WO2018137673A1 - 掺杂氧化镓晶态材料及其制备方法和应用 - Google Patents

掺杂氧化镓晶态材料及其制备方法和应用 Download PDF

Info

Publication number
WO2018137673A1
WO2018137673A1 PCT/CN2018/074058 CN2018074058W WO2018137673A1 WO 2018137673 A1 WO2018137673 A1 WO 2018137673A1 CN 2018074058 W CN2018074058 W CN 2018074058W WO 2018137673 A1 WO2018137673 A1 WO 2018137673A1
Authority
WO
WIPO (PCT)
Prior art keywords
doped
crystalline material
gallium oxide
range
crystal
Prior art date
Application number
PCT/CN2018/074058
Other languages
English (en)
French (fr)
Inventor
夏长泰
赛青林
周威
齐红基
Original Assignee
中国科学院上海光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710061035.XA external-priority patent/CN108342775B/zh
Priority claimed from CN201710124917.6A external-priority patent/CN108531989A/zh
Application filed by 中国科学院上海光学精密机械研究所 filed Critical 中国科学院上海光学精密机械研究所
Priority to EP18744070.6A priority Critical patent/EP3572561B1/en
Priority to KR1020197025013A priority patent/KR102414621B1/ko
Priority to SG11202000619WA priority patent/SG11202000619WA/en
Priority to CN201880004978.1A priority patent/CN110325671A/zh
Priority to JP2019537809A priority patent/JP6956189B2/ja
Publication of WO2018137673A1 publication Critical patent/WO2018137673A1/zh
Priority to US16/508,211 priority patent/US11098416B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/34Single-crystal growth by zone-melting; Refining by zone-melting characterised by the seed, e.g. by its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to a VB group element doped beta gallium oxide ( ⁇ -Ga 2 O 3 ) crystalline material and a preparation method and application thereof.
  • ⁇ -Ga 2 O 3 is a direct bandgap wide bandgap semiconductor material with a band gap of about 4.8-4.9 eV. It has many advantages such as large forbidden band width, fast drift of saturated electrons, high thermal conductivity, high breakdown field strength, and stable chemical properties. It is transparent from deep ultraviolet (DUV) to infrared (IR) regions. Compared to transparent conductive materials (TCOs), a new generation of semiconductor optoelectronic devices with shorter wavelengths can be prepared.
  • DUV deep ultraviolet
  • IR infrared
  • Pure ⁇ -Ga 2 O 3 crystals exhibit semi-insulating or weak n-type conductivity.
  • the currently known main method for improving the n-type conductivity of ⁇ -Ga 2 O 3 crystals is to carry out tetravalent ions (IV elements).
  • Doping mainly including doping of Si, Hf, Ge, Sn, Zr, Ti plasmas of the fourth main group and the fourth sub-group. Taking Si as an example, the main mechanism for increasing the carrier concentration is as follows:
  • Si and Sn in the group IV element are two commonly used doping elements.
  • the use of Si-doped ⁇ -Ga 2 O 3 single crystals is disclosed in US Pat. No. 2,070,166, 967, A1 and Japanese Patent Publication No. JP 2015083536 A.
  • the resistivity of the Si-doped ⁇ -Ga 2 O 3 single crystal disclosed in the above two documents is in the range of 2.0 ⁇ 10 ⁇ 3 to 8.0 ⁇ 10 2 ⁇ cm, the resistivity may be as low as 2.0 ⁇ 10 ⁇ 3 ⁇ cm. But the above minimum resistivity is only theoretical. It is difficult to achieve in practice.
  • the problem solved by the present invention is to overcome the limitation of the improvement of the electrical conductivity of the existing Group IV element doped crystalline ⁇ -Ga 2 O 3 , and to prepare the high conductivity Group IV element doped crystalline ⁇ -Ga 2 O 3 .
  • There are defects in crystal crystallization and harsh process conditions and a class of VB group doped ⁇ -Ga 2 O 3 crystalline materials and a preparation method and application thereof are provided.
  • the VB group doped ⁇ -Ga 2 O 3 crystalline material exhibits n-type conductivity characteristics, and a high conductivity ⁇ -Ga 2 O 3 crystalline material can be prepared by a conventional process.
  • ions doped with a higher valence state than Ga 3+ can increase the conductivity of the crystalline ⁇ -Ga 2 O 3 to some extent, but if the doping ion is too high, the charge It is difficult to balance, and it is easy to produce more doping defects.
  • the defects consume electrons, which makes the number of freely movable carriers significantly lower, and can not effectively achieve the improvement of crystalline ⁇ -Ga 2 O 3 conductivity by doping high-valent ions. The purpose of this will also seriously affect the application properties of the material. Therefore, in the prior art, a Group IV element having a higher valence than Ga 3+ is generally used to dope the crystalline ⁇ -Ga 2 O 3 , and there is no report of doping with a VB group element.
  • the inventors of the present invention found that after annealing the crystalline ⁇ -Ga 2 O 3 doped with the VB group element, the oxygen vacancies in the crystal can be removed, and the control range of the carrier concentration can be increased to provide a basis for its application.
  • the term crystalline material refers to a solid material in which the internal structure exhibits a long-range order state, including solid crystals and liquid crystals in which solid substances are dominant.
  • the crystalline material is divided according to the macroscopic aggregation state and grain size in the crystal crystallization process, including single crystal, thin film, polycrystalline (powder crystal), eutectic, microcrystalline and nanocrystalline.
  • the macroscopic form of the crystalline material is not particularly limited, and may be, for example, a powder, a granule, a film, or the like.
  • the molecular formula of the VB group doped ⁇ -Ga 2 O 3 crystalline material is Ga 2(1-x) M 2x O 3 , 0.000000001 ⁇ x ⁇ 0.01, preferably x is 0.000001 ⁇ x ⁇ 0.01.
  • the M-doped ⁇ -Ga 2 O 3 crystalline material is preferably an M-doped ⁇ -Ga 2 O 3 crystal, more preferably an M-doped ⁇ -Ga 2 O 3 single crystal.
  • the resistivity of the M-doped ⁇ -Ga 2 O 3 crystalline material is preferably in the range of 2.0 ⁇ 10 ⁇ 3 to 3.6 ⁇ 10 2 ⁇ cm; when M is Ta, more preferably the 4 ⁇ 10 -3 to 7.9 ⁇ ⁇ cm range; when M is Nb, more preferably within 5.5 ⁇ 10 -3 to 36 ⁇ ⁇ cm range; when M is V, more preferably at 3 ⁇ 10 -2 Up to 50 ⁇ cm.
  • the carrier concentration of the M-doped ⁇ -Ga 2 O 3 crystalline material is preferably in the range of 3.7 ⁇ 10 15 to 6.3 ⁇ 10 19 /cm 3 ; when M is Ta, it is better.
  • the ground is in the range of 3.7 ⁇ 10 15 to 3.0 ⁇ 10 19 /cm 3 ; when M is Nb, more preferably in the range of 9.55 ⁇ 10 16 to 1.8 ⁇ 10 19 /cm 3 ; when M is V, it is better.
  • the ground is in the range of 5 x 10 15 to 3.69 x 10 18 /cm 3 .
  • the doping scheme provided by the present invention can be mixed by a conventional crystal growth method with M 2 O 5 and Ga 2 O 3 having a purity of 4 N or more in a molar ratio (0.000000001-0.01): (0.999999999-0.99) according to a conventional method in the art. After crystal growth is sufficient.
  • the term purity refers to the mass fraction of M 2 O 5 or Ga 2 O 3 in the sample.
  • a purity of 4 N means that the mass content of M 2 O 5 or Ga 2 O 3 is 99.99%.
  • the conductivity of the final crystalline material may be affected by excessive impurities.
  • the purity of the M 2 O 5 and Ga 2 O 3 is preferably 5 N or more, that is, the mass content of M 2 O 5 or Ga 2 O 3 in the sample is 99.999%.
  • the purity of Ga 2 O 3 used in the preparation process is preferably 6 N or more, that is, Ga in the sample.
  • the mass content of 2 O 3 is 99.9999%.
  • the M-doped ⁇ -Ga 2 O 3 crystalline material may be further subjected to an annealing operation to remove oxygen vacancies in the crystal and increase the control range of the carrier concentration.
  • the temperature and time of the annealing may be conventional in the art, for example, annealing at 1000 ° C - 1200 ° C for 3-10 h.
  • the M-doped ⁇ -Ga 2 O 3 crystalline material may contain an impurity element which is inevitably contained in the raw material during the refining process, and an impurity element which is inevitably mixed in the process, and the above impurity element is relative to all constituent components.
  • the content is preferably 10 ppm or less.
