WO2016173457A1 - 气阀、集成气泵及可穿戴的电子血压计 - Google Patents

气阀、集成气泵及可穿戴的电子血压计 Download PDF

Info

Publication number
WO2016173457A1
WO2016173457A1 PCT/CN2016/079954 CN2016079954W WO2016173457A1 WO 2016173457 A1 WO2016173457 A1 WO 2016173457A1 CN 2016079954 W CN2016079954 W CN 2016079954W WO 2016173457 A1 WO2016173457 A1 WO 2016173457A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
valve
air
port
exhaust
Prior art date
Application number
PCT/CN2016/079954
Other languages
English (en)
French (fr)
Inventor
章年平
龚大成
黄智明
Original Assignee
深圳金亿帝医疗设备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳金亿帝医疗设备股份有限公司 filed Critical 深圳金亿帝医疗设备股份有限公司
Publication of WO2016173457A1 publication Critical patent/WO2016173457A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0235Valves specially adapted therefor

Definitions

  • the present application relates to electronic blood pressure monitors, and more particularly to air valves and air pumps in electronic blood pressure monitors.
  • a valve and fluid control device is disclosed in the Chinese patent application entitled "Valve, Fluid Control Device” (Publication No. CN 103140166 A).
  • the fluid control device consists of a pump and a valve.
  • the pump has a pump chamber and a suction hole and a discharge hole that communicate with each other via the pump chamber.
  • the gas valve includes a valve housing and a diaphragm, and the diaphragm divides the valve housing into a first region and a second region.
  • the diaphragm divides the valve housing into a first region and a second region.
  • the additional venting valve is deflated by the pressure difference, which is characterized by the fact that the gas venting valve is not smashed when the gas pressure difference is low (for example, less than 30 mmHg). , there will be no deflation.
  • the gas control device of the above-mentioned public cockroach has a high deflation speed and a low deflation speed, and the deflation speed is slowed down or even stopped at a certain pressure (for example, 30 mmHg), and finally the effect of rapid discharge is not achieved, even It is not possible to meet the requirements of the electronic sphygmomanometer standard "no decompression between 260mmHg and 15mmHg for more than 10 seconds".
  • the present application provides a novel air valve, an integrated air pump, and a wearable electronic sphygmomanometer.
  • the gas valve provided by the present application includes a valve housing, the valve housing has a first space and a second space, and the chamber wall of the first space is provided with a gas pressurizing unit a communicating air inlet, a wall of the second space is provided with a connecting port for communicating with the cuff air bag and an exhaust port for communicating with the outside, and the first space and the second space are disposed a check valve is provided for unidirectionally flowing a gas from the first space to the second space, and an exhaust valve is disposed between the first space and the second space, and when the first space pressure is greater than the second space, the row The gas valve cuts off the communication between the second space and the outside under the action of the pressure difference.
  • the exhaust valve opens the second space to communicate with the outside, at the first a venting port connecting the first space with the outside is disposed on the cavity wall of the space, the venting port is in communication with the air inlet, and is located at an intake end of the one-way valve, and the venting flow of the venting port is smaller than the air inlet Air intake
  • the one-way valve includes an elastic body, and the elastic body forms a normally closed valve between the first space and the second space, when the first space pressure is greater than the second space.
  • the elastic body is deformed under the pressure difference to open the passage of the first space to the second space.
  • valve housing further includes a partition, the first space and the second space are separated by a partition, and the elastic body is mounted on the partition, when the first The air pressure in space is greater than the second space ⁇
  • the elastic body is deformed to communicate with the first space and the second space.
  • the elastic body is an umbrella shape
  • the umbrella-shaped elastic body includes a rod portion and an elastic umbrella portion, and the rod portion is inserted on the partition plate, the umbrella The portion is located in the second space, and the partition plate is provided with a vent hole, and the vent hole is disposed in the umbrella portion covering area.
  • the elastic body is in the shape of a barrel, and the barrel-shaped elastic body is mounted on the partition plate
  • the mouth of the barrel-shaped elastic body faces the first space, the sealing end of the barrel-shaped elastic body extends into the second space, and the barrel-shaped elastic body extends into the wall of the barrel in the second space. There is an incision that only deforms to the second space.
  • the elastic body is an air intake diaphragm, and a cavity wall or an air intake diaphragm of the first space has a vent hole, and the air intake diaphragm is in a normal state and a first space
  • the cavity wall cooperates to form a normally closed valve, and when the air pressure in the first space is greater than the air pressure in the second space, the intake diaphragm deforms the vent hole.
  • the exhaust valve includes an exhaust diaphragm, and the exhaust diaphragm is disposed corresponding to the exhaust port to form a common valve, when the air pressure in the first space is greater than that in the second space The air pressure is ⁇ , and the exhaust diaphragm is deformed to cover the exhaust port.
  • the first space is divided into a first valve chamber and a third valve chamber
  • the second space is divided into a second valve chamber and a fourth valve chamber
  • the one-way The valve is disposed between the first valve chamber and the second valve chamber
  • the exhaust valve is disposed between the third valve chamber and the fourth valve chamber
  • the air inlet includes a first air inlet and a second air inlet
  • the first air inlet is in communication with the first valve chamber
  • the second air inlet is in communication with the third valve chamber
  • the connection port includes a first connection port and a second connection port
  • the first connection The port is in communication with the second valve chamber
  • the second connection port is in communication with the fourth valve chamber
  • the exhaust valve includes an exhaust diaphragm
  • the exhaust diaphragm forms a common port corresponding to the second connection port and/or the exhaust port The valve, when the air pressure in the first space is greater than the air pressure in the second space, the exhaust diaphragm deforms to cover the second connection port and/
  • the integrated air pump provided by the present application includes a gas pressurizing unit, and further includes the air valve of any one of the above embodiments, the air inlet of the air valve (or the first air inlet and the second air inlet) Port) Connects to the exhaust port of the gas pressurizing unit.
  • the wearable electronic sphygmomanometer provided by the present application includes the integrated air pump described in any of the above embodiments.
  • the air valve provided by the present application is provided with a venting port connecting the first space to the outside of the cavity wall of the first space, the venting port and the air inlet communicating with each other, and located at the intake end of the one-way valve, deflated
  • the venting flow of the port is smaller than the intake air flow of the air inlet.
  • the gas pressurizing unit such as the air pump
  • the gas in the first space can be directly discharged to the outside through the air outlet, and the check valve between the first space and the second space is closed, thereby making the exhaust valve ⁇
  • the second space connects to the outside channel and vents to the outside world, so there is no need to add extra
  • the bleed valve can achieve rapid venting, and the valve is simple in structure and can be reduced to a certain size. It is suitable for wearable devices, such as an ordinary sized sphygmomanometer.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of a gas valve of the present application.
  • FIG. 2 is a schematic view showing the connection relationship between the air valve and the air pump and the cuff air bag shown in FIG. 1;
  • FIG. 3 is a cross-sectional view of a main portion of the check valve shown in FIG. 1;
  • FIG. 4 is a cross-sectional view of a main portion of the exhaust valve shown in FIG. 1;
  • FIG. 5 is an explanatory diagram of air flow of the air valve shown in FIG. 1 after the air pump is initially pressurized;
  • FIG. 6 is an explanatory diagram of air flow of the air valve shown in FIG. 1 after the air pump stops the pressurizing operation; [0030] FIG.
  • FIG. 7 is a schematic view showing a connection relationship between a gas valve, an air pump, and a cuff air bag according to Embodiment 2 of the present application;
  • FIG. 8 is an explanatory diagram of air flow of the air valve shown in FIG. 7 after the air pump is initially pressurized;
  • FIG. 9 is an explanatory diagram of air flow of the air valve shown in FIG. 7 after the air pump stops the pressurizing operation;
  • FIG. 10 is a schematic diagram showing a connection relationship between a gas valve and an air pump and a cuff air bag according to Embodiment 3 of the present application;
  • FIG. 11 is a schematic structural view of an elastic body in the gas valve structure shown in FIG. 10;
  • FIG. 12 is an explanatory diagram of air flow of the air valve shown in FIG. 10 after the air pump is initially pressurized;
  • FIG. 13 is an explanatory diagram of air flow of the gas valve shown in FIG. 10 after the air pump stops the pressurizing operation;
  • FIG. 14 is a schematic diagram showing the connection relationship between the air valve and the air pump and the cuff air bag according to Embodiment 4 of the present application;
  • FIG. 15 is an explanatory diagram of air flow of the air valve shown in FIG. 14 after the air pump is initially pressurized;
  • FIG. 16 is an explanatory diagram of air flow of the air valve shown in FIG. 14 after the air pump stops the pressurizing operation;
  • FIG. 17 is a schematic diagram showing a connection relationship between a gas valve, an air pump, and a cuff air bag according to Embodiment 5 of the present application;
  • FIG. 18 is an explanatory diagram of air flow of the air valve shown in FIG. 17 after the air pump is initially pressurized;
  • FIG. 19 is an explanatory diagram of air flow of the gas valve shown in FIG. 17 after the air pump stops the pressurizing operation;
  • FIG. 20 is a schematic diagram showing a connection relationship between a gas valve, an air pump, and a cuff air bag according to Embodiment 6 of the present application;
  • FIG. 21 is an explanatory diagram of air flow of the air valve shown in FIG. 20 after the air pump is initially pressurized; [0045] FIG.
  • FIG. 22 is an explanatory diagram of air flow of the air valve shown in FIG. 20 after the air pump stops the pressurizing operation;
  • FIG. 23 is a schematic diagram showing the connection relationship between the air valve and the air pump and the cuff air bag according to Embodiment 7 of the present application;
  • FIG. 24 is an explanatory diagram of air flow of the air valve shown in FIG. 23 after the air pump is initially pressurized;
  • FIG. 25 is an explanatory diagram of air flow of the air valve shown in FIG. 23 after the air pump stops the pressurizing operation; 26 is a rear cross-sectional view of the main part of an integrated air pump of the present application; [0050] FIG.
  • FIG. 27 is an exploded perspective view of the integrated air pump shown in FIG. 26;
  • Figure 28 is a cross-sectional view showing the components of the exploded view shown in Figure 27;
  • FIG. 29 is a schematic view showing the cross-sectional view of FIG. 28 rotated 180 degrees.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1 :
  • the gas valve includes a valve housing 105, a cover 106, and a substrate 107.
  • the cover 106 and the substrate 107 are respectively disposed on the upper and lower sides of the valve housing 105, and are sequentially stacked.
  • the valve housing 105 includes an intake valve housing 21 and an exhaust valve housing 31, and the intake valve housing 21 and the exhaust valve housing 31 may be independently provided. As a unitary structure.
  • the intake valve housing 21 has an intake valve chamber, and the exhaust valve housing 31 has an exhaust valve chamber.
  • the intake valve chamber is provided with a partition 20 that divides the intake valve chamber into a first valve chamber 26 and a second valve chamber 23.
  • the first valve chamber 26 is provided with a first intake port 24, and the second valve chamber 23 is provided with a first connecting port 27.
  • the gas valve 100 further includes an elastomer 109 mounted on the separator 20, the inlet valve chamber, the separator 20 and the elastomer 109 forming a one-way valve 102.
  • the partition 20 corresponds to a valve seat
  • the elastic body 109 corresponds to a valve body.
  • the elastic body 109 has an umbrella shape.
  • the umbrella-shaped elastic body 109 includes a rod portion (the rod portion may be an elastic material or a non-elastic material) and an elastic umbrella portion, and the elastic umbrella portion may be made of an elastic material such as ethylene propylene rubber or silicone rubber.
  • the rod portion is inserted into the partition plate 20 and is restrained by a portion projecting outward from the rod portion.
  • the umbrella portion is located in the second valve chamber 23, and the partition plate 20 is provided with at least one vent hole 22, and the vent hole 22 is disposed in the umbrella portion covering area.
  • the umbrella portion is deformed by the pressure difference between the first valve chamber 26 and the second valve chamber 23 to smash and close the vent hole 22.
  • umbrella-shaped elastic body 109 is used as the valve body of the check valve 102
  • other shapes of the elastic body capable of sealing the vent hole 22 may be employed during the implementation. For example, mushroom shape and the like.
  • the exhaust valve chamber is provided with an elastic exhaust diaphragm 108, and the exhaust diaphragm 108 may be made of an elastic material such as ethylene propylene rubber or silicone rubber.
  • the exhaust diaphragm 108 divides the exhaust valve chamber into a third valve chamber 36 and a fourth valve chamber 33.
  • the third valve chamber 36 is provided with a second intake port 37
  • the fourth valve chamber 33 is provided with an exhaust port 32 and a second connecting port 34.
  • the exhaust diaphragm 108 is disposed corresponding to the second connection port 34 and/or the exhaust port 32 to form a normal valve.
  • the exhaust diaphragm 108 When the air pressure in the third valve chamber 36 is greater than the air pressure ⁇ in the fourth valve chamber 33, the exhaust diaphragm 108 is deformed to cover the second connection port 34 and/or the exhaust port 32. When the air pressure in the third valve chamber 36 is smaller than the air pressure ⁇ in the fourth valve chamber 33, the exhaust diaphragm 108 returns to the second connection port 34 and/or the exhaust port 32, so that the gas in the fourth valve chamber 33 passes through the row. The port 32 is quickly discharged.
  • the vent 32 is provided as a raised valve seat 30 in which the venting diaphragm 108 seals the valve seat 30 under deformation, as shown in FIG.
  • first valve chamber 26 and the third valve chamber 36 constitute a first space, a second valve chamber 23 and a fourth valve chamber
  • the first valve chamber 26 is further provided with at least one air vent 28 (in other embodiments, the vent 28 may be disposed on the third valve chamber 36, or A first venting port 28) is provided on the first valve chamber 26 and the third valve chamber 36, and the venting port 28 communicates the first valve chamber 26 with the outside.
