WO2018139016A1 - 移動体検知システム - Google Patents

移動体検知システム Download PDF

Info

Publication number
WO2018139016A1
WO2018139016A1 PCT/JP2017/041169 JP2017041169W WO2018139016A1 WO 2018139016 A1 WO2018139016 A1 WO 2018139016A1 JP 2017041169 W JP2017041169 W JP 2017041169W WO 2018139016 A1 WO2018139016 A1 WO 2018139016A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
moving body
detection system
transmission unit
body detection
Prior art date
Application number
PCT/JP2017/041169
Other languages
English (en)
French (fr)
Inventor
高橋 昌義
健太郎 大久保
秋山 仁
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2018564117A priority Critical patent/JP6734405B2/ja
Priority to CN201780084535.3A priority patent/CN110235020B/zh
Publication of WO2018139016A1 publication Critical patent/WO2018139016A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control

Definitions

  • the present invention relates to a moving body detection system.
  • interference between radars means that, for example, a transmission wave of the first radar and a reflected wave thereof are received by the receiving unit of the second radar.
  • the second radar receives a reflected wave from the first radar and falsely detects that there is no object in the irradiation range, or the reflection of both the first and second radars.
  • Patent Document 1 when a transmission output is turned on by any one of a plurality of installed radars, a function for turning off transmission and reception by another radar is provided. The detection accuracy is improved by suppressing interference.
  • the polarization plane of the radar output is arranged obliquely (mainly 45 degrees), so that even if a radio wave is received from the radar in the opposite state, the plane of polarization intersects.
  • a technology that can reduce the influence of the is described.
  • Patent Document 1 requires a higher-level device that performs operation monitoring between all radars or performs synchronous control of all radars, and there has been a problem of cost increase due to inter-radar wiring and control unit construction.
  • Patent Document 2 has a problem that when radars are arranged side by side on a track, reflected waves are detected by other radars and erroneously detected.
  • the present invention aims to provide a mobile object detection system that suppresses interference between radars while paying attention to the above-mentioned problems while a plurality of radars operate independently.
  • a mobile object detection system includes a first transmission unit that generates a first irradiation electromagnetic wave that is an electromagnetic wave having a component in a first polarization direction, and the first polarization unit.
  • a first radar including a first receiving unit that receives an electromagnetic wave having a component in the wave direction; and a second radar that generates a second irradiation electromagnetic wave that is an electromagnetic wave having a component in the second polarization direction.
  • a second radar including a transmission unit and a second reception unit configured to receive an electromagnetic wave having a component of the second polarization direction, and the first radar and the second radar along a traveling path
  • a moving body detection system for detecting a moving body by installing a radar of the first radar, the polarization direction of the first electromagnetic wave for irradiation generated by the first transmitter of the first radar, and the second The polarization direction of the second receiving unit of the radar is different, and the first radar Disposing the second radar in a range in which the first electromagnetic wave for irradiation generated by the first transmitter and the reflected wave thereof can be detected by the first receiver of the other first radar;
  • Fig. 1 shows an installation diagram of the moving object detection system in Example 1.
  • FIG. 1 shows an example of a moving object detection system using the above radar.
  • a first radar 1 and a second radar 2 are installed on one side of a traveling path 6 along the traveling direction, and the irradiation range 3 of the transmission wave of the radar 1 and the transmission wave of the radar 2 are The irradiation range 4 detects the moving body 5 traveling on the traveling path 6.
  • the radar 11 includes a transmission circuit 14 and a transmission antenna 12 for irradiating a transmission wave 19 from the radar 11, and a reception antenna 13 for receiving a reflected wave 20 in which the irradiated transmission wave 19 is reflected by an object such as a moving body.
  • a data processing unit 17 for calculating the speed of the moving body and a communication unit 18 for communicating with the moving body detection system which is a host system are provided.
  • a suitable example of the radar 11 is a millimeter wave radar.
  • millimeter wave radar a Doppler method capable of detecting speed, a standing wave method capable of detecting speed and distance, and an FM-CW method are generally known.
  • the transmission and reception antennas used in these radars are usually linear polarization antennas whose polarization direction is one direction such as a horizontal direction or a vertical direction.
  • a radar equipped with this linear polarization antenna is used. Will be used.
  • FIG. 3 is a diagram showing the polarization direction of the antenna, and is a plan view of the radar 11 as seen from the radiation surfaces of the transmission antenna 12 and the reception antenna 13.
