WO2018139419A1 - 微粒子製造装置および微粒子製造方法 - Google Patents

微粒子製造装置および微粒子製造方法 Download PDF

Info

Publication number
WO2018139419A1
WO2018139419A1 PCT/JP2018/001866 JP2018001866W WO2018139419A1 WO 2018139419 A1 WO2018139419 A1 WO 2018139419A1 JP 2018001866 W JP2018001866 W JP 2018001866W WO 2018139419 A1 WO2018139419 A1 WO 2018139419A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
raw material
filter
fine particle
fine particles
Prior art date
Application number
PCT/JP2018/001866
Other languages
English (en)
French (fr)
Inventor
英彦 安藤
雅宜 田中
悦次 高山
Original Assignee
タナベウィルテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017128445A external-priority patent/JP6429949B2/ja
Application filed by タナベウィルテック株式会社 filed Critical タナベウィルテック株式会社
Publication of WO2018139419A1 publication Critical patent/WO2018139419A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium

Definitions

  • the present invention relates to a fine particle production apparatus and a fine particle production method.
  • Patent Document 1 discloses that a sample is dissolved in a supercritical mixed solvent containing carbon dioxide and a sample easily solubilizing medium to produce a supercritical solution.
  • the structure which collects the fine powder of the sample obtained by injecting a supercritical solution with a collection container is disclosed.
  • the collection container includes a filter that collects the generated fine powder.
  • a depth filter having a large particle retention capacity is exemplified as a filter provided in the collection container.
  • mass production is possible. There was room for further improvements in the process.
  • an object of the present invention is to provide a fine particle production apparatus and a fine particle production method capable of efficiently producing and collecting fine particles.
  • the object of the present invention is to provide a container, an injection nozzle that injects a mixed fluid containing a raw material and a pressurized fluid into the container, and raw material fine particles that are disposed in the lower part of the container and are generated by the injection of the injection nozzle.
  • a collection port formed in the lower part of the side wall of the container so as to be openable and closable, and the raw material particles captured on the filter by being driven to rotate above the filter are conveyed toward the collection port. This is achieved by a fine particle manufacturing apparatus including a rotating blade that performs the above operation.
  • the object of the present invention is to capture the raw material fine particles generated by injecting the mixed fluid containing the raw material and the pressurized fluid into the container with a filter disposed in the lower part of the container, and This is achieved by a method for producing fine particles in which raw material fine particles captured on the filter are conveyed toward a collection port formed in a lower portion of the side wall of the container by being rotationally driven above the filter.
  • FIG. 1 It is a schematic block diagram of the fine particle manufacturing apparatus which concerns on one Embodiment of this invention. It is a principal part enlarged view of the microparticle manufacturing apparatus shown in FIG. It is a schematic block diagram of the fine particle manufacturing apparatus which concerns on other embodiment of this invention. It is a schematic plan view of the microparticle manufacturing apparatus which concerns on other embodiment of this invention. It is a schematic block diagram of the fine particle manufacturing apparatus which concerns on other embodiment of this invention.
  • FIG. 1 is a schematic configuration diagram of a fine particle manufacturing apparatus according to an embodiment of the invention.
  • the microparticle manufacturing apparatus 1 includes a container 10 in which microparticles are generated, a filter 21 that traps the microparticles generated in the container 10, and a rotation that transports the microparticles captured by the filter 21.
  • a blade 22, a collection device 40 that collects the fine particles conveyed by the rotary blade 22, and a suction device 50 connected to a suction port 10 a formed at the bottom of the container 10 are provided.
  • the container 10 is constituted by a pressure container whose upper opening is covered with a lid 11 that can be freely opened and closed and the inside of the container 10 can be sealed, and the container temperature control formed in a coil shape along the side wall and the bottom wall of the container 10.
  • a pipe 12 is provided as a means.
  • the pipe 12 can adjust the temperature in the container 10 by circulating a heat medium by introducing a heat medium for heating or cooling such as hot water or cold water from the introduction part 12a and discharging it from the discharge part 12b. it can.
  • the container temperature control means may be constituted by a full jacket having a double structure instead of piping, or may be constituted by winding a heating wire such as a nichrome wire around the container 10.
  • a ventilation nozzle 13 for spraying is attached.
  • a recovery port 14 is formed in the lower portion of the side wall of the container 10.
  • An injection nozzle 20 is provided at the upper center of the lid 11.
  • the injection nozzle 20 is arranged so that the injection direction is vertically downward.
  • the ventilation nozzle 13 is disposed in the vicinity of the injection nozzle 20 and can inject the heated or cooled gas obliquely downward and collide with the injection fluid from the injection nozzle 20.
  • the ventilation nozzle 13 can dry and solidify the jet fluid in the container 10 and can peel off the raw material particles adhering to the inner wall of the container 10.
  • a mixed fluid supply device 30 is connected to the injection nozzle 20.
  • the mixed fluid supply apparatus 30 includes a cylinder 31 in which carbon dioxide is stored, a raw material tank 32 that stores a liquid to be processed including raw materials, and a mixer 33 that mixes carbon dioxide and the liquid to be processed.
  • the cylinder 31 and the raw material tank 32 are connected to a mixer 33 via pumps 34 and 35 and valves 36 and 37, respectively, and a mixed fluid of a pressurized fluid of carbon dioxide and a liquid to be treated containing raw materials is mixed in the mixer.
  • the mixer 33 has a built-in heater, and the mixed fluid heated to a predetermined temperature is supplied to the injection nozzle 20 via the valve 38.
  • the filter 21 is held by a holder and fixed horizontally to the lower part of the container 10.
  • the filter 21 preferably has a small opening so that fine particles with a small diameter (for example, 1 ⁇ m or less) can be captured and held on the surface.
  • a small diameter for example, 1 ⁇ m or less
  • a single-layer or multi-layer sintered wire mesh, filter cloth, filter paper, A film etc. can be mentioned.
  • the rotary blade 22 is arranged so as to be horizontally rotatable above the filter 21 and conveys the fine particles deposited on the filter 21 outward in the radial direction.
  • a gas ejection part 22 a is provided at the lower part of the rotary blade 22.
  • the gas ejection portion 22 a is formed with a plurality of ejection ports 22 b that eject the scattering gas downward toward the filter 21.
  • the ejection port 22 b is also provided at the end of the gas ejection part 22 a and ejects the scattering gas toward the inner wall of the container 10.