  • the crystal growth method and growth conditions employed for preparing the ⁇ -Ga 2 O 3 -doped material are not particularly limited, and may be conventional crystal growth methods and growth conditions in the art.
  • the doped ⁇ -Ga 2 O 3 crystalline material is a single crystal
  • the single crystal is usually grown by a melt method conventionally used in the art, and the melt growth method generally introduces a seed crystal into the melt to control the single crystal.
  • the core then phase change at the phase interface between the seed crystal and the melt to promote the continuous growth of the crystal, generally including the pulling method, the guided mode method, the helium descent method, the optical floating zone method, the flame melting method, etc., the optical floating zone
  • Both the method and the guided mode method are simple and efficient methods, and the embodiment of the present invention employs an optical floating zone method.
  • the step of preparing the M-doped ⁇ -Ga 2 O 3 single crystal by the optical floating zone method generally includes mixing, rod making, sintering and crystal growth.
  • the mixing may be carried out by a mixing method conventionally used in the art, such as wet mixing.
  • the kind and amount of the solvent to be used in the wet mixing are not particularly limited as long as the M 2 O 5 and Ga 2 O 3 can be uniformly mixed and easily removed later, and a volatile solvent such as ethanol is generally used.
  • the solvent can be completely volatilized by baking.
  • the wet mixing may also be carried out by a wet ball milling process, which may be conventional in the art, for example 12-24 h.
  • the pressure bar can be operated in a manner conventional in the art, and the pressure bar is generally performed using an isostatic press.
  • the mixture of M 2 O 5 and Ga 2 O 3 is in a powder form, can be easily pressed, and can make the pressing uniform, so if the mixture has agglomeration before pressing, it can be ground by grinding, such as ball milling. It is ground into a powder.
  • M 2 O 5 and 6N Ga 2 O 3 having a purity of 4 N or more are mixed in a molar ratio (0.000001-0.01): (0.999999-0.99), and then subjected to wet ball milling by adding an appropriate amount of absolute ethanol.
  • the ball milling time is 12-24h, so that M 2 O 5 and Ga 2 O 3 are thoroughly mixed, and then the obtained mixture is baked at 80-100 ° C for 3-6h, so that the ethanol is completely volatilized, and then dried.
  • the mixture is ball milled into a powder for use in a pressure bar.
  • the sintering can be carried out according to the sintering temperature and time conventional in the art for removing moisture in the M 2 O 5 and Ga 2 O 3 mixture, and solid-phase reaction of M 2 O 5 and Ga 2 O 3 Forming a polycrystalline material.
  • the sintering temperature is preferably from 1400 to 1600 ° C, and the sintering time is preferably from 10 to 20 hours.
  • the sintering is generally carried out in a muffle furnace.
  • the crystal growth atmosphere is preferably a vacuum, an inert atmosphere or an oxidizing atmosphere to ensure the valence state of the VB group metal M ions.
  • the inert atmosphere may be an inert atmosphere conventional in the art, such as a nitrogen atmosphere or an argon atmosphere;
  • the oxidizing atmosphere may be an oxidizing atmosphere conventional in the art, such as an oxygen atmosphere or an air atmosphere.
  • the preparation of the VB group metal M-doped ⁇ -Ga 2 O 3 single crystal is generally carried out by a melt method, generally using a ⁇ -Ga 2 O 3 crystal as a seed crystal, and using sintered M 2 O 5 and Ga 2 O 3 .
  • the polycrystalline material is melted to form a melt, and the melt is gradually cooled and crystallized along the seed crystal to form a single crystal, and the specific method includes a floating zone method, a guided mode method, a temperature ladder method, a descending method, a pulling method, and the like.
  • the growing VB group metal M-doped ⁇ -Ga 2 O 3 single crystal is carried out by a floating zone method, and is carried out according to the following steps: sintering the M 2 O 5 and Ga 2 O 3 polycrystals
  • the rod is loaded into the floating zone furnace as a feeding rod, and the ⁇ -Ga 2 O 3 crystal in the ⁇ 010> direction is used as a seed crystal.
  • the seed crystal is melted first by heating, and then the rod is contacted to adjust the rotation speed of the rod and the seed crystal.
  • the growth atmosphere is air atmosphere, after the crystal growth is completed, pull the melting zone, slowly drop to room temperature, remove the crystal .
  • the invention also provides a VB group metal M doped ⁇ -Ga 2 O 3 crystalline material obtained by the above preparation method.
  • the invention also provides the use of the M-doped ⁇ -Ga 2 O 3 crystalline material on a power electronic device, an optoelectronic device, a photocatalyst or a conductive substrate.
  • the optoelectronic device comprises a transparent electrode, a solar panel, a light emitting device, a photodetector, a sensor, etc.;
  • the conductive substrate comprises a substrate material as GaN and/or AlN, a substrate material of Ga 2 O 3 itself Wait.
  • the reagents and starting materials used in the present invention are commercially available.
  • the limit ability of the invention for using the 5-valent VB group metal ion doped crystalline ⁇ -Ga 2 O 3 to provide free electrons is 1:2, which is significantly higher than the ability of +4 valence ion doping to provide free electrons (1: 1), therefore, more free electrons can be provided at the same doping concentration, which is more favorable for increasing the carrier concentration and improving the conductivity.
  • the present invention employs a 5-valent VB group metal ion doped crystalline ⁇ -Ga 2 O 3 , and the conductivity of the ⁇ -Ga 2 O 3 crystalline material can be controlled by controlling the content of the doping element M.
  • the resistivity of the Ta-doped ⁇ -Ga 2 O 3 crystalline material of the present invention can be controlled in the range of 2.0 ⁇ 10 -4 to 1 ⁇ 10 4 ⁇ cm, and the carrier concentration can be 5 ⁇ 10 12 to 7 ⁇ . Control is achieved in the range of 10 20 /cm 3 .
  • the present invention Nb-doped ⁇ -Ga 2 O 3 crystalline material resistivity to 1 ⁇ 10 4 ⁇ ⁇ cm to achieve control within a range of 2.5 ⁇ 10 -4, the carrier concentration may be 5 ⁇ 10 12 to 5.6 ⁇
  • the control is realized in the range of 10 20 /cm 3 ;
  • the resistivity of the V-doped ⁇ -Ga 2 O 3 crystalline material of the present invention can be controlled in the range of 2.0 ⁇ 10 -4 to 1 ⁇ 10 4 ⁇ cm, carriers
  • the concentration can be controlled in the range of 5 x 10 12 to 7 x 10 20 /cm 3 .
  • the VB group metal-doped ⁇ -Ga 2 O 3 crystalline material of the present invention can be prepared by a conventional method in the art, without expensive raw materials and demanding processes.
  • the present invention can remove the oxygen vacancies in the crystal lattice and increase the control range of the carrier concentration, thereby providing a basis for its application.
  • Fig. 1 is a graph showing the relationship between the doping concentration of Ta 2 O 5 and the carrier concentration and resistivity of the 1-4Ta-doped ⁇ -Ga 2 O 3 primary crystal of Example 1-4.
  • Example 2 is a graph showing the relationship between the doping concentration of Ta 2 O 5 and the carrier concentration of the Ta-doped ⁇ -Ga 2 O 3 crystal after annealing in Example 1-3.
  • Example 3 is a graph showing the relationship between the Nb 2 O 5 doping concentration and the carrier concentration and resistivity of Example 5-9 Nb-doped ⁇ -Ga 2 O 3 primary crystal.
  • a Ta-doped ⁇ -Ga 2 O 3 single crystal having a molecular formula of Ga 2(1-x) Ta 2x O 3 (x 0.000001), belonging to a monoclinic system and a space group of C2/m, which is prepared as follows The method is prepared, and the specific steps are as follows:
