WO2018135472A1 - ゼオライト膜および分離膜 - Google Patents

ゼオライト膜および分離膜 Download PDF

Info

Publication number
WO2018135472A1
WO2018135472A1 PCT/JP2018/000966 JP2018000966W WO2018135472A1 WO 2018135472 A1 WO2018135472 A1 WO 2018135472A1 JP 2018000966 W JP2018000966 W JP 2018000966W WO 2018135472 A1 WO2018135472 A1 WO 2018135472A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffraction
plane
intensity
zeolite
peak
Prior art date
Application number
PCT/JP2018/000966
Other languages
English (en)
French (fr)
Inventor
石川 真二
博匡 俵山
拓也 奥野
崇広 斎藤
靖則 近江
恭平 上野
Original Assignee
住友電気工業株式会社
国立大学法人岐阜大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 国立大学法人岐阜大学 filed Critical 住友電気工業株式会社
Priority to US16/479,036 priority Critical patent/US20190366276A1/en
Priority to JP2018563329A priority patent/JPWO2018135472A1/ja
Priority to CN201880007165.8A priority patent/CN110198916A/zh
Publication of WO2018135472A1 publication Critical patent/WO2018135472A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21827Salts
    • B01D2323/21828Ammonium Salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/52Crystallinity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • the present invention relates to a separation membrane in which a zeolite membrane is formed on a zeolite membrane and an inorganic oxide porous substrate.
  • Patent Document 1 discloses a method of obtaining a separation membrane by treating a membrane-like material containing a zeolite seed crystal, an organic structure-directing agent, and silica with water vapor to form an MFI-type zeolite membrane.
  • the scattering intensity derived from the 020 plane / the scattering intensity derived from the 101 plane is greater than 3.3, and the scattering intensity derived from the 020 plane / the scattering intensity derived from the 002 plane or the 102 plane is 4.
  • a zeolite membrane greater than 4 is disclosed.
  • the scattering intensity derived from the 002 plane / the scattering intensity derived from the 020 plane is 2 or more
  • the scattering intensity derived from the 002 plane / the scattering intensity derived from the 101 plane is 0.5 to 1.5
  • Zeolite membranes having a scattering intensity derived from the plane / scattering intensity derived from the 501 plane of 1.5 or more and a scattering intensity derived from the 303 plane / scattering intensity derived from the 501 plane of 2 or more are disclosed.
  • the zeolite membrane according to one embodiment of the present invention is An MFI type zeolite membrane formed on an inorganic oxide porous substrate, In a diffraction pattern obtained by X-ray diffraction measurement using CuK ⁇ rays as an X-ray source, Based on the intensity of a diffraction peak that appears at a diffraction angle of 7.3 to 8.4 ° and the crystal lattice plane belongs to the 011 and / or 101 plane, The intensity of a diffraction peak that appears at a diffraction angle of 8.4 to 9.0 ° and that has a crystal lattice plane belonging to the 200 and / or 020 plane is 0.3 or more.
  • the separation membrane according to one embodiment of the present invention includes:
  • the zeolite membrane according to one embodiment of the present invention is provided on an inorganic oxide porous substrate made of an amorphous material containing 90% by mass or more of SiO 2 .
  • FIG. 3 is a diagram showing XRD patterns of films synthesized with different amounts of water added in Example 1.
  • FIG. 4 is a diagram showing the crystallinity of a film synthesized with different water addition amounts in Example 1.
  • 2 is a diagram showing SEM images of films synthesized with different amounts of water added in Example 1.
  • FIG. 6 is a diagram showing XRD patterns of films synthesized at different synthesis times in Example 2.
  • FIG. 6 is a diagram showing the crystallinity of a film synthesized with different synthesis times in Example 2.
  • FIG. 4 is a SEM image (No.
  • FIG. 4 is a SEM image (No. 2) of a film synthesized by different synthesis times in Example 2.
  • FIG. 6 is a diagram showing the relationship between the flow rate and the separation factor ⁇ with respect to the synthesis time in Example 2.
  • 4 is a diagram showing XRD patterns of films synthesized with different TPAOH concentrations in Example 3.
  • FIG. 4 is an electron micrograph showing the structure of the surface of the separation membrane of Example 4-1. 4 is an electron micrograph showing the structure of a cross section perpendicular to the longitudinal direction of the separation membrane of Example 4-1.
  • 4 is an electron micrograph showing the structure of the surface of a separation membrane in Example 5-4.
  • 4 is an electron micrograph showing the structure of a cross section perpendicular to the longitudinal direction of the separation membrane of Example 5-4.
  • 4 is an electron micrograph showing the structure of a cross section perpendicular to the longitudinal direction of the separation membrane of Example 8-1.
  • 4 is a graph showing the results of X-ray diffraction measurement of the surfaces of separation membranes of Example 4-1 and Example 5-4.
  • 6 is a graph showing the results of X-ray diffraction measurement of the surface of the separation membrane in Example 8-1.
  • the zeolite component is supplied from the solution side, and the zeolite crystal grows from the surface using the seed crystal as a nucleus, so that an oriented crystal film grows.
  • the separation factor is lowered due to leakage at the particle interface, so that it is necessary to increase the film thickness in order to increase the separation factor.
  • the permeation flux decreases. For this reason, a membrane structure with improved permeation flux and separation ratio is desired.
  • An object of the present invention is to provide a zeolite membrane and a separation membrane that are excellent in separation performance and have a large permeation flux even when the film thickness is small.
  • the zeolite membrane according to the embodiment of the present invention is (1) An MFI type zeolite membrane formed on an inorganic oxide porous substrate, In a diffraction pattern obtained by X-ray diffraction measurement using CuK ⁇ rays as an X-ray source, Based on the intensity of a diffraction peak that appears at a diffraction angle of 7.3 to 8.4 ° and the crystal lattice plane belongs to the 011 and / or 101 plane, The intensity of a diffraction peak that appears at a diffraction angle of 8.4 to 9.0 ° and that has a crystal lattice plane belonging to the 200 and / or 020 plane is 0.3 or more. According to this configuration, it is possible to provide a zeolite membrane excellent in permeation flow rate and separation ability even when the film thickness is thin.
  • the zeolite membrane of (1) above is In the diffraction pattern, Based on the intensity of a diffraction peak that appears at a diffraction angle of 7.3 to 8.4 ° and the crystal lattice plane belongs to the 011 and / or 101 plane, The intensity of a diffraction peak that appears at a diffraction angle of 8.4 to 9.0 ° and that has a crystal lattice plane belonging to the 200 and / or 020 plane may be 0.4 or more.
  • the zeolite membrane of (1) above is In the diffraction pattern, Based on the intensity of a diffraction peak that appears at a diffraction angle of 7.3 to 8.4 ° and the crystal lattice plane belongs to the 011 and / or 101 plane, The intensity of a diffraction peak that appears at a diffraction angle of 22.7 to 23.5 ° and that belongs to the crystal lattice plane 501 and / or 051 may be 0.5 or more.
  • the zeolite membrane of (3) above is In the diffraction pattern, Based on the intensity of a diffraction peak that appears at a diffraction angle of 7.3 to 8.4 ° and the crystal lattice plane belongs to the 011 and / or 101 plane, The intensity of a diffraction peak that appears at a diffraction angle of 22.7 to 23.5 ° and that belongs to the crystal lattice plane 501 and / or 051 may be 0.6 or more.
  • the zeolite membrane of (1) or (3) above is In the diffraction pattern, Based on the intensity of a diffraction peak that appears at a diffraction angle of 7.3 to 8.4 ° and the crystal lattice plane belongs to the 011 and / or 101 plane, The intensity of a diffraction peak that appears at a diffraction angle of 12.9 to 13.5 ° and that has a crystal lattice plane attributed to the 002 plane may be 0.25 or less.
  • the zeolite membrane of any of (1), (3) and (5) above is In the diffraction pattern, Based on the intensity of a diffraction peak that appears at a diffraction angle of 7.3 to 8.4 ° and the crystal lattice plane belongs to the 011 and / or 101 plane, The intensity of a diffraction peak which appears at a diffraction angle of 26.8 to 27.2 ° and whose crystal lattice plane belongs to 104 may be 0.2 or less.
  • the separation membrane according to the embodiment of the present invention is (7)
  • the zeolite membrane according to any one of (1) to (6) above is provided on an inorganic oxide porous substrate made of an amorphous material containing 90% by mass or more of SiO 2 .
  • the base material is a high silica base material
  • the hydrophobicity of the membrane can be maintained by suppressing elution of alumina, and excellent separation performance is exhibited.
  • the base material itself is converted into zeolite, the affinity between the membrane and the base material is good, and excellent separation performance is exhibited.
  • the separation membrane of (7) above is
  • the inorganic oxide porous substrate may be made of an amorphous material containing SiO 2 more than 99 wt%. According to this configuration, since the base material is a high silica base material, the hydrophobicity of the membrane can be maintained by further suppressing the elution of alumina, and excellent separation performance is exhibited. Moreover, since the base material itself is converted to zeolite, the affinity between the membrane and the base material is better, and excellent separation performance is exhibited.
  • FIG. 1 shows an embodiment of a separation membrane.
  • FIG. 1 is a longitudinal sectional view of a separation membrane.
  • the separation membrane 20 has a substantially cylindrical shape and has an inorganic oxide porous substrate 21 having a center hole 24.
  • a zeolite membrane 22 is formed on the outer periphery of the porous substrate 21.
  • shape of a separation membrane can also be made into arbitrary shapes, such as planar shape, in order to make the contact area with a fluid wider from the point of separation efficiency, it is set as the tubular shape in this embodiment.
  • the separation membrane 20 can be used for gas separation membranes, vaporization membranes, membrane separation reactors, etc. utilizing the molecular sieving effect and hydrophilicity / hydrophobicity, and particularly preferably used as a separation membrane for ethanol / water separation. be able to.
  • the main component of the portion (surface portion of the substrate) where the zeolite membrane 22 is formed according to the present embodiment is amorphous. Any material may be used as long as it is SiO 2.
  • the base material 21 is preferably made of an amorphous material containing 90% by mass or more of SiO 2 , the base material 21 is more preferably made of an amorphous material containing SiO 2 or more of 99% by mass, It is particularly preferable that the substrate 21 contains Al 2 O 3 at less than 1% by mass.
  • the porosity of the porous substrate 21 is 35 to 70% and the average pore diameter is 250 to 600 nm. Good.
  • the “porosity” can be calculated as the ratio of the pore volume per unit volume.
  • the thickness of the porous base material 21 is not particularly limited, but is preferably 0.2 mm to 5 mm, and preferably 0.5 mm to 3 mm in view of the balance between mechanical strength and gas permeability. Is more preferable.
  • the specific surface area of the zeolite forming portion of the porous substrate 21 may is 5 m 2 / g or more 400 meters 2 / g or less. If the surface area is less than 5 m 2 / g, the amount of the structure-directing agent that can be supported on the particle surface may be insufficient due to the small surface area, and the elution amount of the silica component by the alkali component may be insufficient. There is a risk that it cannot be converted. On the other hand, if the specific surface area is larger than 400 m 2 / g, the amount of the structure-defining material supported may be excessive, and the silica component elutes more than necessary due to the permeation of the alkali component into the substrate. May cause a decrease.
  • the particle diameter is desirably 100 m 2 / g or less at which the diameter of the particle is 50 nm or more.