  • the rotary blade 22 is supported from below by a rotary shaft 23 that penetrates the filter 21, and includes two blades extending on both sides of the rotary shaft 23.
  • the blades of the rotary blade 22 have a shape that can scrape the raw material fine particles deposited on the filter 21.
  • the number of blades of the rotary blade 22 may be one, or may be three or more.
  • a cap 22c is fixed to the center of the upper portion of the rotary blade 22, and a reduced-diameter tip 23a of the rotary shaft 23 is attached to the mounting portion 22d of the cap 22c by screwing.
  • An adjustment shim 22e is interposed between the mounting portion 22d and the step portion 23b of the rotating shaft 23.
  • the rotary shaft 23 is connected to a drive motor 25 via a speed reducer 24.
  • a rotary joint 26 is connected to the lower portion of the rotating shaft 23.
  • the rotary joint 26 includes an introduction part 26 a into which the heat medium is introduced and a discharge part 26 b through which the heat medium is discharged.
  • the introduction part 26 a and the discharge part 26 b are formed in the flow path formed inside the rotor blade 22.
  • the rotor blade temperature adjusting means can be configured together with a path (not shown), and the rotor blade 22 can be heated or cooled.
  • the rotary joint 26 further includes a supply unit 26c to which a scattering gas is supplied. The scattering gas supplied from the supply unit 26c is introduced into the ejection unit 22a of the rotary blade 22 and is then discharged from the ejection port 22b. Erupted.
  • the recovery device 40 includes a cylinder 42 accommodated in a casing 41, and the recovery port 14 is sealed by a lid plate 42b provided at the tip of the rod 42a coming into contact with the outer wall of the container 10.
  • the rod 42a of the cylinder 42 can be moved back and forth in the horizontal direction, and the recovery port 14 is opened by retracting the rod 42a in the direction indicated by the arrow from the sealed position shown by the one-dot chain line in FIG.
  • a recovery container 43 is connected to the lower part of the casing 41 via a discharge chute 41 a, and the fine particles discharged from the recovery port 14 to the outside of the container 10 are recovered in the recovery container 43.
  • the suction device 50 includes a blower 53 connected to the suction port 10 a via a valve 54, a cyclone 51 and a bag filter 52, and sucks the inside of the container 10 via the filter 21 by the operation of the blower 53.
  • the slight particulates that have passed through the filter 21 are collected by the cyclone 51 and the bag filter 52.
  • the blower 53 is also connected to the discharge chute 41a via the bag filter 52.
  • the blower 53 may be a vacuum pump.
  • the fluid of carbon dioxide supplied from the cylinder 31 to the mixer 33 is preferably a supercritical fluid that is excellent in diffusion function and solvent function, but may be any pressurized fluid that is higher than atmospheric pressure (atmospheric pressure).
  • atmospheric pressure atmospheric pressure
  • carbon dioxide in a subcritical state or liquefied carbon dioxide may be used.
  • the pressurized fluid supplied to the mixer 33 is not limited to carbon dioxide, and examples thereof include nitrogen, water, methane, ethane, propane, methanol, and ethanol.
  • the raw material contained in the liquid to be treated supplied from the raw material tank 32 to the mixer 33 may be either an inorganic substance or an organic substance, and is not particularly limited.
  • a drug or a natural product used for a pharmaceutical or food is used.
  • the liquid to be treated include a solution containing a raw material as a solute, a melt of the raw material, a suspension / emulsion of raw material fine particles, and the like.
  • additives such as co-solvents and excipients can be injected and mixed into the raw material tank 32 and the supply line from the raw material tank 32 to the injection nozzle 20.
  • the valve 38 is opened. Thereby, the mixed fluid containing the raw material and the pressurized fluid of carbon dioxide is injected into the container 10 from the injection nozzle 20, and the carbon dioxide is vaporized by the pressure drop after the injection, and the raw material fine particles are generated.
  • drying and solidification in the case of a melt
  • addition of air drying / coagulation from the air nozzle 13 or vacuum drying with the rotating blade 22 rotating or non-rotating Drying and solidification can be performed.
  • the pressure and temperature in the container 10 can be appropriately set according to the state of the raw material contained in the mixed fluid.
  • the raw material fine particles can be precipitated by cooling the container 10 while maintaining the inside of the container 10 at normal pressure.
  • the evaporation of the solvent can be promoted to deposit the raw material fine particles.
  • the pressure in the container 10 can be adjusted to a vacuum atmosphere or a normal pressure atmosphere by controlling the operation of the blower 53 provided in the suction device 50.
  • the temperature in the container 10 is either a temperature / flow rate control of the heat medium introduced into the pipe 12 serving as a container temperature control means, a temperature control of the gas injected from the ventilation nozzle 13, or a combination of both.
  • the inside of the container 10 can be adjusted by cooling or heating.
  • the control of the temperature and flow rate of the heat medium introduced into the flow path of the rotor blade 22 serving as the rotor blade temperature control means may be combined appropriately.
  • the injection nozzle 20 is arranged so as to inject the mixed fluid from the upper center of the container 10 downward vertically, it prevents the generated raw material fine particles from colliding with and adhering to the inner wall of the container 10. And fine particles can be deposited substantially uniformly on the filter 21.
  • the rotation blade 22 is rotated by driving the drive motor 25, thereby suppressing an increase in ventilation resistance due to the deposition of the raw material fine particles on the filter 21.
  • the valve 38 is closed and the injection of the mixed fluid from the injection nozzle 20 is stopped.
  • the recovery port 40 is opened by operating the recovery device 40 to retract the rod 42a of the cylinder 42 (see FIG. 2).
  • the raw material fine particles deposited on the filter 21 are moved outward in the radial direction by the rotation of the rotary blade 22 and are conveyed toward the recovery port 14.
  • the raw material fine particles discharged from the collection port 14 are sucked by the operation of the blower 53 and collected in the collection container 43 through the discharge chute 41a.
  • the collection device 40 is operated to seal the container 10, and the valve 38 is opened, so that the production of the raw material fine particles can be resumed.
  • the raw material particles deposited in the gap S are not conveyed by the rotation of the rotor blade 22 and remain in the raw material.
  • a raw material fine particle layer is formed on the filter 21 by the fine particles. Since this raw material fine particle layer functions as a filter having a structure similar to a ceramic filter, which is different from the filter 21, and having a small opening, the amount of raw material fine particles that pass through the filter 21 by suction from the suction port 10a is reduced. And the recovery efficiency of the raw material fine particles can be increased.