  • the venting port 28 and the first intake port 24 communicate with each other through the first valve chamber 26 and at the intake end of the check valve 102, and the bleed air flow rate of the vent port 28 is smaller than the intake air flow rate of the first air inlet port 24.
  • the deflation flow rate of the venting port 28 is smaller than the air intake flow rate of the first air inlet 24, and the venting port 28 and the first air inlet 24 may be adjusted according to the flow rate provided by the gas pressing unit.
  • the relative size and relative number are achieved.
  • a gas nozzle 106A communicating with the wristband rubber tube 110A of the cuff airbag 110 and a lid for discharging the air of the cuff airbag 110 are formed on the lid body 106.
  • the gas valve 100 is connected to the cuff air bag 110 by attaching the wristband rubber tube 110A of the cuff air bag 110 to the air nozzle 106A of the cover 106.
  • a substrate inlet port 107A and a substrate exhaust port 107B corresponding to the vent port 28 are formed on the substrate 107.
  • the gas valve 100 and the air pump 10 are connected to the substrate inlet 107A of the substrate 107 through the connection port 101A of the air pump 101.
  • the gas valve 100 pressurizes the air pump 101 at the time of measuring the blood pressure. Thereby, the gas valve 100 draws in gas from the substrate inlet port 107A. In addition, the gas valve 100 sends gas to the sleeve via the one-way valve 102. An air bag 110 is provided to increase the air pressure in the cuff air bag 110. Then, after the blood pressure measurement is completed, the air pump 101 stops the pressurization, and the air of the cuff air bag 110 is rapidly discharged from the lid exhaust port 106B via the second connection port 34 and the exhaust port 32.
  • the air valve 100 causes the air pump 101 to perform a pressurizing operation after the measurement of the blood pressure is started.
  • the air pump 101 allows air to flow from the discharge port 101A of the air pump 101 into the first valve chamber 26, since the leakage of the vent port 28 is much smaller than the pressure flow of the air pump 101 to the first valve chamber 26.
  • the check valve 102 the discharge pressure from the first intake port 24 toward the vent hole 22 in the forward direction (positive from the first valve chamber to the second valve chamber) is generated by the pressurizing operation of the air pump 101,
  • the pressure of one of the valve chambers 26 is higher than the pressure of the second valve chamber 23. Thereby, the umbrella portion of the elastic body 109 is lifted and the vent hole 22 is smashed.
  • the pressure of the third valve chamber 36 is raised by the pressurizing operation of the air pump 101 so that the pressure of the third valve chamber 36 is higher than the pressure of the fourth valve chamber 33. .
  • the exhaust diaphragm 108 seals the exhaust port 32 (in other embodiments, the second connection port 34 may be sealed, or the second connection port 34 and the exhaust port 32 are sealed at the same time)
  • the ventilation of the second connection port 34 and the exhaust port 32 is blocked.
  • air is delivered from the air pump 101 to the cuff air bag 110 (shown in FIG. 5) via the first air inlet 24 and the vent hole 22 of the check valve 102, thereby improving the inside of the cuff air bag 110. Air pressure.
  • the air flowing out of the vent hole 22 through the first intake port 24 of the check valve 102 is a pressure lower than the discharge pressure of the air pump 101.
  • the discharge pressure of the air pump 101 is applied to the first valve chamber 26.
  • the pressure of the first valve chamber 26 is larger than the pressure of the second valve chamber 23 to maintain the state in which the elastic body 109 is smashed in the check valve 102.
  • the gas valve 100 is configured such that the first connection port 27 of the check valve 102 communicates with the second connection port 34 of the exhaust valve 103.
  • the gas flowing into the fourth valve chamber 33 from the second connection port 34 is smaller than the pressure in the third valve chamber 36 to maintain the state in which the exhaust diaphragm 108 is closed in the exhaust gas feed 103. Since the pressure difference between the third valve chamber 36 and the fourth valve chamber 33 is small, the pressure difference is not extremely offset, so that the exhaust diaphragm 108 can be prevented from being damaged.
  • the gas valve 100 stops the pressurization operation of the air pump 101.
  • the volume of the first valve chamber 26 and the third valve chamber 36 is very small compared to the volume of air that the cuff air bag 110 can accommodate. Therefore, after the pressurization operation of the air pump 101 is stopped, the air of the first valve chamber 26 and the third valve chamber 36 is immediately discharged to the outside of the air valve 100 via the air discharge port 28 and the discharge port 107B.
  • the second valve chamber 23 and The pressure of the cuff air bag 110 is applied to the four valve chamber 33.
  • the check valve 102 if the pressure of the first valve chamber 26 is lowered to be lower than the pressure of the second valve chamber 23, the elastic body 109 abuts against the valve seat 20, and the umbrella portion seals the vent hole 22. .
  • the exhaust valve 103 if the pressure of the third valve chamber 36 is lowered to be lower than the pressure of the fourth valve chamber 33, the exhaust diaphragm 108 opens the exhaust port 32 to communicate with the second connection port 34. Thereby, the air of the cuff air bag 110 is rapidly discharged from the cover exhaust port 106B via the second connection port 34 and the exhaust port 32.
  • the air valve 100 shown in this embodiment is low in manufacturing cost and small in power consumption, and is suitable for Miniaturized air valve.
  • valve seat 30 is formed on the periphery of the exhaust port 32, in the course of implementation
  • valve seat 30 is also possible to form the valve seat 30 at the periphery of the second connection port 34.
  • the exhaust valve 103 connects the second connection port 34 to the cuff air bag 110 and connects the exhaust port 32 to the cover exhaust port 106B
  • the second connection port 34 can be disposed at the position of the exhaust port 32 shown in FIG. 1 , connected to the cuff air bag 110
  • the exhaust port 32 can be disposed at the position of the second connection port 34 shown in FIG. 1 .
  • the substrate 107 and the lid 106 may be omitted, and the ports may be directly connected by a connecting tube.
  • the air valve provided in the second embodiment differs from the air valve shown in the first embodiment in that the first valve chamber and the third valve chamber communicate with each other to form an integral first space 226.
  • the second valve chamber and the fourth valve chamber communicate to form an integral second space 223.
  • An inlet port 211 communicating with the discharge hole 101A of the air pump 101 is formed on the valve housing 231 (in the embodiment, the original first intake port and the second intake port are combined into a single intake port 211).
  • a connecting port 212 that communicates with the cuff air bag 110 in this embodiment, the original first connecting port and the second connecting port are combined into one for the connecting port 212)
  • the exhaust diaphragm 208 is fixed in the valve housing 231, and is disposed opposite the valve seat 230 to form a normally closed valve.
  • the air valve 200 performs a pressurizing operation of the air pump 101 after the measurement of the blood pressure is started.
  • the air pump 101 allows air to flow from the discharge port 101A of the air pump 101 into the gas valve 200, and its air flow is much larger than that of the air discharge port 218.
  • the discharge pressure in the forward direction from the intake port 211 toward the connection port 212 is generated by the pressurizing operation of the air pump 101, and the pressure of the first space 226 is higher than the pressure of the second space 223.
  • the umbrella portion of the elastic body 209 is lifted up to snoring the vent hole 222, the air inlet 211 is communicated with the connection port 212, and the exhaust diaphragm 208 seals the exhaust port 213.
  • air is sent from the air pump 101 to the cuff air bag 110 (shown in Fig. 8) via the air inlet 211 and the port 212 of the air valve 200, thereby increasing the air pressure in the cuff air bag 110.
  • the gas valve 200 stops the pressurization operation of the air pump 101.
  • the volume of the first space 226 is very small compared to the volume of air that the cuff air bag 110 can contain. Therefore, after the pressurizing operation of the air pump 101 is stopped, the air in the first space 226 is immediately discharged to the outside of the air valve 200 via the air discharge port 218. Further, the pressure of the cuff air bag 110 is applied to the second space 223. As a result, in the air valve 200, when the pressurizing operation of the air pump 101 is stopped, the pressure of the first space 226 is immediately lowered to be lower than the pressure of the second space 223.
  • the elastic body 209 immediately seals the vent hole 222, and opens the exhaust port 213 to make the connection port 212 is in communication with the exhaust port 2 13 .
  • the air of the cuff air bag 110 is rapidly discharged from the cover exhaust port 106B via the connection port 212 and the exhaust port 213 (as shown in Fig. 9).
  • the gas valve provided in the third embodiment differs from the gas valve shown in the second embodiment in the structure of the elastomer.
  • the elastic body provided in the third embodiment is a barrel-shaped elastic body 309.
  • the mouth of the barrel-shaped elastic body 309 faces the first space 326, and one end of the sealing body of the barrel-shaped elastic body 309 extends into the second space 323, and the barrel shape
  • the elastic body 309 projects into the barrel wall (side wall and/or bottom wall) in the second space 323 with a slit 309A which is deformed only in the direction of the second space 323.
  • the valve housing 331 is formed with an intake port 311 that communicates with the discharge hole 101A of the air pump 101, a connection port 312 that communicates with the cuff air bag 110, and an exhaust port that communicates with the outside of the air valve 300. 313 and the vent 318, A valve seat 330 that protrudes from the periphery of the exhaust port 313 toward the diaphragm 308 side.
  • the exhaust diaphragm 308 is fixed to the valve housing 331 and is disposed opposite the valve seat 330 to form a normally closed valve.
  • the gas valve 300 performs a pressurization operation of the air pump 101 after the measurement of the blood pressure is started.
  • the air pump 101 allows air to flow into the gas valve 300 from the discharge hole 101A of the air pump 101, and its air flow is much larger than the leakage of the air discharge port 318.
  • the discharge pressure from the intake port 311 toward the connection port 312 in the forward direction is generated by the pressurizing operation of the air pump 101, and the pressure of the first space 326 is higher than the pressure of the second space 323.
  • the slit 309A of the barrel-shaped elastic body 309 is opened, the air inlet 311 is communicated with the connection port 312, and the exhaust diaphragm 30 8 seals the exhaust port 313 to vent the connection port 312 and the exhaust port 313. Blocked.
  • air is delivered from the air pump 101 to the cuff air bag 110 (shown in FIG. 12) via the air inlet 311 and the connection port 312 of the air valve 300, thereby increasing the air pressure in the cuff air bag 110. .
  • the gas valve 300 stops the pressurization operation of the air pump 101.
  • the volume of the first space 326 is very small compared to the volume of air that the cuff air bag 110 can accommodate. Therefore, after the pressurization operation of the air pump 101 is stopped, the air in the first space 326 is immediately discharged to the outside of the air valve 300 via the air discharge port 318. Further, the pressure of the cuff air bag 110 is applied to the second space 323. As a result, in the gas valve 300, when the pressurizing operation of the air pump 101 is stopped, the pressure of the first space 326 is immediately lowered to be lower than the pressure of the second space 323.
  • the slit 309A of the elastic body 309 is immediately sealed, and the exhaust port 313 is opened to make the connection port 312 It is in communication with the exhaust port 31 3 .
  • the air of the cuff air bag 110 is rapidly discharged from the cover exhaust port 106B via the connection port 312 and the exhaust port 313 (as shown in Fig. 13).
  • the gas valve provided in the fourth embodiment is mainly different from the gas valve shown in the second embodiment in the one-way valve.
  • the valve housing 431 is formed with an intake port 411 that communicates with the discharge hole 101A of the air pump 101, a connection port 412 that communicates with the cuff air bag 110, and an exhaust port that communicates with the outside of the air valve 400. 413 and the vent 418, and a valve seat 430 that protrudes from the periphery of the exhaust port 413 toward the diaphragm 408.
  • the elastic body is an intake diaphragm 409 having at least one vent hole 409A
  • the inner wall of the first space 426 is provided with a cover portion 420, such as a boss, the cover portion cover
  • the passage on the intake diaphragm 409 The air hole 409A forms a normally closed check valve.
  • the intake diaphragm 409 deforms the snoring vent 409A.
  • the exhaust diaphragm 408 is fixed to the valve housing 431, and is disposed opposite the valve seat 430 to form a normally closed valve.
  • the air valve 400 performs a pressurizing operation of the air pump 101 after the measurement of the blood pressure is started.
  • the air pump 101 allows air to flow from the discharge port 101A into the gas valve 400, and its air flow is much larger than the leakage of the vent port 418.
  • the discharge pressure from the intake port 411 toward the connection port 412 in the forward direction is generated by the pressurizing operation of the air pump 101, and the pressure of the first space 426 is higher than the pressure of the second space 423.
  • the air passage 409A of the intake diaphragm 409 communicates the intake port 411 with the connection port 412, and the exhaust diaphragm 408 seals the exhaust port 413 to block the ventilation of the connection port 412 and the exhaust port 413.
  • air is sent from the air pump 101 to the cuff air bag 110 (shown in FIG. 15) via the air inlet 411 of the air valve 40 0 and the connection port 412, thereby improving the air in the cuff air bag 110. pressure.
  • the gas valve 400 stops the pressurization operation of the air pump 101.
  • the volume of the first space 426 is very small compared to the volume of air that the cuff air bag 110 can accommodate. Therefore, after the pressurization operation of the air pump 101 is stopped, the air in the first space 426 is immediately discharged to the outside of the air valve 400 via the air discharge port 418. Further, the pressure of the cuff air bag 110 is applied to the second space 423. As a result, in the gas valve 400, when the pressurizing operation of the air pump 101 is stopped, the pressure of the first space 426 is immediately lowered to be lower than the pressure of the second space 423.
  • the main difference between the gas valve provided in the fifth embodiment and the gas valve shown in the fourth embodiment is the one-way valve.
  • the air valve housing 531 is formed with an air inlet 511 that communicates with the discharge hole 101A of the air pump 101, a connection port 512 that communicates with the cuff air bag 110, and the outside of the air valve 500.
  • the communicating exhaust port 513 and the vent port 518, the vent hole 521 located in the first space 526, the vent hole 522 located in the second space 523, and the valve seat 530 protruding from the periphery of the exhaust port 513 toward the exhaust diaphragm 508 side .
  • the elastic body is an air inlet diaphragm 509, and a vent hole 521, 522 is disposed between the first space 526 and the second space 523, and the air inlet diaphragm 509 is covered on the vent hole 521 in a normal state.
  • a normally closed valve is formed.
