JP5349587B2 - Indium oxide sintered body, indium oxide transparent conductive film, and method for producing the transparent conductive film - Google Patents

Indium oxide sintered body, indium oxide transparent conductive film, and method for producing the transparent conductive film Download PDF

Info

Publication number
JP5349587B2
JP5349587B2 JP2011510761A JP2011510761A JP5349587B2 JP 5349587 B2 JP5349587 B2 JP 5349587B2 JP 2011510761 A JP2011510761 A JP 2011510761A JP 2011510761 A JP2011510761 A JP 2011510761A JP 5349587 B2 JP5349587 B2 JP 5349587B2
Authority
JP
Japan
Prior art keywords
atomic concentration
transparent conductive
conductive film
indium oxide
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011510761A
Other languages
English (en)
Other versions
JPWO2011043235A1 (ja
Inventor
英生 高見
正克 生澤
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009232466 priority Critical
Priority to JP2009232466 priority
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to PCT/JP2010/067019 priority patent/WO2011043235A1/ja
Priority to JP2011510761A priority patent/JP5349587B2/ja
Publication of JPWO2011043235A1 publication Critical patent/JPWO2011043235A1/ja
Application granted granted Critical
Publication of JP5349587B2 publication Critical patent/JP5349587B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Description

本発明は、可視光領域及び赤外線領域において高透過率であり、かつ、膜の抵抗率が低く、さらに、結晶化温度が制御可能な透明導電膜及びその製造方法並びに該透明導電膜を作製するために用いられる酸化物焼結体に関する。  The present invention provides a transparent conductive film having a high transmittance in the visible light region and an infrared region, a low film resistivity, and a controllable crystallization temperature, a manufacturing method thereof, and the transparent conductive film. The present invention relates to an oxide sintered body used for the purpose.

透明導電膜として、スズを添加した酸化インジウム(以下、ITOと称する)が、その低抵抗率、高透過率という優れた特性を有するために、FPD(フラットパネルディスプレイ)等の電極材料として、広く使用されている。   As a transparent conductive film, indium oxide to which tin is added (hereinafter referred to as ITO) has excellent characteristics such as low resistivity and high transmittance. Therefore, it is widely used as an electrode material for FPD (flat panel display) and the like. It is used.

しかしながら、ITOはキャリア濃度が高く、長波長領域の透過率が劣るために、近年、進展が著しい太陽電池用透明電極としては、必ずしも有効ではない。太陽電池の分光感度は、結晶シリコン型で約1200nmまで、CIGS (Cu−In−Ga−Se系) 型では約1300nmまでであるため、このような長波長領域まで、高透過率であることが求められているからである。   However, since ITO has a high carrier concentration and inferior transmittance in the long wavelength region, it is not always effective as a transparent electrode for solar cells that has made remarkable progress in recent years. The spectral sensitivity of the solar cell is up to about 1200 nm for the crystalline silicon type, and up to about 1300 nm for the CIGS (Cu—In—Ga—Se system) type, so that it has a high transmittance up to such a long wavelength region. It is because it is demanded.

このような状況のもと、ITOに代わり、長波長域においても高透過率であって、かつ低抵抗率の材料の候補として、ジルコニアを添加した酸化インジウム(以下、IZrOと称する)が提案されている。IZrOは高移動度かつ低キャリア濃度のため、長波長領域においても比較的透過率が高く維持される可能性があることから注目されている。   Under such circumstances, indium oxide added with zirconia (hereinafter referred to as IZrO) has been proposed as a candidate for a material having high transmittance and low resistivity in the long wavelength region instead of ITO. ing. IZrO is attracting attention because of its high mobility and low carrier concentration, which may maintain a relatively high transmittance even in the long wavelength region.

IZrOに関連したこれまでの報告としては、以下の文献が挙げられる。
特許文献1には、ジルコニウムを添加した酸化インジウムについての記載がある。しかしながら、その目的はITOに代替可能な低抵抗率材料であることを提示するのみに留まっており、単に酸化インジウムへの添加物をスズからジルコニウムに置き換えたに過ぎない。
実施例には、得られた膜の抵抗率は非常に低い旨が記載されているが、キャリア移動度が1021cm−3台と非常に高いため、ITOと同様、長波長領域の透過率は非常に低く、悪いものとならざるを得ない。
ジルコニア濃度については1種類の結果についての記載しかなく、適切なジルコニア濃度については言及されていない。また、成膜時の基板温度については、250℃及び室温成膜後に220℃のアニールを実施しているのみで、膜の結晶性に関する記載は一切なく、結晶性を利用してエッチング速度を制御すること、或いは、結晶化温度を制御するような技術思想は全くない。また、スパッタリングするのに使用したターゲットについては「高密度」であるとの記載があるが、具体的な値について一切記述はない。さらに、バルク抵抗についても何らの記載もない。膜の電気特性に大きな影響を与えるスパッタリング時のガスについては、「アルゴンガスに微量の酸素ガスを添加した混合ガス」とのみ記載されているだけである。
Previous reports related to IZrO include:
Patent Document 1 describes indium oxide to which zirconium is added. However, its purpose is only to show that it is a low-resistivity material that can be substituted for ITO, simply replacing the additive to indium oxide from tin to zirconium.
Although it is described in the Examples that the resistivity of the obtained film is very low, the carrier mobility is as high as 10 21 cm −3 , so that the transmittance in the long wavelength region is similar to that of ITO. Is very low and must be bad.
Regarding the zirconia concentration, there is only a description of one kind of result, and no appropriate zirconia concentration is mentioned. As for the substrate temperature at the time of film formation, only annealing at 250 ° C. and 220 ° C. after film formation is performed, there is no description about the crystallinity of the film, and the etching rate is controlled using crystallinity. There is no technical idea to control the crystallization temperature. In addition, the target used for sputtering is described as “high density”, but there is no description of specific values. Furthermore, there is no description about the bulk resistance. The gas at the time of sputtering that has a great influence on the electrical characteristics of the film is only described as “a mixed gas obtained by adding a trace amount of oxygen gas to argon gas”.

特許文献2及び3には、ジルコニウムを添加した酸化インジウムについての記載がある。しかし、室温成膜時の非晶質膜の抵抗率が高く、一方、200℃成膜時の膜の抵抗率については記載がない。また、添加物の種類や濃度によって膜の結晶化温度を制御するといった思想は認められない。さらに、スパッタリングターゲットである酸化物焼結体の密度が比較的高いが、最も高いものでも相対密度が98.7%であり、長時間のスパッタ後に発生するノジュールを抑制するためには、一層の高密度ターゲットが必要とされる。   Patent Documents 2 and 3 describe indium oxide to which zirconium is added. However, the resistivity of the amorphous film during film formation at room temperature is high, while the resistivity of the film during film formation at 200 ° C. is not described. Further, the idea of controlling the crystallization temperature of the film by the kind and concentration of the additive is not recognized. Furthermore, although the density of the oxide sintered body which is a sputtering target is relatively high, the highest density is 98.7%, and in order to suppress nodules generated after a long sputtering time, A high density target is required.

特許文献4には、長波長領域で高透過率である酸化物透明導電膜として、酸化インジウムを主成分とするジルコニウムを添加した膜の電子の移動度や比抵抗が優れている旨の記載がある。しかし、実施例における基板温度は650℃や低くても450℃と非常に高温であるが、実用上は、少なくとも300℃以下でないと実際の使用には大きな制約がある。基板材質上の制限や太陽電池のp−n界面の電子濃度プロファイルを適切に維持するために必要であるからである。
ジルコニア添加の酸化インジウムのターゲットについては、焼結体密度やバルク抵抗等を含めて一切の特性について記載されていない。これについて、実施例では、DCスパッタではなく、RFスパッタをしていることから推察すると、ターゲットとして使用された焼結体のバルク抵抗が高かったと思われる。
Patent Document 4 describes that an oxide transparent conductive film having a high transmittance in a long wavelength region has excellent electron mobility and specific resistance of a film to which zirconium containing indium oxide as a main component is added. is there. However, although the substrate temperature in the embodiment is 650 ° C. or as low as 450 ° C., it is practically very limited to practical use unless it is at least 300 ° C. or less. This is because it is necessary to properly maintain the substrate material limitation and the electron concentration profile at the pn interface of the solar cell.
The zirconia-added indium oxide target does not describe any characteristics including the sintered body density and bulk resistance. In this regard, in the examples, it is considered that the bulk resistance of the sintered body used as the target was high, presuming that RF sputtering was performed instead of DC sputtering.

非特許文献1及び2には、ジルコニア添加の酸化インジウムについて記載されている。しかし、その内容は特許文献4と同様、基板温度が非常に高く、また、ターゲットとして使用された焼結体の密度についての記載がなく、特許文献4と同様にRFスパッタを行っている。   Non-Patent Documents 1 and 2 describe zirconia-added indium oxide. However, as in Patent Document 4, the substrate temperature is very high, and the density of the sintered body used as a target is not described, and RF sputtering is performed as in Patent Document 4.