  • the size of the gap S is preferably uniform throughout. The raw material fine particles that have passed through the filter 21 before the formation of the raw material fine particle layer can be collected by the cyclone 51 and the bag filter 52.
  • the raw material fine particle layer formed on the filter 21 can be controlled to have a desired thickness by adjusting the gap between the filter 21 and the rotor blade 22 with an adjusting shim 22e as a gap adjusting means.
  • the raw material fine particles can be captured more reliably by increasing the thickness of the raw material fine particle layer.
  • the suction resistance from the suction port 10a can be reduced, and the pressure adjustment in the container 10 can be facilitated.
  • the pressure in the container 10 can also be changed by adjusting the opening degree of the valve 54 of the suction device 50, and the inside of the container 10 can be in a pressurized atmosphere higher than normal pressure.
  • the gap adjusting means adjusts the mounting position of the rotary blade 22 with respect to the rotary shaft 23, but the rotary shaft 23 is moved up and down together with the speed reducer 24 to adjust the height position of the rotary blade 22.
  • the raw material fine particles constituting the raw material fine particle layer and the raw material adhering to the inner wall of the container 10 are obtained by injecting a scattering gas from the jet port 22b of the ejection part 22a simultaneously with the rotation of the rotary blade 22. Fine particles can be scattered and guided to the recovery port 14 for recovery.
  • the rotary blade 22 is configured to be supported from below by the rotary shaft 23.
  • the rotary blade 22 is supported from above by the rotary shaft 23. It is also possible to configure.
  • the fine particle manufacturing apparatus 1 shown in FIG. 3 it is easy to configure the rotary shaft 23 to be movable up and down along the guide rail 27 together with the speed reducer 24 and the like, and to easily adjust the gap between the filter 21 and the rotary blade 22. can do.
  • FIG. 3 the same components as those in FIG. 1 are denoted by the same reference numerals (the same applies to the following drawings).
  • FIG. 4 when the container 10 is large, as shown in FIG. 4, a plurality (four in FIG. 4) of the injection nozzles 20 are arranged on the lid body 11 of the container 10, and the mixed fluid is supplied from each of the injection nozzles 20 to the container. You may comprise so that it may inject in the whole in 10.
  • FIG. A plurality (four in FIG. 4) of the ventilation nozzles 13 can be arranged. By arranging them so as to spray along the inner wall of the container 10, the raw material fine particles attached to the inner wall of the container 10 are peeled off. Recovery from the recovery port 14 can be facilitated.
  • FIG. 5 is a schematic configuration diagram of a fine particle manufacturing apparatus according to still another embodiment of the present invention.
  • the fine particle production apparatus 1 shown in FIG. 5 is a filtration in which the fine particle production apparatus 1 shown in FIG. 1 is branched upstream of the valve 54 of the suction device 50 in the suction direction and connected to the suction port 10a via the valve 55.
  • a liquid recovery device 56 is provided.
  • the suction port 10 a can be vented into the container 10 through the valve 57. When the inside of the container 10 is a vacuum atmosphere, the suction port 10a can be opened to the atmosphere via the valve 57.
  • the suction port 10a can be connected to a pressure source such as a compressor via a valve 57 so that the air can be vented at a pressure higher than the pressure in the container 10.
  • the lid 11 of the container 10 is provided with a supply unit 58 such as a supply nozzle.
  • the supply unit 58 is connected to a storage container (not shown) via a valve 59 so that the stored raw material coarse particle suspension can be supplied into the container 10 from the supply unit 58.
  • heated or cooled temperature control gas or pressurization gas supplied from a compressor or the like can be selectively supplied into the container 10 by opening / closing control of the valves 60 and 61.
  • the container 10 includes a suction device 64 connected to a suction port 62 formed in the lid 11 via a valve 63.
  • valves 38 and 54 can be operated in the same manner as the fine particle production apparatus 1 shown in FIG. 1 by opening the valves 38 and 54 after the container 10 is sealed.
  • the valve 38, 54 is closed and the valve 57 is opened momentarily.
  • the air is instantaneously vented from below 21.
  • the raw material fine particle layer is lifted instantaneously, cracks are generated in the raw material fine particle layer, and the suction resistance is reduced.
  • the valves 38 and 54 can be opened again to resume the production of the raw material fine particles.
  • the raw material fine particles can be reliably captured on the filter 21 while suppressing an increase in suction resistance.
  • the instantaneous ventilation from the lower side of the filter 21 is not necessarily applied only to the raw material fine particle layer formed in the gap between the rotor blade 22 and the filter 21.
  • the raw fine particles captured on the filter 21 The present invention is also applicable when the amount of deposition increases.
  • the fine particle production apparatus 1 shown in FIG. 5 can be used not only for production of raw material fine particles but also as a filtration drying apparatus for suspension of raw material coarse particles.
  • the raw material coarse particle suspension is supplied into the container 10 by opening the valve 59 while the valve 55 is opened and the other valves are closed.
  • the valve 59 is closed and the valve 61 is opened to introduce a pressurizing gas into the container 10.
  • Pressure filtration is performed, and the filtrate that has passed through the filter 21 is collected in the filtrate collection device 56.
  • Filtration of the raw material coarse particle suspension may be vacuum filtration by opening the valve 54 instead of pressure filtration by opening the valve 61.
  • the fine particle manufacturing apparatus 1 shown in FIG. 5 can be used as a filtration drying apparatus by adding a few components to the fine particle manufacturing apparatus 1 shown in FIG. Can be increased.
  • the configuration added / changed from the fine particle production apparatus 1 shown in FIG. 1 can be applied to the fine particle production apparatus 1 shown in FIG. That is, based on the fine particle production apparatus 1 shown in FIG. 3, it is possible to make a structure in which cracks are generated in the raw material fine particle layer by instantaneously venting the raw material fine particle layer from below the filter 21.
  • the container further includes a supply unit 58 for supplying the raw material coarse particle suspension into the container 10 and a filtrate collecting device 56 for collecting the filtrate through which the raw material coarse particle suspension has passed through the filter 21. It is possible to adopt a configuration in which a suspension of raw material coarse particles is filtered by pressurizing or depressurizing the inside of the apparatus 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Glanulating (AREA)

