when a plurality of optical path lengths in the illumination optical system 200 are set.
  • light from the light source 210 is incident on an optical component 211 in which a plurality of optical fibers having different lengths are bundled, and light emitted from the optical fibers having different lengths is simultaneously lensed.
  • the system 102 there are a plurality of types of optical path lengths (in this case, three types) according to the difference in length of the optical fibers.
  • the obtained Hartmann image can simultaneously obtain an image with a relatively high brightness that is in focus and an image with a relatively low brightness that is blurred.
  • the optical path length using each optical fiber as a path is set so as to be within a range described later.
  • the number of optical fibers to be bundled is not limited to 3, and may be 2 or 4.
  • FIG. 3 shows the calculated value (vertical axis) of the position of the light source of the illumination system (corresponding to the light sources 201 and 202 in FIG. 1) under the condition of focusing on the fundus retina at each reflex value (horizontal axis). .
  • the value on the vertical axis indicates the position of the light source when the illumination light is collected on the retina of the fundus when measuring a model eye having a reflex value of 0D (position 0 mm), and from there to the eye to be examined
  • the approaching position position where the optical path of the illumination light is shortened
  • the position away from the eye to be examined position where the optical path of the illumination light is elongated
  • FIG. 3 shows, for example, that when the eye to be examined having a reflex value of ⁇ 15D is measured, the position of the light source under the condition that the illumination light is condensed on the fundus is the illumination light when the eye to be examined having the reflex value of 0D is measured.
  • the position is about minus 3 mm.
  • the graph of FIG. 3 has a hyperbolic shape, diverges around + 3.5D, and + ⁇ D and ⁇ D converge around ⁇ 3.5 mm.
  • the range which condenses in the position where an optical path is shorter than the case of 0D is wide, and it is suggested that it can respond to the reflex value of a wider range in the position where this optical path is short. That is, it is suggested that the measurement with a wide range of reflex values is possible by slightly reducing the optical path length under the condition that the illumination light is collected on the fundus than in the case of 0D.
  • the Hartmann image of the model eye number in Table 1 is observed under the condition that the illumination light is collected on the retina of the fundus.
  • the reflex value of + 10D Measurements were made such that the Hartmann image of the model eye number in Table 1 was observed under the condition that the illumination light was collected on the retina.
  • the reflex value was calculated by image analysis software.
  • the case where the reflex value from the Hartmann image by the image analysis software could be calculated was judged as ⁇ , and the case where the reflex value could not be calculated was judged as x, and the results were arranged. The results are shown in Table 2 below.
  • the “condensing position” is a reflex value when the condensing position of the illumination light is aligned on the fundus retina.
  • the “deviation amount from 0D” indicates the deviation amount from the position of the light source when the illumination light is focused on the fundus retina of the 0D model eye.
  • the amount of deviation is negative in the direction in which the light source approaches the eye to be examined (the optical path length tends to be short) and positive in the direction in which the light source is away from the eye to be examined (the optical path length tends to be long).
  • the optical path length of the illumination optical system that can collect light on the fundus when the ref value is 0D is used as a reference, and the optical path length is shortened by a little less than 3 mm. It is possible to detect the ref value at 25 to +22).
  • the optical path length is about 2.5 mm to 3 mm with reference to the optical path length of the illumination optical system that can focus on the fundus when the ref value is 0D. It is concluded that by setting the range to be shorter (condition 1), a wider range of ref values can be detected even when the optical path length of the illumination optical system is fixed.
  • the range of the reflex value that can be measured even when the optical path length is set to be about 4 mm to 5 mm longer (condition 2) on the basis of the optical path length of the illumination optical system that can collect light on the fundus when the reflex value is 0D. Although it can be widened, the range is narrower than that in the case of the above condition 1 (particularly, ⁇ 15 and ⁇ 24D cannot be measured, and + 22D cannot be measured).
  • FIG. 4 is a graph with the calculated value of the reflex value based on the obtained Hartmann image as the horizontal axis and the model eye address indicated by the reflex value as the vertical axis.
  • the ref value (measured value) calculated based on the Hartmann image and the address of the model eye are directly proportional to each other, and a plot point indicated by ⁇ is obtained.
  • is obtained in the measurement with fine adjustment of the optical path length of the illumination optical system.
  • the measured value of the ref value obtained under the above conditions is accurately fitted to the correction function, and can be corrected by software processing.