  • a boss 520 that abuts against the intake diaphragm 509 is formed on the valve housing 531, and a vent hole 521 is formed in the boss 520, and the vent hole 522 communicates with the vent hole 521.
  • the exhaust diaphragm 508 is fixed to the valve housing 531, and is disposed opposite to the valve seat 530 to form a normally closed valve.
  • the gas valve 500 performs a pressurization operation of the air pump 101 after the measurement of the blood pressure is started.
  • the air pump 101 allows air to flow into the gas valve 500 from the discharge port 101A of the air pump 101, and its air flow is much larger than the leakage of the air discharge port 518.
  • the discharge pressure in the forward direction from the intake port 511 toward the connection port 512 is generated by the pressurizing operation of the air pump 101, and the pressure of the first space 526 is higher than the pressure of the second space 523.
  • the vent hole of the intake diaphragm 509 communicates the intake port 511 with the connection port 512, and the exhaust diaphragm 508 seals the exhaust port 513 to block the ventilation of the connection port 512 and the exhaust port 513.
  • air is delivered from the air pump 101 to the cuff air bag 110 (shown in FIG. 18) via the air inlet 511 of the air valve 500 and the connection port 512, thereby increasing the air pressure in the cuff air bag 110. .
  • the air valve 500 stops the pressurization operation of the air pump 101.
  • the volume of the first space 526 is very small compared to the volume of air that the cuff air bag 110 can accommodate. Therefore, after the pressurization operation of the air pump 101 is stopped, the air in the first space 526 is immediately discharged to the outside of the air valve 500 via the air discharge port 518. Further, the pressure of the cuff air bag 110 is applied to the second space 523. As a result, in the gas valve 500, when the pressurizing operation of the air pump 101 is stopped, the pressure of the first space 526 is immediately lowered to be lower than the pressure of the second space 523.
  • the main difference between the gas valve provided in the sixth embodiment and the gas valve shown in the fourth embodiment is that the intake diaphragm and the exhaust diaphragm are designed as a whole diaphragm 608.
  • the air valve housing 631 is formed with an air inlet 611 that communicates with the discharge hole 101A of the air pump 101, a connection port 612 that communicates with the cuff air bag 110, and an exhaust that communicates with the outside of the air valve 600.
  • a valve seat 630 projecting from the periphery of the exhaust port 613 toward the diaphragm 608.
  • the diaphragm 608 is fixed to the valve housing 631 and disposed opposite the valve seat 630 to form a normally closed valve. Same diaphragm 6
  • the gas valve 600 causes the air pump 101 to perform a pressurizing operation after the measurement of the blood pressure is started.
  • the air pump 101 allows air to flow into the gas valve 600 from the discharge port 101A of the air pump 101, and its air flow is much larger than the leakage of the air discharge port 618.
  • the discharge pressure in the forward direction from the intake port 611 toward the connection port 612 is generated by the pressurizing action of the air pump 101, and the pressure of the first space 626 is higher than the pressure of the second space 623.
  • the vent 608A of the diaphragm 608 communicates the air inlet 611 with the connection port 612, and the diaphragm 608 seals the air outlet 613 to block the ventilation of the connection port 612 and the exhaust port 613.
  • air is delivered from the air pump 101 to the cuff air bag 110 (shown in FIG. 21) via the air inlet 611 of the air valve 600 and the connection port 612, thereby increasing the air pressure in the cuff air bag 110. .
  • the air valve 600 stops the pressurization operation of the air pump 101.
  • the volume of the first space 626 is very small compared to the volume of air that the cuff air bag 110 can accommodate. Therefore, after the pressurization operation of the air pump 101 is stopped, the air in the first space 626 is immediately discharged to the outside of the air valve 600 via the air discharge port 618. Further, the pressure of the cuff air bag 110 is applied to the second space 623.
  • the gas valve 600 when the pressurizing operation of the air pump 601 is stopped, the pressure of the first space 626 is immediately lowered to be lower than the pressure of the second space 623.
  • the vent hole 608A of the diaphragm 608 is immediately sealed, and the exhaust port 613 is opened to make the connection port 612 It is in communication with the exhaust port 61 3 .
  • the air of the cuff air bag 110 is rapidly discharged from the exhaust port 106B formed in the casing of the air valve 600 via the connection port 612 and the exhaust port 613 (as shown in Fig. 22).
  • the main difference between the gas valve provided in the seventh embodiment and the gas valve shown in the fifth embodiment is that the intake diaphragm and the exhaust diaphragm are designed as a whole diaphragm 708.
  • An intake port 711 that communicates with the discharge hole 101A of the air pump 101 is formed in the valve housing 731, a connection port 712 communicating with the cuff air bag 110, an exhaust port 713 and a vent port 718 communicating with the outside of the air valve 700, a vent hole 721 located in the first space 726, a vent hole 722 located in the second space 723, and a vent row A valve seat 730 protrudes from the periphery of the port 713 toward the diaphragm 708.
  • the diaphragm 708 is fixed to the valve housing 731, and is disposed opposite the valve seat 730 to form a normally closed valve.
  • the boss body 731 is formed with a boss 720 that abuts against the diaphragm 708.
  • the vent hole 721 is formed on the boss 720, and the vent hole 721 communicates with the vent hole 722.
  • the air valve 700 causes the air pump 101 to perform a pressurizing operation after the measurement of the blood pressure is started.
  • the air pump 101 allows air to flow from the discharge port 101A of the air pump 101 into the gas valve 700, and its air flow is much larger than the leakage of the air discharge port 718.
  • the discharge pressure in the forward direction from the intake port 711 toward the connection port 712 is generated by the pressurizing operation of the air pump 101, and the pressure of the first valve chamber 726 is higher than the pressure of the second valve chamber 723.
  • the diaphragm 708 deforms to communicate the air inlet 711 with the connection port 712, and the diaphragm 708 seals the air outlet 713 to block the ventilation of the connection port 712 and the exhaust port 713.
  • air is sent from the air pump 101 to the cuff air bag 110 (see Fig. 24) via the air inlet 711 and the port 712 of the air valve 700, thereby increasing the air pressure in the cuff air bag 110.
  • the gas valve 700 stops the pressurization operation of the air pump 101.
  • the volume of the first valve chamber 726 is very small compared to the volume of air that the cuff air bag 110 can accommodate. Therefore, after the pressurization operation of the air pump 101 is stopped, the air of the first valve chamber 726 is immediately discharged to the outside of the air valve 700 via the air discharge port 718. Further, the pressure of the cuff air bag 110 is applied to the second valve chamber 723.
  • the gas valve 700 when the pressurizing operation of the air pump 101 is stopped, the pressure of the first valve chamber 726 is immediately lowered to be lower than the pressure of the second valve chamber 723.
  • the embodiment provides an integrated air pump, which adopts the air valve as shown in any of the above embodiments, and is built in an air outlet passage of a common pressurized air pump to form an integrated air pump with a quick deflation function. .
  • the check valve in the intake valve chamber is closed, and the first in the gas valve
  • the gas in the space can be directly discharged to the outside through the air vent, so that the rapid venting can be realized without adding an additional bleed valve, and the valve is simple in structure and can be reduced to a certain size, so that the structure of the integrated air pump can also be It is very small and suitable for use on wearable devices, such as an electronic sphygmomanometer of the size of an ordinary watch.
  • the integrated air pump includes a gas valve 8100 and a pressurizing unit 8200.
  • Numerals in Figures 25-28 are numbered in the gas valve 8100, and numerals in the number 82 are included in the pressurizing unit 8200.
  • the gas valve 8100 in the present embodiment includes a gas nozzle 8110, an elastic body 8120, and an upper pressing block 8130.
  • the gas nozzle 8110 and the upper pressure block 8130 form a valve housing.
  • the gas nozzle 8110 is provided with a recessed portion al, and a recessed port 8111 and an exhaust port 8112 are disposed in the recessed portion al.
  • the elastomer 8120 is provided with a vent hole 8121.
  • the upper pressing block 8130 is provided with a recessed portion bl, the recessed portion bl is provided with an air inlet 8131 and a boss 8132; the back of the recessed portion b1 is provided with another recessed portion cl; and the upper pressing block 8130 is further provided with a small groove dl , connecting the concave portion bl and the outside atmosphere.
  • the pressurizing unit 8200 includes a one-way valve assembly 8210, a piston body assembly, and a drive mechanism.
  • the one-way valve assembly 8210 includes an intake valve 8211 for intake air and an outlet valve 8212 for exhausting, wherein the outlet valve 8212 is in communication with the recessed portion cl of the above-described valve unit for gas to enter the gas Inside the valve.
  • the piston body assembly includes a piston body 8230 and a piston body bracket 8240.
  • the piston body 8230 is mounted on the piston body bracket 8240.
  • the piston body 8230 includes a piston chamber 8231 and a piston air inlet hole 8232.
  • the piston chamber 8231 and the air outlet valve 8212 It is in communication with the intake valve 8211, and a piston is disposed therein.
  • the gas may enter the outlet valve 8212 from the piston chamber 8231 or may enter the piston chamber 8231 by the intake valve 8211.
  • the piston intake port 8232 communicates the intake valve 8211 with the outside air.
  • the driving mechanism outputs an up-and-down reciprocating motion, and drives the piston to reciprocate up and down to output air from the piston chamber 82 31 into the outlet valve 8212 or to suck in fresh air from the intake valve 8211 into the piston chamber 8231.
  • the upward movement causes the air in the piston chamber 8231 to be input into the deflation valve through the outlet valve 8212, and the downward movement causes the fresh air to enter the piston chamber 8231 from the intake valve 8211.
  • the driving mechanism may adopt any one of the existing air pump structures to provide driving power, and the present embodiment further exemplarily provides a specific structure of the driving mechanism.
  • the specific structure includes a swing bar 8251, a steel ball 8252, an oblique axis 8253, an eccentric body 8254, a bracket hook 8270, and a motor 8280.
  • the eccentric body 8254 is fixed to the rotating shaft of the motor 8280, and an oblique hole is eccentrically disposed on the eccentric body 8254.
  • the oblique axis 8253 is inserted into the inclined hole and is obliquely eccentric with the rotating shaft.
  • the swinging rod 825 1 has a central hole and a protruding head, and the other end of the inclined shaft 8253 is inserted into the central hole.
  • a spherical body is disposed between the end surface of the inclined shaft 8253 and the swinging rod 82 51.
  • the protruding head of the swinging rod 8251 protrudes into the piston cavity 8231. , against the piston.
  • the bracket hook 8270 is used for fixing the motor 8280, the piston body bracket 8240, and the deflation valve. As shown in Figures 26-29, the bracket hook 8270 has at least two upwardly projecting hooks that engage the air nozzles 8110 in the upper deflation valve for positioning.
  • the piston body bracket 8240 is mounted on the bracket hook 8270, and the piston body bracket 8240 is provided with a bracket air inlet hole 8241, and the outer space, the bracket air inlet hole 8241, the piston air inlet hole 8232 and the intake valve 8211 are sequentially connected.
  • the intake passage is formed such that outside air can enter the piston chamber 8231 via the bracket intake hole 8241, the piston intake hole 8232, and the intake valve 8211.
  • a pressing block 8220 may be disposed between the piston body 8230 and the check valve assembly 8210, and the pressing block 8220 has a pressing block inlet hole 8221 corresponding to the intake valve 8211 and a pressing block corresponding to the outlet valve 8212. Air hole 8222.
  • the bracket hook 8270 is fixed to the motor 8280 by the screw 8260, the eccentric body 8254 is fixed to the rotating shaft of the motor 8280, and the oblique shaft 8253 is fastened to the eccentric body 8254 and the center hole of the pendulum rod 8251, and the steel ball 8252 is placed.
  • the piston body 8230 is placed on the piston body bracket 8240, and the lower portion of the piston chamber 8231 of the piston body 8230 is connected to the swing rod 8251; the pressure block 8220 is mounted on the piston body 8230;
  • the valve assembly 8210 is mounted over the block 8220.
  • the upper pressing block 8130 is mounted on the one-way valve assembly 8210 to form a closed air chamber c.
  • the air outlet valve 212 of the one-way valve assembly 8210 is mounted on the upper pressing block 8130 opposite to the air chamber 0 elastic body 8120. Closing the air chamber b and forming a venting port d, the air chamber b is in communication with the air chamber c, and the air chamber b is also deflated to the outside atmosphere through the air venting port d, and the boss 8132 bears against the elastic body 8120 and blocks the vent hole 8121. Form a check valve.
  • the gas nozzle 8110 is fastened by a bracket hook 8270 and mounted on the elastic body 8120 to form a closed air chamber a. Via the one-way valve, gas can flow from the plenum b to the plenum a.
  • the gas chamber b and the gas chamber c are equivalent to the first space, and the gas chamber a is equivalent to the second space.
  • the functions of the pressurizing unit 8200 are as follows: [0144]
  • the motor 8280 converts the rotational motion of the motor 8280 into the up and down reciprocation of the piston 8231 of the piston body 8230 by the eccentric body 8254, the oblique shaft 8253, the steel ball 8252, and the swing rod 82 51 fixed to the rotating shaft thereof.
  • the rotation of the motor 8280 drives the eccentric body 8254 to perform a rotary motion
  • the eccentric body 8254 rotates to drive the oblique shaft 8 253 to rotate around the center of the motor 8280.
  • the shaft 8253 drives the swing rod 8251 to perform the on-board movement, and the swing rod 8251 drives the piston body.
  • the piston of the 8230 reciprocates up and down.
  • the pressurizing unit 8200 feeds the compressed gas to the air chamber b through the air chamber, the air inlet 8131 of the upper pressure block 8130, and makes the intake air flow much larger than the leakage of the air discharge port d, and the compressed air chamber b is compressed.
  • the gas pressing elastic body 8120 moves toward the exhaust port 8112 of the air nozzle 8110, and blocks the exhaust port 8112 of the air nozzle 8110 before the check valve between the air chamber a and the air chamber b is smashed; subsequently, the compressed gas
  • the gas chamber a enters and flows out through the connection port 811 1 of the gas nozzle 8110.
  • the embodiment 9 provides a wearable electronic sphygmomanometer using the air valve shown in any one of the above and its variants, and the gas valve and the gas pressurizing unit and the cuff gas The bag combination is formed.
  • the electronic sphygmomanometer may be formed by combining the integrated air pump and the cuff air bag shown in the above-described Embodiment 8 and its modifications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Check Valves (AREA)