  • the zeolite membrane 22 formed on the porous substrate 21 obtained by the present embodiment is an MFI type zeolite membrane, which is a dense membrane as compared with a zeolite membrane obtained by a conventional hydrothermal synthesis method. . Therefore, even if the thickness of the zeolite membrane 22 of the present embodiment is thin, it is possible to provide a separation membrane having excellent separation performance and a large permeation flux.
  • the zeolite membrane 22 has a peak appearing at a diffraction angle of 7.3 to 8.4 ° in a diffraction pattern obtained by X-ray diffraction measurement using CuK ⁇ rays as an X-ray source, and the crystal lattice plane is 011 and / or 101.
  • the intensity of a diffraction peak attributed to a diffraction angle of 8.4 to 9.0 °, with the crystal lattice plane attributed to the 200 and / or 020 plane, based on the intensity of the diffraction peak attributed to the plane. Is 0.3 or more, preferably 0.4 or more.
  • the zeolite membrane 22 has a peak appearing at a diffraction angle of 7.3 to 8.4 ° in a diffraction pattern obtained by X-ray diffraction measurement using CuK ⁇ rays as an X-ray source, and the crystal lattice plane is 011 and / or Or a peak appearing at a diffraction angle of 22.7 to 23.5 ° with reference to the intensity of the diffraction peak attributed to the 101 plane, and the diffraction peak attributed to the crystal lattice plane 501 and / or 051 plane
  • the strength is preferably 0.5 or more, more preferably 0.6 or more.
  • the zeolite membrane 22 has a peak appearing at a diffraction angle of 7.3 to 8.4 ° in a diffraction pattern obtained by X-ray diffraction measurement using CuK ⁇ rays as an X-ray source, and the crystal lattice plane is 011 and / or Alternatively, when the intensity of the diffraction peak attributed to the 101 plane is a reference, the peak appears at a diffraction angle of 12.9 to 13.5 ° and the intensity of the diffraction peak attributed to the 002 plane is 0. .25 or less is preferable.
  • the zeolite membrane 22 has a peak appearing at a diffraction angle of 7.3 to 8.4 ° in a diffraction pattern obtained by X-ray diffraction measurement using CuK ⁇ rays as an X-ray source, and the crystal lattice plane is 011 and / or Alternatively, when the intensity of the diffraction peak attributed to the 101 plane is used as a reference, the peak appears at a diffraction angle of 26.8 to 27.2 °, and the intensity of the diffraction peak attributed to the 104 plane of the crystal lattice plane is 0. .2 or less is preferable.
  • X-ray diffraction measurement can be performed using, for example, a BRUKER powder X-ray diffractometer D8 ADVANCE with an acceleration voltage of 40 KV, a current of 40 mA, a light source of CuK ⁇ , and a measurement angle of 5 to 80 °.
  • the thickness of the zeolite membrane 22 is not particularly limited, but is preferably 0.5 ⁇ m to 30 ⁇ m. If the thickness is less than 0.5 ⁇ m, pinholes are likely to be generated in the zeolite membrane 22, and sufficient separation performance may not be obtained. If the thickness exceeds 30 ⁇ m, the fluid permeation rate becomes too small. In some cases, it is difficult to obtain practically sufficient transmission performance.
  • Method for Producing Separation Membrane Separation membrane 20 is a technique such as applying a zeolite seed crystal and an alkali component containing a structure directing agent on the surface of inorganic oxide porous substrate 21 as shown in the flowchart of FIG.
  • the zeolite membrane 22 is formed on the surface of the base material 21 by the first step of forming the formed body in step 1 and the second step of treating the formed body obtained in the first step in a heated steam atmosphere. Manufactured.
  • an alkali component containing a zeolite seed crystal and a structure directing agent is formed on the surface of the inorganic oxide porous substrate 21 by a technique such as coating.
  • Zeolite seed crystals are zeolite particles produced by a conventional method for producing zeolite particles.
  • the particle diameter of the zeolite seed crystal is not particularly limited, but is, for example, 5 ⁇ m or less, preferably 3 ⁇ m or less.
  • the structure directing agent is a type of organic compound that builds the pores of the zeolite, and is a quaternary ammonium salt such as tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrapropylammonium bromide, tetrabutylammonium hydroxide, trimethyladamantanammonium Salt or the like is used.
  • the alkali component represents an alkaline aqueous solution, and is preferably an aqueous solution containing an organic ammonium hydroxide and / or an organic ammonium halide and an alkali metal hydroxide.
  • organic ammonium hydroxide include tetrapropylammonium hydroxide (TPAOH)
  • examples of the organic ammonium halide include tetrapropylammonium bromide (TPABr)
  • examples of the alkali metal hydroxide include water. Examples include sodium oxide or potassium hydroxide.
  • the zeolite membrane is formed only from the silica component and the organic ammonium, so that a separation membrane with very few impurity components can be formed. Impurity elution can be suppressed.
  • the component is more stable than the organic ammonium hydroxide, and the alkali concentration depends on the concentration of the alkali metal hydroxide. Since adjustment is possible, it is possible to construct a process in which the base material is not easily destroyed by excessive alkali.
  • the concentration of the structure directing agent in the alkali component is preferably 0.05 M or more in order to promote crystal growth. Furthermore, the concentration of the structure-directing agent in the alkali component is preferably 0.3 M or less in order to suppress the consumption of the substrate and is preferable.
  • Formation of the zeolite seed crystal on the surface of the inorganic oxide porous substrate 21 can be performed by, for example, a method of immersing the inorganic oxide porous substrate 21 in an aqueous dispersion of the zeolite seed crystal and pulling it up.
  • the alkali component can be applied to the surface of the inorganic porous substrate 21 simultaneously with the seed crystal by adding the alkali component to the aqueous dispersion of the zeolite seed crystal.
  • zeolite seed crystals can also be achieved by preparing a polymer film in which zeolite is dispersed, winding the zeolite dispersed film on the outer surface of the support, and then firing and removing the polymer portion.
  • a polymer film in which the zeolite seed crystals are dispersed is prepared by a casting method.
  • a seed crystal layer can be formed on the surface of the inorganic oxide porous substrate 21 by wrapping and bonding the film on the inorganic oxide porous substrate 21 and then firing in the air at 550 ° C.
  • the zeolite seed crystal may be formed on the inorganic oxide porous substrate 21 by electrophoresis. According to this method, the position and density of the seed crystal are controlled, and the denseness of the zeolite membrane 22 finally obtained can be improved.
  • the porous base material 21 whose top and bottom are sealed is filled with an organic solvent such as acetone, and filled with an organic solvent in which zeolite seed crystals are dispersed outside. This is performed by applying a voltage to the electrode to attach the seed crystal to the surface of the substrate 21. For example, the electrophoresis is performed by applying a voltage of 50 V for 5 minutes. After the seed crystal is attached, the base material 21 is lifted from the solution, dried, and then heat-treated at 300 ° C. for 6 hours to complete the formation of the seed crystal on the base material 21.
  • the upper and lower surfaces of the seed crystal-attached porous substrate are sealed, immersed in a TPAOH aqueous solution and then pulled up, whereby an alkali component can be applied and formed on the surface.
  • the TPAOH aqueous solution is preferably 0.05 M or more and 0.5 M or less, and for example, a 0.1 MTPAOH aqueous solution can be used.
  • the alkali component on the base material 21 is dried, the thickness and concentration unevenness of the alkali component on the base material 21 can be suppressed, which is preferable.
  • Second Step The formed body obtained in the first step is placed in a hydrothermal treatment vessel containing 0.5 to 5% by volume of water per vessel volume, and subjected to heat treatment at 140 ° C. to 180 ° C. for a predetermined time, for example, 24 hours. By doing so, a zeolite membrane can be formed around the seed crystal.
  • the amount of water used for being placed in a hydrothermal treatment vessel to be in a heated water vapor atmosphere is not less than twice the saturated water vapor amount because water vapor can be sufficiently supplied to the film formation region.
  • the saturated water vapor amount (W H2O-S ) is the water vapor mass at the saturated water vapor pressure (Ps) at the heat treatment temperature (T) in the unit volume (1 m 3 ), and the unit is g / m 3 .
  • Ps saturated water vapor pressure
  • T heat treatment temperature
  • the saturated water vapor amount can be obtained by obtaining the saturated water vapor pressure (P (t)) at a predetermined temperature from an approximate expression and converting it to the water vapor amount from the gas equation of state.
  • P (t) saturated water vapor pressure
  • an approximate expression of the saturated water vapor pressure there is a Wagner expression, which is as follows.
  • the treatment in the heated steam atmosphere in the second step is preferably 4 hours or more from the viewpoint of crystal growth. Further, it is more preferably 8 hours or longer because the zeolite crystal structure is stabilized. However, if the treatment time is longer than 36 hours, the crystallinity may deteriorate due to factors such as elution of crystal components, and the production time may increase.
  • the formed body obtained through the first and second steps is dried after washing, and then fired at 350 ° C. to 600 ° C. for a predetermined time, for example, 12 hours, so that the structure-directing agent is removed by combustion to form the separation membrane 20 To do.
  • Porous silica substrate A porous silica tube having an outer diameter of 10 mm, an inner diameter of 8.4 mm, a length of 300 mm, a porosity of 64% and an average pore diameter of 500 nm was prepared by an external CVD method, and the tube cut into a length of 30 mm was made porous. Used as a silica substrate.
  • colloidal silica Cataloid SI-30 (registered trademark) (SiO 2 30.17%, Na 2 O 0.4%, H 2 O 69.43%) manufactured by Catalyst Kasei Kogyo Co., Ltd. was used.
  • High silica zeolite seed crystal 0.5 g was added to 100 mL of acetone solvent and ultrasonically dispersed for 30 minutes.
  • the inside of the porous silica base material whose upper and lower portions are sealed is filled with only acetone solvent, the outer surface is filled with acetone solvent in which high silica zeolite seed crystals are dispersed, and a voltage of 50 V is applied to the base internal electrode and the container side electrode for 5 minutes.
  • a voltage of 50 V is applied to the base internal electrode and the container side electrode for 5 minutes.
  • the seed crystal was adhered to the surface of the substrate. This was pulled up from the solution, dried in the air for 30 minutes, and then heat-treated at 300 ° C. for 6 hours to prepare a seed crystal-attached porous silica substrate.
  • Example 1 (effect of water volume)>
  • the seed crystal-attached porous silica substrate was sealed at the top and bottom, immersed in a 0.1 M aqueous TPAOH solution, then lifted, and dried at 60 ° C. for 1 hour.
  • the base material was placed in a hydrothermal treatment container (inner volume 120 cc) containing water in a range of 1 to 12 g without touching the water, and heat-treated at 160 ° C. for 24 hours.
  • a zeolite membrane was formed on the surface.
  • the formed body was washed, dried at 60 ° C. for 10 hours, and then fired at 375 ° C. for 40 hours to remove the structure-directing agent to obtain separation membranes of Examples 1-1 to 1-5.
  • the separation membranes of Examples 1-1 to 1-5 represent separation membranes in which the amounts of water placed in the hydrothermal treatment vessel were 1 g, 3 g, 6 g, 9 g, and 12 g, respectively.
  • the surface structure of the obtained separation membrane was analyzed using a BRUKER powder X-ray diffraction (XRD) apparatus D8 ADVANCE. The measurement was performed under the conditions of an acceleration voltage of 40 KV, a current of 40 mA, a light source of CuK ⁇ , and a measurement angle of 5 to 80 °. Moreover, the surface and cross-sectional form of the obtained separation membrane were observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the crystallinity based on MFI was increased after hydrothermal treatment as compared with that before the treatment, and no other impurity phase was formed.
