WO2018135382A1 - ロータ及びそれを用いたモータ - Google Patents

ロータ及びそれを用いたモータ Download PDF

Info

Publication number
WO2018135382A1
WO2018135382A1 PCT/JP2018/000570 JP2018000570W WO2018135382A1 WO 2018135382 A1 WO2018135382 A1 WO 2018135382A1 JP 2018000570 W JP2018000570 W JP 2018000570W WO 2018135382 A1 WO2018135382 A1 WO 2018135382A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
space
core
salient pole
rotor core
Prior art date
Application number
PCT/JP2018/000570
Other languages
English (en)
French (fr)
Inventor
智哉 上田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201880007253.8A priority Critical patent/CN110178288A/zh
Priority to US16/461,847 priority patent/US20190372411A1/en
Priority to DE112018000462.7T priority patent/DE112018000462T5/de
Publication of WO2018135382A1 publication Critical patent/WO2018135382A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • H02K1/2781Magnets shaped to vary the mechanical air gap between the magnets and the stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2746Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets arranged with the same polarity, e.g. consequent pole type

Definitions

  • the present invention relates to a rotor and a motor using the rotor.
  • the magnetic characteristics of each magnetic pole are unbalanced larger than that of a normal motor in which all the magnetic poles are composed of rotor magnets. That is, in the rotor of the continuous motor, since a part of the rotor core is used as the magnetic pole, a magnetic imbalance occurs between the magnetic pole constituted by the rotor magnet and the magnetic pole constituted by a part of the rotor core. When magnetic imbalance occurs in the rotor as described above, cogging torque and torque ripple are generated in the motor.
  • the magnetic pole formed by a part of the rotor core does not have a forcible force for inducing the magnetic flux, so that the magnetic flux generated on the back side of the rotor magnet flows through a portion having a small magnetic resistance in the rotor core. Therefore, depending on the shape of the salient pole portions of the rotor core, the magnetic flux may not flow evenly with respect to the plurality of salient pole portions. That is, since the direction and amount of magnetic flux flowing through the salient pole part of the rotor core depend on the shape of the salient pole part, a magnetic imbalance occurs in the rotor.
  • Patent Document 1 discloses a configuration in which a magnetic flux flow in the magnet and salient pole portions on both sides in the circumferential direction is suppressed by forming slits in the rotor core.
  • the magnet side that extends radially to the radially inner end of the rotor core on the radially inner end of the magnet in the rotor core, with the magnet serving as a radially outer end.
  • a slit is formed.
  • a salient pole side slit extending in the radial direction to the radially inner end of the rotor core is formed on the radially inner side of the salient pole in the rotor core.
  • the rotor core disclosed in Patent Document 1 is formed by bending a linearly continuous rotor core plate into a circular shape. Therefore, the salient pole side slit is formed inside the rotor core without opening at the outer peripheral surface of the salient pole in the rotor core.
  • An object of the present invention is to improve the magnetic imbalance in the rotor core by controlling the flow of magnetic flux in the rotor core, thereby realizing a configuration capable of reducing cogging torque and torque ripple generated in the motor.
  • a rotor has a plurality of salient pole portions projecting in a radial direction, and has a cylindrical rotor core extending along a central axis, and the projection in a circumferential direction on a surface of the rotor core. And a plurality of rotor magnets arranged alternately with the pole portions.
  • the salient pole part is one magnetic pole of the rotor.
  • the rotor magnet is the other magnetic pole of the rotor.
  • the rotor core includes a cylindrical core portion extending along the central axis, and a first space that penetrates the core portion in the axial direction and is located in the radial direction of the core portion with respect to the salient pole portion.
  • the magnetic unbalance in the rotor core is improved by controlling the flow of magnetic flux in the rotor core, thereby reducing the cogging torque and torque ripple generated in the motor. it can.
  • FIG. 1 is a diagram illustrating a schematic configuration of a motor according to the embodiment.
  • FIG. 2 is a partially enlarged view showing a part of the motor in an enlarged manner.
  • FIG. 3 is a diagram showing a partial configuration of a rotor model used for analysis.
  • FIG. 4A is a table showing the calculation result of the cogging torque.
  • FIG. 4b is a table showing calculation results of torque ripple.
  • FIG. 5 is a view corresponding to FIG. 3 in the case of an IPM motor.
  • FIG. 6a is a diagram corresponding to FIG. 4a in the case of an IPM motor.
  • FIG. 6b is a diagram corresponding to FIG. 4b in the case of an IPM motor.
  • FIG. 7 is a view corresponding to FIG. 1 of a motor according to another embodiment.
  • the direction parallel to the central axis of the rotor is “axial direction”
  • the direction orthogonal to the central axis is “radial direction”
  • the direction along the arc centered on the central axis is “circumferential direction”.
  • axial direction the direction parallel to the central axis of the rotor
  • radial direction the direction orthogonal to the central axis
  • circumferential direction the direction along the arc centered on the central axis
  • FIG. 1 shows a schematic configuration of a motor 1 according to an embodiment of the present invention.
  • the motor 1 includes a rotor 2 and a stator 3.
  • the motor 1 is a so-called continuous motor in which a part of the magnetic poles of the rotor 2 is constituted by a rotor core 11.
  • the rotor 2 rotates about the central axis P with respect to the stator 3.
  • the motor 1 is a so-called inner rotor type motor in which a columnar rotor 2 is rotatably disposed in a cylindrical stator 3.
  • the rotor 2 includes a rotor core 11, a rotor magnet 12, and a rotating shaft 13.
  • the rotor core 11 has a cylindrical shape extending along the central axis P.
  • the rotor core 11 is configured by laminating a plurality of electromagnetic steel plates formed in a predetermined shape in the thickness direction.
  • the rotor core 11 has a core portion 21 and a ring portion 31.
  • the core part 21 and the ring part 31 are each cylindrical.
  • the ring portion 31 extends along the central axis P and has a through hole 11a through which the rotary shaft 13 passes. That is, the rotating shaft 13 is disposed in the through hole 11a.
  • the through hole 11a penetrates the rotor core 11 in the axial direction.
  • the ring portion 31 has an annular cross section connected in the circumferential direction of the rotor core 11.
  • the ring portion 31 is located radially inward of the rotor core 11 with respect to a first space 24 and a second space 25 described later provided in the core portion 21.
  • the ring portion 31 of the rotor core 11 is directly connected to the rotating shaft 13, it is possible to prevent the rigidity of the rotor core 11 from being lowered. Moreover, since the ring portion 31 is connected in the circumferential direction of the rotor core 11, the rigidity of the rotor core 11 can be improved by the ring portion 31.
  • the core portion 21 has a cylindrical shape that extends along the central axis P and is located radially outward of the ring portion 31. That is, the core part 21 is disposed concentrically with the ring part 31.
  • the core portion 21 and the ring portion 31 are integrally formed and constitute the rotor core 11.
  • the core portion 21 has a plurality of rotor magnet mounting portions 22 and a plurality of salient pole portions 23 on the outer peripheral surface.
  • the plurality of rotor magnet attachment portions 22 and the plurality of salient pole portions 23 respectively project outward in the radial direction of the core portion 21.
  • the rotor magnet attachment portions 22 and the salient pole portions 23 are alternately arranged in the circumferential direction of the core portion 21, that is, the circumferential direction of the rotor core 11.
  • the rotor magnet 12 is fixed to the rotor magnet mounting portion 22. Specifically, the rotor magnet mounting portion 22 protrudes outward in the radial direction of the core portion 21, and the tip portion is planar. The rotor magnet 12 is fixed to the tip portion of the rotor magnet attachment portion 22. That is, the motor 1 in this embodiment is a so-called SPM motor (Surface Permanent Magnet Mtor) in which the rotor magnet 12 is disposed on the outer peripheral surface (surface) of the rotor core 11.
  • the rotor magnet 12 of the core portion 21 is the other magnetic pole in the rotor 2.
  • the salient pole portion 23 has a tapered shape in which the tip portion located outside in the radial direction of the rotor core 11 has a smaller length in the circumferential direction of the rotor core 11 as it goes outward in the radial direction of the rotor core 11.
  • the salient pole part 23 is one magnetic pole in the rotor 2.
  • a slit 11 b is formed between the rotor magnet attachment portion 22 and the salient pole portion 23.
  • the rotor core 11 has a plurality of first spaces 24 and a plurality of second spaces 25 surrounded by the core portion 21.
  • the rotor core 11 has a slit 26 (slit portion) that extends from each first space 24 to the outer surface 23 a of each salient pole portion 23 and opens at the outer surface 23 a of each salient pole portion 23.
  • the stator 3 is cylindrical.
  • the rotor 2 is disposed inside the stator 3 so as to be rotatable about the central axis P.
  • the stator 3 includes a stator core 51 and a stator coil 52.
  • the stator core 51 has a cylindrical yoke 51a and a plurality of teeth 51b extending radially inward from the inner surface of the yoke 51a in a cross section perpendicular to the central axis P.
  • Stator core 51 has slots 53 between adjacent teeth 51b.
  • a stator coil 52 is wound around each of the plurality of teeth 51b. That is, the stator coil 52 wound around the teeth 51 b is positioned in the plurality of slots 53.
  • stator coils 52 wound around the plurality of teeth 51b function as stator coils for each phase of the motor 1. Therefore, when the stator coil 52 is energized, a rotational driving force is generated in the rotor 2 due to the magnetic field generated by the stator coil 52 and the magnetic field generated in the rotor 2.
  • the rotor core 11 has a plurality of first spaces 24 and a plurality of second spaces 25 surrounded by the core portion 21.
  • the plurality of first spaces 24 and the plurality of second spaces 25 respectively penetrate the cylindrical core portion 21 in the axial direction. That is, the plurality of first spaces 24 and the plurality of second spaces 25 are each partitioned by a part of the core portion 21.
  • Each first space 24 and each second space 25 has a pentagonal shape in a cross section orthogonal to the central axis P.
  • the plurality of first spaces 24 and the plurality of second spaces 25 are arranged alternately at equal intervals in the circumferential direction of the rotor core 11.
  • the first space 24 is located radially inward of the core portion 21 with respect to the salient pole portion 23 in a cross section orthogonal to the central axis P of the rotor core 11.