以上のように、これまではジルコニアを添加した酸化インジウムの焼結体について、産業上必要とされる程度に十分に高密度であり、かつ、バルク抵抗が低い酸化物焼結体は存在しなかった。また、これらの酸化物焼結体をスパッタリングターゲットとして使用して、スパッタリングにより成膜して得られる膜のエッチング速度を高くするために、添加物の種類や濃度によって結晶化温度を制御するようなことは行われていなかった。   As described above, so far, there has been no oxide sintered body that is sufficiently dense and low in bulk resistance to be industrially required for an indium oxide sintered body to which zirconia is added. It was. In addition, in order to increase the etching rate of a film obtained by sputtering using these oxide sintered bodies as a sputtering target, the crystallization temperature is controlled by the type and concentration of additives. That was not done.

特開平6−160876号公報JP-A-6-160876 特開2002−226966号公報JP 2002-226966 A 特開2002−373527号公報JP 2002-373527 A 特開2007−273455号公報JP 2007-273455 A

本発明は、可視光領域及び赤外線領域において高透過率であり、かつ、膜の抵抗率が低く、結晶化温度が制御可能な透明導電膜及びその製造方法並びに該透明導電膜を作製するために用いられる酸化インジウム焼結体を提供することを目的とする。   The present invention provides a transparent conductive film having a high transmittance in the visible light region and the infrared region and having a low film resistivity and a controllable crystallization temperature, a method for producing the transparent conductive film, and the transparent conductive film. It aims at providing the indium oxide sintered compact used.

本発明者らは鋭意研究した結果、酸化インジウムに所定の原子濃度のジルコニウムを添加することで高透過率を維持したまま、抵抗率を低下させることができ、さらに、所定の重量濃度のスズを添加することで焼結体の密度を増加させることができ、さらには、所定の原子濃度のマグネシウム又は/及びカルシウムを添加することによって、酸化インジウム焼結体から作製される膜の結晶化温度を制御することができることを見出し、本発明を完成させた。  As a result of intensive studies, the inventors have been able to reduce resistivity while maintaining high transmittance by adding zirconium at a predetermined atomic concentration to indium oxide. The density of the sintered body can be increased by adding, and furthermore, by adding magnesium or / and calcium of a predetermined atomic concentration, the crystallization temperature of the film produced from the indium oxide sintered body can be increased. The present invention has been completed by finding that it can be controlled.

本発明は、この知見に基づいて、
1.添加物としてジルコニウムを含有する酸化インジウム焼結体であって、ジルコニウムの原子濃度の、インジウムの原子濃度とジルコニウムの原子濃度の総和に対する比率が0.5〜4%の範囲であり、相対密度が99.3%以上であって、バルク抵抗が0.5mΩ・cm以下であることを特徴とする酸化インジウム焼結体、
2.上記添加物に加えて、スズを含有する酸化インジウム焼結体であって、スズの原子濃度の、インジウムの原子濃度とジルコニウムの原子濃度とスズの原子濃度の総和に対する比率が0.015〜0.5%の範囲であり、相対密度が99.5%以上であって、バルク抵抗が0.5mΩ・cm以下であることを特徴とする上記1に記載の酸化インジウム焼結体、
3.上記添加物に加えてさらに、マグネシウム及び/又はカルシウムを含有する酸化インジウム焼結体であって、マグネシウムの原子濃度の若しくはカルシウムの原子濃度の又はこれらの原子濃度の総和の、全金属元素の原子濃度の総和に対する比率が0.5〜2.0%の範囲であり、相対密度が99.5%以上であって、バルク抵抗が0.5mΩ・cm以下であることを特徴とする上記2に記載の酸化インジウム焼結体、を提供する。
The present invention is based on this finding.
1. An indium oxide sintered body containing zirconium as an additive, wherein the ratio of the atomic concentration of zirconium to the sum of the atomic concentration of indium and the atomic concentration of zirconium is in the range of 0.5 to 4%, and the relative density is 99.3% or more of indium oxide sintered body characterized by having a bulk resistance of 0.5 mΩ · cm or less,
2. In addition to the above additives, an indium oxide sintered body containing tin, wherein the ratio of the atomic concentration of tin to the sum of the atomic concentration of indium, the atomic concentration of zirconium and the atomic concentration of tin is 0.015 to 0 The indium oxide sintered body according to the above 1, characterized by having a range of 0.5%, a relative density of 99.5% or more, and a bulk resistance of 0.5 mΩ · cm or less,
3. In addition to the above additives, an indium oxide sintered body further containing magnesium and / or calcium, the atomic concentration of all metal elements of the atomic concentration of magnesium or the atomic concentration of calcium or the sum of these atomic concentrations The above-mentioned 2 is characterized in that the ratio to the total concentration is in the range of 0.5 to 2.0%, the relative density is 99.5% or more, and the bulk resistance is 0.5 mΩ · cm or less. The described indium oxide sintered body is provided.

本発明は、また、
4.添加物としてジルコニウムを含有する酸化インジウム透明導電膜であって、ジルコニウムの原子濃度の、インジウムの原子濃度とジルコニウムの原子濃度の総和に対する比率が0.5〜4%の範囲であり、抵抗率が8×10−4Ω・cm以下であり、電子移動度が15cm/V・s以上であり、波長1200nmでの透過率が85%以上であって、非晶質であることを特徴とする酸化インジウム透明導電膜、
5.上記添加物に加えて、スズを含有する酸化インジウム透明導電膜であって、スズの原子濃度の、インジウムの原子濃度とジルコニウムの原子濃度とスズの原子濃度の総和に対する比率が0.015〜0.5%の範囲であり、抵抗率が8×10−4Ω・cm以下であり、電子移動度が15cm/V・s以上であり、波長1200nmでの透過率が85%以上であって、非晶質であることを特徴とする上記4に記載の酸化インジウム透明導電膜、
6.上記添加物に加えてさらに、マグネシウム及び/又はカルシウムを含有する酸化インジウム透明導電膜であって、マグネシウムの原子濃度の若しくはカルシウムの原子濃度の又はこれらの原子濃度の総和の、全金属元素の原子濃度の総和に対する比率が0.5〜2.0%の範囲であり、抵抗率が8×10−4Ω・cm以下であり、電子移動度が15cm/V・s以上であり、波長1200nmでの透過率が85%以上であって、非晶質であることを特徴とする上記5に記載の酸化インジウム透明導電膜、
7.結晶化温度が150℃〜260℃の範囲であることを特徴とする上記4〜6のいずれかに記載の酸化インジウム透明導電膜、
8.添加物としてジルコニウムを含有する酸化インジウム透明導電膜であって、ジルコニウムの原子濃度の、インジウムの原子濃度とジルコニウムの原子濃度の総和に対する比率が0.5〜4%の範囲であり、抵抗率が4×10−4Ω・cm以下であり、電子移動度が50cm/V・s以上であり、波長1200nmでの透過率が90%以上であって、結晶質であることを特徴とする酸化インジウム透明導電膜、
9.上記添加物に加えて、スズを含有する酸化インジウム透明導電膜であって、スズの原子濃度の、インジウムの原子濃度とジルコニウムの原子濃度とスズの原子濃度の総和に対する比率が0.015〜0.5%の範囲であり、抵抗率が4×10−4Ω・cm以下であり、電子移動度が50cm/V・s以上であり、波長1200nmでの透過率が90%以上であって、結晶質であることを特徴とする上記8に記載の酸化インジウム透明導電膜、
10.上記添加物に加えてさらに、マグネシウム及び/又はカルシウムを含有する酸化インジウム透明導電膜であって、マグネシウムの原子濃度の若しくはカルシウムの原子濃度の又はこれらの原子濃度の総和の、全金属元素の原子濃度に対する比率が0.5〜2.0%の範囲であり、抵抗率が4×10−4Ω・cm以下であり、電子移動度が50cm/V・s以上であり、波長1200nmでの透過率が90%以上であって、結晶質であることを特徴とする上記9に記載の酸化インジウム透明導電膜、を提供する。
The present invention also provides
4). An indium oxide transparent conductive film containing zirconium as an additive, wherein the ratio of the atomic concentration of zirconium to the sum of the atomic concentration of indium and the atomic concentration of zirconium is in the range of 0.5 to 4%, and the resistivity is 8 × 10 −4 Ω · cm or less, electron mobility is 15 cm 2 / V · s or more, transmittance at a wavelength of 1200 nm is 85% or more, and is amorphous. Indium oxide transparent conductive film,
5. In addition to the above additives, an indium oxide transparent conductive film containing tin, wherein the ratio of the atomic concentration of tin to the sum of the atomic concentration of indium, the atomic concentration of zirconium and the atomic concentration of tin is 0.015 to 0 The resistivity is 8 × 10 −4 Ω · cm or less, the electron mobility is 15 cm 2 / V · s or more, and the transmittance at a wavelength of 1200 nm is 85% or more. The indium oxide transparent conductive film according to 4 above, which is amorphous.
6). In addition to the above additives, an indium oxide transparent conductive film further containing magnesium and / or calcium, the atomic concentration of all metal elements of the atomic concentration of magnesium or the atomic concentration of calcium or the sum of these atomic concentrations The ratio to the total concentration is in the range of 0.5 to 2.0%, the resistivity is 8 × 10 −4 Ω · cm or less, the electron mobility is 15 cm 2 / V · s or more, and the wavelength is 1200 nm. The indium oxide transparent conductive film according to 5 above, wherein the transmittance is 85% or more and is amorphous.
7). The indium oxide transparent conductive film according to any one of 4 to 6, wherein the crystallization temperature is in the range of 150 ° C to 260 ° C,
8). An indium oxide transparent conductive film containing zirconium as an additive, wherein the ratio of the atomic concentration of zirconium to the sum of the atomic concentration of indium and the atomic concentration of zirconium is in the range of 0.5 to 4%, and the resistivity is 4 × 10 −4 Ω · cm or less, an electron mobility of 50 cm 2 / V · s or more, a transmittance at a wavelength of 1200 nm of 90% or more, and an oxidation characteristic Indium transparent conductive film,
9. In addition to the above additives, an indium oxide transparent conductive film containing tin, wherein the ratio of the atomic concentration of tin to the sum of the atomic concentration of indium, the atomic concentration of zirconium and the atomic concentration of tin is 0.015 to 0 The resistivity is 4 × 10 −4 Ω · cm or less, the electron mobility is 50 cm 2 / V · s or more, and the transmittance at a wavelength of 1200 nm is 90% or more. The indium oxide transparent conductive film according to 8 above, which is crystalline.
10. In addition to the above additives, an indium oxide transparent conductive film further containing magnesium and / or calcium, the atomic concentration of all metal elements of the atomic concentration of magnesium or the atomic concentration of calcium or the sum of these atomic concentrations The ratio to the concentration is in the range of 0.5 to 2.0%, the resistivity is 4 × 10 −4 Ω · cm or less, the electron mobility is 50 cm 2 / V · s or more, and the wavelength is 1200 nm. 10. The indium oxide transparent conductive film according to 9 above, which has a transmittance of 90% or more and is crystalline.