  • the film having the highest crystallinity was successfully synthesized when the amount of water added was 3 g.
  • the saturated water vapor amount is 0.37 g. From the above results, it can be seen that the amount of water added is preferably 3 g or more, which is significantly larger than the saturated water vapor amount. Moreover, since the crystal
  • Example 2 (effect of heat treatment time)>
  • the seed crystal-attached porous silica substrate was sealed at the top and bottom, immersed in a 0.1 M aqueous TPAOH solution, then lifted, and dried at 60 ° C. for 1 hour.
  • the base material was placed in a hydrothermally-treated container (container volume 120 cc) containing 3 g of water without touching the water, and heat-treated at 160 ° C. for 2 to 48 hours. A film was formed.
  • the formed body was washed, dried at 60 ° C. for 10 hours, and then fired at 375 ° C.
  • the separation membranes of Examples 2-1 to 2-8 represent separation membranes whose heat treatment times were 2 hours, 4 hours, 8 hours, 12 hours, 16 hours, 24 hours, 36 hours, and 48 hours, respectively.
  • the surface structure of the obtained separation membrane was evaluated by XRD analysis under the same conditions as in Example 1 and observation of the membrane structure by SEM.
  • FIGS. The photograph which observed the surface of the separation membrane and the form of the section by SEM is shown in FIGS.
  • the morphology of the separation membrane changed greatly with increasing heat treatment time. From the cross-sectional SEM image, when the heat treatment time is up to 8 hours, the base component is consumed for film formation and growth of the seed crystal layer, and growth of a dense zeolite layer is confirmed. When the heat treatment time exceeds 8 hours, formation of a Coffin type crystal derived from the support is confirmed between the dense zeolite layer and the support. The size of the Coffin type crystal increased as the heat treatment time increased from 12 hours to 24 hours. After 24 hours, there was no significant difference in membrane morphology. The cross-sectional observation results up to 24 hours and the tendency of the crystallinity curve in FIG.
  • J total is the permeation flux
  • EtOH Conc is the ethanol concentration of the permeate
  • ⁇ EtOH is the separation factor
  • PSI is the pervaporation separation index.
  • the separation factor ⁇ EtOH changed with the heat treatment time, took a maximum value at 24 hours, and then decreased. This tendency coincides with the graph of the crystallinity curve calculated from the XRD pattern (FIG. 5b), and it has been clarified that the separation coefficient depends on the crystallinity of the film. It can also be seen that the PSI value representing the performance of the film reaches up to 290.
  • Example 3 Influence of structure-directing agent concentration, the following series of experiments was conducted.
  • the seed crystal-attached porous silica substrate was sealed at the top and bottom, immersed in a 0.01 to 0.5 M TPAOH aqueous solution, pulled up, and dried at 60 ° C. for 1 hour.
  • the base material was placed in a hydrothermal treatment container (container volume 120 cc) containing 3 g of water so as not to touch water, heat treated at 160 ° C. for 24 hours, and a zeolite membrane was formed on the surface of the base material. Formed. After the heat treatment, the formed body was washed, dried at 60 ° C.
  • the separation membranes of Examples 3-1 to 3-7 have TPAOH concentrations in the TPAOH aqueous solution of 0.01M, 0.05M, 0.075M, 0.1M, 0.125M, 0.3M,.
  • the separation membrane was 5M.
  • the surface structure of the obtained separation membrane was evaluated by XRD analysis under the same conditions as in Example 1.
  • FIG. 10 shows an XRD pattern when the amount of water added is 3 g, the synthesis time is fixed at 24 hours, and the structure directing agent (TPAOH) concentration is changed.
  • TPAOH concentration 0.01M
  • the crystallinity of the film increases up to a concentration of 0.1M and then gradually decreases, indicating that there is an appropriate TPAOH concentration.
  • the separation membranes with TPAOH concentrations of 0.3M and 0.5M the mechanical strength of the membrane is weak compared to the separation membranes with TPAOH concentration of 0.1M, and the support is damaged. It became bigger. From the above results, it was confirmed that 0.1 M is a preferable structure-directing agent (TPAOH) concentration under these conditions.
  • Example 4 (Effect of changing the film thickness by changing the seed crystal adhesion amount)> Separation membranes of Examples 4-1 to 4-3 were produced in the same manner as in Example 2-6, except that the thickness of the zeolite membrane was adjusted by changing the seed crystal adhesion amount. And the pervaporation test was implemented by the method similar to the evaluation in the separation membrane obtained in Example 2. The results are shown in Table 2.
  • Examples 5 to 8 shown below are examples relating to a hydrothermal synthesis method which is a prior art as a comparative example for the present invention.
  • Examples 5 to 7 are examples in which a zeolite membrane was formed on a silica substrate by a hydrothermal synthesis method
  • Example 8 was an example in which a zeolite membrane was formed on an alumina substrate by a hydrothermal synthesis method.
  • Example 5 (Examination of hydrothermal synthesis method 1: influence of hydrothermal synthesis time) Colloidal silica, TPABr, sodium hydroxide and distilled water were used as raw materials and mixed so that the molar ratio of SiO 2 : TPABr: NaOH: H 2 O was 1: 0.05: 0.05: 75 at 22 ° C. A sol for film formation was obtained by stirring for 60 minutes. The above-mentioned seed crystal-attached porous silica base material is immersed in this film-forming sol and treated at 160 ° C. for 4 to 24 hours in a hydrothermal treatment vessel (container volume 120 cc) to nucleate the seed crystal on the base material.
  • a hydrothermal treatment vessel container volume 120 cc
  • zeolite was synthesized.
  • the formed body was washed, dried at 60 ° C. for 10 hours, and then fired at 375 ° C. for 60 hours to remove the structure-directing agent to obtain separation membranes of Examples 5-1 to 5-4.
  • the separation membranes of Examples 5-1 to 5-4 represent separation membranes whose heat treatment times were 4 hours, 8 hours, 6 hours, and 24 hours, respectively.
  • the pervaporation test was implemented by the method similar to the evaluation in the separation membrane obtained in Example 2. The results are shown in Table 3.
  • the hydrothermal synthesis method can obtain a high separation factor ⁇ with an appropriate hydrothermal treatment time, but the permeation flux J total should remain at 3 [kg / (m 2 h)]. I understand.
  • Example 6 (Examination of hydrothermal synthesis method 2: Effect of molar ratio of TPABr to SiO 2 ) Colloidal silica, TPABr, sodium hydroxide, and distilled water are used as raw materials and mixed so that the molar ratio of SiO 2 : TPABr: NaOH: H 2 O is 1: 0.005 to 0.1: 0.05: 75.
  • the film-forming sol was obtained by stirring at 22 ° C. for 60 minutes.
  • the above-mentioned seed crystal-attached porous silica base material is immersed in this film-forming sol, treated in a hydrothermal treatment container (container volume 120 cc) at 160 ° C.
  • the separation membranes of Examples 6-1 to 6-4 represent separation membranes in which the molar ratio of TPABr to SiO 2 was 0.005, 0.001, 0.05, and 0.1, respectively. And the pervaporation test was implemented by the method similar to the evaluation in the separation membrane obtained in Example 2. The results are shown in Table 4.
  • Example 7 (examination of hydrothermal synthesis method 3: influence of gel aging temperature)>
  • the characteristics of the obtained film are easily changed depending on the state of the starting gel.
  • the aging temperature of the gel was not fixed at 22 ° C., and the film formation result in an aging state at an uncontrolled room temperature was evaluated.
  • Colloidal silica, TPABr, sodium hydroxide, and distilled water are used as raw materials and mixed so that the molar ratio of SiO 2 : TPABr: NaOH: H 2 O is 1: 0.005 to 0.1: 0.05: 75.
  • the film-forming sol was obtained by setting at room temperature (22 to 25 ° C.) and stirring for 60 minutes.
  • the above-mentioned seed crystal-attached porous silica base material is immersed in this film-forming sol, treated in a hydrothermal treatment container (container volume 120 cc) at 160 ° C. for 12 hours, and the seed crystal on the base material is used as a nucleus for zeolite.
  • a hydrothermal treatment container container volume 120 cc
  • the seed crystal on the base material is used as a nucleus for zeolite.
  • the formed body was washed, dried at 60 ° C. for 10 hours, and then fired at 375 ° C. for 60 hours to remove the structure-directing agent to obtain separation membranes of Examples 7-1 to 7-4.
  • the separation membranes of Examples 7-1 to 7-4 represent separation membranes in which the molar ratio of TPABr to SiO 2 was 0.005, 0.001, 0.05, and 0.1, respectively.
  • the pervaporation test was implemented by the method similar to the evaluation in the separation membrane obtained in Example 2. The results are shown in Table 5.
  • Example 8 (Influence of substrate in hydrothermal synthesis: alumina substrate)> A high silica zeolite seed crystal is attached to a porous alumina tube made of Nikkato with an outer diameter of 12 mm, an inner diameter of 9 mm, a length of 80 mm, a porosity of 38%, and an average pore diameter of 1400 nm by electrophoresis. A substrate was created. Colloidal silica, TPABr, sodium hydroxide and distilled water are used as raw materials and mixed so that the molar ratio of SiO 2 : TPABr: NaOH: H 2 O is 1: 0.005: 0.05: 50 to 150, For 60 minutes to obtain a sol for film formation.
  • the base material was immersed in the above-mentioned sol for film formation and treated in a hydrothermal treatment container (container volume 120 cc) at 160 ° C. for 24 hours to synthesize zeolite using seed crystals on the base material as nuclei. .
  • a hydrothermal treatment container container volume 120 cc
  • the formed body was washed, dried at 60 ° C. for 10 hours, and then fired at 375 ° C. for 60 hours to remove the structure-directing agent to obtain separation membranes of Examples 8-1 to 8-5.
  • the separation membranes of Examples 8-1 to 8-5 represent separation membranes in which the molar ratio of H 2 O to SiO 2 was 150, 125, 100, 75, and 50, respectively.
  • the pervaporation test was implemented by the method similar to the evaluation in the separation membrane obtained in Example 2. The results are shown in Table 6.
  • Example 8 when an alumina substrate is used, both the permeation flux and ⁇ EtOH are higher than the hydrothermal synthesis method using a silica substrate and the gel-free method related to Examples 1 to 4 using a silica substrate. It can be confirmed that it is low. That is, it was confirmed that the separation characteristics were improved by using the silica base material.
  • FIG. 11 and FIG. 12 show photographs taken by an electron microscope of the surface of the separation membrane of Example 4-1 and a cross section perpendicular to the longitudinal direction, respectively.
  • FIGS. 13 and 14 each show an electron microscope observation photograph of the surface of the separation membrane of Example 5-4 and a cross section perpendicular to the longitudinal direction.
  • the separation membrane of Example 4-1 had a zeolite membrane made of fine crystals, and was confirmed to be denser.
  • FIG. 15 shows an electron microscopic observation photograph of a cross section perpendicular to the longitudinal direction of the separation membrane of Example 8-1.
  • the support was an alumina substrate, formation of a dense film was not confirmed.
  • the surface structures of the separation membranes of Examples 4-1, 5-4, and 8-1 were analyzed using a BRUKER powder X-ray diffractometer D8 ADVANCE. The measurement was performed under the conditions of an acceleration voltage of 40 KV, a current of 40 mA, a light source of CuK ⁇ , and a measurement angle of 5 to 80 °. The obtained spectrum is shown in FIG. 16 and FIG. Table 7 shows the results of normalizing the peak intensity with respect to the intensity of the diffraction peak which is a diffraction angle 7.3 to 8.4 ° and the crystal lattice plane belongs to the 011 and / or 101 plane. Show.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

