WO2018135038A1 - 発熱体及び真空熱処理装置 - Google Patents

発熱体及び真空熱処理装置 Download PDF

Info

Publication number
WO2018135038A1
WO2018135038A1 PCT/JP2017/033796 JP2017033796W WO2018135038A1 WO 2018135038 A1 WO2018135038 A1 WO 2018135038A1 JP 2017033796 W JP2017033796 W JP 2017033796W WO 2018135038 A1 WO2018135038 A1 WO 2018135038A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
heating element
heat treatment
unit
workpiece
Prior art date
Application number
PCT/JP2017/033796
Other languages
English (en)
French (fr)
Inventor
勝俣 和彦
Original Assignee
株式会社Ihi
株式会社Ihi機械システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, 株式会社Ihi機械システム filed Critical 株式会社Ihi
Priority to JP2018562869A priority Critical patent/JPWO2018135038A1/ja
Priority to CN201780080387.8A priority patent/CN110100499A/zh
Publication of WO2018135038A1 publication Critical patent/WO2018135038A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/62Heating elements specially adapted for furnaces
    • H05B3/64Heating elements specially adapted for furnaces using ribbon, rod, or wire heater

Definitions

  • the present disclosure relates to a heating element and a vacuum heat treatment apparatus.
  • This application claims priority based on Japanese Patent Application No. 2017-006901 filed in Japan on January 18, 2017, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a vacuum furnace that enables as uniform heating of a workpiece as possible in a vacuum state.
  • the heater (heating element) for heating the inside of the furnace is divided into a lower heater and an upper heater, and the upper heater is further divided into a front zone, a rear zone, and an intermediate zone between them. Therefore, the region in which the heat easily escapes and the region in which the heat does not easily escape are controlled separately, thereby reducing temperature unevenness in the furnace.
  • Patent Document 2 discloses a carburizing apparatus and method.
  • Patent Document 3 discloses a vacuum carburizing treatment method and a vacuum carburizing treatment apparatus.
  • Patent Document 4 discloses a heating apparatus for an electric heating furnace.
  • Patent Document 5 discloses a vacuum furnace.
  • a heating element of a vacuum furnace has a substantially cylindrical heating region (heating unit) surrounding a workpiece by connecting a plurality of heaters structurally and electrically. Forming.
  • a conductive connector may be used. In this case, if an electrical resistance is generated at the contact surface between the heater and the conductive connector, energy is lost due to the resistance, so that the heater does not generate heat as designed, and the object to be processed may not be heated uniformly.
  • Patent Document 1 there is no disclosure or suggestion of a method for joining the heater and the conductive connector.
  • This disclosure has been made in view of the above-described problems, and an object thereof is to heat a heating element as designed and uniformly heat an object to be processed.
  • one embodiment of the present disclosure is a heating element that is disposed around a workpiece that is accommodated in a vacuum heat treatment apparatus and that heats the workpiece in a vacuum atmosphere.
  • An electric heater and a conductive connector for connecting the plurality of electric heaters to each other are provided, and the electric heater and the conductive connector are in close contact with each other.
  • the plurality of electric heaters provided in the heating element and the conductive connector are connected in close contact.
  • the contact area of an electric heater and a conductive connector can be enlarged, and the electrical resistance in the connection part of an electric heater and a conductive connector can be reduced. Therefore, the heating element can generate heat as designed, and the object to be processed can be heated uniformly.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a vacuum heat treatment apparatus S1 including a heating element according to the present embodiment.
  • FIG. 1 is a longitudinal sectional view along the vertical direction of the vacuum heat treatment apparatus S1.
  • the vacuum heat treatment apparatus S1 of the present embodiment is a heat treatment apparatus including a cooling chamber 20 that cools the workpiece W and a heating chamber 30 that heats the workpiece W in a vacuum atmosphere.
  • an intermediate chamber 40 is provided between the cooling chamber 20 and the heating chamber 30.
  • the side of the intermediate chamber 40 on which the later-described vacuum shield door elevating part 41 and heat insulating door elevating part 42 are provided is referred to as the upper side, and the opposite side is referred to as the lower side.
  • the cooling chamber 20 and the heating chamber 30 are aligned in the horizontal direction.
  • the cooling chamber 20 includes a heat treatment furnace 1 in which the cooling gas X is circulated, and a wind furnace chamber 2 disposed in the heat treatment furnace 1.
  • a heat exchanger 3 for cooling the cooling gas X and a fan 4 for circulating the cooling gas X inside the heat treatment furnace 1 are disposed inside the heat treatment furnace 1. ing.
  • the heat treatment furnace 1 is formed in a substantially cylindrical shape so as to withstand the pressure even when the pressure state inside the heat treatment furnace 1 is changed, and the central axis of the cylinder is parallel to the horizontal plane.
  • the posture is set as follows.
  • One end of the heat treatment furnace 1 is configured as a vacuum shield door 80.
  • the external space of the wind furnace chamber 2 is vertically divided into two by a partition plate (not shown). Further, the wind furnace chamber 2 is supported by the partition plate.
  • the furnace chamber 2 heats and cools the workpiece W inside.
  • a placement table 21 for placing an object to be processed W is disposed inside the furnace chamber 2, and a free roller 22 for facilitating the loading / unloading of the object to be processed W on the placement table 21.
  • the mounting table 21 has a structure (for example, a lattice shape) through which gas can pass in the vertical direction.
  • the upper wall portion and the lower wall portion of the wind furnace chamber 2 are configured as a uniform rectification unit 7 (7a, 7b) for uniformizing and rectifying the flow of the cooling gas X.
  • the uniformizing rectifying unit 7 a structure in which a lattice box cut into a lattice shape and a punching metal are combined is used.
  • the rear end of the cooling chamber 20 (the end where the heat exchanger 3 and the fan 4 are arranged) is configured as a door 50 that can be opened and closed.
  • the door 50 is supported by a support leg 51, and the support leg 51 is fixed (connected) to a slide device 52 installed on the ground (the installation surface of the vacuum heat treatment apparatus S1). As the slide device 52 is driven, the door 50 approaches or separates in the horizontal direction from the cooling chamber 20 (portion other than the door 50 of the cooling chamber 20) as shown in the figure. By employing such a slide device 52, the door 50 can be easily opened and closed.
  • the mechanism for easily opening and closing the door 50 is not limited to the slide device 52, and may be a hinge device or the like, for example.
  • the heating chamber 30 is formed in a substantially cylindrical shape like the cooling chamber 20, and is disposed opposite to the cooling chamber 20 with the intermediate chamber 40 interposed therebetween, as shown. Further, inside the transfer rod storage chamber 62 connected to the heating chamber 30, a transfer rod 61 for transferring the workpiece W is installed inside the vacuum heat treatment apparatus S1. Inside the heating chamber 30, a heat insulating chamber 31 that is formed using a heat insulating material or the like and can accommodate the workpiece W is provided.
  • the heat insulation chamber 31 accommodates a heating device 10 (heating element) for heating the workpiece W. That is, the heating device 10 is disposed in the heat insulating chamber 31.
  • FIG. 2 is a perspective view of the heating device 10
  • FIG. 3 is an enlarged cross-sectional view schematically showing the heat insulation chamber 31.
  • the heating device 10 of this embodiment includes a total of six heater units 11 to 16.
  • the heater units 11 and 12 are arranged in a front region R1 (a front region in the loading direction of the workpiece W) that is a region on the entrance / exit side of the heat insulation chamber 31 (the heat insulation door 32 side of the heat insulation chamber 31 shown in FIG. 1). Yes.
  • the heater units 13 and 14 are disposed in an intermediate region R2 of the heat insulation chamber 31 (a region between a front region in the loading direction of the workpiece W and a rear region described later).
  • the heater units 15 and 16 are disposed in a rear region R3 (a rear region in the loading direction of the workpiece W) that is a back region (region opposite to the entrance / exit) of the heat insulating chamber 31.
  • the heater units 11 to 16 are arranged so as to surround the workpiece W. That is, each of the heater units 11 to 16 is arranged in a substantially rectangular ring around a straight line extending in the conveyance direction of the workpiece W (left and right direction in FIGS. 1 and 3).
  • the heater units 11 to 16 are arranged along the conveying direction of the workpiece W from the entrance / exit of the heat insulating chamber 31 toward the opposite side.
  • each of the heater units 11 to 16 includes a power feeding terminal 17 and is connected to a control unit 121 described later.
  • the other ends of the heater units 11 and 12 are connected to a unit connector c1 (unit conductive connector), and the other ends of the heater units 13 and 14 are connected to a unit connector c2 (unit conductive connector).
  • the other end of 16 is connected to a unit connector c3 (unit conductive connector).
  • Each of the heater units 11 to 16 is connected to four substantially cylindrical rod-shaped heaters 18 (electric heaters) via a plurality of heater connectors c4 (conductive connectors) so as to be substantially square (annular). It is comprised by.