  • Crystal growth the sintered polycrystalline rod is placed in a floating zone furnace as a loading rod, and the ⁇ -Ga 2 O 3 crystal in the ⁇ 010> direction is placed below as a seed crystal; The crystal melts and then contacts the upper rod to stabilize the crystal growth; the crystal growth rate is 5 mm/h, the rotation speed is 10 rpm, and the growth atmosphere is an air atmosphere; after the crystal growth is completed, the drop of the feed rod is stopped, and the The natural drop of the crystal gradually separates the melting zone, and then slowly drops to room temperature after about 1 hour, and the crystal is taken out; the obtained primary crystal is intact without cracking and the color is uniform;
  • Annealing The obtained primary crystals were annealed at 1000 ° C for 3 h.
  • a Ta-doped ⁇ -Ga 2 O 3 single crystal having a molecular formula of Ga 2(1-x) Ta 2x O 3 (x 0.00005), belonging to a monoclinic system, a space group of C2/m, and a preparation step thereof
  • the conditions were the same as those in Example 1, except that the doping concentration of Ta 2 O 5 in the step (1) was different, and the molar ratio of Ga 2 O 3 and Ta 2 O 5 was 0.99995: 0.00005.
  • a Ta-doped ⁇ -Ga 2 O 3 single crystal having a molecular formula of Ga 2(1-x) Ta 2x O 3 (x 0.001), belonging to a monoclinic system, a space group of C2/m, and a preparation step thereof
  • the conditions were the same as those in Example 1, except that the doping concentration of Ta 2 O 5 in the step (1) was different, and the molar ratio of Ga 2 O 3 and Ta 2 O 5 was 0.999: 0.001, and the annealing operation was not performed.
  • a Ta-doped ⁇ -Ga 2 O 3 single crystal having a molecular formula of Ga 2(1-x) Ta 2x O 3 (x 0.01), belonging to a monoclinic system, a space group of C2/m, and a preparation step thereof
  • the conditions were the same as those in Example 1, except that the doping concentration of Ta 2 O 5 in the step (1) was different, and the molar ratio of Ga 2 O 3 and Ta 2 O 5 was 0.99:0.01, and the annealing operation was not performed.
  • the conditions are the same as those in the first embodiment except that the dopant Nb 2 O 5 and the doping concentration are different in the step (1), and the preparation steps and conditions are the same as those in the first embodiment.
  • the conditions are the same as those in the first embodiment except that the dopant Nb 2 O 5 and the doping concentration are different in the step (1), and the preparation steps and conditions are the same as those in the first embodiment.
  • An Nb-doped ⁇ -Ga 2 O 3 single crystal having a molecular formula of Ga 2(1-x) Nb 2x O 3 (x 0.0001), belonging to a monoclinic system, a space group of C2/m, and a preparation step thereof
  • the conditions are the same as those in the first embodiment except that the dopant Nb 2 O 5 and the doping concentration are different in the step (1), and the preparation steps and conditions are the same as those in the first embodiment, and the annealing treatment is not performed.
  • a Nb-doped ⁇ -Ga 2 O 3 single crystal having a molecular formula of Ga 2(1-x) Nb 2x O 3 (x 0.002), belonging to a monoclinic system, a space group of C2/m, and a preparation step thereof
  • the conditions are the same as those in the first embodiment except that the dopant Nb 2 O 5 and the doping concentration are different in the step (1), and the preparation steps and conditions are the same as those in the first embodiment, and are not annealed.
  • the conditions are the same as those in the first embodiment except that the dopant Nb 2 O 5 and the doping concentration are different in the step (1), and the preparation steps and conditions are the same as those in the first embodiment, and are not annealed.
  • a V-doped ⁇ -Ga 2 O 3 single crystal having a molecular formula of Ga 2(1-x) V 2x O 3 (x 0.01), belonging to a monoclinic system, a space group of C2/m, and a preparation step thereof
  • the conditions are the same as those in the first embodiment except that the dopant V 2 O 5 and the doping concentration are different in the step (1), and the preparation steps and conditions are the same as those in the first embodiment, and are not annealed.
  • a V-doped ⁇ -Ga 2 O 3 single crystal having a molecular formula of Ga 2(1-x) V 2x O 3 (x 0.00001), belonging to a monoclinic system, a space group of C2/m, and a preparation step thereof
  • the conditions are the same as those in the first embodiment except that the dopant V 2 O 5 and the doping concentration are different in the step (1), and the preparation steps and conditions are the same as those in the first embodiment, and are not annealed.
  • a pure ⁇ -Ga 2 O 3 single crystal having the same preparation steps and conditions as in Example 1 except that Ta 2 O 5 doping was not performed.
  • the M-doped ⁇ -Ga 2 O 3 single crystals obtained in Examples 1 to 12 and the pure ⁇ -Ga 2 O 3 single crystals of the comparative examples (including the primary crystals and the annealed crystals) were each cut into 5 mm ⁇ 5 mm ⁇ 0.3.
  • the mm sample was fabricated using a Hall effect tester after making indium electrodes on the four corners.
  • the test results showed that the conductivity types of the doped crystals of Examples 1 to 12 were n-type, and the carrier concentration and resistivity test results of the samples of Examples 1 to 4, 7 to 12 and the comparative examples are shown in Table 1 below:
  • the pure ⁇ -Ga 2 O 3 primary crystal is nearly insulated after annealing.
  • the carrier concentration is greatly increased after the ⁇ -Ga 2 O 3 single crystal is doped with the VB group element, and the conductivity is obviously improved, wherein the carrier concentration is increased at least.
  • the resistivity is reduced by at least 500 times, indicating that the M metal ions have been successfully doped into the ⁇ -Ga 2 O 3 lattice, and the desired regulation effect is obtained.
  • the present invention draws the Ta 2 O 5 doping concentration-carrier concentration of the unannealed samples of Examples 1-4.
  • the curve of resistivity can be seen in detail in FIG. Examples 5-9 correspond to a Nb 2 O 5 doping concentration-carrier concentration-resistivity curve, as specifically shown in FIG.
  • the present invention draws the Ta 2 O 5 doping concentration-carrier concentration curve of the sample after annealing in Example 1-3, specifically See Figure 2.
  • the above-described group VB element-doped carrier concentration and resistivity of ⁇ -Ga 2 O 3 single crystal according to the present invention is to obtain particular experiment, the influence of practice material purity, preparation and test conditions and the like, will There is a difference between the actually measured doping crystal carrier fluid concentration and the resistivity and the theoretical value, or there is an undetectable condition. Therefore, the above embodiments are merely illustrative. Those skilled in the art can infer the carrier of the VB group element doped ⁇ -Ga 2 O 3 crystalline material according to the VB group element doping concentration disclosed in the present invention in combination with common knowledge in the art.
  • the concentration can be substantially controlled in the range of 5 ⁇ 10 12 to 7 ⁇ 10 20 /cm 3
  • the specific resistance can be controlled in the range of 2.0 ⁇ 10 -4 to 1 ⁇ 10 4 ⁇ ⁇ cm.
  • the limit value of the resistivity of the Hall effect low resistance module is 10 5 ⁇ cm.
  • the experiment of the present invention shows that the 6N pure ⁇ -Ga 2 O 3 crystal exceeds the test limit after annealing, indicating that the resistivity is >10 5 ⁇ . ⁇ cm, so the resistivity can be controlled to 1 ⁇ 10 4 ⁇ cm by doping with 6N pure ⁇ -Ga 2 O 3 , which is 1/1266 of the embodiment 1, and the current carrying in the embodiment Multiplying the sub-concentration by 1/1266 yields 3 ⁇ 10 12 /cm 3 , so that a carrier concentration of the Ta-doped ⁇ -Ga 2 O 3 crystalline material of 5 ⁇ 10 12 /cm 3 is also feasible.
  • the doping concentration of Ta corresponding to the carrier concentration is 10 -7 at%.
  • the carrier concentration can be controlled in the range of 5 ⁇ 10 12 to 7 ⁇ 10 20 /cm 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种VB族元素掺杂β-氧化镓晶态材料及其制备方法和应用。该系列掺杂β-Ga2O3晶态材料属于单斜晶系,空间群为C2/m,电阻率在2.0×10 -4到1×10 4Ω·cm范围内和/或载流子浓度在5×1012到7×1020/cm3范围内。制备方法包括步骤:将纯度在4N以上的M2O5和Ga2O3按照摩尔比(0.000000001-0.01):(0.999999999-0.99)混合后进行晶体生长即可。本发明采用常规工艺即可制备得到高电导率,呈n型导电特性的β-Ga2O3晶态材料,为其在电力电子器件、光电子器件、光催化剂或导电衬底上的应用提供基础。