無機酸化物多孔質基材上に形成されるMFI型ゼオライト膜であって、CuKα線をX線源とするX線回折測定で得られる回折パターンにおいて、回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、回折角度8.4~9.0°に表れるピークであって、結晶格子面が200及び/又は020面に帰属される回折ピークの強度が0.3以上である、ゼオライト膜。

Description

ゼオライト膜および分離膜
 本発明は、ゼオライト膜および無機酸化物多孔質基材上にゼオライト膜が形成された分離膜に関する。
 本出願は、2017年1月18日出願の日本出願第2017-6851号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1には、ゼオライト種結晶と有機構造規定剤とシリカとを含む膜状物を水蒸気で処理してMFI型ゼオライト膜を形成し、分離膜を得る方法が開示されている。
 特許文献2には、XRD測定において、020面由来の散乱強度/101面由来の散乱強度が3.3より大きく、かつ020面由来の散乱強度/002面または102面由来の散乱強度が4.4より大きいゼオライト膜が開示されている。
 特許文献3には、XRD測定において、002面由来の散乱強度/020面由来の散乱強度が2以上、002面由来の散乱強度/101面由来の散乱強度が0.5~1.5、101面由来の散乱強度/501面由来の散乱強度が1.5以上かつ303面由来の散乱強度/501面由来の散乱強度が2以上のゼオライト膜が開示されている。
日本国特開2001-31416号公報 日本国特開2004-2160号公報 国際公開第2007/58388号
 本発明の一態様に係るゼオライト膜は、
 無機酸化物多孔質基材上に形成されるMFI型ゼオライト膜であって、
 CuKα線をX線源とするX線回折測定で得られる回折パターンにおいて、
 回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、
 回折角度8.4~9.0°に表れるピークであって、結晶格子面が200及び/又は020面に帰属される回折ピークの強度が0.3以上である。
 また、本発明の一態様に係る分離膜は、
 SiOを90質量%以上含有する非晶質体からなる無機酸化物多孔質基材上に本発明の一態様に係るゼオライト膜を備える。
本発明の実施形態に係る分離膜の構成を示す図である。 本発明の実施形態に係る製造方法のフローを示す図である。 例1における異なる水添加量により合成した膜のXRDパターンを示す図である。 例1における異なる水添加量により合成した膜の結晶化度を示す図である。 例1の異なる水添加量により合成された膜のSEM像を示す図である。 例2の異なる合成時間により合成した膜のXRDパターンを示す図である。 例2の異なる合成時間により合成した膜の結晶化度を示す図である。 例2の異なる合成時間により合成された膜のSEM像(その1)である。 例2の異なる合成時間により合成された膜のSEM像(その2)である。 分離膜の透過性能を評価する装置の一例を示す模式図である。 例2の合成時間に対する流速および分離係数αの関係を示す図である。 例3の異なるTPAOH濃度により合成した膜のXRDパターンを示す図である。 例4-1の分離膜の表面の構造を表す電子顕微鏡写真である。 例4-1の分離膜の長手方向に直交する断面の構造を表す電子顕微鏡写真である。 例5-4の分離膜の表面の構造を表す電子顕微鏡写真である。 例5-4の分離膜の長手方向に直交する断面の構造を表す電子顕微鏡写真である。 例8-1の分離膜の長手方向に直交する断面の構造を表す電子顕微鏡写真である。 例4-1および例5-4の分離膜の表面のX線回折測定結果を示すグラフである。 例8-1の分離膜の表面のX線回折測定結果を示すグラフである。
[本開示が解決しようとする課題]
 従来の水熱合成法では、溶液側からゼオライト成分が供給されて、種結晶を核としてその表面より、ゼオライト結晶が成長するので、配向結晶膜が成長する。このような、高い配向性を有するゼオライト分離膜では、粒子界面におけるリークにより分離係数が低くなるため、分離係数を高めるために膜厚を厚くする必要がある。一方、膜厚を厚くすると透過流束が低下する。このため、透過流束と分離比双方が向上した膜構造が求められている。
 本発明は、膜厚が薄くても分離能に優れ、透過流束の大きいゼオライト膜および分離膜を提供することを目的とする。
[本開示の効果]
 本発明によれば、膜厚が薄くても分離能に優れ、透過流束の大きいゼオライト膜および分離膜を提供することができる。
[本発明の実施形態の説明]
 最初に本願発明の実施形態の内容を列記して説明する。
 本願発明の実施形態に係るゼオライト膜は、
(1)無機酸化物多孔質基材上に形成されるMFI型ゼオライト膜であって、
 CuKα線をX線源とするX線回折測定で得られる回折パターンにおいて、
 回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、
 回折角度8.4~9.0°に表れるピークであって、結晶格子面が200及び/又は020面に帰属される回折ピークの強度が0.3以上である。
 この構成によれば、膜厚が薄くても透過流速、分離能に優れるゼオライト膜を提供することができる。
(2)上記(1)のゼオライト膜は、
 前記回折パターンにおいて、
 回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、
 回折角度8.4~9.0°に表れるピークであって、結晶格子面が200及び/又は020面に帰属される回折ピークの強度が0.4以上であってもよい。
(3)上記(1)のゼオライト膜は、
 前記回折パターンにおいて、
 回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、
 回折角度22.7~23.5°に表れるピークであって、結晶格子面が501及び/又は051面に帰属される回折ピークの強度が0.5以上であってもよい。
(4)上記(3)のゼオライト膜は、
 前記回折パターンにおいて、
 回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、
 回折角度22.7~23.5°に表れるピークであって、結晶格子面が501及び/又は051面に帰属される回折ピークの強度が0.6以上であってもよい。
(5)上記(1)または(3)のゼオライト膜は、
 前記回折パターンにおいて、
 回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、
 回折角度12.9~13.5°に表れるピークであって、結晶格子面が002面に帰属される回折ピークの強度が0.25以下であってもよい。
(6)上記(1)、(3)および(5)のいずれかのゼオライト膜は、
 前記回折パターンにおいて、
 回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、
 回折角度26.8~27.2°に表れるピークであって、結晶格子面が104面に帰属される回折ピークの強度が0.2以下であってもよい。
 また、本願発明の実施形態に係る分離膜は、
(7)SiOを90質量%以上含有する非晶質体からなる無機酸化物多孔質基材上に上記(1)~(6)のいずれかのゼオライト膜を備える。
 この構成によれば、基材がハイシリカ基材であるため、アルミナの溶出を抑えることで膜の疎水性を維持でき、優れた分離能を発揮する。また、基材そのものをゼオライトに転換するため、膜と基材の親和性が良好であり、優れた分離能を発揮する。
(8)上記(7)の分離膜は、
 前記無機酸化物多孔質基材が、SiOを99質量%以上含有する非晶質体からなってもよい。
 この構成によれば、基材がハイシリカ基材であるため、よりアルミナの溶出を抑えることで膜の疎水性を維持でき、優れた分離能を発揮する。また、基材そのものをゼオライトに転換するため、膜と基材の親和性がより良好であり、優れた分離能を発揮する。
[本発明の実施形態の詳細]
 以下、本発明の実施形態について、詳細に説明する。
1.分離膜
 図1に、分離膜の一実施形態を示す。図1は分離膜の縦断面図である。
 分離膜20は略円筒形状であり、中心孔24を持つ無機酸化物多孔質基材21を有している。多孔質基材21の外周にはゼオライト膜22が製膜されている。なお、分離膜の形状は、平面状等、任意の形状とすることもできるが、分離効率の点から流体との接触面積をより広くするために、本実施形態では管状としている。
 分離膜20は、分子ふるい効果や親水/疎水性を活用したガス分離膜、ベーパーレーション膜、膜分離反応器などに使用することができ、とくにエタノール/水分離用の分離膜として好適に使用することができる。
1-1.無機酸化物多孔質基材
 本実施形態において用いられる無機酸化物多孔質基材21としては、本実施形態によりゼオライト膜22が形成される部分(基材の表面部分)の主成分が非晶質SiOであるものであればよく、例えば、アルミナなどの基材表面に非晶質SiOを形成した基材や、基材全体が非晶質SiOで形成される基材を用いることができる。また、前記基材21が、SiOを90質量%以上含有する非晶質体からなると好ましく、前記基材21が、SiOを99質量%以上含有する非晶質体からなるとさらに好ましく、前記基材21が、Alを1質量%未満で含有すると特に好ましい。