  • the rod heater 18 of this embodiment is a resistance heater, and is configured to generate heat (generation of Joule heat) when energized.
  • a graphite heater made of graphite, a ceramic heater made of ceramic, or the like is used as the rod heater 18, for example.
  • the unit connectors c1 to c3 and the heater connector c4 are made of conductive members, and are further formed with holes into which the end portions of the rod-shaped heater 18 can be inserted. In the present embodiment, the shape of the hole as viewed in the central axis direction is a circle. Both end portions of the rod-shaped heater 18 are inserted into any one of the unit connectors c1 to c3 and the heater connector c4.
  • the rod-shaped heater 18 has a diameter at both ends substantially the same as the diameter of any hole (opening) formed in the unit connectors c1 to c3 and the heater connector c4, and the unit connectors c1 to c3 and the heater connector are slid together. It is joined to any of c4. It should be noted that both ends of the rod-shaped heater 18 may be inserted into the holes of the unit connectors c1 to c3 and the heater connector c4 by adjusting the diameter by cutting with sandpaper or the like during assembly.
  • both end portions of the rod-shaped heater 18 are in a state where the outer peripheral surfaces are in close contact with the inner walls (inner peripheral surfaces) of the holes of the unit connectors c1 to c3 and the heater connector c4 at the time of joining.
  • the rod heater 18 disposed on the lower surface side of the heat insulation chamber 31 has a larger diameter than the other three rod heaters 18, that is, the rod heaters 18 disposed on the side surface side and the upper surface side of the heat insulation chamber 31. Is set. That is, the diameter of the rod heater 18 disposed below the workpiece W is larger than the diameter of the rod heater 18 disposed on the side and above.
  • the bar heater 18 disposed on the lower surface side of the heat insulating chamber 31 generates a larger amount of heat than the bar heater 18 disposed on the side surface side and the upper surface side.
  • the end of the rod heater 18 is formed by manufacturing or processing so as to have a diameter that can be in close contact with the inner peripheral surfaces of the holes of the unit connectors c1 to c3 and the heater connector c4, and the rod heater 18 and the connectors c1 to c1.
  • the end portion of the rod-shaped heater 18 is inserted into the hole while rotating relative to the hole around its central axis and sliding on the inner peripheral surface of the hole, and the outer peripheral surface of the end portion and the inner periphery of the hole
  • the surfaces may be bonded to each other so that they are in close contact with each other. If such a joining method is adopted, for example, even when the rod heater 18 is formed of relatively brittle graphite or the like, the connectors c1 to c4 do not break or break the end of the rod heater 18.
  • the outer peripheral surface of the end portion and the inner peripheral surface of the hole become familiar with each other.
  • the electrical resistance between the two can be kept low. Note that the end surface of the end portion of the rod-shaped heater 18 may be rubbed against and contacted with the bottom surfaces of the holes of the connectors c1 to c4 at the time of joining. When the end surface and the bottom surface are in contact with each other, the contact resistance between the rod-shaped heater 18 and the connectors c1 to c4 can be further reduced.
  • Such heater units 11 to 16 are arranged in the heat insulating chamber 31 so as to be parallel to each other. Further, the heater units 11 to 16 are connected to each of two adjacent heater units via unit connectors c1 to c3. Specifically, the heater unit 11 and the heater unit 12 are connected by a unit connector c1, the heater unit 13 and the heater unit 14 are connected by a unit connector c2, and the heater unit 15 and the heater unit 16 are connected by a unit connector c3. It is connected.
  • the two heater units connected by the unit connectors c1 to c3 are arranged adjacent to each other in the heat insulating chamber 31, and constitute groups g1 to g3.
  • the group g1 is composed of the heater unit 11 and the heater unit 12, the group g2 is composed of the heater unit 13 and the heater unit 14, and the group g3 is composed of the heater unit 15 and the heater unit 16. .
  • the unit connectors c1 to c3 are provided in the groups g1 to g3 so that the heater units 11 to 13 form the groups g1 to g3.
  • the unit connectors c1 to c3 are discretely provided so that the heater units 11 to 13 form groups g1 to g3.
  • the temperatures of the groups g1 to g3 are individually adjusted by the control unit 121. Since heat easily escapes in the vicinity of the entrance / exit of the heat insulating chamber 31, the group g1 arranged in the front region R1 is set to generate a larger amount of heat than the groups g2 and g3.
  • thermocouple 71 that measures the temperature of the front region R1
  • thermocouple 72 that measures the temperature of the intermediate region R2
  • a temperature of the rear region R3 is measured in the heat insulation chamber 31 .
  • thermocouple 73 is disposed in the heat insulation chamber 31 .
  • a device which measures temperature it is not limited to a thermocouple, For example, a non-contact thermometer (radiation thermometer) may be sufficient.
  • FIG. 4 is a block diagram showing a functional configuration of the temperature adjustment system 100 of the vacuum heat treatment apparatus S1 of the present embodiment.
  • the above-described heater units 11 to 16 and thermocouples 71 to 73 are included as components of the temperature adjustment system 100.
  • the temperature adjustment system 100 includes a temperature measurement system 110 that measures the temperatures of the regions R1 to R3 (the front region R1, the intermediate region R2, and the rear region R3) that are a plurality of regions inside the heat insulation chamber 31; And an adjustment system 120 that individually adjusts the temperatures of the regions R1 to R3 based on the measurement results of the temperature measurement system 110 so that the workpiece W is uniformly heat-treated.
  • the temperature measurement system 110 includes thermocouples 71 to 73 and a calculation unit 111 that calculates the measurement results of the thermocouples 71 to 73 as measurement values. Further, the adjustment system 120 adjusts the heater units 11 to 16 and the outputs (heat generation amounts) of the heater units 11 to 16 based on the predetermined PID value and the measurement value input from the temperature measurement system 110. And is configured. That is, the control unit 121 can perform PID control on the heat generation amount of the heater units 11 to 16 based on the measurement result input from the temperature measurement system 110.
  • the control part 121 adjusts the output of the heater units 11 and 12 arrange
  • the outputs of the heater units 13 and 14 thus adjusted are adjusted based on the measurement result of the thermocouple 72, and the outputs of the heater units 15 and 16 disposed in the rear region R3 are adjusted based on the measurement result of the thermocouple 72. That is, in the vacuum heat treatment apparatus S1 of this embodiment, the temperatures of the respective regions R1 to R3 are individually measured, and the temperatures of the respective regions R1 to R3 are individually adjusted according to the individually measured measurement results. .
  • the controller 121 of the present embodiment sets the heat generation amount of the group g1 to be larger than the groups g2 and g3 when preheating the heat insulating chamber 31. Moreover, the control part 121 sets so that the emitted-heat amount of the groups g1 and g2 may become larger than the group g3 in the state to which the to-be-processed object W was carried in into the heat insulation chamber 31.
  • FIG. Furthermore, in the vacuum heat treatment apparatus S1 of the present embodiment, the control unit 121 can set a PID value corresponding to the mass of the workpiece W filled in the region. Therefore, it is possible to adjust the outputs of the heater units 11 to 16 in each of the regions R1 to R3 based on the PID value corresponding to the mass of the workpiece W filled in each of the regions R1 to R3.
  • the intermediate chamber 40 is set in a hollow, substantially rectangular parallelepiped shape, and is disposed between the cooling chamber 20 and the heating chamber 30.
  • the operation of the vacuum heat treatment apparatus configured as described above will be described.
  • the door 50 is separated from the cooling chamber 20 by the slide device 52, the workpiece W is mounted on the mounting table 21 inside the wind furnace chamber 2.
  • the door 50 is brought into contact with the cooling chamber 20 by the slide device 52, and the cooling chamber 20 is sealed.
  • the cooling chamber 20, the heating chamber 30, and the intermediate chamber 40 are evacuated by driving a decompression device (not shown).
  • the vacuum shield door elevating part 41 and the heat insulating door elevating part 42 are driven to open the vacuum shield door 80 and the heat insulating door 32.
  • the transport bar door 33 provided on the opposite side of the heat insulation chamber 31 to the heat insulation door 32 is also opened.
  • the workpiece W is transferred from the mounting table 21 inside the furnace chamber 2 onto the mounting table 34 inside the heat insulation chamber 31 by the transfer rod 61. Then, the vacuum shield door elevating part 41 and the heat insulating door elevating part 42 are driven again, and the conveying bar door 33 and the heat insulating door 32 are closed. In this state, the workpiece W is heated by the heating device 10.
  • the temperature adjustment system 100 individually measures the temperatures of the regions R1 to R3 in the heat insulating chamber 31 and measures the object W to be uniformly heat treated. Based on the results, the temperatures of the regions R1 to R3 are individually controlled.
