WO2018133883A1 - 光固化型三维打印方法和设备 - Google Patents

光固化型三维打印方法和设备 Download PDF

Info

Publication number
WO2018133883A1
WO2018133883A1 PCT/CN2018/076797 CN2018076797W WO2018133883A1 WO 2018133883 A1 WO2018133883 A1 WO 2018133883A1 CN 2018076797 W CN2018076797 W CN 2018076797W WO 2018133883 A1 WO2018133883 A1 WO 2018133883A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
exposure
region
exposed
data model
Prior art date
Application number
PCT/CN2018/076797
Other languages
English (en)
French (fr)
Inventor
侯锋
Original Assignee
上海普利生机电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海普利生机电科技有限公司 filed Critical 上海普利生机电科技有限公司
Priority to EP18741514.6A priority Critical patent/EP3656538A4/en
Priority to JP2019539227A priority patent/JP7132927B2/ja
Publication of WO2018133883A1 publication Critical patent/WO2018133883A1/zh
Priority to US16/517,507 priority patent/US11034080B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to three-dimensional printing technology, and more particularly to a photocurable three-dimensional printing method and apparatus.
  • the three-dimensional printing technology is based on the computer three-dimensional design model.
  • the special materials such as metal powder, ceramic powder, plastic and cell tissue are stacked layer by layer by means of laser beam and hot melt nozzle. Bonding, and finally superimposed to create a physical product.
  • the raw materials are shaped and cut by the machining methods such as mold and milling, and the final production is different.
  • the three-dimensional printing transforms the three-dimensional entity into several two-dimensional planes, which are produced by processing the materials and superimposing them layer by layer. Reduced manufacturing complexity. This digital manufacturing mode does not require complicated processes, does not require a large machine tool, does not require a lot of manpower, and can directly generate various complicated shapes from computer graphics data, so that manufacturing can be extended to a wider range of production people. extend.
  • photocuring is a relatively mature method.
  • the photocuring method is based on the principle that the photocurable resin is cured by ultraviolet light, and the material is cumulatively formed, and has the characteristics of high molding precision, good surface smoothness, and high material utilization rate.
  • Fig. 1 shows the basic structure of a photocurable three-dimensional printing apparatus.
  • This three-dimensional printing apparatus 100 includes a material tank 110 for containing a photocurable resin, an image forming system 120 for curing the photocurable resin, and a lifting table 130 for joining the molded workpiece.
  • the image exposure system 120 is positioned above the material tank 110 and can illuminate the beam image to cure a layer of resin at the level of the material tank 110.
  • the image exposure system 120 illuminates the image of the light beam to cause a layer of resin to be solidified, the layer of the resin that is driven by the lifting platform 130 is slightly lowered, and the cured top surface of the workpiece is evenly spread by the squeegee 131, waiting for the next time. Irradiation. In this cycle, a three-dimensional workpiece that is incrementally formed by layer will be obtained.
  • the photocurable resin has a certain shrinkage during the curing process, and the shrinkage rate is generally from 2 to 8%, and the shrinkage stress generated by it exerts a force on the surrounding photocurable resin. This force exists between the resins at each position of each layer of the three-dimensional workpiece, and also between the resins of the respective layers. When a large area of resin is cured together, the stress is very significant, resulting in warpage and deformation of the resin after curing.
  • the technical problem to be solved by the present invention is to provide a photocurable three-dimensional printing method and apparatus, which can improve the problem of warpage and deformation of a photocurable resin.
  • the invention provides a photocuring three-dimensional printing method, comprising the steps of: obtaining a three-dimensional data model of a printed object; dividing the three-dimensional data model into multiple layers; and identifying at least a portion of the three-dimensional data model And the inner area; for each layer of the exposed area, each layer is exposed, and the inner area of each layer is subjected to an exposure process by a plurality of layers.
  • the method further includes exposing to form a plurality of support pillars in the layer in which the inner region is not exposed.
  • the exposing process includes: dividing the inner region into a complementary first pattern and a second pattern; exposing the first pattern by a first exposure step; and exposing the second exposure step The second pattern.
  • the exposing process includes dividing the inner region into a complementary first pattern and a second pattern; exposing only the first pattern without exposing the second pattern.
  • the displacement is random.
  • the first pattern and the second pattern are diagonal squares in the checkerboard.
  • the one-dimensional size of each square is 2-20 pixels.
  • the first pattern is a square separated by a trapezoidal stripe
  • the second pattern is a trapezoidal stripe
  • the first exposure step partially overlaps the time of the second exposure step.
  • the first exposure step does not overlap with the time of the second exposure step.
  • each square has a one-dimensional size of 10-50 pixels, and each well-shaped stripe has a width of 2-10 pixels.
  • the method further includes: imparting a first exposure intensity to the bare region, and imparting a second exposure intensity to the inner region, wherein the first exposure intensity is greater than the second exposure intensity; and the first exposure The bare area is exposed in intensity and the inner area is exposed at a second exposure intensity.
  • the second exposure intensity does not exceed 66% of the first exposure intensity.
  • the bare region comprises an upper shell, a side edge and/or a bottom shell.
  • the bare region has a normal thickness of 1-5 pixels.
  • the first exposure intensity is uniformly assigned to the three layers of the three-dimensional data model starting from the bottom layer.
  • the method further includes: identifying at least a portion of the three-dimensional data model, a bottom shell region having a size up to a threshold, and one or more support portions for supporting the bottom shell region An island-shaped region of the layer; a separation region is defined between each of the island-shaped regions and the bottom-shell region; each of the island-shaped regions and the bottom-shell region is exposed during the first period, and the respective separation regions are exposed during the second period, the first The period is earlier than the second period.
  • At least a portion of the second period overlaps with the first period.
  • the second period and the first period do not overlap.
  • the three layers of the three-dimensional data model are exposed from the bottom layer while exposing the entire layer.
  • the present invention provides a photocurable three-dimensional printing apparatus including a memory and a processor.
  • the memory stores computer readable instructions.
  • the processor executes the computer readable instructions to: obtain a three-dimensional data model of the printed object; divide the three-dimensional data model into multiple layers; identify at least a portion of the three-dimensional data model, a bare area and an interior of each layer The area; and the bare areas of each layer, each layer is exposed, and an exposure process is performed for the inner regions of each layer, at intervals of multiple layers.
  • the present invention also provides a photocuring type three-dimensional printing apparatus, comprising: a module for obtaining a three-dimensional data model of a printed object; a module for dividing the three-dimensional data model into multiple layers; and for at least part of the three-dimensional data model The layer, the module for identifying the exposed area and the inner area of each layer; the module for exposing each layer to the exposed area of each layer, and performing an exposure process for the inner area of each layer.
  • the present invention adopts the above technical solution to make the shrinkage of each layer during the exposure process less affected by other layers by performing exposure at intervals in the vertical direction of printing as compared with the prior art.
  • the present invention exposes a large-area region in a horizontally divided region, and exposes small regions that are not adjacent to each other at each exposure, which significantly reduces shrinkage accumulation at the time of exposure curing in a large-area region.
  • the exposure intensity of the inner area can be made lower than that of the bare area.
  • the exposure intensity of the exposed area is much higher than that of the inner area, causing the main source of deformation—the amount of shrinkage of the inner solid area is significantly reduced, and the temperature rise is reduced, so that the warpage and deformation problems of the three-dimensional model are improved.
  • a separation region is defined therebetween. Exposure to other areas prior to exposure, and then exposure of the separation area, thereby minimizing the problem of the tensile stress caused by the shrinkage of the large area in the overall exposure to the support portion.
  • Fig. 1 shows the basic structure of a photocurable three-dimensional printing apparatus.
  • FIG. 2 is a flow chart showing a photocuring three-dimensional printing method according to an embodiment of the present invention.
  • 3A is a three-dimensional data model in accordance with an embodiment of the present invention.
  • FIG. 3B illustrates a hierarchical diagram of a three-dimensional data model in accordance with an embodiment of the present invention.
  • FIG. 4A shows a schematic diagram of three-dimensional data model region identification according to an embodiment of the invention.
  • FIG. 4B shows a schematic diagram of three-dimensional data model region identification according to another embodiment of the present invention.
  • 5A-5D illustrate schematic views of spaced multilayer printing in accordance with an embodiment of the present invention.
  • Figure 5E shows a schematic view of a printed structure having a support post in accordance with an embodiment of the present invention.
  • Figure 6 illustrates an internal area exposure process in accordance with a preferred embodiment of the present invention.
  • FIG. 7 shows a schematic diagram of pattern discrimination according to an embodiment of the invention.
  • FIG. 8A and 8B illustrate a partition exposure process in accordance with an embodiment of the present invention.
  • FIG. 9 shows a schematic diagram of pattern discrimination according to another embodiment of the present invention.
  • FIGS. 10A and 10B illustrate an internal area exposure process in accordance with another preferred embodiment of the present invention.
  • FIG 11 shows an internal area exposure process in accordance with another preferred embodiment of the present invention.
  • Fig. 12 is a flow chart showing a photocuring type three-dimensional printing method according to another embodiment of the present invention.
  • Figure 13 is a flow chart showing a photocuring three-dimensional printing method according to still another embodiment of the present invention.
  • 14A and 14B are diagrams showing the identification of a three-dimensional data model region according to an embodiment of the present invention.
  • Fig. 15 is a flow chart showing a photocuring type three-dimensional printing method according to still another embodiment of the present invention.
  • Embodiments of the present invention describe a photocurable three-dimensional printing method which can reduce the internal stress generated by the photocurable resin upon solidification of a large area, thereby improving the degree of warpage and deformation of the printed workpiece.
  • Fig. 1 shows the basic structure of a photocurable 3D printing apparatus.
  • This 3D printing apparatus 100 includes a material tank 110 for containing a photocurable resin, an image exposure system 120 for curing the photocurable resin, and a lifting table 130 for joining the molded workpieces.
  • the image exposure system 120 is positioned above the material tank 110 and can illuminate the beam image to cure a layer of photocurable resin at the level of the material tank 110.
  • the image exposure system 120 illuminates the image of the light beam to cause a layer of the photocurable resin to be cured, the layer of the photocurable resin that is driven by the lifting platform 130 is slightly lowered, and the cured top surface of the workpiece is uniformly spread by the squeegee 131. Waiting for the next exposure. In this cycle, a three-dimensional workpiece that is incrementally formed by layer will be obtained.
  • Image exposure system 120 can illuminate the beam image to the photocurable resin to form the desired exposure pattern.
  • Image exposure system 120 can use various known techniques that are capable of forming a beam image.
  • image exposure system 120 may use Digital Light Procession (DLP) projection technology.
  • DLP projection imaging technology is implemented using a Digital Micromirror Device (DMD) to control the reflection of light.
  • DMD Digital Micromirror Device
  • the digital micromirror component can be viewed as a mirror. This mirror is made up of hundreds of thousands or even millions of micromirrors. Each micromirror represents a pixel, and the image is composed of these pixels.
  • image exposure system 120 may also use liquid crystal (LCD) projection techniques.
