WO2018133579A1 - 铱金属配合物及其应用,以及有机电致发光器件 - Google Patents

铱金属配合物及其应用,以及有机电致发光器件 Download PDF

Info

Publication number
WO2018133579A1
WO2018133579A1 PCT/CN2017/115586 CN2017115586W WO2018133579A1 WO 2018133579 A1 WO2018133579 A1 WO 2018133579A1 CN 2017115586 W CN2017115586 W CN 2017115586W WO 2018133579 A1 WO2018133579 A1 WO 2018133579A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
benzo
pyridazine
thienyl
substituted
Prior art date
Application number
PCT/CN2017/115586
Other languages
English (en)
French (fr)
Inventor
乔娟
薛杰
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to JP2019539754A priority Critical patent/JP6908301B2/ja
Priority to US16/479,578 priority patent/US11502260B2/en
Priority to KR1020197024345A priority patent/KR102301366B1/ko
Publication of WO2018133579A1 publication Critical patent/WO2018133579A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/26Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the invention relates to a novel base metal complex, in particular to a base metal complex material for near-infrared light emission and an application thereof, and an organic electroluminescence device.
  • the near-infrared region refers to a section of the spectral range from 700 nm to 2500 nm.
  • NIR technology is used for heat source target locking, regional defense, night vision equipment, missile positioning and target tracking; in civil applications, near-infrared technology can be used for thermal efficiency analysis, temperature remote sensing transmission, short-range unlimited communication and weather forecasting.
  • near-infrared light can penetrate the surface layer into the living tissue, and can avoid the interference of the biological self-fluorescence signal, so the near-infrared spectrum is the best biological analysis window; the near-infrared spectrum is also the optical fiber.
  • the communication window, the near-infrared source with wavelengths of 1.31 and 1.55 micron can minimize the loss of the fiber; in addition, nearly 50% of the solar energy falls in the near-infrared region, in order to make full use of this part of energy, it is also necessary to develop a new type of near-infrared. Photovoltaic materials.
  • Metal ruthenium complexes are excellent phosphorescent dyes due to their rich photophysical properties, and are widely used in organic light-emitting devices, sensors, and lasers. At present, metal ruthenium complexes have been successfully applied in visible light regions such as red, green and blue light. However, the study of metal ruthenium complexes in the near-infrared region has not yet broken through. The two difficulties in current research are: further red shift of the luminescence wavelength and improvement of near-infrared luminescence efficiency. In order to make the emission wavelength of the near-infrared luminescent material red-shifted, it is necessary to reduce the energy gap between HOMO-LUMO by adjusting the molecular structure.
  • the present invention provides a near-infrared luminescent material ruthenium complex which is pure in color and has high luminous efficiency.
  • the ruthenium metal complex of the present invention has a molecular formula of L 3 Ir, wherein Ir is the central atom of the ruthenium complex, and L is a ligand, and the specific structural formula of the ruthenium complex of the present invention is represented by the formula (I):
  • Ar is selected from a substituted or unsubstituted aryl group having 6 to 30 carbon atoms or a substituted or unsubstituted heterocyclic aryl group having 4 to 30 carbon atoms.
  • Ar is preferably a substituted or unsubstituted aryl group having 6 to 18 carbon atoms or a substituted or unsubstituted heterocyclic aryl group having 5 to 18 carbon atoms.
  • the substituent group on the aryl or heteroaryl group is independently selected from F, Cl, Br, I, CHO, CN, or a substituted or unsubstituted alkyl or cycloalkyl group having 1 to 30 carbon atoms. a fluoroalkyl, alkoxy or thioalkoxy group. Further, the substituent group is independently selected from F, Cl, or a substituted or unsubstituted alkyl or cycloalkyl group having 1 to 10 carbon atoms, a fluoroalkyl group, an alkoxy group or a thioalkoxy group. .
  • the Ar may preferably be a self-substituted or unsubstituted group: thiophene, benzothiophene, benzene, naphthalene, anthracene, phenanthrene, anthracene, furan, benzofuran, thiazole, benzothiazole, isothiazole, Benzoisothiazole, pyrrole, benzopyrrole, imidazole, benzimidazole, pyrazole, benzopyrazole, oxazole, benzoxazole, isoxazole, benzisoxazole, pyridine, pyrimidine, benzopyrimidine , pyrazine, benzopyrazine, pyridazine, benzoxazine, quinoline, isoquinoline, anthracene, acridine, pyridazine, anthracene.
  • R 1 to R 7 are each independently selected from a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxyl group, a substituted or unsubstituted alkyl group having a carbon number of 1 to 30, or a cycloalkyl group.
  • a fluoroalkyl group a chloroalkyl group, an alkoxy group or a thioalkoxy group, a carboxyl group having 1 to 30 carbon atoms, an ester group having 1 to 30 carbon atoms, or an acyl group having 1 to 30 carbon atoms
  • a substituted or unsubstituted amino group having 1 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or a substituted or unsubstituted heterocyclic aryl group having 4 to 30 carbon atoms.
  • R 1 to R 7 are each independently preferably a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxyl group, a substituted or unsubstituted alkyl or cycloalkyl group having 1 to 20 carbon atoms, or a fluoroalkane.
  • the substituent group is independently selected from F, Cl, Br, I, CHO, CN, or a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms. Or a cycloalkyl, fluoroalkyl, chloroalkyl, alkoxy or thioalkoxy group. Further, it is preferred that the substituted substituent is selected from F, Cl, Br, or a substituted or unsubstituted alkyl or cycloalkyl group having from 1 to 20 carbon atoms, a fluoroalkyl group, an alkoxy group or a thio group. Alkoxy group.
  • R 1 to R 7 may each independently be preferably selected from a hydrogen atom or a group selected from substituted or unsubstituted thiophene, benzothiophene, benzene, naphthalene, anthracene, phenanthrene, anthracene, furan, benzofuran.