 基材のSiO含有割合が増加し、またAlおよび不純物の含有割合が低下することで、ゼオライト膜22への基材中に存在するAl、アルカリ元素、ボロンなどの溶出が抑えられ、分離膜20の疎水性を維持することができる。また、微量のアルミナ溶存は、シリカ基材のアルカリに対する耐久性を向上させることを可能にするため、ゼオライトを成膜する処理の際、基材溶出を抑制することで基材の強度を維持することを可能にする。
 多孔質基材21は、ゼオライト膜22における流体の透過をほぼ干渉することなく該薄膜を支持するため、多孔質基材21の気孔率は35~70%、平均細孔径は250nm~600nmであるとよい。なお、「気孔率」は、単位体積当たりの気孔容積が占める割合として算出できる。
 さらに、多孔質基材21の厚さは、特に限定されるものではないが、機械的強度とガス透過性のバランスから0.2mm~5mmであることが好ましく、0.5mm~3mmであることがより好ましい。
 また、多孔質基材21のゼオライト形成部分の比表面積は5m/g以上400m/g以下であるとよい。5m/g未満であると、表面積が小さいため粒子表面に担持できる構造規定剤の量が不十分になるおそれがあり、またアルカリ成分によるシリカ成分の溶出量が不足して、完全にゼオライトに変換することが出来なくなるおそれがある。逆に比表面積が400m/gより大きいと、構造規定材の担持量が過剰になるおそれがあり、また基材へのアルカリ成分の浸透によりシリカ成分が必要以上に溶出し、基材強度の低下をもたらす場合がある。
 好適な比表面積としては、多孔質基材21の表面に存在する粒子の直径が0.5μm以下になる10m/g以上が前者の観点から望ましい。後者の観点からは前記粒子の直径が50nm以上となる100m/g以下が望ましい。
1-2.ゼオライト膜
 本実施形態によって得られた多孔質基材21上に形成されるゼオライト膜22はMFI型ゼオライト膜であり、従来の水熱合成法により得られるゼオライト膜と比べて緻密質の膜である。そのため、本実施形態のゼオライト膜22の膜厚は薄くても分離能に優れ、透過流束の大きい分離膜を提供することができる。
 ゼオライト膜22は、CuKα線をX線源とするX線回折測定で得られる回折パターンにおいて、回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、回折角度8.4~9.0°に表れるピークであって、結晶格子面が200及び/又は020面に帰属される回折ピークの強度が0.3以上であり、0.4以上であることが好ましい。
 また、ゼオライト膜22は、CuKα線をX線源とするX線回折測定で得られる回折パターンにおいて、回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、回折角度22.7~23.5°に表れるピークであって、結晶格子面が501及び/又は051面に帰属される回折ピークの強度が0.5以上であることが好ましく、0.6以上であることがより好ましい。
 また、ゼオライト膜22は、CuKα線をX線源とするX線回折測定で得られる回折パターンにおいて、回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、回折角度12.9~13.5°に表れるピークであって、結晶格子面が002面に帰属される回折ピークの強度が0.25以下であることが好ましい。
 また、ゼオライト膜22は、CuKα線をX線源とするX線回折測定で得られる回折パターンにおいて、回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、回折角度26.8~27.2°に表れるピークであって、結晶格子面が104面に帰属される回折ピークの強度が0.2以下であることが好ましい。
 X線回折測定は、例えば、BRUKER社粉末X線回折装置 D8 ADVANCEを使用して、加速電圧を40KV、電流を40mA、光源をCuKα、計測角度を5~80°として測定することができる。
 ゼオライト膜22の厚さは、特に限定されるものではないが、0.5μm~30μmであることが好ましい。厚さが0.5μm未満では、ゼオライト膜22にピンホールが発生しやすく、十分な分離性能を得ることができないおそれがあり、また、厚さが30μmを超えると流体の透過速度が小さくなりすぎ、実用上十分な透過性能が得られにくくなる場合がある。
2.分離膜の製造方法
 分離膜20は、図2に示すフローチャートのように、無機酸化物多孔質基材21の表面上に、ゼオライト種結晶、および構造規定剤を含有するアルカリ成分を塗布などの手法で形成して形成体を得る第一工程と、当該第一工程で得られた形成体を加熱水蒸気雰囲気下で処理する第二工程とにより、前記基材21表面にゼオライト膜22を形成して、製造される。
2-1.第一工程
 第一工程では、無機酸化物多孔質基材21の表面上に、ゼオライト種結晶、および構造規定剤を含有するアルカリ成分が塗布などの手法で形成される。ゼオライトの種結晶は、通常のゼオライト粒子の製造方法で作られたゼオライト粒子である。ゼオライト種結晶の粒子径は特に限定されないが、例えば5μm以下、好ましくは3μm以下である。
 構造規定剤は、ゼオライトの孔を構築する有機化合物の型剤であり、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラプロピルアンモニウムブロミド、テトラブチルアンモニウムヒドロキシド等の4級アンモニウム塩、トリメチルアダマンタンアンモニウム塩などが用いられる。
 アルカリ成分は、アルカリ性の水溶液を表し、好ましくは、有機アンモニウム水酸化物並びに/または、有機アンモニウムハロゲン塩およびアルカリ金属水酸化物を含有する水溶液である。有機アンモニウム水酸化物としては、例えばテトラプロピルアンモニウムヒドロキシド(TPAOH)が挙げられ、有機アンモニウムハロゲン塩としては、例えばテトラプロピルアンモニウムブロミド(TPABr)が挙げられ、アルカリ金属水酸化物としては、例えば水酸化ナトリウムまたは水酸化カリウムが挙げられる。
 アルカリ成分として、有機アンモニウム水酸化物を含有する水溶液を用いた場合、ゼオライト膜がシリカ成分と有機アンモニウムのみから形成されるので不純物成分のきわめて少ない分離膜を形成可能であり、基材や膜からの不純物溶出を抑制することができる。また、アルカリ成分として、有機アンモニウムハロゲン塩及びアルカリ金属水酸化物を含有する水溶液を用いた場合、有機アンモニウム水酸化物よりも成分が安定であり、かつアルカリ濃度をアルカリ金属水酸化物の濃度によって調整可能であるため、過剰なアルカリによる基材の破壊などが生じにくいプロセスを構築することができる。
 また、アルカリ成分中の構造規定剤の濃度は、0.05M以上であることが結晶成長を進行させるために好ましい。さらに、アルカリ成分中の構造規定剤の濃度が、0.3M以下であることが基材の消耗を抑制するため有効であり好ましい。
 無機酸化物多孔質基材21の表面上でのゼオライト種結晶の形成は、例えばゼオライト種結晶の水分散液に、無機酸化物多孔質基材21を浸漬し、引き揚げる方法によっておこなえる。この際、アルカリ成分をゼオライト種結晶の水分散液に加えることで、種結晶と同時にアルカリ成分を無機多孔質基材21の表面に塗布形成することも可能である。
 また、ゼオライト種結晶の形成は、ゼオライトを分散させたポリマーフィルムを調製し、ゼオライト分散フィルムを支持体外表面上に巻きつけたのち、ポリマー部分を焼成除去することでも、可能である。この場合、クロロホルムまたはアセトン溶媒に乾燥したゼオライト粉末を分散させた後、ポリメタクリル酸メチルを添加攪拌後、キャスト法でゼオライト種結晶を分散させたポリマーフィルムを調整する。このフィルムを無機酸化物多孔質基材21上に巻き付け接着した後に、550℃にて大気中で焼成することで、無機酸化物多孔質基材21の表面上に種結晶層を形成できる。
 本実施形態において、ゼオライト種結晶は、電気泳動法によって無機酸化物多孔質基材21上に形成してもよい。この方法によれば、種結晶の位置および密度が制御され、最終的に得られるゼオライト膜22の緻密質性を向上させることが出来る。電気泳動法は、上下をシールした多孔質基材21内部に有機溶媒、例えばアセトン、を充填し、外部にゼオライト種結晶を分散させた有機溶媒を満たし、多孔質基材21内部電極と容器側電極に電圧をかけることで、種結晶を基材21表面に付着させることにより行う。電気泳動法は、例えば電圧50Vを5分間かけることで行う。種結晶の付着後、溶液から基材21を引き上げ、乾燥後、例えば、300℃で6時間加熱処理することで、基材21上での種結晶の形成は完了する。
 電気泳動法により、種結晶を付着させた後、種結晶付着多孔質基材上下に封をし、TPAOH水溶液に浸した後引き上げることで、表面にアルカリ成分を塗布形成することができる。TPAOH水溶液は、0.05M以上0.5M以下が好ましく、例えば0.1MTPAOH水溶液を用いることができる。
 また、基材21上のアルカリ成分を乾燥させると、基材21上のアルカリ成分の厚みおよび濃度むらを抑制でき、好ましい。
3-2.第二工程
 容器容積あたり0.5~5体積%の水を含む水熱処理容器中に第一工程で得られた形成体を設置し、140℃~180℃で所定時間、例えば24時間、熱処理を行うことで、種結晶周辺にゼオライト膜を形成することができる。