  • the liquid crystal panel includes a plurality of pixels, each of which can individually control the polarization direction of the polarized light, and the polarizing filter on both sides of the liquid crystal panel can control whether the light of a certain pixel passes, so the light beam passing through the liquid crystal panel system is an image.
  • LCD liquid crystal
  • the light-curable 3D printing apparatus 100 inputs a three-dimensional data model of a print object, and then decomposes the three-dimensional data model into a plurality of two-dimensional images, and transmits the images to the image exposure system 120, and then projects the latter.
  • a printed object for any shaped object can be considered to consist of an internal entity covered by a bare surface.
  • the entity here occupies most of the space of the printed object.
  • the deformation is caused by the volumetric contraction of the material.
  • the internal stress is caused by three parts, the exothermic thermal stress, the interlaminar transverse contraction force and the tensile stress of the underlying cured model.
  • the current layer exposure light is transmitted to the underlying cured model, causing the underlying model to shrink further. According to these shrinkage principles, the physical exposure intensity can be weakened, and the physical heat release can be reduced.
  • the large-area entity can be divided into checkerboard, tic-tac, and island-shaped bodies to reduce the deformation caused by lateral contraction;
  • the strength of the link between the upper and lower layers weakens the stretch of the cured layer of the current layer to the cured layer of the lower layer.
  • vertical segmentation the light intensity transmitted by the exposure light of the current layer to the cured layer of the lower layer can also be weakened.
  • the pre-processing required for region recognition of the three-dimensional data model is sent to the image exposure system 120 to cause the image exposure system 120 to perform exposure.
  • FIG. 2 is a flow chart showing a photocuring three-dimensional printing method according to an embodiment of the present invention. Referring to FIG. 2, the method includes the following steps:
  • step 201 obtaining a three-dimensional data model of the printed object
  • the three-dimensional data model is divided into multiple layers
  • step 203 identifying at least a portion of the three-dimensional data model, the bare area and the inner area of each layer;
  • each layer is exposed to the bare regions of each layer, and an exposure process is performed for the inner regions of the layers.
  • FIG. 3A illustrates a three-dimensional data model in accordance with an embodiment of the present invention.
  • the three-dimensional data model 300 is a house model having a foundation 301, a plurality of pillars 302, and a roof 303.
  • 3A shows a hierarchical diagram of a three-dimensional data model according to an embodiment of the present invention.
  • step 202 is to divide, for example, the three-dimensional data model 300 into a plurality of layers 310, 320, 330, ..., 560.
  • Each layer is used to cure the resin once in 3D printing to form a layer of photocurable resin.
  • the order of curing is, for example, starting from 310, in order of 320, 330, up to 560.
  • the two-dimensional plane of each layer can contain hundreds of pixels or even tens of thousands of pixels.
  • step 203 identifies at least a portion of the layer of the three-dimensional data model 300, such as layer 490, its exposed area 311 and inner area 312. Exposed areas, as the name suggests, are areas that are not covered in the formed part.
  • the bare area may include an upper shell, a side edge, and a bottom shell.
  • the bare region 311 is a bottom shell outside the pillars (shaded in the figure).
  • the inner area is the area covered.
  • the bottom surface of the inner region 312 is covered by its support portion, both sides are covered by the exposed region 311, and the surface is covered by other inner regions.
  • the area identification of layers 500 to 560 is analogous and will not be expanded here.
  • the bare areas identified by these layers are shown in Figure 4A, indicated by diagonal hatching.
  • the bare area can be set to a thickness in its normal direction, for example, 1-5 pixels.
  • the bare region 321 extends from layer 490 to layer 500.
  • each layer is exposed to the bare regions of each layer, and an exposure process is performed for the inner regions of the respective layers.
  • 5A-5D illustrate schematic views of spaced multilayer printing in accordance with an embodiment of the present invention. Referring first to FIG. 5A, the exposed area (hatched area) 321 of layer 490 is exposed, and the solid area 312 (dotted area) is exposed, followed by reference to FIG. 5B, the exposed area of layer 500 (hatched area) 321 is exposed, but the solid area 312 is not exposed, and then referring to FIG. 5C, the bare area (hatched area) 321 of the layer 510 is also exposed, but the solid area 312 is not exposed, and further referring to FIG.
  • the exposed area of the layer 520 (hatched area) is exposed, and the solid area (dotted area) is exposed.
  • an exposure process is performed in two layers at intervals, which can block the influence of shrinkage between the layers of the resin.
  • layer 500 is unexposed and does not create a contracting force on layer 490, and the shrinking force generated by exposure of layer 520 acts on unexposed layer 510 without shrinking layer 510 and shrinking.
  • the force is transferred to layer 490.
  • the curing of the photocurable resin is a gradient, the surface-facing strength against the light is high, and the strength on the other side is low. When implemented, the number of spaced layers can be adjusted depending on the depth of cure of the resin.
  • the resin curing depth is 0.3 mm
  • two layers may be spaced apart.
  • the contact area with the cured model is neither completely liquid nor completely solid, the workpiece has a certain strength, the layers can slide, and the upper layer has little influence on the lower layer. .
  • the support posts 313 may be formed by partial exposure, as shown in Figure 5E. In this way, the strength of the layer can be increased to ensure a certain connection between the upper and lower layers.
  • a single layer of zone exposure technique is further introduced.
  • Figure 6 illustrates an internal area exposure process in accordance with a preferred embodiment of the present invention. Referring to Figure 6, the process includes the following steps:
  • the inner region is divided into complementary first patterns and second patterns
  • the first pattern is exposed by the first exposure step
  • the second pattern is exposed by the second exposure step.
  • FIG. 7 shows a schematic diagram of pattern discrimination according to an embodiment of the invention.
  • the first pattern 71 and the second pattern 72 of the present embodiment are diagonal squares in the checkerboard 70.
  • the first pattern 71 and the second pattern 72 are complementary, each consisting of equal-sized squares that are not connected to each other.
  • the size of the square can be defined by itself, and the square size is better at 2-20 pixels.
  • FIGS. 8A and 8B illustrate a partition exposure process in accordance with an embodiment of the present invention.
  • the first exposure step first exposes the first pattern 71
  • the second exposure step is to re-expose the second pattern 72, although the order may be reversed.
  • the first exposure is completely unconnected due to the exposed portions, so its shrinkage has no effect on the overall deformation; the second exposure shrinkage connects the exposed portions of the body, causing deformation, but overall improvement.
  • FIG. 9 shows a schematic diagram of pattern discrimination according to another embodiment of the present invention.
  • the first pattern 91 is a square separated by a trapezoidal stripe
  • the second pattern 92 is a trapezoidal stripe.
  • the square can be defined as 10-50 pixels, and the tic-tacral stripes are preferably 2-10 pixels.
  • FIGS. 10A and 10B are diagrams showing a partition exposure according to another embodiment of the present invention.
  • the first exposure step exposes the first pattern 91 first
  • the second exposure step exposes the second pattern 92 again.
  • the first exposure square because the exposed portions are not connected at all, its shrinkage has no effect on the overall deformation; the second exposure shrinkage will connect the exposed portion of the body, causing deformation, but the well
  • the glyph stripes are small relative to the square, and this effect can be ignored.
  • the device can control image exposure system 120 to perform the first and second exposures.
  • the times of the first and second exposures may be partially overlapped or may not overlap at all.
  • FIG 11 shows an internal area exposure process in accordance with another preferred embodiment of the present invention.
  • the process includes the following steps:
  • the inner region is divided into complementary first patterns and second patterns
  • the first pattern is exposed only by the exposure step without exposing the second pattern.
  • This embodiment further provides a non-exposed area in the layer of the solid area where the exposure process is performed, thereby reducing the mutual influence of the contraction of the solid area to a greater extent.
  • This embodiment desirably controls the size of the second pattern to be smaller than the first pattern so as not to significantly reduce the strength of the solid area.
  • the combination of the first pattern and the second pattern which are preferably combined with this embodiment is the combination shown in FIG.
  • first pattern and the second pattern of each layer of the three dimensional data model there is a displacement between the first pattern and the second pattern of each layer of the three dimensional data model.
  • This displacement can be random so that the unexposed areas can be joined together.
  • the first pattern and the second pattern of each layer of the three-dimensional data model may also be unshifted such that the squares are completely unconnected.
  • the well word line and the square fit as long as the well line is thin enough, there will be a weak connection between the actual squares.
  • different exposure intensities may be applied to the bare area and the inner area of the printing object, specifically, the exposure intensity of the inner area is weaker than the exposure intensity of the bare area. Since the internal entities account for the vast majority of the printed workpiece, the overall heat and shrinkage can be greatly reduced.
  • Fig. 12 is a flow chart showing a photocuring type three-dimensional printing method according to another embodiment of the present invention. Referring to Figure 12, the method includes the following steps:
  • a three-dimensional data model of the printed object is obtained.
  • the three-dimensional data model is divided into multiple layers.
  • bare areas and inner regions of each layer are identified for at least a portion of the three-dimensional data model.
  • the first exposure intensity of the bare region is imparted, and the second exposure intensity of the inner region is imparted.
  • each layer is exposed to the bare regions of each layer and the exposed regions are exposed at a first exposure intensity.
  • an exposure process is performed for the inner regions of the layers, and the inner regions are exposed at a second exposure intensity.
  • the first exposure intensity imparted to the bare region and the second exposure intensity imparted to the inner region in step 1204 may be achieved by setting the brightness of the image converted for each layer of data, or by using different exposure times, or simultaneously Use different brightness and time to achieve.
  • the first exposure intensity is greater than the second exposure intensity. That is to say, the exposure intensity of the exposed area is greater than the exposure intensity of the internal area.
  • the second exposure intensity does not exceed 66% of the first exposure intensity.
  • the device can control the image exposure system 120 to expose the bare area at a first exposure intensity and expose the inner area at a second exposure intensity.
  • Figure 13 is a flow chart showing a photocuring three-dimensional printing method according to still another embodiment of the present invention. Referring to Figure 13, the method includes the following steps:
  • step 1301 three-dimensional model data of the print object is obtained.
  • the three-dimensional data model is divided into multiple layers.
  • the bare regions and inner regions of each layer are identified.
  • a bottom shell region having a size up to a threshold and one or more support portions for supporting the bottom shell region are identified in the island region of the layer.
  • a separation region is defined between each of the island-shaped regions and the bottom shell region.
  • each layer is exposed to the bare regions of each layer, and an exposure process is performed for the inner regions of the layers.
  • step 1307 when exposing the island-type regions and the bottom-shell regions, exposing regions other than the respective separation regions during the first exposure period, exposing the respective separation regions during the second exposure period, the first exposure period being earlier than the second exposure period and The two do not overlap.
  • steps 1301, 1302, 1303, 1306 can be referred to the previous embodiment and will not be expanded here.
  • step 1304 identifies at least a portion of the three-dimensional data model 300, such as layers 490 and 500, a bottom shell region 314 and an island region 312.