  • the polarization direction 21 of the transmission antenna 12 is the same as the polarization direction 22 of the reception antenna 13, and thus the polarization direction of the reflected wave 20 and the polarization direction of the reception antenna 13 are By aligning, the receiving sensitivity at the receiving antenna 13 can be maximized.
  • the transmitting antenna 12 and the receiving antenna 13 are illustrated so as to be lined up on the left and right on the line AA ′. However, if the polarization directions are the same, the arrangement of the transmitting antenna 12 and the receiving antenna 13 is limited. It is not a thing.
  • the horizontal line 23 is illustrated in FIG. 3, but it should be noted that the orientation of the radar 11, the transmission antenna 12, and the reception antenna 13 is not limited.
  • the polarization angle ( ⁇ ) is 0 °
  • the radar 11 As shown in FIG. 4, the polarization angle ( ⁇ ) when rotated 45 ° counterclockwise is + 45 °, and the polarization angle ( ⁇ ) when rotated 45 ° clockwise as shown in FIG. 45 °.
  • the moving body 5 in order to always detect the position of the moving body 5 as the moving body detection system, the moving body 5 needs to be within one of the irradiation ranges of a plurality of radars. They will be placed close together.
  • another second radar 2 is installed within the radius D1 with the first radar 1 as the center.
  • the other first radar 1 is installed within the radius D2 around the second radar 2.
  • the radar 1 and the radar 2 are arranged close to each other, a problem of inter-radar interference occurs.
  • the transmission wave of the radar 1 is applied to the moving body 5 or other objects, and the reflected wave is received by the radar 2, thereby causing interference.
  • the transmission wave of the radar 2 is applied to the moving body 5 or other objects, and the reflected wave is received by the radar 1, thereby causing interference. Therefore, the radar 1 and the radar 2 are installed at different angles, and this interference is suppressed by making the polarization angle of the reflected wave of one radar different from the polarization angle of the receiving antenna of the other radar. I can do it.
  • the polarization angle of the reflected wave is orthogonal to the polarization angle of the receiving antenna, the interference suppression effect can be maximized.
  • the radar deflection angle may be alternately set to + 45 ° / ⁇ 45 °.
  • the deflection angle has been described as + 45 ° / ⁇ 45 °, but it goes without saying that other combinations of orthogonal angles may be used.
  • the difference in polarization angle is other than 0 ° or 180 °, there is an interference suppressing effect, so the installation angle is not limited to orthogonal.
  • the radar deflection angle may be alternately set to + 30 ° / -30 °.
  • the radar deflection angle may be + 60 ° / 0 ° / ⁇ 60 °, and three types of radars may be installed in order while suppressing interference. Further, the number of radars with different radar deflection angles may be increased and three or more types of radars may be installed in order.
  • the radar 1 and the radar 2 are arranged on one side of the traveling path 6, but the arrangement of the radar 1 and the radar 2 is not limited to this. For example, it may be below or above the travel path, or may be diagonally above or diagonally below.
  • the radar 1 and the radar 2 are placed below (diagonally below) and above (diagonally above) the traveling path in order to effectively use the space. It can also be installed. In the case of a subway, by arranging the radar 1 and the radar 2 on the ceiling (equivalent to being arranged above or obliquely above), the horizontal space in the tunnel can be saved.
  • a straddle-type monorail for example, by placing the radar 1 and the radar 2 in the lower part using a supporting column that supports the rail (corresponding to being arranged below or obliquely below), the installation place in the horizontal direction can be saved.
  • this embodiment it is possible to suppress interference between adjacent radars without stopping the operation of other radars (irradiation of the transmission wave 19), and it is possible to always detect a moving body at an appropriate time interval.
  • FIG. 6, Fig. 7 and Fig. 8 show installation diagrams of the moving body detection system in the second embodiment.
  • an installation method in the case where the moving body travels in the left and right directions on the travel path will be described.
  • FIG. 6 shows an installation method when the moving body 35 travels in either the left or right direction on the travel path 36, and the radar 31 is arranged so that the irradiation range 33 of the transmission wave is directed to the right side of the travel path 36. And detecting the front position of the moving body 35 in the traveling direction when the moving body 35 is moving to the left side of FIG.
  • the radar 32 is installed so that the irradiation range 34 of the transmission wave is directed to the left side of the traveling path 36, and detects the front position in the traveling direction of the moving body 35 when the moving body 35 is moving to the right side of the figure.
  • interference may occur when the transmission wave of the radar 31 is directly received by the radar 32 or when the transmission wave of the radar 32 is directly received by the radar 31.