Description

掺杂氧化镓晶态材料及其制备方法和应用 技术领域
本发明涉及一种VB族元素掺杂β氧化镓(β-Ga 2O 3)晶态材料及其制备方法和应用。
背景技术
β-Ga 2O 3是一种直接带隙宽禁带半导体材料,禁带宽度约为4.8-4.9eV。它具有禁带宽度大、饱和电子漂移速度快、热导率高、击穿场强高、化学性质稳定等诸多优点,从深紫外(DUV)到红外(IR)区域都是透明的,与传统透明导电材料(TCOs)相比,可以制备波长更短的新一代半导体光电器件。
纯的β-Ga 2O 3晶体表现为半绝缘或较弱的n型导电,目前已知的提高β-Ga 2O 3晶体的n型导电能力的主要方法是进行4价离子(IV族元素)的掺杂,主要包括第四主族和第四副族的Si、Hf、Ge、Sn、Zr、Ti等离子的掺杂。以Si为例,其提高载流子浓度的主要机理反应如下:
Figure PCTCN2018074058-appb-000001
从上式可以看出,IV族元素掺杂提供自由电子的理论极限能力约为1:1,随着掺杂浓度的提高,晶体结晶困难度增加,电导率提高程度有限。
其中,IV族元素中Si和Sn是常用的两个掺杂元素。美国专利文献US20070166967A1和日本专利文献JP2015083536A公开了采用Si掺杂β-Ga 2O 3单晶。虽然上述两文献公开的Si掺杂β-Ga 2O 3单晶电阻率在2.0×10 -3到8.0×10 2Ω·cm范围内,电阻率可低至2.0×10 -3Ω·cm,但是上述最低电阻率仅仅是理论上的。实践过程中很难达到,由于Si 4+与Ga 3+半径差别很大,所以随着Si的掺杂浓度提高,将会有第二相析出,导致晶体质量下降,如US20070166967A1和JP2015083536A最终也只制备出了Si掺杂浓度在0.2mol% 左右(参见Applied Physics Letters,2008,92,202120)的掺杂β-Ga 2O 3单晶,该掺杂晶体的电阻率在2.0×10 -2Ω·cm左右(具体可参见说明书图2)。
期刊文献(Thin Solid Films,2008,516(17),5763-5767)公开了采用Sn掺杂β-Ga 2O 3单晶,但由于锡的氧化物挥发性很强,通常原料配比中即使加了2-10mol%的Sn,所获得的晶体中Sn的含量也仅为ppm量级,这不仅对控制其含量及其均匀性带来了极大的困难,而且锡的氧化物的挥发还会造成对制备设备的污染。
因此,如何以一种简单的方式制备高电导率的掺杂β-Ga 2O 3成了本领域的重要研究课题。
发明内容
本发明所解决的问题在于克服现有的IV族元素掺杂晶态β-Ga 2O 3电导率提高程度有限,要制备得到高电导率的IV族元素掺杂晶态β-Ga 2O 3存在晶体结晶困难、工艺条件苛刻的缺陷,提供了一类VB族元素掺杂β-Ga 2O 3晶态材料及其制备方法和应用。本发明的VB族元素掺杂β-Ga 2O 3晶态材料表现出n型导电特性,采用常规工艺即可制备得到高电导率的β-Ga 2O 3晶态材料。
通常在晶态β-Ga 2O 3中掺杂价态比Ga 3+高的离子可一定程度地提高晶态β-Ga 2O 3的电导率,然而若掺杂离子价态过高,电荷难以平衡,极易产生较多的掺杂缺陷,缺陷会消耗电子,使得能够自由移动的载流子数量明显降低,不能有效达到通过掺杂高价离子来提高晶态β-Ga 2O 3电导率的目的,还会严重影响材料的应用性能。因此,现有技术中通常采用比Ga 3+高1价的IV族元素来掺杂晶态β-Ga 2O 3,尚无采用VB族元素掺杂的报道。
然而,本发明的发明人通过科学设计和实验验证,发现采用一定量的5价VB族(M=Nb、Ta、V等)金属离子掺杂晶态β-Ga 2O 3可比常用的+4价离子提供更多的自由电子,提高载流子浓度,进而利于电导率的提高,并且通过掺杂元素M的含量控制,可调控β-Ga 2O 3晶态材料的导电性,主要的缺陷反应机制如下:
Figure PCTCN2018074058-appb-000002
从上式可以看出,VB族元素掺杂提供自由电子的理论极限能力可为1:2,电导率提高程度明显大于IV族元素。因此,采用常规工艺即可在高的掺杂浓度下结晶得到晶体。
进一步,本发明的发明人发现对VB族元素掺杂的晶态β-Ga 2O 3退火后,可除去晶体中的氧空位,增加载流子浓度的控制范围,为其应用提供依据。
最终本发明通过以下技术方案来解决上述技术问题。
本发明提供了一种VB族元素掺杂β-Ga 2O 3晶态材料,掺杂元素M=Nb、Ta、V等。掺杂后晶体属于单斜晶系,空间群为C2/m,所述掺杂β-Ga 2O 3晶态材料的电阻率在2.0×10 -4到1×10 4Ω·cm范围内和/或载流子浓度在5×10 12到7×10 20/cm 3范围内。
本发明中,术语晶态(crystalline)材料指内部结构呈现长程有序状态的固态材料,包括固体晶体和固态物质占主导地位的液晶等。其中,晶态材料按其晶体结晶过程中的宏观聚集状况及晶粒粒径划分,包括单晶、薄膜、多晶(粉晶)、共晶、微晶以及纳米晶等。本发明中,对于晶态材料的宏观存在形式不作特殊限定,例如可为粉末、颗粒、薄膜等。
本发明中,所述VB族元素掺杂β-Ga 2O 3晶态材料的分子式为Ga 2(1-x)M 2xO 3,0.000000001≤x≤0.01,较佳地x为0.000001≤x≤0.01。
本发明中,所述M掺杂β-Ga 2O 3晶态材料较佳地为M掺杂β-Ga 2O 3晶体,更佳地为M掺杂β-Ga 2O 3单晶。
本发明中,所述M掺杂β-Ga 2O 3晶态材料的电阻率较佳地2.0×10 -3到3.6×10 2Ω·cm范围内;当M为Ta时,更佳地在4×10 -3到7.9Ω·cm范围内;当M为Nb时,更佳地在5.5×10 -3到36Ω·cm范围内;当M为V时,更佳地在3×10 -2到50Ω·cm范围内。
本发明中,所述M掺杂β-Ga 2O 3晶态材料的载流子浓度较佳地在3.7×10 15到6.3×10 19/cm 3范围内;当M为Ta时,更佳地在3.7×10 15到3.0×10 19/cm 3 范围内;当M为Nb时,更佳地在9.55×10 16到1.8×10 19/cm 3范围内;当M为V时,更佳地在5×10 15到3.69×10 18/cm 3范围内。
本发明所提供的掺杂方案可通过常规晶体生长方法,按照本领域常规手段将纯度在4N以上的M 2O 5和Ga 2O 3按照摩尔比(0.000000001-0.01):(0.999999999-0.99)混合后进行晶体生长即可。
本发明中,术语纯度指样品中M 2O 5或Ga 2O 3所占的质量分数。纯度为4N表示M 2O 5或Ga 2O 3的质量含量为99.99%。当M 2O 5或Ga 2O 3的原料纯度低于要求纯度时,会因杂质过多影响最终晶态材料的导电性。
本发明中,所述M 2O 5和Ga 2O 3的纯度较佳地为5N以上,即样品中M 2O 5或Ga 2O 3的质量含量为99.999%。所述M掺杂β-Ga 2O 3晶态材料为M掺杂β-Ga 2O 3单晶时,制备过程中使用的Ga 2O 3的纯度较佳地为6N以上,即样品中Ga 2O 3的质量含量为99.9999%。
本发明中,所述M掺杂β-Ga 2O 3晶态材料后续还可进一步进行退火的操作,以除去晶体中的氧空位,增加载流子浓度的控制范围。所述退火的温度和时间可为本领域常规,例如1000℃-1200℃退火3-10h。