Abstract

一种气阀、集成气泵和可穿戴电子血压计。气阀包括阀壳体(105),阀壳体(105)具有隔开的第一空间和第二空间。第一空间的腔壁上开有用于与气体加压单元连通的进气口(24)。第一空间和第二空间之间设有排气阀(103)。当第一空间气压大于第二空间气压时,排气阀(103)在压力差的作用下切断第二空间与外界的连通。当第一空间气压小于或等于第二空间气压时,排气阀(103)打开第二空间与外界的连通。第一空间的腔壁上设有用于将第一空间与外界连通的泄气口(28),泄气口(28)和进气口(24)相通,并位于单向阀(102)的进气端。泄气口(28)的泄气流量小于进气口(24)的进气流量。通过该气阀,无需增加额外的放气阀,可实现急速排气,并且该气阀结构简单,适用于可穿戴设备上。

Description

气阀、 集成气泵及可穿戴的电子血压计 技术领域
[0001] 本申请涉及电子血压计, 尤其是涉及电子血压计内的气阀和气泵。
[0002] 背景技术
[0003] 名为"阀、 流体控制装置 "的中国专利申请 (公布号为 CN 103140166 A) 公幵了 一种阀、 流体控制装置。 流体控制装置由泵及一种阀组成。 泵具有泵室和经由 泵室而彼此连通的吸引孔及排出孔。
[0004] 气阀包括阀筐体和隔膜, 隔膜将阀筐体分割成第一区域、 第二区域。 从而当第 一区域的压力比第二区域的压力高吋, 第一区域与第二区域通过通气孔连通, 第二区域与外界的通气通道阻断; 当在第一区域的压力比第二区域的压力低吋 , 第一区域与第二区域的通气孔阻断, 第二区域与外界的通气通道连通。 泵的 排出孔与第一区域连接, 泵通过加压动作控制第一区域和第二区域之间的压力 差。
[0005] 上述这种气阀结构排气吋 (即泵停止抽吸动作吋) , 泵室与第一区域的空气经 由泵的排出孔从泵的抽吸孔朝泵的外部立即排出。 但当使用于流路阻力高的气 泵吋, 泵室与第一区域的空气会出现不经泵的抽吸孔排出的情况, 因此这种情 况下必须增加一个放气阀进行放气。
[0006] 但目前在电子血压计领域广泛被采用的气泵绝大多数都是流路阻力高的气泵, 例如由微型直流马达驱动的隔膜气泵, 这种气泵为流路阻力高, 甚至流路阻力 高无穷大、 气体完全不能逆向流动。 因此, 上述专利申请所公幵的阀在电子血 压计领域使用吋, 绝大多数情况下需要配备额外的放气阀。
[0007] 其问题在于:
[0008] 1、 这种额外增加的放气阀难于微型化, 因此由流路阻力高的气泵、 上述阀及 放气阀三者构成的气体控制装置 (device) , 无法集成为一个元件 (component
) , 特别是, 无法微缩适用于可穿戴设备, 比如普通手表大小的电子血压计上 [0009] 2、 这种额外增设的放气阀都是利用压力差进行放气的, 其特点是在气体压力 差很低 (比如低于 30mmHg) 的情况下, 这种放气阀打不幵, 会出现不放气的现 象。 从而使上述公幵的气体控制装置 (device) 在高压吋放气速度快、 压力变低 后放气速度变慢甚至停止在某一气压 (比如 30mmHg) , 最终达不到急速排出的 效果, 甚至无法满足电子血压计的标准规定的"从 260mmHg到 15mmHg的减压吋 间不得超过 10秒"的要求。
[0010] 发明内容
[0011] 本申请提供一种新型的气阀、 集成气泵及可穿戴的电子血压计。
[0012] 本申请所提供的气阀,包括阀壳体, 所述阀壳体具有隔幵的第一空间和第二空 间, 所述第一空间的腔壁上幵有用于与气体加压单元连通的进气口, 所述第二 空间的腔壁上幵有用于与袖带气袋连通的连接口和用于与外界连通的排气口, 所述第一空间和第二空间之间设有单向阀, 使气体由第一空间向第二空间单向 流动, 所述第一空间和第二空间之间设有排气阀, 当第一空间气压大于第二空 间吋, 所述排气阀在压力差的作用下切断第二空间与外界的连通, 当第一空间 气压小于或等于第二空间吋, 所述排气阀打幵第二空间与外界的连通, 在所述 第一空间的腔壁上设有将第一空间与外界连通的泄气口, 所述泄气口和进气口 相通, 并位于所述单向阀的进气端, 所述泄气口的泄气流量小于进气口的进气
[0013] 作为所述气阀的进一步改进, 所述单向阀包括弹性体, 所述弹性体在第一空间 和第二空间之间形成常闭阀, 当第一空间气压大于第二空间吋, 所述弹性体在 压力差作用下变形, 打幵第一空间通向第二空间的通道。
[0014] 作为所述气阀的进一步改进, 所述阀壳体还包括隔板, 所述第一空间和第二空 间由隔板分幵, 所述弹性体安装在隔板上, 当第一空间的气压大于第二空间吋
, 所述弹性体形变连通第一空间和第二空间。
[0015] 作为所述气阀的进一步改进, 所述弹性体为伞状, 所述伞状弹性体包括杆部和 具有弹性的伞部, 所述杆部插装在隔板上, 所述伞部位于第二空间内, 且所述 隔板上设有通气孔, 所述通气孔设置于伞部覆盖区域内。
[0016] 作为所述气阀的进一步改进, 所述弹性体为桶状, 所述桶状弹性体安装在隔板 上, 所述桶状弹性体的幵口一端面向第一空间, 所述桶状弹性体的封口一端伸 入第二空间, 且所述桶状弹性体伸入第二空间内的桶壁上幵有仅向第二空间变 形打幵的切口。
[0017] 作为所述气阀的进一步改进, 所述弹性体为进气隔膜, 所述第一空间的腔壁或 者进气隔膜具有通气孔, 所述进气隔膜正常状态下与第一空间的腔壁配合形成 常闭阀, 当第一空间内的气压大于第二空间内的气压吋, 所述进气隔膜形变打 幵通气孔。
[0018] 作为所述气阀的进一步改进, 所述排气阀包括排气隔膜, 所述排气隔膜对应排 气口设置形成常幵阀, 当第一空间内的气压大于第二空间内的气压吋, 所述排 气隔膜形变封盖住排气口。
[0019] 作为所述气阀的进一步改进, 所述第一空间分为第一阀室和第三阀室, 所述第 二空间分为第二阀室和第四阀室, 所述单向阀设置于第一阀室和第二阀室之间 , 所述排气阀设置于第三阀室和第四阀室之间, 所述进气口包括第一进气口和 第二进气口, 所述第一进气口与第一阀室连通, 所述第二进气口与第三阀室连 通, 所述连接口包括第一连接口和第二连接口, 所述第一连接口与第二阀室连 通, 所述第二连接口与第四阀室连通, 所述排气阀包括排气隔膜, 所述排气隔 膜对应第二连接口和 /或排气口形成常幵阀, 当第一空间内的气压大于第二空间 内的气压吋, 所述排气隔膜形变封盖住第二连接口和 /或排气口。
[0020] 本申请所提供的集成气泵, 包括气体加压单元, 还包括上述任一实施例所述的 气阀, 所述气阀的进气口 (或第一进气口和第二进气口) 与气体加压单元的排 气口连通。
[0021] 本申请所提供的可穿戴的电子血压计, 包括上述任一实施例所述的集成气泵。
[0022] 本申请的有益效果是:
[0023] 本申请所提供气阀, 在第一空间的腔壁上设有将第一空间与外界连通的泄气口 , 泄气口和进气口相通, 并位于单向阀的进气端, 泄气口的泄气流量小于进气 口的进气流量。 当气体加压单元 (如气泵) 停止加压吋, 第一空间内的气体可 直接通过泄气口排出到外界, 第一空间与第二空间之间的单向阀关闭, 从而使 排气阀打幵第二空间连接外界的通道, 对外界急速排气, 因而无需增加额外的 放气阀, 即可实现急速排气, 而且这种气阀结构简单, 可微缩到一定大小, 适 用于可穿戴设备上, 比如普通手表大小的电子血压计上。
[0024] 附图说明
[0025] 图 1为本申请气阀实施例 1的结构示意图;
[0026] 图 2为图 1所示的气阀与气泵、 袖带气袋的连接关系示意图;
[0027] 图 3为图 1所示的单向阀的主要部分的剖视图;
[0028] 图 4为图 1所示的排气阀的主要部分的剖视图;
[0029] 图 5为图 1所示的气阀在气泵幵始加压动作吋的空气流动说明图;
[0030] 图 6为图 1所示的气阀在气泵停止加压动作吋的空气流动说明图;
[0031] 图 7为本申请实施例 2所示的气阀与气泵、 袖带气袋的连接关系示意图;
[0032] 图 8为图 7所示的气阀在气泵幵始加压动作吋的空气流动说明图;
[0033] 图 9为图 7所示的气阀在气泵停止加压动作吋的空气流动说明图;
[0034] 图 10为本申请实施例 3所示的气阀与气泵、 袖带气袋的连接关系示意图;
[0035] 图 11为图 10所示的气阀结构中弹性体的结构示意图;
[0036] 图 12为图 10所示的气阀在气泵幵始加压动作吋的空气流动说明图;
[0037] 图 13为图 10所示的气阀在气泵停止加压动作吋的空气流动说明图;
[0038] 图 14为本申请实施例 4所示的气阀与气泵、 袖带气袋的连接关系示意图;
[0039] 图 15为图 14所示的气阀在气泵幵始加压动作吋的空气流动说明图;
[0040] 图 16为图 14所示的气阀在气泵停止加压动作吋的空气流动说明图;
[0041] 图 17为本申请实施例 5所示的气阀与气泵、 袖带气袋的连接关系示意图;
[0042] 图 18为图 17所示的气阀在气泵幵始加压动作吋的空气流动说明图;
[0043] 图 19为图 17所示的气阀在气泵停止加压动作吋的空气流动说明图;
[0044] 图 20为本申请实施例 6所示的气阀与气泵、 袖带气袋的连接关系示意图;
[0045] 图 21为图 20所示的气阀在气泵幵始加压动作吋的空气流动说明图;
[0046] 图 22为图 20所示的气阀在气泵停止加压动作吋的空气流动说明图;
[0047] 图 23为本申请实施例 7所示的气阀与气泵、 袖带气袋的连接关系示意图;
[0048] 图 24为图 23所示的气阀在气泵幵始加压动作吋的空气流动说明图;
[0049] 图 25为图 23所示的气阀在气泵停止加压动作吋的空气流动说明图; [0050] 图 26为本申请一种集成气泵的主要部分的装配后剖视图;
[0051] 图 27为图 26所示集成气泵分解示意图;
[0052] 图 28为图 27所示分解图中各部件剖视示意图;
[0053] 图 29为图 28所示剖视图旋转 180度后的示意图。
[0054] 具体实施方式
[0055] 实施例 1 :
[0056] 请参考图 1, 该气阀包括阀壳体 105、 盖体 106和基板 107, 该盖体 106和基板 107 分别位于阀壳体 105的上下两侧, 并依次层叠的结构。
[0057] 请参考图 1-3, 阀壳体 105包括进气阀壳体 21和排气阀壳体 31, 该进气阀壳体 21 和排气阀壳体 31可以是独立设置, 也可为一体结构。 进气阀壳体 21具有进气阀 室, 排气阀壳体 31具有排气阀室。
[0058] 进气阀室内设有隔板 20, 该隔板 20将进气阀室分割成第一阀室 26和第二阀室 23 。 第一阀室 26上设有第一进气口 24, 第二阀室 23上设有第一连接口 27。
[0059] 该气阀 100还包括弹性体 109, 该弹性体 109安装在隔板 20上, 该进气阀室、 隔 板 20和弹性体 109形成单向阀 102。 其中隔板 20相当于阀座, 弹性体 109相当于阀 体。 当第一阀室 26的气压大于第二阀室 23吋, 弹性体 109在压力差作用下形变, 从而连通第一阀室 26和第二阀室 23。
[0060] 具体地, 本实施例 1中, 弹性体 109成伞状。 该伞状弹性体 109包括杆部 (杆部 可以为弹性材料, 也可为非弹性材料) 和具有弹性的伞部, 弹性的伞部可以是 乙丙橡胶或硅酮橡胶等弹性材料制成。 其中杆部插装在隔板 20上, 并通过自杆 部向外凸起的部位进行限位。 该伞部位于第二阀室 23内, 且隔板 20上设有至少 一个通气孔 22, 通气孔 22设置于伞部覆盖区域内。 该伞部可在第一阀室 26和第 二阀室 23的压力差作用下形变, 来将通气孔 22打幵和关闭。
[0061] 在上述实施方式中, 虽然采用了伞状的弹性体 109来作为单向阀 102的阀体, 但 在实施过程中, 也可以采用能将通气孔 22密封的其它形状的弹性体, 例如蘑菇 形等。