  • the ophthalmic measurement apparatus 100 includes a wavefront measurement system having a Hartmann plate that divides a reflected light beam reflected from the fundus of the eye to be examined into a plurality of light beams, and a light receiving unit that receives the divided light beam divided by the Hartman plate.
  • Illumination light hereinafter referred to as fundus reflection light
  • reflected from the fundus 151 of the eye 150 to be examined 150 is reflected downward by the dichroic mirror 109, passes through the objective lens 108, and then passes through the dichroic mirror 107. Is reflected in the right direction (the direction of the lens system 106).
  • the Hartmann image is optically detected by the light receiving unit 122.
  • This Hartmann image includes wavefront information of the reflected light from the eye 150 to be analyzed, and information (for example, a ref value) related to the refractive characteristics of the eye to be examined is obtained by analyzing the Hartmann image by software processing.
  • the refractive characteristic of the eye to be measured can be used for the examination inside the eyeball and refractive surgery.
  • the objective lens 108 is shared with the anterior ocular segment observation system.
  • the ophthalmologic measurement apparatus 100 includes an anterior segment illumination system that illuminates the anterior segment of the eye 151 to be examined.
  • the ophthalmic measurement apparatus 100 includes a light source 112 that constitutes an anterior segment illumination system.
  • the light source 112 is an LED that emits infrared light having a wavelength of 940 nm.
  • the light sources 112 are disposed at two positions on both sides (left and right) below the dichroic mirror 109.
  • the light source 112 irradiates the dichroic mirror 109 with illumination light, and is reflected light (infrared light). Is irradiated to the eye 150 to be examined.
  • the ophthalmologic measurement apparatus 100 can be said to include an anterior ocular segment observation system having a light receiving unit that receives light reflected from the anterior ocular segment of the subject eye 151 illuminated by the anterior ocular segment illumination system.
  • an anterior ocular segment observation system having a light receiving unit that receives light reflected from the anterior ocular segment of the subject eye 151 illuminated by the anterior ocular segment illumination system.
  • the anterior ocular segment observation system will be described.
  • Light having a wavelength of about 940 nm included in the illumination light irradiated to the eye 150 to be examined through the dichroic mirror 109 from the light source 112 is reflected by the anterior eye portion of the eye 150 to be examined (hereinafter, this reflected light is referred to as the anterior eye). 1 is reflected by the dichroic mirror 109 in the downward direction in FIG.
  • the image measuring apparatus 100 includes an image data output unit 115.
  • the image data output unit 115 outputs image data of the anterior segment image obtained by the anterior segment observation system to the outside.
  • the image data output unit 115 in addition to the function of outputting the image data of the anterior segment obtained by the light receiving unit 114, the refractive characteristics of the eye to be examined based on the information on the wavefront aberration obtained by the light receiving unit 122 in the image of the anterior segment It has a function of creating data that visualizes the image, synthesizing the image data integrated with the image data of the anterior segment and outputting it.
  • the wavefront information of the reflected light from the fundus is visually embedded in the image of the anterior eye part, and image data in which the wavefront information is displayed as color information is generated and output.
  • image data in which the wavefront information is displayed as color information is generated and output.
  • an anterior eye image in which the state of wavefront aberration (that is, the state of refraction characteristics) can be visually grasped can be obtained due to a partial color difference.
  • the calculation of the refraction characteristics based on this wavefront information is performed by the calculation unit 116.
  • the calculation unit 116 can also calculate the ref value as a numerical value and output it.
  • the calculation unit 116 performs image processing of the Hartmann image by image processing using the calibration curve illustrated in FIG. 4 and performs processing for correcting the deviation of the refraction characteristics described with reference to FIG. That is, the position of the bright spot constituting the Hartmann image is corrected based on the correction curve of FIG. This correction is performed by shifting the bright spot in the Hartmann image by the shift amount examined in advance.
  • the calculation of the refraction characteristics in the calculation unit 116 is performed as follows. First, based on a Hartmann image composed of a plurality of light beams such as 4 ⁇ 4 and 5 ⁇ 5, an inclination between the plurality of light beams is calculated. Next, information on the state of light refraction in the eyeball is acquired from the inclination angle of each light beam.
  • the present invention can be used in an ophthalmologic measurement apparatus that measures information related to the refractive power of an eye to be examined.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