  • the temperature of the front region R1 is measured by the thermocouple 71 of the temperature measurement system 110 constituting a part of the temperature adjustment system, and the calculation unit 111 of the temperature measurement system 110 calculates the measurement value based on the measurement result. Calculate and output.
  • the temperature of the intermediate region R2 is measured by the thermocouple 72 of the temperature measurement system 110, and the calculation unit 111 of the temperature measurement system 110 calculates and outputs the measurement value based on the measurement result.
  • the temperature of the rear region R3 is measured by the thermocouple 73 of the temperature measurement system 110, and the calculation unit 111 of the temperature measurement system 110 calculates and outputs the measurement value based on the measurement result. That is, the temperature measurement system 110 measures the temperature in a plurality of regions inside the heat insulating chamber 31.
  • the control unit 121 of the adjustment system 120 performs control to set the outputs of the groups g1 and g2 to 100% and the output of the group g3 to 80%.
  • the heating apparatus 10 can heat preferentially the front area
  • the control unit 121 adjusts the outputs of the heater units 11 to 16 according to the input measurement values.
  • control unit 121 adjusts the output of the group g1 when a measurement value based on the temperature of the front region R1 is input, and when the measurement value based on the temperature of the intermediate region R2 is input.
  • the output of the group g2 is adjusted, and when the measurement value based on the temperature of the rear region R3 is input, the output of the group g3 is adjusted.
  • the vacuum heat treatment apparatus S1 of the present embodiment is controlled by the temperature adjustment system 100 so that the regions R1 to R3 have the same temperature.
  • the temperature adjustment system 100 since the temperature adjustment system 100 is controlled so that the regions R1 to R3 have the same temperature, the temperature of the workpiece W is increased uniformly.
  • the control unit 121 can set a PID value corresponding to the mass of the workpiece W disposed in each of the regions R1 to R3. If the mass of the workpiece W arranged in each of the regions R1 to R3 is known in advance, the PID value corresponding to the mass of the workpiece W arranged in each of the regions R1 to R3, that is, each region R1. The outputs of the heater units 11 to 16 in the respective regions R1 to R3 can be adjusted based on the PID value corresponding to the heat absorption capacity of the workpiece W existing in .about.R3.
  • the conveyance rod door 33 and the heat insulation door 32 are opened, and the workpiece W is transferred again to the mounting table 21 inside the furnace chamber 2 by the conveyance rod 61. And if the to-be-processed object W is transferred to the mounting base 21 of the furnace chamber 2, the vacuum shield door 80 will be sealed.
  • the cooling gas X cooled by the heat exchanger 3 is circulated by the fan 4 and the flow of the circulated cooling gas X is made uniform by the homogenization rectification unit 7.
  • the workpiece W is uniformly cooled.
  • the door 50 is detached from the cooling chamber 20 and the workpiece W is carried out to the outside.
  • the heater units 11 to 16, the unit connectors c1 to c3, and the heater connector c4 are connected by sliding.
  • the ends of the rod-shaped heaters 18 provided in the heater units 11 to 16 can be brought into close contact with the unit connectors c1 to c3, and the connection between the heater units 11 to 16, the unit connectors c1 to c3, and the heater connector c4 is performed. Electric resistance can be reduced. Accordingly, the bar heaters 18 generate heat as designed, and the workpiece W can be uniformly heated as the entire heating device 10.
  • the heater units 11 to 16 are arranged from the entrance / exit of the heat insulation chamber toward the back side (the opposite side of the entrance / exit). As a result, the temperatures of the heater units 11 to 16 can be individually grasped and controlled. Accordingly, the bar heaters 18 generate heat as designed, and the workpiece W can be uniformly heated as the entire heating device 10.
  • the joining work by sliding the rod-shaped heater 18, the unit connectors c1 to c3 and the heater connector c4 is performed manually, the joining of the rod-shaped heater 18 to the unit connectors c1 to c3 and the heater connector c4 is respectively performed. There may be errors.
  • the heating apparatus 10 according to the present embodiment is controlled by being divided into groups g1 to g3, respectively. As a result, it is possible to perform fine control in consideration of the error of the contact area at the time of connection due to the sliding of the unit connectors c1 to c3 and the heater connector c4.
  • the heating device 10 is set so that the heat generation amount of the group g1 arranged in the front region R1 is larger than those of the other groups g2 and g3. Thereby, the vicinity of the entrance / exit of the heat insulating chamber 31 where heat can easily escape can be heated at a higher temperature, and as a result, the entire workpiece W can be heated uniformly.
  • the bar heater 18 disposed on the lower surface side of the heat insulation chamber 31 is a bar shape disposed on the other bar heater 18, that is, the side surface side and the upper surface side of the heat insulation chamber 31.
  • a diameter larger than that of the heater 18 is set.
  • the heating device 10 employs a configuration including the six heater units 11 to 16, but the present disclosure is not limited thereto.
  • the number of heater units and rod heaters 18 provided in the heating device 10 can be changed according to the shape and size of the vacuum heat treatment apparatus.
  • the heating apparatus 10 employs a configuration that is controlled as one group for every two heater units, the number of heater units that constitute one group is not limited to this, and may be one, or three or more. But you can.
  • a plurality of heater units may be divided into four or more groups, and the temperatures thereof may be individually controlled.
  • the control part 121 can perform temperature control more finely, the to-be-processed object W can be heated more uniformly.
  • a plurality of heater units may be divided into two groups and their temperatures may be individually controlled. If there is no significant difference in the ease of heat escape in the heat insulating chamber 31, all of the heater units may be controlled in the same manner without being divided into a plurality of groups.
  • insertion protrusions are formed in the unit connectors c1 to c3 and the heater connector c4, and a hole into which the insertion protrusion is inserted is formed at the end of the rod-shaped heater 18. Also in this case, the insertion protrusions of the unit connectors c1 to c3 and the heater connector c4 are inserted into the holes of the bar heater 18 by sliding.
  • the group g1 is set by the control unit 121 so as to increase the amount of heat generation, but the present disclosure is not limited to this.
  • the rod heater 18 constituting the group g1 has a configuration in which the heat generation amount is set to be large in advance by setting the diameter relatively larger than that of the rod heater 18 constituting the groups g2 and g3. It is also possible to adopt.
  • a first aspect of the present disclosure is a heating element that is disposed around an object to be processed housed in a vacuum heat treatment apparatus and heats the object to be processed in a vacuum atmosphere, and includes a plurality of electric heaters and the plurality of electric heaters The electric heater and the conductive connector are connected to each other in close contact with each other.
  • the electric heater and the conductive connector are bonded to each other by sliding.
  • the conductive connector has a hole into which an end portion of the electric heater is inserted.
  • the diameter of the end of the electric heater is substantially the same as the diameter of the hole, and the outer peripheral surface of the end is in close contact with the inner peripheral surface of the hole.
  • the heating element of the first aspect is formed by connecting the plurality of electric heaters in an annular shape with the conductive connector so as to surround the object to be processed.
  • a plurality of heater units are provided from the entrance / exit of the object to be processed in the opposite direction.
  • the heating element of the fourth aspect includes a unit conductive connector that connects the plurality of heater units adjacent to each other.
  • the unit conductive connector is provided in each of the plurality of groups such that the plurality of heater units form a plurality of groups. It has been.
  • the calorific value of the electric heater in the heater unit in the group closest to the entrance / exit is the heating amount of the electric heater in the heater unit in another group. Greater than calorific value.
  • the diameter of the electric heater disposed below the object to be processed is equal to that of the electric elements disposed on the side and above. Larger than the heater diameter.
  • the heating element according to any one of the first to eighth aspects is arranged around a workpiece, and the workpiece is heated in a vacuum atmosphere. Yes.
  • the temperatures of the plurality of regions in the vacuum heat treatment apparatus are individually measured, and the temperatures of the plurality of regions are individually determined according to the measurement result. It is configured to be adjusted to.
  • the present disclosure can be used for a heating element arranged around a workpiece accommodated in a vacuum heat treatment apparatus, and a vacuum heat treatment apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)
  • Resistance Heating (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