  • the bottom shell region 314 is the region of each of the layers 490, 500 that serves as the bottom shell of the three-dimensional data model 300. This area is exposed on the lower surface of the three-dimensional data model 300.
  • the normal thickness of the bottom shell region 314 is, for example, 1-5 layers, and two layers are shown in the drawing. The size of the bottom shell region 314 needs to reach a threshold.
  • the island-shaped region 312 is a region in which the support portion (four pillars 302 in this embodiment) for supporting the bottom shell region 314 is occupied by the layer in which the bottom shell region is located.
  • the island-shaped region 312 is connected to its corresponding support portion.
  • Each of the bottom shell regions 314 can be supported by a corresponding support portion (two of the four pillars are shown in the figure), and thus the island-shaped region 312 also has one or more.
  • the various support portions may be located at the edge of the three-dimensional model 300 or at the non-edge of the three-dimensional model 300.
  • the layer can be compared with its previous layer, and the portion of the layer that is not blocked by the previous layer is the bottom shell region, when the size of this region reaches the threshold This is the result to be identified in step 1304. Further, the area laterally surrounded by the bottom case area is an island type area, meaning that the area is connected to the support portion of the previous layer.
  • bottom shell area and the bare area are partially overlapped, and the island type area and the inner area area may also overlap.
  • a separation region 313 is defined between each island region 312 and the bottom shell region 314.
  • the partition region 313 is used to separate the island regions 312 from the bottom shell region 314.
  • the width of the separation area 313 is, for example, 2 to 10 pixels.
  • the separation region 313 may be all divided from the bottom shell region 314. Thus, the bottom shell region 314 is correspondingly reduced.
  • the separation region 316 may be partially segmented from each island region 312 and partially segmented from the bottom casing region 314. Thus, the bottom shell region 314 and the island-shaped regions 312 are correspondingly reduced.
  • step 1307 when the island-type regions 312 and the bottom-shell regions 314 are exposed, regions other than the respective separation regions 313 are first exposed during the first exposure period, including the bottom shell region 314 and the island-shaped regions 312 (shaded shadows in FIG. 14B). And dot shaded portions), and then each of the separation regions 313 is exposed during the second exposure period. That is, the first exposure period is earlier than the second exposure period.
  • the device may control the image exposure system 120 to expose regions other than the separation regions during the first exposure period when exposing the island regions and the bottom region, and exposing the separation regions during the second exposure period.
  • An exposure period is earlier than the second exposure period.
  • the shrinkage of the large-area bottom case region 314 does not affect the island-type regions 312, and thus The support portion connected to the island-shaped region 312 of the layer in the previous layer is not affected.
  • the size of the separation region 313 is small, and the contraction thereof has little influence on the support portion.
  • the exposure process described above involves only a large area of the bottom shell region 314 and the island-shaped region 312 surrounded by it, and other regions of the layer may be performed as is or in other manners. For example, other regions may be exposed during the first exposure period, or exposed during the second exposure period, or both at the first exposure period exposure and the second exposure period and with appropriate exposure intensity control.
  • the first exposure period and the second exposure period do not overlap at all, that is, after the end of the first exposure period, the second exposure period begins.
  • the method of the present embodiment may not be used in the exposure of several layers starting from the three-dimensional model 300. That is to say, each layer can be exposed as a whole during the same exposure period.
  • Fig. 15 is a flow chart showing a photocuring type three-dimensional printing method according to still another embodiment of the present invention. Referring to Figure 15, the method includes the following steps:
  • step 1501 three-dimensional model data of the print object is obtained.
  • the three-dimensional data model is divided into multiple layers.
  • the bare areas and inner areas of the layers are identified for at least a portion of the three-dimensional data model.
  • a bottom shell region having a size up to a threshold and one or more support portions for supporting the bottom shell region are identified in the island region of the layer.
  • a separation region is defined between each of the island-shaped regions and the bottom shell region.
  • each layer is exposed to the bare regions of each layer, and an exposure process is performed for the inner regions of the respective layers.
  • step 1507 when exposing the island-shaped regions and the bottom-shell regions, the regions other than the respective separation regions are exposed in the first exposure period, and the respective separation regions are exposed in the second exposure period, the first exposure period being earlier than the second exposure period and The two overlap in part.
  • steps 1301, 1302, 1303, 1306 can be referred to the previous embodiment and will not be expanded here.
  • step 1504 is to identify a bottom shell region 314 and an island region 312 in at least a portion of the layers of the three dimensional data model 300, such as layers 490 and 500.
  • the bottom shell region 314 is the region of each of the layers 490, 500 that serves as the bottom shell of the three-dimensional data model 300. This area is exposed on the lower surface of the three-dimensional data model 300.
  • the normal thickness of the bottom shell region 314 is, for example, 1-5 layers, and two layers are shown in the drawing. The size of the bottom shell region 314 needs to reach a threshold.
  • the island-shaped region 312 is a region in which the support portion (four pillars 302 in this embodiment) for supporting the bottom shell region 314 is occupied by the layer in which the bottom shell region is located.
  • the island-shaped region 312 is connected to its corresponding support portion.
  • Each of the bottom shell regions 314 can be supported by a corresponding support portion (two of the four pillars are shown in the figure), and thus the island-shaped region 312 also has one or more.
  • the various support portions may be located at the edge of the three-dimensional model 300 or at the non-edge of the three-dimensional model 300.
  • the layer can be compared with its previous layer, and the portion of the layer that is not blocked by the previous layer is the bottom shell region, when the size of this region reaches the threshold This is the result to be identified in step 1504. Further, the area laterally surrounded by the bottom case area is an island type area, meaning that the area is connected to the support portion of the previous layer.
  • a separation region 313 is defined between each island region 312 and the bottom shell region 314.
  • the partition region 313 is used to separate the island regions 312 from the bottom shell region 314.
  • the width of the separation area 313 is, for example, 2 to 10 pixels.
  • the separation regions 313 may all be from the bottom shell region 314. Thus, the bottom shell region 314 is correspondingly reduced.
  • the separation region 313 may be partially divided from the island-type regions 312 and partially divided from the bottom shell region 314.
  • the bottom shell region 314 and the island-shaped regions 312 are correspondingly reduced.
  • the device can control image exposure system 120 to perform exposure.
  • the shrinkage of the large-area bottom case region 314 does not affect the island-type regions 312, and thus The support portion connected to the island-shaped region 312 of the layer in the previous layer is not affected.
  • the size of the separation region 31 is small, and 314 and 312 which are simultaneously exposed with 312 have been subjected to exposure and contraction, and the amount of shrinkage during the process of increasing the exposure intensity is also small, and the contraction is applied to the support portion. The impact is small.
  • the first exposure period and the second exposure period are partially overlapped, that is, before the end of the first exposure period, the second exposure period has begun. Even, the first exposure period continues until the end of the second exposure period.
  • regions other than the respective separation regions 313 are first exposed in the first exposure period, including the bottom case region 314 (hatched portion in FIG. 4B) and the island region 312 (shaded portion in FIG. 14B);
  • the first exposure period lasts for a certain time (for example, half)
  • the second exposure period is started, and the separation portion 3163 is exposed to the blank portion in FIG. 14B; finally, the first exposure period and the second exposure period are ended together.
  • the exposure process described above involves only a large area of the bottom shell region 314 and the island-shaped region 312 surrounded by it, and other regions of the layer may be performed as is or in other manners. For example, other regions may be exposed during the first exposure period, or exposed during the second exposure period, or both at the first exposure period exposure and the second exposure period and with appropriate exposure intensity control.
  • the method of the present embodiment may not be used in the exposure of several layers starting from the three-dimensional model 300.
  • a computer may be included in the photocurable three-dimensional printing apparatus 100 to perform the methods and steps involved.
  • the computer can include a memory and a processor.
  • the memory stores computer readable instructions.
  • a processor executing the computer readable instructions to: obtain a three-dimensional data model of the printed object; divide the three-dimensional data model into multiple layers; identify at least a portion of the three-dimensional data model, and expose a bare area of each layer and Internal area; for each exposed area of each layer, each layer is exposed, and an exposure process is performed for a plurality of layers of the inner area of each layer.
  • the computer can control the image exposure system 120 to perform the desired exposure.
  • the present invention provides a photocuring type three-dimensional printing apparatus, comprising: a module for obtaining a three-dimensional data model of a printed object; a module for dividing the three-dimensional data model into multiple layers; At least a partial layer of the three-dimensional data model, a module for identifying exposed areas and inner regions of each layer; for exposing each layer of exposed areas of each layer, and performing an exposure process for the inner regions of each layer Module.
  • the above-described embodiments of the present invention can make the contraction of each layer during exposure less affected by other layers by performing exposure at intervals in the vertical direction of printing.
  • the present invention exposes a large-area region in a horizontally divided region, and exposes small regions that are not adjacent to each other at each exposure, which significantly reduces shrinkage accumulation at the time of exposure curing in a large-area region.
  • the exposure intensity of the inner area can be made lower than that of the bare area.
  • the strength of the bare area is much higher than that of the inner area, causing the main source of deformation—the amount of shrinkage of the inner solid area is significantly reduced, and the temperature rise is reduced, which makes the warpage and deformation of the three-dimensional model improved.
  • a separation region is defined therebetween. Exposure to other areas prior to exposure, and then exposure of the separation area, thereby minimizing the problem of the tensile stress caused by the shrinkage of the large area in the overall exposure to the support portion.
  • the present application uses specific words to describe embodiments of the present application.
  • a "one embodiment,” “an embodiment,” and/or “some embodiments” means a feature, structure, or feature associated with at least one embodiment of the present application. Therefore, it should be emphasized and noted that “an embodiment” or “an embodiment” or “an alternative embodiment” that is referred to in this specification two or more times in different positions does not necessarily refer to the same embodiment. . Furthermore, some of the features, structures, or characteristics of one or more embodiments of the present application can be combined as appropriate.
  • aspects of the present application can be illustrated and described by a number of patentable categories or conditions, including any new and useful process, machine, product, or combination of materials, or Any new and useful improvements. Accordingly, various aspects of the present application can be performed entirely by hardware, entirely by software (including firmware, resident software, microcode, etc.) or by a combination of hardware and software.
  • the above hardware or software may be referred to as a "data block,” “module,” “engine,” “unit,” “component,” or “system.”
  • aspects of the present application may be embodied in a computer product located in one or more computer readable medium(s) including a computer readable program code.