光学系を移動させなくても測定可能な範囲を得ることができる眼科測定装置を提供する。レフ値が0Dの場合に眼底への集光が得られる照明光学系200の光路長を基準として、光路長がやや短くなる設定となるように光源201および202の位置を決める。これにより、照明光学系200のレンズ系や光源を可動させる構造としなくても広い範囲の屈折特性の測定に対応できる。また、より鮮明なハルトマン像が得られるように光源201および202をいずれかを選択することで、計測される屈折特性の精度を更に高くできる。

Description

眼科測定装置
 本発明は、照明光学系に特徴のある眼科測定装置に関する。
 被検眼から反射された反射光の屈折波面を計測することで、被検眼の屈折特性に係る情報を測定する眼科測定装置が知られている、またこの眼科測定装置において、照明光学系と受光光学系とを独立して調整することが可能な構成が知られている(例えば、特許文献1を参照)。
特許第4392006号公報
 光学系を調整する機構は、レンズ等の光学系を移動させる仕組みが必要とされる。光学系を移動させるためには、その移動範囲を確保するための寸法、移動を行うための駆動機構が必要となる。これは、装置の小型化、軽量化、構造の簡素化、低コスト化、高信頼性の確保、低消費電力化といった点で不利となる。このような背景において、本発明は、光学系を移動させなくても測定可能な範囲を確保することができる眼科測定装置の提供を目的とする。
 請求項1に記載の発明は、被検眼の眼底を照明する照明光源を有する照明光学系と、前記被検眼の眼底から反射された反射光束を複数の光束に分割するハルトマン板および前記ハルトマン板で分割された分割光束を受光する受光部を有する受光光学系と、前記受光光学系で得られた光束の傾き角データより、前記被検眼の光学特性を演算する演算部とを有し、前記照明光源は所定の位置に配置され、前記照明光学系と前記受光光学系の集光位置を移動させる移動手段を持たない眼科測定装置である。
 請求項2に記載の発明は、被検眼の眼底を照明する照明光源を有する照明光学系と、前記被検眼の眼底から反射された反射光束を複数の光束に分割するハルトマン板および前記ハルトマン板で分割された分割光束を受光する受光部を有する受光光学系と、前記受光光学系で得られた光束の傾き角データより、前記被検眼の光学特性を演算する演算部とを有し、前記照明光源を所定の位置に配置することによって前記照明光学系と前記受光光学系の集光位置を移動させなくても測定可能屈折値が所定範囲確保される眼科測定装置である。
 請求項3に記載の発明は、請求項1または2に記載の発明において、前記照明光学系の光路長は固定されており、前記照明光源の所定の位置は、0Dの被検眼測定時に眼底に集光する位置より光路長が短くなる位置であることを特徴とする。
 請求項4に記載の発明は、請求項3に記載の発明において、前記光路長が0Dの被検眼測定時よりも2.5mm~3mm短い範囲に設定されていることを特徴とする。
 請求項5に記載の発明は、請求項1乃至4のいずれか一項に記載の発明において、前記演算部は、前記受光光学系で得られた像に画像処理を施し、該画像処理を施された像より前記傾き角データを得ることを特徴とする。
 請求項6に記載の発明は、請求項1乃至5のいずれか1項に記載の発明において、前記照明光学系は、集光位置を異ならせるように配置された複数の照明光源を有することを特徴とする。
 請求項7に記載の発明は、請求項1乃至6のいずれか1項に記載の発明において、前記照明光学系は、異なる長さの光路を複数有することを特徴とする。
 本発明によれば、光学系を移動させなくても測定可能な範囲を確保することができる眼科測定装置が提供される。
実施形態の眼科測定装置の概念図である。 照明光学系の例を示す概念図である。 レフ値(横軸)と、眼底網膜上で集光する条件における照明系の光源の位置(縦軸)との関係を示すグラフである。 得られたハルトマン像に基づくレフ値の算出値(横軸)と、レフ値で示した模型眼の番地(縦軸)との関係を示すグラフである。
 100…眼科測定装置、102…レンズ系、104…偏光ビームスプリッタ、105…光学絞り、106…レンズ系、107…ダイクロイックミラー、108…対物レンズ、109…ダイクロイックミラー、112…光源、113…レンズ系、114…受光部、115…画像データ出力部、116…演算部、150…被検眼、120…レンズ系、121…ハルトマン板、122…受光部、200…照明光学系、211…長さの異なる複数の光ファイバを束ねた光学部品、212…MEMS光スイッチ、213…光ファイバ、214…光ファイバ。
 1.第1の実施形態
 図1には、発明を利用した実施形態の概念図が示されている。図1には、実施形態の眼科測定装置100が示されている。眼科測定装置100は、眼球からの反射光に含まれる屈折波面収差の情報を取得する機能を有している。
(照明光学系)
 眼科測定装置100は、被検眼150の眼底151に照明光を照射する照明光学系200を備えている。照明光学系200は、光源201,202、ハーフミラー203、レンズ系102、偏光ビームスプリッタ104、光学絞り105、ダイクロイックミラー107、対物レンズ108、ダイクロイックミラー109を備えている。