この発熱体(10)は、真空熱処理装置(S1)に収容された被処理物(W)の周囲に配置され、真空雰囲気下で被処理物を加熱する発熱体であって、複数の電気ヒータ(18)と、当該複数の電気ヒータを相互に接続する導電性コネクタ(c4)とを備え、電気ヒータと導電性コネクタとは、互いに密着して接合されている。

Description

発熱体及び真空熱処理装置
 本開示は、発熱体及び真空熱処理装置に関する。
 本願は、2017年1月18日に日本に出願された特願2017-006901号に基づき優先権を主張し、その内容をここに援用する。
 例えば、特許文献1には、真空状態で被処理物の可及的な均一加熱を可能とする真空炉が開示されている。このような真空炉では、炉内を加熱するヒータ(発熱体)を下部ヒータと上部ヒータとに分割し、さらに上部ヒータを前部ゾーンと後部ゾーンとそれらの間の中間部ゾーンとに分割して制御することにより、熱の逃げやすい領域と、熱の逃げにくい領域とを分けて制御しており、炉内の温度のムラを低減させている。
 特許文献2には、浸炭処理装置及び方法が開示されている。
 特許文献3には、真空浸炭処理方法及び真空浸炭処理装置が開示されている。
 特許文献4には、電気加熱炉用加熱装置が開示されている。
 特許文献5には、真空炉が開示されている。
日本国特開平5-271751号公報 日本国特開2007-84870号公報 日本国特開2008-81781号公報 日本国実開昭61-76693号公報 日本国特開2001-255073号公報
 特許文献1に開示されているように、真空炉の発熱体は、複数のヒータが構造的かつ電気的に接続されることにより、被処理物を囲む略筒状の加熱領域(加熱部)を形成している。ヒータ同士を電気的に接続するために、導電性コネクタが用いられる場合がある。この場合、ヒータと導電性コネクタとの接触面において電気抵抗が発生すると、その抵抗によってエネルギが損失することで、ヒータが設計通りに発熱せず、被処理物が均一に加熱されない可能性がある。しかしながら、このような特許文献1における真空炉では、ヒータと導電性コネクタとの接合方法について、開示も示唆もされていない。
 本開示は、上述する問題点に鑑みてなされたもので、発熱体を設計通りに発熱させ、被処理物を均一に加熱することを目的とする。
 上記課題を解決するために、本開示の一態様は、真空熱処理装置に収容された被処理物の周囲に配置され、真空雰囲気下で上記被処理物を加熱する発熱体であって、複数の電気ヒータと、当該複数の電気ヒータを相互に接続する導電性コネクタとを備え、上記電気ヒータと上記導電性コネクタとは、互いに密着して接合されている。
 本開示の一態様によれば、発熱体が備える複数の電気ヒータと導電性コネクタとが密着した状態で接続されている。これにより、電気ヒータと導電性コネクタとの接触面積を大きくすることができ、電気ヒータと導電性コネクタとの接続部における電気抵抗を減少させることができる。したがって、発熱体を設計通りに発熱させ、被処理物を均一に加熱することができる。
本開示の一実施形態に係る発熱体を備える真空熱処理装置の概略構成を示した断面図である。 本開示の一実施形態に係る発熱体が備えるヒータの斜視図である。 本開示の一実施形態に係る発熱体を備える真空熱処理装置の断熱室を模式的に示した拡大断面図である。 本開示の一実施形態における温度調整システムの機能構成を示したブロック図である。
 以下、図面を参照して、本開示に係る発熱体を備える真空熱処理装置の一実施形態について説明する。なお、以下の図面において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。
 図1は、本実施形態の発熱体を備える真空熱処理装置S1の概略構成を示した断面図である。図1は、真空熱処理装置S1の鉛直方向に沿った縦断面図である。この図に示すように、本実施形態の真空熱処理装置S1は、被処理物Wを冷却する冷却室20及び真空雰囲気下で被処理物Wを加熱する加熱室30を備える熱処理装置であり、これらに加えて、冷却室20と加熱室30との間に中間室40を有している。なお、真空熱処理装置S1において、中間室40の、後述する真空シールド扉用昇降部41及び断熱扉用昇降部42が設けられている側を上側、その逆側を下側という。冷却室20と加熱室30とは水平方向に並んでいる。
 冷却室20は、内部において冷却ガスXが循環される熱処理炉1と、熱処理炉1の内部に配置される風炉室2とを備えて構成されている。また、熱処理炉1の内部には、風炉室2の他に、冷却ガスXを冷却するための熱交換器3と冷却ガスXを熱処理炉1の内部において循環させるためのファン4とが配置されている。
 熱処理炉1は、熱処理炉1の内部の圧力状態が変化した場合であってもその圧力に耐えられるように略円筒形状に形状設定されており、この円筒形の中心軸が水平面と平行になるように姿勢設定されている。また、熱処理炉1の片側端部は真空シールド扉80として構成されている。なお、熱処理炉1の内部において、風炉室2の外部空間は、仕切板(不図示)によって上下に2分されている。また、この仕切板によって風炉室2が支持されている。
 風炉室2は、その内部において被処理物Wを加熱処理及び冷却処理する。この風炉室2の内部には、被処理物Wを載置するための載置台21が配置されており、この載置台21には被処理物Wの搬出入を容易にするためのフリーローラ22が複数設置されている。なお、この載置台21は、上下方向に気体が通過可能な構造(例えば、格子状)とされている。また、風炉室2の上壁部及び下壁部は、冷却ガスXの流れを均一化しかつ整流するための均一化整流部7(7a,7b)として構成されている。具体的には、この均一化整流部7としては、格子状に間切りをされた格子箱とパンチングメタルとを組み合わせた構造等が用いられている。
 また、冷却室20の後ろ端部(熱交換器3及びファン4が配置されている端部)は、開閉可能な扉50として構成されている。なお、扉50は、支持脚51によって支持されており、この支持脚51は地面(真空熱処理装置S1の設置面)に設置されたスライド装置52に固定(連結)されている。このスライド装置52が駆動することによって、扉50は、図示するように、冷却室20(冷却室20の扉50以外の部分)に対して水平方向に近接あるいは離間する。このようなスライド装置52を採用することによって扉50の開閉を容易に行うことが可能となる。なお、容易に扉50を開閉する機構としては、スライド装置52に限られるものではなく、例えば、ヒンジ装置等であっても良い。
 加熱室30は、冷却室20と同様に略円筒形に形状設定されており、図示するように、冷却室20に中間室40を挟んで対向配置されている。また、加熱室30に連結された搬送棒収納室62の内部には、真空熱処理装置S1の内部において、被処理物Wを搬送するための搬送棒61が設置されている。加熱室30の内部には、断熱材等を用いて形成され、内部に被処理物Wを収容可能な断熱室31が設けられている。