本発明は、さらに、
11.スパッタリングにより酸化インジウム透明導電膜を製造する方法において、アルゴンと酸素からなり、酸素濃度が1%未満である混合ガス雰囲気中、基板を無加熱又は150℃以下に保持して、上記1〜3に記載の酸化物焼結体をスパッタリングにより基板上に非晶質の膜を成膜することを特徴とする酸化インジウム透明導電膜の製造方法、
12.スパッタリングにより酸化インジウム透明導電膜を製造する方法において、アルゴンと酸素からなり、酸素濃度が1%未満である混合ガス雰囲気中、基板を無加熱又は150℃以下に保持して、請求項1〜3に記載の酸化物焼結体をスパッタリングにより基板上に非晶質の膜を成膜し、その膜をエッチングして回路パターンを形成した後、結晶化温度以上の温度でアニールすることによって、膜を結晶化させることを特徴とする酸化インジウム透明導電膜の製造方法、
13.スパッタリングにより酸化インジウム透明導電膜を製造する方法において、アルゴンと酸素からなり、酸素濃度が1%未満である混合ガス雰囲気中、基板を結晶化温度以上の温度に保持して、請求項1〜3に記載の酸化物焼結体をスパッタリングにより基板上に結晶化した膜を成膜することを特徴とする酸化インジウム透明導電膜の製造方法、を提供する。
The present invention further provides:
11. In the method for producing an indium oxide transparent conductive film by sputtering, in a mixed gas atmosphere consisting of argon and oxygen and having an oxygen concentration of less than 1%, the substrate is not heated or maintained at 150 ° C. or less, and A method for producing an indium oxide transparent conductive film, comprising forming an amorphous film on a substrate by sputtering the oxide sintered body described above,
12 In the method for producing an indium oxide transparent conductive film by sputtering, the substrate is not heated or kept at 150 ° C. or lower in a mixed gas atmosphere composed of argon and oxygen and having an oxygen concentration of less than 1%. A film is formed by forming an amorphous film on the substrate by sputtering and forming a circuit pattern by sputtering the oxide sintered body described in 1. and then annealing at a temperature equal to or higher than the crystallization temperature. A method for producing an indium oxide transparent conductive film, characterized in that
13. In the method for producing an indium oxide transparent conductive film by sputtering, the substrate is maintained at a temperature equal to or higher than the crystallization temperature in a mixed gas atmosphere composed of argon and oxygen and having an oxygen concentration of less than 1%. A method for producing a transparent conductive film of indium oxide, characterized in that a film obtained by crystallizing the oxide sintered body described in 1 above on a substrate by sputtering is formed.

本発明によれば、高密度の焼結体を提供することができるので、この焼結体をスパッタリングターゲットとして使用した場合、長時間のスパッタ後においてもターゲット表面のノジュールの発生を抑制することができ、また、スパッタ時の異常放電やパーティクル発生等を防止する効果があるという優れた効果を有する。   According to the present invention, since a high-density sintered body can be provided, when this sintered body is used as a sputtering target, generation of nodules on the target surface can be suppressed even after long-time sputtering. In addition, it has an excellent effect of preventing abnormal discharge and particle generation during sputtering.

また、本発明の酸化インジウム焼結体をスパッタリングして形成した膜は、結晶化温度を制御することが可能であるので、所望の結晶化温度で形成した膜を得ることができる。
また、スパッタリングにより成膜後の膜全体を非晶質として形成することができるため、その膜を残渣なくエッチングするのに適しており、アニール後は、膜が結晶化して低抵抗率になるため、太陽電池用透明導電膜として非常に有用である。
Further, since the film formed by sputtering the indium oxide sintered body of the present invention can control the crystallization temperature, a film formed at a desired crystallization temperature can be obtained.
In addition, since the entire film can be formed as an amorphous film by sputtering, it is suitable for etching the film without residue, and after annealing, the film crystallizes and has a low resistivity. It is very useful as a transparent conductive film for solar cells.

本発明において原子濃度の比率とは、特定の元素を含む複数の元素の原子濃度の総和に対する、特定の元素の原子濃度の割合を意味する。
ここで、複数の元素とは、特定の元素がジルコニウムの場合には、インジウムとジルコニウムであり、特定の元素がスズの場合には、インジウムとジルコニウムとスズであって、特定の元素がマグネシウム及び/又はカルシウムの場合には、焼結体中に含まれる全金属元素を意味する。
In the present invention, the atomic concentration ratio means the ratio of the atomic concentration of a specific element to the sum of the atomic concentrations of a plurality of elements including the specific element.
Here, the plurality of elements are indium and zirconium when the specific element is zirconium, and when the specific element is tin, the specific elements are indium, zirconium and tin, and the specific elements are magnesium and In the case of calcium, it means all metal elements contained in the sintered body.

本発明における酸化物焼結体中のジルコニウムの原子濃度の、インジウムの原子濃度とジルコニウムの原子濃度の総和に対する比率は、0.5〜4%の範囲であることが好ましい。
ジルコニウムの原子濃度の比率が0.5%未満であると、電子を放出してキャリア濃度を増加させるドーパントとしてのジルコニウムが減少するため、キャリア濃度が十分でなく、その酸化物焼結体から作製される膜の抵抗率が上昇することになる。
一方、ジルコニウムの原子濃度の比率が4%を超えると、添加したジルコニウムからキャリアとしての電子放出が行われず、中性不純物散乱が大きくなり、移動度の低下により高抵抗率の原因となる。
The ratio of the atomic concentration of zirconium in the oxide sintered body in the present invention to the sum of the atomic concentration of indium and the atomic concentration of zirconium is preferably in the range of 0.5 to 4%.
If the atomic concentration ratio of zirconium is less than 0.5%, zirconium as a dopant that emits electrons and increases the carrier concentration decreases, so the carrier concentration is insufficient, and the oxide sintered body is used. The resistivity of the film to be increased will increase.
On the other hand, if the ratio of the atomic concentration of zirconium exceeds 4%, electrons are not emitted from the added zirconium as carriers, neutral impurity scattering increases, and high mobility is caused by a decrease in mobility.

本発明におけるスズの原子濃度の、インジウムの原子濃度とジルコニウムの原子濃度とスズの原子濃度の総和に対する比率が、0.015〜0.5%の範囲であることが好ましい。
スズの原子濃度の比率が0.015%未満であると、酸化インジウム焼結体の密度を十分に上げることができない。
一方、スズの原子濃度が0.5%を超えると、更なる焼結密度の向上は得られず、また、スズは高キャリア濃度の原因となるため、長波長域での透過率を低下させることになる。
The ratio of the atomic concentration of tin in the present invention to the sum of the atomic concentration of indium, the atomic concentration of zirconium and the atomic concentration of tin is preferably in the range of 0.015 to 0.5%.
When the atomic concentration ratio of tin is less than 0.015%, the density of the indium oxide sintered body cannot be sufficiently increased.
On the other hand, if the atomic concentration of tin exceeds 0.5%, further improvement of the sintered density cannot be obtained, and tin causes a high carrier concentration, so that the transmittance in the long wavelength region is reduced. It will be.

本発明におけるマグネシウムの原子濃度の、全金属元素の原子濃度の総和に対する比率が0.5〜2.0%の範囲であることが好ましい。
マグネシウムの原子濃度の比率が0.5%未満であると、結晶化温度を高くする効果が殆どなくなり、スパッタリングにより成膜後の膜中に結晶化された部分が発生し、それがエッチング時に残渣として残るという不都合が生じる。
一方、マグネシウムの原子濃度の比率が2.0%を越えると、結晶化温度が高くなり過ぎて、加熱プロセスの手間や時間等に不都合が生じる。
The ratio of the atomic concentration of magnesium in the present invention to the total atomic concentration of all metal elements is preferably in the range of 0.5 to 2.0%.
When the ratio of the atomic concentration of magnesium is less than 0.5%, the effect of increasing the crystallization temperature is almost lost, and a crystallized portion is generated in the film after film formation by sputtering. Inconvenience that it remains as.
On the other hand, if the ratio of the atomic concentration of magnesium exceeds 2.0%, the crystallization temperature becomes too high, resulting in inconvenience in time and labor of the heating process.