 光源201,202は、眼底151に照射する照明光を出力する。光源201,202は、波長830nmの赤外光を発光するレーザーダイオードである。ハーフミラー203は、光源201からの光を対物レンズ102の方向に透過し、また光源202からの光をレンズ系102の方向に反射する。ここで、光源201とハーフミラー203との間の距離は、光源202とハーフミラー203との間の距離に比較して、短くなる設定とされている。これにより、光源201を選択した場合における照明光学系200の光路長と、光源202を選択した場合における照明光学系200の光路長とが異なるようにされている。光源201と202は、一方が発光し、その際は他方が発光を停止する。このどちらが発光するのかを切り替えることで、上述した光路長の選択が行われる。この発光の切り替えを光シャッターの切り替えによって行うこともできる。
 レンズ系102は、光源201または202からの光の光束を整えるレンズ系である。なお、レンズ系102は、簡略化された記載となっているが、実際は複数のレンズを組み合わせた光学系とされている。これは、後述する他のレンズ系においても同様である。
 光源201または202からの照明光は、レンズ系102、偏光ビームスプリッタ104、光学絞り105、レンズ系106を介して、ダイクロイックミラー107に入射する。この入射光は、ダイクロイックミラー107において、図1の上方向に反射される。ダイクロイックミラー107は、光源201または202からの波長830nmの光を反射し、波長940nmの光を透過する設定とされている。ダイクロイックミラー107で図1の上方向に反射された照明光は、対物レンズ108を介して、ダイクロイックミラー109に入射する。ダイクロイックミラー109に入射した照明光は、図1の左方向(被検眼150の方向)に反射される。ダイクロイックミラー109は、被検者の視線眼の方向が開放された構造を有しており、波長が略800nmより短い領域の可視光を透過し、波長800nmを超える赤外光を反射する設定とされている。ダイクロイックミラー109で図の左方向に反射された照明光は、被検眼150の眼底151に照射される。以上が照明光学系200の構成である。
 照明光学系200は、0Dの被検眼測定時に眼底151に照明光が集光する場合の光路長を基準として、それよりも光路長が少し短くなる設定とされている。また上述したように、光源201と202のハーフミラー203からの距離を異ならせる値とすることで、上記の光路長を2種類設定し、そのいずれかを選択することを可能としている。この光路長の設定の詳細については後述する。
 図2は、照明光学系200における光路長を複数設定した場合の他の例を示す概念図である。図2(A)に示す例では、長さの異なる複数の光ファイバを束ねた光学部品211に、光源210からの光を入射させ、長さの異なる各光ファイバから出射される光を同時にレンズ系102に入射させる。この構成では、光ファイバの長さの違いに応じて、光路長が複数種類(この場合は3種類)となる。そして得られるハルトマン像は、ピントの合った相対的に輝度の高い像と、ぼけた相対的に輝度の低い像とが同時に得られる。画像処理において、適当な閾値を設定することで、この中の輝度の高いものが検出される。この構成では、各光ファイバそれぞれを経路とした光路長が、後述する範囲に納まるように設定する。ここで、束ねる光ファイバの数は、3に限定されず、2や4であってもよい。
 図2(B)には、MEMS光スイッチ212によって、光ファイバ214からそのままレンズ系102に光源210からの光が出射される場合の第1の光路と、光ファイバ214→213を経由して、光ファイバ213からレンズ系102に光源210からの光が出射される場合の第2の光路のいずれかを選択可能とした構成が記載されている。この場合、光ファイバから射出される光の位置を切り替えることで、光源の位置を切り替えた場合と同様の効果を得ることができる。この場合も切り替えの対象となる光路の光路長が、後述する範囲に収まるように設定する。
(光路長の設定について)
 照明光学系の焦点の位置を固定した場合において、できるだけ広い範囲でレフ値を取得する工夫について説明する。なお、レフ値というのは、眼の屈性率異常の程度を評価するパラメータである。図3は、各レフ値(横軸)における、眼底網膜上で集光する条件における照明系の光源(図1の光源201や202に相当)の位置の計算値(縦軸)を表している。ここでは、縦軸の値は、レフ値が0Dの模型眼を測定する場合に眼底の網膜上で照明光が集光する際における光源の位置を基準(位置0mm)とし、そこから被検眼に近づく位置(照明光の光路が短くなる位置)をマイナス表示とし、被検眼から遠ざかる位置(照明光の光路が長くなる位置)をプラス表示としている。図3は、例えば、レフ値-15Dの被検眼を測定した場合、照明光が眼底で集光する条件における光源の位置が、レフ値0Dの被検眼を測定した場合における照明光が眼底で集光する条件での光源の位置に比較して、約マイナス3mm弱程度の位置であることを示している。
