WO2018133697A1 - 应用于血压计的阀、集成气泵以及电子血压计 - Google Patents

应用于血压计的阀、集成气泵以及电子血压计 Download PDF

Info

Publication number
WO2018133697A1
WO2018133697A1 PCT/CN2018/071862 CN2018071862W WO2018133697A1 WO 2018133697 A1 WO2018133697 A1 WO 2018133697A1 CN 2018071862 W CN2018071862 W CN 2018071862W WO 2018133697 A1 WO2018133697 A1 WO 2018133697A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
pressure
exhaust port
valve
sealing structure
Prior art date
Application number
PCT/CN2018/071862
Other languages
English (en)
French (fr)
Inventor
龚大成
章年平
Original Assignee
深圳金亿帝医疗设备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳金亿帝医疗设备股份有限公司 filed Critical 深圳金亿帝医疗设备股份有限公司
Publication of WO2018133697A1 publication Critical patent/WO2018133697A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0235Valves specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds

Definitions

  • the present application relates to a valve structure for use in an electronic sphygmomanometer.
  • a valve structure for a sphygmomanometer is disclosed in a Chinese invention patent (CN103140166A).
  • the valve is suitable for use in a small fluid control device capable of filling compressed air into an air storage portion and rapidly discharging air from the air storage portion, and having low manufacturing cost and low power consumption.
  • the check valve has a first valve housing and a first diaphragm.
  • the first diaphragm constitutes a first valve chamber and a second valve chamber.
  • the exhaust valve has a second valve housing and a second diaphragm.
  • the second diaphragm constitutes a third valve chamber and a fourth valve chamber.
  • the check valve opens and closes due to the pressure difference between the first valve chamber and the second valve chamber.
  • the exhaust valve opens and closes due to the pressure difference between the third valve chamber and the fourth valve chamber.
  • the problem with this type of valve is that the exhaust valve is controlled to open by the pressure difference between the third valve chamber and the fourth valve chamber, because the third valve chamber is filled with gas discharged from the cuff, and the fourth valve chamber is also filled with gas.
  • Each of the spaces has a certain pressure, so the energy required to generate a sufficient pressure difference is large, the exhaust efficiency is low, and the process is difficult and the process is complicated.
  • the application provides a valve for an sphygmomanometer, an integrated air pump, and an electronic sphygmomanometer.
  • the valve provided by the application includes:
  • a wall of the first space is provided with a first connection port for intake air;
  • the cavity wall of the second space is provided with a second connection port for communicating with the air bag and an exhaust port for communicating with the outside atmosphere;
  • the sealing structure is controlled by the change of the gas pressure difference between the first space and the third space to control the movement of the exhaust port relative to the exhaust port to achieve sealing and opening of the exhaust port.
  • the third space is formed to be atmospheric, or both the first space and the second space are sealed from the third space.
  • the first side of the sealing structure is located in the first space, and the second side of the sealing structure opposite to the first side is located in the third space when:
  • the sealing structure moves toward the exhaust port and seals the exhaust port; when the pressure on the first side is less than the pressure on the second side, The sealing structure moves toward the first space to open the exhaust port;
  • the sealing structure moves toward the exhaust port and seals the exhaust port; the pressure on the first side is greater than the pressure on the second side The sealing structure moves toward the first space to open the exhaust port.
  • the sealing structure includes an elastic wall that simultaneously serves as a chamber wall of the first space and the third space, the first side of the elastic wall being located in the first space and The difference in pressure experienced by the second side located in the third space causes the resilient wall to seal and open the vent.
  • the sealing structure comprises an elastic wall and a sealing body mounted on the elastic wall, the elastic wall simultaneously serving as a chamber wall of the first space and the third space, the elastic wall being located The difference in pressure between the first side in the first space and the second side in the third space causes the sealing body to seal and open the vent.
  • the sealing structure includes a sliding cavity and a sliding body that is sealed and slidably mounted in the sliding cavity, the sliding cavity being in communication with the first space and the third space, the sliding body a first side is received in the first space, a second side opposite to the first side is received in the third space, and the sliding body has a sealing portion, the first side and the second side of the sliding body The difference in pressure is such that the seal seals and opens the vent.
  • the method of forming the atmospheric pressure in the third space is achieved by connecting the third space to the outside atmosphere.
  • the first space includes a vent opening that is normally open to the outside atmosphere, and the vent opening is sized to: when the venting port discharges gas during the inflation phase of the air bag, The sealing structure always seals the vent.
  • the second space has a first air inlet
  • the first air inlet communicates with the first space and the second space
  • the first air inlet is provided with damping
  • the damping structure can be electrically connected from the first space to the second space, and the opening of the damping structure does not affect the sealing structure to seal the exhaust port.
  • the damping passage is a one-way valve leading from the first space to the second space.
  • an elastic returning structure for assisting the sealing structure to open the venting opening, the sealing structure causing deformation of the resilient returning structure when sealing the venting opening is also included.
  • the exhaust port is outwardly convex from the second space, and the elastic reset structure includes a spring that is sleeved on the outer wall of the exhaust port.
  • the second space has a first air inlet, the first air inlet being separately disposed on a chamber wall of the second space.
  • the integrated air pump provided by the present application includes a pressurizing unit for supplying a gas, and further comprising the valve according to any one of the above, the pressurizing unit being in communication with the valve for the first space and/or the second space Inject gas into the inside.
  • the pressurizing unit comprises a motor, an electromagnetic reciprocating power source or a piezoelectric vibrator.
  • a vacuum generator is also included, the negative pressure generator for forming a negative pressure in the first space or the third space.
  • the electronic sphygmomanometer provided by the present application includes an airbag and an air pressure sensor for detecting air pressure, and is characterized by further comprising the integrated air pump according to any one of the above, wherein the integrated air pump is in communication with the airbag.
  • Another electronic sphygmomanometer provided by the present application includes an air bag and an air pressure sensor for detecting air pressure, the air pressure sensor being in communication with the air bag, and the valve according to any one of the above, wherein the air pump is connected through the valve In the airbag.
  • the valve provided by the present application includes a first space, a second space, a third space, and a sealing structure.
  • the first space is opened with a first connection port for intake air
  • the second space has a second connection port communicating with the air bag and an exhaust port communicating with the outside.
  • the sealing structure controls the movement of the gas outlet relative to the exhaust port by a change in the gas pressure difference between the first space and the third space to achieve sealing and opening of the exhaust port. Since the third space is distinguished from the first space and the second space, the gas pressure therein can be unaffected by the pressure unit gas path, and the first space can easily form a pressure difference therefrom. Therefore, the energy required to open the exhaust port is small, the exhaust efficiency is high, and the structure is simple and the processing is convenient.
  • FIG. 1 is a schematic view of the first embodiment of the integrated air pump of the present application when the exhaust port is in an open state;
  • Figure 2 is a schematic view of the embodiment shown in Figure 1 when the exhaust port is closed;
  • FIG. 3 is a schematic view showing the second embodiment of the integrated air pump of the present application when the exhaust port is in an open state;
  • FIG. 4 is a schematic view of the third embodiment of the integrated air pump of the present application when the exhaust port is in an open state;