  • the first space 24 has a pentagonal shape in which the apex 24 a is located radially inward of the core portion 21 with respect to the central portion of the salient pole portion 23 in the circumferential direction of the core portion 21 in the cross section.
  • the second space 25 is located radially inward of the core portion 21 with respect to the rotor magnet 12 in a cross section orthogonal to the central axis P of the rotor core 11.
  • the second space 25 has a pentagonal shape in which the vertex 25 a is located radially inward of the core portion 21 with respect to the central portion of the rotor magnet 12 in the circumferential direction of the core portion 21 in the cross section.
  • a part of the core portion 21 is located between the rotor magnet 12 and the second space 25. That is, no slit described later is provided between the rotor magnet 12 and the second space 25.
  • first space 24 and the second space 25 have cross-sections perpendicular to the central axis P of the rotor core 11, and their apexes 24 a and 25 a are on the radially outer side of the rotor core 11 in the first space 24 and the second space 25. To position.
  • ⁇ Variation of magnetic flux generated in the rotor core 11 by the rotor magnet 12 can be further reduced by configuring the first space 24 and the second space 25 as described above. Therefore, the magnetic flux generated in the rotor core 11 can be controlled with higher accuracy.
  • the first space 24 and the second space 25 have the same shape and size in a cross section perpendicular to the central axis P of the rotor core 11. Further, as described above, the plurality of first spaces 24 and the plurality of second spaces 25 are alternately arranged at equal intervals in the circumferential direction of the rotor core 11. That is, in the cross section, the first space 24 and the second space 25 are such that the center of the first space 24 in the circumferential direction of the rotor core 11 and the center of the second space 25 in the circumferential direction of the rotor core 11 are the circumference of the rotor core 11. Evenly spaced in the direction. Thereby, since it becomes easy to control the flow of the magnetic flux in the rotor core 11, the magnetic imbalance of the circumferential direction of the rotor core 11 can be suppressed.
  • the vertex 24a (outer end) of the first space 24 and the vertex 25a (outer end) of the second space 25 have the same position in the radial direction of the rotor core 11 in the cross section perpendicular to the central axis P of the rotor core 11. Thereby, since it becomes easy to control the flow of the magnetic flux in the rotor core 11, the magnetic imbalance of the circumferential direction of the rotor core 11 can be suppressed.
  • the outer ends of the first space 24 and the second space 25 mean the outermost portions in the radial direction of the rotor core 11, that is, the apexes 24a and 25a.
  • the radial position means a position in the radial direction of the rotor core 11 in a cross section perpendicular to the central axis P of the rotor core 11. That is, the same radial position means that the distance from the central axis P in the radial direction of the rotor core 11 is the same in the cross section.
  • Fig. 2 shows an enlarged part of the motor 1.
  • the inner surface 21 a facing the second space 25 of the core portion 21 at the center position of the rotor magnet 12 in the circumferential direction of the rotor core 11 (core portion 21) in a cross section orthogonal to the central axis P of the motor 1.
  • the radial distance X between the inner surface 21a of the rotor core 12 and the outer surface 12a of the rotor magnet 12 is the radial distance X between the inner surface 21a of the rotor core 11 and the outer surface 12a of the rotor magnet 12 at the end position of the rotor magnet 12. It is shorter than the radial distance Y.
  • the radial distance X may be the same as the radial distance Y.
  • a region where magnetic flux is generated can be formed in the rotor core 11 by the second space 25 so as to connect the rotor magnet 12 and the salient pole portion 23. That is, with the above-described configuration, in the cross section orthogonal to the central axis P of the rotor core 11, the region where the magnetic flux flows in the core portion 21 at the end portion position of the rotor magnet 12, and the magnetic flux in the core portion 21 at the central position of the rotor magnet 12. By making it larger than the flowing region, the magnetic flux can flow from the rotor magnet 12 to the salient pole portion 23 more efficiently. Therefore, the rotor magnet 12 can generate a magnetic flux in the rotor core 11 in an efficient and controlled manner.
  • the inner surface 21 a is a surface of the core portion 21 that partitions the second space 25. That is, the second space 25 is constituted by a region surrounded by the inner surface 21a.
  • the radial distance means a distance between two points in the radial direction of the rotor core 11 in a cross section perpendicular to the central axis P of the rotor core 11.
  • the rotor core 11 has a slit 26 (slit portion) extending from the first space 24 in the radial direction of the rotor core 11 in the salient pole portion 23.
  • the slit 26 extends from the apex 24 a of the first space 24 to the outer peripheral surface of the salient pole portion 23 in the cross section orthogonal to the central axis P of the rotor core 11, and opens at the outer peripheral surface.
  • the salient pole part 23 is divided into two by the slit 26 in the circumferential direction of the rotor core 11.
  • the magnetic flux generated in the salient pole part 23 of the rotor core 11 by the rotor magnet 12 can be controlled with high accuracy. That is, the salient pole part 23 of the rotor core 11 is provided with a slit 26 that extends from the first space 24 to the outer surface 23a of the salient pole part 23 and opens to the outer surface 23a. In the cross section orthogonal to P, the range in which the magnetic flux is generated in the salient pole portion 23 by the rotor magnet 12 can be controlled more reliably.
  • the direction and amount of magnetic flux generated in the rotor core 11 can be controlled. Therefore, the magnetic flux generated in the rotor core 11 can be controlled more reliably, and the cogging torque and torque ripple generated in the motor 1 can be reduced.
  • the slit 26 is located at the center in the circumferential direction of the rotor core 11 in the salient pole portion 23 in a cross section orthogonal to the central axis P. Therefore, the salient pole portion 23 is divided in half by the slit 26 in the circumferential direction of the rotor core 11. Thereby, in the two sections of the salient pole portion 23 divided by the slit 26 in the cross section, the magnetic flux density of the magnetic flux generated by the adjacent rotor magnets 12 can be made uniform. Therefore, the cogging torque and torque ripple generated in the motor can be reduced without being affected by the rotation direction of the rotor 2.
  • the inner side of the slit 26 in the radial direction of the rotor core 11 is connected to the first space 24.
  • One space 40 is formed by the slit 26 and the first space 24.
  • the outer side portion in the radial direction of the rotor core 11 in the cross section perpendicular to the central axis P of the rotor core 11 is the circumferential direction of the rotor core 11 compared to the inner side portion in the radial direction of the rotor core 11.
  • the length at is small.
  • a part of the space 40 extends toward the outer surface 23a of the salient pole portion 23 and opens to the outer surface 23a.
  • the slit 26 preferably has a circumferential width of the rotor core 11 of 0.3 mm or more. By setting the width of the slit 26 to 0.3 mm or more, the slit 26 capable of dividing the salient pole portion 23 in the circumferential direction of the rotor core 11 can be easily formed in the rotor core 11.
  • each of the first space 24 and the second space 25 has an air layer. Since the air layer has a lower magnetic permeability than the rotor core 11, the flow of magnetic flux is prevented by the first space 24 and the second space 25.
  • the first space 24 and the second space 25 do not necessarily have air, and may be any region in the rotor core 11 that has a larger magnetic resistance than other portions. For example, a substance other than air may exist in the space.
  • the slit 26 may have an air layer in the slit 26 or a substance other than air may exist.
  • the rotor core 11 in which the rotor magnet 12 is arranged on the outer peripheral surface is provided with slits A1, C1, slit opening B1, second space D1, and first space E1, respectively.
  • the difference in effect was confirmed from the viewpoint of cogging torque and torque ripple generated in the motor.
  • the slit A1 is a slit connecting the second space and the rotor magnet.
  • the slit C1 is a slit that connects the first space and the outer surface of the magnetic pole portion.
  • the slit opening B1 is an opening portion of a slit that connects the first space and the outer surface of the magnetic pole portion.
  • the slit opening B1 and the slit C1 correspond to the slit 26 in FIGS.
  • the first space E1 and the second space D1 correspond to the first space 24 and the second space 25 in FIGS. 1 and 2, respectively.
  • 4A and 4B show the analysis results.
  • 4a and 4b show that the slits A1 and C1, the slit opening B1, the second space D1 and the first space E1 are “air” and metal, respectively (space or slits are provided). This is the result of determining the cogging torque and torque ripple generated in the motor for a total of 11 patterns in the combination with the (not-in-state).
  • the eleven patterns are indicated by circled numbers, respectively.
  • each pattern of circled numbers 1 to 11 is referred to as pattern 1 to pattern 11, respectively.
  • FIG. 4a shows the calculation result of the cogging torque generated in the motor.
  • FIG. 4b shows a calculation result of torque ripple generated in the motor.
  • blanks in the table indicate the case where each component is a metal, that is, the case where no space or slit is provided in the rotor core.
  • the numbers in the cogging torque column indicate the order in which the cogging torque values are small.
  • the numbers in the torque ripple column indicate the order in which the torque ripple value is small.
  • the configuration of the above-described embodiment that is, the following configuration is most preferable from the viewpoint of suppressing cogging torque and torque ripple generated in the motor.
  • the rotor core 11 has a first space 24 positioned radially inward of the rotor core 11 with respect to the salient pole portion 23, and a second space 25 positioned radially inward of the rotor core 11 with respect to the rotor magnet 12. .
  • a slit 26 extending from the first space 24 to the outer surface 23 a of the salient pole portion 23 and opening on the outer surface 23 a of the salient pole portion 23 is provided.
  • no slit is provided between the rotor magnet 12 and the second space 25, that is, a part of the core portion 21 of the rotor core 11 is located between the rotor magnet 12 and the second space 25.
  • the rotor 102 shown in FIG. 5 is different from the rotor 2 shown in FIGS. 1 to 3 in that the rotor magnet 12 is disposed in the rotor core 111 and the protruding length of the salient pole portion 123 in the radial direction of the rotor core 111 is the same as that of FIG.
  • the configuration is different from the rotor 2 shown in FIGS. 1 to 3 described above in a small point.