本発明におけるカルシウムの原子濃度の比率の好ましい範囲は、マグネシウムと同一であり、カルシウムはマグネシウムと同様、膜の結晶化温度を高くさせる効果がある。
したがって、マグネシウム又はカルシウム単独で添加するだけでなく、これらの両方を添加することでも膜の結晶化温度を高くする効果がある。その場合のマグネシウムとカルシウムの原子濃度の合計の比率も前記したマグネシウムの原子濃度の比率の範囲と同一とすることが望ましい。
The preferred range of the ratio of the atomic concentration of calcium in the present invention is the same as magnesium, and calcium has the effect of increasing the crystallization temperature of the film, like magnesium.
Therefore, not only adding magnesium or calcium alone, but also adding both has the effect of increasing the crystallization temperature of the film. In this case, the total ratio of the atomic concentrations of magnesium and calcium is preferably the same as the above-described range of the atomic concentration of magnesium.

本発明における非晶質膜を製造する方法として、基板を加熱しない若しくは加熱したとしても、膜が結晶化しない程度の低温でスパッタリングにより成膜する必要がある。基板温度が高いと成膜後の膜の一部が結晶化してしまうからである。
また、スパッタ中の雰囲気ガス種類としては、アルゴンのみかアルゴンと酸素の混合ガスを使用することができる。混合ガスを使用した場合、酸素濃度は1%以下とすることが好ましい。
酸素濃度が1%を超えると、成膜して得られた膜の抵抗率が低くなり、その後、アニールしても十分に抵抗率を下げることができず、最終的に得られる膜の抵抗率が高くなるからである。
As a method for producing an amorphous film in the present invention, it is necessary to form a film by sputtering at a low temperature so that the film does not crystallize even if the substrate is not heated or heated. This is because when the substrate temperature is high, a part of the film after film formation is crystallized.
Further, as the atmospheric gas type during sputtering, only argon or a mixed gas of argon and oxygen can be used. When a mixed gas is used, the oxygen concentration is preferably 1% or less.
When the oxygen concentration exceeds 1%, the resistivity of the film obtained by film formation becomes low, and even after annealing, the resistivity cannot be lowered sufficiently, and the resistivity of the film finally obtained Because it becomes higher.

本発明における結晶化膜は、非晶質膜と比較して結晶化による移動度の増加により抵抗率が低いものとなる。結晶化の方法として、非晶質膜をその結晶化温度以上の温度でアニール(加熱)する方法があり、また、エッチング工程がない場合には成膜時の基板温度を結晶化温度付近又はそれ以上の温度で加熱しながら成膜時から結晶化させる方法がある。   The crystallized film in the present invention has a lower resistivity than the amorphous film due to an increase in mobility due to crystallization. As a crystallization method, there is a method in which an amorphous film is annealed (heated) at a temperature equal to or higher than the crystallization temperature. If there is no etching process, the substrate temperature during film formation is around or near the crystallization temperature. There is a method of crystallizing from the time of film formation while heating at the above temperature.

本発明の酸化インジウム焼結体、非晶質酸化インジウム透明導電膜及び結晶質酸化インジウム透明導電膜は、例えば、以下の方法で作製することができる。  The indium oxide sintered body, the amorphous indium oxide transparent conductive film, and the crystalline indium oxide transparent conductive film of the present invention can be produced, for example, by the following method.

まず、原料粉として、酸化インジウム(In)、酸化ジルコニウム(ZrO)、また必要に応じて、酸化スズ(SnO)、酸化マグネシウム(MgO)、酸化カルシウム(CaO)を用いる。
これらの原料粉は比表面積が10m/g程度のものを使用するのが好ましい。比表面積が小さいと粒径が大きくなり、焼結体の密度が十分に上がらないからである。
First, indium oxide (In 2 O 3 ), zirconium oxide (ZrO 2 ), and, if necessary, tin oxide (SnO 2 ), magnesium oxide (MgO), and calcium oxide (CaO) are used as raw material powders.
These raw material powders preferably have a specific surface area of about 10 m 2 / g. This is because if the specific surface area is small, the particle size increases and the density of the sintered body does not increase sufficiently.

次に、これらの原料粉を所定の濃度比になるように秤量し、混合を行う。混合が不十分であると、焼結体に各成分が偏析し、高抵抗率領域と低抵抗率領域が存在してしまう。特に、高抵抗率領域で、スパッタ成膜時に帯電によるアーキング(異常放電)が発生するため、これを解消するために十分な混合が必要である。  Next, these raw material powders are weighed to a predetermined concentration ratio and mixed. If the mixing is insufficient, each component segregates in the sintered body, and a high resistivity region and a low resistivity region exist. In particular, since arcing (abnormal discharge) due to charging occurs during sputtering film formation in a high resistivity region, sufficient mixing is necessary to eliminate this.

例えば、スーパーミキサーで大気中、回転数2000〜4000rpm、回転時間3〜5分混合することができる。原料紛は酸化物であるために雰囲気ガスは、特に原料の酸化を防止する必要がないので、アルゴン等の高価なガスを使用する必要はなく、大気中でも特に問題はない。
混合方法としては、他にボールミルによる長時間混合の方法を用いることができる。また、その他の方法でも原料の均一混合という目的を達成することができるものであれば、どのような方法を用いて特に問題はない。
For example, it can be mixed in the atmosphere with a super mixer at a rotation speed of 2000 to 4000 rpm and a rotation time of 3 to 5 minutes. Since the raw material powder is an oxide, the atmosphere gas does not need to prevent oxidation of the raw material in particular, so there is no need to use an expensive gas such as argon, and there is no particular problem even in the atmosphere.
As a mixing method, a long-time mixing method using a ball mill can be used. Further, any other method can be used as long as the purpose of uniform mixing of raw materials can be achieved, and there is no particular problem using any method.

次に、微粉砕を行う。ここで、微粉砕前に仮焼工程を入れても良く、仮焼をすることで焼結密度を向上させることができる。
微粉砕は、原料紛の各組成を焼結体中で均一に分散させるためである。十分に微粉砕が行われないと、粒径の大きい原料粉が存在して、場所により組成ムラが生じることになり、スパッタ成膜時の異常放電の原因となる。
具体的には、仮焼粉をアトライターにジルコニアビーズと共に投入し、回転数200〜400rpm、回転時間2〜4時間微粉砕を行うことができる。微粉砕は、原料紛の粒径が平均粒径(D50)で1μm以下、好ましくは0.6μm以下となるまで行うことが望ましい。
Next, pulverization is performed. Here, a calcining step may be performed before fine pulverization, and the sintering density can be improved by calcining.
The fine pulverization is to uniformly disperse each composition of the raw material powder in the sintered body. If fine pulverization is not performed sufficiently, raw material powder having a large particle size is present, resulting in uneven composition depending on the location, which causes abnormal discharge during sputtering film formation.
Specifically, the calcined powder can be put into an attritor together with zirconia beads and finely pulverized at a rotation speed of 200 to 400 rpm and a rotation time of 2 to 4 hours. The pulverization is desirably performed until the particle size of the raw material powder is 1 μm or less, preferably 0.6 μm or less in terms of the average particle size (D50).

次に、造粒を行う。これにより、原料紛の流動性を良くして、プレス成型時の充填状況を良好なものにすることができる。微粉砕した原料を固形分40〜60%のスラリーとなるように水分量を調整して造粒を行う。この際、入口温度は180〜220℃、出口温度は110〜130℃に設定することが好ましい。  Next, granulation is performed. Thereby, the fluidity | liquidity of a raw material powder can be improved and the filling condition at the time of press molding can be made favorable. Granulation is performed by adjusting the amount of moisture so that the finely pulverized raw material becomes a slurry having a solid content of 40 to 60%. At this time, it is preferable to set the inlet temperature to 180 to 220 ° C and the outlet temperature to 110 to 130 ° C.

その後、プレス成型を行う。造粒粉を400〜800kgf/cmの面圧、1〜3分保持の条件でプレス成形することができる。面圧力400kgf/cm未満とすると、高密度の成形体を得ることができないからである。一方、面圧力800kgf/cm超にしても、更なる高密度は得られず、無駄なエネルギーやコストを要するので、生産上好ましくない。 Thereafter, press molding is performed. The granulated powder can be press-molded under conditions of a surface pressure of 400 to 800 kgf / cm 2 and a hold of 1 to 3 minutes. This is because if the surface pressure is less than 400 kgf / cm 2 , a high-density molded body cannot be obtained. On the other hand, even if the surface pressure exceeds 800 kgf / cm 2 , further high density cannot be obtained, and wasteful energy and cost are required, which is not preferable for production.

次に、静水圧加圧装置(CIP)で1700〜1900kgf/cmの面圧、1〜3分保持の条件で成形し、その後、電気炉にて酸素雰囲気中、1400〜1600℃で10〜30時間保持することで焼結を行う。これによって、酸化物焼結体を作製することができる。 Next, it shape | molds on the conditions of 1700-1900kgf / cm < 2 > surface pressure and 1-3 minutes holding | maintenance with a hydrostatic pressure pressurization apparatus (CIP), Then, it is 10 to 1600-1600 degreeC in oxygen atmosphere in an electric furnace. Sintering is performed by holding for 30 hours. Thereby, an oxide sintered body can be produced.