 また、水熱処理容器中に入れられて加熱水蒸気雰囲気下とするために用いられる水の量は、飽和水蒸気量の2倍以上であると、成膜領域への水蒸気供給が十分行われるため好ましい。ただし、水熱処理容器中に入れられる水の量が飽和水蒸気量の20倍より大きいと、膜構造に欠陥が生じやすくなるおそれがある。飽和水蒸気量(WH2O-S)は、単位体積(1m)での加熱処理温度(T)における飽和水蒸気圧(Ps)での水蒸気質量であり、単位はg/mである。容器容積(V)内の質量とする場合WH2O-S×V(g)となる。飽和水蒸気量は、近似式より所定の温度における飽和水蒸気圧(P(t))を求め、気体の状態方程式から水蒸気量に換算することで得られる。
 飽和水蒸気圧の近似式としては、Wagner式があり、下記のようになる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Pc=221200[hPa]:臨界圧、Tc=647.3[K]:臨界温度、x=1-(t+273.15)/Tc、A=-7.76451、B=1.45838、C=-2.7758、D=-1.23303(A~D:係数)である。
 得られた飽和水蒸気圧P(t)から気体の状態方程式:P/RT=n/Vにより単位体積あたりの水蒸気モル数が求まり、水の分子量より、飽和水蒸気量が得られる。
 また、第二工程における加熱水蒸気雰囲気下での処理は4時間以上であることが、結晶成長の観点で好ましい。さらに8時間以上であると、ゼオライト結晶構造が安定化してより好ましい。ただし、処理時間が36時間より長いと、結晶成分の溶出などの要因で結晶性が悪くなることおよび、製造時間が増加するおそれがある。
 第一および第二工程を通して得られた形成体は、洗浄後乾燥したのち、350℃~600℃で所定時間、例えば12時間焼成することで、構造規定剤を燃焼除去し、分離膜20を形成する。
 本実施形態の製造方法によれば、従来の水熱合成法に比べて、少量の構造規定剤を使用することで、分離能に優れ、透過流束の大きい分離膜を得ることができ、製造コストの観点から有利である。
 以下、本発明に係る実施例を用いた評価試験の結果を示し、本発明をさらに詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(多孔質シリカ基材)
 外付けCVD法により、外径10mm、内径8.4mm、長さ300mm、気孔率64%、平均細孔径500nmの多孔質シリカ管を作成し、これを長さ30mmに切断した管を、多孔質シリカ基材として使用した。
(種結晶付着多孔質シリカ基材)
 原料としてコロイダルシリカ、TPABr、水酸化ナトリウム、蒸留水を用い、SiO:TPABr:NaOH:HOのモル比が1:0.2:0.1:40となるように混合し、室温で60分撹拌することにより種結晶生成用ゾルを得た。このゾルをポリプロピレン製容器内で100℃、144時間撹拌条件下で反応させ、MFI型ゼオライト結晶(Silicalite-1)を合成した。このゼオライト結晶を吸引濾過により回収し、熱水で洗浄後、60℃、10時間の乾燥処理を行い、粒子径約1μmのハイシリカゼオライト種結晶を得た。なお、コロイダルシリカは触媒化成工業株式会社製 Cataloid SI-30(登録商標)(SiO 30.17%,NaO 0.4%,HO 69.43%)を使用した。
 ハイシリカゼオライト種結晶0.5gをアセトン溶媒100mL中に加え30分間超音波分散させた。上下をシールした多孔質シリカ基材内部にアセトン溶媒のみを充填し、外部にハイシリカゼオライト種結晶を分散させたアセトン溶媒を満たし、基材内部電極と容器側電極に50Vの電圧を5分間かけることで、種結晶を基材表面に付着させた。これを溶液から引き上げ、大気中で30分間乾燥後、300℃で6時間加熱処理し、種結晶付着多孔質シリカ基材を作成した。
<例1(水量の影響)>
 種結晶付着多孔質シリカ基材の上下に封をし、0.1MのTPAOH水溶液に基材全体を浸した後引き上げ、60℃で一時間乾燥した。その後基材を、水が1~12gの範囲で入れられた水熱処理容器(容器内容積120cc)中に、水に触れないようにして設置して、160℃で24時間熱処理を行い、基材表面にゼオライト膜を形成した。熱処理後、形成体を洗浄し、60℃で10時間乾燥した後、375℃で40時間焼成することで構造規定剤を除去し、例1-1~例1-5の分離膜を得た。なお、例1-1~例1-5の分離膜はそれぞれ、水熱処理容器中に入れられた水の量が1g、3g、6g、9g、12gであった分離膜を表す。
 得られた分離膜の表面の構造を、BRUKER社粉末X線回折(XRD)装置 D8 ADVANCEを使用して、解析した。加速電圧を40KV、電流を40mA、光源をCuKα、計測角度を5~80°とする条件により測定した。また、得られた分離膜の表面および断面の形態を走査型電子顕微鏡(SEM)により観察した。
 図3a、図3bに水添加量を変えた場合のXRDパターンと、2θ=20-40°における上位15本のピーク強度の和により得られた結晶化度を示す。いずれのサンプルにおいても水熱処理後に処理前と比べてMFIに基づく結晶性が増加していることが確認でき、他の不純物相の形成はなかった。また、水添加量が3gの時に最も結晶性の高い膜の合成に成功した。
 分離膜の表面および断面の形態を、SEMにより観察した写真を図4に示す。処理前と比較して結晶形態が変化し、水添加量が3gの時、最も緻密で連続的な膜の合成に成功した。さらに、緻密なゼオライト層と支持体間にMFI特有の柱状結晶の形成が確認された。
 160℃で水熱容器容積120mlの場合、飽和水蒸気量は0.37gとなる。上記結果より、水添加量は飽和水蒸気量よりも大幅に大きい3g以上であると好ましいことがわかる。また、3g以上では結晶の形態が大幅に変化し、結晶間の空隙が確認されたことから、飽和水蒸気量に対し3倍以上10倍以下の水量が好ましいと想定される。もちろんこの値は、容器容積、成膜基材面積などにより変化する可能性があるので、あくまで参考値として、本成膜条件下で適用可能な値である。
<例2(熱処理時間の影響)>
 熱処理時間の影響を検討するため以下に示す一連の実験を行った。種結晶付着多孔質シリカ基材の上下に封をし、0.1MのTPAOH水溶液に基材全体を浸した後引き上げ、60℃で一時間乾燥した。その後基材を、水3gが入れられた水熱処理容器(容器内容積120cc)中に、水に触れないようにして設置して、160℃で2~48時間熱処理を行い、基材表面にゼオライト膜を形成した。熱処理後、形成体を洗浄し、60℃で10時間乾燥した後、375℃で40時間焼成することで構造規定剤を除去し、例2-1~例2-8の分離膜を得た。なお、例2-1~例2-8の分離膜はそれぞれ、熱処理時間が2時間、4時間、8時間、12時間、16時間、24時間、36時間、48時間であった分離膜を表す。得られた分離膜の表面の構造を、例1と同様の条件のXRD解析およびSEMによる膜構造観察により評価した。
 図5a、図5bに水添加量3gで熱処理時間を変えた場合のXRDパターン(a)と、2θ=20-40°における上位15本のピーク強度の和により得られた結晶化度(b)を示す。熱処理時間24時間までは熱処理時間の増加とともに結晶化度は向上し、24時間を超えると結晶化度は低下した。24時間までは、種結晶の成長や支持体自身のゼオライト化によりピーク強度が高くなるが、24時間以降では結晶成長は止まり、アルカリ雰囲気下であるため、再溶解により結晶化度が低下したのだと考えられる。この結果より、合成時間は24時間が本条件下では最適と考えられる。
 分離膜の表面および断面の形態を、SEMにより観察した写真を図6、7に示す。熱処理時間の増加とともに分離膜の形態は大きく変化した。断面SEM像より、熱処理時間が8時間までは、種結晶層の膜化および成長に基材成分が消費され、緻密なゼオライト層の成長が確認される。熱処理時間が8時間を超えると、緻密なゼオライト層と支持体との間に支持体由来のCoffin型結晶の形成が確認される。Coffin型結晶のサイズは熱処理時間が12時間から24時間に増加するとともに大きくなった。24時間以降は、膜形態に大きな違いはなかった。24時間までの断面観察の結果と図5bの結晶化度曲線の傾向は一致した。
(浸透気化試験(PV:Pervaporation))
 例2で得られた分離膜の性能を浸透気化試験により評価した。浸透気化試験は、図8の模式図に示す装置によりおこなった。エタノール10%水溶液を、ウォーターバス中で50℃に加熱し、その中に片端封止、逆端を真空ポンプに接続した分離膜を入れ、内部を減圧して所定時間毎にサンプリングコールドトラップにて透過液体を採取した。得られた減圧側の液体組成を、液体クロマトグラフィーにて測定して、エタノールの分離濃縮の状態を評価した。浸透気化試験の結果を表1および図9に示す。
Figure JPOXMLDOC01-appb-T000002
表中、Jtotalは透過流束、EtOH Conc.は透過液体のエタノール濃度、αEtOHは分離係数、PSIは浸透気化分離指数を表す。Jtotal、αEtOHおよびPSIは下記式より算出される。
Figure JPOXMLDOC01-appb-M000003
 分離係数αEtOHは熱処理時間とともに変化し、24時間で最大値を取り、その後低下した。この傾向はXRDパターンより算出した結晶化度曲線のグラフ(図5b)とも一致し、分離係数は膜の結晶性に依存することが明らかとなった。また、膜の性能を表すPSI値は最大で290にまで達することがわかる。
<例3(構造規定剤の濃度の影響)>