 図3のグラフは、双曲線のような形状をしており、+3.5Dあたりで発散し、+∞Dおよび-∞Dは-3.5mmあたりに収束している。図3を見ると、0Dの場合よりも光路が短い位置で集光する範囲が広く、この光路が短い位置で、より広い範囲のレフ値に対応できることが示唆される。つまり、照明光が眼底に集光する条件における光路長を、0Dの場合よりも若干縮めることで、広い範囲のレフ値での測定が可能であることが示唆されている。
 上記の知見に基づき、以下の予備実験を行った。まず、+15D、+10D、0D、-10D、-15Dの各レフ値測定時において、眼底の網膜上で集光する光源の位置を取得した。そしてこの条件において、表1に示す9つの番地の無収差に近い模型眼を測定した。
Figure JPOXMLDOC01-appb-T000001
 すなわち、+15Dのレフ値の測定において、眼底の網膜上に照明光が集光する条件で、表1の模型眼番地のハルトマン像を観察し、同様に+10Dのレフ値の測定において、眼底の網膜上に照明光が集光する条件で、表1の模型眼番地のハルトマン像を観察し、といった測定を行った。そして、各条件で取得したハルトマン像に基づいて画像解析ソフトウェアによるレフ値の算出を行った。ここで、画像解析ソフトウェアによるハルトマン像からのレフ値が算出できた場合を○判定、レフ値の算出ができなかった場合を×判定とし、その結果を整理した。この結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2において、「集光位置」というのは、眼底網膜上に照明光の集光位置を合わせた際におけるレフ値である。「0Dからのずれ量」というのは、0Dの模型眼の眼底網膜上に照明光の集光位置を合わせた場合における光源の位置を基準とし、そこからのずれ量を示している。ここで、ずれ量は、光源が被検眼に近づく方向(光路長が短くなる傾向)がマイナスとされ、光源が被検眼から遠ざかる方向(光路長が長くなる傾向)がプラスとされている。
 表2から明らかなように、レフ値が0Dの場合に眼底への集光が得られる照明光学系の光路長を基準として、光路長を3mm弱短くすることで、より広い範囲(レフ値-25~+22)におけるレフ値の検出が可能となる。
 表2の結果と、図3のデータと合わせて考えると、レフ値が0Dの場合に眼底への集光が得られる照明光学系の光路長を基準として、光路長を2.5mm~3mm程度短くなる範囲に設定(条件1)することで、照明光学系の光路長を固定した場合であってもより広範囲なレフ値の検出ができることが結論される。なお、レフ値が0Dの場合に眼底への集光が得られる照明光学系の光路長を基準として、光路長を4mm~5mm程度長くする設定(条件2)でも測定可能なレフ値の範囲を広くできるが、上記の条件1の場合に比較すると、範囲は狭くなる(特に、-15や-24Dが測定できず、また+22Dも測定できない)。
(データの校正について)
 表2に示すように、レフ値が0Dの場合に眼底への集光が得られる照明光学系の光路長を基準として、照明光学系の光路長を少し短く設定することで、照明光学系の光路長を固定した場合であってもより広い範囲のレフ値の計測が可能となる。しかしながら、より詳細な解析によれば、照明光学系の光路長を可変仕様とし、常に照明光の集光位置を眼底に合わせての計測を行う場合に比較して、上記の光路長を固定した場合に得られるレフ値には僅かなずれがあることが判明している。
 図4は、得られたハルトマン像に基づくレフ値の算出値を横軸とし、レフ値で示した模型眼の番地を縦軸としたグラフである。理想的には、ハルトマン像に基づいて算出されたレフ値(計測値)と、模型眼の番地とは正比例関係にあり、●印で示されるプロット点が得られる。例えば、照明光学系の光路長を微調整しての計測では、●印のプロット点にほぼ一致した計測値を得ることができる。
 これに対して、表2における「0Dからのずれ量が-2.70mm」の条件において取得したハルトマン像に基づくレフ値は、図4の○印により示されるようにほぼ三次関数でフィッティングされた曲線(3次曲線)となる。これは、照明光学系の光路長が固定されていることに起因して光学的な歪みが生じ、それが影響しているためであると考えられる。
 しかしながら、図4の○印により示されるように、上記の条件で得られるレフ値の測定値は、補正関数に正確にフィッティングするので、ソフトウェア処理により補正が可能となる。
(波面測定系)
 眼科測定装置100は、被検眼の眼底から反射された反射光束を複数の光束に分割するハルトマン板およびこのハルトマン板で分割された分割光束を受光する受光部を有する波面測定系を備えている。以下、波面測定系について説明する。被検眼150の眼底151で反射された照明光学系200からの照明光(以下、眼底反射光)は、ダイクロイックミラー109で図の下方向に反射され、対物レンズ108を通った後、ダイクロイックミラー107で図の右方向(レンズ系106の方向)に反射される。レンズ系106を図の左方向から右方向に通過した眼底反射光は、偏光ビームスプリッタ104で分離され、その一部の偏光成分(主に眼底で偏波面が回転した偏光成分)が、レンズ系120の方向に反射される。偏光ビームスプリッタ104からレンズ系120の方向に反射された眼底反射光の光束は、ハルトマン板121で複数の光束に分割され、受光部122で受光される。ここで、ハルトマン板121は、被検眼150の瞳と共役な関係にあり、受光部122は、CMOSイメージセンサにより構成されている。受光部122により、ハルトマン像が光学的に検出される。このハルトマン像は、被検眼150からの反射光の波面情報を含んでおり、ハルトマン像をソフトウェア処理により解析することで、被検眼の屈折特性に係る情報(例えば、レフ値)が取得される。なお、測定される被検眼の屈折特性は、眼球内部の検査や屈折矯正手術に利用可能である。またここで、対物レンズ108は、前眼部観察系と共有されている。