  • this interference can be minimized by making the polarization angle of the radar transmission wave of one of the radar 31 and the radar 32 different from the polarization angle of the receiving antenna of the other radar which is opposed. .
  • the polarization angle ⁇ of both the radar 31 and the radar 32 is + 45 ° as shown in FIG. 4, the interference waves can be minimized because the polarization angles of the interference waves are orthogonal. Similar results can be obtained even when the polarization angle ⁇ of both radars is ⁇ 45 ° as shown in FIG.
  • the traveling path is divided into a traveling path 48 in which the moving body 46 travels to the right side and a traveling path 47 in which the moving body 45 travels to the left side, but is the same as FIG. 6. Therefore, the installation method of the radar 41 and the radar 42 is the same as that in the case of FIG. 6, and the polarization angle of one radar transmission wave of the radar 41 and the radar 42 is the polarization angle of the reception antenna of the opposite radar.
  • the interference can be minimized, and both the radar 41 and the radar 42 can be set to the polarization angle ⁇ of + 45 ° as shown in FIG. 4 or the polarization as shown in FIG.
  • the polarization angle of the interference wave is orthogonal, so that interference can be minimized.
  • FIG. 8 shows an installation diagram in which the radar installation of the second embodiment and the radar installation of the first embodiment are combined.
  • the radar 51 and the radar 56 have the problem of the interference of the opposing radars as in FIGS. 6 and 7, and the radar 51 and the radar 52 are on the same side with respect to the traveling paths 64 and 65 as in FIG. Interference between installed radars becomes a problem.
  • both of the opposing radars have a polarization angle ⁇ of + 45 ° as shown in FIG. 4, and both of the adjacent opposing radars along the traveling direction of FIG.
  • the polarization angle ⁇ is set to ⁇ 45 °, and this may be repeated alternately.
  • the radars 51, 53, 54 and 56 set the polarization angle ⁇ to + 45 ° as shown in FIG. 4
  • the radars 52 and 55 set the polarization angle ⁇ to ⁇ 45 ° as shown in FIG. What should I do?
  • the polarization angle is described as + 45 ° / ⁇ 45 ° as an example, but it goes without saying that other combinations of orthogonal angles may be used. Further, since the interference angle is effective when the difference in polarization angle is other than 0 ° or 180 °, the installation angle is not limited to orthogonal.
  • the radars are arranged on both sides of the travel path, but the radar arrangement is not limited to this. For example, it may be below or above the travel path, or may be diagonally above or diagonally below.
  • the present embodiment it is possible to detect the moving body even when the moving body travels in both directions on the traveling path (for example, a single line) and when the traveling path is arranged in a plurality of lines (for example, a double line).
  • FIGS. 9 and 10 show installation diagrams of the moving body detection system in the third embodiment.
  • a case will be described in which radars are multiplexed in order to improve the reliability and operating rate of the moving body detection system.
  • the dual radars 71 and 72 are installed on the same side with respect to the travel path 76.
  • the transmission wave of the radar 71 is applied to the moving body 75 or other object, and the reflected wave is received by the radar 72, thereby causing interference.
  • the transmission wave of the radar 72 is applied to the moving body 75 or other object, and the reflected wave is received by the radar 71, thereby causing interference.
  • the effect of suppressing interference can be maximized by making the polarization angle of the reflected wave of each radar orthogonal to the polarization angle of the receiving antenna.
  • the radar 71 can minimize the interference when the polarization angle ⁇ is + 45 ° as shown in FIG. 4 and the radar 72 is ⁇ 45 ° as shown in FIG.
  • FIG. 10 shows that dual radars 81 and 82 are installed on both sides of the traveling path 86 in order to detect the moving body 85 traveling on the traveling path 86.
  • the transmission wave of the radar 81 is applied to the moving body 85 or other objects, and the reflected wave is received by the radar 82, thereby causing interference.
  • the transmission wave of the radar 82 is applied to the moving body 85 or other objects, and the reflected wave is received by the radar 81, thereby causing interference.
  • the interference suppression effect can be maximized.
  • the radar 81 is as shown in FIG. If the polarization angle ⁇ is + 45 ° and the radar 82 is ⁇ 45 ° as shown in FIG. 5, the interference can be minimized.
  • the polarization angle is described as + 45 ° / ⁇ 45 ° as an example, but it goes without saying that other combinations of orthogonal angles may be used. Further, since the interference angle is effective when the difference in polarization angle is other than 0 ° or 180 °, the installation angle is not limited to orthogonal.
  • the radars are arranged on both sides of the travel path, but the radar arrangement is not limited to this. For example, it may be below or above the travel path, or may be diagonally above or diagonally below.
  • the radar since the radar can be multiplexed, the reliability and operating rate of the moving object detection system can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Traffic Control Systems (AREA)