  • Figure 5 is a schematic view showing the fourth embodiment of the integrated air pump of the present application when the exhaust port is in an open state
  • Figure 6 is a schematic view of the embodiment shown in Figure 5 when the exhaust port is closed;
  • Figure 7 is a schematic view showing the fifth embodiment of the integrated air pump of the present application when the exhaust port is in an open state
  • Figure 8 is a schematic view of the embodiment shown in Figure 7 when the exhaust port is closed;
  • Figure 9 is a schematic view showing the sixth embodiment of the integrated air pump of the present application when the exhaust port is in an open state
  • Figure 10 is a schematic view of the seventh embodiment of the integrated air pump of the present application when the exhaust port is in an open state;
  • Figure 11 is a schematic view showing the eighth embodiment of the integrated air pump of the present application when the exhaust port is in an open state
  • Figure 12 is a schematic view showing the vent port of the ninth embodiment of the integrated air pump of the present application in an open state
  • FIG. 13 is an exploded perspective view of a tenth embodiment of the integrated air pump of the present application.
  • Figure 14 is another exploded perspective view of the structure shown in Figure 13;
  • Figure 15 is a schematic view showing the second piston chamber inflated toward the first space in the embodiment shown in Figure 13;
  • Figure 16 is a schematic view showing the first piston chamber inflated toward the first space in the embodiment shown in Figure 13;
  • Figure 17 is a schematic view showing the opening of the second space inlet port in the state shown in Figure 16;
  • Figure 18 is a schematic view showing the air supply to the airbag of the second piston chamber in the embodiment shown in Figure 13;
  • Figure 19 is a schematic view showing the air supply to the airbag of the first piston chamber in the embodiment shown in Figure 13;
  • Figure 20 is a schematic view of the exhaust stage in the embodiment shown in Figure 13;
  • 21 is a schematic view of an embodiment of an electronic sphygmomanometer according to the present application.
  • Figure 22 is a schematic illustration of a second embodiment of an electronic sphygmomanometer of the present application.
  • the present application primarily discloses a valve for use in a sphygmomanometer that includes a first space, a second space, a third space, and a sealed structure.
  • a first connection port for the intake air is opened in the wall of the first space, and a second connection port for communicating with the air bag and an exhaust port for communicating with the outside atmosphere are opened on the cavity wall of the second space.
  • the sealing structure controls the movement of the gas outlet relative to the exhaust port by a change in the gas pressure difference between the first space and the third space to achieve sealing and opening of the exhaust port.
  • the third space is distinguished from the first space and the second space, the gas pressure therein can be unaffected by the pressure unit gas path, and the first space can easily form a pressure difference therefrom. Therefore, the energy required to open the exhaust port is small, the exhaust efficiency is high, and the structure is simple and the processing is convenient.
  • the third space may be formed as atmospheric pressure, or the third space may be sealed from the first space and the second space, and the sealing structure is changed by a gas pressure difference between the first space and the third space. Control the movement of the opposite exhaust port to achieve sealing and opening of the exhaust port.
  • the first space When atmospheric pressure is formed in the third space, the first space can easily form a pressure difference therefrom.
  • a lower pressure such as a negative pressure or a low pressure, can be easily formed in the third space, and the pressure difference can be easily formed with the first space. . Therefore, the energy required to open the exhaust port is small, the exhaust efficiency is high, and the structure is simple and the processing is convenient.
  • first side of the sealing structure is located in the first space
  • second side of the sealing structure opposite to the first side is located in the third space when:
  • the sealing structure moves toward the exhaust port and seals the exhaust port; when the pressure on the first side is less than the pressure on the second side, the sealing structure is directed to the first space. Move, open the exhaust port;
  • the sealing structure moves toward the exhaust port and seals the exhaust port; when the pressure on the first side is greater than the pressure on the second side, the sealing structure faces Move in a space and open the exhaust vent.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the first embodiment provides an integrated air pump including a pressurizing unit for supplying a gas and a valve structure.
  • the pressurizing unit is in communication with the valve for injecting gas into the first space and/or the second space.
  • the valve includes a first space 110 , a second space 120 , and a third space 130 .
  • the pressurizing unit includes a first pressurizing unit 150 that communicates with the first connecting port 111 of the first space 110, the first connecting port 111 serving as both the air inlet of the first space 110 and The air outlet of the first space 110.
  • the first air inlet 121 of the second space 120 communicates with the first space 110 and the second space 120.
  • the first air inlet 121 is provided with a damping structure 124.
  • the damping structure 124 can be from the first space 110 to the second space.
  • the space 120 is turned on, and the opening of the damping structure 124 does not affect the sealing structure to seal the exhaust port.
  • the third space 130 is formed as an atmospheric pressure, which is realized by connecting the third space 130 with the external atmospheric environment, specifically, the third space 130 is set as a cavity communicating with the outside.
  • the third space 130 of the present embodiment is a semi-open space, in which 100 represents the external atmospheric pressure, and the corresponding straight line represents the air passage.
  • the third space 130 may also be directly equivalent to an ambient atmospheric environment.
  • the first space 110 and the second space 120 are both supplied by the first pressurizing unit 150.
  • the first pressurizing unit 150 first injects gas into the first space 110, and when the gas in the first space 110 forms a sufficient pressure difference with the atmospheric pressure of the third space 130, the sealing structure is pushed to move toward the exhaust port 123 of the second space 120. And seal the exhaust port 123.
  • the sealing structure includes an elastic wall 141 which serves as a chamber wall of the first space 110 and the third space 130, and a first side of the elastic wall 141 located in the first space 110 and a second side located in the third space 130 The difference in pressure is such that the elastic wall 141 seals and opens the exhaust port 123.
  • the damping structure 124 when the air pressure in the first space 110 continues to rise to the set pressure, the damping structure 124 will be moved to open the first air inlet 121 between the first space 110 and the second space 120, and the gas enters.
  • the force to open the damping structure 124 is set to be greater than the force that causes the sealing structure to seal the exhaust port 123, so the opening of the damping structure 124 does not affect the sealing of the sealing structure to the exhaust port 123.
  • the gas in the second space 120 is sent into the airbag 200 from the second connection port 122.
  • the damping structure 124 may be a one-way valve that leads from the first space 110 to the second space 120.
  • the trigger pressure of the one-way valve is stronger than the pressure difference that seals the exhaust port 123.
  • the one-way valve may be an umbrella-shaped elastic member installed at the first air inlet 121, the handle portion of the elastic member is installed at the first air inlet 121, and the umbrella portion partially seals the first air inlet Port 121. When the air pressure is sufficiently large, the canopy portion will be deformed and the first air inlet 121 is opened.
  • the first pressurizing unit 150 shifts to discharge the gas in the first space 110 from the first connection port 111, and when the pressure of the compressed gas in the first space 110 decreases to a certain value, the sealing structure returns to the position.
  • the exhaust port 123 is opened to discharge the gas in the airbag 200 to the atmosphere through the second space 120.
  • the exhaust port 123 may be disposed to protrude toward the side of the elastic wall 141.
  • the pressure difference between the first space 110 and the third space 130 may be by forming a negative pressure into any one of the spaces.
  • the formation of negative pressure can be achieved with a vacuum generator.