Abstract

容器10と、原料および加圧流体を含む混合流体を容器10内に噴射する噴射ノズル20と、容器10内の下部に配置されて噴射ノズル20の噴射により生成された原料微粒子を捕捉するフィルタ21と、容器10の側壁下部に開閉可能に形成された回収口14と、フィルタ21の上方で回転駆動されることによりフィルタ21上に捕捉された原料微粒子を回収口14に向けて搬送する回転翼22とを備える微粒子製造装置1である。この微粒子製造装置1によれば、微粒子の製造および回収を効率良く行うことができる。

Description

微粒子製造装置および微粒子製造方法
 本発明は、微粒子製造装置および微粒子製造方法に関する。
 超臨界流体を用いた従来の微粒子製造方法として、原料を含む超臨界流体を噴射して圧力を急激に低下させることにより、原料微粒子を析出させる急速膨張法が知られており、例えば、原料を溶解させた超臨界流体を急速膨張させるRESS法(Rapid Expansion of Supercritical Solutions)や、原料に超臨界流体を溶解させて急速膨張させるPGSS法(Particles from Gas Saturated Solutions)が知られている。最近では、原料を溶解させた溶液等を超臨界流体と混合して噴霧し乾燥させることにより、微粒子を生成する超臨界噴霧乾燥法(CAN-BD法およびSAA法)が知られている。
 このような急速膨張法による微粒子製造装置の一例として、特許文献1には、二酸化炭素および試料易溶化媒体を含有する超臨界状態の混合溶媒に試料を溶解して超臨界溶液を生成し、この超臨界溶液を噴射して得られた試料の微粉を捕集容器により捕集する構成が開示されている。捕集容器は、生成された微粉を捕集するフィルタを備えている。
特開2004-45098号公報
 上記従来の微粉製造装置は、捕集容器が備えるフィルタとして、粒子保持容量が大きいデプスフィルタが例示されているが、捕集した微粉をフィルタから分離して回収する作業が困難であるため、量産化を図る上で更に改良の余地があった。
 そこで、本発明は、微粒子の製造および回収を効率良く行うことができる微粒子製造装置および微粒子製造方法の提供を目的とする。
 本発明の前記目的は、容器と、原料および加圧流体を含む混合流体を前記容器内に噴射する噴射ノズルと、前記容器内の下部に配置されて前記噴射ノズルの噴射により生成された原料微粒子を捕捉するフィルタと、前記容器の側壁下部に開閉可能に形成された回収口と、前記フィルタの上方で回転駆動されることにより前記フィルタ上に捕捉された原料微粒子を前記回収口に向けて搬送する回転翼とを備える微粒子製造装置により達成される。
 また、本発明の前記目的は、原料および加圧流体を含む混合流体を容器内に噴射して生成された原料微粒子を、前記容器内の下部に配置されたフィルタにより捕捉し、回転翼を前記フィルタの上方で回転駆動することにより、前記フィルタ上に捕捉された原料微粒子を前記容器の側壁下部に形成された回収口に向けて搬送する微粒子製造方法により達成される。
 本発明によれば、微粒子の製造および回収を効率良く行うことができる微粒子製造装置および微粒子製造方法を提供することができる。
本発明の一実施形態に係る微粒子製造装置の概略構成図である。 図1に示す微粒子製造装置の要部拡大図である。 本発明の他の実施形態に係る微粒子製造装置の概略構成図である。 本発明の更に他の実施形態に係る微粒子製造装置の概略平面図である。 本発明の更に他の実施形態に係る微粒子製造装置の概略構成図である。
 以下、本発明の実施の形態について、添付図面を参照して説明する。図1は、発明の一実施形態に係る微粒子製造装置の概略構成図である。図1に示すように、微粒子製造装置1は、内部で微粒子が生成される容器10と、容器10内で生成された微粒子を捕捉するフィルタ21と、フィルタ21に捕捉された微粒子を搬送する回転翼22と、回転翼22により搬送された微粒子を回収する回収装置40と、容器10の底部に形成された吸引口10aに接続された吸引装置50とを備えている。
 容器10は、上部の開口が開閉自在な蓋体11により覆われて内部を密閉可能な圧力容器により構成されており、容器10の側壁および底壁に沿ってコイル状に形成された容器温調手段としての配管12を備えている。配管12は、温水や冷水などの加熱用または冷却用の熱媒体を導入部12aから導入して排出部12bから排出することにより熱媒体を循環させて、容器10内の温度を調節することができる。容器温調手段は、配管の代わりに、二重構造のフルジャケットにより構成してもよく、あるいは、ニクロム線等の発熱線を容器10の周囲に巻回して構成することも可能である。容器10の蓋体11には、ブロワから電気ヒータやチラー等の温度調節器(いずれも図示せず)を経て供給された、空気や不活性ガス(例えば窒素)等の気体を容器10内に噴射する通気ノズル13が取り付けられている。また、容器10の側壁下部には回収口14が形成されている。
 蓋体11の上部中央には、噴射ノズル20が設けられている。噴射ノズル20は、噴射方向が鉛直下方となるように配置されている。通気ノズル13は、噴射ノズル20の近傍に配置されており、加熱または冷却された気体を斜め下方に向けて噴射して、噴射ノズル20からの噴射流体に衝突させることができる。通気ノズル13は、容器10内において、噴射流体の乾燥や凝固を行うことができる他、容器10の内壁に付着した原料微粒子の剥離を行うことができる。
 噴射ノズル20には、混合流体供給装置30が接続されている。混合流体供給装置30は、二酸化炭素が貯蔵されたボンベ31と、原料を含む被処理液を貯留する原料タンク32と、二酸化炭素および被処理液を混合する混合器33とを備えている。ボンベ31および原料タンク32は、それぞれポンプ34,35およびバルブ36,37を介して混合器33に接続されており、二酸化炭素の加圧流体と原料を含む被処理液との混合流体が混合器33において生成される。混合器33はヒータを内蔵しており、所定温度まで昇温された混合流体がバルブ38を介して噴射ノズル20に供給される。
 フィルタ21は、ホルダに保持されて、容器10の下部に水平に固定されている。フィルタ21は、直径が小さい(例えば、1μm以下)微粒子を捕捉して表面上に保持できるように目開きが小さいものが好ましく、例えば、単層または多層の焼結金網や、ろ布、ろ紙、膜等を挙げることができる。
 回転翼22は、フィルタ21の上方において水平回転可能となるように配置されており、フィルタ21上に堆積された微粒子を径方向外方に搬送する。図2に拡大図で示すように、回転翼22の下部には気体噴出部22aが設けられている。気体噴出部22aは、フィルタ21に向けて飛散用気体を下方に噴出する複数の噴出口22bが形成されている。噴出口22bは、気体噴出部22aの端部にも設けられており、容器10の内壁に向けて飛散用気体を噴出する。