Abstract

一种光固化型三维打印方法和设备。该光固化型三维打印方法包括以下步骤:获得打印对象的三维数据模型;将该三维数据模型划分为多层;对该三维数据模型的至少部分层,识别各层的裸露区域和内部区域;对各层的裸露区域,每层都进行曝光,对各层的内部区域,间隔多层进行一个曝光过程。

Description

光固化型三维打印方法和设备 技术领域
本发明涉及三维打印技术,尤其是涉及光固化型三维打印方法和设备。
背景技术
三维打印技术,是以计算机三维设计模型为蓝本,通过软件分层离散和数控成型系统,利用激光束、热熔喷嘴等方式将金属粉末、陶瓷粉末、塑料、细胞组织等特殊材料进行逐层堆积黏结,最终叠加成型,制造出实体产品。与传统制造业通过模具、车铣等机械加工方式对原材料进行定型、切削以最终生产成品不同,三维打印将三维实体变为若干个二维平面,通过对材料处理并逐层叠加进行生产,大大降低了制造的复杂度。这种数字化制造模式不需要复杂的工艺、不需要庞大的机床、不需要众多的人力,直接从计算机图形数据中便可生成各种形状复杂的零件,使生产制造得以向更广的生产人群范围延伸。
目前三维打印技术的成型方式仍在不断演变,所使用的材料也多种多样。在各种成型方式中,光固化法是较为成熟的方式。光固化法是利用光固化树脂被紫外光照射后发生固化的原理,进行材料累加成型,具有成型精度高、表面光洁度好、材料利用率高等特点。
图1示出光固化型三维打印设备的基本结构。这一三维打印设备100包括用于容纳光固化树脂的物料槽110、用于使光固化树脂固化的成像系统120、以及用于连接成型工件的升降台130。图像曝光系统120位于物料槽110上方,并可照射光束图像使物料槽110液面的一层树脂被固化。每次图像曝光系统120照射光束图像致使一层树脂固化后,升降台130都会带动成型的那层树脂略微下降,并通过刮板131使固化后的工件顶面均匀铺展光固化树脂,等待下一次照射。如此循环,将会得到逐层累加成型的三维工件。
然而,光固化树脂在固化过程会有一定的收缩,收缩率一般在2-8%,其产生的收缩应力对周围的光固化树脂产生作用力。这种作用力存在于三维工件的每一层的各个位置的树脂之间,也存在于各层树脂之间。当大面积树脂一并固化时,这种应力会十分显著,从而导致固化后树脂出现翘曲、变形。
发明内容
本发明所要解决的技术问题是提供一种光固化型三维打印方法和设备,可以改善光固化树脂翘曲、变形的问题。
本发明提出一种光固化型三维打印方法,包括以下步骤:获得打印对象的三 维数据模型;将该三维数据模型划分为多层;对该三维数据模型的至少部分层,识别各层的裸露区域和内部区域;对各层的裸露区域,每层都进行曝光,对各层的内部区域,间隔多层进行一个曝光过程。
在本发明的一实施例中,上述方法还包括在内部区域未被曝光的层中,曝光形成多个支撑柱。
在本发明的一实施例中,该曝光过程包括:将内部区域分为互补的第一图案和第二图案;通过第一次曝光步骤曝光该第一图案;以及通过第二次曝光步骤曝光该第二图案。
在本发明的一实施例中,该曝光过程包括:将内部区域分为互补的第一图案和第二图案;仅曝光该第一图案而不曝光该第二图案。
在本发明的一实施例中,该三维数据模型各层的第一图案和第二图案之间有位移。
在本发明的一实施例中,该位移是随机的。
在本发明的一实施例中,该第一图案和该第二图案为棋盘格中对角的方格。
在本发明的一实施例中,每一方格的一维尺寸为2-20个像素。
在本发明的一实施例中,该第一图案为被井字形条纹隔开的方格,该第二图案为井字形条纹。
在本发明的一实施例中,该第一次曝光步骤与该第二次曝光步骤的时间部分重叠。
在本发明的一实施例中,该第一次曝光步骤与该第二次曝光步骤的时间不重叠。
在本发明的一实施例中,每一方格的一维尺寸为10-50个像素,每一井字形条纹的宽度为2-10个像素。
在本发明的一实施例中,上述方法还包括:赋予该裸露区域第一曝光强度,赋予该内部区域第二曝光强度,其中该第一曝光强度大于该第二曝光强度;以及以第一曝光强度曝光该裸露区域,且以第二曝光强度曝光该内部区域。
在本发明的一实施例中,该第二曝光强度不超过该第一曝光强度的66%。
在本发明的一实施例中,该裸露区域包括上壳、侧缘和/或底壳。
在本发明的一实施例中,该裸露区域的法向厚度为1-5像素。
在本发明的一实施例中,对该三维数据模型从底层开始的数层,统一赋予该第一曝光强度。
在本发明的一实施例中,上述方法还包括:对该三维数据模型的至少部分层,识别尺寸达到一阈值的底壳区域和用于支撑该底壳区域的一个或多个支持部在该层的岛型区域;在各岛型区域与该底壳区域之间划定分隔区域;在第一时期曝光各岛型区域与该底壳区域,在第二时期曝光各分隔区域,该第一时期早于该第二时期。
在本发明的一实施例中,该第二时期的至少一部分和该第一时期重叠。
在本发明的一实施例中,该第二时期和该第一时期不重叠。
在本发明的一实施例中,对该三维数据模型从底层开始的数层,同时曝光整层。
本发明提出一种光固化型三维打印设备,包括存储器和处理器。存储器储存计算机可读指令。处理器执行该计算机可读指令以实施下述步骤:获得打印对象的三维数据模型;将该三维数据模型划分为多层;对该三维数据模型的至少部分层,识别各层的裸露区域和内部区域;以及对各层的裸露区域,每层都进行曝光,对各层的内部区域,间隔多层进行一个曝光过程。
本发明还提出一种光固化型三维打印设备,包括用于获得打印对象的三维数据模型的模块;用于将该三维数据模型划分为多层的模块;用于对该三维数据模型的至少部分层,识别各层的裸露区域和内部区域的模块;用于对各层的裸露区域,每层都进行曝光,对各层的内部区域,间隔多层进行一个曝光过程的模块。
本发明由于采用以上技术方案,使之与现有技术相比,通过在打印的垂直方向间隔地进行曝光,可以使得每层在曝光过程中的收缩对其他层的影响较小。
同时,本发明将大面积区域在水平方向分区域曝光,每次曝光时对互不相邻的小区域进行曝光,显著降低了大面积区域曝光固化时的收缩累积。
再者,区分三维数据模型的裸露区域和内部区域,并用不同的曝光强度曝光,可以使得内部区域的曝光强度低于裸露区域。如此一来,裸露区域曝光强度大大高于内部区域,造成变形的主要来源——内部实体区域的收缩量显著降低,温升减少,使得三维模型的翘曲、变形问题得到改善。
另外,通过识别那些大面积底壳区域以及已成型的支持部连接的岛型区域,在二者间划定分隔区域。在曝光时先曝光其它区域,再曝光分隔区域,从而尽量减小大面积区域整体曝光时的收缩对支持部造成的牵拉应力问题。
附图概述
本发明的特征、性能由以下的实施例及其附图进一步描述。
图1示出光固化型三维打印设备的基本结构。
图2示出本发明一实施例的光固化型三维打印方法流程图。
图3A根据本发明一实施例的三维数据模型。
图3B示出根据本发明一实施例的三维数据模型分层示意图。
图4A示出根据本发明一实施例的三维数据模型区域识别示意图。
图4B示出根据本发明另一实施例的三维数据模型区域识别示意图。
图5A-5D示出根据本发明一实施例的间隔多层打印示意图。
图5E示出根据本发明一实施例的具有支撑柱的打印结构示意图。
图6示出本发明一较佳实施例的内部区域曝光过程。
图7示出根据本发明一实施例的图案区分示意图。
图8A和图8B示出根据本发明一实施例的分区曝光过程。
图9示出根据本发明另一实施例的图案区分示意图。
图10A和图10B示出本发明另一较佳实施例的内部区域曝光过程。
图11示出本发明另一较佳实施例的内部区域曝光过程。
图12示出本发明另一实施例的光固化型三维打印方法流程图。
图13示出本发明又一实施例的光固化型三维打印方法流程图。
图14A、14B示出根据本发明一实施例的三维数据模型区域识别示意图。
图15示出本发明再一实施例的光固化型三维打印方法流程图。
本发明的较佳实施方式
本发明的实施例描述一种光固化型三维打印方法,可以降低光固化树脂在大面积固化时产生的内应力,从而改善了打印工件翘曲和变形的程度。
图1示出光固化型3D打印设备的基本结构。这一3D打印设备100包括用于容纳光固化树脂的物料槽110、用于使光固化树脂固化的图像曝光系统120、以及用于连接成型工件的升降台130。图像曝光系统120位于物料槽110上方,并可照射光束图像使物料槽110液面的一层光固化树脂被固化。每次图像曝光系统120照射光束图像致使一层光固化树脂固化后,升降台130都会带动成型的那层光固化树脂略微下降,并通过刮板131使固化后的工件顶面均匀铺展光固化树脂,等待下一次照射。如此循环,将会得到逐层累加成型的三维工件。
图像曝光系统120可以照射光束图像至光固化树脂,形成所需的曝光图案。图像曝光系统120可以使用能够形成光束图像的各种已知技术。
举例来说,在一个实施例中,图像曝光系统120可以使用数字光处理(Digital Light Procession,DLP)投影技术。DLP投影成像技术是使用数字微镜元件(Digital Micromirror Device,DMD)控制对光的反射来实现的。数字微镜元件可视为一镜面。这面镜子是由数十万乃至上百万个微镜所组成的。每一个微镜代表一个像素,图像就由这些像素所构成。
在另一个实施例中,图像曝光系统120还可以使用液晶(LCD)投影技术。液晶面板中包含了许多像素,每个像素可以单独控制偏振光的偏振方向,配合液晶面板两侧的偏振光滤光器可控制某一像素的光线是否通过,因此经过液晶面板系统的光束是图像化的。
光固化型3D打印设备100输入的是打印对象的三维数据模型,再将三维数据模型分解成许多二维图像,将这些图像发送给图像曝光系统120后,由后者 进行投影。