  • Other configurations are the same as those of the rotor 2 shown in FIGS. 1 to 3 described above, and detailed description thereof is omitted.
  • the slit A2 is a slit connecting the second space and the rotor magnet.
  • the slit C2 is a slit that connects the first space and the outer surface of the magnetic pole part.
  • the slit opening B2 is an opening portion of a slit that connects the first space and the outer surface of the magnetic pole portion.
  • FIGS. 6a and 6b show the analysis results.
  • FIGS. 6a and 6b are similar to FIGS. 4a and 4b, in which the slits A2 and C2, the slit opening B2, the second space D2 and the first space E2 are “air” and metal, respectively. It is the result of having calculated
  • eleven patterns are indicated by circled numbers.
  • patterns 1 to 11 with circled numbers are referred to as patterns 1 to 11, respectively.
  • Fig. 6a shows the calculation result of the cogging torque generated in the motor.
  • FIG. 6b shows a calculation result of torque ripple generated in the motor.
  • the blanks in the table indicate the case where each component is a metal, that is, the case where no space or slit is provided in the rotor core, as in FIGS. 4A and 4B.
  • the numbers in the cogging torque column indicate the order in which the cogging torque values are small.
  • the numbers in the torque ripple column indicate the order in which the torque ripple value is small.
  • the configuration of the present embodiment having the slit 26 can more effectively suppress cogging torque and torque ripple generated in the motor in the configuration in which the rotor magnet is disposed on the surface of the rotor core (SPM motor). it can.
  • the magnetic flux generated in the salient pole part 23 of the rotor core 11 by the rotor magnet 12 can be controlled with high accuracy. That is, the salient pole part 23 of the rotor core 11 is orthogonal to the central axis P of the rotor core 11 by providing a slit 26 extending from the first space 24 to the outer surface 23a of the salient pole part 23 and opening to the outer surface 23a. In the cross section, the range in which the magnetic flux is generated in the salient pole portion 23 by the rotor magnet 12 can be controlled more reliably.
  • the direction and amount of magnetic flux generated in the rotor core 11 can be controlled. Therefore, the magnetic flux generated in the rotor core 11 can be controlled more reliably, and the cogging torque and torque ripple generated in the motor 1 can be reduced.
  • the slit 26 is provided at a half position of the salient pole portion 23 in the circumferential direction of the rotor core 11 in a cross section orthogonal to the central axis P of the rotor core 11. Therefore, in the cross section, in two regions of the salient pole portion 23 divided by the slit 26, the magnetic flux density of the magnetic flux generated by the adjacent rotor magnets 12 can be made uniform. Therefore, the cogging torque and torque ripple generated in the motor can be reduced without being affected by the rotation direction of the rotor 2.
  • the radial distance X is shorter than the radial distance Y between the inner surface 21 a facing the second space 25 of the core portion 21 and the outer surface 12 a of the rotor magnet 12 at the end position of the rotor magnet 12 in the circumferential direction.
  • a region where magnetic flux is generated can be formed in the rotor core 11 by the second space 25 so as to connect the rotor magnet 12 and the salient pole portion 23. That is, with the above-described configuration, in the cross section orthogonal to the central axis P of the rotor core 11, the region where the magnetic flux flows in the core portion 21 at the end portion position of the rotor magnet 12, and the magnetic flux By making it larger than the flowing region, the magnetic flux can flow from the rotor magnet 12 to the salient pole portion 23 more efficiently.
  • the rotor magnet 12 can generate a magnetic flux in the rotor core 11 in an efficient and controlled manner.
  • a part of the core portion 21 is located between the rotor magnet 12 and the second space 25 in the rotor 2.
  • the first space 24 and the second space 25 are each partitioned by a part of the core portion 21.
  • the salient pole part 23 and the rotor magnet 12 are arranged at equal intervals in the circumferential direction of the rotor core 11 in a cross section orthogonal to the central axis P.
  • the first space 24 and the second space 25 are arranged at equal intervals in the circumferential direction of the rotor core 11 in a cross section orthogonal to the central axis P of the rotor core 11.
  • the variation of the magnetic flux generated in the rotor core 11 by the rotor magnet 12 can be further reduced. Therefore, the magnetic flux generated in the rotor core 11 can be controlled with higher accuracy.
  • the first space 24 and the second space 25 have the same radial position of the outer end in the radial direction of the rotor core 11 in the cross section orthogonal to the central axis P.
  • the motor 1 further includes the rotating shaft 13 extending along the central axis P.
  • the rotor core 11 further includes a ring portion 31 having a through hole 11 a that penetrates in the axial direction of the rotor core 11 inwardly in the radial direction of the rotor core 11 than the first space 24 and the second space 25.
  • a rotating shaft 13 is disposed in the through hole 11a.
  • the ring portion 31 of the rotor core 11 is directly connected to the rotating shaft 13, it is possible to prevent the rigidity of the rotor core 11 from being lowered. Moreover, since the ring portion 31 is connected in the circumferential direction of the rotor core 11, the rigidity of the rotor core 11 can be improved by the ring portion 31.
  • the first space 24 has a vertex 24 a radially inward of the rotor core 11 with respect to the central portion of the salient pole portion 23 in the circumferential direction of the rotor core 11 in a cross section orthogonal to the central axis P of the rotor core 11. It is located in a pentagonal shape.
  • the second space 25 has a pentagonal shape in which the apex 25a is located radially inward of the rotor core 11 with respect to the central portion of the salient pole portion 23 in the circumferential direction of the rotor core 11 in the cross section.
  • the variation of the magnetic flux generated in the rotor core 11 by the rotor magnet 12 can be further reduced. Therefore, the magnetic flux generated in the rotor core 11 can be controlled with higher accuracy.
  • the rotor core 11 is positioned first in the radial direction of the rotor core 11 with respect to the salient pole portion 23, and the second space is positioned radially inward of the rotor core 11 with respect to the rotor magnet 12. And a space 25.
  • the first space is located radially inward of the rotor core with respect to the salient pole part 23 and the rotor magnet 12, and the second space is radially inward of the rotor core with respect to the salient pole part 23 and the rotor magnet 12. May be located.
  • the first space 224 is located radially inward of the rotor core 211 with respect to the salient pole part 223 and the rotor magnet 12
  • the second space 225 is It is located radially inward of the rotor core 211 with respect to the salient pole part 223 and the rotor magnet 12.
  • the central portion of the rotor core 211 in the circumferential direction is positioned radially inward of the rotor core 211 with respect to the middle of the rotor core 12 and the salient pole portion 223 in the circumferential direction of the rotor core 211.
  • the second space 225 has a central portion in the circumferential direction of the rotor core 211 located radially inward of the rotor core 211 with respect to the salient pole portion 223 and the middle of the rotor core 12 in the circumferential direction of the rotor core 211.
  • Each of the first space 224 and the second space 225 has a shape in which both end portions in the circumferential direction of the rotor core 211 are positioned radially outward of the rotor core 211 from the center portion in a cross section orthogonal to the central axis P of the rotor core 211.
  • the first space 224 is connected to a slit 226 (slit portion) that extends from the first space 224 to the outer surface 223a of the salient pole part 223 and opens to the outer surface 223a of the salient pole part 223. That is, the slit 226 divides the salient pole part 223 into two in the circumferential direction of the rotor core 211.
  • the slit 226 is connected not only to the first space 224 but also to the second space 225 on the inner side in the radial direction of the rotor core 211. In other words, the slit 226 is branched into two inward in the radial direction of the rotor core 211, and the branched tip portions are connected to the first space 224 and the second space 225, respectively.
  • the magnetic flux generated from the rotor magnet 12 flows in the region defined by the slit 226 in the salient pole portion 223. Therefore, the flow of magnetic flux in the rotor core 211 can be controlled. Therefore, magnetic imbalance in the rotor core 211 can be improved, and cogging torque and torque ripple generated in the motor can be reduced.
  • the slit 226 may be connected to the first space 224 on the inner side in the radial direction of the rotor core 211 without branching. That is, the slit 226 may obliquely divide the salient pole portion 223 when the central axis P is viewed from the axial direction. In this case, the plurality of slits 226 are inclined in the same direction in the circumferential direction of the rotor core 211. Thereby, the magnetic imbalance in the rotor core 211 can be improved in the rotation of the motor in one direction. Therefore, cogging torque and torque ripple generated in the motor rotating in the one direction can be reduced.
  • the first space 24 and the second space 25 of the rotor core 11 have a pentagonal shape defined by the core portion 21 in a cross section orthogonal to the central axis P of the rotor core 11.
  • the first space and the second space may have a shape other than a pentagonal shape in the cross section.
  • the first space and the second space may be surrounded by a curved surface, for example.
  • the first space and the second space may have different shapes and sizes in the cross section.
  • the first space and the second space may be connected.
  • the outer ends in the first space and the second space each mean a portion located on the outermost side in the radial direction of the rotor core.
  • first space 24 and the second space 25 of the rotor core 11 are alternately arranged in the circumferential direction of the rotor core 11, and the center of the first space 24 and the center of the second space 25 are equally spaced. .
  • the center of the first space 24 and the center of the second space 25 may not be equally spaced.
  • the motor 1 is an inner rotor type motor in which a columnar rotor 2 is rotatably disposed in a cylindrical stator 3.
  • the motor may be an outer rotor type motor in which a columnar stator is disposed in a cylindrical rotor.
  • the cylindrical rotor core has the first space, the second space, and the slit, so that the same effect as that of the above embodiment can be obtained.
  • the radially outer ends of the first space and the second space mean the innermost portion in the radial direction of the rotor core.
  • the present invention is applicable to a motor having a rotor in which rotor magnets and salient pole portions are alternately arranged on the outer surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