 なお、受光部122の位置を前後させ、波面測定系の光路長を変化させても測定されるハルトマン像への影響は小さく、照明光学系における光路長の変化の場合のような特出した影響は観察されないことが確かめられている。つまり、受光部122の位置を光軸上で前後に動かしても、得られるハルトマン像にさほど変化が見られないことが確かめられている。これは、ハルトマン板121を構成する各レンズのNAが大きく、焦点深度が非常に深いことに起因して、ハルトマン像に受光部122の前後位置の影響が出難いことが要因と考えられる。
(前眼部照明系)
 眼科測定装置100は、被検眼151の前眼部を照明する前眼部照明系を備えている。以下、前眼部照明系について説明する。眼科測定装置100は、前眼部照明系を構成する光源112を有している。光源112は、波長940nmの赤外光を発光するLEDである。光源112は、図1では明らかでないが、ダイクロイックミラー109の下方の両側(左右)の2箇所に配置されており、ダイクロイックミラー109に照明光を照射し、そこで反射された光(赤外光)が被検眼150に対して照射される構成とされている。
(前眼部観察系)
 眼科測定装置100は、前眼部照明系で照明された被検眼151の前眼部から反射された光を受光する受光部を有する前眼部観察系を備えていえる。以下、前眼部観察系について説明する。光源112からダイクロイックミラー109を介して、被検眼150に対して照射された照明光に含まれる波長940nm付近の光は、被検眼150の前眼部で反射され(以下、この反射光を前眼部反射光という)、ダイクロイックミラー109で図1の下方向に反射される。この波長940nmの光を含む前眼部反射光は、対物レンズ108を通り、更にダイクロイックミラー107を透過し、レンズ系113に至る。そして、レンズ系113を通過した前眼部反射光は、受光部114で受光される。受光部114はCCDセンサであり、波長940nmの前眼部反射光に基づく画像データ(つまり、前眼部の撮影画像の画像データ)を出力する。なお、被検眼150からの可視帯域の反射光は、ダイクロイックミラー109を図の右方向に透過し、眼科測定装置100の外部に抜ける。
(データ出力系)
 画像測定装置100は、画像データ出力部115を備えている。画像データ出力部115は、前眼部観察系で得られた前眼部像の画像データを外部に出力する。画像データ出力部115は、受光部114において得られる前眼部の画像データを出力する機能に加えて、前眼部の画像に受光部122において得られる波面収差の情報に基づく被検眼の屈折特性を視覚化したデータ作成し、これを前眼部の画像データに統合した画像データを合成し、それを出力する機能を有する。例えば、前眼部の画像中に眼底からの反射光の波面情報を視覚的に埋め込み、波面情報が色彩情報として表示された画像データを生成し、それを出力する。この場合、部分的な色彩の違いにより、波面収差の様子(つまり屈折特性の様子)が視覚的に把握できる前眼像を得ることができる。
 この波面情報に基づく屈折特性の算出が演算部116において行われる。勿論、演算部116は、レフ値を数値として算出し、それを出力することもできる。また、演算部116は、図4に例示する校正曲線を用いて、画像処理によりハルトマン像を画像処理し、図4に関連して説明した屈折特性のずれを補正する処理を行う。すなわち、ハルトマン像を構成する輝点の位置を図4の補正曲線に基づいて補正する。この補正は、予め調べておいたシフト量で、ハルトマン像中の輝点をシフトさせることで行われる。
 演算部116における屈折特性の算出は、概略以下のようにして行われる。まず、4×4や5×5といった複数の光束により構成されるハルトマン像に基づき、この複数の光束間の傾きを算出する。ついで、この各光束の傾き角から眼球内における光の屈折の状態に関する情報を取得する。
(優位性)
 レフ値が0Dの場合に眼底への集光が得られる照明光学系200の光路長を基準として、光路長がやや短くなる設定となるように光源201および202の位置を決める。これにより、照明光学系200のレンズ系や光源を可動させる構造としなくても広い範囲の屈折特性の測定に対応できる。また、より鮮明なハルトマン像が得られるように光源201および202をいずれかを選択することで、計測される屈折特性の精度を更に高くできる。この場合、ハルトマン像の輝度がより高い方の光路が選択されるように光路の選択を行えばよい。
 本発明は、被検眼の屈折力に係る情報を測定する眼科測定装置に利用することができる。