本发明中,M掺杂β-Ga 2O 3晶态材料可含有原料在精制过程中不可避免地包含的杂质元素以及工艺上不可避免地混入的杂质元素,相对于全部构成成分,上述杂质元素的含量较佳地在10ppm以下。
本发明中,制备掺杂β-Ga 2O 3晶态材料采用的晶体生长方法和生长条件不作特殊限定,可为本领域常规的晶体生长方法和生长条件。所述掺杂β-Ga 2O 3晶态材料为单晶时,通常采用本领域常规使用的熔体法生长单晶,熔体生长法通常是在熔体中引入籽晶,控制单晶成核,然后在籽晶和熔体的相界面上进行相变,促进晶体不断长大,一般包括提拉法、导模法、坩埚下降法、光学浮区法、焰熔法等,光学浮区法和导模法都是简单高效的方法,本发明中实施例采用光学浮区法。
其中,采用光学浮区法制备M掺杂β-Ga 2O 3单晶的步骤一般包括混合、制棒、烧结和晶体生长。
其中,所述混合可采用本领域常规使用的混合方式,例如湿法混合。所述湿法混合时使用的溶剂种类和用量不作特殊限定,只要能使M 2O 5和Ga 2O 3混合均匀并且后续容易去除即可,一般使用挥发性溶剂如乙醇。将M 2O 5和Ga 2O 3在挥发性溶剂中分散混匀后通过烘烤方式即可使溶剂完全挥发。为使M 2O 5和Ga 2O 3混合更均匀,所述湿法混合还可采用湿法球磨工艺进行混合,所述湿法球磨的时间可为本领域常规,例如12-24h。
其中,所述压棒可采用本领域常规的操作方式,压棒一般使用等静压机进行。本领域技术人员知晓M 2O 5和Ga 2O 3的混合料呈粉末状可易于压制,并能使压制均匀,因此若压制前混合料存在结块现象,可通过研磨方式,如球磨方式,将其磨成粉末状。
在本发明的实施例中,纯度在4N以上的M 2O 5和6N Ga 2O 3按照摩尔比(0.000001-0.01):(0.999999-0.99)混合后,通过加入适量无水乙醇进行湿法球磨,球磨时间为12-24h,以使M 2O 5和Ga 2O 3充分混匀,之后将所得混合料在80-100℃下烘烤3-6h,使乙醇完全挥发,再将烘干后的混合料球磨成粉末状,以备压棒用。
其中,所述烧结可按照本领域常规的烧结温度和时间进行,用以除去M 2O 5和Ga 2O 3混合料中的水分,并使M 2O 5和Ga 2O 3发生固相反应,形成多晶料。所述烧结的温度较佳地为1400-1600℃,所述烧结的时间较佳地为10-20h。所述烧结一般在马弗炉中进行。
其中,所述晶体生长的气氛较佳地为真空、惰性气氛或氧化气氛,以保证VB族金属M离子的价态稳定。所述惰性气氛可为本领域常规的惰性气氛,如氮气气氛或氩气气氛;所述氧化气氛可为本领域常规的氧化气氛,如氧气气氛或空气气氛。
其中,制备VB族金属M掺杂β-Ga 2O 3单晶通常采用熔体法,一般是将β-Ga 2O 3晶体作为籽晶,用烧结后的M 2O 5和Ga 2O 3多晶料熔化形成熔体,熔体沿籽晶逐步冷却结晶形成单晶,具体方法包括浮区法、导模法、温梯法、下降法、提拉法等。
在本发明某一实施例中,生长VB族金属M掺杂β-Ga 2O 3单晶采用浮区法进行,按照如下步骤进行:将烧结后的M 2O 5和Ga 2O 3多晶料棒装入浮区炉中作为上料棒,<010>方向的β-Ga 2O 3晶体作为籽晶,升温先使籽晶熔化,然后接触上料棒,调整料棒和籽晶的转速和旋转方向,接种,开始晶体生长,晶体的生长速度为4.5-6mm/h,转速为8-12rpm,生长气氛为空气气氛,晶体生长完毕后,拉脱熔区,缓慢降至室温,取出晶体。
本发明还提供了上述制备方法制得的VB族金属M掺杂β-Ga 2O 3晶态材料。
本发明还提供了所述M掺杂β-Ga 2O 3晶态材料在电力电子器件、光电子器件、光催化剂或导电衬底上的应用。
其中,所述光电子器件包括透明电极、太阳能电池板、发光器件、光探测器、传感器等;所述导电衬底包括作为GaN和/或AlN的衬底材料、Ga 2O 3自身的衬底材料等。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
(1)本发明采用5价VB族金属离子掺杂晶态β-Ga 2O 3提供自由电子的极限能力为1:2,明显高于+4价离子掺杂提供自由电子的能力(1:1),因此在相同的掺杂浓度下可提供更多的自由电子,更有利于提高载流子浓度,改善电导率。
(2)本发明采用5价VB族金属离子掺杂晶态β-Ga 2O 3,通过掺杂元素M的含量控制,可调控β-Ga 2O 3晶态材料的导电性。本发明的Ta掺杂β-Ga 2O 3晶态材料电阻率可在2.0×10 -4到1×10 4Ω·cm范围内实现控制,载流子浓度可在5×10 12到7×10 20/cm 3范围内实现控制。本发明的Nb掺杂β-Ga 2O 3晶态材料电阻率可在2.5×10 -4到1×10 4Ω·cm范围内实现控制,载流子浓度可在5×10 12到5.6×10 20/cm 3范围内实现控制;本发明的V掺杂β-Ga 2O 3晶态材料 电阻率可在2.0×10 -4到1×10 4Ω·cm范围内实现控制,载流子浓度可在5×10 12到7×10 20/cm 3范围内实现控制。
(3)本发明的VB族金属掺杂β-Ga 2O 3晶态材料采用本领域常规方法即可制备得到,无需昂贵的原料和苛刻的工艺。
(4)本发明对VB族金属掺杂的晶态β-Ga 2O 3退火后,可除去晶格中的氧空位,增加载流子浓度的控制范围,为其应用提供了依据。
附图说明
图1为实施例1-4Ta掺杂β-Ga 2O 3原生晶体的Ta 2O 5掺杂浓度与载流子浓度和电阻率之间的关系图。
图2为实施例1-3退火后的Ta掺杂β-Ga 2O 3晶体的Ta 2O 5掺杂浓度与载流子浓度之间的关系图。
图3为实施例5-9Nb掺杂β-Ga 2O 3原生晶体的Nb 2O 5掺杂浓度与载流子浓度和电阻率之间的关系图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
下述实施例中,所用原料和试剂皆市售可得。
实施例1
一种Ta掺杂β-Ga 2O 3单晶,分子式为Ga 2(1-x)Ta 2xO 3(x=0.000001),属于单斜晶系,空间群为C2/m,其由如下制备方法制得,具体步骤为:
(1)配料:按照摩尔比0.999999:0.000001称取纯度在6N以上的Ga 2O 3和纯度在4N以上的Ta 2O 5原料;
(2)混料:将所称重的原料放入清洁的聚四氟乙烯球磨罐中,放入高纯刚玉球,倒入适量无水乙醇,密封后,放入球磨机中,混料12h;
(3)烘干:将球磨罐至于烘箱中,在80℃下烘烤6h,使乙醇完全挥发,然后再次放入球磨机球磨10分钟将烘干后的块状原料磨成粉末状;
(4)压棒:将干燥后的混合粉料放入有机模具中,使用等静压机压制成料棒;
(5)烧结:将压制好的料棒放入马弗炉中,在1500℃下烧结10h,除去原料中的水分,并使Ta 2O 5与Ga 2O 3原料发生固相反应,形成多晶料;
(6)晶体生长:将烧结好的多晶料棒装入浮区炉中作为上料棒,并将<010>方向的β-Ga 2O 3晶体放在下面作为籽晶;升温先使籽晶熔化,然后接触上面的料棒,达到稳定后开始晶体的生长;晶体生长速度为5mm/h,转速为10rpm,生长气氛为空气气氛;晶体生长完毕后,停止上料棒的下降,通过下面晶体的自然下降使熔区逐渐分离,再经过约1h自然缓慢降至室温,取出晶体;所得原生晶体完整无开裂,颜色均匀;
(7)退火:将所得原生晶体在1000℃下退火3h。
实施例2