  • thiazole benzothiazole, isothiazole, benzisothiazole, pyrrole, benzopyrrole, imidazole, benzimidazole, pyrazole, benzopyrazole, oxazole, benzoxazole, isoxazole, benzopyrene Oxazole, pyridine, pyrimidine, benzopyrimidine, pyrazine, benzopyrazine, pyridazine, benzoxazine, quinoline, isoquinoline, indole, acridine, pyridazine, indole, oxazole, diphenylamine , phenoxy, diphenyl boron, diphenylphosphine, diphenylphosphine oxide, triphenyl silicon.
  • the substituent group is most preferably selected from F, Cl, or a substituted or unsubstituted alkyl or cycloalkyl group having 1 to 10 carbon atoms, a fluoroalkyl group, an alkoxy group or a thioalkyl group. An oxy group.
  • R 2 to R 7 may preferably be a hydrogen atom;
  • R 1 is selected from substituted or unsubstituted groups: thiophene, benzothiophene, benzene, naphthalene, anthracene, phenanthrene, anthracene, furan, benzofuran.
  • thiazole benzothiazole, isothiazole, benzisothiazole, pyrrole, benzopyrrole, imidazole, benzimidazole, pyrazole, benzopyrazole, oxazole, benzoxazole, isoxazole, benzopyrene Oxazole, pyridine, pyrimidine, benzopyrimidine, pyrazine, benzopyrazine, pyridazine, benzoxazine, quinoline, isoquinoline, indole, acridine, pyridazine, indole, oxazole, diphenylamine , phenoxy, diphenyl boron, diphenylphosphine, diphenylphosphine oxide, triphenyl silicon.
  • the substituent group is most preferably selected from F, Cl, or a substituted or unsubstituted alkyl or cycloalkyl group having 1 to 10 carbon atoms, a fluoroalkyl group, an alkoxy group or a thioalkyl group. An oxy group.
  • the ligand L of the ruthenium complex of the present invention three aromatic rings are connected in parallel to form a large conjugated system, and two electron-absorbing nitrogen hetero atoms in the ortho position are introduced at the same time, thereby effectively reducing
  • the splitting of the molecular HOMO orbital and LUMO orbitals achieves the purpose of red light shifting of the complex.
  • the geometric isomerization of the ruthenium complex of the present invention can be effectively controlled, and the rotation in the molecule of the complex can be restricted, and the luminous efficiency of the ruthenium complex of the present invention applied to luminescence can be improved.
  • quenching between the triplet excitons of the ruthenium complex can be reduced, and the problem that the ruthenium complex of the present invention is used for illuminating does not have an efficiency roll-off at a large current density.
  • Specific preferred structural compounds of the compound of the present invention include the compounds CT1-CT48, CBT1-CBT48, CBF1-CBF48, and CP1-CP48. Preferred compounds of the invention are not limited to the specific structures described below.
  • the chemical structural formula of the compound CT1-CT48 is as follows:
  • a large conjugated benzo[g]pyridazine-based heteroaryl ligand is used to reduce the molecular HOMO orbital and LUMO orbital splitting, such that the ruthenium complex wavelength Red shifting to use as a near-infrared luminescent material;
  • the L ligand having a rigid structure can effectively control the geometric isomerization of the ruthenium complex and limit the rotation in the ruthenium complex molecule, improve the luminescence efficiency of the ruthenium complex, and can also reduce
  • the quenching between the triplet excitons of the ruthenium complex overcomes the problem of the efficiency of the organic electroluminescent device containing the ruthenium complex falling off at a large current density;
  • the N atoms and C atoms participating in the coordination are not hindered by the sterically hindered group when coordinated with the metal ruthenium atom, and the coordination bond is stabilized, so that the ruthenium complex has high stability and has It is advantageous to improve the service life of the organic electroluminescent device to which the ruthenium complex is applied.
  • the ruthenium complex is a homogeneous tri-coordinate structure, there is no ligand-ligand charge transfer excited state which is unfavorable for luminescence due to the introduction of an auxiliary ligand, and other additional introduced non-radiative transitions. Thereby efficient illumination of the ruthenium complex is ensured.
  • Another object of the present invention is to provide a use of the above-described base metal complex in an organic electroluminescent device.
  • the present invention also provides an organic electroluminescent device comprising a first electrode, a second electrode, and one or more organic layers between the first electrode and the second electrode, the organic layer including the lower layer a base metal complex of the formula (I) having a molecular formula of L 3 Ir, wherein Ir is a central metal atom and L is a ligand:
  • Ar is selected from a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted heterocyclic aryl group having 4 to 30 carbon atoms;
  • R 1 to R 7 are each independently selected from a hydrogen atom, a halogen atom, a cyano group, a nitro group, a hydroxyl group, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms or a cycloalkyl group, a fluoroalkyl group, or a chlorine group.
  • the substituent group on the above Ar or R 1 to R 7 is independently selected from F, Cl, Br, I, CHO, CN, or a substituted or unsubstituted alkyl or cycloalkyl group having 1 to 30 carbon atoms. a fluoroalkyl, alkoxy or thioalkoxy group.
  • Figure 1 is a view showing the structure of a device of an electroluminescent device prepared by the compound of the present invention
  • Example 194 is an electroluminescence spectrum diagram of a device OLED-2 prepared in Example 194 of the present invention
  • FIG. 3 is a voltage-current density diagram of a device OLED-2 prepared in Example 194 of the present invention.
  • Example 4 is a voltage-irradiation emission diagram of a device OLED-2 prepared in Example 194 of the present invention.
  • Example 5 is a graph showing current density-external quantum efficiency of a device OLED-2 prepared in Example 194 of the present invention.
  • the compounds of the synthetic methods not mentioned in the examples are all commercially available raw materials.
  • the preparation method of the L ligand of the ruthenium metal complex of the present invention is described below by the following three ligands: ligand 1, ligand 2 and the preparation method of the ligand 3.
  • the L ligand When the L ligand is selected from Ligand 1, Ligand 2 or Ligand 3, respectively, the L ligand can be prepared according to the following route:
  • the process is the most versatile, carbon-carbon coupling, carbon-oxygen coupling and carbon-nitrogen coupling on both sides, so that symmetric and asymmetric ligands can be constructed.