Claims (7)

  1.  被検眼の眼底を照明する照明光源を有する照明光学系と、
     前記被検眼の眼底から反射された反射光束を複数の光束に分割するハルトマン板および前記ハルトマン板で分割された分割光束を受光する受光部を有する受光光学系と、
     前記受光光学系で得られた光束の傾き角データより、前記被検眼の光学特性を演算する演算部と
     を有し、
     前記照明光源は所定の位置に配置され、
     前記照明光学系と前記受光光学系の集光位置を移動させる移動手段を持たない眼科測定装置。
  2.  被検眼の眼底を照明する照明光源を有する照明光学系と、
     前記被検眼の眼底から反射された反射光束を複数の光束に分割するハルトマン板および前記ハルトマン板で分割された分割光束を受光する受光部を有する受光光学系と、
     前記受光光学系で得られた光束の傾き角データより、前記被検眼の光学特性を演算する演算部と
     を有し、
     前記照明光源を所定の位置に配置することによって前記照明光学系と前記受光光学系の集光位置を移動させなくても測定可能屈折値が所定範囲確保される眼科測定装置。
  3.  前記照明光学系の光路長は固定されており、
     前記照明光源の所定の位置は、0Dの被検眼測定時に眼底に集光する位置より光路長が短くなる位置であることを特徴とする請求項1または2に記載の眼科測定装置。
  4.  前記光路長が0Dの被検眼測定時よりも2.5mm~3mm短い範囲に設定されていることを特徴とする請求項3に記載の眼科測定装置。
  5.  前記演算部は、前記受光光学系で得られた像に画像処理を施し、該画像処理を施された像より前記傾き角データを得ることを特徴とする請求項1乃至4のいずれか1項に記載の眼科測定装置。
  6.  前記照明光学系は、集光位置を異ならせるように配置された複数の照明光源を有することを特徴とする請求項1乃至5のいずれか1項に記載の眼科測定装置。
  7.  前記照明光学系は、異なる長さの光路を複数有する請求項1乃至6のいずれか1項に記載の眼科測定装置。
PCT/JP2018/002102 2017-01-25 2018-01-24 眼科測定装置 WO2018139481A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/478,191 US11109754B2 (en) 2017-01-25 2018-01-24 Ophthalmic measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-011131 2017-01-25
JP2017011131A JP2018117842A (ja) 2017-01-25 2017-01-25 眼科測定装置