 構造規定剤の濃度の影響を検討するため以下に示す一連の実験を行った。種結晶付着多孔質シリカ基材の上下に封をし、0.01~0.5MのTPAOH水溶液に基材全体を浸した後引き上げ、60℃で一時間乾燥した。その後基材を、水3gが入れられた水熱処理容器(容器内容積120cc)中に、水に触れないようにして設置して、160℃で24時間熱処理を行い、基材表面にゼオライト膜を形成した。熱処理後、形成体を洗浄し、60℃で10時間乾燥した後、375℃で40時間焼成することで構造規定剤を除去し、例3-1~例3-7の分離膜を得た。なお、例3-1~例3-7の分離膜はそれぞれ、TPAOH水溶液中のTPAOH濃度が0.01M、0.05M、0.075M、0.1M、0.125M、0.3M、0.5Mであった分離膜を表す。得られた分離膜の表面の構造を、例1と同様の条件のXRD解析により評価した。
 図10に水添加量3g、合成時間24時間に固定し構造規定剤(TPAOH)濃度を変えた場合のXRDパターンを示す。TPAOH濃度が0.01Mのとき、処理後に種結晶はほとんど成長していないことがXRDパターンより確認することができる。膜の結晶化度は濃度0.1Mまでは増加し、その後徐々に低下していることから、適切なTPAOH濃度があることが分かる。さらに、TPAOH濃度が0.3M、0.5Mであった分離膜に関しては、TPAOH濃度が0.1Mであった分離膜と比較して、膜の機械的強度が弱く、支持体へのダメージが大きくなった。以上の結果より、本条件下では、0.1Mが好ましい構造規定剤(TPAOH)濃度であることが確認された。
<例4(種結晶付着量を変えて膜厚を変化させたときの影響)>
 種結晶付着量を変えてゼオライト膜の膜厚を調整した以外は、例2-6と同様の方法により例4-1~例4-3の分離膜を作製した。そして、例2で得られた分離膜での評価と同様の方法により、浸透気化試験を実施した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
(従来方法)
 以下に示す例5~例8は、本発明に対する比較例となる従来技術である水熱合成法に関する例である。例5~例7はシリカ基材に水熱合成法でゼオライト膜を形成した例であり、例8はアルミナ基材に水熱合成法でゼオライト膜を形成した例である。
<例5(水熱合成法の検討1:水熱合成時間の影響)
 原料としてコロイダルシリカ、TPABr、水酸化ナトリウム、蒸留水を用い、SiO:TPABr:NaOH:HOのモル比が1:0.05:0.05:75となるよう混合し、22℃で60分撹拌することにより膜形成用ゾルを得た。この膜形成用ゾルに上述の種結晶付着多孔質シリカ基材を浸漬し、水熱処理容器(容器内容積120cc)にて、160℃で4~24時間処理し、基材上の種結晶を核としてゼオライトの合成を行った。熱処理後、形成体を洗浄し、60℃で10時間乾燥した後、375℃で60時間焼成することで構造規定剤を除去し、例5-1~例5-4の分離膜を得た。なお、例5-1~例5-4の分離膜はそれぞれ、熱処理時間が4時間、8時間、6時間、24時間であった分離膜を表す。
 そして、例2で得られた分離膜での評価と同様の方法により、浸透気化試験を実施した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 例5の結果より、水熱合成法でも、適正な水熱処理時間により高い分離係数αを得ることが可能だが、透過流束Jtotalは、3[kg/(mh)]台にとどまることが分かる。
<例6(水熱合成法の検討2:SiOに対するTPABrのモル比の影響)
 原料としてコロイダルシリカ、TPABr、水酸化ナトリウム、蒸留水を用い、SiO:TPABr:NaOH:HOのモル比が1:0.005~0.1:0.05:75となるよう混合し、22℃で60分撹拌することにより膜形成用ゾルを得た。この膜形成用ゾルに上述の種結晶付着多孔質シリカ基材を浸漬し、水熱処理容器(容器内容積120cc)にて、160℃で12時間処理し、基材上の種結晶を核としてゼオライトの合成を行った。熱処理後、形成体を洗浄し、60℃で10時間乾燥した後、375℃で60時間焼成することで構造規定剤を除去し、例6-1~例6-4の分離膜を得た。なお、例6-1~例6-4の分離膜はそれぞれ、SiOに対するTPABrのモル比が0.005、0.001、0.05、0.1であった分離膜を表す。
 そして、例2で得られた分離膜での評価と同様の方法により、浸透気化試験を実施した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000006
<例7(水熱合成法の検討3:ゲル熟成温度の影響)>
 水熱合成法では、出発ゲルの状態により、得られる膜の特性が変化しやすい。ここではゲルの熟成温度を22℃に固定せずに、制御しない室温での熟成状態での成膜結果を評価した。
 原料としてコロイダルシリカ、TPABr、水酸化ナトリウム、蒸留水を用い、SiO:TPABr:NaOH:HOのモル比が1:0.005~0.1:0.05:75となるよう混合し、室温(22~25℃)に設定して60分撹拌することにより膜形成用ゾルを得た。この膜形成用ゾルに上述の種結晶付着多孔質シリカ基材を浸漬し、水熱処理容器(容器内容積120cc)にて、160℃で12時間処理し、基材上の種結晶を核としてゼオライトの合成を行った。熱処理後、形成体を洗浄し、60℃で10時間乾燥した後、375℃で60時間焼成することで構造規定剤を除去し、例7-1~例7-4の分離膜を得た。なお、例7-1~例7-4の分離膜はそれぞれ、SiOに対するTPABrのモル比が0.005、0.001、0.05、0.1であった分離膜を表す。
 そして、例2で得られた分離膜での評価と同様の方法により、浸透気化試験を実施した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000007
 以上の例6及び例7の結果より、水熱合成法では得られる膜の出発ゲルの製造条件に敏感であり、ゲルの熟成温度の精密な制御が必要であることがわかる。
<例8(水熱合成における基材の影響:アルミナ基材)>
 ニッカトー製の外径12mm、内径9mm、長さ80mm、気孔率38%、平均細孔径1400nmの多孔質アルミナ管上に、ハイシリカゼオライト種結晶を電気泳動法により付着させ、種結晶付着多孔質アルミナ基材を作成した。
 原料としてコロイダルシリカ、TPABr、水酸化ナトリウム、蒸留水を用い、SiO:TPABr:NaOH:HOのモル比が1:0.005:0.05:50~150となるよう混合し、室温で60分撹拌することにより膜形成用ゾルを得た。
 当該基材を上述の膜形成用ゾル中に浸漬し、水熱処理容器(容器内容積120cc)にて、160℃で24時間処理し、基材上の種結晶を核としてゼオライトの合成を行った。熱処理後、形成体を洗浄し、60℃で10時間乾燥した後、375℃で60時間焼成することで構造規定剤を除去し、例8-1~例8-5の分離膜を得た。なお、例8-1~例8-5の分離膜はそれぞれ、SiOに対するHOのモル比が150、125、100、75、50であった分離膜を表す。
 そして、例2で得られた分離膜での評価と同様の方法により、浸透気化試験を実施した。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000008
 例8の結果より、アルミナ基材を用いた場合、シリカ基材を用いた水熱合成法や、シリカ基材を用いた例1~例4に関わるゲルフリー法よりも透過流束、αEtOHともに低いことを確認できる。すなわち、シリカ基材を用いることによる分離特性の向上が確認された。
(合成方法及び基材の分離膜の表面構造に対する影響)
 図11および図12のそれぞれに、例4-1の分離膜の表面および長手方向に直交する断面の電子顕微鏡による観察写真を示す。また図13および図14のそれぞれに、例5-4の分離膜の表面および長手方向に直交する断面の電子顕微鏡による観察写真を示す。例4-1の分離膜のほうが例5-4の分離膜に比べて、細かい結晶からなるゼオライト膜を有し、緻密性を有していることが確認された。
 さらに、図15に例8-1の分離膜の長手方向に直交する断面の電子顕微鏡による観察写真を示す。支持体がアルミナ基材である場合は、緻密性の膜の形成は確認されなかった。
 また、例4-1、例5-4および例8-1の分離膜の表面の構造を、BRUKER社粉末X線回折装置 D8 ADVANCEを使用して、解析した。加速電圧を40KV、電流を40mA、光源をCuKα、計測角度を5~80°とする条件により測定した。得られたスペクトルを図16および図17に示す。回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準として、ピーク強度を規格化した結果を表7に示す。
Figure JPOXMLDOC01-appb-T000009
 表7より、アルミナ基材またはシリカ基材を用いる水熱合成法により得られたゼオライト膜と比べて、本願の実施形態に係る製造方法により形成されたゼオライト膜では、回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準として規格化されたピーク強度が大きく異なることが確認された。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 20:分離膜
 21:無機酸化物多孔質基材
 22:ゼオライト膜
 24:中心孔