  • 2,3-naphthalene dicarboxylic acid (1 part) and hydrazine hydrate (0.5-100 parts) are subjected to a dehydration condensation reaction in a solvent (0.5-1000 parts) to obtain benzo[g]phthaloyl hydrazide.
  • benzo[g]phthalic acid hydrazide (1 part) is subjected to a chlorination reaction in phosphorus oxychloride (0.5-100 parts) to obtain 1,4-dichlorobenzo[g]pyridazine.
  • the R 2 -R 7 moiety in the structural formula (I) of the metal ruthenium complex of the present invention can be controlled by replacing the starting carboxylic acid raw material; as long as the coupled raw material after the replacement can be used for the metal of the present invention
  • the structure of the ruthenium complex is controlled by the Ar and R 1 moieties in the formula (I).
  • Examples 1 to 192 illustrate the preparation methods of the ruthenium complexes CT1-CT48, CBT1-CBT48, CBF1-CBF48 and CP1-CP48, respectively.
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3,4,5,6-pentafluoromethylphenyl)-4 is used.
  • -(2-Thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine, yield 45 %.
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3,4,6-tetratrifluoromethylphenyl)-4-(1) is used.
  • 2-Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 42%.
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3,4,5-tetratrifluoromethylphenyl)-4-( 2-Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 45%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3,5,6-tetratrifluoromethylphenyl)-4-(1) is used.
  • 2-Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 46% yield.
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,4,6-tritrifluoromethylphenyl)-4-(2- Thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 40% yield.
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3,6-tritrifluoromethylphenyl)-4-(2- Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 46%.
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3,4-tritrifluoromethylphenyl)-4-(2- Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 43%.
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(3,4,5-tritrifluoromethylphenyl)-4-(2- Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 38%.
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3,5-tritrifluoromethylphenyl)-4-(2- Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 43%.
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,4,5-tritrifluoromethylphenyl)-4-(2- Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 48%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,4-bistrifluoromethylphenyl)-4-(2-thienyl) is used.
  • --Benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 50%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,6-bistrifluoromethylphenyl)-4-(2-thienyl) is used. )-Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 47%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,5-bistrifluoromethylphenyl)-4-(2-thienyl) is used.
  • Benzyl [g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 49%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(3,5-bistrifluoromethylphenyl)-4-(2-thienyl) is used.
  • --Benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 52%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(3,4-bistrifluoromethylphenyl)-4-(2-thienyl) is used.
  • --Benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 54%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3-bistrifluoromethylphenyl)-4-(2-thienyl) is used.
  • --Benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 48%.
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2-pentafluoroethylphenyl)-4-(2-thienyl)-benzene is used. And [g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 49%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(3-trifluoromethylphenyl)-4-(2-thienyl)-benzene is used. And [g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 54%.
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2-trifluoromethylphenyl)-4-(2-thienyl)-benzene is used. And [g] pyridazine was substituted for 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 50%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(4-trifluoromethylphenyl)-4-(2-thienyl)-benzene is used. And [g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 52%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3,4,5,6-pentafluoromethylphenoxy)- 4-(2-Thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine, yield 42%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3,4,6-tetratrifluoromethylphenoxy)-4- is used.
  • (2-Thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 40% yield .
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3,4,5-tetratrifluoromethylphenoxy)-4- is used.
  • (2-Thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine, yield 46% .
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3,5,6-tetratrifluoromethylphenoxy)-4- is used.
  • (2-Thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine, yield 42% .
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,4,6-tritrifluoromethylphenoxy)-4-(2) is used.
  • -Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 46%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3,6-tritrifluoromethylphenoxy)-4-(2) is used.
  • -Thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 40% yield.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3,4-tritrifluoromethylphenoxy)-4-(2) is used.
  • -Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 46%.
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(3,4,5-tritrifluoromethylphenoxy)-4-(2) is used.
  • -Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 46%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3,5-tritrifluoromethylphenoxy)-4-(2) is used.
  • -Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 42%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,4,5-tritrifluoromethylphenoxy)-4-(2) is used.
  • -Thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 40% yield.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,4-bistrifluoromethylphenoxy)-4-(2-thiophene) is used.
  • the benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 46%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,6-bistrifluoromethylphenoxy)-4-(2-thiophene) is used.
  • the benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 48%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,5-bistrifluoromethylphenoxy)-4-(2-thiophene) is used.
  • the benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 45%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(3,5-bistrifluoromethylphenoxy)-4-(2-thiophene) is used.
  • the benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 42%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(3,4-bistrifluoromethylphenoxy)-4-(2-thiophene) is used.
  • the benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 45%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,3-bistrifluoromethylphenoxy)-4-(2-thiophene) is used.
  • the benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 56%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2-pentafluoroethylphenoxy)-4-(2-thienyl)- Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 50%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(3-trifluoromethylphenoxy)-4-(2-thienyl)- Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 55%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2-trifluoromethylphenoxy)-4-(2-thienyl)- Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 58%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(4-trifluoromethylphenoxy)-4-(2-thienyl)- Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 50%.
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2,6-bismethylphenoxy)-4-(2-thienyl) is used.
  • -Benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 60%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(2-thienyl)-benzo[g]pyridazine is substituted for 1-(2,6). - bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine, yield 63%.
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-chloro-4-(2-thienyl)-benzo[g]pyridazine is substituted for 1- (2,6-Dimethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine, yield 70%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-bromo-4-(2-thienyl)-benzo[g]pyridazine is substituted for 1- (2,6-Dimethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine, yield 68%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(9-carbazolyl)-4-(2-thienyl)-benzo[g] is used.
  • the pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 52%.
  • This example is substantially the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(9-(3,6-di-tert-butylcarbazolyl))-4-( 2-Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 40% yield.
  • This example is basically the same as Example 1, except that the R 1 group in the L ligand is different, and 1-(diphenylamino)-4-(2-thienyl)-benzo[g]pyrene is used.
  • the azine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 46%.
  • Examples 49 to 36 are the preparation methods of the 96 compounds CBT1 to CBT48.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1,4-bis(2-benzo[b]thienyl)-benzo[g] is used.