  • the pressurizing unit may be a device driven by a motor, or may be an electromagnetic reciprocating power source or other driving device such as a piezoelectric vibrator.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the second embodiment provides another integrated air pump, which differs from the integrated air pump shown in the first embodiment in that:
  • the first connection port of the valve shown in this embodiment includes a venting port 112 that is normally open to the outside atmosphere and a second air inlet port 113 for intake air.
  • the venting opening 112 is sized such that the sealing structure can always seal the venting opening 123 when the venting port 112 discharges gas during the inflation phase of the airbag 200.
  • the second air inlet 113 is in communication with the first pressure unit 150 for inflating the first space 110.
  • the venting opening 112 is separately disposed on the wall of the first space 110 for deflation.
  • the pressure difference between the first space 110 and the third space 130 can always cause the elastic wall 141 to seal the exhaust port 123. That is, during the inflation phase of the airbag 200, the gas leaked from the vent 112 does not affect the sealing effect on the vent 123.
  • the first pressurizing unit 150 slows down or even stops the supply of air. At this time, the gas in the first space 110 gradually discharges from the air outlet 112, so that the pressure in the first space 110 becomes smaller, thereby gradually opening the exhaust port. 123.
  • venting opening 112 is a simple and easy way to manufacture.
  • the venting port 112 can also be controlled by providing a control valve. During the inflation phase, the control valve is always closed, and when deflation is required, the control valve is opened and deflated through the vent 112. With the control of the control valve, the size and the number of the air vent 112 are no longer affected by the pressure in the first space 110, and may be set larger or more, so that the first space 110 can be quickly discharged. gas.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the third embodiment provides another integrated air pump, which differs from the integrated air pump shown in the first embodiment in that:
  • the valve further includes an elastic returning structure for assisting the sealing structure to open the exhaust port, the sealing structure causing deformation of the elastic returning structure when sealing the exhaust port, such that the restoring force of the elastic returning structure has a tendency to reset the sealing structure.
  • the exhaust port 123 is disposed facing the sealing structure protrusion.
  • the elastic reset structure includes a spring 142 sleeved on the outer wall of the exhaust port 123 against the deformed elastic wall 141.
  • the elastic reset structure pushes the elastic wall 141 to return faster under the restoring force, thereby opening the exhaust port 123 more quickly.
  • the second space 120 is quickly deflated.
  • the elastic reset structure may also be disposed in the first space 110, for example, as a stretch type elastic structure.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the fourth embodiment provides another integrated air pump, which differs from the integrated air pump shown in the first embodiment in that:
  • the sealing structure includes an elastic wall 141 and a sealing body 143 mounted on the elastic wall 141.
  • the elastic wall 141 serves as a chamber wall of the first space 110 and the third space 130, and the elastic wall 141 is located at the same time.
  • the difference in pressure between the first side within a space 110 and the second side located within the third space 130 causes the sealing body 143 to seal and open the vent 123.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the fifth embodiment provides another integrated air pump, which differs from the integrated air pump shown in the fourth embodiment in that:
  • the sealing structure includes a sliding cavity 144 and a sliding body 145 that is sealed and slidably mounted within the sliding cavity 144.
  • the sliding cavity 144 is communicated with the first space 110 and the third space 130, the first side of the sliding body 145 is received in the first space 110, and the second side opposite to the first side is received in the third space 130, and
  • the sliding body 145 has a sealing portion, and the difference in pressure between the first side and the second side of the sliding body 145 seals the sealing portion and opens the exhaust port 123.
  • the sixth embodiment provides another integrated air pump, which differs from the integrated air pump shown in the second embodiment in that:
  • the integrated air pump further includes a second pressurizing unit 160 that communicates with the first intake port 121 for supplying air into the second space 120.
  • the seventh embodiment provides another integrated air pump, which differs from the integrated air pump shown in the sixth embodiment in that:
  • the first air inlet 121 is separately disposed on the wall of the first space 110.
  • the first space 110 and the second space 120 are also provided with a third connection port 125.
  • a damping structure 124 is disposed at the third connection port 125.
  • the damping structure 124 can be electrically connected to the second space 120 from the first space 110.
  • the opening of the damping structure 124 does not affect the sealing structure to seal the exhaust port 123.
  • the second pressurizing unit 160 is in communication with the first intake port 121 for supplying air into the second space 120.
  • the air pressure in the first space 110 is sufficiently large, the excess gas is transported into the second space 120 through the second connection port 122, thereby increasing the amount of gas in the second space 120, reducing the gas supply time of the second space 120, and improving Energy utilization.
  • the eighth embodiment provides another integrated air pump, which differs from the integrated air pump shown in the sixth embodiment in that:
  • the integrated air pump includes a negative pressure generator 170 .
  • the third space 130 is a sealed space independent of the first space 110 and the second space 120 .
  • the negative pressure generator 170 acts in the third space 130 .
  • a negative pressure may be formed in the third space 130.
  • the sealing structure 147 is located between the first space 110 and the third space 130.
  • the first side is located in the first space 110, and the second side is located in the third space 130.
  • a pressure difference is easily formed between the first space 110 and the third space 130, thereby pushing the sealing structure 147 to move toward the exhaust port 123 of the second space 120, sealing the exhaust port 123.
  • This embodiment provides another integrated air pump, which differs from the integrated air pump shown in Embodiment 8 in that:
  • the second pressurizing unit 160 directly supplies air to the airbag 200, and the second connecting port 122 serves as a venting port of the airbag 200 to the second space 120 during the exhaust phase.
  • the exhaust port 123 is sealed.
  • the exhaust port 123 is opened, and the gas is discharged from the exhaust port 123.
  • This embodiment ten provides another integrated air pump.
  • the integrated air pump includes, in addition to the driving device, a piston body bracket 410, a piston body 420, a lower pressing block 430, a check valve assembly 440, an upper pressing block 450, an elastic body 460, and a gas nozzle 470. .
  • the piston body 420 is mounted on the piston body bracket 410.
  • the piston body 420 includes a first piston chamber 421 and a second piston chamber 422.
  • the two piston chambers 421 and 422 are respectively provided with piston intake holes for intake.
  • the lower pressing block 430 is pressed against the piston body 420 and covers the two piston chambers 421, 422 to form a sealed cavity.
  • the lower pressing block 430 has two grooves 431, 434 and four through holes 432, 433, 435, 436.
  • the one-way valve assembly 440 is overlying the lower pressure block 430, which includes a first one-way valve 441, a second one-way valve 442, a third one-way valve 443, and a fourth one-way valve 444.
  • the one-way valve assembly 440 covers the lower pressing block 430 and forms an air passage with the grooves and through holes of the lower pressing block 430.
  • the groove 431 communicates with the intake port of the first one-way valve 441, and the through hole 432 communicates with the air outlet of the first check valve 441 and extends into the first piston chamber 421.
  • the lower end of the through hole 433 communicates with the first piston chamber 421, and the upper end of the through hole 433 communicates with the intake port of the second check valve 442.
  • the groove 434 communicates with the intake port of the third check valve 443, and the through hole 435 communicates with the air outlet of the third check valve 443 and extends into the second piston chamber 422.
  • the lower end of the through hole 436 communicates with the second piston chamber 422, and the upper end of the through hole 436 communicates with the intake port of the fourth check valve 444.