ロータ2は、径方向に突出する複数の突極部23を有し、且つ、中心軸Pに沿って延びる円筒状のロータコア11と、ロータコア11の外周面上に周方向に突極部23と交互に並んで配置された複数のロータ磁石12と、を備える。ロータコア11は、円筒状のコア部21と、コア部21を軸方向に貫通し、突極部23に対してコア部21の径方向内方に位置する第一空間24と、コア部21を軸方向に貫通し、ロータ磁石12に対してコア部21の径方向内方に位置する第二空間25と、第一空間24から突極部23の外周面23aに延び、且つ、外表面23aに開口するスリット26と、を有する。

Description

ロータ及びそれを用いたモータ
 本発明は、ロータ及びそれを用いたモータに関する。
 従来より、モータに用いられるロータとして、ロータコア及びロータ磁石を有する構成が知られている。近年のレアアースの価格高騰に伴うロータ磁石の価格上昇により、ロータ磁石の使用量を減らしたロータの構成の検討が進められている。ロータにおけるロータ磁石の使用量を減らしたモータとして、例えば特許文献1に開示されるように、ロータコアの一部を擬似極として使用するコンシクエント型モータが提案されている。
 一般的に、ロータコアの一部を擬似極として使用するコンシクエント型モータでは、全ての磁極がロータ磁石によって構成されている通常のモータに比べて、磁極毎の磁気特性のアンバランスが大きい。すなわち、コンシクエント型モータのロータでは、ロータコアの一部を磁極として使用しているため、ロータ磁石によって構成された磁極とロータコアの一部によって構成された磁極とに、磁気的なアンバランスが生じる。このようにロータに磁気的なアンバランスが生じた場合、モータにコギングトルク及びトルクリップルが生じる。
 コンシクエント型モータにおいて、磁極毎に磁気的なアンバランスが生じる理由は、以下のとおりである。
 ロータコアの一部(突極部)によって構成された磁極は、磁束を誘導する強制力を有しないため、ロータ磁石の背面側に生じた磁束が、ロータコアにおいて磁気抵抗の小さい部分を流れる。よって、ロータコアの突極部の形状によっては、複数の突極部に対して均等に磁束が流れない場合がある。すなわち、ロータコアの突極部を流れる磁束の方向や磁束量が、前記突極部の形状に依存するため、ロータに磁気的なアンバランスを生じる。
 これに対し、前記特許文献1には、ロータコアに、スリットを形成することにより、マグネット及びその周方向両側にある突極部における磁束の流れの偏りを抑える構成が開示されている。
 具体的には、前記特許文献1に開示されている構成では、ロータコアにおけるマグネットの径方向内側に、該マグネットを径方向外側端部として前記ロータコアの径方向内側端部まで径方向に延びる磁石側スリットが形成されている。また、前記特許文献1に開示されている構成では、ロータコアにおける突極の径方向内側に、該ロータコアの径方向内側端部まで径方向に延びる突極側スリットが形成されている。
 なお、前記特許文献1に開示されているロータコアは、直線状に連続したロータコア用板材を円形状に曲げることにより形成される。そのため、前記突極側スリットは、前記ロータコアにおける突極の外周面で開口することなく、前記ロータコアの内部に形成されている。
特開2012-16130号公報
 上述の特許文献1に開示されるように、ロータコアの内部に形成されたスリットが、前記ロータコアにおける突極(突極部)の外表面で開口していない場合、すなわち、前記ロータコアにおける突極部の外表面が周方向に繋がっている場合、その繋がっている部分で磁束の流れが乱れるため、磁束を設計どおりにコントロールすることが難しい。
 本発明の目的は、ロータコア内の磁束の流れをコントロールすることによって該ロータコアにおける磁気アンバランスを改善し、これにより、モータに生じるコギングトルク及びトルクリップルを低減可能な構成を実現することにある。
 本発明の一実施形態に係るロータは、径方向に突出する複数の突極部を有し、且つ、中心軸に沿って延びる円筒状のロータコアと、前記ロータコアの表面上に周方向に前記突極部と交互に並んで配置された複数のロータ磁石と、を備えたロータである。前記突極部は、前記ロータの一方の磁極である。前記ロータ磁石は、前記ロータの他方の磁極である。前記ロータコアは、前記中心軸に沿って延びる円筒状のコア部と、前記コア部を軸方向に貫通し、前記突極部に対して前記コア部の径方向の内部に位置する第一空間と、前記コア部を軸方向に貫通し、前記ロータ磁石に対して前記コア部の径方向の内部に位置する第二空間と、前記第一空間から前記突極部の外表面に延び、且つ、前記突極部の外表面に開口するスリットと、を有する。
 本発明の一実施形態に係るロータによれば、ロータコア内の磁束の流れをコントロールすることによって該ロータコアにおける磁気アンバランスを改善し、これにより、モータに生じるコギングトルク及びトルクリップルを低減することができる。
図1は、実施形態に係るモータの概略構成を示す図である。 図2は、モータの一部を拡大して示す部分拡大図である。 図3は、解析に用いたロータのモデルの一部の構成を示す図である。 図4aは、コギングトルクの計算結果を示す表である。 図4bは、トルクリップルの計算結果を示す表である。 図5は、IPMモータの場合の図3相当図である。 図6aは、IPMモータの場合の図4a相当図である。 図6bは、IPMモータの場合の図4b相当図である。 図7は、その他の実施形態に係るモータの図1相当図である。
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。なお、図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。
 なお、以下の説明では、ロータの中心軸と平行な方向を「軸線方向」、中心軸に直交する方向を「径方向」、中心軸を中心とする円弧に沿う方向を「周方向」、とそれぞれ称する。ただし、この方向の定義により、本発明に係るロータ及びモータの使用時の向きを限定する意図はない。
 (全体構成)
 図1に、本発明の実施形態に係るモータ1の概略構成を示す。モータ1は、ロータ2と、ステータ3とを備える。モータ1は、後述するように、ロータ2の磁極の一部が、ロータコア11によって構成された、いわゆるコンシクエント型モータである。モータ1は、ステータ3に対して、ロータ2が中心軸Pを中心として回転する。本実施形態では、モータ1は、円筒状のステータ3内に、円柱状のロータ2が回転可能に配置された、いわゆるインナーロータ型のモータである。
 ロータ2は、ロータコア11と、ロータ磁石12と、回転軸13とを備える。
 ロータコア11は、中心軸Pに沿って延びる円筒状である。ロータコア11は、所定の形状に形成された電磁鋼板を、厚み方向に複数枚、積層することによって構成されている。
 ロータコア11は、コア部21とリング部31とを有する。コア部21及びリング部31は、それぞれ円筒状である。リング部31は、中心軸Pに沿って延びるとともに、回転軸13が貫通する貫通孔11aを有する。すなわち、回転軸13は、貫通孔11a内に配置されている。貫通孔11aは、ロータコア11を軸方向に貫通している。リング部31は、ロータコア11の周方向に繋がった断面円環状である。リング部31は、コア部21に設けられた後述の第一空間24及び第二空間25よりも、ロータコア11の径方向内方に位置する。
 これにより、回転軸13に対してロータコア11のリング部31が直接、接続されるため、ロータコア11の剛性の低下を防止できる。しかも、リング部31は、ロータコア11の周方向に繋がっているため、リング部31によってロータコア11の剛性を向上することができる。
 コア部21は、中心軸Pに沿って延び、且つ、リング部31の径方向外方に位置する円筒状である。すなわち、コア部21は、リング部31と同心状に配置されている。コア部21及びリング部31は、一体に形成されていて、ロータコア11を構成する。
 コア部21は、外周面に、複数のロータ磁石取付部22及び複数の突極部23を有する。複数のロータ磁石取付部22及び複数の突極部23は、それぞれ、コア部21の径方向外方に突出している。ロータ磁石取付部22及び突極部23は、コア部21の周方向、すなわちロータコア11の周方向に、交互に並んで配置されている。
 ロータ磁石取付部22には、ロータ磁石12が固定されている。具体的には、ロータ磁石取付部22は、コア部21の径方向外方に突出しており、先端部分が平面状である。ロータ磁石12は、ロータ磁石取付部22の先端部分に固定されている。すなわち、本実施形態におけるモータ1は、ロータ磁石12がロータコア11の外周面(表面)上に配置された、いわゆるSPMモータ(Surface Permanent Magnet Mtor)である。コア部21のロータ磁石12が、ロータ2における他方の磁極である。
 突極部23は、ロータコア11の径方向において外側に位置する先端部分が、ロータコア11の径方向外方に向かうほどロータコア11の周方向における長さが小さいテーパ状である。突極部23が、ロータ2における一方の磁極である。