  • the pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 35%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,4,5,6-pentafluoromethylphenyl) is used.
  • -4-(2-Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g] The yield of azine is 35%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,4,6-tetratrifluoromethylphenyl)-4 is used.
  • -(2-Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyrene The yield of the azine was 40%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,4,5-tetratrifluoromethylphenyl)-4 is used.
  • -(2-Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyrene The yield of the azine was 45%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,5,6-tetratrifluoromethylphenyl)-4 is used.
  • -(2-Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyrene The yield of the azine was 45%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,4,6-tritrifluoromethylphenyl)-4-() is used.
  • 2-Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The rate is 48%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,3,6-tritrifluoromethylphenyl)-4-(1) is used.
  • 2-Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The rate is 50%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,4-tritrifluoromethylphenyl)-4-() is used.
  • 2-Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The rate is 55%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(3,4,5-tritrifluoromethylphenyl)-4-(1) is used.
  • 2-Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The rate is 50%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,3,5-tritrifluoromethylphenyl)-4-() is used.
  • 2-Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The rate is 48%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,4,5-tritrifluoromethylphenyl)-4-() is used.
  • 2-Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The rate is 55%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,4-bistrifluoromethylphenyl)-4-(2- Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine yield 60 %.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,6-bistrifluoromethylphenyl)-4-(2- Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine yield 61 %.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,5-bistrifluoromethylphenyl)-4-(2- Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine yield 55 %.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(3,5-bistrifluoromethylphenyl)-4-(2- Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine yield 63 %.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(3,4-bistrifluoromethylphenyl)-4-(2- Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine yield 60 %.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3-bistrifluoromethylphenyl)-4-(2- Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine yield 66 %.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2-pentafluoroethylphenyl)-4-(2-benzo[ b]Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 60%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(3-trifluoromethylphenyl)-4-(2-benzo[ b]Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 65% yield.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2-trifluoromethylphenyl)-4-(2-benzo[ b]Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 69%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(4-trifluoromethylphenyl)-4-(2-benzo[ b]Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 66% yield.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,3,4,5,6-pentafluoromethylphenoxy group is used.
  • -4-(2-benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[ g] the yield of azine is 41%.
  • This example is basically the same as Example 1, except that the Ar ligand and the R 1 group are different in the L ligand, and 1-(2,3,4,6-tetratrifluoromethylphenoxy)- 4-(2-Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g] The yield of azine was 46%.
  • This example is substantially the same as Example 1, except that the Ar ligand and the R 1 group are different in the L ligand, and 1-(2,3,4,5-tetratrifluoromethylphenoxy)- 4-(2-Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g] The yield of azine was 44%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,5,6-tetratrifluoromethylphenoxy)- 4-(2-Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g] The yield of azine was 47%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,4,6-tritrifluoromethylphenoxy)-4- is used.
  • (2-Benzo[b]thienyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The yield was 52%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,3,6-tritrifluoromethylphenoxy)-4- is used.
  • (2-Benzo[b]thienyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The yield was 51%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,4-tritrifluoromethylphenoxy)-4- is used.
  • (2-Benzo[b]thienyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The yield was 56%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(3,4,5-tritrifluoromethylphenoxy)-4- is used.
  • (2-Benzo[b]thienyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The yield was 55%.
  • This example is basically the same as Example 1, except that the Ar ligand and the R 1 group are different in the L ligand, and 1-(2,3,5-tritrifluoromethylphenoxy)-4- is used.
  • (2-Benzo[b]thienyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The yield was 54%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,4,5-tritrifluoromethylphenoxy)-4- is used.
  • (2-Benzo[b]thienyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The yield was 60%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,4-bistrifluoromethylphenoxy)-4-(2) is used.
  • 1-(2,4-bistrifluoromethylphenoxy)-4-(2) is used.
  • -Benzo[b]thienyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine 59%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,6-bistrifluoromethylphenoxy)-4-(2) is used. -Benzo[b]thienyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine 66%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,5-bistrifluoromethylphenoxy)-4-(2) is used.
  • -Benzo[b]thienyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine 60%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(3,5-bistrifluoromethylphenoxy)-4-(2) is used.
  • -Benzo[b]thienyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine 64%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(3,4-bistrifluoromethylphenoxy)-4-(2) is used.
  • -Benzo[b]thienyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine 60%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,3-bistrifluoromethylphenoxy)-4-(2) is used.
  • 1-(2,3-bistrifluoromethylphenoxy)-4-(2) is used.
  • -Benzo[b]thienyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine 64%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2-pentafluoroethylphenoxy)-4-(2-benzophenone is used.
  • [b]Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 60%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(3-trifluoromethylphenoxy)-4-(2-benzophenone is used.
  • [b]Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 64%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2-trifluoromethylphenoxy)-4-(2-benzophenone is used.
  • [b]Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 61%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(4-trifluoromethylphenoxy)-4-(2-benzophenone is used.
  • [b]Thienyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 55%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,6-bismethylphenoxy)-4-(2-benzene is used. And [b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine yield 62% .
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2-benzo[b]thienyl)-benzo[g]pyridazine is used.
  • the yield of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine was replaced by 70%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-chloro-4-(2-benzo[b]thienyl)-benzo[ g] pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 60%.
  • This example is substantially the same as Example 1, except that the Ar ligand and the R 1 group are different in the L ligand, and 1 -bromo-4-(2-benzo[b]thienyl)-benzo[ g] pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 62% yield.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(9-carbazolyl)-4-(2-benzo[b]thiophene is used.
  • the benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 45%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(9-(3,6-di-tert-butylcarbazolyl))-4 is used.
  • -(2-Benzo[b]thienyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyrene The yield of the azine was 40%.
  • This example is basically the same as Example 1, except that the Ar ligand and the R 1 group are different in the L ligand, and 1-(diphenylamino)-4-(2-benzo[b]thienyl) is used.
  • -Benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 49%.
  • Examples 97 to 144 are the preparation methods of the compounds CBF1 to CBF48.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1,4-bis(2-benzo[b]furanyl)-benzo[g] is used.
  • the pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 33% yield.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,4,5,6-pentafluoromethylphenyl) is used.