 回転翼22は、フィルタ21を貫通する回転軸23により下方から支持されており、回転軸23の両側に延びる2枚の羽根を備えている。回転翼22の羽根は、フィルタ21上に堆積した原料微粒子を掻き取り可能な形状を有している。回転翼22の羽根枚数は、1枚であってもよく、あるいは、3枚以上であってもよい。回転翼22の上部中央にはキャップ22cが固定されており、回転軸23の縮径された先端部23aが、キャップ22cの装着部22dに対して螺合により取り付けられている。装着部22dと回転軸23の段部23bとの間には調整用シム22eが介在されており、調整用シム22eの厚み調整によって回転翼22の高さ位置を変えることで、フィルタ21と回転翼22との間に形成される隙間Sを所望の大きさに設定することができる。
 回転軸23は、減速機24を介して駆動モータ25に連結されている。回転軸23の下部にはロータリジョイント26が接続されている。ロータリジョイント26は、熱媒体が導入される導入部26aと、熱媒体が排出される排出部26bとを備えており、導入部26aおよび排出部26bが、回転翼22の内部に形成された流路(図示せず)と共に回転翼温調手段を構成し、回転翼22の加熱または冷却を行うことができる。ロータリジョイント26は、飛散用気体が供給される供給部26cを更に有しており、供給部26cから供給された飛散用気体が、回転翼22の噴出部22aに導入されて、噴出口22bから噴出される。
 回収装置40は、ケーシング41に収容されたシリンダ42を備えており、ロッド42aの先端に設けられた蓋板42bが容器10の外壁に当接することにより、回収口14が密閉される。シリンダ42のロッド42aは、水平方向に進退可能とされており、ロッド42aを、図2に一点鎖線で示す密閉位置から矢示方向に後退させることにより、回収口14が開放される。ケーシング41の下部には排出シュート41aを介して回収容器43が接続されており、回収口14から容器10の外部に排出された微粒子が回収容器43に回収される。
 吸引装置50は、バルブ54、サイクロン51およびバグフィルタ52を介して吸引口10aに接続されたブロワ53を備えており、ブロワ53の作動によりフィルタ21を介して容器10内を吸引する。フィルタ21を透過した僅かな微粒子は、サイクロン51およびバグフィルタ52により回収される。ブロワ53は、バグフィルタ52を介して排出シュート41aにも接続されている。ブロワ53は、真空ポンプであってもよい。
 次に、上記の構成を備える微粒子製造装置1の作動を説明する。まず、バルブ36,37を開放してポンプ34,35を作動させることにより、ボンベ31および原料タンク32から二酸化炭素および被処理液を混合器33に供給し、混合流体を生成する。
 ボンベ31から混合器33に供給される二酸化炭素の流体は、拡散機能や溶媒機能に優れる超臨界流体であることが好ましいが、常圧(大気圧)より高圧の加圧流体であればよく、例えば、亜臨界状態の二酸化炭素や、液化二酸化炭素であってもよい。また、混合器33に供給される加圧流体は、二酸化炭素に限定されるものではなく、例えば、窒素、水、メタン、エタン、プロパン、メタノール、エタノール等を挙げることができる。
 原料タンク32から混合器33に供給される被処理液に含まれる原料は、無機物または有機物のいずれであってもよく、特に限定されないが、例えば、医薬品や食品に使用される薬物や天然物を挙げることができる。被処理液は、原料を溶質として含む溶液、原料の融液、原料微粒子の懸濁液・乳濁液等を例示することができる。また、被処理液性状により、助溶媒や賦形剤等の添加剤を、原料タンク32や、原料タンク32から噴射ノズル20への供給ラインに注入し、混合することができる。
 混合器33への二酸化炭素および被処理液の供給により、混合流体が加熱されると共に所定の圧力まで昇圧されると、バルブ38を開放する。これにより、原料と、二酸化炭素の加圧流体とを含む混合流体が、噴射ノズル20から容器10内に噴射され、噴射後の圧力低下によって二酸化炭素が気化し、原料微粒子が生成される。生成される原料微粒子の乾燥や凝固(融液の場合)が不十分な場合は、回転翼22を回転または非回転の状態で、通気ノズル13からの通気乾燥・凝固や、真空乾燥などの追加乾燥・凝固を行うことができる。
 容器10内の圧力および温度は、混合流体に含まれる原料の状態に応じて適宜設定することができる。例えば、原料が融液の場合には、容器10内を常圧に維持して冷却することにより、原料微粒子を析出させることができる。一方、原料が溶液に含まれる溶質の場合には、容器10内を真空雰囲気にして加熱することにより、溶媒の蒸発を促して原料微粒子を析出させることができる。
 容器10内の圧力は、吸引装置50が備えるブロワ53の作動制御により、真空雰囲気または常圧雰囲気に調整することができる。また、容器10内の温度は、容器温調手段である配管12に導入する熱媒体の温度・流量の制御、および、通気ノズル13から噴射する気体の温度制御のいずれか、あるいは、双方を組み合わせることにより、容器10内を冷却または加熱することで調整可能である。容器10内の温度制御においては、回転翼温調手段である回転翼22の流路に導入する熱媒体の温度・流量の制御を適宜組み合わせてもよい。
 こうして容器10内で生成された原料微粒子は、大部分がフィルタ21上に堆積される。噴射ノズル20は、容器10の上部中央から鉛直下方に向けて混合流体を噴射するように配置されているので、生成される原料微粒子が容器10の内壁に衝突して付着するのを抑制することができ、フィルタ21上に微粒子を略均一に堆積させることができる。
 原料微粒子の生成中は、駆動モータ25の駆動により回転翼22を回転させることにより、フィルタ21上への原料微粒子の堆積に伴う通気抵抗の増大を抑制することができる。容器10内で微粒子が所定量生成されると、バルブ38を閉じて噴射ノズル20からの混合流体の噴射を停止する。なお、被処理液性状により通気抵抗が小さい場合は、原料微粒子の生成中に、回転翼22を必ずしも回転させる必要はない。ついで、回収装置40を作動させてシリンダ42のロッド42aを後退させることにより、回収口14を開放する(図2参照)。フィルタ21上に堆積された原料微粒子は、回転翼22の回転により径方向外方に向けて移動し、回収口14に向けて搬送される。回収口14から排出された原料微粒子は、ブロワ53の作動により吸引され、排出シュート41aを経て回収容器43に回収される。こうして、フィルタ21上の微粒子を自動的に回収した後、回収装置40を作動させて容器10を密閉し、バルブ38を開放することにより、原料微粒子の生成を再開することができる。
 フィルタ21と回転翼22との間には、図2に示すように隙間Sが形成されているため、この隙間Sに堆積した原料微粒子は、回転翼22の回転によって搬送されず、残留した原料微粒子によってフィルタ21上に原料微粒子層が形成される。この原料微粒子層は、フィルタ21とは別の、セラミックフィルタに類似した構造を有する目開きが小さいフィルタとして機能するため、吸引口10aからの吸引によりフィルタ21を通過する原料微粒子の漏れ量を低減することができ、原料微粒子の回収効率を高めることができる。隙間Sの大きさは、全体にわたって均一であることが好ましい。なお、原料微粒子層の形成前にフィルタ21を通過した原料微粒子は、サイクロン51およびバグフィルタ52で回収することができる。