焼結体の密度は、アルキメデス法で測定後、理論密度で除することによって、相対密度を求めることができる。また、焼結体のバルク抵抗は4端子法で測定することができる。  The density of the sintered body can be obtained by dividing the theoretical density after measuring by the Archimedes method. Moreover, the bulk resistance of the sintered body can be measured by a four-terminal method.

次に、得られた焼結体は、研削等により所定形状のスパッタリングターゲットに加工することができる。そして、これをアルゴン雰囲気中、0.5Paの圧力下、特にガラス基板を加熱せずに、スパッタリングにより成膜して非晶質の透明導電膜を得ることができる。   Next, the obtained sintered body can be processed into a sputtering target having a predetermined shape by grinding or the like. And this can be formed into a film by sputtering in argon atmosphere under the pressure of 0.5 Pa, without heating especially a glass substrate, and an amorphous transparent conductive film can be obtained.

この非晶質導電膜を、窒素雰囲気中で、200〜300℃で約1時間アニールすることができる。非晶質の透明導電膜が結晶化して、結晶質の透明導電膜を得ることができるからである。   This amorphous conductive film can be annealed at 200 to 300 ° C. for about 1 hour in a nitrogen atmosphere. This is because an amorphous transparent conductive film can be crystallized to obtain a crystalline transparent conductive film.

膜の抵抗率や移動度はホール測定で求めることができる。また、透過率は分光透過率計で測定することができる。膜の結晶化温度は、膜を窒素雰囲気中で150℃から5℃間隔で、1時間保持後に取り出して、膜のXRD回折ピークの有無と膜の抵抗率の減少の様子から決定することができ、XRD回折ピークが現れて、抵抗率が急減する温度が結晶化温度とした。
アニール後の抵抗率や移動度の測定は、上記のように決定した結晶化温度より30℃高い温度で、窒素雰囲気中1時間アニールした後の膜に対して、ホール測定をして求めた。
The resistivity and mobility of the film can be obtained by Hall measurement. The transmittance can be measured with a spectral transmittance meter. The crystallization temperature of the film can be determined from the presence or absence of the XRD diffraction peak of the film and the state of decrease in the film resistivity after the film is taken out in a nitrogen atmosphere at intervals of 150 ° C. to 5 ° C. for 1 hour. The temperature at which the XRD diffraction peak appeared and the resistivity decreased rapidly was defined as the crystallization temperature.
The resistivity and mobility after annealing were determined by measuring holes on the film after annealing for 1 hour in a nitrogen atmosphere at a temperature 30 ° C. higher than the crystallization temperature determined as described above.

(実施例1)
平均粒径が約2.0μmの酸化インジウム(In)原料粉及び酸化ジルコニウム(ZrO)原料粉を、ジルコニウムの原子濃度の、インジウムの原子濃度とジルコニウムの原子濃度の総和に対する比率が、1%となるように秤量した後、スーパーミキサーで、大気中、回転数3000rpm、回転時間3分間混合した。その後、アトライターにこの混合粉をジルコニアビーズと共に投入し、回転数300rpm、回転時間3時間微粉砕を行い、平均粒径(D50)を0.8μmとした。
微粉砕した原料を固形分50%のスラリーとなるように水分量を調整し、入口温度を200℃、出口温度を120℃に設定して造粒を行った。さらに、この造粒粉を600kgf/cmの面圧、1分保持の条件でプレス成形した後、静水圧加圧装置(CIP)で1800kgf/cmの面圧、1分保持の条件で成形した。
その後、この成形品を電気炉において酸素雰囲気中、1550℃、20時間保持することで焼結を行った。得られた焼結体の相対密度は99.3%、バルク抵抗は0.47mΩ・cmであった。
(Example 1)
An indium oxide (In 2 O 3 ) raw material powder and an zirconium oxide (ZrO 2 ) raw material powder having an average particle diameter of about 2.0 μm have a ratio of the atomic concentration of zirconium to the sum of the atomic concentration of indium and zirconium. After weighing to 1%, the mixture was mixed with the super mixer in the air at a rotation speed of 3000 rpm and a rotation time of 3 minutes. Thereafter, this mixed powder was put into an attritor together with zirconia beads, and finely pulverized with a rotation speed of 300 rpm and a rotation time of 3 hours, so that the average particle diameter (D50) was 0.8 μm.
The amount of water was adjusted so that the finely pulverized raw material became a slurry with a solid content of 50%, and granulation was carried out by setting the inlet temperature to 200 ° C and the outlet temperature to 120 ° C. Further, molding the granulated powder 600 kgf / cm 2 of surface pressure, after press-molded under the conditions of 1 minute hold, hydrostatically pressure device (CIP) 1800kgf / cm 2 of surface pressure, under conditions of 1 minute hold did.
Then, this molded product was sintered by holding it in an oxygen furnace in an oxygen atmosphere at 1550 ° C. for 20 hours. The relative density of the obtained sintered body was 99.3%, and the bulk resistance was 0.47 mΩ · cm.

この焼結体を直径6インチ、厚さ6mmの円板状に研削等してスパッタリングターゲットに加工した。このターゲットをスパッタ装置内にセットして、アルゴン雰囲気中、0.5Paの圧力下、無加熱のガラス基板上にスパッタリングにより成膜することで非晶質の透明導電膜を得た。
この膜のホール測定を行ったところ、抵抗率は0.765mΩ・cm、移動度は15.2cm/V・sであり、XRD回折ピークが認められなかったことから、膜は非晶質であることを確認した。またこの時、膜の透過率は波長1200nmに対して、86.7%であった。
This sintered body was processed into a sputtering target by grinding or the like into a disk shape having a diameter of 6 inches and a thickness of 6 mm. This target was set in a sputtering apparatus, and an amorphous transparent conductive film was obtained by sputtering on an unheated glass substrate in an argon atmosphere under a pressure of 0.5 Pa.
When the hole measurement of this film was performed, the resistivity was 0.765 mΩ · cm, the mobility was 15.2 cm 2 / V · s, and no XRD diffraction peak was observed, so the film was amorphous. I confirmed that there was. At this time, the transmittance of the film was 86.7% with respect to a wavelength of 1200 nm.

得られた非晶質の透明導電膜を窒素雰囲気中、1時間アニールして、膜のホール測定及びXRD回折測定を行ったところ、加熱温度が155℃の時に膜の抵抗率の急減少とXRD回折ピークの出現が認められたため、この膜の結晶化温度は155℃と認定した。   The obtained amorphous transparent conductive film was annealed in a nitrogen atmosphere for 1 hour, and the hole measurement and XRD diffraction measurement of the film were performed. When the heating temperature was 155 ° C., the resistivity of the film decreased rapidly and XRD Since the appearance of a diffraction peak was observed, the crystallization temperature of this film was certified as 155 ° C.

その後、この結晶化温度より30℃高い温度である185℃でアニールした後、膜のホール測定をしたところ、抵抗率は0.395mΩ・cm、移動度は68.5cm/V・sであり、波長1200nmでの透過率は92.1%であった。 Then, after annealing at 185 ° C., which is 30 ° C. higher than the crystallization temperature, the hole measurement of the film showed that the resistivity was 0.395 mΩ · cm and the mobility was 68.5 cm 2 / V · s. The transmittance at a wavelength of 1200 nm was 92.1%.

(実施例2〜4、比較例1〜2)
焼結体の製造方法及び透明導電膜の製造方法は、実施例1と同様とし、ジルコニウムの原子濃度の比率のみを変化させた。その結果を表1に示す。この結果から、ジルコニウムの原子濃度の比率が0.5〜4%の範囲外になると、スパッタリングにより成膜後及びアニール後の膜の抵抗率が高く、移動度が低くなるため、透明導電膜の性質として好ましくないことが分かる。また、スズの添加がない場合でも、相対密度が99.3%以上、さらには、99.5%以上と、高密度であることが分かる。
(Examples 2-4, Comparative Examples 1-2)
The method for manufacturing the sintered body and the method for manufacturing the transparent conductive film were the same as in Example 1, and only the atomic concentration ratio of zirconium was changed. The results are shown in Table 1. From this result, when the ratio of the atomic concentration of zirconium is outside the range of 0.5 to 4%, the resistivity of the film after film formation and annealing after sputtering is high, and the mobility is low. It turns out that it is not preferable as a property. In addition, even when no tin is added, the relative density is 99.3% or higher, and further 99.5% or higher, indicating that the density is high.

(実施例5〜8、比較例3)
焼結体の製造方法及び透明導電膜の製造方法は、実施例1と同様とし、ジルコニウムの原子濃度の比率を2%とし、スズの原子濃度の比率のみを変化させた。その結果を表1に示す。この結果から、実施例1のようにスズ濃度がゼロの場合であっても、相対密度が99.3%と比較的高いが、スズをさらに添加することで、相対密度が99.5%以上、さらには、99.7%以上と、より高密度になることが分かる。一方、スズの原子濃度の比率が0.5%以上になる密度の向上は飽和することが分かる。
(Examples 5 to 8, Comparative Example 3)
The manufacturing method of the sintered body and the manufacturing method of the transparent conductive film were the same as those in Example 1, and the atomic concentration ratio of zirconium was set to 2%, and only the atomic concentration ratio of tin was changed. The results are shown in Table 1. From this result, even when the tin concentration is zero as in Example 1, the relative density is relatively high at 99.3%, but the relative density is 99.5% or more by further adding tin. Further, it can be seen that the density becomes higher than 99.7%. On the other hand, it can be seen that the increase in density at which the ratio of the atomic concentration of tin is 0.5% or more is saturated.