 また、断熱室31は、被処理物Wを加熱するための加熱装置10(発熱体)を収容している。すなわち、断熱室31内に加熱装置10が配置されている。図2は、加熱装置10の斜視図であり、図3は、断熱室31を模式的に示した拡大断面図である。これらの図に示すように、本実施形態の加熱装置10は、合計6つのヒータユニット11~16を備えている。ヒータユニット11,12は、断熱室31の出入口側(図1に示す断熱室31の断熱扉32側)の領域である前方領域R1(被処理物Wの搬入方向における前方領域)に配置されている。ヒータユニット13,14は、断熱室31の中間領域R2(被処理物Wの搬入方向における前方領域と後述する後方領域との間の領域)に配置されている。ヒータユニット15,16は、断熱室31の奥側領域(上記出入口と逆側の領域)である後方領域R3(被処理物Wの搬入方向における後方領域)に配置されている。そして、図2に示すように、各ヒータユニット11~16が被処理物Wを囲うように配置されている。すなわち、各ヒータユニット11~16は、被処理物Wの搬送方向(図1及び図3の紙面左右方向)に延びる直線回りに略矩形環状に配置されている。ヒータユニット11~16は、断熱室31の上記出入口からその逆側に向けて、被処理物Wの搬送方向に沿って配置されている。
 ヒータユニット11~16の一端は、それぞれ給電端子17を備えており、後述する制御部121と接続されている。ヒータユニット11,12の他端がユニットコネクタc1(ユニット用導電性コネクタ)と接続され、ヒータユニット13,14の他端がユニットコネクタc2(ユニット用導電性コネクタ)と接続され、ヒータユニット15,16の他端がユニットコネクタc3(ユニット用導電性コネクタ)と接続されている。また、各ヒータユニット11~16は、4本の略円柱状の棒状ヒータ18(電気ヒータ)を略四角形(環状)となるように複数のヒータコネクタc4(導電性コネクタ)を介して接続することにより構成されている。本実施形態の棒状ヒータ18は、抵抗加熱ヒータであって、通電することにより発熱(ジュール熱の発生)するように構成されている。棒状ヒータ18には、例えばグラファイトで形成されたグラファイトヒータや、セラミックで形成されたセラミックヒータ等が用いられる。ユニットコネクタc1~c3及びヒータコネクタc4は、導電性部材により構成され、さらに、棒状ヒータ18の端部が挿入可能な穴がそれぞれ形成されている。本実施形態において、この穴の中心軸線方向視における形状は、円形である。棒状ヒータ18の両端部は、ユニットコネクタc1~c3及びヒータコネクタc4のいずれかの穴に挿入されている。
 棒状ヒータ18は、両端部の径が、ユニットコネクタc1~c3及びヒータコネクタc4に形成されたいずれかの穴(開口)の径と略同一であり、摺合せによりユニットコネクタc1~c3及びヒータコネクタc4のいずれかと接合されている。なお、棒状ヒータ18の両端部は、組立時にサンドペーパ等で削られることで径が調整され、ユニットコネクタc1~c3及びヒータコネクタc4の穴に挿入されてもよい。これにより、棒状ヒータ18の両端部は、接合時にユニットコネクタc1~c3及びヒータコネクタc4の穴の内壁(内周面)に外周面が密着した状態となる。また、断熱室31の下面側に配置される棒状ヒータ18は、他の3本の棒状ヒータ18、すなわち断熱室31の側面側及び上面側に配置される棒状ヒータ18と比較して径が太く設定されている。すなわち、被処理物Wの下方に配置される棒状ヒータ18の径は、側方及び上方に配置される棒状ヒータ18の径より大きい。これにより、断熱室31の下面側に配置される棒状ヒータ18は、側面側及び上面側に配置される棒状ヒータ18よりも発熱量が大きくなる。
 また、棒状ヒータ18の端部を、ユニットコネクタc1~c3やヒータコネクタc4の穴の内周面と密着可能な径を有するように製造または加工等によって形成するとともに、棒状ヒータ18とコネクタc1~c4とを接合する際には、棒状ヒータ18の端部をその中心軸線回りに穴と相対回転させ穴の内周面と摺合わせながら穴に挿入させ、端部の外周面と穴の内周面とを互いに馴染ませて密着して接合してもよい。このような接合方法を採用すれば、例えば棒状ヒータ18が比較的脆いグラファイト等で形成されている場合であっても、棒状ヒータ18の端部が欠けたり破損したりすることなくコネクタc1~c4と接合することができ、また、棒状ヒータ18の端部を中心軸線回りに回転させて摺合わせながら穴に挿入することで、端部の外周面と穴の内周面とが互いに馴染み、接合後の両者の間の電気抵抗を低く抑えることができる。なお、接合の際に、棒状ヒータ18の端部の端面が、コネクタc1~c4の穴の底面に擦り合わされて接触する構成であってもよい。端面と底面とが互いに接触することで、棒状ヒータ18とコネクタc1~c4との間の接触抵抗をさらに低く抑えることができる。
 このようなヒータユニット11~16は、断熱室31内において、互いに平行となるように並べられる。さらに、ヒータユニット11~16は、それぞれ2つの隣接するヒータユニット毎にユニットコネクタc1~c3を介して接続されている。具体的には、ヒータユニット11とヒータユニット12とがユニットコネクタc1により接続され、ヒータユニット13とヒータユニット14とがユニットコネクタc2により接続され、ヒータユニット15とヒータユニット16とがユニットコネクタc3により接続されている。各ユニットコネクタc1~c3により接続された2つのヒータユニットは、それぞれ断熱室31内において隣り合うように配置され、グループg1~g3を構成する。具体的には、グループg1がヒータユニット11とヒータユニット12とにより構成され、グループg2がヒータユニット13とヒータユニット14とにより構成され、グループg3がヒータユニット15とヒータユニット16とにより構成される。すなわち、ユニットコネクタc1~c3は、ヒータユニット11~13がグループg1~g3を形成するように、グループg1~g3に各々設けられている。言い換えれば、ユニットコネクタc1~c3は、ヒータユニット11~13がグループg1~g3を形成するように離散的に設けられている。グループg1~g3は、それぞれ制御部121により個別に温度を調整される。断熱室31の出入口近傍は熱が逃げやすいため、前方領域R1に配置されるグループg1は、グループg2及びグループg3より発熱量が大きくなるように設定されている。
 また、図3に示すように、断熱室31の内部には、前方領域R1の温度を計測する熱電対71と、中間領域R2の温度を計測する熱電対72と、後方領域R3の温度を計測する熱電対73とが配置されている。なお、温度を計測する装置としては、熱電対に限定されず、例えば非接触温度計(放射温度計)であってもよい。
 図4は、本実施形態の真空熱処理装置S1の温度調整システム100の機能構成を示したブロック図である。この図に示すように、上述したヒータユニット11~16及び熱電対71~73は、温度調整システム100の構成要素として含まれている。具体的には、温度調整システム100は、断熱室31の内部における複数領域である領域R1~R3(前方領域R1、中間領域R2及び後方領域R3)の温度を測定する温度測定システム110と、被処理物Wが均一に熱処理されるように温度測定システム110の測定結果に基づいて領域R1~R3の温度を個別に調整する調整システム120とを備えて構成されている。そして、温度測定システム110が、熱電対71~73と、当該熱電対71~73の測定結果を測定値として算出する算出部111とを備えて構成されている。また、調整システム120が、ヒータユニット11~16と、当該ヒータユニット11~16の出力(発熱量)を所定のPID値及び温度測定システム110から入力される測定値に基づいて調整する制御部121とを備えて構成されている。すなわち、制御部121は、温度測定システム110から入力される測定結果に基づいてヒータユニット11~16の発熱量をPID制御可能となっている。