 なお、ロータコア11の周方向において、ロータ磁石取付部22と突極部23との間には、スリット11bが構成されている。
 ロータコア11は、コア部21に囲まれた複数の第一空間24及び複数の第二空間25を有する。ロータコア11は、各第一空間24から各突極部23の外表面23aに延び、且つ、各突極部23の外表面23aで開口するスリット26(スリット部)を有する。このようにロータコア11の突極部23に外表面23aで開口するスリット26を設けることにより、後述するように、ロータ磁石12によってロータコア11の突極部23に生じる磁束を、精度良くコントロールすることができる。これらの第一空間24、第二空間25及びスリット26の詳しい構成は、後述する。
 ステータ3は、円筒状である。ステータ3の内方に、ロータ2が中心軸Pを中心として回転可能に配置されている。ステータ3は、ステータコア51と、ステータコイル52とを備える。ステータコア51は、中心軸Pに直交する断面において、円筒状のヨーク51aと、ヨーク51aの内面から径方向内方に延びる複数のティース51bとを有する。ステータコア51は、隣り合うティース51bの間に、それぞれ、スロット53を有する。複数のティース51bには、それぞれ、ステータコイル52が巻かれている。すなわち、複数のスロット53内には、ティース51bに巻かれたステータコイル52が位置付けられている。
 特に図示しないが、複数のティース51bにそれぞれ巻かれたステータコイル52は、モータ1の各相のステータコイルとして機能する。よって、ステータコイル52に対して通電を行った場合、ステータコイル52によって生じた磁界とロータ2に生じた磁界とによって、ロータ2に回転駆動力が発生する。
 (第一空間、第二空間及びスリットの構成)
 ロータコア11は、コア部21に囲まれた複数の第一空間24及び複数の第二空間25を有する。複数の第一空間24及び複数の第二空間25は、それぞれ、円筒状のコア部21を、軸方向に貫通している。すなわち、複数の第一空間24および複数の第二空間25は、それぞれ、コア部21の一部によって区画されている。各第一空間24及び各第二空間25は、それぞれ、中心軸Pに直交する断面において、五角形状である。複数の第一空間24及び複数の第二空間25は、ロータコア11の周方向に、交互に等間隔に並んで配置されている。
 第一空間24は、ロータコア11の中心軸Pに直交する断面において、突極部23に対してコア部21の径方向内方に位置する。第一空間24は、前記断面において、頂点24aが、コア部21の周方向における突極部23の中央部に対してコア部21の径方向内方に位置する五角形状である。
 第二空間25は、ロータコア11の中心軸Pに直交する断面において、ロータ磁石12に対してコア部21の径方向内方に位置する。第二空間25は、前記断面において、頂点25aが、コア部21の周方向におけるロータ磁石12の中央部に対してコア部21の径方向内方に位置する五角形状である。ロータ磁石12と第二空間25との間には、コア部21の一部が位置する。すなわち、ロータ磁石12と第二空間25との間には、後述するスリットが設けられていない。
 すなわち、第一空間24及び第二空間25は、ロータコア11の中心軸Pに直交する断面において、それらの頂点24a,25aが、第一空間24及び第二空間25におけるロータコア11の径方向外側に位置する。
 第一空間24及び第二空間25を上述の構成にすることで、ロータ磁石12によってロータコア11内に生じる磁束のばらつきをより低減することができる。よって、ロータコア11内に生じる磁束をより精度良くコントロールすることができる。
 本実施形態では、第一空間24と第二空間25とは、ロータコア11の中心軸Pに直交する断面において、同じ形状及び大きさである。また、上述のように、複数の第一空間24及び複数の第二空間25は、ロータコア11の周方向に、交互に等間隔に並んで配置されている。すなわち、第一空間24及び第二空間25は、前記断面において、ロータコア11の周方向における第一空間24の中心と、ロータコア11の周方向における第二空間25の中心とが、ロータコア11の周方向に等間隔である。これにより、ロータコア11における磁束の流れをコントロールしやすくなるため、ロータコア11の周方向の磁気アンバランスを抑制することができる。
 第一空間24の頂点24a(外端)及び第二空間25の頂点25a(外端)は、ロータコア11の中心軸Pに直交する断面において、ロータコア11の径方向における位置が同じである。これにより、ロータコア11における磁束の流れをコントロールしやすくなるため、ロータコア11の周方向の磁気アンバランスを抑制することができる。ここで、第一空間24及び第二空間25の外端とは、ロータコア11の径方向において、最も外側に位置する部分、すなわち頂点24a,25aを意味する。
 前記径方向の位置は、ロータコア11の中心軸Pに直交する断面において、ロータコア11の径方向における位置を意味する。すなわち、径方向位置が同じとは、前記断面において、ロータコア11の径方向における中心軸Pからの距離が同じであることを意味する。
 図2にモータ1の一部を拡大して示す。図2に示すように、モータ1の中心軸Pに直交する断面において、ロータコア11(コア部21)の周方向においてロータ磁石12の中央位置における、コア部21の第二空間25に向く内面21aとロータ磁石12の外表面12aとの径方向距離Xが、前記周方向においてロータ磁石12の端部位置における、ロータコア11の第二空間25に向く内面21aとロータ磁石12の外表面12aとの径方向距離Yよりも短い。なお、径方向距離Xは、径方向距離Yと同じであってもよい。
 上述の構成により、第二空間25によって、ロータコア11の内部に、ロータ磁石12と突極部23とを結ぶように磁束が発生する領域を形成することができる。すなわち、上述の構成により、ロータコア11の中心軸Pに直交する断面において、ロータ磁石12の端部位置においてコア部21に磁束が流れる領域を、ロータ磁石12の中央位置においてコア部21に磁束が流れる領域よりも大きくすることによって、ロータ磁石12から突極部23に磁束をより効率良く流すことができる。したがって、ロータ磁石12によって、ロータコア11内に、効率良く且つコントロールされた状態で磁束を生じさせることができる。
 ここで、内面21aは、第二空間25を区画するコア部21の面である。すなわち、内面21aによって囲まれた領域によって、第二空間25が構成される。
 前記径方向距離は、ロータコア11の中心軸Pに直交する断面において、ロータコア11の径方向における二点間の距離を意味する。
 図1及び図2に示すように、ロータコア11は、突極部23内に、第一空間24からロータコア11の径方向に延びるスリット26(スリット部)を有する。スリット26は、ロータコア11の中心軸Pに直交する断面において、第一空間24の頂点24aから突極部23の外周面に延び、且つ、該外周面で開口している。これにより、突極部23は、スリット26によって、ロータコア11の周方向に2分割されている。
 上述のようなスリット26が突極部23に設けられていることにより、ロータ磁石12によってロータコア11の突極部23に生じる磁束を精度良くコントロールすることができる。すなわち、ロータコア11の突極部23に、第一空間24から突極部23の外表面23aに延び、且つ、外表面23aに開口するスリット26が設けられていることにより、ロータコア11の中心軸Pに直交する断面において、ロータ磁石12によって突極部23に磁束が生じる範囲をより確実にコントロールすることができる。
 したがって、ロータコア11に突極部23とロータ磁石12とが交互に並んで配置された、いわゆるコンシクエント型モータにおいて、ロータコア11に生じる磁束の方向及び磁束量をコントロールすることができる。よって、ロータコア11に生じる磁束をより確実にコントロールして、モータ1に生じるコギングトルク及びトルクリップルを低減することができる。
 本実施形態では、スリット26は、中心軸Pに直交する断面において、突極部23におけるロータコア11の周方向の中央に位置する。よって、突極部23は、スリット26によって、ロータコア11の周方向に、半分に分割されている。これにより、前記断面において、スリット26によって分割された突極部23の2つの領域では、隣り合うロータ磁石12によって生じる磁束の磁束密度を、均等にすることができる。したがって、ロータ2の回転方向に影響されることなく、モータに生じるコギングトルク及びトルクリップルを低減することができる。
 スリット26は、ロータコア11の径方向における内方側が第一空間24に繋がっている。スリット26及び第一空間24によって、一つの空間40が形成されている。この空間40では、ロータコア11の中心軸Pに直交する断面において、ロータコア11の径方向における外方側の部分は、ロータコア11の径方向における内方側の部分に比べて、ロータコア11の周方向における長さが小さい。しかも、空間40は、その一部が突極部23の外表面23aに向かって延び、且つ、外表面23aに開口する。