(実施例9〜20、参考例4〜6)
焼結体の製造方法及び透明導電膜の製造方法は、実施例1と同様とし、ジルコニウム原子濃度の比率を2%とし、スズの原子濃度の比率を0.12%として、マグネシウムの原子濃度の比率又は及びカルシウムの原子濃度の比率を変化させた。その結果を表1に示す。この結果から、これらの元素を添加することで、結晶化温度を高くすることが可能となることが分かる。一方、これらの元素濃度が2.0%を超えると、結晶化温度が高過ぎて好ましくないことが分かる。
(Examples 9 to 20, Reference Examples 4 to 6 )
The manufacturing method of the sintered body and the manufacturing method of the transparent conductive film are the same as those in Example 1, the ratio of zirconium atomic concentration is 2%, the atomic concentration ratio of tin is 0.12%, and the atomic concentration of magnesium is The ratio or the ratio of the atomic concentration of calcium was varied. The results are shown in Table 1. From this result, it is understood that the crystallization temperature can be increased by adding these elements. On the other hand, when the concentration of these elements exceeds 2.0%, it is understood that the crystallization temperature is too high.

(参考例7)
焼結体の製造方法及び透明導電膜の製造方法は、実施例1と同様とし、ジルコニウムの原子濃度の比率を2%とし、スズの原子濃度の比率を0.12%として、マグネシウム等は添加せず、スパッタ時の雰囲気ガスが酸素1%とした。その結果を表1に示す。この結果から、酸素濃度が高いと、成膜後及び結晶化後の膜の抵抗率が高くなり、移動度が低くなることが分かる。
( Reference Example 7 )
The manufacturing method of the sintered body and the manufacturing method of the transparent conductive film are the same as in Example 1, the atomic concentration ratio of zirconium is 2%, the atomic concentration ratio of tin is 0.12%, and magnesium is added. The atmosphere gas during sputtering was set to 1% oxygen. The results are shown in Table 1. From this result, it can be seen that when the oxygen concentration is high, the resistivity of the film after film formation and after crystallization increases, and the mobility decreases.

(比較例8〜9)
焼結体の製造方法及び透明導電膜の製造方法は、実施例1と同様とし、酸化インジウム原料粉及び酸化スズ原料粉を用いて、酸化スズ原料粉の添加量を、一般的なITOのそれと同程度とした。比較例8は、スパッタ成膜時の酸素濃度を0%とし、比較例9は、スパッタ成膜時の酸素濃度を1%とした。
焼結体や膜特性の結果については、表1に記載の通りである。この結果から、ITOは、本発明と比較して、同等の抵抗率の場合には移動度が小さいために、キャリア濃度が高く、長波長(1200nm)での透過率が低くなり、好ましくないなることが分かる。
(Comparative Examples 8-9)
The manufacturing method of the sintered body and the manufacturing method of the transparent conductive film are the same as those in Example 1. Using the indium oxide raw material powder and the tin oxide raw material powder, the addition amount of the tin oxide raw material powder is the same as that of general ITO. Same level. In Comparative Example 8, the oxygen concentration during sputtering film formation was 0%, and in Comparative Example 9, the oxygen concentration during sputtering film formation was 1%.
The results of the sintered body and film characteristics are as shown in Table 1. From this result, compared with the present invention, ITO has a low mobility in the case of an equivalent resistivity, so that the carrier concentration is high and the transmittance at a long wavelength (1200 nm) is low, which is not preferable. I understand that.

(比較例10〜11)
焼結体の製造方法及び透明導電膜の製造方法は、実施例1と同様とし、焼結温度を1350℃とした。比較例10は、ジルコニウムの原子濃度の比率を2%とし、比較例11は、ジルコニウムの原子濃度の比率を2%、スズの原子濃度の比率を0.12%とした。
焼結体や膜特性の結果については、表1に記載の通りである。この結果から、焼結温度を低くして、相対密度が低く、バルク抵抗が高い焼結体からスパッタ成膜された膜は、抵抗率が高く、長波長(1200nm)での透過率が低くなり、好ましくないことが分かる。
(Comparative Examples 10-11)
The manufacturing method of the sintered body and the manufacturing method of the transparent conductive film were the same as in Example 1, and the sintering temperature was 1350 ° C. In Comparative Example 10, the atomic concentration ratio of zirconium was 2%, and in Comparative Example 11, the atomic concentration ratio of zirconium was 2%, and the atomic concentration ratio of tin was 0.12%.
The results of the sintered body and film properties are as shown in Table 1. From this result, a film formed by sputtering from a sintered body having a low sintering temperature, a low relative density, and a high bulk resistance has a high resistivity and a low transmittance at a long wavelength (1200 nm). It turns out that it is not preferable.

本発明の酸化インジウム焼結体は高密度であることから、スパッタリングターゲットとして使用した場合に、その表面にノジュールが発生することを抑制し、スパッタリング時の異常放電を防止することができる。また、本発明の酸化インジウム焼結体はバルク抵抗率が低いので、スパッタリングによって形成される膜の抵抗率を低くすることができ、透明導電膜形成用として有用である。
さらに、本発明の酸化インジウム透明導電膜は可視光領域及び赤外線領域において透過率が高く、また、電子移動度が高く膜の抵抗率が低いので、太陽電池用透明導電膜として極めて有用である。
Since the indium oxide sintered body of the present invention has a high density, when used as a sputtering target, generation of nodules on its surface can be suppressed, and abnormal discharge during sputtering can be prevented. In addition, since the indium oxide sintered body of the present invention has a low bulk resistivity, the resistivity of a film formed by sputtering can be lowered, which is useful for forming a transparent conductive film.
Furthermore, since the indium oxide transparent conductive film of the present invention has high transmittance in the visible light region and infrared region, and has high electron mobility and low film resistivity, it is extremely useful as a transparent conductive film for solar cells.

Claims (12)