 そして、本実施形態の真空熱処理装置S1においては、制御部121は、前方領域R1に配置されたヒータユニット11,12の出力を熱電対71の測定結果に基づいて調整し、中間領域R2に配置されたヒータユニット13,14の出力を熱電対72の測定結果に基づいて調整し、後方領域R3に配置されたヒータユニット15,16の出力を熱電対72の測定結果に基づいて調整する。すなわち、本実施形態の真空熱処理装置S1においては、各領域R1~R3の温度が個別に測定され、この個別に測定された測定結果に応じて各領域R1~R3の温度が個別に調整される。
 具体的には、本実施形態の制御部121は、一例として、断熱室31内の予熱を行う際には、グループg1の発熱量が、グループg2、g3よりも大きくなるように設定する。
 また、制御部121は、断熱室31に被処理物Wが搬入された状態では、グループg1、g2の発熱量が、グループg3よりも大きくなるように設定する。さらに、本実施形態の真空熱処理装置S1において、制御部121は、その領域に充填される被処理物Wの質量に応じたPID値が設定可能とされている。このため、各領域R1~R3に充填される被処理物Wの質量に応じたPID値に基づいて各領域R1~R3のヒータユニット11~16の出力を調整することが可能となっている。
 図1に戻り、中間室40は、中空の略直方体状に形状設定されており、冷却室20と加熱室30との間に配置されている。中間室40の上部には、真空シールド扉80を吊り下げた状態で昇降させるための真空シールド扉用昇降部41と、断熱扉32を吊り下げた状態で昇降させるための断熱扉用昇降部42と、が設置されている。
 次に、このように構成された本開示に係る真空熱処理装置の動作について説明する。
 まず、スライド装置52によって扉50が冷却室20に対して離間された状態で、被処理物Wは、風炉室2内部の載置台21に載置される。そして、扉50がスライド装置52によって冷却室20に当接され、冷却室20が密閉される。そして、冷却室20、加熱室30及び中間室40は、減圧装置(不図示)の駆動によって真空引きされる。そして、真空シールド扉用昇降部41及び断熱扉用昇降部42が駆動することによって真空シールド扉80及び断熱扉32が開放される。また、断熱室31の、断熱扉32と逆側に設けられている搬送棒用扉33も開放される。
 ここで、搬送棒61によって、被処理物Wは、風炉室2内部の載置台21から断熱室31内部の載置台34上に移送される。そして、再び真空シールド扉用昇降部41及び断熱扉用昇降部42が駆動して搬送棒用扉33及び断熱扉32が閉じられ、この状態において、被処理物Wが、加熱装置10によって加熱される。そして、本実施形態の真空熱処理装置S1においては、温度調整システム100によって、断熱室31内の各領域R1~R3の温度が個別に測定され、被処理物Wが均一に熱処理されるように測定結果に基づいて各領域R1~R3の温度が個別に制御される。
 具体的には、温度調整システムの一部を構成する温度測定システム110の熱電対71によって前方領域R1の温度を測定し、この測定結果に基づいて温度測定システム110の算出部111が測定値を算出して出力する。また、温度測定システム110の熱電対72によって中間領域R2の温度を測定し、この測定結果に基づいて温度測定システム110の算出部111が測定値を算出して出力する。また、温度測定システム110の熱電対73によって後方領域R3の温度を測定し、この測定結果に基づいて温度測定システム110の算出部111が測定値を算出して出力する。
 すなわち、温度測定システム110が断熱室31の内部における複数領域の温度を測定する。
 そして、温度測定システム110によって測定された測定値は、温度調整システム100の一部を構成する調整システム120に入力される。ここで、調整システム120の制御部121は、一例として、グループg1、g2の出力を100%とし、グループg3の出力を80%とする制御を行う。これにより、加熱装置10は、熱の逃げやすい前方領域R1と、被処理物Wが占有する体積が相対的に大きい中間領域R2とを重点的に加熱することができる。
 さらに、制御部121は、入力された測定値に応じてヒータユニット11~16の出力を調整する。より詳細には、制御部121は、前方領域R1の温度に基づく測定値が入力された場合にはグループg1の出力を調整し、中間領域R2の温度に基づく測定値が入力された場合にはグループg2の出力を調整し、後方領域R3の温度に基づく測定値が入力された場合にはグループg3の出力を調整する。
 このように、本実施形態の真空熱処理装置S1は、領域R1~R3が同じ温度となるように温度調整システム100によって制御される。ここで、本実施形態の真空熱処理装置S1では、領域R1~R3が同じ温度となるように温度調整システム100によって制御されているため、被処理物Wが均一に昇温される。
 また、本実施形態の真空熱処理装置S1においては、制御部121が、各領域R1~R3に配置される被処理物Wの質量に応じたPID値を設定可能とされている。予め、各領域R1~R3に配置される被処理物Wの質量が分かっている場合には、各領域R1~R3に配置される被処理物Wの質量に応じたPID値、すなわち各領域R1~R3に存在する被処理物Wの吸熱容量に応じたPID値に基づいて各領域R1~R3のヒータユニット11~16の出力を調整することができる。
 加熱処理が完了すると、搬送棒用扉33及び断熱扉32が開放され、被処理物Wは、搬送棒61によって再び風炉室2内部の載置台21に移送される。そして、被処理物Wが風炉室2の載置台21に移送されると、真空シールド扉80が密閉される。
 そして、熱交換器3によって冷却された冷却ガスXがファン4によって循環されこの循環される冷却ガスXの流れが、均一化整流部7によって均一化され、この均一化された冷却ガスXが被処理物Wに吹付けられることによって、被処理物Wが均一に冷却される。
 そして、被処理物Wが所定の温度まで冷却されると、扉50が冷却室20から脱離され、被処理物Wが外部に搬出される。
 このような本実施形態に係る加熱装置10は、ヒータユニット11~16とユニットコネクタc1~c3及びヒータコネクタc4とが摺合せにより接続されている。これにより、ヒータユニット11~16が備える棒状ヒータ18の端部とユニットコネクタc1~c3とを密着させることができ、ヒータユニット11~16とユニットコネクタc1~c3及びヒータコネクタc4との接続部における電気抵抗を減少させることができる。したがって、棒状ヒータ18がそれぞれ設計通りに発熱し、加熱装置10全体として、均一に被処理物Wを加熱することができる。