  • the upper pressing block 450 is laid on the one-way valve assembly 440, and the elastic body 460 is laid on the upper pressing block 450.
  • the air nozzle 470 is buckled on the elastic body 460 and forms a valve housing with the upper pressing block 450.
  • the gas nozzle 470 includes a plug interface 471, and a second connection port 122 is disposed in the plug interface. As shown in FIG. 15, the elastic body 460 is provided with a vent hole 461.
  • the upper pressing block 450 is provided with a first cavity 451.
  • Two pressing blocks 452 are disposed in the first cavity 451, and a gap is formed between the pressing blocks 452.
  • a portion of the first cavity 451 corresponding to the fourth one-way valve 444 is further provided with a through hole 453 which extends upwardly and penetrates the upper pressing block 450 and is aligned with the through hole 463 on the elastic body 460.
  • the upper pressing block 450 has a second cavity 454 and a third cavity 455 opposite to the other side of the first cavity 451.
  • the second cavity 454 is provided with a plug 458 which is placed against the elastic body 460.
  • the vent 461 forms a one-way valve from the second cavity 454 to the other side of the elastomer 460.
  • the upper pressing block 450 further has an exhaust passage 4510.
  • One end of the exhaust passage 4510 communicates with the air nozzle 470 through the through hole 463 of the elastic body 460, and the other end of the exhaust passage 4510 opens in the third concave cavity 455.
  • the elastic body 460 forms a second space 120 together with the gas nozzle 470 and the exhaust passage 4510.
  • a portion of the elastic body 460 is disposed in the third cavity 455 as a sealing portion 462, and an outer hole 457 is disposed in a sidewall of the third cavity 455 surrounding the boss 459, and the external hole 457 makes the third cavity 455
  • the space enclosed by the sealing portion 462 communicates with the outside atmosphere to form a third space 130.
  • the sealing portion 462 and the air nozzle 470 enclose a space, and the through hole 453 of the upper pressing block 450 communicates with the space through the through hole 463 on the elastic body 460, so that the space communicates with the first concave cavity 451 to form the first space 110. .
  • the sealing and opening of the exhaust port 123 by the sealing portion 462 is controlled by the pressure difference of the first space 110 and the third space 130.
  • the driving device outputs the upper and lower reciprocating motions, and drives the piston to reciprocate up and down, thereby changing the space of the first piston chamber 421 and the second piston chamber 422, and completing the suction to the outside. Gas and air supply to the second plenum 120 and the first space 110.
  • the driving device includes a motor 310 and a pressing assembly fixedly mounted on the motor 310.
  • the pressing assembly abuts against the first piston chamber 421 and the second piston chamber 422.
  • One side of the chamber wall forms an undulating surface, and a higher portion of the undulating surface sequentially presses the first piston chamber 421 or the second piston chamber 422, and the lower portion of the undulating surface sequentially makes the second piston chamber 422 or The space within the first piston chamber 421 is expanded.
  • the pressing assembly of the present embodiment includes a tilting shaft 320, a swinging rod 330, an eccentric body 340, and a bracket hook 350.
  • the eccentric body 340 is fixed to the rotating shaft of the motor 310, and an oblique hole is eccentrically disposed on the eccentric body 340.
  • One end of the inclined shaft 320 is inserted into the inclined hole, and is disposed obliquely eccentrically with the rotating shaft.
  • the swing lever 330 has a center hole and a boss, and the other end of the tilt shaft 320 is inserted into the center hole, and the boss of the swing lever 330 abuts against the piston.
  • the bracket hook 350 is used for fixing the motor 310, the piston body bracket 410, and the structure of each air chamber. As shown in Figures 13 through 15, the bracket hook 350 has at least two upwardly projecting hooks that hook the air nozzles 470 located at the upper portion for positioning.
  • the second piston chamber 422 is squeezed to an initial state.
  • the first piston chamber 421 expands and air enters the first piston chamber 421 along the path indicated by the arrow.
  • the second piston chamber 422 contracts and the compressed air enters the first space 110 in the direction indicated by the arrow. Since the pressure in the first space 110 rapidly rises to a state far greater than the pressure of the third space 130 in the atmospheric pressure state in the third space 130, the pressure difference between the first space 110 and the third space 130 deforms the elastic portion 462.
  • the exhaust port 123 is closed.
  • the gas in the first piston chamber 122 enters the space 180 at this time, and a part of the gas entering the 180 space is used for sealing the row.
  • the gas port 123 is supplied to the airbag 200 from the vent hole 461 of the elastic body 460.
  • the first piston chamber 421 and the second piston chamber 422 are mainly supplied with air to the first space 110 at the initial stage of the piston supply, and the exhaust port 123 can be quickly sealed. Then, when the pressure is increased to a certain size, the air inlet of the second space 120 is opened to supply air to the second space 120. At the same time, when the air pressure in the first space 110 is sufficiently large, excess gas is delivered into the second space 120, the amount of gas in the second space 120 is increased, the air supply time of the second space 120 is reduced, and energy utilization is improved.
  • the motor 310 stops or slows down the speed, and the gas in the first space 110 is discharged from the air outlet 112 provided in the air nozzle 470, so that the first The pressure difference between the space 110 and the third air chamber is insufficient to maintain the elastic portion 462 in a sealed state, and the elastic portion 462 is separated from the exhaust port 123 by its own restoring force, thereby opening the exhaust port 123, so that the airbag 200 and the second space 120
  • the gas in the gas is discharged in the direction indicated by the arrow in FIG.
  • the driving device can also use an electromagnetic reciprocating power source to replace the motor 310.
  • the electromagnetic reciprocating power source acts on the chamber wall of the first piston chamber 421 and the second piston chamber 422, and the electromagnetic reciprocating power source outputs a reciprocating motion to drive the first piston chamber.
  • the walls of the 421 and second piston chambers 422 contract and expand.
  • the driving device may further adopt a piezoelectric vibrator instead of the motor 310, and the piezoelectric vibrator acts on the chamber walls of the first piston chamber 421 and the second piston chamber 422, and the piezoelectric vibrator outputs a reciprocating motion to drive the first piston chamber 421 and The chamber wall of the second piston chamber 422 contracts and expands.
  • the piezoelectric vibrator may be made of an inorganic piezoelectric material or an organic piezoelectric material such as an ultrasonic vibrator or the like.
  • the first driving device acting on the first air chamber and the second driving device acting on the third air chamber may be the same driving device, or different driving devices may be used respectively.
  • the above various driving devices may be arranged to simultaneously work on the first piston chamber 421 and the second piston chamber 422 by the same device, such as the motor 310 driving device described above.
  • two sets of driving devices may be provided to perform work on the first piston chamber 421 and the second piston chamber 422, respectively.
  • This embodiment provides an electronic sphygmomanometer.
  • the electronic sphygmomanometer includes an air bag 1000, an air pressure sensor 2000 for detecting air pressure, and an integrated air pump 3000 for outputting gas, and the integrated air pump 3000 adopts any integrated air pump as in the above embodiment, wherein The second connection port 123 of the integrated air pump 3000 communicates with the airbag 1000 to perform charging and discharging.
  • the sphygmomanometer starts measuring, the integrated air pump 3000 pressurizes the cuff airbag 1000, and the sphygmomanometer measures the pressure signal containing the blood pressure signal through the sensor 2000; once the blood pressure is measured, the measurement ends.
  • the integrated air pump 3000 stops operating, and the cuff airbag 1000 discharges the compressed gas in the cuff airbag through the integrated air pump 3000.
  • the electronic sphygmomanometer includes an airbag 1000, an air pressure sensor 2000 for detecting air pressure, an air pump 4000, and a valve 5000.
  • the valve 5000 adopts a valve as shown in any of the above embodiments, and the air pump 4000 passes through a valve 5000. It is connected to the airbag 1000 to perform charging and discharging.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Reciprocating Pumps (AREA)