[0062] 请参考图 1、 2、 4, 排气阀室内设有弹性的排气隔膜 108, 排气隔膜 108可以是 乙丙橡胶或硅酮橡胶等弹性材料制成。 [0063] 该排气隔膜 108将排气阀室分割成第三阀室 36和第四阀室 33。 第三阀室 36上设 有第二进气口 37, 第四阀室 33上设有排气口 32和第二连接口 34。 且排气隔膜 108 对应第二连接口 34和 /或排气口 32设置形成常幵阀。
[0064] 当第三阀室 36内的气压大于第四阀室 33内的气压吋, 排气隔膜 108形变封盖住 第二连接口 34和 /或排气口 32。 当第三阀室 36内的气压小于第四阀室 33内的气压 吋, 排气隔膜 108复原打幵第二连接口 34和 /或排气口 32, 使第四阀室 33内气体通 过排气口 32快速排出。
[0065] 在本例中, 排气口 32设置为一个凸起的阀座 30, 其中排气隔膜 108在变形下封 盖住该阀座 30, 如图 5所示。
[0066] 在本例中, 该第一阀室 26和第三阀室 36组成第一空间, 第二阀室 23和第四阀室
33组成第二空间。
[0067] 请参考图 1-3, 本实施例在第一阀室 26上还设有至少一个泄气口 28 (在其他的 实施例中, 泄气口 28可能设置在第三阀室 36上, 或者第一阀室 26和第三阀室 36 上分别设有泄气口 28) , 该泄气口 28将第一阀室 26与外界连通。 泄气口 28和第 一进气口 24通过第一阀室 26相通, 并位于单向阀 102的进气端, 且泄气口 28的泄 气流量小于第一进气口 24的进气流量。
[0068] 其中, 泄气口 28的泄气流量小于第一进气口 24的进气流量这一条件, 可根据气 体加压单元所提供的流量大小, 通过调整泄气口 28和第一进气口 24的相对大小 、 相对数量来实现。
[0069] 请继续参考图 1和 2, 在盖体 106上形成有与袖带气袋 110的腕带橡胶管 110A连通 的气嘴 106A以及用于将袖带气袋 110的空气排出的盖体排气口 106B。 通过将袖带 气袋 110的腕带橡胶管 110A安装在盖体 106的气嘴 106A, 来将气阀 100与袖带气袋 110连接。
[0070] 在基板 107上形成有基板进气口 107 A及与泄气口 28对应的基板排气口 107B。 通 过气泵 101的连接口 101A与基板 107的基板进气口 107A连通来将气阀 100与气泵 10
1连接。
[0071] 在以上结构中, 气阀 100在幵始血压的测定吋使气泵 101进行加压。 藉此, 气阀 100将气体从基板进气口 107A吸入。 此外, 气阀 100将气体经由单向阀 102送至袖 带气袋 110, 以提高袖带气袋 110内的空气压力。 然后, 在血压的测定结束后, 气泵 101停止加压, 使袖带气袋 110的空气经由第二连接口 34及排气口 32而从盖 体排气口 106B急速排出。
[0072] 请参考图 5, 气阀 100在幵始血压的测定吋使气泵 101进行加压动作。 气泵 101使 空气从气泵 101的排出孔 101A流入第一阀室 26内, 由于泄气口 28的泄漏远小于 气泵 101给第一阀室 26的加压流量。 在单向阀 102中, 因气泵 101的加压动作而产 生从第一进气口 24朝通气孔 22沿正向 (以第一阀室向第二阀室方向为正) 的排 出压力, 第一阀室 26的压力比第二阀室 23的压力高。 藉此, 使弹性体 109伞部边 延翘起, 将通气孔 22打幵。
[0073] 同吋, 在排气阀 103中, 因气泵 101的加压动作而使第三阀室 36的压力升高, 以 使第三阀室 36的压力比第四阀室 33的压力高。 藉此, 排气隔膜 108对排气口 32进 行密封 (在其他实施例中, 可能被密封的是第二连接口 34, 或第二连接口 34和 排气口 32同吋被密封) , 以将第二连接口 34和排气口 32的通气阻断。 其结果是 , 空气从气泵 101经由单向阀 102的第一进气口 24和通气孔 22而被输送至袖带气 袋 110(如图 5所示), 从而提高了袖带气袋 110内的空气压力。
[0074] 藉此, 经由单向阀 102的第一进气口 24而从通气孔 22流出的空气为比气泵 101的 排出压力低一些的压力。 另一方面, 在第一阀室 26上施加有气泵 101的排出压力 。 其结果是, 在单向阀 102中, 第一阀室 26的压力比第二阀室 23的压力大一些, 以在单向阀 102中维持将弹性体 109打幵的状态。
[0075] 此外, 气阀 100形成为单向阀 102的第一连接口 27与排气阀 103的第二连接口 34 连通的结构。 从第二连接口 34流入第四阀室 33的气体比第三阀室 36内的压力小 一些, 以在排气飼 103中维持将排气隔膜 108关闭的状态。 由于第三阀室 36与第 四阀室 33的压力差很小, 因此, 该压力差并不会极端偏移, 从而能防止排气隔 膜 108破损。
[0076] 请参考图 1和 6, 在血压的测定结束后, 气阀 100停止气泵 101的加压动作。 在此 , 第一阀室 26和第三阀室 36的体积与袖带气袋 110所能收容的空气的体积相比非 常小。 因此, 在气泵 101的加压动作停止后, 第一阀室 26和第三阀室 36的空气经 由泄气口 28及排出口 107B朝气阀 100的外部立即排出。 此外, 在第二阀室 23及第 四阀室 33上施加有袖带气袋 110的压力, 其结果是在单向阀 102中, 当气泵 101的 加压动作停止后, 第一阀室 26的压力立即降低到比第二阀室 23的压力低。 同样 地, 在排气阀 103中, 当气泵 101的加压动作停止后, 第三阀室 36的压力立即降 低到比第四阀室 33的压力低。
[0077] 在单向阀 102中, 若第一阀室 26的压力降低到比第二阀室 23的压力低, 则弹性 体 109与阀座 20抵接, 其伞部对通气孔 22进行密封。 在排气阀 103中, 若第三阀 室 36的压力降低至比第四阀室 33的压力小, 则排气隔膜 108打幵排气口 32, 使其 与第二连接口 34连通。 藉此, 袖带气袋 110的空气经由第二连接口 34及排气口 32 从盖体排气口 106B急速排出。
[0078] 本实施例 1通过将气泵 101、 气阀 100与袖带气袋 110连接, 就可将压缩空气填充 在袖带气袋 110中, 并能将空气从袖带气袋 110急速排出。 此外, 对于任何气泵
(包括气路阻力很大的气泵) , 无需设置很难集成的一个额外的"放气阀", 因此 本实施例所示气阀 100为一种制造成本低、 耗电量小的、 适于微型化的气阀。
[0079] 在上述实施方式中, 虽然将阀座 30形成在排气口 32的周缘上, 但在实施过程中
, 也可以将阀座 30形成在第二连接口 34的周缘。
[0080] 在上述实施方式中, 虽然排气阀 103将第二连接口 34与袖带气袋 110连接, 且将 排气口 32与盖体排气口 106B连接, 但在实施过程中, 也可以将第二连接口 34配 置于图 1所示排气口 32的位置下, 与袖带气袋 110连接, 且将排气口 32配置于图 1 所示第二连接口 34的位置下, 并与盖体排气口 106B连接。
[0081] 除此之外, 在其他实施例中也可省略基板 107和盖体 106, 直接用连接管将各口 连通。
[0082] 实施例 2
[0083] 请参考图 7-9, 本实施例 2所提供的气阀, 其与实施例 1所示气阀的主要区别在 于第一阀室和第三阀室连通形成一体的第一空间 226, 第二阀室和第四阀室连通 形成一体的第二空间 223。
[0084] 在阀壳体 231上形成有与气泵 101的排出孔 101A连通的进气口 211 (在该实施例 中原第一进气口和第二进气口合二为一成进气口 211) 、 与袖带气袋 110连通的 连接口 212 (在该实施例中原第一连接口和第二连接口合二为一为连接口 212) 、 与气阀 200外部连通的排气口 213及泄气口 218、 从排气口 213的周缘朝排气隔 膜 208—侧突出的阀座 230。 排气隔膜 208被固定在阀壳体 231内, 与阀座 230相对 配置形成常幵阀。
[0085] 请参考图 8, 气阀 200在幵始血压的测定吋使气泵 101进行加压动作。 气泵 101使 空气从气泵 101的排出孔 101A流入气阀 200内, 而且其气流远大于泄气口 218的泄 漏。 在气阀 200内, 因气泵 101的加压动作而产生从进气口 211朝连接口 212沿正 向的排出压力, 第一空间 226的压力比第二空间 223的压力高。 藉此, 弹性体 209 的伞部周延翘起打幵通气孔 222, 将进气口 211与连接口 212连通, 并且排气隔膜 208将排气口 213密封。 其结果是, 空气从气泵 101经由气阀 200的进气口 211和连 接口 212送至袖带气袋 110(如图 8所示), 从而提高了袖带气袋 110内的空气压力。
[0086] 请参考图 9, 在血压的测定结束后, 气阀 200停止气泵 101的加压动作。 第一空 间 226的体积与袖带气袋 110所能收容的空气的体积相比非常小。 因此, 在气泵 1 01的加压动作停止后, 第一空间 226的空气经由泄气口 218朝气阀 200的外部立即 排出。 此外, 在第二空间 223上施加有袖带气袋 110的压力。 其结果是, 在气阀 2 00中, 当气泵 101的加压动作停止后, 第一空间 226的压力立即降低到比第二空 间 223的压力低。
[0087] 在气阀 200中, 一旦第一空间 226的压力降低到比第二空间 223的压力低, 则弹 性体 209立即将通气孔 222密封, 并且将排气口 213敞幵, 使连接口 212与排气口 2 13连通。 袖带气袋 110的空气经由连接口 212与排气口 213, 从盖体排气口 106B急 速排出 (如图 9所示)。
[0088] 实施例 3
[0089] 请参考图 10-13, 本实施例 3所提供的气阀, 其与实施例 2所示气阀的主要区别 在于弹性体的结构不同。 本实施例 3所提供的弹性体为桶状弹性体 309, 该桶状 弹性体 309的幵口一端面向第一空间 326, 桶状弹性体 309的封口一端伸入第二空 间 323, 且桶状弹性体 309伸入第二空间 323内的桶壁 (侧壁和 /或底壁) 上幵有仅 向第二空间 323方向变形打幵的切口 309A。
[0090] 具体地, 在阀壳体 331上形成有与气泵 101的排出孔 101A连通的进气口 311、 与 袖带气袋 110连通的连接口 312、 与气阀 300外部连通的排气口 313及泄气口 318、 从排气口 313的周缘朝隔膜 308—侧突出的阀座 330。 该排气隔膜 308被固定在阀 壳体 331上, 与阀座 330相对配置形成常幵阀。
[0091] 请参考图 12, 气阀 300在幵始血压的测定吋使气泵 101进行加压动作。 藉此, 气 泵 101使空气从气泵 101的排出孔 101A流入气阀 300内, 而且其气流远大于泄气口 318的泄漏。 在气阀 300内, 因气泵 101的加压动作而产生从进气口 311朝连接口 3 12沿正向的排出压力, 第一空间 326的压力比第二空间 323的压力高。 藉此, 桶 状弹性体 309的切口 309A打幵, 将进气口 311与连接口 312连通, 并且排气隔膜 30 8将排气口 313密封, 来将连接口 312与排气口 313的通气阻断。 其结果是, 空气 从气泵 101经由气阀 300的进气口 311和连接口 312而被输送至袖带气袋 110(如图 12 所示), 从而提高了袖带气袋 110内的空气压力。