 さらに、本実施形態に係る加熱装置10によれば、ヒータユニット11~16が、断熱室の出入口から奥側(出入口の逆側)に向かって配置されている。これにより、ヒータユニット11~16の温度を個別に把握し、制御することができる。したがって、棒状ヒータ18がそれぞれ設計通りに発熱し、加熱装置10全体として、均一に被処理物Wを加熱することができる。
 また、棒状ヒータ18とユニットコネクタc1~c3及びヒータコネクタc4との摺合せによる接合作業が手作業で行われる場合は、棒状ヒータ18とユニットコネクタc1~c3及びヒータコネクタc4との接合には各々誤差が含まれる可能性がある。これに対して、本実施形態に係る加熱装置10は、それぞれグループg1~g3に分割されて制御されている。これにより、ユニットコネクタc1~c3及びヒータコネクタc4の摺合せによる接続時の接触面積の誤差を考慮した上で、細かく制御を行うことができる。
 また、本実施形態に係る加熱装置10は、前方領域R1に配置されるグループg1の発熱量が他のグループg2,g3より大きくなるように設定されている。これにより、熱の逃げやすい断熱室31の出入口近傍をより高温で加熱することができ、結果的に被処理物W全体を均一に加熱することができる。
 さらに、本実施形態に係る加熱装置10によれば、断熱室31の下面側に配置される棒状ヒータ18は、他の棒状ヒータ18、すなわち断熱室31の側面側及び上面側に配置される棒状ヒータ18よりも太い径が設定されている。これにより、熱の逃げやすい下面側の棒状ヒータ18の発熱量を側面側及び上面側よりも大きくすることができる。したがって、下面側に配置される棒状ヒータ18を上面側及び側面側の棒状ヒータ18と分割して制御することなく、加熱装置10全体として、均一に被処理物Wを加熱することができる。
 以上、図面を参照しながら本開示の好適な実施形態について説明したが、本開示は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本開示の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 上記実施形態においては、加熱装置10は、6つのヒータユニット11~16を備える構成を採用したが、本開示はこれに限定されない。加熱装置10が備えるヒータユニット及び棒状ヒータ18の数は、真空熱処理装置の形状、大きさに応じて変更することが可能である。さらに、加熱装置10は、2つのヒータユニット毎に1グループとして制御される構成を採用したが、1グループを構成するヒータユニットの数はこれに限定されず、1つでもよいし、3つ以上でもよい。
 また、複数のヒータユニットが、4つ以上のグループに分割されて、その温度が個別に制御されてもよい。この場合、制御部121は、より細やかに温度制御を行うことができるため、被処理物Wをより均一に加熱することができる。複数のヒータユニットが、2つのグループに分割されて、その温度が個別に制御されてもよい。断熱室31内において、熱の逃げやすさに大きな違いが無い場合は、複数のヒータユニットを複数のグループに分割することなく、全て同様に制御してもよい。
 また、ユニットコネクタc1~c3及びヒータコネクタc4に挿入突起が形成され、棒状ヒータ18の端部に該挿入突起が挿入される穴が形成される構成を採用することもできる。この場合も、ユニットコネクタc1~c3及びヒータコネクタc4の挿入突起を摺合せにより棒状ヒータ18の穴に挿入する。
 また、上記実施形態においては、グループg1は、制御部121により発熱量が大きくなるように設定されているが、本開示はこれに限定されない。例えば、グループg1を構成する棒状ヒータ18は、グループg2、g3を構成する棒状ヒータ18よりも相対的に径が太く設定されることで、予め発熱量が大きくなるように設定されている構成を採用することも可能である。
 本開示の第1の態様は、真空熱処理装置に収容された被処理物の周囲に配置され、真空雰囲気下で上記被処理物を加熱する発熱体であって、複数の電気ヒータと、当該複数の電気ヒータを相互に接続する導電性コネクタとを備え、上記電気ヒータと上記導電性コネクタとは、互いに密着して接合されている。
 本開示の第2の態様は、上記第1の態様の発熱体において、上記電気ヒータと上記導電性コネクタとが、摺合せによって互いに密着するように接合されている。
 本開示の第3の態様は、上記第1または第2の態様の発熱体において、上記導電性コネクタが、上記電気ヒータの端部が挿入される穴を有している。また、上記電気ヒータの上記端部の径が、上記穴の径と略同一であるとともに、上記穴の内周面に上記端部の外周面が密着するように構成されている。
 本開示の第4の態様は、上記第1の態様の発熱体が、上記被処理物を囲むように上記複数の電気ヒータを上記導電性コネクタで環状に接続してなり、上記真空熱処理装置における上記被処理物の出入口からその逆に向かって配置されている複数のヒータユニットを備える。
 本開示の第5の態様は、上記第4の態様の発熱体が、互いに隣り合う上記複数のヒータユニットを接続するユニット用導電性コネクタを備える。
 本開示の第6の態様は、上記第5の態様の発熱体において、上記ユニット用導電性コネクタは、上記複数のヒータユニットが複数のグループを形成するように、上記複数のグループの各々に設けられている。
 本開示の第7の態様は、上記第6の態様の発熱体において、上記出入口に最も近いグループの上記ヒータユニットにおける上記電気ヒータの発熱量は、他のグループの上記ヒータユニットにおける上記電気ヒータの発熱量より大きい。
 本開示の第8の態様は、上記第1~7のいずれか1つの態様の発熱体において、上記被処理物の下方に配置される電気ヒータの径は、側方及び上方に配置される電気ヒータの径より大きい。
 本開示の第9の態様は、上記第1~8のいずれか1つの態様の発熱体が被処理物の周囲に配置され、真空雰囲気下で上記被処理物を加熱処理するように構成されている。
 本開示の第10の態様は、上記第9の態様の真空熱処理装置において、真空熱処理装置内における複数の領域の温度が個別に測定され、この測定結果に応じて上記複数の領域の温度が個別に調整されるように構成されている。
 本開示は、真空熱処理装置に収容された被処理物の周囲に配置される発熱体、及び真空熱処理装置に利用することができる。
1 熱処理炉
2 風炉室
3 熱交換器
4 ファン
7,7a,7b 均一化整流部
10 加熱装置(発熱体)
11~16 ヒータユニット
17 給電端子
18 棒状ヒータ(電気ヒータ)
20 冷却室
21 載置台
22 フリーローラ
30 加熱室
31 断熱室
32 断熱扉
33 搬送棒用扉
34 載置台
40 中間室
41 真空シールド扉用昇降部
42 断熱扉用昇降部
50 扉
51 支持脚
52 スライド装置
61 搬送棒
62 搬送棒収納室
71~73 熱電対
80 真空シールド扉
100 温度調整システム
110 温度測定システム
111 算出部
120 調整システム
121 制御部
g1~g3 グループ
c1~c3 ユニットコネクタ(ユニット用導電性コネクタ)
c4 ヒータコネクタ(導電性コネクタ)
S1 真空熱処理装置
W 被処理物