Abstract

複数のレーダが独立に動作しながら、レーダ間の送信波または反射波の干渉を抑制する移動体検知システムを提供することを目的とする。本発明では、第一の偏波方向の成分を有する電磁波である第一の照射用電磁波を発生する第一の送信部と、前記第一の偏波方向の成分を有する電磁波を受信する第一の受信部とを備えた第一のレーダと、第二の偏波方向の成分を有する電磁波である第二の照射用電磁波を発生する第二の送信部と、前記第二の偏波方向の成分を有する電磁波を受信する第二の受信部とを備えた第二のレーダとを備え、走行路に沿って前記第一のレーダと前記第二のレーダをそれぞれのレーダの照射波または反射波の偏波方向が異なるように設置することで、前記レーダが独立に動作しながらレーダ間の干渉を抑制する。

Description

移動体検知システム
 本発明は、移動体検知システムに関する。
 近年、自動車や鉄道などの移動体を用いた交通システムにおいて、レーダを用いて車両などの速度や距離を計測し、障害物監視や運行管理、または移動体の自動制御を構築する取り組みが注目されている。検知を行うレーダとしては、ミリ波レーダやレーザーレーダなどがあり、高精度で信頼性の高いレーダの開発が進んでいる。ここで、ミリ波レーダの検知技術として、速度検知が可能なドップラー方式や、速度や距離の検知が可能な定在波方式、FM-CW方式などが知られている。
 一方このようなレーダを用いて監視や制御を実行するためには、検知する領域で死角または検知漏れが無いことが必須である。このためには、2つ以上のレーダを、それらのレーダの検知領域が重なるように配置する必要がある。このように検知領域が重複すると、レーダ間では送受信波の干渉が発生し、検知精度を劣化させたり、誤検知が発生することがある。ここでレーダ間の干渉とは、例えば第一のレーダの送信波やその反射波が、第二のレーダの受信部で受信されてしまうことを指している。具体的には、第二のレーダは、第一のレーダからの反射波を受信することで照射範囲に物体が無いのに有ると誤検知したり、または第一および第二のレーダ両方の反射波を受信することで検出誤差が増大する問題があった。
 特許文献1では、設置した複数のレーダのうち、いずれかのレーダで送信出力がオンであるときに、他のレーダでの送信および受信をオフとする機能を持たせることにより、レーダ間での干渉を抑制して検知精度向上を図っている。
 特許文献2には、レーダの出力の偏波面を、斜め(主に45度)に配置することで、対向状態にあるレーダからの電波を受信しても、偏波面が交差するので、干渉波による影響の低減が可能となる技術が記載されている。
特開2011-232055 特開2013-213761
 しかし特許文献1の方式では、全レーダ間の動作監視、または全レーダの同期制御を行う上位装置が必要となり、レーダ間配線や制御部構築などによるコスト増加が問題となっていた。
 また、特許文献2に記載されている技術では、レーダを線路に並べて配置したときに、反射波が他のレーダで検出され誤検出するという問題があった。
 そこで、本発明では、上記問題点に着目し、複数のレーダが独立に動作しながら、レーダ間の干渉を抑制する移動体検知システムを提供することを目的とする。
 上記の課題を解決するため本発明の移動体検知システムは、第一の偏波方向の成分を有する電磁波である第一の照射用電磁波を発生する第一の送信部と、前記第一の偏波方向の成分を有する電磁波を受信する第一の受信部とを備えた第一のレーダと、第二の偏波方向の成分を有する電磁波である第二の照射用電磁波を発生する第二の送信部と、前記第二の偏波方向の成分を有する電磁波を受信する第二の受信部とを備えた第二のレーダとを備え、走行路に沿って前記第一のレーダと前記第二のレーダを設置して移動体の検知を行う移動体検知システムにおいて、前記第一のレーダの前記第一の送信部が発生させる前記第一の照射用電磁波の偏波方向と、前記第二のレーダの前記第二の受信部の偏波方向を異なるものとし、前記第一のレーダの前記第一の送信部が発生させる前記第一の照射用電磁波及びその反射波を他の前記第一のレーダの前記第一の受信部により検知できる範囲に第二のレーダを配置すること、を特徴とする。
 本発明によれば、複数のレーダを同期制御せずに動作させることが可能となるため、上位制御装置やレーダ間配線を削減して低コスト化を実現できる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
第一の実施例における移動体検知システムのセンサ設置例を示す図である。 第一の実施例における移動体検知システムで用いるレーダの構成例を示す図である。 第一の実施例における移動体検知システムで用いるレーダの偏波角度θが0°(水平)の設置例を示す図である。 第一の実施例における移動体検知システムで用いるレーダの偏波角度が+45°の設置例を示す図である。 第一の実施例における移動体検知システムで用いるレーダの偏波角度が-45°の設置例を示す図である。 第二の実施例における移動体検知システムのセンサ設置例を示す図である。 第二の実施例における移動体検知システムのもう一つのセンサ設置例を示す図である。 第二の実施例における移動体検知システムのセンサ設置例を示す図である。 第三の実施例における移動体検知システムのセンサ設置例を示す図である。 第三の実施例における移動体検知システムのもう一つのセンサ設置例を示す図である。
 以下、図面を参照して実施形態について説明する。
 実施例1における、移動体検知システムの設置図を図1に示す。
 図1は、上記のレーダを用いた移動体検知システムの例である。同図において、走行路6の片側に、走行方向に沿って第一のレーダ1と第二のレーダ2を設置しており、レーダ1の送信波の照射範囲3と、レーダ2の送信波の照射範囲4は、走行路6の上を走行する移動体5の検知を行う。