 なお、スリット26は、ロータコア11の周方向の幅が0.3mm以上であることが好ましい。スリット26における前記幅を0.3mm以上にすることで、突極部23をロータコア11の周方向に分断可能なスリット26を、ロータコア11に容易に形成することができる。
 ここで、第一空間24及び第二空間25は、それぞれ、空気層を有する。空気層は、ロータコア11よりも透磁率が低いため、第一空間24及び第二空間25によって磁束の流れが妨げられる。第一空間24及び第二空間25は、必ずしも空気が存在する必要はなく、ロータコア11において、他の部分よりも磁気抵抗が大きい領域であればよい。例えば、空間内に、空気以外の物質が存在してもよい。スリット26も同様に、スリット26内に空気層を有していてもよいし、空気以外の物質が存在していてもよい。
 (第一空間、第二空間及びスリットによる効果)
 次に、上述のようにロータコア11に設けられた第一空間24、第二空間25及びスリット26の効果について説明する。
 図3に示すようにロータ磁石12が外周面上に配置されたロータコア11に、スリットA1,C1、スリット開口部B1、第二空間D1及び第一空間E1を、それぞれ設けた場合と設けなかった場合とで、モータに生じるコギングトルク及びトルクリップルの観点から、効果の違いを確認した。
 ここで、スリットA1は、第二空間とロータ磁石とを繋ぐスリットである。スリットC1は、第一空間と磁極部の外表面とを繋ぐスリットである。スリット開口部B1は、第一空間と磁極部の外表面とを繋ぐスリットの開口部分である。スリット開口部B1及びスリットC1は、図1及び図2におけるスリット26に相当する。第一空間E1及び第二空間D1は、それぞれ、図1及び図2における第一空間24及び第二空間25に相当する。
 なお、以下の説明では、図3に示すモータのモデルを作成し、該モデルを用いた有限要素法のシミュレーションによって、モータに生じるコギングトルク及びトルクリップルの各計算値を求めた。
 図4a及び図4bに、解析結果を示す。この図4a及び図4bは、スリットA1,C1、スリット開口部B1、第二空間D1及び第一空間E1が、それぞれ、“空気”である場合と、金属である場合(空間またはスリットが設けられていない状態)との組み合わせのうち、合計11パターンについて、モータに生じるコギングトルク及びトルクリップルをそれぞれ求めた結果である。図4a及び図4bにおいて、11のパターンを、それぞれ、丸付き数字で示す。以下の説明では、図4a及び図4bにおいて、丸付き数字の1から11の各パターンを、それぞれ、パターン1からパターン11と呼ぶ。
 図4aにモータに生じるコギングトルクの計算結果を示す。図4bにモータに生じるトルクリップルの計算結果を示す。なお、図4a及び図4bにおいて、表中の空欄は、各構成が金属である場合、すなわち、空間またはスリットがロータコアに設けられていない場合を示している。また、図4aにおいて、コギングトルクの欄における各数字は、コギングトルクの値が小さい順番を示す。同様に、図4bにおいて、トルクリップルの欄における各数字は、トルクリップルの値が小さい順番を示す。
 図4a及び図4bに示すように、ロータコアに、スリットA1を設けずに、スリットC1、スリット開口部B1、第二空間D1及び第一空間E1を設けたパターン2の場合に、モータに発生するコギングトルク及びトルクリップルが最小である。
 したがって、上述の本実施形態の構成、すなわち以下の構成が、モータに生じるコギングトルク及びトルクリップルを抑制する観点から、最も好ましい。
 ロータコア11は、突極部23に対してロータコア11の径方向内方に位置する第一空間24と、ロータ磁石12に対してロータコア11の径方向内方に位置する第二空間25とを有する。そして、第一空間24から突極部23の外表面23aに延び、且つ、突極部23の外表面23aに開口するスリット26を設ける。一方、ロータ磁石12と第二空間25との間にはスリットを設けない、すなわち、ロータ磁石12と第二空間25との間にはロータコア11のコア部21の一部が位置する。
 上述の構成により、モータに生じるコギングトルク及びトルクリップルを最も抑制することができる。
 図4a及び図4bに示すように、突極部23の外表面23aにスリット26の開口が設けられていない場合(図3におけるBが設けられていない場合、図4a及び図4bにおけるパターン3)には、モータに生じるコギングトルク及びトルクリップルが比較的大きい。よって、上述のように、第一空間24から突極部23の外表面に延びるスリット26を、突極部23の外表面に開口させる必要がある。
 図4a及び図4bに示すように、スリットA1を設けた場合(図4a及び図4bにおけるパターン1)でも、モータに生じるコギングトルクを抑制可能なため、ロータ磁石12と第二空間25との間に、スリットを設けてもよい。
 次に、本実施形態との比較として、図5に示すようにロータコア111内にロータ磁石12が配置された構成(IPMモータ:Interior Permanent Magnet Motor)についても、同様にコギングトルク及びトルクリップルを算出する解析を行った。
 図5に示すロータ102は、ロータ磁石12がロータコア111内に配置されている点と、ロータコア111の径方向における突極部123の突出長さが上述の図1から図3に示すロータ2に比べて小さい点で、上述の図1から図3に示すロータ2とは構成が異なる。その他の構成は、上述の図1から図3に示すロータ2と同様であるため、詳しい説明を省略する。
 図5に示す構成についても、ロータコア111に、スリットA2,C2、スリット開口部B2、第二空間D2及び第一空間E2を、それぞれ設けた場合と設けなかった場合とで、モータに生じるコギングトルク及びトルクリップルの観点から、効果の違いを確認した。
 ここで、スリットA2は、第二空間とロータ磁石とを繋ぐスリットである。スリットC2は、第一空間と磁極部の外表面とを繋ぐスリットである。スリット開口部B2は、第一空間と磁極部の外表面とを繋ぐスリットの開口部分である。
 なお、解析の条件等は、上述の図3に示す構成と同様である。
 図6a及び図6bに、解析結果を示す。この図6a及び図6bは、図4a及び図4bと同様、スリットA2,C2、スリット開口部B2、第二空間D2及び第一空間E2が、それぞれ、“空気”である場合と、金属である場合(空間またはスリットが設けられていない状態)との組み合わせのうち、合計11パターンについて、モータに生じるコギングトルク及びトルクリップルをそれぞれ求めた結果である。図6a及び図6bにおいても、11のパターンを、丸付き数字で示す。以下の説明では、図6a及び図6bにおいて、丸付き数字の1から11の各パターンを、それぞれ、パターン1からパターン11と呼ぶ。
 図6aにモータに生じるコギングトルクの計算結果を示す。図6bにモータに生じるトルクリップルの計算結果を示す。なお、図6a及び図6bにおいて、表中の空欄は、図4a及び図4bと同様、各構成が金属である場合、すなわち、空間またはスリットがロータコアに設けられていない場合を示している。また、図6aにおいても、コギングトルクの欄における各数字は、コギングトルクの値が小さい順番を示す。同様に、図6bにおいても、トルクリップルの欄における各数字は、トルクリップルの値が小さい順番を示す。
 図6a及び図6bに示すように、ロータコア111内にロータ磁石12が配置された構成では、スリットC2及びスリット開口部B2を設けることによって得られる効果(モータに生じるコギングトルク及びトルクリップルが抑制される効果)が、図3に示す構成よりも小さい(パターン1、2、8参照)。一方、スリットC2を設けない場合(パターン4)には、モータに生じるコギングトルク及びトルクリップルがより低減される。
 このように、スリット26を有する本実施形態の構成は、ロータコアの表面上にロータ磁石が配置された構成(SPMモータ)において、モータに生じるコギングトルク及びトルクリップルをより効果的に抑制することができる。
 以上のようにロータコア11の突極部23にスリット26を設けることにより、ロータ磁石12によってロータコア11の突極部23に生じる磁束を、精度良くコントロールすることができる。すなわち、ロータコア11の突極部23に、第一空間24から突極部23の外表面23aに延び、且つ、外表面23aに開口するスリット26を設けることによって、ロータコア11の中心軸Pに直交する断面において、ロータ磁石12によって突極部23に磁束が生じる範囲をより確実にコントロールすることができる。
 したがって、ロータコア11に突極部23とロータ磁石12とが交互に並んで配置された、いわゆるコンシクエント型モータにおいて、ロータコア11に生じる磁束の方向及び磁束量をコントロールすることができる。よって、ロータコア11に生じる磁束をより確実にコントロールして、モータ1に生じるコギングトルク及びトルクリップルを低減することができる。
 本実施形態の場合、スリット26は、ロータコア11の中心軸Pに直交する断面において、ロータコア11の周方向において突極部23の半分の位置に設けられている。よって、前記断面において、スリット26によって分割された突極部23の2つの領域では、隣り合うロータ磁石12によって生じる磁束の磁束密度を、均等にすることができる。したがって、ロータ2の回転方向に影響されることなく、モータに生じるコギングトルク及びトルクリップルを低減することができる。