  1. 添加物としてジルコニウムとスズを含有する酸化インジウム焼結体であって、ジルコニウムの原子濃度の、インジウムの原子濃度とジルコニウムの原子濃度の総和に対する比率が0.5〜4%の範囲で、かつスズの原子濃度の、インジウムの原子濃度とジルコニウムの原子濃度とスズの原子濃度の総和に対する比率が0.015〜0.5%の範囲であり、相対密度が99.3%以上、バルク抵抗が0.5mΩ・cm以下であることを特徴とする酸化インジウム焼結体。 An indium oxide sintered body containing zirconium and tin as additives, wherein the ratio of the atomic concentration of zirconium to the sum of the atomic concentration of indium and the atomic concentration of zirconium is in the range of 0.5 to 4% , and tin The ratio of the atomic concentration to the sum of the atomic concentration of indium, the atomic concentration of zirconium and the atomic concentration of tin is in the range of 0.015 to 0.5%, the relative density is 99.3% or more, and the bulk resistance is 0. An indium oxide sintered body characterized by being 5 mΩ · cm or less.
  2. 上記添加物に加えてさらに、マグネシウム及び/又はカルシウムを含有する酸化インジウム焼結体であって、マグネシウムの原子濃度の若しくはカルシウムの原子濃度の又はこれらの原子濃度の総和の、全金属元素の原子濃度の総和に対する比率が0.5〜2.0%の範囲であり、相対密度が99.5%以上であって、バルク抵抗が0.5mΩ・cm以下であることを特徴とする請求項1に記載の酸化インジウム焼結体。 In addition to the above additives, an indium oxide sintered body further containing magnesium and / or calcium, the atomic concentration of all metal elements of the atomic concentration of magnesium or the atomic concentration of calcium or the sum of these atomic concentrations is in the range ratio 0.5 to 2.0% of sum of the concentrations claim 1, the relative density is not more than 99.5%, the bulk resistance is equal to or less than 0.5mΩ · cm The indium oxide sintered body according to 1.
  3. 添加物としてジルコニウムを含有する酸化インジウム透明導電膜であって、ジルコニウムの原子濃度の、インジウムの原子濃度とジルコニウムの原子濃度の総和に対する比率が0.5〜4%の範囲であり、抵抗率が8×10−4Ω・cm以下であり、電子移動度が15cm/V・s以上であり、波長1200nmでの透過率が85%以上であって、非晶質であることを特徴とする酸化インジウム透明導電膜。 An indium oxide transparent conductive film containing zirconium as an additive, wherein the ratio of the atomic concentration of zirconium to the sum of the atomic concentration of indium and the atomic concentration of zirconium is in the range of 0.5 to 4%, and the resistivity is 8 × 10 −4 Ω · cm or less, electron mobility is 15 cm 2 / V · s or more, transmittance at a wavelength of 1200 nm is 85% or more, and is amorphous. Indium oxide transparent conductive film.
  4. 上記添加物に加えて、スズを含有する酸化インジウム透明導電膜であって、スズの原子濃度の、インジウムの原子濃度とジルコニウムの原子濃度とスズの原子濃度の総和に対する比率が0.015〜0.5%の範囲であり、抵抗率が8×10−4Ω・cm以下であり、電子移動度が15cm/V・s以上であり、波長1200nmでの透過率が85%以上であって、非晶質であることを特徴とする請求項3に記載の酸化インジウム透明導電膜。 In addition to the above additives, an indium oxide transparent conductive film containing tin, wherein the ratio of the atomic concentration of tin to the sum of the atomic concentration of indium, the atomic concentration of zirconium and the atomic concentration of tin is 0.015 to 0 The resistivity is 8 × 10 −4 Ω · cm or less, the electron mobility is 15 cm 2 / V · s or more, and the transmittance at a wavelength of 1200 nm is 85% or more. The indium oxide transparent conductive film according to claim 3 , which is amorphous.
  5. 上記添加物に加えてさらに、マグネシウム及び/又はカルシウムを含有する酸化インジウム透明導電膜であって、マグネシウムの原子濃度の若しくはカルシウムの原子濃度の又はこれらの原子濃度の総和の、全金属元素の原子濃度の総和に対する比率が0.5〜2.0%の範囲であり、抵抗率が8×10−4Ω・cm以下であり、電子移動度が15cm/V・s以上であり、波長1200nmでの透過率が85%以上であって、非晶質であることを特徴とする請求項4に記載の酸化インジウム透明導電膜。 In addition to the above additives, an indium oxide transparent conductive film further containing magnesium and / or calcium, the atomic concentration of all metal elements of the atomic concentration of magnesium or the atomic concentration of calcium or the sum of these atomic concentrations The ratio to the total concentration is in the range of 0.5 to 2.0%, the resistivity is 8 × 10 −4 Ω · cm or less, the electron mobility is 15 cm 2 / V · s or more, and the wavelength is 1200 nm. The indium oxide transparent conductive film according to claim 4 , wherein the transmittance is 85% or more and is amorphous.
  6. 結晶化温度が150℃〜260℃の範囲であることを特徴とする請求項3〜5のいずれかに記載の酸化インジウム透明導電膜。 6. The indium oxide transparent conductive film according to claim 3 , wherein the crystallization temperature is in a range of 150 ° C. to 260 ° C. 6.
  7. 添加物としてジルコニウムを含有する酸化インジウム透明導電膜であって、ジルコニウムの原子濃度の、インジウムの原子濃度とジルコニウムの原子濃度の総和に対する比率が0.5〜4%の範囲であり、抵抗率が4×10−4Ω・cm以下であり、電子移動度が50cm/V・s以上であり、波長1200nmでの透過率が90%以上であって、結晶質であることを特徴とする酸化インジウム透明導電膜。 An indium oxide transparent conductive film containing zirconium as an additive, wherein the ratio of the atomic concentration of zirconium to the sum of the atomic concentration of indium and the atomic concentration of zirconium is in the range of 0.5 to 4%, and the resistivity is 4 × 10 −4 Ω · cm or less, an electron mobility of 50 cm 2 / V · s or more, a transmittance at a wavelength of 1200 nm of 90% or more, and an oxidation characteristic Indium transparent conductive film.
  8. 上記添加物に加えて、スズを含有する酸化インジウム透明導電膜であって、スズの原子濃度の、インジウムの原子濃度とジルコニウムの原子濃度とスズの原子濃度の総和に対する比率が0.015〜0.5%の範囲であり、抵抗率が4×10−4Ω・cm以下であり、電子移動度が50cm/V以上であり、波長1200nmでの透過率が90%以上であって、結晶質であることを特徴とする請求項7に記載の酸化インジウム透明導電膜。 In addition to the above additives, an indium oxide transparent conductive film containing tin, wherein the ratio of the atomic concentration of tin to the sum of the atomic concentration of indium, the atomic concentration of zirconium and the atomic concentration of tin is 0.015 to 0 0.5% range, resistivity is 4 × 10 −4 Ω · cm or less, electron mobility is 50 cm 2 / V or more, and transmittance at a wavelength of 1200 nm is 90% or more, The indium oxide transparent conductive film according to claim 7 , wherein the transparent conductive film is in quality.
  9. 上記添加物に加えてさらに、マグネシウム及び/又はカルシウムを含有する酸化インジウム透明導電膜であって、マグネシウムの原子濃度の若しくはカルシウムの原子濃度の又はこれらの原子濃度の総和の、全金属元素の原子濃度に対する比率が0.5〜2.0%の範囲であり、抵抗率が4×10−4Ω・cm以下であり、電子移動度が50cm/V・s以上であり、波長1200nmでの透過率が90%以上であって、結晶質であることを特徴とする請求項8に記載の酸化インジウム透明導電膜。 In addition to the above additives, an indium oxide transparent conductive film further containing magnesium and / or calcium, the atomic concentration of all metal elements of the atomic concentration of magnesium or the atomic concentration of calcium or the sum of these atomic concentrations The ratio to the concentration is in the range of 0.5 to 2.0%, the resistivity is 4 × 10 −4 Ω · cm or less, the electron mobility is 50 cm 2 / V · s or more, and the wavelength is 1200 nm. The indium oxide transparent conductive film according to claim 8 , wherein the transmittance is 90% or more and is crystalline.
  10. スパッタリングにより酸化インジウム透明導電膜を製造する方法において、アルゴンと酸素からなり、酸素濃度が1%未満である混合ガス雰囲気中、基板を無加熱又は150℃以下に保持して、請求項1又は2に記載の酸化物焼結体をスパッタリングにより基板上に非晶質の膜を成膜することを特徴とする酸化インジウム透明導電膜の製造方法。 A method for producing an indium oxide transparent conductive film by sputtering, consists of argon and oxygen, a mixed gas atmosphere of oxygen concentration is less than 1%, while holding the substrate below without heating or 0.99 ° C., according to claim 1 or 2 A method for producing an indium oxide transparent conductive film, comprising forming an amorphous film on a substrate by sputtering the oxide sintered body described in 1.
  11. スパッタリングにより酸化インジウム透明導電膜を製造する方法において、アルゴンと酸素からなり、酸素濃度が1%未満である混合ガス雰囲気中、基板を無加熱又は150℃以下に保持して、請求項1又は2に記載の酸化物焼結体をスパッタリングにより基板上に非晶質の膜を成膜し、その膜をエッチングして回路パターンを形成した後、結晶化温度以上の温度でアニールすることによって、膜を結晶化させることを特徴とする酸化インジウム透明導電膜の製造方法。 A method for producing an indium oxide transparent conductive film by sputtering, consists of argon and oxygen, a mixed gas atmosphere of oxygen concentration is less than 1%, while holding the substrate below without heating or 0.99 ° C., according to claim 1 or 2 A film is formed by forming an amorphous film on the substrate by sputtering and forming a circuit pattern by sputtering the oxide sintered body described in 1. and then annealing at a temperature equal to or higher than the crystallization temperature. A method for producing an indium oxide transparent conductive film, characterized by crystallizing the film.
  12. スパッタリングにより酸化インジウム透明導電膜を製造する方法において、アルゴンと酸素からなり、酸素濃度が1%未満である混合ガス雰囲気中、基板を結晶化温度以上の温度に保持して、請求項1又は2に記載の酸化物焼結体をスパッタリングにより基板上に結晶化した膜を成膜することを特徴とする酸化インジウム透明導電膜の製造方法。 A method for producing an indium oxide transparent conductive film by sputtering, consists of argon and oxygen, a mixed gas atmosphere of oxygen concentration is less than 1%, while holding the substrate to the crystallization temperature or higher, according to claim 1 or 2 A method for producing an indium oxide transparent conductive film, comprising forming a film obtained by crystallizing the oxide sintered body according to item 1 on a substrate by sputtering.
JP2011510761A 2009-10-06 2010-09-30 Indium oxide sintered body, indium oxide transparent conductive film, and method for producing the transparent conductive film Active JP5349587B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009232466 2009-10-06
JP2009232466 2009-10-06
PCT/JP2010/067019 WO2011043235A1 (ja) 2009-10-06 2010-09-30 酸化インジウム焼結体、酸化インジウム透明導電膜及び該透明導電膜の製造方法
JP2011510761A JP5349587B2 (ja) 2009-10-06 2010-09-30 Indium oxide sintered body, indium oxide transparent conductive film, and method for producing the transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011510761A JP5349587B2 (ja) 2009-10-06 2010-09-30 Indium oxide sintered body, indium oxide transparent conductive film, and method for producing the transparent conductive film

Publications (2)

Publication Number Publication Date
JPWO2011043235A1 JPWO2011043235A1 (ja) 2013-03-04
JP5349587B2 true JP5349587B2 (ja) 2013-11-20

Family

ID=43856693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011510761A Active JP5349587B2 (ja) 2009-10-06 2010-09-30 Indium oxide sintered body, indium oxide transparent conductive film, and method for producing the transparent conductive film

Country Status (7)