 なお、図示していないが、第一のレーダ1と第二のレーダ2は走行路6に沿って交互に繰り返し配置され、走行路6を走行する移動体5の検知を行う。また、第一のレーダ1同士で干渉を避けるため、第一のレーダ1の測定可能範囲内に、他の第一のレーダ1は設置しない。同様に、第二のレーダ同士で干渉を避けるため、第二のレーダ2の測定可能範囲内に、他の第二のレーダ2は設置しない。例えば、第一のレーダ1の測定可能距離がD1(例えばD1=100m)であれば、第一のレーダ1を中心に半径D1以内に他の第一のレーダ1を設置しない。同様に、第二のレーダ2の測定可能距離がD2(例えばD2=100m)であれば、第二のレーダ2を中心に半径D2以内に他の第二のレーダ2を設置しない。
 図2を用いて、移動体検知システムに適用するレーダの構成を説明する。レーダ11は、レーダ11から送信波19を照射するための送信回路14と送信アンテナ12と、照射した送信波19が移動体などの物体で反射された反射波20を受信するための受信アンテナ13と受信回路15と、前記送信回路14および受信回路15を制御するための制御部16と、同制御部16を介して受信回路15の出力データを受け取って移動体などの対象物までの距離や移動体の速度などを算出するデータ処理部17と、上位システムである移動体検知システムとの通信を行うための通信部18を備えている。
 このレーダ11の好適な例としてミリ波レーダが挙げられる。ミリ波レーダは、速度検知が可能なドップラー方式や、速度や距離の検知が可能な定在波方式、FM-CW方式などが一般的に知られている。これらのレーダで用いられる送信および受信アンテナは通常、偏波方向が水平方向や垂直方向などの一方向である直線偏波アンテナが用いられおり、本実施例ではこの直線偏波アンテナを備えたレーダを用いることとする。
 図3は、アンテナの偏波方向を示す図であり、レーダ11を送信アンテナ12および受信アンテナ13の放射面から見た平面図となっている。同図に示すように、送信アンテナ12の偏波方向21は、受信アンテナ13の偏波方向22と同一方向であり、このように反射波20の偏波方向と受信アンテナ13の偏波方向を揃えることで、受信アンテナ13での受信感度を最大にすることができる。ここで、送信アンテナ12および受信アンテナ13がA-A’の線上に左右に並ぶように図示しているが、偏波方向が同一であれば、送信アンテナ12および受信アンテナ13の配置を限定するものではない。また説明の便宜上、図3内に水平線23を図示しているが、レーダ11や送信アンテナ12、受信アンテナ13の向きを限定するものではないことに注意されたい。
 なお、本実施例では説明の便宜上、図3のように水平線23とアンテナの偏波方向21および22が同一方向となるように設置した場合を偏波角度(θ)が0°とし、レーダ11が図4に示すように反時計回りに45°回転したときの偏波角度(θ)を+45°、図5に示すように時計回りに45°回転したときの偏波角度(θ)を-45°とする。
 ここで、移動体検知システムとして常に移動体5の位置を検知するためには、移動体5が複数あるレーダのいずれかの照射範囲内にある必要があり、必然的にレーダ1とレーダ2は近接して配置することとなる。
 つまり、移動体検知システムとして連続的に移動体5の位置を検知するために、あるレーダの測定可能距離以内に他のレーダを配置する必要がある。例えば、第一のレーダ1の測定可能距離がD1(例えばD1=100m)であれば、第一のレーダ1を中心に半径D1以内に他の第二のレーダ2を設置する。同様に、第二のレーダ2の測定可能距離がD2(例えばD2=100m)であれば、第二のレーダ2を中心に半径D2以内に他の第一のレーダ1を設置する。
 しかし、レーダ1とレーダ2を近接配置すると、レーダ間干渉の問題が発生する。図1のケースでは、レーダ1の送信波が移動体5またはその他の物体に照射され、その反射波がレーダ2で受信されることで干渉が生じる。同様に、レーダ2の送信波が移動体5またはその他の物体に照射され、その反射波がレーダ1で受信されることで干渉が生じる。そこで、レーダ1とレーダ2を異なる角度に傾けて設置し、一方のレーダの反射波の偏波角度と、もう一方のレーダの受信アンテナの偏波角度とを異ならせることで、この干渉を抑制することが出来る。ここで、反射波の偏波角度が受信アンテナの偏波角度と直交する場合に、干渉の抑制効果を最大にすることができる。
 具体的には、レーダ1は図4のように偏波角度θを+45°とし、レーダ2は図5のように偏波角度θを-45°とすると、干渉を最小にすることができる。よって、レーダが2つ以上になる場合には、レーダの偏向角度を+45°/-45°と交互に設置すればよい。ここで、実施例として、偏向角度を+45°/-45°として説明したが、他の直交する角度の組合せでも良いことは言うまでも無い。また、偏波角度の差分が0°または180°以外であれば干渉の抑制効果があるため、設置角度は直交に限定するものではない。
 例えば、レーダの偏向角度を+30°/-30°と交互に設置してもよい。
 また、レーダの偏向角度を+60°/0°/-60°として干渉を抑制しつつ3種類のレーダを順に設置してもよい。さらに、レーダの偏向角度を変えたレーダを増やし、3種類以上のレーダを順に設置してもよい。
 なお、本実施例ではレーダ1とレーダ2を走行路6の片側に配置したが、レーダ1とレーダ2の配置はこれに限定するものではない。例えば、走行路の下方や上方としてもよく、斜め上、斜め下としても良い。地下鉄やモノレール等のように、沿線に設置できる設備の場所が限られている場合、空間を有効利用するために走行路の下方(斜め下)や上方(斜め上)にレーダ1とレーダ2を設置することもできる。地下鉄であれば天井にレーダ1とレーダ2を配置することにより(上方や斜め上に配置することに相当)、トンネル内の水平方向の空間を節約できる。跨座式モノレールであれば例えばレールを支える支柱を利用して下部にレーダ1とレーダ2を配置することにより(下方や斜め下に配置することに相当)、水平方向の設置場所を節約できる。
 本実施例により、他のレーダの動作(送信波19の照射)を止めることなく、隣接するレーダ間の干渉を抑制することができ、常に適切な時間間隔で移動体を検知できる。
 実施例2における、移動体検知システムの設置図を図6、図7および図8に示す。本実施例では走行路の上を移動体が左右のどちらの方向にも走行する場合の設置方法を説明する。