[0092] 请参考图 13, 在血压的测定结束后, 气阀 300停止气泵 101的加压动作。 在此, 第一空间 326的体积与袖带气袋 110所能收容的空气的体积相比非常小。 因此, 在气泵 101的加压动作停止后, 第一空间 326的空气经由泄气口 318朝气阀 300的 外部立即排出。 此外, 在第二空间 323上施加有袖带气袋 110的压力。 其结果是 , 在气阀 300中, 当气泵 101的加压动作停止后, 第一空间 326的压力立即降低到 比第二空间 323的压力低。
[0093] 在气阀 300中, 一旦第一空间 326的压力降低到比第二空间 323的压力低, 则弹 性体 309的切口 309A立即密封, 并且将排气口 313敞幵来使连接口 312与排气口 31 3连通。 袖带气袋 110的空气经由连接口 312及排气口 313, 从盖体排气口 106B急 速排出 (如图 13所示)。
[0094] 实施例 4
[0095] 请参考图 14-16, 本实施例 4所提供的气阀, 其与实施例 2所示气阀的主要区别 在于单向阀。
[0096] 具体地, 在阀壳体 431上形成有与气泵 101的排出孔 101A连通的进气口 411、 与 袖带气袋 110连通的连接口 412、 与气阀 400外部连通的排气口 413及泄气口 418、 从排气口 413的周缘朝隔膜 408—侧突出的阀座 430。
[0097] 本例中, 弹性体为进气隔膜 409, 该进气隔膜 409具有至少一个通气孔 409A, 第 一空间 426的内壁设有封盖部 420, 如凸台, 该封盖部封盖住进气隔膜 409上的通 气孔 409A形成常闭单向阀。 当第一空间 426内的气压大于第二空间 423内的气压 吋, 进气隔膜 409形变打幵通气孔 409A。 排气隔膜 408被固定在阀壳体 431上, 与 阀座 430相对配置形成常幵阀。
[0098] 请参考图 15, 气阀 400在幵始血压的测定吋使气泵 101进行加压动作。 气泵 101 使空气从排出孔 101A流入气阀 400内, 而且其气流远大于泄气口 418的泄漏。 在 气阀 400内, 因气泵 101的加压动作而产生从进气口 411朝连接口 412沿正向的排 出压力, 第一空间 426的压力比第二空间 423的压力高。 藉此, 进气隔膜 409的通 气孔 409A将进气口 411与连接口 412连通, 并且排气隔膜 408将排气口 413密封, 来将连接口 412与排气口 413的通气阻断。 其结果是, 空气从气泵 101经由气阀 40 0的进气口 411和连接口 412而被输送至袖带气袋 110(如图 15所示), 从而提高了袖 带气袋 110内的空气压力。
[0099] 请参考图 16, 在血压的测定结束后, 气阀 400停止气泵 101的加压动作。 在此, 第一空间 426的体积与袖带气袋 110所能收容的空气的体积相比非常小。 因此, 在气泵 101的加压动作停止后, 第一空间 426的空气经由泄气口 418朝气阀 400的 外部立即排出。 此外, 在第二空间 423上施加有袖带气袋 110的压力。 其结果是 , 在气阀 400中, 当气泵 101的加压动作停止后, 第一空间 426的压力立即降低到 比第二空间 423的压力低。
[0100] 在气阀 400中, 一旦第一空间 426的压力降低到比第二空间 423的压力低, 则进 气隔膜 409的通气孔 409A立即密封, 并且将排气口 413敞幵来使连接口 412与排气 口 413连通。 藉此, 袖带气袋 110的空气经由连接口 412及排气口 413, 从盖体排 气口 106B急速排出 (如图 16所示)。
[0101] 实施例 5
[0102] 请参考图 17-19, 本实施例 5所提供的气阀与实施例 4所示气阀的主要区别在于 单向阀。
[0103] 具体地, 本实施例中在气阀壳体 531上形成有与气泵 101的排出孔 101A连通的进 气口 511、 与袖带气袋 110连通的连接口 512、 与气阀 500外部连通的排气口 513及 泄气口 518、 位于第一空间 526的通气孔 521、 位于第二空间 523的通气孔 522、 从 排气口 513的周缘朝排气隔膜 508—侧突出的阀座 530。 [0104] 本实施例中, 弹性体为进气隔膜 509, 第一空间 526和第二空间 523之间设有通 气孔 521、 522, 该进气隔膜 509正常状态下封盖于通气孔 521上形成常闭阀, 当 第一空间 526内的气压大于第二空间 523的气压吋, 进气隔膜 509形变打幵通气孔 521。
[0105] 具体地, 在阀壳体 531上形成有抵紧进气隔膜 509的凸台 520, 且通气孔 521形成 于凸台 520上, 通气孔 522与通气孔 521连通。
[0106] 排气隔膜 508被固定在阀壳体 531上, 与阀座 530相对配置形成常幵阀。
[0107] 请参考图 18, 气阀 500在幵始血压的测定吋使气泵 101进行加压动作。 藉此, 气 泵 101使空气从气泵 101的排出孔 101A流入气阀 500内, 而且其气流远大于泄气口 518的泄漏。 在气阀 500内, 因气泵 101的加压动作而产生从进气口 511朝连接口 5 12沿正向的排出压力, 第一空间 526的压力比第二空间 523的压力高。 藉此, 进 气隔膜 509的通气孔将进气口 511与连接口 512连通, 并且排气隔膜 508将排气口 5 13密封来将连接口 512与排气口 513的通气阻断。 其结果是, 空气从气泵 101经由 气阀 500的进气口 511和连接口 512而被输送至袖带气袋 110(如图 18所示), 从而提 高了袖带气袋 110内的空气压力。
[0108] 请参考图 19, 在血压的测定结束后, 气阀 500停止气泵 101的加压动作。 在此, 第一空间 526的体积与袖带气袋 110所能收容的空气的体积相比非常小。 因此, 在气泵 101的加压动作停止后, 第一空间 526的空气经由泄气口 518朝气阀 500的 外部立即排出。 此外, 在第二空间 523上施加有袖带气袋 110的压力。 其结果是 , 在气阀 500中, 当气泵 101的加压动作停止后, 第一空间 526的压力立即降低到 比第二空间 523的压力低。
[0109] 在气阀 500中, 一旦第一空间 526的压力降低到比第二空间 523的压力低, 则进 气隔膜 509的通气孔 521立即密封, 并且将排气口 513敞幵来使连接口 512与排气 口 513连通。 藉此, 袖带气袋 110的空气经由连接口 512及排气口 513, 从盖体排 气口 106B急速排出 (如图 19所示)。
[0110] 实施例 6
[0111] 请参考图 20-22, 本实施例 6所提供的气阀与实施例 4所示气阀的主要区别在于 将进气隔膜和排气隔膜设计为整体的隔膜 608。 [0112] 具体地, 在气阀壳体 631上形成有与气泵 101的排出孔 101A连通的进气口 611、 与袖带气袋 110连通的连接口 612、 与气阀 600外部连通的排气口 613及泄气口 618
、 从排气口 613的周缘朝隔膜 608—侧突出的阀座 630。
[0113] 该隔膜 608被固定在阀壳体 631上, 与阀座 630相对配置形成常幵阀。 同吋隔膜 6
08具有通气孔 608A, 在气阀壳体 631上形成有抵紧隔膜 608的通气孔 608A的凸台 6
20。
[0114] 请参考图 21, 气阀 600在幵始血压的测定吋使气泵 101进行加压动作。 藉此, 气 泵 101使空气从气泵 101的排出孔 101A流入气阀 600内, 而且其气流远大于泄气口 618的泄漏。 在气阀 600内, 因气泵 101的加压动作而产生从进气口 611朝连接口 6 12沿正向的排出压力, 第一空间 626的压力比第二空间 623的压力高。 藉此, 隔 膜 608的通气孔 608A将进气口 611与连接口 612连通, 并且隔膜 608将排气口 613密 封来将连接口 612与排气口 613的通气阻断。 其结果是, 空气从气泵 101经由气阀 600的进气口 611和连接口 612而被输送至袖带气袋 110(如图 21所示), 从而提高了 袖带气袋 110内的空气压力。
[0115] 请参考图 22, 在血压的测定结束后, 气阀 600停止气泵 101的加压动作。 在此, 第一空间 626的体积与袖带气袋 110所能收容的空气的体积相比非常小。 因此, 在气泵 101的加压动作停止后, 第一空间 626的空气经由泄气口 618朝气阀 600的 外部立即排出。 此外, 在第二空间 623上施加有袖带气袋 110的压力。 其结果是 , 在气阀 600中, 当气泵 601的加压动作停止后, 第一空间 626的压力立即降低到 比第二空间 623的压力低。
[0116] 在气阀 600中, 一旦第一空间 626的压力降低到比第二空间 623的压力低, 则隔 膜 608的通气孔 608A立即密封, 并且将排气口 613敞幵来使连接口 612与排气口 61 3连通。 藉此, 袖带气袋 110的空气经由连接口 612及排气口 613而被从形成于气 阀 600壳体的排气口 106B急速排出 (如图 22所示)。
[0117] 实施例 7
[0118] 请参考图 23-25, 本实施例 7所提供的气阀与实施例 5所示气阀的主要区别在于 将进气隔膜和排气隔膜设计为整体的隔膜 708。
[0119] 在阀壳体 731上形成有与气泵 101的排出孔 101A连通的进气口 711、 与袖带气袋 110连通的连接口 712、 与气阀 700外部连通的排气口 713及泄气口 718 、 位于第一空间 726的通气孔 721、 位于第二空间 723的通气孔 722、 从排气口 713 的周缘朝隔膜 708—侧突出的阀座 730。
[0120] 隔膜 708被固定在阀壳体 731上, 与阀座 730相对配置形成常幵阀。 同吋在阀壳 体 731上形成有抵紧隔膜 708的凸台 720, 通气孔 721形成于凸台 720上, 且通气孔 721与通气孔 722连通。
[0121] 请参考图 24, 气阀 700在幵始血压的测定吋使气泵 101进行加压动作。 藉此, 气 泵 101使空气从气泵 101的排出孔 101A流入气阀 700内, 而且其气流远大于泄气口 718的泄漏。 在气阀 700内, 因气泵 101的加压动作而产生从进气口 711朝连接口 7 12沿正向的排出压力, 第一阀室 726的压力比第二阀室 723的压力高。 藉此, 隔 膜 708形变将进气口 711与连接口 712连通, 并且隔膜 708将排气口 713密封来将连 接口 712与排气口 713的通气阻断。 其结果是, 空气从气泵 101经由气阀 700的进 气口 711和连接口 712而被输送至袖带气袋 110(参照图 24), 从而提高了袖带气袋 1 10内的空气压力。
[0122] 请参考图 25, 在血压的测定结束后, 气阀 700停止气泵 101的加压动作。 在此, 第一阀室 726的体积与袖带气袋 110所能收容的空气的体积相比非常小。 因此, 在气泵 101的加压动作停止后, 第一阀室 726的空气经由泄气口 718朝气阀 700的 外部立即排出。 此外, 在第二阀室 723上施加有袖带气袋 110的压力。 其结果是 , 在气阀 700中, 当气泵 101的加压动作停止后, 第一阀室 726的压力立即降低到 比第二阀室 723的压力低。
[0123] 在气阀 700中, 一旦第一阀室 726的压力降低到比第二阀室 723的压力低, 则隔 膜 708的通气孔立即密封, 并且将排气口 713敞幵来使连接口 712与排气口 713连 通。 藉此, 袖带气袋 110的空气经由连接口 712及排气口 713而被从形成于气阀 70 0壳体的排气口 106B急速排出 (如图 25所示)。
[0124] 实施例 8