一种Ta掺杂β-Ga 2O 3单晶,分子式为Ga 2(1-x)Ta 2xO 3(x=0.00005),属于单斜晶系,空间群为C2/m,其制备步骤和条件同实施例1,只是步骤(1)中Ta 2O 5的掺杂浓度有所不同,其Ga 2O 3和Ta 2O 5的摩尔比为0.99995:0.00005。
实施例3
一种Ta掺杂β-Ga 2O 3单晶,分子式为Ga 2(1-x)Ta 2xO 3(x=0.001),属于单斜晶系,空间群为C2/m,其制备步骤和条件同实施例1,只是步骤(1)中Ta 2O 5的掺杂浓度有所不同,其Ga 2O 3和Ta 2O 5的摩尔比为0.999:0.001,并且未进行退火操作。
实施例4
一种Ta掺杂β-Ga 2O 3单晶,分子式为Ga 2(1-x)Ta 2xO 3(x=0.01),属于单斜晶系,空间群为C2/m,其制备步骤和条件同实施例1,只是步骤(1)中Ta 2O 5的掺杂浓度有所不同,其Ga 2O 3和Ta 2O 5的摩尔比为0.99:0.01,并且未进行退火操作。
实施例5
一种Nb掺杂β-Ga 2O 3单晶,分子式为Ga 2(1-x)Nb 2xO 3(x=0.000001),属于单斜晶系,空间群为C2/m,其制备步骤和条件同实施例1,只是步骤(1)中选用掺杂剂Nb 2O 5及掺杂浓度有所不同,其制备步骤和条件同实施例1。
实施例6
一种Nb掺杂β-Ga 2O 3单晶,分子式为Ga 2(1-x)Nb 2xO 3(x=0.00001),属于单斜晶系,空间群为C2/m,其制备步骤和条件同实施例1,只是步骤(1)中选用掺杂剂Nb 2O 5及掺杂浓度有所不同,其制备步骤和条件同实施例1。
实施例7
一种Nb掺杂β-Ga 2O 3单晶,分子式为Ga 2(1-x)Nb 2xO 3(x=0.0001),属于单斜晶系,空间群为C2/m,其制备步骤和条件同实施例1,只是步骤(1)中选用掺杂剂Nb 2O 5及掺杂浓度有所不同,其制备步骤和条件同实施例1,且未进行退火处理。
实施例8
一种Nb掺杂β-Ga 2O 3单晶,分子式为Ga 2(1-x)Nb 2xO 3(x=0.002),属于单斜晶系,空间群为C2/m,其制备步骤和条件同实施例1,只是步骤(1)中选用掺杂剂Nb 2O 5及掺杂浓度有所不同,其制备步骤和条件同实施例1,且未经退火处理。
实施例9
一种Nb掺杂β-Ga 2O 3单晶,分子式为Ga 2(1-x)Nb 2xO 3(x=0.008),属于单斜晶系,空间群为C2/m,其制备步骤和条件同实施例1,只是步骤(1)中选用掺杂剂Nb 2O 5及掺杂浓度有所不同,其制备步骤和条件同实施例1,且未经退火处理。
实施例10
一种V掺杂β-Ga 2O 3单晶,分子式为Ga 2(1-x)V 2xO 3(x=0.01),属于单斜晶系,空间群为C2/m,其制备步骤和条件同实施例1,只是步骤(1)中选用掺杂剂V 2O 5及掺杂浓度有所不同,其制备步骤和条件同实施例1,且未经 退火处理。
实施例11
一种V掺杂β-Ga 2O 3单晶,分子式为Ga 2(1-x)V 2xO 3(x=0.00001),属于单斜晶系,空间群为C2/m,其制备步骤和条件同实施例1,只是步骤(1)中选用掺杂剂V 2O 5及掺杂浓度有所不同,其制备步骤和条件同实施例1,且未经退火处理。
对照例
一种纯β-Ga 2O 3单晶,其制备步骤和条件同实施例1,只是未进行Ta 2O 5掺杂。
将实施例1~12所得的M掺杂β-Ga 2O 3单晶以及对照例的纯β-Ga 2O 3单晶(包括原生晶体和退火后的晶体)分别切成5mm×5mm×0.3mm样品,在四角上制作铟电极后,采用霍尔效应测试仪进行测试。测试结果表明实施例1~12掺杂晶体的导电类型为n型,其中实施例1~4,7~12和对照例样品的载流子浓度和电阻率测试结果如下表1所示:
表1 实施例1-13和对照例的载流子浓度和电阻率
Figure PCTCN2018074058-appb-000003
Figure PCTCN2018074058-appb-000004
由上表数据可知,纯的β-Ga 2O 3原生晶体退火后,近乎绝缘。而相较于纯的β-Ga 2O 3原生晶体,用VB族元素掺杂β-Ga 2O 3单晶后载流子浓度大幅增加,电导率明显改善,其中载流子浓度增加幅度至少在10 3以上,电阻率降低至少500倍,表明M金属离子已成功掺杂入β-Ga 2O 3晶格中,取得了预期调控效果。
进一步,为研究原生晶体中不同金属掺杂浓度与载流子浓度和电阻率的关系,本发明绘制了实施例1-4未经退火样品的Ta 2O 5掺杂浓度-载流子浓度-电阻率的曲线,具体可参见附图1。实施例5-9对应Nb 2O 5掺杂浓度-载流子浓度-电阻率的曲线,具体可参见附图3。此外,为研究退火后Ta 2O 5掺杂浓度与载流子浓度的关系,本发明绘制了实施例1-3退火后样品的Ta 2O 5掺杂浓度-载流子浓度曲线,具体可参见附图2。
从图1和3中可以看到,M 2O 5掺杂浓度与载流子浓度,以及M 2O 5掺杂浓度与电阻率之间基本呈线性关系。在本发明的掺杂浓度范围内,退火前样品随着M 2O 5掺杂浓度的增加,载流子浓度基本呈线性增加,电阻率基本呈线性下降。从图2中可以看出,样品退火后载流子浓度下降.
需要说明的是,上述VB族元素掺杂β-Ga 2O 3单晶的载流子浓度和电阻率为本发明具体实验获得,由于实践中原料纯度、制备工艺及测试条件等的影响,会使实际测得的掺杂晶体的载流体浓度和电阻率与理论值存在差距,或者存在无法检测到的情况。因此,上述实施例仅仅是举例说明,本领域技术人员根据本发明公开的VB族元素掺杂浓度结合本领域公知常识可推知VB族元素掺杂β-Ga 2O 3晶态材料的载流子浓度实质上可在5×10 12到7×10 20/cm 3范围内实现控制,电阻率可在2.0×10 -4到1×10 4Ω·cm范围内实现控制。以Ta为例,具体推算过程如下:
根据本发明实验获得的β-Ga 2O 3单晶中掺Ta的最大值为1at%(即 x=0.01),
而1molβ-Ga 2O 3的体积为184.44/5.94cm 3=31cm 3
则1mol掺Ta 1at%的β-Ga 2O 3中含Ta原子个数为:1×2×1%×6.023×10 23=1.2×10 22
因此,掺Ta 1at%的β-Ga 2O 3载流子浓度的理论值为=2×1.2×10 22/31=7.7×10 20/cm 3
再者,所采用Hall效应低阻模块测试电阻率的极限值为10 5Ω·cm,本发明实验表明6N纯β-Ga 2O 3晶体退火后超出测试极限,说明其电阻率>10 5Ω·cm,故采用在6N纯β-Ga 2O 3掺Ta完全可以将电阻率控制到1×10 4Ω·cm,这个数值是实施例1的1/1266,而将实施例中的载流子浓度乘以1/1266可得3×10 12/cm 3,故而Ta掺杂β-Ga 2O 3晶态材料的载流子浓度实现5×10 12/cm 3也是可行的。与该载流子浓度对应的Ta的掺杂浓度则为10 -7at%。
因此,Ta掺杂β-Ga 2O 3晶态材料的Ta掺杂量可在x=0.000000001到0.01范围内,电阻率可在2.0×10 -4到1×10 4Ω·cm范围内实现控制,载流子浓度可在5×10 12到7×10 20/cm 3范围内实现控制。
其它掺杂元素Nb、V等按照同样方法可计算获得。
以上说明了本发明的实施方式,然所述实施例仅为了便于说明而举例而已,并非用以限定本发明,本领域的技术人员在不脱离本发明精神和范围的前提下可作若干的更动与润饰,本发明所主张的保护范围应以权利要求书所述为准。