 図6は、走行路36の上を移動体35が左右のどちらの方向にも走行する場合の設置方法を示しており、レーダ31は送信波の照射範囲33が走行路36の右側に向かうように設置して、移動体35が同図の左側に移動しているときの移動体35の進行方向正面位置を検知する。一方レーダ32は送信波の照射範囲34が走行路36の左側に向かうように設置して、移動体35が同図の右側に移動しているときの移動体35の進行方向正面位置を検知する。このとき、レーダ31の送信波が、レーダ32に直接受信されること、または、レーダ32の送信波が、レーダ31に直接受信されることで、干渉が生じる場合がある。
 この場合、レーダ31とレーダ32の一方のレーダ送信波の偏波角度が、対向するもう一方のレーダの受信アンテナの偏波角度と異なるようにすることで、この干渉を最小にすることが出来る。例えば、レーダ31およびレーダ32の両レーダの偏波角度θを図4のように+45°とすると、干渉波の偏波角度が直交するため、干渉を最小にすることができる。両レーダの偏波角度θを図5のように-45°としても、同様の結果が得られる。
 図7は、走行路が、移動体46が右側へ走行する走行路48と、移動体45が左側へ走行する走行路47の2つに分かれているが、図6と同様である。そのため、レーダ41およびレーダ42の設置方法も図6のケースと同様であり、レーダ41とレーダ42の一方のレーダ送信波の偏波角度が、対向するもう一方のレーダの受信アンテナの偏波角度と異なるようにすることで、この干渉を最小にすることができ、レーダ41およびレーダ42を両方とも、図4のように偏波角度θを+45°にするか、図5のように偏波角度θを-45°とすることで、干渉波の偏波角度が直交するため、干渉を最小にすることができる。
 以上の実施例2のレーダ設置と、実施例1のレーダ設置を組み合わせた設置図を図8に示す。同図において、レーダ51とレーダ56は図6および図7と同様の対向するレーダの干渉が問題であり、レーダ51とレーダ52は図1と同様に走行路64、65に対して同じ側面に設置されたレーダ間の干渉が問題となる。これらの干渉を最小にするには、例えば、ある対向するレーダの両方を図4のように偏波角度θを+45°とし、走行方向に沿ってその隣の対向するレーダの両方を図5のように偏波角度θを-45°とし、これを交互に繰り返せば良い。図8で具体例を挙げると、レーダ51、53、54、56は図4のように偏波角度θを+45°とし、レーダ52、55は図5のように偏波角度θを-45°とすれば良い。
 以上の説明では、実施例として、偏波角度を+45°/-45°として説明したが、他の直交する角度の組合せでも良いことは言うまでも無い。また、偏波角度の差分が0°または180°以外で干渉抑制の効果があるため、設置角度は直交に限定するものではない。
 また、本実施例ではレーダを走行路の両側に配置したが、レーダの配置はこれに限定するものではない。例えば、走行路の下方や上方としてもよく、斜め上、斜め下としても良い。
 本実施例により、移動体が走行路を両方向に走行する場合(例えば単線)、走行路が複数並んでいる場合(例えば複線)においても移動体の検知が可能になる。
 実施例3における、移動体検知システムの設置図を図9および図10に示す。本実施例では、移動体検知システムの信頼性や稼働率を向上させる目的で、レーダを多重系にする場合について説明する。
 図9は、走行路76上を走行する移動体75を検知するために、走行路76に対して同じ側に2重系のレーダ71、72を設置する。
 このとき、レーダ71の送信波が移動体75またはその他の物体に照射され、その反射波がレーダ72で受信されることで干渉が生じる。同様に、レーダ72の送信波が移動体75またはその他の物体に照射され、その反射波がレーダ71で受信されることで干渉が生じる。
 この場合は、それぞれのレーダの反射波の偏波角度が、受信アンテナの偏波角度と直交することにより、干渉の抑制効果を最大にすることができる。具体的には、レーダ71は図4のように偏波角度θを+45°とし、レーダ72は図5のように偏波角度θを-45°とすると、干渉を最小にすることができる。
 図10は、走行路86上を走行する移動体85を検知するために、走行路86の両側に2重系のレーダ81、82を設置している。
 この場合も、レーダ81の送信波が移動体85またはその他の物体に照射され、その反射波がレーダ82で受信されることで干渉が生じる。同様に、レーダ82の送信波が移動体85またはその他の物体に照射され、その反射波がレーダ81で受信されることで干渉が生じる。
 よって、それぞれのレーダの反射波の偏波角度が、受信アンテナの偏波角度と直交することにより、干渉の抑制効果を最大にすることができ、具体的には、レーダ81は図4のように偏波角度θを+45°とし、レーダ82は図5のように偏波角度θを-45°とすると、干渉を最小にすることができる。以上の説明では、実施例として、偏波角度を+45°/-45°として説明したが、他の直交する角度の組合せでも良いことは言うまでも無い。また、偏波角度の差分が0°または180°以外で干渉抑制の効果があるため、設置角度は直交に限定するものではない。
 また、本実施例ではレーダを走行路の両側に配置したが、レーダの配置はこれに限定するものではない。例えば、走行路の下方や上方としてもよく、斜め上、斜め下としても良い。
 本実施例により、レーダを多重化できるので、移動体検知システムの信頼性や稼働率を向上させることができる。
1、2、11、31、32、41、42、51、52、53、54、55、56、71、72、81、82:レーダ 
3、4、33、34、43、44、57、58、59、60、61、62、73、74、83、84:レーダの送信波の照射範囲 
5、35、45、46、63、75、85:移動体
6、36、47、48、64、65、76、86:走行路
12:送信アンテナ(直線偏波)
13:受信アンテナ(直線偏波)
14:送信回路
15:受信回路
16:制御部
17:データ処理部
18:通信部
19:送信波(直線偏波)
20:反射波
21:送信アンテナの偏波方向
22:受信アンテナの偏波方向
23:水平線