Abstract

一种应用于血压计的阀(5000)、集成气泵(3000)以及电子血压计,阀(5000)包括第一空间(110)、第二空间(120)、第三空间(130)以及密封结构。第一空间(110)开有第一连接口(111),第二空间(120)具有排气口(123)。密封结构由第一空间(110)和第三空间(130)之间的气体压差变化来控制其相对排气口(123)的移动,实现对排气口(123)的密封和打开。由于第三空间(130)区别于第一空间(110)和第二空间(120),第三空间(130)内气体压强不受集成气泵(3000)或气泵(4000)内加压单元(150, 160)气路影响,第一空间(110)能够很容易地与第三空间(130)形成压强差。从而使得打开排气口(123)所需能量小,排气效率高,而且结构简单,加工方便。

Description

应用于血压计的阀、集成气泵以及电子血压计 技术领域
本申请涉及一种应用于电子血压计中的阀结构。
背景技术
在一项中国发明专利(CN103140166A)中公开了一种用于血压计的阀结构。该阀适用于能将压缩空气填充在空气储存部并将空气从空气储存部急速排出,且制造成本低、耗电量少的小型的流体控制装置中。
在上述专利中,其止回阀具有第一阀筐体和第一隔膜。第一隔膜构成第一阀室和第二阀室。排气阀具有第二阀筐体和第二隔膜。第二隔膜构成第三阀室和第四阀室。止回阀因第一阀室与第二阀室的压力差而打开关闭。排气阀因第三阀室与第四阀室的压力差而打开关闭。
该类阀的问题在于:排气阀是通过第三阀室与第四阀室的压力差来控制打开,由于第三阀室充满了套囊排出的气体,而第四阀室内也充满了气体,各自空间内都具有一定的压强,因此要产生足够压强差所需能量大,排气效率低,而且在加工制造过程中难度较高,工艺较为复杂。
技术问题
本申请提供一种应用于血压计的阀,集成气泵以及电子血压计。
技术解决方案
本申请提供的阀,包括:
第一空间,所述第一空间的腔壁上开有用于进气的第一连接口;
第二空间,所述第二空间的腔壁上开有用于与气囊连通的第二连接口和用于与外界大气连通的排气口;
密封结构,用于密封和打开排气口;
以及第三空间,所述密封结构由所述第一空间和第三空间之间的气体压差变化来控制其相对排气口的移动,实现对排气口的密封和打开。
作为所述阀的进一步可选方案,所述第三空间内形成为大气压,或所述第一空间以及第二空间均与第三空间密封隔开。
作为所述阀的进一步可选方案,所述密封结构的第一侧位于第一空间内,所述密封结构上与第一侧相对的第二侧位于第三空间内,当:
所述第一侧所受压力大于第二侧所受压力时,所述密封结构向排气口移动并封住排气口;所述第一侧所受压力小于第二侧所受压力时,所述密封结构向第一空间移动,打开排气口;
或,所述第一侧所受压力小于第二侧所受压力时,所述密封结构向排气口移动并封住排气口;所述第一侧所受压力大于第二侧所受压力时,所述密封结构向第一空间移动,打开排气口。
作为所述阀的进一步可选方案,所述密封结构包括弹性壁,所述弹性壁同时作为第一空间和第三空间的室壁,所述弹性壁的位于第一空间内的第一侧与位于第三空间内的第二侧所受压力之差使所述弹性壁密封和打开排气口。
作为所述阀的进一步可选方案,所述密封结构包括弹性壁和安装在弹性壁上的密封体,所述弹性壁同时作为第一空间和第三空间的室壁,所述弹性壁的位于第一空间内的第一侧与位于第三空间内的第二侧所受压力之差使所述密封体密封和打开排气口。
作为所述阀的进一步可选方案,所述密封结构包括滑动腔和密封且能够滑动地安装在滑动腔内的滑动体,所述滑动腔连通于第一空间和第三空间,所述滑动体的第一侧容置在第一空间中,与第一侧相对的第二侧容置在第三空间内,且所述滑动体具有密封部,所述滑动体的第一侧与第二侧所受压力之差使所述密封部密封和打开排气口。
作为所述阀的进一步可选方案,所述第三空间内形成为大气压的方法是通过将第三空间与外界大气环境连通来实现。
作为所述阀的进一步可选方案,所述第一空间包括对外界大气常开的泄气口,所述泄气口的尺寸设置为:在气囊的充气阶段,所述泄气口排出气体时,所述密封结构始终能够封住排气口。
作为所述阀的进一步可选方案,所述第二空间具有第一进气口,所述第一进气口连通第一空间与第二空间,在所述第一进气口处设有阻尼结构,所述阻尼结构能够自第一空间向第二空间导通,所述阻尼结构的打开不影响所述密封结构封住排气口。
作为所述阀的进一步可选方案,所述阻尼通道为由第一空间通向第二空间的单向阀。
作为所述阀的进一步可选方案,还包括用于辅助密封结构打开排气口的弹性复位结构,所述密封结构封住排气口时促使所述弹性复位结构形变。
作为所述阀的进一步可选方案,所述排气口从第二空间向外凸起设置,所述弹性复位结构包括弹簧,所述弹簧套设在排气口的外壁上。
作为所述阀的进一步可选方案,所述第二空间具有第一进气口,所述第一进气口单独设置在第二空间的室壁上。
本申请提供的集成气泵,包括用于提供气体的加压单元,还包括如上述任一项所述的阀,所述加压单元与阀连通,用于向第一空间和/或第二空间内注入气体。
作为所述集成气泵的进一步可选方案,所述加压单元包括电机、电磁往复动力源或压电振子。
作为所述集成气泵的进一步可选方案,还包括负压发生器,所述负压发生器用于在第一空间或第三空间内形成负压。
本申请提供的电子血压计,包括气囊和用于检测气压的气压传感器,其特征在于,还包括如上述任一项所述的集成气泵,所述集成气泵与气囊连通。
本申请提供的另一种电子血压计,包括气囊和用于检测气压的气压传感器,所述气压传感器与气囊连通,还包括如上述任一项所述的阀,所述气泵经所述阀连接于气囊。
有益效果
本申请的有益效果是:
本申请提供的阀包括第一空间、第二空间、第三空间以及密封结构。第一空间开有用于进气的第一连接口,第二空间具有与气囊连通的第二连接口和与外界连通的排气口。密封结构由第一空间和第三空间之间的气体压差变化来控制其相对排气口的移动,实现对排气口的密封和打开。由于第三空间区别于第一空间和第二空间,其内气体压强可以不受加压单元气路影响,第一空间能够很容易地与其形成压强差。从而使得打开排气口所需能量小,排气效率高,而且结构简单,加工方便。
附图说明
图1为本申请集成气泵第一种实施例排气口打开状态时的示意图;
图2为图1所示实施例中排气口关闭状态时的示意图;
图3为本申请集成气泵第二种实施例排气口打开状态时的示意图;
图4为本申请集成气泵第三种实施例排气口打开状态时的示意图;
图5为本申请集成气泵第四种实施例排气口打开状态时的示意图;
图6为图5所示实施例中排气口关闭状态时的示意图;
图7为本申请集成气泵第五种实施例排气口打开状态时的示意图;
图8为图7所示实施例中排气口关闭状态时的示意图;
图9为本申请集成气泵第六种实施例排气口打开状态时的示意图;
图10为本申请集成气泵第七种实施例排气口打开状态时的示意图;
图11为本申请集成气泵第八种实施例排气口打开状态时的示意图;
图12为本申请集成气泵第九种实施例排气口打开状态时的示意图
图13为本申请集成气泵第十种实施例分解示意图;
图14为图13所示结构另一视角分解示意图;
图15为图13所示实施例中第二活塞腔向第一空间充气示意图;
图16为图13所示实施例中第一活塞腔向第一空间充气示意图;
图17为图16所示状态下打开第二空间进气口的示意图;
图18为图13所示实施例中第二活塞腔向气囊供气示意图;
图19为图13所示实施例中第一活塞腔向气囊供气示意图;
图20为图13所示实施例中排气阶段示意图;
图21为本申请电子血压计一种实施例的示意图;
图22为本申请电子血压计第二种实施例的示意图。
本发明的实施方式
具体实施方式
本申请可以以多种不同的形式来实现,并不限于本实施例所描述的实施方式。提供以下具体实施方式的目的是便于对本申请公开内容更清楚透彻的理解,其中上、下、左、右、前、后等指示方位的字词仅是针对所示结构在对应附图中位置而言。
在一些例子中,由于一些实施方式属于现有或常规技术,因此并没有描述或没有详细的描述。
此外,本文中记载的技术特征、技术方案还可以在一个或多个实施例中以任意合适的方式组合。对于本领域的技术人员来说,易于理解与本文提供的实施例有关的方法的步骤或操作顺序还可以改变。附图和实施例中的任何顺序仅仅用于说明用途,并不暗示要求按照一定的顺序,除非明确说明要求按照某一顺序。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,在合理情况下(不构成自相矛盾的情况下),均包括直接和间接连接(联接)。
本申请主要是公开一种应用于血压计的阀,该包括第一空间、第二空间、第三空间以及密封结构。
该第一空间的腔壁上开有用于进气的第一连接口,第二空间的腔壁上开有用于与气囊连通的第二连接口和用于与外界大气连通的排气口。
密封结构由第一空间和第三空间之间的气体压差变化来控制其相对排气口的移动,实现对排气口的密封和打开。
由于第三空间区别于第一空间和第二空间,其内气体压强可以不受加压单元气路影响,第一空间能够很容易地与其形成压强差。从而使得打开排气口所需能量小,排气效率高,而且结构简单,加工方便。