Claims (10)

  1.  真空熱処理装置に収容された被処理物の周囲に配置され、真空雰囲気下で前記被処理物を加熱する発熱体であって、
     複数の電気ヒータと、
     当該複数の電気ヒータを相互に接続する導電性コネクタと
     を備え、
     前記電気ヒータと前記導電性コネクタとは、互いに密着して接合されている発熱体。
  2.  前記電気ヒータと前記導電性コネクタとは、摺合せによって互いに密着するように接合されている請求項1に記載の発熱体。
  3.  前記導電性コネクタは、前記電気ヒータの端部が挿入される穴を有し、
     前記電気ヒータの前記端部の径が、前記穴の径と略同一であるとともに、前記穴の内周面に前記端部の外周面が密着するように構成されている請求項1または2に記載の発熱体。
  4.  前記被処理物を囲むように前記複数の電気ヒータを前記導電性コネクタで環状に接続してなり、前記真空熱処理装置における前記被処理物の出入口からその逆側に向かって配置されている複数のヒータユニットを備える請求項1に記載の発熱体。
  5.  互いに隣り合う前記複数のヒータユニットを接続するユニット用導電性コネクタを備える請求項4に記載の発熱体。
  6.  前記ユニット用導電性コネクタは、前記複数のヒータユニットが複数のグループを形成するように、前記複数のグループの各々に設けられている請求項5に記載の発熱体。
  7.  前記出入口に最も近いグループの前記ヒータユニットにおける前記電気ヒータの発熱量は、他のグループの前記ヒータユニットにおける前記電気ヒータの発熱量より大きい請求項6に記載の発熱体。
  8.  前記被処理物の下方に配置される電気ヒータの径は、側方及び上方に配置される電気ヒータの径より大きい請求項1~7のいずれか1項に記載の発熱体。
  9.  請求項1~8のいずれか1項に記載の発熱体が被処理物の周囲に配置され、真空雰囲気下で前記被処理物を加熱処理するように構成されている真空熱処理装置。
  10.  真空熱処理装置内における複数の領域の温度が個別に測定され、この測定結果に応じて前記複数の領域の温度が個別に調整されるように構成されている請求項9に記載の真空熱処理装置。
PCT/JP2017/033796 2017-01-18 2017-09-20 発熱体及び真空熱処理装置 WO2018135038A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018562869A JPWO2018135038A1 (ja) 2017-01-18 2017-09-20 発熱体及び真空熱処理装置
CN201780080387.8A CN110100499A (zh) 2017-01-18 2017-09-20 发热体以及真空热处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-006901 2017-01-18
JP2017006901 2017-01-18

Publications (1)

Publication Number Publication Date
WO2018135038A1 true WO2018135038A1 (ja) 2018-07-26

Family

ID=62908928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033796 WO2018135038A1 (ja) 2017-01-18 2017-09-20 発熱体及び真空熱処理装置

Country Status (3)

Country Link
JP (1) JPWO2018135038A1 (ja)
CN (1) CN110100499A (ja)
WO (1) WO2018135038A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025798B (zh) * 2021-03-01 2022-01-21 宏圳精密模具(吴江)有限公司 一种模具热处理设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126757A (en) * 1978-01-25 1978-11-21 Autoclave Engineers, Inc. Multizone graphite heating element furnace
JPS5731996Y2 (ja) * 1979-09-21 1982-07-14
JPS6146400Y2 (ja) * 1982-09-30 1986-12-26
FR2610095A1 (fr) * 1987-01-22 1988-07-29 Bmi Fours Ind Corps de chauffe notamment four pour industriel
WO1991002438A1 (en) * 1989-07-31 1991-02-21 Union Oil Company Of California Modular heater
JPH05271751A (ja) * 1992-03-26 1993-10-19 Daido Steel Co Ltd 真空炉の温度制御方法
JPH06151042A (ja) * 1992-11-02 1994-05-31 Toray Ind Inc 加熱炉
JP2001255073A (ja) * 2000-03-13 2001-09-21 Daido Steel Co Ltd 真空炉
JP2002299273A (ja) * 2001-04-04 2002-10-11 Sharp Corp 半導体基板用熱処理装置
JP2007084870A (ja) * 2005-09-21 2007-04-05 Ishikawajima Harima Heavy Ind Co Ltd 浸炭処理装置及び方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3915083B2 (ja) * 1998-05-20 2007-05-16 Smc株式会社 高真空バルブ
JP5245268B2 (ja) * 2006-06-16 2013-07-24 東京エレクトロン株式会社 載置台構造及び熱処理装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126757A (en) * 1978-01-25 1978-11-21 Autoclave Engineers, Inc. Multizone graphite heating element furnace
JPS5731996Y2 (ja) * 1979-09-21 1982-07-14
JPS6146400Y2 (ja) * 1982-09-30 1986-12-26
FR2610095A1 (fr) * 1987-01-22 1988-07-29 Bmi Fours Ind Corps de chauffe notamment four pour industriel
WO1991002438A1 (en) * 1989-07-31 1991-02-21 Union Oil Company Of California Modular heater
JPH05271751A (ja) * 1992-03-26 1993-10-19 Daido Steel Co Ltd 真空炉の温度制御方法
JPH06151042A (ja) * 1992-11-02 1994-05-31 Toray Ind Inc 加熱炉
JP2001255073A (ja) * 2000-03-13 2001-09-21 Daido Steel Co Ltd 真空炉
JP2002299273A (ja) * 2001-04-04 2002-10-11 Sharp Corp 半導体基板用熱処理装置
JP2007084870A (ja) * 2005-09-21 2007-04-05 Ishikawajima Harima Heavy Ind Co Ltd 浸炭処理装置及び方法

Also Published As

Publication number Publication date
JPWO2018135038A1 (ja) 2019-11-07
CN110100499A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
JP4458107B2 (ja) 真空浸炭処理方法及び真空浸炭処理装置
KR102411595B1 (ko) 가열 냉각 기기
CN101371331B (zh) 磁性退火工具热交换系统及处理工艺
US11956863B2 (en) Multi-zone heater
WO2014035490A2 (en) System for insulating an induction vacuum furnace and method of making same
JP2006518445A (ja) 材料の均一加熱処理の方法とそのシステム
EP2904340B1 (en) High-speed oven including wire mesh heating elements and a belt
US20230381859A1 (en) Compound Furnace
KR20160040689A (ko) 유리 물품의 제조 방법
JP2006266615A (ja) 熱処理炉
US8865058B2 (en) Heat treatment furnace
KR102411023B1 (ko) 작업물 홀딩 및 가열 장치, 작업물을 가열하는 방법, 및 링 가열기 어셈블리
JP2007084870A (ja) 浸炭処理装置及び方法
WO2018135038A1 (ja) 発熱体及び真空熱処理装置
CN110519905A (zh) 温控装置和等离子设备
CN204678904U (zh) 电阻炉
WO2011110369A1 (en) Apparatus for thermally treating semiconductor substrates
JP2004315917A (ja) 熱処理方法及び装置並びに熱処理方法に用いる熱処理炉
US20180292133A1 (en) Heat treating furnace
JP2014162936A (ja) 熱処理方法、加熱炉
US20230117184A1 (en) Batch processing oven for magnetic anneal
US20210254894A1 (en) Heating furnace
KR100299113B1 (ko) 열처리장치및열처리방법
JP2005291515A (ja) 連続焼成炉および連続焼成方法
CN204857311U (zh) 一种铝合金电缆热处理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018562869

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893405

Country of ref document: EP

Kind code of ref document: A1