Claims (8)

  1.  第一の偏波方向の成分を有する電磁波である第一の照射用電磁波を発生する第一の送信部と、前記第一の偏波方向の成分を有する電磁波を受信する第一の受信部とを備えた第一のレーダと、第二の偏波方向の成分を有する電磁波である第二の照射用電磁波を発生する第二の送信部と、前記第二の偏波方向の成分を有する電磁波を受信する第二の受信部とを備えた第二のレーダとを備え、走行路に沿って前記第一のレーダと前記第二のレーダを設置して移動体の検知を行う移動体検知システムにおいて、前記第一のレーダの前記第一の送信部が発生させる前記第一の照射用電磁波の偏波方向と、前記第二のレーダの前記第二の受信部の偏波方向を異なるものとし、前記第一のレーダの前記第一の送信部が発生させる前記第一の照射用電磁波及びその反射波を他の前記第一のレーダの前記第一の受信部により検知できる範囲に第二のレーダを配置すること、を特徴とする移動体検知システム。
  2.  請求項1に記載の移動体検知システムにおいて、前記第一のレーダと前記第二のレーダを前記走行路の進行方向に対して左側または右側の同じ側に配置し、前記第一の送信部の照射の範囲および前記第二の送信部の照射の範囲を、前記走行路の同一走行方向に照射するように配置すること、を特徴とする移動体検知システム。
  3.  請求項1乃至請求項2のいずれか一つに記載の移動体検知システムにおいて、前記第一のレーダと前記第二のレーダを前記走行路の進行方向に対して上側または下側の同じ側に配置し、前記第一の送信部の照射の範囲を、前記第一の送信部の照射の範囲および前記第二の送信部の照射の範囲を前記走行路の同一走行方向に照射するように配置すること、を特徴とする移動体検知システム。
  4.  請求項1に記載の移動体検知システムにおいて、前記第一のレーダと他の前記第一のレーダを前記走行路の進行方向に対して左右に分けて配置し、前記第一の送信部の照射方向と他の前記第一の送信部の照射方向を対向させて配置し、前記第二のレーダと他の前記第二のレーダを前記走行路の進行方向に対して左右に分けて配置し、前記第二の送信部の照射方向と他の前記第二の送信部の照射方向を対向させて配置すること、を特徴とする移動体検知システム。
  5.  請求項1または請求項4のいずれか一つに記載の移動体検知システムにおいて、前記第一のレーダと他の前記第一のレーダを前記走行路の進行方向に対して上下に分けて配置し、前記第一の送信部の照射方向と他の前記第一の送信部の照射方向を対向させて配置し、前記第二のレーダと他の前記第二のレーダを前記走行路の進行方向に対して上下に分けて配置し、前記第二の送信部の照射方向と他の前記第二の送信部の照射方向を対向させて配置すること、を特徴とする移動体検知システム。
  6.  請求項4乃至請求項5いずれか一つに記載の移動体検知システムにおいて、前記第一のレーダと、その第一のレーダの前記第一の送信部と対向する他の前記第一の送信部を持つ他の前記第一のレーダで構成される第一のレーダ対と、前記第二のレーダと、その第二のレーダの前記第二の送信部と対向する他の前記第二の送信部を持つ他の前記第二のレーダで構成される第二のレーダ対を持ち、前記第一のレーダ対から前記走行路の進行方向に対して規定の距離を離して前記第二のレーダ対を設置すること、を特徴とする移動体検知システム。
  7.  請求項1に記載の移動体検知システムにおいて、前記第一のレーダと前記第二のレーダを前記走行路の進行方向に対して左右に分かれて設置し、前記第一の送信部の照射の範囲を、前記第一の送信部の設置位置から前記走行路の進行方向とは反対の方向にある前記走行路を含む向きに配置させ、前記第二の送信部の照射の範囲を、前記第二の送信部の設置位置から前記走行路の進行方向とは反対の方向にある前記走行路を含む向きに設置させること、を特徴とする移動体検知システム。
  8.  請求項1乃至請求項7のいずれか一つに記載の移動体検知システムにおいて、前記第一の送信部の偏波方向と、前記第二の送信部の偏波方向とを直交させて設置することを特徴とする移動体検知システム。
PCT/JP2017/041169 2017-01-27 2017-11-15 移動体検知システム WO2018139016A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018564117A JP6734405B2 (ja) 2017-01-27 2017-11-15 移動体検知システム
CN201780084535.3A CN110235020B (zh) 2017-01-27 2017-11-15 移动体探测系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-012634 2017-01-27
JP2017012634 2017-01-27

Publications (1)

Publication Number Publication Date
WO2018139016A1 true WO2018139016A1 (ja) 2018-08-02

Family

ID=62978215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041169 WO2018139016A1 (ja) 2017-01-27 2017-11-15 移動体検知システム

Country Status (3)