对任何成型物体的打印对象,都可以认为是由一个裸露表面覆盖的一个内部实体构成。这里实体占据了打印对象的绝大部分空间。变形由材料体积收缩内应力引起,内应力由三部分造成,反应放热的热应力、层间横向收缩力和当前层固化收缩对下层已固化模型的拉伸应力。当前层曝光光线透射到下层已固化模型上,会使下层模型进一步收缩。根据这些收缩原理,可以减弱实体曝光强度,减少实体放热;或者通过水平分割,将大面积实体,分成棋盘格、井字、岛型体,减少横向收缩产生的变形;通过垂直分割,可以减弱上下层的链接强度,减弱当前层固化收缩对下层已固化模型的拉伸,通过垂直分割,也可以减弱当前层曝光光线透射到下层已固化模型上的光强。下面分别描述本发明的各个方面的特点。
根据本发明的实施例,对三维数据模型进行区域识别所需的预处理后,再发送给图像曝光系统120,从而让图像曝光系统120进行曝光。
图2示出本发明一实施例的光固化型三维打印方法流程图。参考图2所示,方法包括如下步骤:
在步骤201,获得打印对象的三维数据模型;
在步骤202,将三维数据模型划分为多层;
在步骤203,对三维数据模型的至少部分层,识别各层的裸露区域和内部区域;
在步骤204,对各层的裸露区域,每层都进行曝光,对各层的内部区域,间隔多层进行一个曝光过程。
图3A示出根据本发明一实施例的三维数据模型。参考图3A所示,三维数据模型300是一个房屋模型,具有基础301、多个柱子302和屋顶303。图3A示出根据本发明一实施例的三维数据模型分层示意图,如图3B所示,步骤202是将例如三维数据模型300分为多个层310、320、330、……、560。每个层用于在3D打印时进行一次树脂固化,生成一层光固化树脂。固化的顺序例如是从310开始,依次为320、330、直至560。每个层的二维平面可以包含几百个像素,甚至几万个像素。
图4A示出根据本发明一实施例的三维数据模型区域识别示意图。参考图4A所示,步骤203是将三维数据模型300的至少部分层,例如层490,识别出其裸露区域311和内部区域312。裸露区域,顾名思义是在成型的工件中不被覆盖的区域。裸露区域可包括上壳、侧缘和底壳。以图4A所示来说,由于层490之下仅有4个柱子302(图4A中示出2个)支撑,裸露区域311为柱子之外的底壳(图中斜线阴影)。内部区域是被覆盖的区域。例如,内部区域312底面被其支撑部分覆盖,两侧被裸露区域311覆盖,表面被其它内部区域覆盖。
层500到560的区域识别以此类推,在此不再展开。图4A中示出这些层被 识别出的裸露区域,以斜线阴影表示。裸露区域可在其法向设定一个厚度,例如为1-5像素。参考图4B所示,裸露区域321从层490贯穿到层500。
如前述步骤204,对各层的裸露区域,每层都进行曝光,对各层的内部区域,间隔多层进行一个曝光过程。图5A-5D示出根据本发明一实施例的间隔多层打印示意图。首先参考图5A,对层490的裸露区域(斜线阴影区域)321进行曝光,且对实体区域312(点阴影区域)进行曝光,接着参考图5B,对层500的裸露区域(斜线阴影区域)321进行曝光,但不对实体区域312进行曝光,然后参考图5C,同样是对层510的裸露区域(斜线阴影区域)321进行曝光,但不对实体区域312进行曝光,再者参考图5D,对层520的裸露区域(斜线阴影区域)进行曝光,且对实体区域(点阴影区域)进行曝光。这样,间隔两层进行一个曝光过程,可以阻断各层树脂之间因为收缩产生的影响。例如层500未经曝光,不会对层490产生收缩的作用力,而层520曝光所产生的收缩作用力作用在未曝光的层510上,不会使层510跟着收缩,也不会把收缩作用力传递到层490。光固化树脂的固化是一个梯度,面对光的面固化强度高,另一面的强度低。在实施时,间隔的层的数量可以根据树脂固化深度调整。举例来说,对于层厚0.1mm来说,如果树脂固化深度是0.3mm,那么可以间隔2层。这样在和已固化模型的接触区域既不是完全液体,也不是完全固体,工件既有一定强度,层间又可以滑动,上层对下层的影响会很小。。
较佳地,在实体区域未曝光的层中并不是完全没有曝光,而是可以通过局部曝光,形成一些支撑柱313,如图5E所示。这样,可以提高该层的强度,保证上下两层有一定连接。
对于体积较大的工件来说,即使是单层的大面积的曝光会有收缩和发热的问题,因此在本发明的较佳实施例中,进一步引入单层的分区曝光的技术。
图6示出本发明较佳实施例的内部区域曝光过程。参考图6所示,该过程包括如下步骤:
在步骤601,将内部区域分为互补的第一图案和第二图案;
在步骤602,通过第一次曝光步骤曝光第一图案;以及
在步骤603,通过第二次曝光步骤曝光第二图案。
图7示出根据本发明一实施例的图案区分示意图。参考图7所示,本实施例的第一图案71和第二图案72为棋盘格70中对角的方格。第一图案71和第二图案72是互补的,各由互不连接的等大小方格组成。在此,方格的大小可以自行定义,方格大小在2-20像素效果较好。
图8A和图8B示出根据本发明一实施例的分区曝光过程。参考图8A和图8B所示,第一次曝光步骤先曝光第一图案71,第二次曝光步骤是再曝光第二图案72,当然顺序可以相反。不考虑层间影响的话,第一次曝光由于曝光的部分完全不相连接,因此其收缩对整体变形没有影响;第二次曝光收缩会连接已曝 光部分的实体,造成变形,但总体有改善。
图9示出根据本发明另一实施例的图案区分示意图。参考图9所示,本实施例图案90中第一图案91为被井字形条纹隔开的方格,第二图案92为井字形条纹。在此,方格可定义为10-50像素,井字条纹以2-10像素为佳。
图10A和图10B示出根据本发明另一实施例的分区曝光示意图。参考图10A和图10B所示,第一次曝光步骤先曝光第一图案91,第二次曝光步骤再曝光第二图案92。不考虑层间影响的话,第一次曝光方格,由于曝光的部分完全不相连接,因此其收缩对整体变形没有影响;第二次曝光收缩会连接已曝光部分的实体,造成变形,但井字形条纹相对方格很小,这一影响可以忽略。
在步骤602和603中,设备可以控制图像曝光系统120进行第一次和第二次曝光。在此,第一次和第二次曝光的时间可以是部分重叠的,也可以是完全不重叠的。
图11示出本发明另一较佳实施例的内部区域曝光过程。参考图11所示,该过程包括如下步骤:
在步骤1101,将内部区域分为互补的第一图案和第二图案;
在步骤1102,仅通过曝光步骤曝光第一图案而不曝光第二图案。
这一实施例在进行了曝光过程的实体区域的层,进一步设置了不曝光的区域,从而更大的程度地减少实体区域收缩的相互影响。这一实施例希望将第二图案的尺寸控制得比第一图案小,从而不显著降低实体区域的强度。与这一实施例配合较好的第一图案和第二图案的组合,是图9所示的组合。
在前文的各实施例中,三维数据模型各层的第一图案和第二图案之间有位移。这一位移可以是随机的,从而可以将未曝光区域连起来。在替代实施例中,三维数据模型各层的第一图案和第二图案之间也可以不移位,这样方格完全不连接。不过,对于井字线和方格配合的例子中,只要井字线条足够细,实际方格间也会有弱连接。
进一步,根据本发明的实施例,可以对打印对象的裸露区域和内部区域实施不同的曝光强度,具体来说,内部区域的曝光强度弱于裸露区域的曝光强度。由于内部实体占了打印工件的绝大多数体积,因此可以大大降低总体发热和收缩情况。
图12示出本发明另一实施例的光固化型三维打印方法流程图。参考图12所示,方法包括如下步骤:
在步骤1201,获得打印对象的三维数据模型。
在步骤1202,将三维数据模型划分为多层。
在步骤1203,对三维数据模型的至少部分层,识别各层的裸露区域和内部区域。
在步骤1204,赋予裸露区域第一曝光强度,赋予内部区域第二曝光强度。
在步骤1205,对各层的裸露区域,每层都进行曝光,且以第一曝光强度曝光裸露区域。
在步骤1206,对各层的内部区域,间隔多层进行一个曝光过程,且以第二曝光强度曝光内部区域。
在步骤1204中赋予裸露区域的第一曝光强度和赋予内部区域的第二曝光强度,可以通过设置对各层数据所转换的图像的亮度来实现,也可采用不同的曝光时间来实现,或同时采用不同亮度和时间来实现。在此,第一曝光强度大于第二曝光强度。也就是说,裸露区域的曝光强度会大于内部区域的曝光强度。较佳地,第二曝光强度不超过第一曝光强度的66%。
不过,为了维持整个打印工件的强度以及和平台130的可靠连接,对三维数据模型300从底层开始的数层,统一赋予更高的第一曝光强度。
在步骤1205和1206中,设备可以控制图像曝光系统120以第一曝光强度曝光裸露区域,且以第二曝光强度曝光内部区域。
许多三维模型例如建筑和镂空雕塑都具有复杂的结构。在这些三维模型中,各种支持部,尤其是细小支持部对模型的精度有显著的影像。然而用于支持大面积底壳的支持部很容易受到大面积底壳在曝光时的收缩而变形。根据本发明的较佳实施例,将大面积底壳的不同区域在不同的时期进行曝光,从而显著减小大面积底壳在曝光时的收缩程度。
图13示出本发明又一实施例的光固化型三维打印方法流程图。参考图13所示,方法包括如下步骤:
在步骤1301,获得打印对象的三维模型数据。
在步骤1302,将三维数据模型划分为多层。
在步骤1303,对三维数据模型的至少部分层,识别各层的裸露区域和内部区域。
在步骤1304,对三维数据模型的至少部分层,识别尺寸达到一阈值的底壳区域和用于支撑底壳区域的一个或多个支持部在该层的岛型区域。
在步骤1305,在各岛型区域与底壳区域之间划定分隔区域。
在步骤1306,对各层的裸露区域,每层都进行曝光,对各层的内部区域,间隔多层进行一个曝光过程。
在步骤1307,在曝光各岛型区域与底壳区域时,在第一曝光时期曝光各分隔区域以外的区域,在第二曝光时期曝光各分隔区域,第一曝光周期早于第二曝光时期且二者不重叠。
步骤1301、1302、1303、1306的细节可参考之前的实施例,在此不再展开。