 また、ロータコア11の中心軸Pに直交する断面において、ロータコア11の周方向においてロータ磁石12の中央位置における、コア部21の第二空間25に向く内面21aとロータ磁石12の外表面12aとの径方向距離Xが、前記周方向においてロータ磁石12の端部位置における、コア部21の第二空間25に向く内面21aとロータ磁石12の外表面12aとの径方向距離Yよりも短い。
 これにより、第二空間25によって、ロータコア11の内部に、ロータ磁石12と突極部23とを結ぶように磁束が発生する領域を形成することができる。すなわち、上述の構成により、ロータコア11の中心軸Pに直交する断面において、ロータ磁石12の端部位置においてコア部21に磁束が流れる領域を、ロータ磁石12の中央位置においてコア部21に磁束が流れる領域よりも大きくすることによって、ロータ磁石12から突極部23に磁束をより効率良く流すことができる。
 したがって、ロータ磁石12によって、ロータコア11内に、効率良く且つコントロールされた状態で磁束を生じさせることができる。
 上述の構成では、ロータ2において、ロータ磁石12と第二空間25との間に、コア部21の一部が位置する。これにより、ロータ磁石12によってロータコア11内に生じる磁束を、より精度良くコントロールすることができる。したがって、モータ1に生じるコギングトルク及びトルクリップルを低減することができる。
 上述の構成では、第一空間24及び第二空間25は、それぞれ、コア部21の一部によって区画されている。突極部23及びロータ磁石12は、中心軸Pに直交する断面において、ロータコア11の周方向に等間隔に配置されている。第一空間24および第二空間25は、ロータコア11の中心軸Pに直交する断面において、ロータコア11の周方向に等間隔に配置されている。
 これにより、ロータ磁石12によってロータコア11内に生じる磁束のばらつきをより低減することができる。よって、ロータコア11内に生じる磁束をより精度良くコントロールすることができる。
 上述の構成では、第一空間24及び第二空間25は、中心軸Pに直交する断面において、ロータコア11の径方向における外端の径方向位置が同じである。これにより、ロータ磁石12によってロータコア11内に生じる磁束のばらつきをより低減することができる。よって、ロータコア11内に生じる磁束をより精度良くコントロールすることができる。
 上述の構成では、モータ1は、中心軸Pに沿って延びる回転軸13をさらに備えている。ロータコア11は、第一空間24及び第二空間25よりもロータコア11の径方向内方において、ロータコア11の軸方向に貫通する貫通孔11aを備えたリング部31をさらに有する。貫通孔11a内には、回転軸13が配置されている。
 これにより、回転軸13に対してロータコア11のリング部31が直接、接続されるため、ロータコア11の剛性の低下を防止できる。しかも、リング部31は、ロータコア11の周方向に繋がっているため、リング部31によってロータコア11の剛性を向上することができる。
 上述の構成では、第一空間24は、ロータコア11の中心軸Pに直交する断面において、ロータコア11の周方向における突極部23の中央部に対してロータコア11の径方向内方に頂点24aが位置する、五角形状である。第二空間25は、前記断面において、ロータコア11の周方向における突極部23の中央部に対してロータコア11の径方向内方に頂点25aが位置する、五角形状である。
 これにより、ロータ磁石12によってロータコア11内に生じる磁束のばらつきをより低減することができる。よって、ロータコア11内に生じる磁束をより精度良くコントロールすることができる。
 (その他の実施形態)
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 前記実施形態では、ロータコア11が、突極部23に対してロータコア11の径方向内方に位置する第一空間24と、ロータ磁石12に対してロータコア11の径方向内方に位置する第二空間25とを有する。しかしながら、第一空間が、突極部23及びロータ磁石12に対してロータコアの径方向内方に位置し、第二空間が、突極部23及びロータ磁石12に対してロータコアの径方向内方に位置していてもよい。
 具体的には、図7に示すように、ロータ202において、第一空間224は、突極部223及びロータ磁石12に対してロータコア211の径方向内方に位置し、第二空間225は、突極部223及びロータ磁石12に対してロータコア211の径方向内方に位置する。
 すなわち、第一空間224は、ロータコア211の周方向における中央部が、ロータ磁石12及び突極部223におけるロータコア211の周方向の中間に対して、ロータコア211の径方向内方に位置する。また、第二空間225は、ロータコア211の周方向における中央部が、突極部223及びロータ磁石12におけるロータコア211の周方向の中間に対して、ロータコア211の径方向内方に位置する。
 第一空間224及び第二空間225は、それぞれ、ロータコア211の中心軸Pに直交する断面において、ロータコア211の周方向における両端部が中央部よりもロータコア211の径方向外方に位置する形状を有する。
 第一空間224には、第一空間224から突極部223の外表面223aに延び、且つ、突極部223の外表面223aに開口するスリット226(スリット部)が繋がっている。すなわち、スリット226は、突極部223を、ロータコア211の周方向に2分している。なお、スリット226は、ロータコア211の径方向における内方側が、第一空間224だけでなく第二空間225にも繋がっている。すなわち、スリット226は、ロータコア211の径方向における内方側が2つに分岐していて、分岐した先端部分がそれぞれ第一空間224及び第二空間225に繋がっている。
 これにより、ロータ磁石12から生じた磁束は、突極部223においてスリット226によって区画された領域内を流れる。よって、ロータコア211内の磁束の流れをコントロールすることができる。したがって、ロータコア211における磁気アンバランスを改善することができ、モータに生じるコギングトルク及びトルクリップルを低減することができる。
 なお、スリット226は、ロータコア211の径方向における内方側が、分岐することなく第一空間224に繋がっていてもよい。すなわち、スリット226は、中心軸Pを軸線方向から見て、突極部223を斜めに分断していてもよい。なお、この場合、複数のスリット226は、それぞれ、ロータコア211の周方向において同じ方向に傾いている。これにより、モータの一方向の回転において、ロータコア211内の磁気アンバランスを改善することができる。したがって、前記一方向に回転するモータに生じるコギングトルク及びトルクリップルを低減することができる。
 前記実施形態では、ロータコア11の第一空間24及び第二空間25は、ロータコア11の中心軸Pに直交する断面において、コア部21によって区画された五角形状である。しかしながら、第一空間及び第二空間は、前記断面において、五角形状以外の形状であってもよい。第一空間及び第二空間は、例えば、曲面によって囲まれていてもよい。また、第一空間及び第二空間は、前記断面において、異なる形状及び大きさであってもよい。第一空間及び第二空間は、連結されていてもよい。なお、第一空間及び第二空間における外端は、それぞれ、ロータコアの径方向において最も外側に位置する部分を意味する。
 前記実施形態では、ロータコア11の第一空間24及び第二空間25は、ロータコア11の周方向に交互に並び、且つ、第一空間24の中心と第二空間25の中心とが等間隔である。しかしながら、第一空間24及び第二空間25は、第一空間24の中心と第二空間25の中心とが等間隔でなくてもよい。
 前記実施形態では、モータ1は、円筒状のステータ3内に、円柱状のロータ2が回転可能に配置されたインナーロータ型のモータである。しかしながら、モータは、円筒状のロータ内に、円柱状のステータが配置されたアウターロータ型のモータであってもよい。この場合にも、円筒状のロータコアが、第一空間、第二空間及びスリットを有することにより、前記実施形態と同様の作用効果が得られる。なお、この場合、第一空間及び第二空間における径方向の外端は、ロータコアの径方向において、最も内側に位置する部分を意味する。
 本出願は、2017年1月20日に出願された日本出願である特願2017-008443号に基づく優先権を主張し、当該日本出願に記載されたすべての記載内容を援用する。
 本発明は、外表面にロータ磁石と突極部とが交互に配置されたロータを有するモータに利用可能である。
1 モータ
2、102、202 ロータ
3 ステータ
11、111、211 ロータコア
11a 貫通孔
12 ロータ磁石
12a 外周面
13 回転軸
21 コア部
21a 内面
23、123、223 突極部
23a、223a 外表面
24、224 第一空間
24a 頂点(外端)
25、225 第二空間
25a 頂点(外端)
26、226 スリット(スリット部)
31 リング部
40 空間
P 中心軸