  • -4-(2-Benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g] The yield of azine was 43%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,4,6-tetratrifluoromethylphenyl)-4 is used.
  • -(2-Benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyrene The yield of the azine was 34%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,4,5-tetratrifluoromethylphenyl)-4 is used.
  • -(2-Benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyrene The yield of the azine was 43%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,5,6-tetratrifluoromethylphenyl)-4 is used.
  • -(2-Benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyrene The yield of the azine was 35%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,4,6-tritrifluoromethylphenyl)-4-() is used.
  • 2-benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The rate is 45%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,3,6-tritrifluoromethylphenyl)-4-(1) is used.
  • 2-benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The rate is 45%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,4-tritrifluoromethylphenyl)-4-() is used.
  • 2-benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The rate is 42%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(3,4,5-tritrifluoromethylphenyl)-4-(1) is used.
  • 2-benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The rate is 33%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,3,5-tritrifluoromethylphenyl)-4-() is used.
  • 2-benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The rate is 34%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,4,5-tritrifluoromethylphenyl)-4-() is used.
  • 2-benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The rate is 45%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,4-bistrifluoromethylphenyl)-4-(2- Benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine yield 43 %.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,6-bistrifluoromethylphenyl)-4-(2- Benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine yield 43 %.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,5-bistrifluoromethylphenyl)-4-(2- Benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine yield 45 %.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(3,5-bistrifluoromethylphenyl)-4-(2- Benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine yield 43 %.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(3,4-bistrifluoromethylphenyl)-4-(2- Benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine yield 34 %.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3-bistrifluoromethylphenyl)-4-(2- Benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine yield 36 %.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2-pentafluoroethylphenyl)-4-(2-benzo[ b] furyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 37%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(3-trifluoromethylphenyl)-4-(2-benzo[ b] furyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 37%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2-trifluoromethylphenyl)-4-(2-benzo[ b] furyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 35%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(4-trifluoromethylphenyl)-4-(2-benzo[ b] furyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 37%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,3,4,5,6-pentafluoromethylphenoxy group is used.
  • -4-(2-benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[ g] the yield of azine is 46%.
  • This example is basically the same as Example 1, except that the Ar ligand and the R 1 group are different in the L ligand, and 1-(2,3,4,6-tetratrifluoromethylphenoxy)- 4-(2-benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g] The yield of azine was 42%.
  • This example is substantially the same as Example 1, except that the Ar ligand and the R 1 group are different in the L ligand, and 1-(2,3,4,5-tetratrifluoromethylphenoxy)- 4-(2-benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g] The yield of azine was 44%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,5,6-tetratrifluoromethylphenoxy)- 4-(2-benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g] The yield of azine was 43%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,4,6-tritrifluoromethylphenoxy)-4- is used.
  • (2-Benzo[b]furanyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The yield was 33%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,3,6-tritrifluoromethylphenoxy)-4- is used.
  • (2-Benzo[b]furanyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The yield was 36%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,4-tritrifluoromethylphenoxy)-4- is used.
  • (2-Benzo[b]furanyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The yield was 38%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(3,4,5-tritrifluoromethylphenoxy)-4- is used.
  • (2-Benzo[b]furanyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The yield was 38%.
  • This example is basically the same as Example 1, except that the Ar ligand and the R 1 group are different in the L ligand, and 1-(2,3,5-tritrifluoromethylphenoxy)-4- is used.
  • (2-Benzo[b]furanyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The yield was 42%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,4,5-tritrifluoromethylphenoxy)-4- is used.
  • (2-Benzo[b]furanyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine The yield was 43%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,4-bistrifluoromethylphenoxy)-4-(2) is used.
  • 1-(2,4-bistrifluoromethylphenoxy)-4-(2) is used.
  • -Benzo[b]furanyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine 43%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,6-bistrifluoromethylphenoxy)-4-(2) is used. -Benzo[b]furanyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine 44%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,5-bistrifluoromethylphenoxy)-4-(2) is used.
  • 1-(2,5-bistrifluoromethylphenoxy)-4-(2) is used.
  • -Benzo[b]furanyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine 41%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(3,5-bistrifluoromethylphenoxy)-4-(2) is used.
  • -Benzo[b]furanyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine 42%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(3,4-bistrifluoromethylphenoxy)-4-(2) is used.
  • -Benzo[b]furanyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine 41%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,3-bistrifluoromethylphenoxy)-4-(2) is used.
  • 1-(2,3-bistrifluoromethylphenoxy)-4-(2) is used.
  • -Benzo[b]furanyl)-benzo[g]pyridazine in place of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine 41%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2-pentafluoroethylphenoxy)-4-(2-benzophenone is used.
  • [b]furanyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 43% yield.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(3-trifluoromethylphenoxy)-4-(2-benzophenone is used.
  • [b]furanyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 40% yield.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2-trifluoromethylphenoxy)-4-(2-benzophenone is used.
  • [b]furanyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 40% yield.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(4-trifluoromethylphenoxy)-4-(2-benzophenone is used.
  • [b]furanyl)-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 40% yield.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,6-bismethylphenoxy)-4-(2-benzene is used. And [b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine yield 40% .
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2-benzo[b]furanyl)-benzo[g]pyridazine is used.
  • the yield of 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine was replaced by 40%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-chloro-4-(2-benzo[b]furanyl)-benzo[ g] pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 40% yield.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-bromo-4-(2-benzo[b]furanyl)-benzo[ g] pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 40% yield.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(9-carbazolyl)-4-(2-benzo[b]furan is used.
  • the benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 38%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(9-(3,6-di-tert-butylcarbazolyl))-4 is used.
  • -(2-Benzo[b]furanyl)-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyrene The yield of the azine was 39%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(diphenylamino)-4-(2-benzo[b]furanyl) is used.
  • -Benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 35%.
  • Examples 145 to 192 are the preparation methods of the compounds CP1 to CP48.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,6-bismethylphenyl)-4-phenyl-benzo is used.
  • Pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 35%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,4,5,6-pentafluoromethylphenyl) is used.