图14A、14B示出根据本发明一实施例的三维数据模型区域识别示意图。首先参考图14A所示,步骤1304是将三维数据模型300的至少部分层,例如层490和500中识别底壳区域314和岛型区域312。底壳区域314是各层490、500 中作为三维数据模型300的底壳的区域。这一区域是裸露在三维数据模型300下表面的。底壳区域314的法向厚度例如为1-5层,图中示出2层。底壳区域314的尺寸需要达到一阈值。例如底壳区域314的面积需要达到阈值S。当然,还可以规定底壳区域314的某一个方向的尺寸需要达到某一阈值。岛型区域312是用于支撑底壳区域314的支持部(在本实施例中为四个柱子302)在底壳区域所在层占据的区域。岛型区域312与其对应的支持部连接。每个底壳区域314可由对应的支持部支撑(图中示出4个柱子中的2个),因而岛型区域312也会有一个或者多个。各个支持部可以位于三维模型300的边缘,也可以位于三维模型300的非边缘。
在识别一个层的底壳区域314和岛型区域312时,可将该层与其前一层比较,该层中未被前一层遮挡的部分为底壳区域,当这一区域的尺寸达到阈值时即为步骤1304所要识别的结果。另外,被该底壳区域所侧向包围的区域为岛型区域,意味着该区域与前一层的支持部连接。
可以理解,底壳区域与裸露区域是有部分重叠的,而岛型区域与内部区域也可以有重叠。
继续参考图14B所示,在步骤1305,在各岛型区域312与底壳区域314之间划定分隔区域313。分隔区域313用于将各岛型区域312与底壳区域314隔开。分隔区域313的宽度例如是2-10个像素。分隔区域313可以是全部分割自底壳区域314。这样,底壳区域314相应缩小了。或者,分隔区域316可以是部分分割自各岛型区域312,而部分分割自底壳区域314。这样,底壳区域314和各岛型区域312相应缩小了。
如步骤1307,在曝光各岛型区域312与底壳区域314时,先在第一曝光时期曝光各分隔区域313以外的区域,包括底壳区域314和岛型区域312(图14B中斜线阴影和点阴影部分),然后在第二曝光时期曝光各分隔区域313。也就是说,第一曝光时期早于第二曝光时期。
在步骤1307中,设备可以控制图像曝光系统120在曝光各岛型区域与该底壳区域时,在第一曝光时期曝光各分隔区域以外的区域,在第二曝光时期曝光各分隔区域,该第一曝光时期早于该第二曝光时期。
在本实施例中,由于在第一曝光时期所曝光的底壳区域314和岛型区域312已经分离,因此大面积的底壳区域314的收缩不会影响到各岛型区域312,从而也就不会影响前一层中与本层的岛型区域312连接的支持部。相比之下,在第二曝光时期,分隔区域313的尺寸很小,其收缩对支持部的影响很小。
上文描述的曝光过程仅涉及大面积底壳区域314和被其包围的岛型区域312,本层的其他区域可以按照已有或者其他方式进行。例如,其他区域可以在第一曝光时期曝光,或者在第二曝光时期曝光,或者同时在第一曝光周期曝光和第二曝光周期曝光并辅以合适的曝光强度控制。
在本实施例中,第一曝光时期和第二曝光时期完全不重叠,即第一曝光时期结束后,第二曝光时期才开始。
另外,考虑到连接强度以及模型和平台131的可靠连接,在三维模型300开始的数层的曝光中,可以不使用本实施例的方法。也就是说,各层可以在同一曝光周期整体曝光。
图15示出本发明再一实施例的光固化型三维打印方法流程图。参考图15所示,方法包括如下步骤:
在步骤1501,获得打印对象的三维模型数据。
在步骤1502,将三维数据模型划分为多层。
在步骤1503,对三维数据模型的至少部分层,识别各层的裸露区域和内部区域。
在步骤1504,对三维数据模型的至少部分层,识别尺寸达到一阈值的底壳区域和用于支撑底壳区域的一个或多个支持部在该层的岛型区域。
在步骤1505,在各岛型区域与底壳区域之间划定分隔区域。
在步骤1506,对各层的裸露区域,每层都进行曝光,对各层的内部区域,间隔多层进行一个曝光过程。
在步骤1507,在曝光各岛型区域与底壳区域时,在第一曝光时期曝光各分隔区域以外的区域,在第二曝光时期曝光各分隔区域,第一曝光周期早于第二曝光时期且二者部分重叠。
步骤1301、1302、1303、1306的细节可参考之前的实施例,在此不再展开。
图14A、14B示出根据本发明一实施例的三维数据模型区域识别示意图。首先参考图14所示,步骤1504是将三维数据模型300的至少部分层,例如层490和500中识别底壳区域314和岛型区域312。底壳区域314是各层490、500中作为三维数据模型300的底壳的区域。这一区域是裸露在三维数据模型300下表面的。底壳区域314的法向厚度例如为1-5层,图中示出2层。底壳区域314的尺寸需要达到一阈值。例如底壳区域314的面积需要达到阈值S。当然,还可以规定底壳区域314的某一个方向的尺寸需要达到某一阈值。岛型区域312是用于支撑底壳区域314的支持部(在本实施例中为四个柱子302)在底壳区域所在层占据的区域。岛型区域312与其对应的支持部连接。每个底壳区域314可由对应的支持部支撑(图中示出4个柱子中的2个),因而岛型区域312也会有一个或者多个。各个支持部可以位于三维模型300的边缘,也可以位于三维模型300的非边缘。
在识别一个层的底壳区域314和岛型区域312时,可将该层与其前一层比较,该层中未被前一层遮挡的部分为底壳区域,当这一区域的尺寸达到阈值时即为步骤1504所要识别的结果。另外,被该底壳区域所侧向包围的区域为岛型区域,意味着该区域与前一层的支持部连接。
继续参考图14B所示,在步骤1505,在各岛型区域312与底壳区域314之间划定分隔区域313。分隔区域313用于将各岛型区域312与底壳区域314隔开。分隔区域313的宽度例如是2-10个像素。分隔区域313可以是全部来自底壳区域314。这样,底壳区域314相应缩小了。或者,分隔区域313可以是部分分割自各岛型区域312,而部分分割自底壳区域314。这样,底壳区域314和各岛型区域312相应缩小了。
在步骤1507中,设备可以控制图像曝光系统120进行曝光。
在本实施例中,由于在第一曝光时期所曝光的底壳区域314和岛型区域312已经分离,因此大面积的底壳区域314的收缩不会影响到各岛型区域312,从而也就不会影响前一层中与本层的岛型区域312连接的支持部。在第二曝光时期,分隔区域31的尺寸很小,和312同时曝光的314和312由于已经经过曝光和收缩,在增加曝光强度的过程中,其收缩量也已经很小,其收缩对支持部的影响很小。
在本实施例中,第一曝光时期和第二曝光时期是部分重叠,即第一曝光时期结束前,第二曝光时期已经开始。甚至,第一曝光时期持续到第二曝光时期结束。在这一过程中,先在第一曝光时期曝光各分隔区域313以外的区域,包括底壳区域314(图4B中斜线阴影部分)和岛型区域312(图14B中点阴影部分);当第一曝光时期持续一定时间(例如一半)时,开始第二曝光时期,曝光分隔区域3163图14B中空白部分);最后,第一曝光时期和第二曝光时期一起结束。
上文描述的曝光过程仅涉及大面积底壳区域314和被其包围的岛型区域312,本层的其他区域可以按照已有或者其他方式进行。例如,其他区域可以在第一曝光时期曝光,或者在第二曝光时期曝光,或者同时在第一曝光时期曝光和第二曝光时期曝光并辅以合适的曝光强度控制。
另外,考虑到连接强度,在三维模型300开始的数层的曝光中,可以不使用本实施例的方法。
回到图1所示,光固化型三维打印设备100中可以包括计算机,以执行所涉及的方法、步骤。计算机可包括存储器和处理器。存储器储存计算机可读指令。处理器,执行该计算机可读指令以实施下述步骤:获得打印对象的三维数据模型;将该三维数据模型划分为多层;对该三维数据模型的至少部分层,识别各层的裸露区域和内部区域;对各层的裸露区域,每层都进行曝光,对各层的内部区域,间隔多层进行一个曝光过程。这样,计算机可以控制图像曝光系统120进行所需的曝光。
从另一角度看,本发明提出一种光固化型三维打印设备,包括:用于获得打印对象的三维数据模型的模块;用于将该三维数据模型划分为多层的模块;用于对该三维数据模型的至少部分层,识别各层的裸露区域和内部区域的模块; 用于对各层的裸露区域,每层都进行曝光,对各层的内部区域,间隔多层进行一个曝光过程的模块。
本发明的上述实施例通过在打印的垂直方向间隔地进行曝光,可以使得每层在曝光过程中的收缩对其他层的影响较小。
同时,本发明将大面积区域在水平方向分区域曝光,每次曝光时对互不相邻的小区域进行曝光,显著降低了大面积区域曝光固化时的收缩累积。
再者,区分三维数据模型的裸露区域和内部区域,并用不同的曝光强度曝光,可以使得内部区域的曝光强度低于裸露区域。如此一来,裸露区域区域强度大大高于内部区域,造成变形的主要来源——内部实体区域的收缩量显著降低,温升减少,使得三维模型的翘曲、变形问题得到改善。
另外,通过识别那些大面积底壳区域以及已成型的支持部连接的岛型区域,在二者间划定分隔区域。在曝光时先曝光其它区域,再曝光分隔区域,从而尽量减小大面积区域整体曝光时的收缩对支持部造成的牵拉应力问题。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述发明披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
虽然本发明已参照当前的具体实施例来描述,但是本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,在没有脱离本发明精神的情况下还可作出各种等效的变化或替换,因此,只要在本发明的实质精神范围内对上述实施例的变化、变型都将落在本申请的权利要求书的范围内。