进一步地,可以将第三空间内形成为大气压,或第三空间与第一空间以及第二空间密封隔开,而密封结构由所述第一空间和第三空间之间的气体压差变化来控制其相对排气口的移动,实现对排气口的密封和打开。
当第三空间内形成的是大气压时,第一空间能够很容易地与其形成压强差。当第三空间时独立于第一空间以及第二空间时,可以很容易地在第三空间内形成较低的压强,例如负压或者低压,同样也能与第一空间很容易地形成压强差。从而使得打开排气口所需能量小,排气效率高,而且结构简单,加工方便。
进一步地,密封结构的第一侧位于第一空间内,密封结构上与第一侧相对的第二侧位于第三空间内,当:
第一侧所受压力大于第二侧所受压力时,密封结构向排气口移动并封住排气口;第一侧所受压力小于第二侧所受压力时,密封结构向第一空间移动,打开排气口;
或,第一侧所受压力小于第二侧所受压力时,密封结构向排气口移动并封住排气口;第一侧所受压力大于第二侧所受压力时,密封结构向第一空间移动,打开排气口。
下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一:
本实施例一所提供一种集成气泵,其包括用于提供气体的加压单元和一种阀结构。该加压单元与阀连通,用于向第一空间和/或第二空间内注入气体。
请参考图1,该阀包括第一空间110、第二空间120和第三空间130。
加压单元包括第一加压单元150,该第一加压单元150与第一空间110的第一连接口111连通,该第一连接口111既作为第一空间110的进气口,又作为第一空间110的泄气口。
该第二空间120的第一进气口121连通第一空间110与第二空间120,在第一进气口121处设有阻尼结构124,该阻尼结构124能够自第一空间110向第二空间120导通,阻尼结构124的打开不影响所述密封结构封住排气口。
第三空间130内形成为大气压,其是通过将第三空间130与外界大气环境连通来实现,具体是将第三空间130设置为一个与外界相通的腔体。如图1所示,本实施例的第三空间130是一个半开口的空间,图中100表示外界大气压,对应直线表示气路通道。
在其他实施例中,第三空间130也可以直接等同于外界大气压环境。
本实施例中,第一空间110和第二空间120均由第一加压单元150供气。第一加压单元150先向第一空间110注入气体,当第一空间110内气体与第三空间130的大气压形成足够压差时,会推动密封结构向第二空间120的排气口123移动,并封住排气口123。
密封结构包括弹性壁141,弹性壁141同时作为第一空间110和第三空间130的室壁,弹性壁141的位于第一空间110内的第一侧与位于第三空间130内的第二侧所受压力之差使弹性壁141密封和打开排气口123。
请参考图2,当第一空间110内气压继续升高到设定压强时,将移动阻尼结构124,使第一空间110和第二空间120之间的第一进气口121打开,气体进入第二空间120。打开阻尼结构124的力设置为大于使密封结构密封排气口123的力,因此阻尼结构124的打开不会影响密封结构对排气口123的密封。在排气口123保持密封的状态下,第二空间120内的气体从第二连接口122送入到气囊200中。
该阻尼结构124可以是由第一空间110通向第二空间120的单向阀,该单向阀的触发压强大于使排气口123密封的压差。具体来说,该单向阀可以是安装在第一进气口121处的伞形弹性件,弹性件的伞柄部分安装在第一进气口121处,伞面部分封住第一进气口121。当气压足够大,将推动伞面部分变形,打开第一进气口121。
在排气阶段,第一加压单元150变换动作,使第一空间110内的气体从第一连接口111排出,第一空间110内的压缩气体压强降低至一定值时,密封结构回位,打开排气口123,从而将气囊200中的气体经第二空间120排出到大气中。
进一步地,为了使弹性壁141能够更好的密封排气口123,可以将排气口123设置为向弹性壁141一侧凸起设置。
当第三空间130是一个相对第一空间110和第二空间120密封的独立空间时,第一空间110和第三空间130之间的压差可以是通过向其中任一个空间内形成负压的方式来实现,负压的形成可以利用负压发生器实现。
对于加压单元来说,可以是以电机为驱动力的装置,或者也可能是电磁往复动力源或压电振子等其他驱动装置。
实施例二:
本实施例二提供了另一种集成气泵,其与实施例一所示集成气泵的区别在于:
请参考图2,本实施例所示阀的第一连接口包括对外界大气常开的泄气口112和用于进气的第二进气口113。泄气口112的尺寸设置为:在气囊200的充气阶段,泄气口112排出气体时,密封结构始终能够封住排气口123。
其中,第二进气口113与第一加压单元150连通,用于向第一空间110内充气。泄气口112则单独设置在第一空间110的室壁上,用于泄气。
在气囊200的充气阶段,从泄气口112排出气体后,第一空间110与第三空间130的压差始终能够使弹性壁141密封住排气口123。即,在气囊200充气阶段,泄气口112泄出的气体并不会影响对排气口123的密封效果。
只有在排气阶段,第一加压单元150减慢甚至停止供气,此时第一空间110的气体逐渐从泄气口112排出,使第一空间110内压强变小,从而逐渐打开排气口123。
这种泄气口112的设置是一种简单易造的方式。或者,也可以通过设置一个控制阀来控制该泄气口112。在充气阶段,该控制阀始终处于关闭状态,而当需要泄气时,将该控制阀打开,通过泄气口112泄气。有了控制阀的控制,则该泄气口112的尺寸和个数不再受第一空间110内压强的影响,可以设置的更大或更多一些,这样也可快速的排出第一空间110内的气体。
实施例三:
本实施例三提供了另一种集成气泵,其与实施例一所示集成气泵的区别在于:
该阀还包括用于辅助密封结构打开排气口的弹性复位结构,该密封结构封住排气口时促使弹性复位结构形变,使得弹性复位结构的回复力有使密封结构复位的趋势。
具体地,请参考图4,排气口123面向密封结构凸起设置,该弹性复位结构包括弹簧142,该弹簧142套设在排气口123的外壁上,顶住变形后的弹性壁141。
在排气阶段,当第一空间110内的压强逐渐减小到一定大小时,该弹性复位结构在回复力的作用下推动弹性壁141更快的回位,从而更快的打开排气口123,使第二空间120快速泄气。
当然,该弹性复位结构也可以设置在第一空间110内,例如设置成一种拉伸型的弹性结构。
实施例四:
本实施例四提供了另一种集成气泵,其与实施例一所示集成气泵的区别在于:
请参考图5和6,该密封结构包括弹性壁141和安装在弹性壁141上的密封体143,弹性壁141同时作为第一空间110和第三空间130的室壁,弹性壁141的位于第一空间110内的第一侧与位于第三空间130内的第二侧所受压力之差使密封体143密封和打开排气口123。
实施例五:
本实施例五提供了另一种集成气泵,其与实施例四所示集成气泵的区别在于:
请参考图7和8,密封结构包括滑动腔144和密封且能够滑动地安装在滑动腔144内的滑动体145。滑动腔144连通于第一空间110和第三空间130,滑动体145的第一侧容置在第一空间110中,与第一侧相对的第二侧容置在第三空间130内,且滑动体145具有密封部,滑动体145的第一侧与第二侧所受压力之差使密封部密封和打开排气口123。
实施例六:
本实施例六提供了另一种集成气泵,其与实施例二所示集成气泵的区别在于:
请参考图9,第一进气口121单独设置在第二空间120的室壁上。该集成气泵还包括第二加压单元160,该第二加压单元160与第一进气口121连通,用于向第二空间120内进行供气。
实施例七:
本实施例七提供了另一种集成气泵,其与实施例六所示集成气泵的区别在于:
请参考图10,第一进气口121单独设置在第一空间110的室壁上。第一空间110和第二空间120还设置有第三连接口125。第三连接口125处设置有阻尼结构124,该阻尼结构124能够自第一空间110向第二空间120导通,阻尼结构124的打开不影响密封结构封住排气口123。
该第二加压单元160与第一进气口121连通,用于向第二空间120内进行供气。当第一空间110内的气压足够大时,将多余的气体通过第二连接口122输送到第二空间120内,提高第二空间120的气体量,减少第二空间120的供气时间,提高能量利用率。
实施例八:
本实施例八提供了另一种集成气泵,其与实施例六所示集成气泵的区别在于:
请参考图11,该集成气泵包括负压发生器170,该第三空间130为独立于第一空间110和第二空间120的一个密封空间,该负压发生器170作用于第三空间130内,可在第三空间130内形成负压。
该密封结构147位于第一空间110和第三空间130之间,其第一侧位于第一空间110内,第二侧位于第三空间130内,当第三空间130内形成负压时,可以容易地在第一空间110和第三空间130之间形成压差,从而推动密封结构147向第二空间120的排气口123移动,密封排气口123。
实施例九:
本实施例提供了另一种集成气泵,其与实施例八所示集成气泵的区别在于:
请参考图12,本实施例中该第二加压单元160直接向气囊200供气,而第二连接口122作为在排气阶段气囊200向第二空间120的通气口。
在气囊200充气阶段,排气口123被密封。当气囊200排气时,排气口123打开,气体从排气口123排出。
实施例十:
本实施例十提供了另一种集成气泵。
    请参考图13至15,该集成气泵包括除包括驱动装置外,还包括活塞体支架410、活塞体420、下压块430、单向阀组件440、上压块450、弹性体460和气嘴470。
该活塞体420安装于活塞体支架410上。该活塞体420包括第一活塞腔421和第二活塞腔422,两个活塞腔421、422上分别设置有活塞进气孔,用于进气。该下压块430压在活塞体420上,并盖住两个活塞腔421、422,形成密封腔体。
下压块430上具有两个沟槽431、434和四个通孔432、433、435、436。单向阀组件440覆盖在下压块430上,单向阀组件440包括第一单向阀441,第二单向阀442,第三单向阀443和第四单向阀444。
该单向阀组件440封盖住下压块430,并与下压块430的沟槽和通孔形成气路通道。具体是,沟槽431与第一单向阀441的进气口连通,通孔432与第一单向阀441的出气口连通,并延伸到第一活塞腔421内。同时,通孔433下端与第一活塞腔421连通,且通孔433上端与第二单向阀442的进气口连通。类似地,沟槽434与第三单向阀443的进气口连通,通孔435与第三单向阀443的出气口连通,并延伸到第二活塞腔422内。同时,通孔436下端与第二活塞腔422连通,且通孔436上端与第四单向阀444的进气口连通。
上压块450铺盖在单向阀组件440上,弹性体460铺设在上压块450上,气嘴470扣盖在弹性体460上,并和上压块450形成阀壳体。
气嘴470包括一个插接口471,插接口内设置第二连接口122,见图15,弹性体460设置有通气孔461。
请参考图13、14和15,上压块450设置第一凹腔451,第一凹腔451内设置两个压块452,且压块452之间具有缝隙。第一凹腔451内对应第四单向阀444的部分还设置了一个通孔453,该通孔453向上延伸并贯穿上压块450,并与弹性体460上的通孔463对齐。该上压块450相对第一凹腔451的另一侧具有第二凹腔454和第三凹腔455,第二凹腔454内设置有堵头458,该堵头458抵住弹性体460上的通气孔461,形成一种自第二凹腔454向弹性体460另一侧的单向阀。
上压块450还具有排气通道4510,该排气通道4510的一端经弹性体460上的通孔463与气嘴470相通,排气通道4510的另一端开设在第三凹腔455内的凸台459上,此时,弹性体460与气嘴470以及排气通道4510一起形成第二空间120。弹性体460的一部分设置在第三凹腔455内作为密封部462,且第三凹腔455内围绕该凸台459的侧壁上设有外接孔457,该外接孔457使第三凹腔455和该密封部462所围成的空间与外界大气连通,形成第三空间130。
密封部462与气嘴470围成一个空间,上压块450的通孔453与该空间通过弹性体460上的通孔463连通,从而使得该空间与第一凹腔451相通形成第一空间110。利用第一空间110和第三空间130的压差控制密封部462对排气口123的密封和打开。
在本实施例中,请参考图13-15,该驱动装置输出上下往复运动,并驱动活塞上下往复运动,从而改变第一活塞腔421和第二活塞腔422的空间大小,完成对外界的吸气以及对第二气室120和第一空间110的送气。
在本实施例中,该驱动装置包括电机310和固定安装在电机310上的施压组件,在随着电机310转动过程中,施压组件抵住第一活塞腔421和第二活塞腔422的室壁的一侧形成起伏面,起伏面中较高的部位顺次对第一活塞腔421或第二活塞腔422形成挤压,起伏面中较低的部位顺次使第二活塞腔422或第一活塞腔421内的空间扩张。
请继续参考图13至15,为了在旋转时形成起伏面,本实施例的施压组件包括斜轴320,摆杆330,偏心体340以及支架勾350。该偏心体340固定于电机310的旋转轴上,偏心体340上偏心设置一斜孔。该斜轴320一端插入斜孔内,与旋转轴斜向偏心设置。该摆杆330具有中心孔和凸头,斜轴320另一端插入中心孔内,摆杆330的凸头抵住活塞。
其中,支架勾350用于电机310、活塞体支架410以及各气室结构的固定。如图13至15所示,该支架勾350具有至少两个向上伸出的挂钩,挂钩钩住位于上部的气嘴470进行定位。
本装置的工作过程简述如下:
在充气阶段,即向气囊200进行充气的过程中,以挤压第二活塞腔422为初始状态。
请参考图15,当电机310开始旋转时,第一活塞腔421扩张,空气沿箭头所示路径进入第一活塞腔421。同时,第二活塞腔422收缩,压缩空气沿箭头所示方向进入第一空间110。由于第三空间130内处于大气压状态,第一空间110的压强迅速上升到远大于第三空间130的压强的状态,第一空间110与第三空间130之间的压差使弹性部462形变,闭合排气口123。
请参考图16,当摆杆330的较高的部位运动到第一活塞腔421时,第一活塞腔421收缩,第一活塞腔421内的气体会先经第二单向阀442沿箭头方向,供向第一空间110,同时第二活塞腔422内体积扩张,沿图中箭头所示方向吸气。
请参考图17,当空间180内气压足够大时,将会把弹性体460的通气孔461推离堵头458,从而是气体第一空间110的一侧空间180进入到第二空间120内。此时,由于排气口123被密封,气体将通过气嘴470输送到气囊200中。
请参考图18,当摆杆330的较高的部位再次运动到第二活塞腔422时,此时第二活塞腔422内的气体进入第一空间110内,其中进入第一空间110内的气体一部分用于密封排气口123,另一部分从块体252间的缝隙通过,并经弹性体460的通气孔461供给到气囊200内。
请参考图19,当摆杆330的较高的部位再次运动到第一活塞腔122时,此时第一活塞腔122内的气体进入空间180内,进入180空间内的气体一部分用于密封排气口123,另一部分从弹性体460的通气孔461供给到气囊200内。
该阀在活塞供气初始阶段第一活塞腔421和第二活塞腔422先主要向第一空间110供气,可以快速将排气口123密封。然后在压强增大到一定大小时,打开第二空间120的进气口,才向第二空间120供气。同时,当第一空间110内的气压足够大时,将多余的气体输送到第二空间120内,提高第二空间120的气体量,减少第二空间120的供气时间,提高能量利用率。
在排气阶段,即气囊200进行排气的过程中,请参考图20,电机310停止或减慢速度,第一空间110内的气体从设置在气嘴470的泄气口112排出,使第一空间110与第三气室的压差不足以保持弹性部462维持密封状态,弹性部462在自身回复力作用下脱离排气口123,从而打开排气口123,使气囊200及第二空间120中的气体沿图20中箭头所示方向排出。
此外,驱动装置还可以采用电磁往复动力源代替电机310,该电磁往复动力源作用于第一活塞腔421和第二活塞腔422的室壁,电磁往复动力源输出往复运动,驱使第一活塞腔421和第二活塞腔422的室壁收缩和扩张。
或者,驱动装置还可以采用压电振子代替电机310,该压电振子作用于第一活塞腔421和第二活塞腔422的室壁,该压电振子输出往复运动,驱使第一活塞腔421和第二活塞腔422的室壁收缩和扩张。该压电振子既可以是由无机压电材料制成,也可以由有机压电材料制成,例如超声振子等。
作用于第一气室的第一驱动装置和作用于第三气室的第二驱动装置可以是同一个驱动装置,也可以分别采用不同的驱动装置。以上各种驱动装置可设置为由同一个装置同时对第一活塞腔421和第二活塞腔422进行做工,例如上述的电机310驱动装置。在其他实施例中,也可以是设置两组驱动装置,分别对第一活塞腔421和第二活塞腔422进行做功。
实施例十一:
本实施例提供一种电子血压计。
请参考图21,本电子血压计包括气囊1000、用于检测气压的气压传感器2000以及用于输出气体的集成气泵3000,该集成气泵3000采用了如上述实施例任一种集成气泵,其中,该集成气泵3000的第二连接口123与气囊1000连通,进行充放气。
当袖带气囊1000被捆绑于使用者的肢体,血压计开始测量,集成气泵3000给袖带气囊1000加压,血压计通过传感器2000测量包含血压信号的压力信号;一旦测出血压,测量结束,集成气泵3000停止动作,袖带气囊1000通过集成气泵3000将袖带气囊中的压缩气体排出。
实施例十二:
本实施例提供的电子血压计与实施例十一所示电子血压计的区别之处在于:
请参考图22,本电子血压计包括气囊1000、用于检测气压的气压传感器2000、气泵4000和阀5000,该阀5000采用了如上述任一实施例所示的阀,该气泵4000经阀5000连接于气囊1000,进行充放气。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换。