Publications (1)

Publication Number Publication Date
WO2018139481A1 true WO2018139481A1 (ja) 2018-08-02

Family

ID=62978427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002102 WO2018139481A1 (ja) 2017-01-25 2018-01-24 眼科測定装置

Country Status (3)

Country Link
US (1) US11109754B2 (ja)
JP (1) JP2018117842A (ja)
WO (1) WO2018139481A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060126018A1 (en) * 2004-12-10 2006-06-15 Junzhong Liang Methods and apparatus for wavefront sensing of human eyes
JP2007330585A (ja) * 2006-06-16 2007-12-27 Topcon Corp 眼科撮影装置
JP2014030573A (ja) * 2012-08-03 2014-02-20 Topcon Corp 他覚的屈折波面収差測定装置
JP2015508685A (ja) * 2012-02-16 2015-03-23 ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャリゼーション 高分解能画像走査のための拡張された焦点深度

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022138A1 (en) * 2001-09-07 2003-03-20 Kabushiki Kaisha Topcon Eye optical characteristic measuring instrument
JP4392006B2 (ja) 2006-07-11 2009-12-24 株式会社トプコン 眼科測定装置
US9763827B2 (en) * 2013-04-30 2017-09-19 Tear Film Innovations, Inc. Systems and methods for the treatment of eye conditions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060126018A1 (en) * 2004-12-10 2006-06-15 Junzhong Liang Methods and apparatus for wavefront sensing of human eyes
JP2007330585A (ja) * 2006-06-16 2007-12-27 Topcon Corp 眼科撮影装置
JP2015508685A (ja) * 2012-02-16 2015-03-23 ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャリゼーション 高分解能画像走査のための拡張された焦点深度
JP2014030573A (ja) * 2012-08-03 2014-02-20 Topcon Corp 他覚的屈折波面収差測定装置

Also Published As

Publication number Publication date
US11109754B2 (en) 2021-09-07
US20190365222A1 (en) 2019-12-05
JP2018117842A (ja) 2018-08-02

Similar Documents

Publication Publication Date Title
KR101888688B1 (ko) 안굴절력 측정 장치
US8851673B2 (en) Imaging apparatus
US20120057130A1 (en) Ophthalmologic apparatus
JP5727188B2 (ja) 眼科測定装置
EP1437084A1 (en) Eye optical characteristic measuring instrument
JP5654225B2 (ja) 角膜形状測定装置
KR20140098689A (ko) 검안 장치
US6695450B2 (en) Ophthalmic characteristics measuring apparatus
WO2004028355A1 (ja) 眼特性測定装置
JP4252288B2 (ja) 眼特性測定装置
KR100722162B1 (ko) 마이어링을 이용한 피검안의 위치 조정 방법 및 이를이용한 검안기
JP5710827B2 (ja) 角膜形状測定装置
CN111479494B (zh) 眼屈光力测定装置
JP6043120B2 (ja) 他覚的屈折波面収差測定装置
WO2018139481A1 (ja) 眼科測定装置
HUT71646A (en) Spatial refractometer
JP2022027987A (ja) 眼科装置
JP4231273B2 (ja) 眼特性測定装置
JP4630107B2 (ja) 眼光学特性測定装置
JP6430770B2 (ja) 眼科装置
JP3927873B2 (ja) 眼屈折力測定装置
JP2021062162A (ja) 走査型眼底撮影装置
JP6567750B2 (ja) 眼科装置
WO2022030202A1 (ja) 眼科装置、および眼科装置制御プログラム
KR20020084738A (ko) 레이저 다이오드를 이용한 시력 및 각막곡률 반경 측정검안장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18745261

Country of ref document: EP

Kind code of ref document: A1