Claims (23)

  1. 一种光固化型三维打印方法,包括以下步骤:
    获得打印对象的三维数据模型;
    将该三维数据模型划分为多层;
    对该三维数据模型的至少部分层,识别各层的裸露区域和内部区域;
    对各层的裸露区域,每层都进行曝光,对各层的内部区域,间隔多层进行一个曝光过程。
  2. 如权利要求1所述的方法,其特征在于,其特征在于,还包括在内部区域未被曝光的层中,曝光形成多个支撑柱。
  3. 如权利要求1所述的方法,其特征在于,该曝光过程包括:
    将内部区域分为互补的第一图案和第二图案;
    通过第一次曝光步骤曝光该第一图案;以及
    通过第二次曝光步骤曝光该第二图案。
  4. 如权利要求1所述的方法,其特征在于,其特征在于,该曝光过程包括:
    将内部区域分为互补的第一图案和第二图案;
    仅曝光该第一图案而不曝光该第二图案。
  5. 如权利要求3或4所述的方法,其特征在于,该三维数据模型各层的第一图案和第二图案之间有位移。
  6. 如权利要求5所述的方法,其特征在于,该位移是随机的。
  7. 如权利要求3所述的方法,其特征在于,该第一图案和该第二图案为棋盘格中对角的方格。
  8. 如权利要求7所述的方法,其特征在于,每一方格的一维尺寸为2-20个像素。
  9. 如权利要求3所述的方法,其特征在于,该第一图案为被井字形条纹隔开的方格,该第二图案为井字形条纹。
  10. 如权利要求9所述的方法,其特征在于,每一方格的一维尺寸为10-50个像素,每一井字形条纹的宽度为2-10个像素。
  11. 如权利要求3或9所述的方法,其特征在于,该第一次曝光步骤与该第二次曝光步骤的时间部分重叠。
  12. 权利要求3或9所述的方法,其特征在于,该第一次曝光步骤与该第二次曝光步骤的时间不重叠。
  13. 如权利要求1所述的方法,其特征在于,其特征在于,还包括:
    赋予该裸露区域第一曝光强度,赋予该内部区域第二曝光强度,其中该第一曝光强度大于该第二曝光强度;以及
    以第一曝光强度曝光该裸露区域,且以第二曝光强度曝光该内部区域。
  14. 如权利要求13所述的方法,其特征在于,该第二曝光强度不超过该第一曝光强度的66%。
  15. 如权利要求13所述的方法,其特征在于,该裸露区域包括上壳、侧缘和/或底壳。
  16. 如权利要求13所述的方法,其特征在于,该裸露区域的法向厚度为1-5像素。
  17. 如权利要求13所述的方法,其特征在于,对该三维数据模型从底层开始的数层,统一赋予该第一曝光强度。
  18. 如权利要求1所述的方法,其特征在于,还包括:
    对该三维数据模型的至少部分层,识别尺寸达到一阈值的底壳区域和用于支撑该底壳区域的一个或多个支持部在该层的岛型区域;
    在各岛型区域与该底壳区域之间划定分隔区域;
    在第一时期曝光各岛型区域与该底壳区域,在第二时期曝光各分隔区域,该第一时期早于该第二时期。
  19. 如权利要求18所述的方法,其特征在于,该第二时期的至少一部分和该第一时期重叠。
  20. 如权利要求18所述的方法,其特征在于,该第二时期和该第一时期不重叠。
  21. 如权利要求18所述的方法,其特征在于,对该三维数据模型从底层开始的数层,同时曝光整层。
  22. 一种光固化型三维打印设备,包括:
    存储器,储存计算机可读指令;
    处理器,执行该计算机可读指令以实施下述步骤:
    获得打印对象的三维数据模型;
    将该三维数据模型划分为多层;
    对该三维数据模型的至少部分层,识别各层的裸露区域和内部区域;
    对各层的裸露区域,每层都进行曝光,对各层的内部区域,间隔多层进行一个曝光过程。
  23. 一种光固化型三维打印设备,包括:
    用于获得打印对象的三维数据模型的模块;
    用于将该三维数据模型划分为多层的模块;
    用于对该三维数据模型的至少部分层,识别各层的裸露区域和内部区域的模块;
    用于对各层的裸露区域,每层都进行曝光,对各层的内部区域,间隔多层进行一个曝光过程的模块。
PCT/CN2018/076797 2017-01-19 2018-02-14 光固化型三维打印方法和设备 WO2018133883A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18741514.6A EP3656538A4 (en) 2017-01-19 2018-02-14 PHOTO-CURING THREE-DIMENSIONAL PRINTING PROCESS AND DEVICE
JP2019539227A JP7132927B2 (ja) 2017-01-19 2018-02-14 光硬化型三次元印刷方法及び装置
US16/517,507 US11034080B2 (en) 2017-01-19 2019-07-19 Photocuring-type three-dimensional printing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710044588.4 2017-01-19
CN201710044588.4A CN108327253B (zh) 2017-01-19 2017-01-19 光固化型三维打印方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/517,507 Continuation US11034080B2 (en) 2017-01-19 2019-07-19 Photocuring-type three-dimensional printing method and device