Claims (18)

  1. 一种应用于血压计的阀,其特征在于,包括:
    第一空间,所述第一空间的腔壁上开有用于进气第一连接口;
    第二空间,所述第二空间的腔壁上开有用于与气囊连通的第二连接口和用于与外界大气连通的排气口;
    密封结构,用于密封和打开排气口;
    以及第三空间,所述密封结构由所述第一空间和第三空间之间的气体压差变化来控制其相对排气口的移动,实现对排气口的密封和打开。
  2. 如权利要求1所述的阀,其特征在于,所述第三空间内形成为大气压,或所述第一空间以及第二空间均与第三空间密封隔开。
  3. 如权利要求1或2所述的阀,其特征在于,所述密封结构的第一侧位于第一空间内,所述密封结构上与第一侧相对的第二侧位于第三空间内,当:
    所述第一侧所受压力大于第二侧所受压力时,所述密封结构向排气口移动并封住排气口;所述第一侧所受压力小于第二侧所受压力时,所述密封结构向第一空间移动,打开排气口;
    或,所述第一侧所受压力小于第二侧所受压力时,所述密封结构向排气口移动并封住排气口;所述第一侧所受压力大于第二侧所受压力时,所述密封结构向第一空间移动,打开排气口。
  4. 如权利要求3所述的阀,其特征在于,所述密封结构包括弹性壁,所述弹性壁同时作为第一空间和第三空间的室壁,所述弹性壁的位于第一空间内的第一侧与位于第三空间内的第二侧所受压力之差使所述弹性壁密封和打开排气口。
  5. 如权利要求3所述的阀,其特征在于,所述密封结构包括弹性壁和安装在弹性壁上的密封体,所述弹性壁同时作为第一空间和第三空间的室壁,所述弹性壁的位于第一空间内的第一侧与位于第三空间内的第二侧所受压力之差使所述密封体密封和打开排气口。
  6. 如权利要求3所述的阀,其特征在于,所述密封结构包括滑动腔和密封且能够滑动地安装在滑动腔内的滑动体,所述滑动腔连通于第一空间和第三空间,所述滑动体的第一侧容置在第一空间中,与第一侧相对的第二侧容置在第三空间内,且所述滑动体具有密封部,所述滑动体的第一侧与第二侧所受压力之差使所述密封部密封和打开排气口。
  7. 如权利要求2所述的阀,其特征在于,所述第三空间内形成为大气压的方法是通过将第三空间与外界大气环境连通来实现。
  8. 如权利要求1-7任一项所述的阀,其特征在于,所述第一空间包括对外界大气常开的泄气口,所述泄气口的尺寸设置为:在气囊的充气阶段,所述泄气口排出气体时,所述密封结构始终能够封住排气口。
  9. 如权利要求1-7任一项所述的阀,其特征在于,所述第二空间具有第一进气口,所述第一进气口连通第一空间与第二空间,在所述第一进气口处设有阻尼结构,所述阻尼结构能够自第一空间向第二空间导通,所述阻尼结构的打开不影响所述密封结构封住排气口。
  10. 如权利要求9所述的阀,其特征在于,所述阻尼通道为由第一空间通向第二空间的单向阀。
  11. 如权利要求1-7任一项所述的阀,其特征在于,还包括用于辅助密封结构打开排气口的弹性复位结构,所述密封结构封住排气口时促使所述弹性复位结构形变。
  12. 如权利要求11所述的阀,其特征在于,所述排气口从第二空间向外凸起设置,所述弹性复位结构包括弹簧,所述弹簧套设在排气口的外壁上。
  13. 如权利要求1-7任一项所述的阀,其特征在于,所述第二空间具有第一进气口,所述第一进气口单独设置在第二空间的室壁上。
  14. 一种集成气泵,包括用于提供气体的加压单元,其特征在于,还包括如权利要求1-13任一项所述的阀,所述加压单元与阀连通,用于向第一空间和/或第二空间内注入气体。
  15. 如权利要求14所述集成气泵,其特征在于,所述加压单元包括电机、电磁往复动力源或压电振子。
  16. 如权利要求14所述集成气泵,其特征在于,还包括负压发生器,所述负压发生器用于在第一空间或第三空间内形成负压。
  17. 一种电子血压计,包括气囊和用于检测气压的气压传感器,其特征在于,还包括如权利要求14-16任一项所述的集成气泵,所述集成气泵与气囊连通。
  18. 一种电子血压计,包括气囊和用于检测气压的气压传感器,所述气压传感器与气囊连通,其特征在于,还包括如权利要求1-13任一项所述的阀,所述气泵经所述阀连接于气囊。
PCT/CN2018/071862 2017-01-19 2018-01-09 应用于血压计的阀、集成气泵以及电子血压计 WO2018133697A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710044111.6 2017-01-19
CN201710044111.6A CN106691422B (zh) 2017-01-19 2017-01-19 应用于血压计的阀、集成气泵以及电子血压计

Publications (1)

Publication Number Publication Date
WO2018133697A1 true WO2018133697A1 (zh) 2018-07-26

Family

ID=58908851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071862 WO2018133697A1 (zh) 2017-01-19 2018-01-09 应用于血压计的阀、集成气泵以及电子血压计

Country Status (2)

Country Link
CN (1) CN106691422B (zh)
WO (1) WO2018133697A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106691422B (zh) * 2017-01-19 2020-08-04 深圳金亿帝医疗设备股份有限公司 应用于血压计的阀、集成气泵以及电子血压计
CN106974355B (zh) * 2017-05-27 2019-01-08 浙江工贸职业技术学院 一种可排气的鞋
CN112006671B (zh) * 2020-09-24 2023-01-10 深圳金亿帝医疗设备股份有限公司 穿戴式生命体征监护设备
CN115670411A (zh) * 2021-07-30 2023-02-03 华为技术有限公司 一种血压测量设备
CN115047744A (zh) * 2022-06-30 2022-09-13 深圳金亿帝医疗设备股份有限公司 一种多功能的智能手表及功能实现方法、存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201664472U (zh) * 2010-02-23 2010-12-08 上海应用技术学院 单向阀
US20120165687A1 (en) * 2010-12-28 2012-06-28 Omron Healthcare Co., Ltd. Sphygmomanometer
CN103767695A (zh) * 2014-01-21 2014-05-07 深圳市金亿帝科技有限公司 放气阀、集成气泵及电子血压计
CN104564614A (zh) * 2013-10-24 2015-04-29 科际器材工业股份有限公司 自动泄压泵
CN104825145A (zh) * 2015-04-30 2015-08-12 深圳金亿帝医疗设备股份有限公司 气阀、集成气泵及可穿戴地电子血压计
CN104873183A (zh) * 2015-04-30 2015-09-02 深圳金亿帝医疗设备股份有限公司 气阀、集成气泵及可穿戴地电子血压计
CN106691422A (zh) * 2017-01-19 2017-05-24 深圳金亿帝医疗设备股份有限公司 应用于血压计的阀、集成气泵以及电子血压计

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207412158U (zh) * 2017-01-19 2018-05-29 深圳金亿帝医疗设备股份有限公司 应用于血压计的阀、集成气泵以及电子血压计

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201664472U (zh) * 2010-02-23 2010-12-08 上海应用技术学院 单向阀
US20120165687A1 (en) * 2010-12-28 2012-06-28 Omron Healthcare Co., Ltd. Sphygmomanometer
CN104564614A (zh) * 2013-10-24 2015-04-29 科际器材工业股份有限公司 自动泄压泵
CN103767695A (zh) * 2014-01-21 2014-05-07 深圳市金亿帝科技有限公司 放气阀、集成气泵及电子血压计
CN104825145A (zh) * 2015-04-30 2015-08-12 深圳金亿帝医疗设备股份有限公司 气阀、集成气泵及可穿戴地电子血压计
CN104873183A (zh) * 2015-04-30 2015-09-02 深圳金亿帝医疗设备股份有限公司 气阀、集成气泵及可穿戴地电子血压计
CN106691422A (zh) * 2017-01-19 2017-05-24 深圳金亿帝医疗设备股份有限公司 应用于血压计的阀、集成气泵以及电子血压计

Also Published As

Publication number Publication date
CN106691422A (zh) 2017-05-24
CN106691422B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
WO2018133697A1 (zh) 应用于血压计的阀、集成气泵以及电子血压计
TWI687593B (zh) 打氣筒
CN108820556B (zh) 一种包装盒
WO2023109317A1 (zh) 送气装置、充排气式气泵以及电子血压计
CN215959852U (zh) 充放气阀、气泵及电子血压计
US8758281B2 (en) Vibrational support surface
CN217501900U (zh) 空气压缩机汽缸的活塞
WO2016173457A1 (zh) 气阀、集成气泵及可穿戴的电子血压计
CN112790572A (zh) 一种自适应助眠护颈枕头
CN104873183B (zh) 气阀、集成气泵及可穿戴的电子血压计
CN109667747A (zh) 一种微小型被动阀式血压计充排气装置
CN207209955U (zh) 一种具有增压功能的制氧机
US20120085608A1 (en) Luggage Inflatable Structure
CN207412158U (zh) 应用于血压计的阀、集成气泵以及电子血压计
TWM582530U (zh) Inflator
CN201953601U (zh) 一种微型负压泵
CN109279579A (zh) 一种具有增压功能的制氧机
CN213016733U (zh) 一种带有快速排气阀的隔膜泵
WO2018082154A1 (zh) 用于泵浦的上盖及泵浦
CN110709606B (zh) 压力控制装置和压力利用装置
CN115288989A (zh) 一种充泄气一体式气泵
CN208865176U (zh) 一种充气气球密封装置
CN211573746U (zh) 一种双头气泵
CN109667748A (zh) 一种微小型血压计充排气装置
JP4367056B2 (ja) ダイヤフラムポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18741022

Country of ref document: EP

Kind code of ref document: A1