  • 4-Phenyl-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 30%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,4,6-tetratrifluoromethylphenyl)-4 is used.
  • -Phenyl-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 35%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,4,5-tetratrifluoromethylphenyl)-4 is used.
  • -Phenyl-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 36%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,5,6-tetratrifluoromethylphenyl)-4 is used.
  • -Phenyl-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 36%.
  • This example is basically the same as Example 1, except that the Ar ligand and the R 1 group are different in the L ligand, and 1-(2,4,6-tritrifluoromethylphenyl)-4-benzene is used.
  • the base-benzo[g]pyridazine was substituted for 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 30%.
  • This example is basically the same as Example 1, except that the Ar ligand and the R 1 group are different in the L ligand, and 1-(2,3,6-tritrifluoromethylphenyl)-4-benzene is used.
  • the base-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 32%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,4-tritrifluoromethylphenyl)-4-benzene is used.
  • the base-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 35%.
  • This example is basically the same as Example 1, except that the Ar ligand and the R 1 group are different in the L ligand, and 1-(3,4,5-tritrifluoromethylphenyl)-4-benzene is used.
  • the base-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 38%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,5-tritrifluoromethylphenyl)-4-benzene is used.
  • the base-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 38%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,4,5-tritrifluoromethylphenyl)-4-benzene is used.
  • the base-benzo[g]pyridazine was substituted for 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 30%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,4-bistrifluoromethylphenyl)-4-phenyl- Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 33%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,6-bistrifluoromethylphenyl)-4-phenyl- Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 36%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,5-bistrifluoromethylphenyl)-4-phenyl- Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 32%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(3,5-bistrifluoromethylphenyl)-4-phenyl- Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 35%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(3,4-bistrifluoromethylphenyl)-4-phenyl- Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 30%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3-bistrifluoromethylphenyl)-4-phenyl- Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 35%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2-pentafluoroethylphenyl)-4-phenyl-benzo[ g] pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 34%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(3-trifluoromethylphenyl)-4-phenyl-benzo[ g] pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 35%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2-trifluoromethylphenyl)-4-phenyl-benzo[ g] pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 35%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(4-trifluoromethylphenyl)-4-phenyl-benzo[ g] pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 31%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,3,4,5,6-pentafluoromethylphenoxy group is used.
  • -4-phenyl-benzo[g]pyridazine replaces 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in 35% yield .
  • This example is basically the same as Example 1, except that the Ar ligand and the R 1 group are different in the L ligand, and 1-(2,3,4,6-tetratrifluoromethylphenoxy)- 4-Phenyl-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 30%.
  • This example is substantially the same as Example 1, except that the Ar ligand and the R 1 group are different in the L ligand, and 1-(2,3,4,5-tetratrifluoromethylphenoxy)- 4-Phenyl-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 36%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,5,6-tetratrifluoromethylphenoxy)- 4-Phenyl-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 30%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,4,6-tritrifluoromethylphenoxy)-4- is used. Phenyl-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 38%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,3,6-tritrifluoromethylphenoxy)-4- is used. Phenyl-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 32%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,3,4-tritrifluoromethylphenoxy)-4- is used. Phenyl-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 32%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(3,4,5-tritrifluoromethylphenoxy)-4- is used. Phenyl-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 32%.
  • This example is basically the same as Example 1, except that the Ar ligand and the R 1 group are different in the L ligand, and 1-(2,3,5-tritrifluoromethylphenoxy)-4- is used. Phenyl-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 38%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,4,5-tritrifluoromethylphenoxy)-4- is used. Phenyl-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 34%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,4-bistrifluoromethylphenoxy)-4-phenyl is used.
  • -Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 34%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,6-bistrifluoromethylphenoxy)-4-phenyl is used.
  • -Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 38%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,5-bistrifluoromethylphenoxy)-4-phenyl is used.
  • -Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 32%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(3,5-bistrifluoromethylphenoxy)-4-phenyl is used.
  • -Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 34%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(3,4-bistrifluoromethylphenoxy)-4-phenyl is used.
  • -Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 39%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2,3-bistrifluoromethylphenoxy)-4-phenyl is used.
  • -Benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 33%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2-pentafluoroethylphenoxy)-4-phenyl-benzo is used.
  • Pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 39%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(3-trifluoromethylphenoxy)-4-phenyl-benzo is used.
  • Pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 39%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2-trifluoromethylphenoxy)-4-phenyl-benzo is used.
  • the pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 32%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(4-trifluoromethylphenoxy)-4-phenyl-benzo is used.
  • the pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 38%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,6-bismethylphenoxy)-4-phenyl-benzene is used. And [g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 35%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2,6-double is replaced by 1-phenyl-benzo[g]pyridazine.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different, and 1-(2-chloro-4-phenyl-benzo[g]pyridazine is substituted for 1-(2). , 6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine, yield 30%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(2) is replaced by 1-bromo-4-phenyl-benzo[g]pyridazine. , 6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine, yield 35%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(9-carbazolyl)-4-phenyl-benzo[g]pyrene is used.
  • the azine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 38%.
  • This example is basically the same as Example 1, except that the Ar and R 1 groups are different in the L ligand, and 1-(9-(3,6-di-tert-butylcarbazolyl))-4 is used.
  • -Phenyl-benzo[g]pyridazine was replaced by 1-(2,6-bismethylphenyl)-4-(2-thienyl)-benzo[g]pyridazine in a yield of 32%.
  • This example is substantially the same as Example 1, except that the Ar and R 1 groups in the L ligand are different and replaced with 1-(diphenylamino)-4-phenyl-benzo[g]pyridazine.
  • the base metal complex of the present invention can be applied as a luminescent material in an organic electroluminescent device, that is, an OLED device.
  • the present invention further provides an organic electroluminescent device 10 comprising an anode 120, a hole transport layer 130, an organic light emitting layer 140, an electron transport layer 160, and a cathode 170.
  • the organic light emitting layer 140 includes the ruthenium complex.
  • the anode 120, the hole transport layer 130, the organic light-emitting layer 140, the electron transport layer 160, and the cathode 170 are sequentially stacked.