 フィルタ21上に形成される原料微粒子層は、隙間調整手段としての調整用シム22eによってフィルタ21と回転翼22との隙間を調整することにより、所望の厚みに制御することができる。例えば、容器10内で生成される原料微粒子の径が小さい場合には、原料微粒子層の厚みを大きくすることにより、原料微粒子の捕捉をより確実にすることができる。また、原料微粒子層の厚みを小さくすることにより吸引口10aからの吸引抵抗を減少させて、容器10内の圧力調整を容易にすることができる。容器10内の圧力は、吸引装置50のバルブ54の開度調整によっても変化させることができ、容器10内を常圧よりも高圧の加圧雰囲気にすることも可能である。隙間調整手段は、本実施形態では回転軸23に対する回転翼22の取付位置を調整することにより行っているが、回転軸23を減速機24等と共に上下動させて回転翼22の高さ位置を調整可能に構成してもよく、あるいは、容器10に対するフィルタ21の取付高さを変更可能に構成することで、フィルタ21と回転翼22との隙間Sを調整してもよい。
 原料微粒子の製造終了時には、回転翼22の回転と同時に、噴出部22aの噴出口22bから飛散用気体を噴射することにより、原料微粒子層を構成する原料微粒子や、容器10の内壁に付着する原料微粒子を飛散させて、回収口14に案内し、回収することができる。
 以上、本発明の一実施形態について詳述したが、本発明の具体的な態様は上記実施形態に限定されない。例えば、本実施形態においては、回転翼22が回転軸23によって下方から支持されるように構成しているが、図3に示すように、回転翼22を回転軸23によって上方から支持するように構成することも可能である。図3に示す微粒子製造装置1は、回転軸23を減速機24等と共にガイドレール27に沿って上下動可能に構成することが容易であり、フィルタ21と回転翼22との隙間調整を容易にすることができる。なお、図3において、図1と同様の構成部分には同一の符号を付している(以下の図においても同様)。
 また、容器10が大型の場合には、図4に示すように、噴射ノズル20を容器10の蓋体11に複数(図4では4つ)配置して、各噴射ノズル20から混合流体が容器10内の全体に噴射されるように構成してもよい。通気ノズル13も複数(図4では4つ)配置することが可能であり、それぞれ容器10の内壁に沿って噴射するように配置することで、容器10の内壁に付着した原料微粒子を剥離して、回収口14からの回収を容易にすることができる。
 図5は、本発明の更に他の実施形態に係る微粒子製造装置の概略構成図である。図5に示す微粒子製造装置1は、図1に示す微粒子製造装置1において、吸引装置50のバルブ54よりも吸引方向上流側で分岐して、吸引口10aにバルブ55を介して接続されたろ過液回収装置56を備えている。更に、吸引口10aは、バルブ57を介して容器10内に通気可能とされている。容器10内が真空雰囲気の場合には、吸引口10aがバルブ57を介して大気に開放された構成にすることができ、容器10内が常圧雰囲気または加圧雰囲気の場合には、吸引口10aがバルブ57を介してコンプレッサ等の圧力源に接続されて、容器10内の圧力より高い圧力で一気に通気可能に構成することができる。
 容器10の蓋体11には、供給ノズル等の供給部58が設けられている。供給部58は、バルブ59を介して貯留容器(図示せず)に接続されており、貯留された原料粗粒子の懸濁液を、供給部58から容器10内に供給可能とされている。また、通気ノズル13からは、加熱または冷却された温調気体、あるいは、コンプレッサ等から供給される加圧用気体を、バルブ60,61の開閉制御により、容器10内に選択的に供給可能とされている。容器10は、蓋体11に形成された吸引口62にバルブ63を介して接続された吸引装置64を備えている。
 図5に示す微粒子製造装置1によれば、容器10を密閉した後に、バルブ38,54等を開放することにより、図1に示す微粒子製造装置1と同様に作動させることができる。フィルタ21上に形成される原料微粒子層の厚みが大きく吸引口10aからの吸引抵抗が大きい場合に、バルブ38,54を閉じてバルブ57を瞬間的に開放すると、原料微粒子層に対して、フィルタ21の下方から瞬間的に通気される。これにより、原料微粒子層が瞬間的に持ち上げられて、原料微粒子層に亀裂が発生して吸引抵抗が減少する。この後は、バルブ38,54を再び開いて、原料微粒子の製造を再開することができる。バルブ57の瞬間的な開放を定期または不定期に繰り返すことで、原料微粒子層の厚みが大きい場合でも、吸引抵抗の増大を抑制しつつ、原料微粒子をフィルタ21上に確実に捕捉することができる。フィルタ21の下方からの瞬間的な通気は、必ずしも回転翼22とフィルタ21との隙間に形成される原料微粒子層のみに適用されるものではなく、例えば、フィルタ21上に捕捉される原料微粒子の堆積量が多くなった場合等にも適用可能である。
 図5に示す微粒子製造装置1は、原料微粒子の製造用として使用できるだけでなく、原料粗粒子の懸濁液のろ過乾燥装置としても使用することができる。ろ過乾燥装置として使用する場合、バルブ55を開放して他のバルブは閉じた状態で、バルブ59の開放により原料粗粒子の懸濁液を容器10内に供給する。原料粗粒子の懸濁液が容器10内に所定量供給されると、バルブ59を閉じてバルブ61を開き、加圧用気体を容器10内に導入して、原料粗粒子の懸濁液の加圧ろ過を行い、フィルタ21を通過したろ過液をろ過液回収装置56に回収する。原料粗粒子の懸濁液のろ過は、バルブ61の開放による加圧ろ過の代わりに、バルブ54の開放による減圧ろ過であってもよい。ろ過の終了後は、バルブを全て閉じた後、バルブ63を開放して容器10内を吸引装置64で吸引することにより、フィルタ21上に残留する原料粗粒子を真空乾燥することができる。原料粗粒子を真空乾燥する際には、回転翼22を回転させてもよい。このように、図5に示す微粒子製造装置1は、図1に示す微粒子製造装置1に対して構成要素を僅かに追加するだけで、ろ過乾燥装置としても使用することが可能になり、汎用性を高めることができる。
 図5に示す微粒子製造装置1において、図1に示す微粒子製造装置1から追加・変更した構成は、図3に示す微粒子製造装置1に対して適用することも可能である。すなわち、図3に示す微粒子製造装置1をベースにして、原料微粒子層に対してフィルタ21の下方から瞬間的に通気することにより原料微粒子層に亀裂を発生させる構成にすることが可能であり、更に、原料粗粒子の懸濁液を容器10内に供給する供給部58と、原料粗粒子の懸濁液がフィルタ21を通過したろ過液を回収するろ過液回収装置56とを更に備え、容器10内を加圧または減圧して原料粗粒子の懸濁液をろ過する構成にすることが可能である。
 1 微粒子製造装置
10 容器
12 配管
13 通気ノズル
14 回収口
20 噴射ノズル
21 フィルタ
22 回転翼
22a 気体噴出部
23 回転軸
30 混合流体供給装置
40 回収装置
50 吸引装置
56 ろ過液回収装置
58 供給部