Claims (24)

  1. 一种掺杂氧化镓晶态材料,其特征在于,所述掺杂氧化镓晶态材料为VB族元素掺杂的氧化镓晶态材料,其电阻率在2.0×10 -4到1×10 4Ω·cm范围内和/或载流子浓度在5×10 12到7×10 20/cm 3范围内。
  2. 如权利要求1所述的掺杂氧化镓晶态材料,其特征在于,所述氧化镓为单斜晶系的β-Ga 2O 3晶体,空间群为C2/m。
  3. 如权利要求1所述的掺杂氧化镓晶态材料,其特征在于,所述掺杂氧化镓晶态材料的分子式为Ga 2(1-x)M 2xO 3,掺杂元素M为VB族元素钒(V)、铌(Nb)、钽(Ta)中的一种或其任意组合,0.000000001≤x≤0.01。
  4. 如权利要求3所述掺杂氧化镓晶态材料,其特征在于,0.000001≤x≤0.01。
  5. 如权利要求1~3中任一项所述的掺杂氧化镓晶态材料,其特征在于,所述的掺杂氧化镓晶态材料为Ta掺杂β-Ga 2O 3晶态材料,其电阻率在2.0×10 -4到1×10 4Ω·cm范围内和/或载流子浓度在5×10 12到7×10 20/cm 3范围内。
  6. 如权利要求5所述的掺杂氧化镓晶态材料,其特征在于,所述Ta掺杂β-Ga 2O 3晶态材料的分子式为Ga 2(1-x)Ta 2xO 3,0.000000001≤x≤0.01;优选的,0.000001≤x≤0.01。
  7. 如权利要求6所述的掺杂氧化镓晶态材料,其特征在于,所述Ta掺杂β-Ga 2O 3晶态材料为Ta掺杂β-Ga 2O 3晶体;
    和/或,所述Ta掺杂β-Ga 2O 3晶态材料的电阻率在2.0×10 -3到3.6×10 2Ω·cm范围内;
    和/或,所述Ta掺杂β-Ga 2O 3晶态材料的载流子浓度在3.7×10 15到6.3×10 19/cm 3范围内。
  8. 如权利要求7所述的掺杂氧化镓晶态材料,其特征在于,所述Ta掺 杂β-Ga 2O 3晶态材料为Ta掺杂β-Ga 2O 3单晶;
    和/或,所述Ta掺杂β-Ga 2O 3晶态材料的电阻率在4×10 -3-7.9Ω·cm范围内;
    和/或,所述Ta掺杂β-Ga 2O 3晶态材料的载流子浓度在3.7×10 15到3.0×10 19/cm 3范围内。
  9. 如权利要求1~3中任一项所述的掺杂氧化镓晶态材料,其特征在于,所述掺杂氧化镓晶态材料为Nb掺杂β-Ga 2O 3晶态材料,其电阻率在2.5×10 -4到1×10 4Ω·cm范围内和/或载流子浓度在5×10 12到5.6×10 20/cm 3范围内。
  10. 如权利要求9所述的掺杂氧化镓晶态材料,其特征在于,所述Nb掺杂β-Ga 2O 3晶态材料的分子式为Ga 2(1-x)Nb 2xO 3,0.000000001≤x≤0.008;优选的,Nb掺杂浓度范围为0.0001~0.8mol%,即0.000001≤x≤0.008。
  11. 如权利要求10所述的掺杂氧化镓晶态材料,其特征在于,所述Nb掺杂β-Ga 2O 3晶态材料为Nb掺杂β-Ga 2O 3晶体;
    和/或,所述Nb掺杂β-Ga 2O 3晶态材料的电阻率在2.5×10 -3到3.6×10 2Ω·cm范围内;
    和/或,所述Nb掺杂β-Ga 2O 3晶态材料的载流子浓度在3.7×10 15到5×10 19/cm 3范围内。
  12. 如权利要求11所述的掺杂氧化镓晶态材料,其特征在于,所述Nb掺杂β-Ga 2O 3晶态材料为Nb掺杂β-Ga 2O 3晶体;
    和/或,所述Nb掺杂氧化镓晶体的电阻率在5.5×10 -3到36Ω·cm范围内;
    和/或,所述Nb掺杂氧化镓晶体的载流子浓度在9.55×10 16到1.8×10 19/cm 3范围内。
  13. 如权利要求1~3中任一项所述的掺杂氧化镓晶态材料,其特征在于,所述掺杂氧化镓晶态材料为V掺杂β-Ga 2O 3晶态材料,其电阻率在2.0×10 -4到1×10 4Ω·cm范围内和/或载流子浓度在5×10 12到7×10 20/cm 3范围内。
  14. 如权利要求13所述的掺杂氧化镓晶态材料,其特征在于,所述V 掺杂β-Ga 2O 3晶态材料的分子式为Ga 2(1-x)V 2xO 3,0.000000001≤x≤0.01,优选的,V的掺杂浓度范围为0.000001≤x≤0.01。
  15. 如权利要求14所述的掺杂氧化镓晶态材料,其特征在于,所述V掺杂β-Ga 2O 3晶态材料为V掺杂β-Ga 2O 3晶体;
    和/或,所述V掺杂β-Ga 2O 3晶态材料的电阻率在2.0×10 -3到3.6×10 2Ω·cm范围内;
    和/或,所述V掺杂β-Ga 2O 3晶态材料的载流子浓度在3.7×10 15到6.3×10 19/cm 3范围内。
  16. 如权利要求15所述的掺杂氧化镓晶态材料,其特征在于,所述V掺杂β-Ga 2O 3晶态材料为V掺杂β-Ga 2O 3单晶;
    和/或,所述V掺杂β-Ga 2O 3晶态材料的电阻率在3×10 -2到50Ω·cm范围内;
    和/或,所述V掺杂β-Ga 2O 3晶态材料的载流子浓度在5×10 15到3.69×10 18/cm 3范围内。
  17. 一种VB族元素M掺杂的β-Ga 2O 3晶态材料的制备方法,其特征在于,包括如下步骤:将纯度在4N以上的M 2O 5和Ga 2O 3按照摩尔比(0.000000001-0.01):(0.999999999-0.99)混合后进行晶体生长,获得掺杂氧化镓晶态材料;
    可选地,晶体生长完毕后,所得M掺杂β-Ga 2O 3晶态材料还进行退火步骤。
  18. 如权利要求17所述的制备方法,其特征在于:
    所述M 2O 5和Ga 2O 3的纯度优选5N以上;
    所述M掺杂β-Ga 2O 3晶态材料为M掺杂β-Ga 2O 3单晶时,制备过程中使用的Ga 2O 3纯度较佳地在6N以上;
    所述的摩尔比优选(0.000001-0.01):(0.999999-0.99)。
  19. 如权利要求17或18所述的制备方法,其特征在于,所述M掺杂 β-Ga 2O 3晶态材料为M掺杂β-Ga 2O 3单晶时,采用熔体法生长单晶,包括导模法、提拉法、浮区法、坩埚下降法中的任意一种。
  20. 一种如权利要求17-19中任一项所述制备方法制得的M掺杂β-Ga 2O 3晶态材料。
  21. 如权利要求1~16和20中任一项所述M掺杂β-Ga 2O 3晶态材料在电力电子器件、光电子器件、光催化剂或导电衬底上的应用。
  22. 如权利要求21所述的应用,其特征在于,所述光电子器件包括透明电极、太阳能电池板、发光器件、光探测器和/或传感器;所述导电衬底包括作为GaN和/或AlN以及Ga 2O 3自身的衬底材料。
  23. 如权利要求5~8中任一项所述Ta掺杂β-Ga 2O 3晶态材料在电力电子器件、光电子器件、光催化剂或导电衬底上的应用。
  24. 如权利要求23所述的应用,其特征在于,所述光电子器件包括透明电极、太阳能电池板、发光器件、光探测器和/或传感器;所述导电衬底包括作为GaN和/或AlN以及Ga 2O 3自身的衬底材料。
PCT/CN2018/074058 2017-01-25 2018-01-24 掺杂氧化镓晶态材料及其制备方法和应用 WO2018137673A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18744070.6A EP3572561B1 (en) 2017-01-25 2018-01-24 Gallium oxide-doped crystalline material, preparation method and application thereof
KR1020197025013A KR102414621B1 (ko) 2017-01-25 2018-01-24 도핑된 산화갈륨 결정질 재료 및 그의 제조 방법과 응용
SG11202000619WA SG11202000619WA (en) 2017-01-25 2018-01-24 Gallium oxide-doped crystalline material, preparation method and application thereof
CN201880004978.1A CN110325671A (zh) 2017-01-25 2018-01-24 掺杂氧化镓晶态材料及其制备方法和应用
JP2019537809A JP6956189B2 (ja) 2017-01-25 2018-01-24 ドープされた酸化ガリウム結晶材料、その製造方法及び使用
US16/508,211 US11098416B2 (en) 2017-01-25 2019-07-10 Doped gallium oxide crystalline material and preparation method and application thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710061035.XA CN108342775B (zh) 2017-01-25 2017-01-25 一种钽掺杂β氧化镓晶态材料及其制备方法和应用
CN201710061035.X 2017-01-25
CN201710124917.6 2017-03-03
CN201710124917.6A CN108531989A (zh) 2017-03-03 2017-03-03 掺杂氧化镓晶体及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/508,211 Continuation-In-Part US11098416B2 (en) 2017-01-25 2019-07-10 Doped gallium oxide crystalline material and preparation method and application thereof