Publications (1)

Publication Number Publication Date
WO2018133883A1 true WO2018133883A1 (zh) 2018-07-26

Family

ID=62907692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076797 WO2018133883A1 (zh) 2017-01-19 2018-02-14 光固化型三维打印方法和设备

Country Status (5)

Country Link
US (1) US11034080B2 (zh)
EP (1) EP3656538A4 (zh)
JP (1) JP7132927B2 (zh)
CN (1) CN108327253B (zh)
WO (1) WO2018133883A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109435229A (zh) * 2018-11-21 2019-03-08 厦门达天电子科技有限公司 一种3d打印用光敏树脂的测试件及其打印方法
CN109732909B (zh) * 2019-01-31 2021-05-04 广州黑格智造信息科技有限公司 打印方法及结构
CN113954366B (zh) * 2020-07-20 2023-10-13 上海普利生机电科技有限公司 底部细线条加强的光固化三维打印方法、装置和设备
CN114055778B (zh) * 2020-08-04 2023-04-28 上海普利生机电科技有限公司 去除底端部分的小型孤立区域的三维打印方法和设备
CN112519232A (zh) * 2020-11-30 2021-03-19 优你造科技(北京)有限公司 用于加强光固化3d打印模型表层固化强度的处理方法及装置
CN114454476B (zh) * 2021-01-29 2023-11-17 上海普利生机电科技有限公司 下表面隔层曝光的三维打印方法、设备和可读介质
CN115592953B (zh) * 2021-06-28 2024-03-12 广州黑格智造信息科技有限公司 用于3d打印的固化处理方法、系统、装置及存储介质
CN115122641B (zh) * 2022-05-31 2023-08-08 深圳市纵维立方科技有限公司 控制方法、控制系统、可读存储介质和3d打印设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1428656A (zh) * 2001-12-27 2003-07-09 新光电气工业株式会社 用于在印刷布线板上形成图案的曝光方法和装置
EP2241430A1 (en) * 2009-04-14 2010-10-20 Global Filtration Systems, Inc. Method of reducing the force required to separate a solidified object from a substrate
CN103213282A (zh) * 2013-04-11 2013-07-24 西安工程大学 用于面曝光快速成形系统的二次交错曝光方法
CN104802400A (zh) * 2014-01-28 2015-07-29 上海普利生机电科技有限公司 光固化型3d打印设备及其图像曝光系统
CN105666885A (zh) * 2016-04-18 2016-06-15 周宏志 基于dlp的可分区光固化3d打印成型方法、系统及设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE135952T1 (de) * 1989-10-30 1996-04-15 3D Systems Inc Verbesserte stereolithographische formgebungstechnik
JP2671534B2 (ja) * 1989-12-25 1997-10-29 松下電工株式会社 三次元形状の形成方法
US5198159A (en) * 1990-10-09 1993-03-30 Matsushita Electric Works, Ltd. Process of fabricating three-dimensional objects from a light curable resin liquid
US5429908A (en) * 1993-04-12 1995-07-04 E. I. Du Pont De Nemours And Company Exposure method for reducing distortion in models produced through solid imaging by forming a non-continuous image of a pattern which is then imaged to form a continuous hardened image of the pattern
JPH07100937A (ja) * 1993-10-01 1995-04-18 C Met Kk 内部応力を低減する光硬化造形法
JPH0834063A (ja) * 1994-07-25 1996-02-06 Toshiba Corp 光造形方法及びその装置及び樹脂成形体
JPH10138349A (ja) * 1996-11-11 1998-05-26 Meiko:Kk 積層光造形法
US6399010B1 (en) * 1999-02-08 2002-06-04 3D Systems, Inc. Method and apparatus for stereolithographically forming three dimensional objects with reduced distortion
US6649113B1 (en) * 2000-08-11 2003-11-18 Chris R. Manners Method to reduce differential shrinkage in three-dimensional stereolithographic objects
JP5184080B2 (ja) * 2004-05-10 2013-04-17 エンビジョンテク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ピクセルシフトによる分解能改善を伴う3次元物体の製造プロセス
DE102006019964C5 (de) * 2006-04-28 2021-08-26 Envisiontec Gmbh Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Objekts mittels Maskenbelichtung
US10105903B2 (en) * 2010-11-28 2018-10-23 Stratasys Ltd. System and method for additive manufacturing of an object
WO2014033027A1 (de) * 2012-08-28 2014-03-06 Ivoclar Vivadent Ag Verfahren zum aufbau eines formkörpers
JP6557565B2 (ja) * 2014-09-18 2019-08-07 ローランドディー.ジー.株式会社 三次元造形装置
US9656422B2 (en) * 2014-10-21 2017-05-23 Disney Enterprises, Inc. Three dimensional (3D) printer with near instantaneous object printing using a photo-curing liquid
EP3272504A4 (en) * 2015-03-19 2018-12-12 Jun, Jin-hwan Print medium used in 3d printing, color 3d printing method, and color 3d printer and method of controlling same
JP6538452B2 (ja) * 2015-06-30 2019-07-03 ローランドディー.ジー.株式会社 スライス画像作成装置、3次元造形システム、および、スライス画像作成方法
JP6849365B2 (ja) * 2016-09-29 2021-03-24 キヤノン株式会社 光造形装置、光造形方法および光造形プログラム
CN108215173A (zh) * 2016-12-15 2018-06-29 上海普利生机电科技有限公司 能够自动连续打印的光固化型三维打印设备、方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1428656A (zh) * 2001-12-27 2003-07-09 新光电气工业株式会社 用于在印刷布线板上形成图案的曝光方法和装置
EP2241430A1 (en) * 2009-04-14 2010-10-20 Global Filtration Systems, Inc. Method of reducing the force required to separate a solidified object from a substrate
CN103213282A (zh) * 2013-04-11 2013-07-24 西安工程大学 用于面曝光快速成形系统的二次交错曝光方法
CN104802400A (zh) * 2014-01-28 2015-07-29 上海普利生机电科技有限公司 光固化型3d打印设备及其图像曝光系统
CN105666885A (zh) * 2016-04-18 2016-06-15 周宏志 基于dlp的可分区光固化3d打印成型方法、系统及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3656538A4 *

Also Published As

Publication number Publication date
JP2020505252A (ja) 2020-02-20
JP7132927B2 (ja) 2022-09-07
US11034080B2 (en) 2021-06-15
CN108327253B (zh) 2021-08-06
CN108327253A (zh) 2018-07-27
US20190337219A1 (en) 2019-11-07
EP3656538A4 (en) 2020-09-02
EP3656538A1 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
WO2018133883A1 (zh) 光固化型三维打印方法和设备
CN104669621B (zh) 光固化型3d打印设备及其成像系统
CN104760402B (zh) 用于三维打印机的曝光装置、三维打印机和三维打印方法
CN107877852B (zh) 光固化型三维打印方法
WO2017114412A1 (zh) 增强的数字光处理面曝光快速成型的方法及装置
CN105563830B (zh) 基于微投影3d打印的三维光子晶体模板的制备方法
CN105666885A (zh) 基于dlp的可分区光固化3d打印成型方法、系统及设备
CN109968661B (zh) 光固化型三维打印方法和设备
US20170210071A1 (en) Three-dimensional printing device and three-dimensional printing method
JP2018051958A (ja) 三次元造形装置、三次元物体製造方法および三次元造形プログラム
JPH11138645A (ja) 光造形装置及び方法
US20170368751A1 (en) Light control device and manufacturing method thereof, 3d printing system
CN108248020A (zh) 一种水平式dlp投影技术面曝光成型装置及方法
JP2021526989A (ja) 積層造形によって物理的オブジェクトをビルドアップする方法
US20230321898A1 (en) Layer orientation control for pixel-based additive manufacturing
JP3515419B2 (ja) 光学的立体造形方法および装置
CN107877843B (zh) 光固化型三维打印方法和设备
JP4828028B2 (ja) 立体造形装置および立体造形方法
CN104669622B (zh) 光固化型3d打印设备及其成像系统
JPH0834063A (ja) 光造形方法及びその装置及び樹脂成形体
JP4519274B2 (ja) 光造形装置および光造形方法
CN111086206A (zh) 三维模型的打印方法和设备
CN107877844A (zh) 光固化型三维打印方法和设备
JP2005053024A (ja) 3次元積層造形装置及び3次元積層造形方法
CN105904727A (zh) 基于dlp的光固化3d打印成型方法、系统及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018741514

Country of ref document: EP

Effective date: 20190819