  • the anode 120 is used to inject holes into the hole transport layer 130, and the anode 120 is composed of a conductive material, which may be selected from indium tin oxide (ITO), indium zinc oxide (IZO), tin dioxide (SnO2), zinc oxide. One or more of (ZnO), silver, aluminum, gold, platinum, and palladium.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • SnO2 tin dioxide
  • ZnO zinc oxide
  • silver aluminum, gold, platinum, and palladium.
  • the hole transport layer 130 is for transporting holes from the anode 120 to the organic light emitting layer 140.
  • the material of the hole transport layer 130 is a material having a high hole mobility, and may be selected from one or more of a phthalocyanine compound and an aromatic amine compound, for example, 4,4'-bis[N-(1- Naphthyl)-N-phenylamino]biphenyl (NPB), N,N'-bis(3-methylphenyl)-N,N'-diphenylbiphenyl (TPD), 1,3,5 - Tris(3-methyldiphenylamino)benzene (m-MTDATA) or polyvinylcarbazole (PVK).
  • NPB 4,4'-bis[N-(1- Naphthyl)-N-phenylamino]biphenyl
  • TPD N,N'-bis(3-methylphenyl)-N,N'-diphenylbiphenyl
  • the organic light emitting layer 140 may emit deep red light or near infrared light.
  • the organic light-emitting layer 140 includes a host material and the ruthenium complex of the present invention.
  • the host material generates excitons by receiving holes and electrons, and then transfers the energy of the excitons to the ruthenium complex of the present invention, and the ruthenium complex emits light by means of the energy of the transfer by forming excitons.
  • the amount of the ruthenium complex of the present invention in the organic light-emitting layer 140 of the OLED device can be adjusted according to actual needs.
  • the host material may be selected from one or more of a carbazole-containing conjugated small molecule, an arylsilicon-based small molecule, and a metal complex, for example, polyvinylcarbazole/2-(4-biphenyl)- 5-phenyloxadiazole (PVK/PBD), 4,4'-(N,N'-dicarbazolyl)-biphenyl (CBP), 8-hydroxyquinoline aluminum (Alq 3 ), gallium dinuclear complex Ga 2 (saph) 2 q 2 or bis(10-hydroxybenzo[h]quinoline)indole (Bebq 2 ), 2-(12-phenylindole[2,3-a]carbazole)-4 , 6-diphenyl-1,3,5-triazine (DIC-TRZ) and the like.
  • a carbazole-containing conjugated small molecule for example, polyvinylcarbazole/2-(4-biphenyl)- 5-phenyloxadiazole
  • the electron transport layer 160 is used to transport electrons from the cathode 170 to the organic light emitting layer 140.
  • the material of the electron transport layer 160 is a material having a high electron mobility, and may be an oxazole compound, a metal complex, a quinoline compound, a porphyrin compound, a diazonium derivative, and a phenanthroline derivative.
  • the cathode 170 is for injecting electrons into the electron transport layer 160.
  • the material of the cathode 170 may be a metal or an alloy having a low work function such as lithium, magnesium, aluminum, calcium, aluminum lithium alloy, magnesium silver alloy, magnesium indium alloy, or an electrode layer in which metal and metal fluoride are alternately formed.
  • the organic electroluminescent device 10 may further include a hole blocking layer 150 for blocking the transport of holes to the electron transport layer 160, thereby improving carrier transport efficiency and facilitating efficient luminous efficiency.
  • a hole blocking layer 150 may be disposed between the organic light emitting layer 140 and the electron transport layer 160.
  • the material of the hole blocking layer 150 may be selected from the group consisting of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,7-diphenyl-1,10-phenanthrene.
  • the material of the hole blocking layer 150 may also be the same as the material of the electron transport layer 160.
  • the organic electroluminescent device 10 may further include a substrate 110 for carrying the anode 120, the hole transport layer 130, the organic light emitting layer 140, the electron transport layer 160, and the cathode 170.
  • the substrate 110 is a transparent material such as glass or plastic.
  • the substrate 110 can have a smooth surface for easy handling.
  • the organic electroluminescent device 10 may further include one or two intermediate layers such as a hole injection layer, an electron injection layer, an electron blocking layer, and the like.
  • an organic electroluminescent device 10 was prepared, and the organic electroluminescent devices 10 were OLED-1, OLED-2, and OLED-3, respectively.
  • the glass plate coated with the transparent conductive layer of ITO is sonicated in a cleaning agent, rinsed in deionized water, ultrasonically degreased in a mixed solvent of acetone and ethanol, and baked in a clean environment to completely remove water, using ultraviolet light.
  • the light and ozone are cleaned, and the surface of the ITO transparent conductive layer is bombarded with a low energy cation beam to obtain a glass plate with an anode 120, wherein the ITO transparent conductive layer is the anode 120.
  • the glass plate with the anode 120 is placed in a vacuum chamber, evacuated to 1 ⁇ 10 ⁇ 5 to 9 ⁇ 10 ⁇ 3 Pa, and NPB is vacuum-deposited on the anode 120 as the hole transport layer 130, and the evaporation rate is performed.
  • the thickness of the deposited film was 0.1 nm/s, and the thickness of the deposited film was 40 nm.
  • a DIC-TRZ film doped with the ruthenium complex CT34 is vacuum-deposited on the surface of the hole transport layer 130 away from the glass plate as an organic device.
  • the light-emitting layer 140, the vapor deposition rate ratio of the ruthenium complex CT34 to DIC-TRZ is 1:10, the doping concentration of CT34 in DIC-TRZ is 10 wt%, and the total vapor deposition rate is 0.1 nm/s, steaming
  • the total plating thickness was 20 nm.
  • a layer of TPBi material was vacuum-deposited on the organic light-emitting layer 140 as the electron transport layer 160 of the organic electroluminescent device 10, and the evaporation rate was 0.1 nm/s, and the total vapor deposition thickness was 30 nm.