Country Link
JP (1) JP6734405B2 (ja)
CN (1) CN110235020B (ja)
WO (1) WO2018139016A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659669A (zh) * 2019-01-11 2019-04-19 上海英恒电子有限公司 一种雷达抗干扰天线、方法、系统及车辆
WO2020083117A1 (zh) * 2018-10-25 2020-04-30 华为技术有限公司 雷达信号处理方法、装置及存储介质
JP2021076443A (ja) * 2019-11-07 2021-05-20 株式会社デンソー 車両レーダシステム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505655B (zh) * 2020-04-30 2023-09-29 中国矿业大学 基于激光雷达的掘进机定位方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139650A (ja) * 2005-11-21 2007-06-07 Fujitsu Ltd 移動方向検知レーダシステム
US20110205086A1 (en) * 2008-06-13 2011-08-25 Tmt Services And Supplies (Pty) Limited Traffic Control System and Method
US20120286103A1 (en) * 2011-05-09 2012-11-15 Hilleary Thomas N Systems and methods for vehicle detection at island crossings
JP2014501020A (ja) * 2010-11-02 2014-01-16 コーニンクレッカ フィリップス エヌ ヴェ 照明システム及び制御方法
JP2016125810A (ja) * 2014-12-26 2016-07-11 住友電気工業株式会社 電波センサ、検知方法および検知プログラム
US20170103056A1 (en) * 2015-10-09 2017-04-13 Ersatz Systems Machine Cognition, LLC Method and system for checking natural language in proof models of modal logic

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7427945B2 (en) * 2003-07-03 2008-09-23 Navcom Technology, Inc. Positioning system with co-polarized and cross-polarized mapping
JP4773759B2 (ja) * 2005-07-08 2011-09-14 富士通株式会社 障害物検知レーダシステム
EP2009461A1 (en) * 2006-04-20 2008-12-31 Anritsu Corporation Short-pulse radar and method for controlling the same
US9063230B2 (en) * 2008-10-08 2015-06-23 Delphi Technologies, Inc. Radar sensor module
JP5659587B2 (ja) * 2010-07-09 2015-01-28 富士通株式会社 レーダ装置、路側器及び車載装置
JP6176079B2 (ja) * 2013-11-26 2017-08-09 株式会社デンソー レーダ装置
JP6416694B2 (ja) * 2015-05-19 2018-10-31 日本電信電話株式会社 地中レーダ装置及び測定方法
US10089878B2 (en) * 2015-10-09 2018-10-02 MDR Manufacturing Corporation Wrong way alert

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139650A (ja) * 2005-11-21 2007-06-07 Fujitsu Ltd 移動方向検知レーダシステム
US20110205086A1 (en) * 2008-06-13 2011-08-25 Tmt Services And Supplies (Pty) Limited Traffic Control System and Method
JP2014501020A (ja) * 2010-11-02 2014-01-16 コーニンクレッカ フィリップス エヌ ヴェ 照明システム及び制御方法
US20120286103A1 (en) * 2011-05-09 2012-11-15 Hilleary Thomas N Systems and methods for vehicle detection at island crossings
JP2016125810A (ja) * 2014-12-26 2016-07-11 住友電気工業株式会社 電波センサ、検知方法および検知プログラム
US20170103056A1 (en) * 2015-10-09 2017-04-13 Ersatz Systems Machine Cognition, LLC Method and system for checking natural language in proof models of modal logic

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020083117A1 (zh) * 2018-10-25 2020-04-30 华为技术有限公司 雷达信号处理方法、装置及存储介质
CN111103586A (zh) * 2018-10-25 2020-05-05 华为技术有限公司 雷达信号处理方法、装置及存储介质
CN111103586B (zh) * 2018-10-25 2023-05-09 华为技术有限公司 雷达信号处理方法、装置及存储介质
CN109659669A (zh) * 2019-01-11 2019-04-19 上海英恒电子有限公司 一种雷达抗干扰天线、方法、系统及车辆
JP2021076443A (ja) * 2019-11-07 2021-05-20 株式会社デンソー 車両レーダシステム

Also Published As

Publication number Publication date
JPWO2018139016A1 (ja) 2019-11-14
CN110235020A (zh) 2019-09-13
JP6734405B2 (ja) 2020-08-05
CN110235020B (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2018139016A1 (ja) 移動体検知システム
US8400350B2 (en) Radar device and azimuth angle detection method
CN102066970B (zh) 具有正面和侧面辐射的雷达传感器
US9140787B2 (en) Radar sensor for motor vehicles, especially LCA sensor
US20140022109A1 (en) Radar field of view expansion with phased array transceiver
WO2015104876A1 (ja) 列車位置検知装置
KR102431263B1 (ko) 레이더 장치
US10191148B2 (en) Radar system for vehicle and method for measuring azimuth therein
CN107580682A (zh) 用于机动车的雷达传感器
JP2005534038A (ja) 電磁信号を送受信するためのセンサ
KR20150095471A (ko) 침입 감지 시스템
JP4931748B2 (ja) 列車位置検知装置および移動無線機
KR20180050969A (ko) 차량용 물체감지시스템 및 차량용 물체감지방법
JP3518431B2 (ja) 物体検出装置及びシステム
JP4580217B2 (ja) レーダシステム、物体検出方法、レーダ装置、電波反射体
JP4091084B2 (ja) 電波軸調整装置および電波軸調整方法
WO2019012746A1 (ja) 移動体検知システム及びその制御方法
JP5127058B2 (ja) 踏切障害物検知装置
JP5302620B2 (ja) 踏切障害物検知装置
JP2009109381A (ja) 超音波測位装置および超音波受信器
JP4249078B2 (ja) 侵入・障害物検出装置及び無給電応答装置
JP6359823B2 (ja) マイクロ波センサ装置
JP5339423B2 (ja) レーダ装置
JPH08248145A (ja) マイクロ波による反射式物体検出方法
JP2007147534A (ja) レーダ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564117

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893893

Country of ref document: EP

Kind code of ref document: A1