Country Link
US (3) US8771557B2 (ja)
EP (1) EP2428500B1 (ja)
JP (1) JP5349587B2 (ja)
KR (1) KR101274279B1 (ja)
CN (2) CN105439541B (ja)
TW (1) TWI488826B (ja)
WO (1) WO2011043235A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885274B2 (ja) * 2007-06-26 2012-02-29 Jx日鉱日石金属株式会社 Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film
US8277694B2 (en) * 2007-07-13 2012-10-02 Jx Nippon Mining & Metals Corporation Sintered compact of composite oxide, amorphous film of composite oxide, process for producing said film, crystalline film of composite oxide and process for producing said film
JP5061802B2 (ja) * 2007-09-06 2012-10-31 三菱マテリアル株式会社 耐割れ性に優れたZrO2−In2O3系光記録媒体保護膜形成用スパッタリングターゲット
JP5411945B2 (ja) 2009-10-26 2014-02-12 Jx日鉱日石金属株式会社 Indium oxide-based sintered body and indium oxide-based transparent conductive film
WO2013084795A1 (ja) * 2011-12-07 2013-06-13 東ソー株式会社 複合酸化物焼結体、スパッタリングターゲット、並びに酸化物透明導電膜及びその製造方法
JP5942414B2 (ja) * 2011-12-21 2016-06-29 東ソー株式会社 複合酸化物焼結体、ターゲット、酸化物透明導電膜及びその製法
JP6229366B2 (ja) * 2012-08-08 2017-11-15 東ソー株式会社 複合酸化物焼結体及び酸化物透明導電膜
WO2015004958A1 (ja) * 2013-07-08 2015-01-15 Jx日鉱日石金属株式会社 スパッタリングターゲット及び、それの製造方法
JP6287327B2 (ja) * 2014-02-26 2018-03-07 東ソー株式会社 酸化物焼結体及び酸化物透明導電膜
WO2017057556A1 (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 光透過性導電フィルム、及び、アニール処理された光透過性導電フィルムの製造方法
KR101945145B1 (ko) * 2016-03-14 2019-02-01 제이엑스금속주식회사 산화물 소결체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570942A (ja) * 1991-09-11 1993-03-23 Mitsubishi Materials Corp スパツタリングによる透明導電性薄膜形成用高密度焼結ターゲツト材
JP2003105532A (ja) * 2001-06-26 2003-04-09 Mitsui Mining & Smelting Co Ltd 高抵抗透明導電膜用スパッタリングターゲット及び高抵抗透明導電膜の製造方法
JP2007273455A (ja) * 2006-03-09 2007-10-18 National Institute Of Advanced Industrial & Technology 酸化膜透明導電膜およびそれを用いた透明導電性基材、薄膜トランジスタ基板、光電変換素子、光検出素子
JP2007294447A (ja) * 2006-03-31 2007-11-08 Mitsui Mining & Smelting Co Ltd 酸化インジウム系透明導電膜及びその製造方法
WO2008146693A1 (ja) * 2007-05-23 2008-12-04 National Institute Of Advanced Industrial Science And Technology 酸化物透明導電膜、およびそれを用いた光電変換素子、光検出素子

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160876B2 (ja) 1978-06-13 1986-12-23 Kuraray Co
JPH06160876A (ja) 1992-11-24 1994-06-07 Toppan Printing Co Ltd Transparent electrode plate and manufacturing method thereof
JP2896278B2 (ja) * 1992-12-17 1999-05-31 株式会社東芝 透明導電膜およびその透明導電膜をスパッタリングするためのターゲット
JP2002226966A (ja) 2001-02-01 2002-08-14 Nikko Materials Co Ltd 透明電極膜及び同電極膜を形成するためのスパッタリングターゲット
JP4794757B2 (ja) 2001-06-18 2011-10-19 Jx日鉱日石金属株式会社 透明電極膜を形成するためのスパッタリングターゲット
TW570909B (en) * 2001-06-26 2004-01-11 Mitsui Mining & Smelting Co Sputtering target for forming transparent conductive film of high electric resistance and method for producing transparent conductive film of high electric resistance
US20040180217A1 (en) 2001-08-02 2004-09-16 Kazuyoshi Inoue Sputtering target, transparent conductive film, and their manufacturing method
JP4234483B2 (ja) * 2003-04-21 2009-03-04 日鉱金属株式会社 ITO sputtering target, manufacturing method thereof, and ITO transparent conductive film
JP4488184B2 (ja) * 2004-04-21 2010-06-23 出光興産株式会社 酸化インジウム−酸化亜鉛−酸化マグネシウム系スパッタリングターゲット及び透明導電膜
JP4855964B2 (ja) 2007-02-09 2012-01-18 株式会社アルバック ITO sintered body, ITO sputtering target and manufacturing method thereof
US8277694B2 (en) 2007-07-13 2012-10-02 Jx Nippon Mining & Metals Corporation Sintered compact of composite oxide, amorphous film of composite oxide, process for producing said film, crystalline film of composite oxide and process for producing said film
KR101349676B1 (ko) * 2008-02-26 2014-01-10 삼성코닝정밀소재 주식회사 산화인듐아연계 스퍼터링 타겟 및 그 제조 방법
JP5411945B2 (ja) 2009-10-26 2014-02-12 Jx日鉱日石金属株式会社 Indium oxide-based sintered body and indium oxide-based transparent conductive film
JP2014148752A (ja) * 2014-02-25 2014-08-21 Jx Nippon Mining & Metals Corp 透明電極膜及び透明電極膜の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570942A (ja) * 1991-09-11 1993-03-23 Mitsubishi Materials Corp スパツタリングによる透明導電性薄膜形成用高密度焼結ターゲツト材
JP2003105532A (ja) * 2001-06-26 2003-04-09 Mitsui Mining & Smelting Co Ltd 高抵抗透明導電膜用スパッタリングターゲット及び高抵抗透明導電膜の製造方法
JP2007273455A (ja) * 2006-03-09 2007-10-18 National Institute Of Advanced Industrial & Technology 酸化膜透明導電膜およびそれを用いた透明導電性基材、薄膜トランジスタ基板、光電変換素子、光検出素子
JP2007294447A (ja) * 2006-03-31 2007-11-08 Mitsui Mining & Smelting Co Ltd 酸化インジウム系透明導電膜及びその製造方法
WO2008146693A1 (ja) * 2007-05-23 2008-12-04 National Institute Of Advanced Industrial Science And Technology 酸化物透明導電膜、およびそれを用いた光電変換素子、光検出素子

Also Published As

Publication number Publication date
CN102471160A (zh) 2012-05-23
EP2428500A1 (en) 2012-03-14
CN105439541A (zh) 2016-03-30
TW201113234A (en) 2011-04-16
CN105439541B (zh) 2018-09-14
US10037830B2 (en) 2018-07-31
CN102471160B (zh) 2016-05-18
US8771557B2 (en) 2014-07-08
US20120043509A1 (en) 2012-02-23
EP2428500B1 (en) 2018-02-28
JPWO2011043235A1 (ja) 2013-03-04
US9589695B2 (en) 2017-03-07
WO2011043235A1 (ja) 2011-04-14
KR101274279B1 (ko) 2013-06-13
US20140264197A1 (en) 2014-09-18
EP2428500A4 (en) 2013-01-23
TWI488826B (zh) 2015-06-21
KR20110127221A (ko) 2011-11-24
US20170133116A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
US9202603B2 (en) Sputtering target, transparent conductive film and transparent electrode
JP4850378B2 (ja) Sputtering target, transparent conductive oxide, and method for producing sputtering target
US9721770B2 (en) Oxide sintered body, production method therefor, target, and transparent conductive film
EP2278041B1 (en) Sputtering target and transparent conductive film obtainable by the target
KR101228160B1 (ko) a-IGZO 산화물 박막의 제조 방법
JP5188182B2 (ja) スパッタリングターゲット、透明導電膜及びタッチパネル用透明電極
JP5358891B2 (ja) 酸化亜鉛焼結体の製造方法
JP3746094B2 (ja) ターゲットおよびその製造方法
EP1408137B1 (en) Sputtering target for the deposition of a transparent conductive film
KR100957733B1 (ko) 산화갈륨-산화아연계 스퍼터링 타겟, 투명 도전막의 형성방법 및 투명 도전막
JP4098345B2 (ja) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
US8636927B2 (en) ZnO deposition material and ZnO film formed of the same
WO2009148154A1 (ja) 酸化物薄膜用スパッタリングターゲットおよびその製造法
JP4760154B2 (ja) 酸化物焼結体、酸化物透明導電膜、およびこれらの製造方法
US8728358B2 (en) Sintered compact, amorphous film and crystalline film of composite oxide, and process for producing the films
TWI433823B (zh) 複合氧化物燒結體、複合氧化物燒結體之製造方法、濺鍍靶材及薄膜之製造方法
JP5024226B2 (ja) 酸化物焼結体およびその製造方法、スパッタリングターゲット、半導体薄膜
TWI480255B (zh) Oxide sintered body and sputtering target
KR20110083601A (ko) 산화물 소결체 및 스퍼터링 타겟
JP2010024087A (ja) 酸化物焼結体の製造方法、酸化物焼結体、スパッタリングタ−ゲット、酸化物薄膜、薄膜トランジスタの製造方法及び半導体装置
US10144674B2 (en) Process for preparing ceramics, ceramics thus obtained and uses thereof, especially as a sputtering target
KR101762043B1 (ko) 산화물 소결체 및 스퍼터링 타깃
US9834838B2 (en) Zn—Sn—O based oxide sintered body and method for producing the same
WO2012017659A1 (ja) スパッタリングターゲットの製造方法およびスパッタリングターゲット
JP4926977B2 (ja) Gallium oxide-zinc oxide sintered sputtering target

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Ref document number: 5349587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531