Claims (14)

  1.  容器と、
     原料および加圧流体を含む混合流体を前記容器内に噴射する噴射ノズルと、
     前記容器内の下部に配置されて前記噴射ノズルの噴射により生成された原料微粒子を捕捉するフィルタと、
     前記容器の側壁下部に開閉可能に形成された回収口と、
     前記フィルタの上方で回転駆動されることにより前記フィルタ上に捕捉された原料微粒子を前記回収口に向けて搬送する回転翼とを備える微粒子製造装置。
  2.  前記回転翼は、前記フィルタを貫通する回転軸によって下方から支持されている請求項1に記載の微粒子製造装置。
  3.  前記噴射ノズルは、前記容器の上部中央から鉛直下方に向けて噴射するように配置されている請求項2に記載の微粒子製造装置。
  4.  前記回転翼と前記フィルタとの間に生じる隙間の大きさを調整可能な隙間調整手段を更に備える請求項1に記載の微粒子製造装置。
  5.  前記フィルタを介して前記容器内を吸引する吸引手段を更に備える請求項1に記載の微粒子製造装置。
  6.  前記回転翼は、前記フィルタに向けて飛散用気体を噴射する気体噴出部を備える請求項1に記載の微粒子製造装置。
  7.  前記容器を加熱または冷却する容器温調手段を更に備える請求項1に記載の微粒子製造装置。
  8.  前記回転翼を加熱または冷却する回転翼温調手段を更に備える請求項1に記載の微粒子製造装置。
  9.  加熱または冷却された気体を斜め下方に向けて噴射して、前記噴射ノズルから噴射される前記混合流体に衝突させる通気ノズルを更に備える請求項1に記載の微粒子製造装置。
  10.  原料粗粒子の懸濁液を前記容器内に供給する供給部と、
     原料粗粒子の懸濁液が前記フィルタを通過したろ過液を回収するろ過液回収装置とを更に備え、
     前記容器内を加圧または減圧して原料粗粒子の懸濁液をろ過することができる請求項1に記載の微粒子製造装置。
  11.  原料および加圧流体を含む混合流体を容器内に噴射して生成された原料微粒子を、前記容器内の下部に配置されたフィルタにより捕捉し、回転翼を前記フィルタの上方で回転駆動することにより、前記フィルタ上に捕捉された原料微粒子を前記容器の側壁下部に形成された回収口に向けて搬送する微粒子製造方法。
  12.  前記回転翼と前記フィルタとの間に形成される隙間の大きさを調整することにより、所望の厚みを有する原料微粒子層を形成する請求項11に記載の微粒子製造方法。
  13.  前記フィルタ上に捕捉された原料微粒子に対して、前記フィルタの下方から瞬間的に通気する請求項11に記載の微粒子製造方法。
  14.  前記回転翼により搬送される原料微粒子は、加熱または冷却された気体を通気ノズルから噴射することにより乾燥または凝固された原料微粒子である請求項11に記載の微粒子製造方法。
PCT/JP2018/001866 2017-01-26 2018-01-23 微粒子製造装置および微粒子製造方法 WO2018139419A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017011834 2017-01-26
JP2017-011834 2017-01-26
JP2017128445A JP6429949B2 (ja) 2017-01-26 2017-06-30 微粒子製造装置および微粒子製造方法
JP2017-128445 2017-06-30