Claims (8)

  1.  無機酸化物多孔質基材上に形成されるMFI型ゼオライト膜であって、
     CuKα線をX線源とするX線回折測定で得られる回折パターンにおいて、
     回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、
     回折角度8.4~9.0°に表れるピークであって、結晶格子面が200及び/又は020面に帰属される回折ピークの強度が0.3以上である、
     ゼオライト膜。
  2.  前記回折パターンにおいて、
     回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、
     回折角度8.4~9.0°に表れるピークであって、結晶格子面が200及び/又は020面に帰属される回折ピークの強度が0.4以上である、
     請求項1に記載のゼオライト膜。
  3.  前記回折パターンにおいて、
     回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、
     回折角度22.7~23.5°に表れるピークであって、結晶格子面が501及び/又は051面に帰属される回折ピークの強度が0.5以上である、
     請求項1に記載のゼオライト膜。
  4.  前記回折パターンにおいて、
     回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、
     回折角度22.7~23.5°に表れるピークであって、結晶格子面が501及び/又は051面に帰属される回折ピークの強度が0.6以上である、
     請求項3に記載のゼオライト膜。
  5.  前記回折パターンにおいて、
     回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、
     回折角度12.9~13.5°に表れるピークであって、結晶格子面が002面に帰属される回折ピークの強度が0.25以下である、
     請求項1または請求項3に記載のゼオライト膜。
  6.  前記回折パターンにおいて、
     回折角度7.3~8.4°に表れるピークであって、結晶格子面が011及び/又は101面に帰属される回折ピークの強度を基準とした時に、
     回折角度26.8~27.2°に表れるピークであって、結晶格子面が104面に帰属される回折ピークの強度が0.2以下である、
     請求項1、請求項3および請求項5のいずれか一項に記載のゼオライト膜。
  7.  SiOを90質量%以上含有する非晶質体からなる無機酸化物多孔質基材上に請求項1~6のいずれか一項に記載のゼオライト膜を備える、分離膜。
  8.  前記無機酸化物多孔質基材が、SiOを99質量%以上含有する非晶質体からなる、請求項7に記載の分離膜。
PCT/JP2018/000966 2017-01-18 2018-01-16 ゼオライト膜および分離膜 WO2018135472A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/479,036 US20190366276A1 (en) 2017-01-18 2018-01-16 Zeolite membrane and separation membrane
JP2018563329A JPWO2018135472A1 (ja) 2017-01-18 2018-01-16 ゼオライト膜および分離膜
CN201880007165.8A CN110198916A (zh) 2017-01-18 2018-01-16 沸石膜和分离膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-006851 2017-01-18
JP2017006851 2017-01-18

Publications (1)

Publication Number Publication Date
WO2018135472A1 true WO2018135472A1 (ja) 2018-07-26

Family

ID=62908434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000966 WO2018135472A1 (ja) 2017-01-18 2018-01-16 ゼオライト膜および分離膜

Country Status (4)

Country Link
US (1) US20190366276A1 (ja)
JP (1) JPWO2018135472A1 (ja)
CN (1) CN110198916A (ja)
WO (1) WO2018135472A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508092A (zh) * 2019-03-08 2021-10-15 日本碍子株式会社 结晶性物质及膜复合体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4234493A3 (en) 2017-06-15 2024-03-06 Mitsubishi Chemical Corporation Ammonia separation method and zeolite
CN110898685B (zh) * 2019-12-09 2021-10-19 常州大学 一种低硅铝比丝光沸石膜的简易制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031416A (ja) * 1998-08-28 2001-02-06 Toray Ind Inc ゼオライト膜の製造方法、mfi型ゼオライト膜および分子を分離する方法
JP2002255539A (ja) * 2001-02-22 2002-09-11 Ngk Insulators Ltd ゼオライト成形体及びその製造方法並びにゼオライト積層複合体
JP2012530680A (ja) * 2009-06-22 2012-12-06 コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ 単一単位結晶格子1個のサイズまたは10個以下の単一単位結晶格子のサイズに相当する骨格厚さの、規則的または不規則的に配列された、多重または単一板状構造のゼオライトナノシート及び類似物質
JP2013013884A (ja) * 2010-08-26 2013-01-24 Mitsubishi Chemicals Corp 多孔質支持体―ゼオライト膜複合体の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220225A (ja) * 2000-11-27 2002-08-09 Toray Ind Inc ゼオライト膜、ゼオライト膜の処理方法、アルミ電解コンデンサー、および分離方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031416A (ja) * 1998-08-28 2001-02-06 Toray Ind Inc ゼオライト膜の製造方法、mfi型ゼオライト膜および分子を分離する方法
JP2002255539A (ja) * 2001-02-22 2002-09-11 Ngk Insulators Ltd ゼオライト成形体及びその製造方法並びにゼオライト積層複合体
JP2012530680A (ja) * 2009-06-22 2012-12-06 コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ 単一単位結晶格子1個のサイズまたは10個以下の単一単位結晶格子のサイズに相当する骨格厚さの、規則的または不規則的に配列された、多重または単一板状構造のゼオライトナノシート及び類似物質
JP2013013884A (ja) * 2010-08-26 2013-01-24 Mitsubishi Chemicals Corp 多孔質支持体―ゼオライト膜複合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUALTIERI M. L. ET AL.: "The influence of heating rate on template removal in silicalite-1: an in situ HT-XRPD study", MICROPOROUS ANDMESOPOROUS MATERIALS, vol. 89, no. 1-3, 24 February 2006 (2006-02-24), pages 1 - 8, XP028038642, ISSN: 1387-1811 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113508092A (zh) * 2019-03-08 2021-10-15 日本碍子株式会社 结晶性物质及膜复合体
CN113508092B (zh) * 2019-03-08 2023-06-27 日本碍子株式会社 结晶性物质及膜复合体

Also Published As

Publication number Publication date
US20190366276A1 (en) 2019-12-05
JPWO2018135472A1 (ja) 2019-11-07
CN110198916A (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
KR102017483B1 (ko) 다공질 지지체-제올라이트막 복합체
WO2018135472A1 (ja) ゼオライト膜および分離膜
JP3922389B2 (ja) ゼオライト膜の製造方法及び製造装置、並びにこの方法により得られたゼオライト管状分離膜
EP2412427B1 (en) Zeolite membrane, separation membrane, and use thereof
Tian et al. Synthesis of a SAPO-34 membrane on macroporous supports for high permeance separation of a CO 2/CH 4 mixture
JPWO2017142056A1 (ja) ゼオライト分離膜およびその製造方法
US20140291245A1 (en) Ceramic separation filter and dehydration method
JP2016174996A (ja) ゼオライト分離膜および分離モジュール
JP2012016688A (ja) 熱亀裂が防止されたゼオライト分離膜及びその製造方法
JPH0543219A (ja) 晶出方法
JP2012067090A (ja) 有機溶剤−酸−水混合物からの有機溶剤の回収方法
WO2018131707A1 (ja) 分離膜の製造方法
JP2004344755A (ja) ゼオライト複合薄膜
JP5522470B2 (ja) Afi型アルミノリン酸塩の多孔性結晶自立膜およびその製造方法
Kuzniatsova et al. Synthesis of thin, oriented zeolite a membranes on a macroporous support
JP2004082008A (ja) 種結晶の担持方法によって分離係数が決定されるゼオライト膜の製造方法
JP2004002160A (ja) ゼオライト結晶のコーティング方法、ゼオライト結晶がコーティングされた基材、ゼオライト膜の製造方法、ゼオライト膜、およびゼオライト膜を利用した分離方法
JP2012050930A (ja) ゼオライト分離膜、およびその製造方法
CN104150503B (zh) 一种sapo-18分子筛膜的制备方法
Truter et al. Preparation of ZSM-5 zeolite coatings within capillary microchannels
Yang et al. Induction of zeolite membrane formation by implanting zeolite crystals into the precursor of ceramic supports
JP6696805B2 (ja) 流体分離材料およびその製造方法
JP2003238147A (ja) Mfi型ゼオライトの合成方法、mfi型ゼオライト結晶、mfi型ゼオライトが塗布された基材、ゼオライト膜の製造方法、および分離方法
JP2005262189A (ja) 分離膜および分離膜の作製方法
JP2002018247A (ja) 混合物分離膜装置の製造方法及び混合物分離膜装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018563329

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18742319

Country of ref document: EP

Kind code of ref document: A1