 

Claims (9)

  1.  径方向に突出する複数の突極部を有し、且つ、中心軸に沿って延びる円筒状のロータコアと、
     前記ロータコアの表面上に周方向に前記突極部と交互に並んで配置された複数のロータ磁石と、
    を備えたロータであって、
     前記突極部は、前記ロータの一方の磁極であり、
     前記ロータ磁石は、前記ロータの他方の磁極であり、
     前記ロータコアは、
     前記中心軸に沿って延びる円筒状のコア部と、
     前記コア部を軸方向に貫通し、前記突極部に対して前記コア部の径方向の内部に位置する第一空間と、
     前記コア部を軸方向に貫通し、前記ロータ磁石に対して前記コア部の径方向の内部に位置する第二空間と、
     前記第一空間から前記突極部の外表面に延び、且つ、前記突極部の外表面に開口するスリット部と、
    を有する、ロータ。
  2.  請求項1に記載のロータにおいて、
     前記ロータコアは、
     前記中心軸に直交する断面において、
     前記ロータ磁石の前記周方向の中央位置における、前記コア部の前記第二空間に向く内面と前記ロータ磁石の外表面との径方向距離は、
     前記ロータ磁石の前記周方向の端部位置における、前記コア部の前記第二空間に向く内面と前記ロータ磁石の外表面との径方向距離と、同じ、もしくは短い、ロータ。
  3.  請求項1または2に記載のロータにおいて、
     前記ロータ磁石と前記第二空間との間には、前記コア部の一部が位置する、ロータ。
  4.  請求項1から3のいずれか一つに記載のロータにおいて、
     前記第一空間及び前記第二空間は、それぞれ、コア部の一部によって区画され、
     前記突極部及び前記ロータ磁石は、前記中心軸に直交する断面において、前記周方向に等間隔に配置され、
     前記第一空間および前記第二空間は、前記中心軸に直交する断面において、前記周方向に等間隔に配置されている、ロータ。
  5.  請求項4に記載のロータにおいて、
     前記第一空間および前記第二空間は、前記中心軸に直交する断面において、前記径方向の外端の径方向位置が同じである、ロータ。
  6.  請求項1から5のいずれか一つに記載のロータにおいて、
     前記中心軸に沿って延びる回転軸をさらに備え、
     前記ロータコアは、前記第一空間及び前記第二空間よりも前記径方向の内方において、前記ロータコアの軸方向に貫通する貫通孔を有するリング部をさらに有し、
     前記貫通孔内に前記回転軸が配置される、ロータ。
  7.  請求項1から6のいずれか一つに記載のロータにおいて、
     前記第一空間は、
     前記中心軸に直交する断面において、
     前記突極部の前記周方向の中央部に対する前記径方向に頂点が位置する五角形状であり、
     前記第二空間は、
     前記中心軸に直交する断面において、
     前記突極部の前記周方向の中央部に対する前記径方向に頂点が位置する五角形状である、ロータ。
  8.  外周面に複数の突極部を有し、且つ、中心軸に沿って延びる円筒状のロータコアと、
     前記ロータコアの外周面上に周方向に前記突極部と交互に並んで配置された複数のロータ磁石と、
    を備えたロータであって、
     前記突極部は、前記ロータの一方の磁極であり、
     前記ロータ磁石は、前記ロータの他方の磁極であり、
     前記ロータコアは、
     コア部と、
     前記コア部を軸方向に貫通し、前記突極部に対して前記コア部の径方向内方に位置する空間を有し、
     前記空間は、
     前記中心軸に直交する断面において、
     前記径方向の外方側における前記周方向の長さが、前記径方向の内方側における前記周方向の長さよりも小さく、
     前記突極部の外表面に向かって延び、且つ、前記外表面に開口する、ロータ。
  9.  請求項1から8のいずれか一つに記載のロータを備えたモータ。
PCT/JP2018/000570 2017-01-20 2018-01-12 ロータ及びそれを用いたモータ WO2018135382A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880007253.8A CN110178288A (zh) 2017-01-20 2018-01-12 转子和使用该转子的马达
US16/461,847 US20190372411A1 (en) 2017-01-20 2018-01-12 Rotor and motor using same
DE112018000462.7T DE112018000462T5 (de) 2017-01-20 2018-01-12 Rotor und Motor, der denselben verwendet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017008443A JP2018117488A (ja) 2017-01-20 2017-01-20 ロータ及びそれを用いたモータ
JP2017-008443 2017-01-20

Publications (1)

Publication Number Publication Date
WO2018135382A1 true WO2018135382A1 (ja) 2018-07-26

Family

ID=62908227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000570 WO2018135382A1 (ja) 2017-01-20 2018-01-12 ロータ及びそれを用いたモータ

Country Status (5)

Country Link
US (1) US20190372411A1 (ja)
JP (1) JP2018117488A (ja)
CN (1) CN110178288A (ja)
DE (1) DE112018000462T5 (ja)
WO (1) WO2018135382A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221543A1 (de) * 2019-04-29 2020-11-05 Robert Bosch Gmbh Rotor einer elektrischen maschine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020054210A (ja) * 2018-09-28 2020-04-02 日本電産株式会社 ロータ、およびモータ
WO2021171420A1 (ja) * 2020-02-26 2021-09-02 三菱電機株式会社 回転子、電動機、送風機、空気調和装置、及び回転子の製造方法
CN117121338A (zh) 2021-05-24 2023-11-24 株式会社爱信 电动马达的转子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748360A (en) * 1983-12-05 1988-05-31 Fanuc, Ltd. Rotor for a synchronous motor
JPH0739091A (ja) * 1993-07-19 1995-02-07 Toyota Motor Corp 同期機のロータ構造および同期型モータ
JP2012016130A (ja) * 2010-06-30 2012-01-19 Asmo Co Ltd ロータ、モータ、及びロータの製造方法
JP2012034520A (ja) * 2010-07-30 2012-02-16 Asmo Co Ltd ロータ、及びモータ
JP2014090577A (ja) * 2012-10-30 2014-05-15 Denso Corp 回転子、および、これを用いた回転電機
JP2014131376A (ja) * 2012-12-28 2014-07-10 Denso Corp 回転子、および、これを用いた回転電機
WO2015059768A1 (ja) * 2013-10-22 2015-04-30 三菱電機株式会社 回転電機用ロータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121949A (ja) * 1983-12-05 1985-06-29 Fanuc Ltd 永久磁石型同期電動機の回転子
US8242654B2 (en) * 2009-05-20 2012-08-14 Asmo Co., Ltd. Rotor and motor
US20120001509A1 (en) * 2010-06-30 2012-01-05 Asmo Co., Ltd. Motor and rotor
US8916999B2 (en) * 2011-01-01 2014-12-23 Asmo Co., Ltd. Motors containing segment conductor coils
JP6519080B2 (ja) 2015-06-22 2019-05-29 ライオン株式会社 繊維製品用抗ウイルス組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748360A (en) * 1983-12-05 1988-05-31 Fanuc, Ltd. Rotor for a synchronous motor
JPH0739091A (ja) * 1993-07-19 1995-02-07 Toyota Motor Corp 同期機のロータ構造および同期型モータ
JP2012016130A (ja) * 2010-06-30 2012-01-19 Asmo Co Ltd ロータ、モータ、及びロータの製造方法
JP2012034520A (ja) * 2010-07-30 2012-02-16 Asmo Co Ltd ロータ、及びモータ
JP2014090577A (ja) * 2012-10-30 2014-05-15 Denso Corp 回転子、および、これを用いた回転電機
JP2014131376A (ja) * 2012-12-28 2014-07-10 Denso Corp 回転子、および、これを用いた回転電機
WO2015059768A1 (ja) * 2013-10-22 2015-04-30 三菱電機株式会社 回転電機用ロータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221543A1 (de) * 2019-04-29 2020-11-05 Robert Bosch Gmbh Rotor einer elektrischen maschine

Also Published As

Publication number Publication date
DE112018000462T5 (de) 2019-10-02
US20190372411A1 (en) 2019-12-05
CN110178288A (zh) 2019-08-27
JP2018117488A (ja) 2018-07-26

Similar Documents

Publication Publication Date Title
JP5353917B2 (ja) 回転電機用回転子
EP3457534B1 (en) Rotating electric machine
WO2018135382A1 (ja) ロータ及びそれを用いたモータ
JP4900132B2 (ja) 回転子及び回転電機
JP2012161228A (ja) 回転電機用回転子
JP5811567B2 (ja) 回転子および永久磁石電動機
JP6933299B2 (ja) 回転電機の回転子構造
JP2020188611A (ja) ロータ及びそれを備えたモータ
JP6212117B2 (ja) 同期電動機
JP2003284276A (ja) 回転電機
JP5005830B1 (ja) 回転子コア、回転子および回転電機
JP2018113775A (ja) 回転電機ロータ
JP2007202363A (ja) 回転電機
JP2011015555A (ja) 回転電機
JP5446482B2 (ja) 内転形電動機用固定子
JP4470037B2 (ja) アキシャルギャップ回転電機
JP6733568B2 (ja) 回転電機
JP2005312102A (ja) モータ
WO2019102580A1 (ja) 永久磁石式回転電機
WO2018135409A1 (ja) ロータ及びそれを用いたモータ
WO2018135405A1 (ja) ロータ及びそれを用いたモータ
JP6503540B2 (ja) Ipmモータ及びそのコギングトルクの抑制方法
JP3770112B2 (ja) 同軸多重ロータモータのステータ構造
JP4995983B1 (ja) 回転子コア、回転子および回転電機
JP7447945B2 (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18742055

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18742055

Country of ref document: EP

Kind code of ref document: A1