Publications (1)

Publication Number Publication Date
WO2018139419A1 true WO2018139419A1 (ja) 2018-08-02

Family

ID=62979427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001866 WO2018139419A1 (ja) 2017-01-26 2018-01-23 微粒子製造装置および微粒子製造方法

Country Status (1)

Country Link
WO (1) WO2018139419A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020049436A (ja) * 2018-09-27 2020-04-02 太平洋セメント株式会社 噴霧熱分解装置又は噴霧乾燥装置
CN112689114A (zh) * 2021-03-11 2021-04-20 太平金融科技服务(上海)有限公司 对车辆的目标位置进行确定的方法、装置、设备和介质
WO2024084129A1 (en) * 2022-10-21 2024-04-25 Nanoform Finland Oyj Device for collecting particles of organic substances

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214334A (ja) * 1982-01-09 1983-12-13 サンド・アクチエンゲゼルシヤフト 無塵粒状材料の製造方法及び装置
JPS60183030A (ja) * 1984-02-29 1985-09-18 Fuji Paudaru Kk 造粒並びにコ−テイング装置
JPS63218241A (ja) * 1987-03-06 1988-09-12 Tdk Corp 中空球状粒子およびその製造方法
JP2013104611A (ja) * 2011-11-14 2013-05-30 Tanabe Uiru Tec Kk 濾過乾燥機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214334A (ja) * 1982-01-09 1983-12-13 サンド・アクチエンゲゼルシヤフト 無塵粒状材料の製造方法及び装置
JPS60183030A (ja) * 1984-02-29 1985-09-18 Fuji Paudaru Kk 造粒並びにコ−テイング装置
JPS63218241A (ja) * 1987-03-06 1988-09-12 Tdk Corp 中空球状粒子およびその製造方法
JP2013104611A (ja) * 2011-11-14 2013-05-30 Tanabe Uiru Tec Kk 濾過乾燥機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020049436A (ja) * 2018-09-27 2020-04-02 太平洋セメント株式会社 噴霧熱分解装置又は噴霧乾燥装置
JP7292843B2 (ja) 2018-09-27 2023-06-19 太平洋セメント株式会社 噴霧熱分解装置又は噴霧乾燥装置
CN112689114A (zh) * 2021-03-11 2021-04-20 太平金融科技服务(上海)有限公司 对车辆的目标位置进行确定的方法、装置、设备和介质
CN112689114B (zh) * 2021-03-11 2021-06-22 太平金融科技服务(上海)有限公司 对车辆的目标位置进行确定的方法、装置、设备和介质
WO2024084129A1 (en) * 2022-10-21 2024-04-25 Nanoform Finland Oyj Device for collecting particles of organic substances

Similar Documents

Publication Publication Date Title
WO2018139419A1 (ja) 微粒子製造装置および微粒子製造方法
WO2015003660A1 (zh) 气冷滴丸生产线
JP6429949B2 (ja) 微粒子製造装置および微粒子製造方法
EP2969441B1 (en) Equipment assembly and method of processing particles
US9788566B2 (en) Process for drying and powderizing functional foods, nutraceuticals, and natural health ingredients
US20070158266A1 (en) Method And Apparatus For Producing Particles Via Supercritical Fluid Processing
JP2016525392A5 (ja)
KR101280159B1 (ko) 동결 건조 장치 및 동결 건조 방법
JPS5943216B2 (ja) 混合・造粒・乾燥機
JP5160881B2 (ja) 回転翼式攪拌装置および回転翼式攪拌装置による原料の乾燥方法
JPH0234652B2 (ja)
CN105014063B (zh) 适用于活性粉体的喷雾造粒装置
JP5211082B2 (ja) 濾過乾燥方法
US7922798B2 (en) Granulator device
CN101780113A (zh) 一种用超临界技术制备中药有效成分纳米颗粒的方法及装置
KR101970470B1 (ko) 분무건조 방식을 이용한 에어로졸 입자 생성장치
JP2004321137A (ja) 食品用液体抽出装置及びその運転方法
JP2003194462A (ja) 粉体乾燥機
EP2101131A1 (en) Lyophilization method and system therefor
JP4971368B2 (ja) 遠心分離機の操作方法
JP3347962B2 (ja) ろ過乾燥装置
JP5649863B2 (ja) 液体噴霧乾燥機
FR2759304A1 (fr) Procede de traitement en continu de matieres pulverulentes en vrac et installation permettant sa mise en oeuvre
JP2003024763A (ja) 超臨界微粉化装置
JP2001259405A (ja) 流動層造粒装置及び造粒物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744073

Country of ref document: EP

Kind code of ref document: A1