Publications (1)

Publication Number Publication Date
WO2018137673A1 true WO2018137673A1 (zh) 2018-08-02

Family

ID=62979047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074058 WO2018137673A1 (zh) 2017-01-25 2018-01-24 掺杂氧化镓晶态材料及其制备方法和应用

Country Status (7)

Country Link
US (1) US11098416B2 (zh)
EP (1) EP3572561B1 (zh)
JP (1) JP6956189B2 (zh)
KR (1) KR102414621B1 (zh)
CN (1) CN110325671A (zh)
SG (1) SG11202000619WA (zh)
WO (1) WO2018137673A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3085535B1 (fr) * 2019-04-17 2021-02-12 Hosseini Teherani Ferechteh Procédé de fabrication d’oxyde de gallium de type p par dopage intrinsèque, le film mince obtenu d’oxyde de gallium et son utilisation
CN111077560B (zh) * 2019-12-03 2022-12-16 同济大学 一种基于掺镁氧化镓单晶的x射线和伽玛射线探测器
CN112086344B (zh) * 2020-09-22 2022-12-20 中山大学 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
US11462402B2 (en) * 2020-10-21 2022-10-04 Cornell University Suboxide molecular-beam epitaxy and related structures
JP2022149310A (ja) * 2021-03-25 2022-10-06 Tdk株式会社 結晶製造方法、結晶製造装置、及び単結晶
CN114086254B (zh) * 2021-10-12 2022-11-11 杭州富加镓业科技有限公司 一种Ga2O3单晶及其制备方法
CN114134561A (zh) * 2021-12-07 2022-03-04 杭州富加镓业科技有限公司 一种晶体生长热场动态反射屏调整方法
CN114408970B (zh) * 2022-01-25 2023-07-18 重庆邮电大学 一种中空介孔的碳掺杂三氧化二镓纳米球的制备方法及其产品
WO2024053010A1 (ja) * 2022-09-07 2024-03-14 住友電気工業株式会社 高純度三酸化二ガリウムおよびその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1469842A (zh) * 2000-10-17 2004-01-21 ������������ʽ���� 氧化物材料、氧化物薄膜的制造方法以及使用该材料的元件
JP2004262684A (ja) * 2003-02-24 2004-09-24 Univ Waseda β−Ga2O3系単結晶成長方法
US20070166967A1 (en) 2004-02-18 2007-07-19 Noboru Ichinose Method for controlling conductivity of ga2o3 single crystal
CN102431977A (zh) * 2011-09-05 2012-05-02 吉林大学 一种制备锰掺杂氮化镓纳米材料的方法
CN103878010A (zh) * 2014-04-15 2014-06-25 哈尔滨工业大学 VB族金属离子掺杂(Ga1-xZnx)(N1-xOx)固溶体光催化剂的制备方法
JP2015083536A (ja) 2014-11-04 2015-04-30 学校法人早稲田大学 β−Ga2O3単結晶及び発光素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4083396B2 (ja) * 2000-07-10 2008-04-30 独立行政法人科学技術振興機構 紫外透明導電膜とその製造方法
WO2004074556A2 (ja) * 2003-02-24 2004-09-02 Waseda University β‐Ga2O3系単結晶成長方法、薄膜単結晶の成長方法、Ga2O3系発光素子およびその製造方法
WO2013035845A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子
JP6376600B2 (ja) * 2015-03-20 2018-08-22 株式会社タムラ製作所 結晶積層構造体の製造方法
CN105239162A (zh) * 2015-08-25 2016-01-13 中国科学院上海光学精密机械研究所 用于宽禁带半导体的氧化铝-氧化镓混晶材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1469842A (zh) * 2000-10-17 2004-01-21 ������������ʽ���� 氧化物材料、氧化物薄膜的制造方法以及使用该材料的元件
JP2004262684A (ja) * 2003-02-24 2004-09-24 Univ Waseda β−Ga2O3系単結晶成長方法
US20070166967A1 (en) 2004-02-18 2007-07-19 Noboru Ichinose Method for controlling conductivity of ga2o3 single crystal
CN102431977A (zh) * 2011-09-05 2012-05-02 吉林大学 一种制备锰掺杂氮化镓纳米材料的方法
CN103878010A (zh) * 2014-04-15 2014-06-25 哈尔滨工业大学 VB族金属离子掺杂(Ga1-xZnx)(N1-xOx)固溶体光催化剂的制备方法
JP2015083536A (ja) 2014-11-04 2015-04-30 学校法人早稲田大学 β−Ga2O3単結晶及び発光素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTERS, vol. 92, 2008, pages 202120
See also references of EP3572561A4
THIN SOLID FILMS, vol. 516, no. 17, 2008, pages 5763 - 5767

Also Published As

Publication number Publication date
EP3572561B1 (en) 2023-06-28
EP3572561A4 (en) 2020-01-08
JP6956189B2 (ja) 2021-11-02
US11098416B2 (en) 2021-08-24
KR20200002789A (ko) 2020-01-08
EP3572561A1 (en) 2019-11-27
KR102414621B1 (ko) 2022-06-30
JP2020505305A (ja) 2020-02-20
US20190352798A1 (en) 2019-11-21
SG11202000619WA (en) 2020-02-27
CN110325671A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2018137673A1 (zh) 掺杂氧化镓晶态材料及其制备方法和应用
JP4571221B1 (ja) Igzo系酸化物材料及びigzo系酸化物材料の製造方法
JP4415062B1 (ja) 薄膜トランジスタ及び薄膜トランジスタの製造方法
JP5349587B2 (ja) 酸化インジウム焼結体、酸化インジウム透明導電膜及び該透明導電膜の製造方法
US9768316B2 (en) Oxide semiconductor thin film and thin film transistor
Yu et al. Fabrication of p-type SnO2 films via pulsed laser deposition method by using Sb as dopant
KR101960233B1 (ko) 스퍼터링 타겟
Zhu et al. Structural, electrical, and optical properties of F-doped SnO or SnO2 films prepared by RF reactive magnetron sputtering at different substrate temperatures and O2 fluxes
JPH02149459A (ja) スパッタリングターゲット及びその製造方法
JP2010024087A (ja) 酸化物焼結体の製造方法、酸化物焼結体、スパッタリングタ−ゲット、酸化物薄膜、薄膜トランジスタの製造方法及び半導体装置
CN107924822B (zh) 晶体氧化物半导体薄膜、晶体氧化物半导体薄膜的制造方法以及薄膜晶体管
Niesz et al. Engineering grain size and electrical properties of donor-doped barium titanate ceramics
CN108342775B (zh) 一种钽掺杂β氧化镓晶态材料及其制备方法和应用
JP2010238770A (ja) 酸化物薄膜及びその製造方法
Peiteado et al. Microstructural development of tin-doped ZnO bulk ceramics
TW201639980A (zh) 氧化亞錫薄膜的製備方法
WO2006054580A1 (ja) CdTe系化合物半導体単結晶
CN110387582B (zh) 一种理想二维费米液体系统Bi2O2Se单晶及其制备方法和应用
CN114836832A (zh) 掺杂氧化镓晶体及其制备方法
JP6146773B2 (ja) 酸化物焼結体及びその製造方法
JP5562000B2 (ja) 酸化物焼結体及びその製造方法
JP6356290B2 (ja) 酸化物焼結体及びその製造方法
JPH0971419A (ja) 透明導電性酸化物材料
TW202347771A (zh) 半導體膜及半導體膜之製造方法
JP2017168572A (ja) 酸化物半導体薄膜、酸化物焼結体、薄膜トランジスタ及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537809

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197025013

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018744070

Country of ref document: EP

Effective date: 20190823