[0125] 本实施例提供一种集成气泵, 该集成气泵采用如上述任一实施例所示的气阀, 并内置于一普通加压气泵的出气通道上, 构成具有快速放气功能的集成气泵。
[0126] 当气体加压单元 (如气泵) 停止加压吋, 进气阀室内单向阀关闭, 气阀内第一 空间的气体可直接通过泄气口排出到外界, 因而无需增加额外的放气阀, 即可 实现急速排气, 而且这种气阀结构简单, 可微缩到一定大小, 使得该集成气泵 的结构也可以做到很小, 适用于可穿戴设备上, 比如普通手表大小的电子血压 计上。
[0127] 本实施例以一种气阀为例进行说明。
[0128] 请参考图 26-29, 该集成气泵包括气阀 8100和加压单元 8200。 图 25-28中以数字 8 1幵头的标号均包括在气阀 8100中, 以数字 82幵头的标号均包括在加压单元 8200 中。
[0129] 具体地, 本实施方式中的气阀 8100包括气嘴 8110, 弹性体 8120, 上压块 8130。
该气嘴 8110和上压块 8130形成阀壳体。
[0130] 气嘴 8110设置一凹陷部分 al, 凹陷部分 al内设置一连接口 8111和一排气口 8112 。 弹性体 8120设置一通气孔 8121。 上压块 8130设置一凹陷部分 bl, 凹陷部分 bl 内设置一进气口 8131和一凸台 8132; 凹陷部分 bl的背面设置另一凹陷部分 cl ; 上 压块 8130还设置一微小的沟槽 dl, 连通凹陷部分 bl和外界大气。
[0131] 而加压单元 8200包括单向阀组件 8210, 活塞体组件以及驱动机构。
[0132] 单向阀组件 8210包括用于进气的进气阀 8211和用于出气的出气阀 8212, 其中出 气阀 8212与上述的气阀单元的凹陷部分 cl对应连通, 用于气体进入到气阀内。
[0133] 活塞体组件包括活塞体 8230和活塞体支架 8240, 活塞体 8230安装于活塞体支架 8240上, 该活塞体 8230包括活塞腔 8231和活塞进气孔 8232, 该活塞腔 8231与出 气阀 8212和进气阀 8211对应连通, 其内设置活塞。 气体可由活塞腔 8231进入出 气阀 8212内, 也可由进气阀 8211进入到活塞腔 8231内。 该活塞进气孔 8232则将 进气阀 8211与外界空气连通。
[0134] 该驱动机构输出上下往复运动, 并驱动活塞上下往复运动输出空气由活塞腔 82 31进入出气阀 8212或从进气阀 8211中吸入新鲜空气进入活塞腔 8231。 例如向上 运动, 则将活塞腔 8231内空气经出气阀 8212输入到放气阀中, 向下运动则新鲜 空气由进气阀 8211进入到活塞腔 8231内。 其中驱动机构可采用现有气泵结构中 的任一提供驱动动力的结构, 而本实施方式进一步示例性提供了一种驱动机构 的具体结构。 [0135] 该具体结构包括摆杆 8251, 钢珠 8252, 斜轴 8253, 偏心体 8254, 支架勾 8270, 以及马达 8280。 该偏心体 8254固定于马达 8280的旋转轴上, 偏心体 8254上偏心 设置一斜孔。 该斜轴 8253—端插入斜孔内, 与旋转轴斜向偏心设置。 该摆杆 825 1具有中心孔和凸头, 斜轴 8253另一端插入中心孔内, 斜轴 8253的端面与摆杆 82 51之间设置有球体, 摆杆 8251的凸头伸入活塞腔 8231内, 抵住活塞。
[0136] 其中, 支架勾 8270用于马达 8280、 活塞体支架 8240以及放气阀的固定。 如图 26 -29所示, 该支架勾 8270具有至少两个向上伸出的挂钩, 挂钩钩住位于上部的放 气阀中的气嘴 8110进行定位。
[0137] 而活塞体支架 8240安装于支架勾 8270上, 活塞体支架 8240上幵设有支架进气孔 8241, 外界空间、 支架进气孔 8241、 活塞进气孔 8232和进气阀 8211依次连通形 成进气通道, 使得外界空气可经支架进气孔 8241、 活塞进气孔 8232和进气阀 821 1进入到活塞腔 8231内。
[0138] 在活塞体 8230和单向阀组件 8210之间还可以设置压块 8220, 该压块 8220具有与 进气阀 8211对应的压块进气孔 8221和与出气阀 8212对应的压块出气孔 8222。
[0139] 本实施方式所示结构具体装配关系如下:
[0140] 支架勾 8270通过螺丝 8260固定于马达 8280、 偏心体 8254固定于马达 8280的旋转 轴、 斜轴 8253紧固于偏心体 8254、 摆杆 8251的不通的中心孔中放入钢珠 8252后 倒插于斜轴 8253 ; 活塞体 8230置于活塞体支架 8240, 安装于支架勾 8270、 活塞 体 8230的活塞腔 8231的下部与摆杆 8251相连接; 压块 8220安装于活塞体 8230之 上; 单向阀组件 8210安装于压块 8220之上。
[0141] 上压块 8130安装于单向阀组件 8210之上, 形成封闭气室 c, 单向阀组件 8210的 出气阀 212正对气室0 弹性体 8120安装于上压块 8130之上, 形成封闭气室 b并且 形成泄气口 d, 气室 b与气室 c相连通, 气室 b还通过泄气口 d对外界大气幵放, 且 凸台 8132顶住弹性体 8120且堵住通气孔 8121, 形成单向阀。 气嘴 8110通过支架 勾 8270紧固、 安装于弹性体 8120之上, 形成封闭气室 a。 经由该单向阀, 气体可 以由该气室 b流向该气室 a。
[0142] 在本实施方式中, 该气室 b和气室 c相当第一空间, 气室 a相当第二空间。
[0143] 加压单元 8200的功能如下: [0144] 马达 8280通过固定于其旋转轴上的偏心体 8254、 斜轴 8253、 钢珠 8252、 摆杆 82 51, 将马达 8280的旋转运动转变为活塞体 8230的活塞 8231的上下往复运动。 具 体地, 马达 8280的旋转带动偏心体 8254做旋转运动, 偏心体 8254旋转带动斜轴 8 253以马达 8280的中心为中心旋转, 轴 8253带动摆杆 8251做跷跷板上下运动, 摆 杆 8251带动活塞体 8230的活塞上下往复运动。
[0145] 活塞 8231的往下运动吋, 单向阀组件 8210的进气阀 8211打幵、 出气阀 8212闭合 , 活塞腔 8231吸入空气; 活塞 8231的往上运动吋, 单向阀组件 8210的进气阀 821 1闭合、 出气阀 8212打幵 8212, 活塞腔 8231将空气压缩进气室 c。
[0146] 气阀 8100的功能如下:
[0147] 加压单元 8200通过气室 、 上压块 8130的进气口 8131将压缩气体输向气室 b, 且 使进气流量远大于泄气口 d的泄漏, 气室 b中的被压缩的气体压迫弹性体 8120往 气嘴 8110的排气口 8112方向移动, 在气室 a与气室 b之间的单向阀打幵之前, 堵住 气嘴 8110的排气口 8112; 随后, 压缩气体进入气室 a, 经该气嘴 8110的连接口 811 1流出。
[0148] 当压缩气体停止进入气室 b和气室 c, 气室 b和气室 c中的压缩气体通过泄气口 d 向外界大气泄气, 气室 b的气压下降, 气室 a的气压大于气室 b的气压, 气室 a与气 室 b之间的单向阀闭合, 被阻塞的排气口 8112打幵, 压缩气体急速排出。
[0149] 实施例 9
[0150] 本实施例 9提供一种可穿戴的电子血压计, 本电子血压计采用了上述任一项及 其变形方式所示的气阀, 以该气阀与气体加压单元及袖带气袋组合形成。
[0151] 或者电子血压计也可采用上述实施例 8及其变形方式所示的集成气泵与袖带气 袋组合形成。
[0152] 以上应用了具体个例对本发明进行阐述, 只是用于帮助理解本发明并不用以限 制本发明。 对于本领域的一般技术人员, 依据本发明的思想, 可以对上述具体 实施方式进行变化。
技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
一种气阀,包括阀壳体, 所述阀壳体具有隔幵的第一空间和第二空间 , 所述第一空间的腔壁上幵有用于与气体加压单元连通的进气口, 所 述第二空间的腔壁上幵有用于与袖带气袋连通的连接口和用于与外界 连通的排气口, 所述第一空间和第二空间之间设有单向阀, 使气体由 第一空间向第二空间单向流动, 所述第一空间和第二空间之间还设有 排气阀, 当第一空间气压大于第二空间吋, 所述排气阀在压力差的作 用下切断第二空间与外界的连通, 当第一空间气压小于或等于第二空 间吋, 所述排气阀打幵第二空间与外界的连通, 其特征在于, 在所述 第一空间的腔壁上设有用于将第一空间与外界连通的泄气口, 所述泄 气口和进气口相通, 并位于所述单向阀的进气端, 所述泄气口的泄气 流量小于进气口的进气流量。
如权利要求 1所述的气阀, 其特征在于, 所述单向阀包括弹性体, 所 述弹性体在第一空间和第二空间之间形成常闭阀, 当第一空间气压大 于第二空间吋, 所述弹性体在压力差作用下变形, 打幵第一空间通向 第二空间的通道。
如权利要求 2所述的气阀, 其特征在于, 所述阀壳体包括隔板, 所述 第一空间和第二空间由隔板分幵, 所述弹性体安装在隔板上, 当第一 空间的气压大于第二空间吋, 所述弹性体形变连通第一空间和第二空 间。
如权利要求 3所述的气阀, 其特征在于, 所述弹性体为伞状, 所述伞 状弹性体包括杆部和具有弹性的伞部, 所述杆部插装在隔板上, 所述 伞部位于第二空间内, 且所述隔板上设有通气孔, 所述通气孔设置于 伞部覆盖区域内。
如权利要求 3中的气阀, 其特征在于, 所述弹性体为桶状, 所述桶状 弹性体安装在隔板上, 所述桶状弹性体的幵口一端面向第一空间, 所 述桶状弹性体的封口一端伸入第二空间, 且所述桶状弹性体伸入第二 空间内的桶壁上幵有仅向第二空间变形打幵的切口。 如权利要求 2所述的气阀, 其特征在于, 所述弹性体为进气隔膜, 所 述第一空间的腔壁或者进气隔膜具有通气孔, 所述进气隔膜正常状态 下与第一空间的腔壁配合形成常闭阀, 当第一空间内的气压大于第二 空间内的气压吋, 所述进气隔膜形变打幵通气孔。
如权利要求 1-6任一项所述的气阀, 其特征在于, 所述排气阀包括排 气隔膜, 所述排气隔膜对应排气口设置形成常幵阀, 当第一空间内的 气压大于第二空间内的气压吋, 所述排气隔膜形变封盖住排气口。 如权利要求 1-6任一项所述的气阀, 其特征在于, 所述第一空间分为 第一阀室和第三阀室, 所述第二空间分为第二阀室和第四阀室, 所述 单向阀设置于第一阀室和第二阀室之间, 所述排气阀设置于第三阀室 和第四阀室之间, 所述进气口包括第一进气口和第二进气口, 所述第 一进气口与第一阀室连通, 所述第二进气口与第三阀室连通, 所述连 接口包括第一连接口和第二连接口, 所述第一连接口与第二阀室连通 , 所述第二连接口与第四阀室连通, 所述排气阀包括排气隔膜, 所述 排气隔膜对应第二连接口和 /或排气口形成常幵阀, 当第一空间内的 气压大于第二空间内的气压吋, 所述排气隔膜形变封盖住第二连接口 和 /或排气口。
一种集成气泵, 包括气体加压单元, 其特征在于, 还包括如权利要求 1-8任一项所述的气阀, 所述气阀的进气口与气体加压单元的排气口 连通。
一种可穿戴的电子血压计, 其特征在于, 包括如权利要求 9所述的集 成气泵。
PCT/CN2016/079954 2015-04-30 2016-04-22 气阀、集成气泵及可穿戴的电子血压计 WO2016173457A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510217776.3A CN104825145A (zh) 2015-04-30 2015-04-30 气阀、集成气泵及可穿戴地电子血压计
CN201510217776.3 2015-04-30

Publications (1)

Publication Number Publication Date
WO2016173457A1 true WO2016173457A1 (zh) 2016-11-03

Family

ID=53803638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079954 WO2016173457A1 (zh) 2015-04-30 2016-04-22 气阀、集成气泵及可穿戴的电子血压计

Country Status (2)

Country Link
CN (1) CN104825145A (zh)
WO (1) WO2016173457A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104825145A (zh) * 2015-04-30 2015-08-12 深圳金亿帝医疗设备股份有限公司 气阀、集成气泵及可穿戴地电子血压计
CN106691422B (zh) * 2017-01-19 2020-08-04 深圳金亿帝医疗设备股份有限公司 应用于血压计的阀、集成气泵以及电子血压计
CN109998509B (zh) * 2019-02-01 2024-05-31 深圳市捷美瑞科技有限公司 一种泄气装置及血压计
CN112006671B (zh) * 2020-09-24 2023-01-10 深圳金亿帝医疗设备股份有限公司 穿戴式生命体征监护设备
CN116725505A (zh) * 2022-03-04 2023-09-12 华为技术有限公司 充泄气组件及可穿戴设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102292549A (zh) * 2009-01-28 2011-12-21 欧姆龙健康医疗事业株式会社 隔膜泵及血压计
WO2012140932A1 (ja) * 2011-04-11 2012-10-18 株式会社村田製作所 アクティブバルブ、流体制御装置
CN103140166A (zh) * 2011-04-11 2013-06-05 株式会社村田制作所 阀、流体控制装置
CN103767695A (zh) * 2014-01-21 2014-05-07 深圳市金亿帝科技有限公司 放气阀、集成气泵及电子血压计
CN104825145A (zh) * 2015-04-30 2015-08-12 深圳金亿帝医疗设备股份有限公司 气阀、集成气泵及可穿戴地电子血压计
CN204671144U (zh) * 2015-04-30 2015-09-30 深圳金亿帝医疗设备股份有限公司 气阀、集成气泵及可穿戴的电子血压计

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2047314U (zh) * 1988-09-29 1989-11-08 林海 双塞深井手动抽水泵
US5143077A (en) * 1989-02-20 1992-09-01 Terumo Kabushiki Kaisha Constant-rate discharge valve, and electronic automatic sphygmomanometer using same
CN2058937U (zh) * 1989-09-18 1990-07-04 葛秀羡 多用抽油器
CN2558782Y (zh) * 2002-05-21 2003-07-02 梁丽嫦 活塞式微型气泵
CN101126341A (zh) * 2006-08-15 2008-02-20 徐亮良 燃气发动机
CN201324243Y (zh) * 2008-12-18 2009-10-14 王运良 电子血压计精密智能调节阀
CN202391692U (zh) * 2011-12-27 2012-08-22 厦门市猛霸机械制造有限公司 活塞阀式无油空压机
CN102678529B (zh) * 2012-06-11 2015-02-18 天津九安医疗电子股份有限公司 一种微型气泵及电子血压计
CN203138469U (zh) * 2013-03-15 2013-08-21 北京东方泰华投资有限公司 一种便携式无线电子血压计
CN203234734U (zh) * 2013-03-28 2013-10-16 王燕 一种电子血压计的充气排气装置
CN104564614B (zh) * 2013-10-24 2017-04-19 科际器材工业股份有限公司 自动泄压泵

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102292549A (zh) * 2009-01-28 2011-12-21 欧姆龙健康医疗事业株式会社 隔膜泵及血压计
WO2012140932A1 (ja) * 2011-04-11 2012-10-18 株式会社村田製作所 アクティブバルブ、流体制御装置
CN103140166A (zh) * 2011-04-11 2013-06-05 株式会社村田制作所 阀、流体控制装置
CN103767695A (zh) * 2014-01-21 2014-05-07 深圳市金亿帝科技有限公司 放气阀、集成气泵及电子血压计
CN104825145A (zh) * 2015-04-30 2015-08-12 深圳金亿帝医疗设备股份有限公司 气阀、集成气泵及可穿戴地电子血压计
CN204671144U (zh) * 2015-04-30 2015-09-30 深圳金亿帝医疗设备股份有限公司 气阀、集成气泵及可穿戴的电子血压计

Also Published As

Publication number Publication date
CN104825145A (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2016173457A1 (zh) 气阀、集成气泵及可穿戴的电子血压计
US11517208B2 (en) Single-arm micro air-pressure pump device
WO2015058717A1 (zh) 阀片和具有其的气泵
CN106691422B (zh) 应用于血压计的阀、集成气泵以及电子血压计
US9739271B2 (en) Automatic depressurizing pump
CN107435624A (zh) 双头隔膜泵及具有它的吸奶器
EP3292304B1 (en) Miniature vacuum/pressure diaphragm pumps with noise mitigation boot
CN104873183B (zh) 气阀、集成气泵及可穿戴的电子血压计
CN215805090U (zh) 一种泵头及包含该泵头的泵阀一体结构
WO2022056945A1 (zh) 一种用于密闭液瓶的多出液口微型泵
CN204889973U (zh) 气阀、集成气泵及可穿戴的电子血压计
CN211573746U (zh) 一种双头气泵
CN204671144U (zh) 气阀、集成气泵及可穿戴的电子血压计
CN210195985U (zh) 一种微型真空泵
WO2020119812A1 (zh) 一种地拖使用自带止流功能微型水泵
JP4367056B2 (ja) ダイヤフラムポンプ装置
CN113931833A (zh) 阀座机构及微型电动隔膜泵
CN219974755U (zh) 气泵主体、气泵及血压计
CN210531109U (zh) 水气混合微型泵及其设备
CN109838372B (zh) 气体隔膜泵
CN212774669U (zh) 一种气水两用泵
JP4161302B2 (ja) ダイヤフラムポンプ
KR200279526Y1 (ko) 진공식 마사지기
WO2018082155A1 (zh) 用于泵浦的活塞组件及泵浦
CN115523124A (zh) 充放气气泵及具有它的智能运动手表

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16785888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16785888

Country of ref document: EP

Kind code of ref document: A1