  • the Mg and Ag alloy layers and the Ag (silver) layer are sequentially vacuum-deposited on the surface of the electron transport layer 160 away from the organic light-emitting layer 140 as the cathode 170 of the organic electroluminescent device 10, wherein the evaporation rate of the Mg and Ag alloy layers is 2.0. ⁇ 3.0 nm/s, the thickness is 100 nm, the evaporation rate of the Ag layer is 0.3 nm/s, and the thickness is 100 nm.
  • This embodiment is basically the same as the embodiment 241 except that the ruthenium complex is CT12.
  • This embodiment is basically the same as the embodiment 193 except that the luminescent dye is Ir(mpbqx-g) 2 acac in the prior art, and its chemical structural formula is as follows.
  • OLED-1 The properties of the OLED-1, OLED-2 and OLED-3 are shown in Table 1.
  • ITO/NPB (40 nm) / DIC-TRZ: 10 wt% CT34 (20 nm) / TPBi (30 nm) / Mg: Ag (100 nm) / Ag (100 nm)" means that NPB is formed to have a thickness of 40 nm.
  • the meanings of other parts in the structural composition of Table 1 can be known, and will not be described again here.
  • 2 to 5 are characterization diagrams of the OLED-2, from which the luminescent wavelength, current density, irradiance, and maximum external quantum efficiency of the OLED-2 can be separately known. As can be seen from FIG. 5, it can be known that the quantum luminescence efficiency of the OLED-2 can reach 4.5%. Under the condition of large current density, the OLED-2 still maintains a high external quantum efficiency, and the efficiency roll-off effect is very high. low.
  • the organic electroluminescent device 10 can emit light from deep red to near-infrared region, and the radiation emission of the organic electroluminescent device 10 is 40 W/ Above m 2 (15V), it has high luminous efficiency and the efficiency roll-off effect is very low.
  • the device prepared by the ruthenium complex of the present application has higher irradiance and higher external quantum efficiency than that of the previously reported hetero-type Ir(mpbqx-g) 2 acac. More than twice the Ir(mpbqx-g) 2 acac device.
  • the application of the base metal complex of the present invention to an organic electroluminescent device has the following advantages: The light in the near-infrared region; second, has higher quantum efficiency; third, has higher radiation emission; fourth, the efficiency roll-off phenomenon is significantly suppressed, and can be used under conditions of high current density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本发明提供了一种分子式为L3Ir的铱金属配合物及其应用,以及有机电致发光器件,其中Ir为中心金属原子,L为配体,该配合物的结构通式如下式(Ⅰ):Ar选自碳原子数为6~30的取代或非取代的芳基、碳原子数为4~30的取代或非取代的杂环芳基;R1~R7分别独立地选自氢原子、卤素原子、氰基、硝基、羟基、碳原子数为1~30的取代或非取代的烷基或环烷基、氟代烷基、氯代烷基、烷氧基或硫代烷氧基,或选自碳原子数为1~30的羧基、酯基、酰基、取代或非取代的氨基、碳原子数为6~30的取代或非取代的芳基、碳原子数为4~30的取代或非取代的杂环芳基;Ar或R1~R7上的取代基团独立选自F、Cl、Br、I、CHO、CN,或碳原子数为1~30的取代或非取代的烷基或环烷基、氟代烷基、烷氧基或硫代烷氧基。

Description

铱金属配合物及其应用,以及有机电致发光器件 技术领域
本发明涉及一种新型铱金属配合物,尤其涉及一种用于近红外发光的铱金属配合物材料及其应用,以及有机电致发光器件。
背景技术
近红外区是指波长从700纳米到2500纳米的一段波谱区间。最近几年,近红外材料和技术引起了科学界越来越多的关注和投入。在军需方面,近红外技术被用于热源目标锁定、区域防务、夜视设备、导弹定位和目标追踪等;在民用方面,近红外技术可用于热效率分析、温度遥感传输、短程无限通讯及天气预报等;在生物体组织和细胞中,近红外光可以穿透表层进入生物体组织,且能避免生物体自荧光的信号干涉,因此近红外光谱是最佳的生物分析窗口;近红外光谱也是光纤通信的窗口,波长为1.31和1.55微米的近红外光源能使光纤的损耗降到最低;此外,将近50%的太阳能落于近红外区,为了充分利用这部分能量,也需要开发新型的近红外光伏材料。
金属铱配合物由于具备丰富的光物理特性而成为一类优秀的磷光染料,广泛用于有机发光器件、传感器和激光器等。目前,金属铱配合物在红光、绿光及蓝光等可见光区已取得了成功的应用。然而,金属铱配合物在近红外区的研究尚未突破,目前研究的两个难点在于:发光波长的进一步红移和近红外发光效率的提高。为了使近红外发光材料发射波长红移,需要通过调整分子结构来降低HOMO-LUMO间的能隙,然而由能隙规则可知,随着能隙变窄,激发态非辐射弛豫的速率就会变大,导致发光效率下降。如何解决波长红移和发光效率下降之间的矛盾,找到近红外区发光纯正且具有相当发光效率的金属铱配合物是目前近红外发光材料研究的难点。
目前,大部分金属铱配合物为异配位型配合物,在近红外区尚未有人报道均配型铱配合物。
发明内容
为解决上述问题,本发明提供一种光色纯正且具有较高发光效率的近红外发光材料铱配合物。
本发明的铱金属配合物的分子式为L3Ir,其中Ir是所述铱配合物的中心原子,L为配体,本发明铱配合物的具体结构通式为式(Ⅰ)所示:
Figure PCTCN2017115586-appb-000001
式(Ⅰ)中,Ar选自碳原子数为6~30的取代或非取代的芳基、碳原子数为4~30的取代或非取代的杂环芳基。
进一步的,Ar优选自碳原子数为6~18的取代或非取代的芳基或碳原子数为5~18的取代或非取代的杂环芳基。
所述杂环芳基指包含一个或多个选自B、N、O、S、P、P=O、Si和P的杂原子且具有4~30个环碳原子的单环或稠环芳基。
所述芳基或杂芳基上的取代基团独立选自F、Cl、Br、I、CHO、CN,或选自碳原子数为1~30的取代或非取代的烷基或环烷基、氟代烷基、烷氧基或硫代烷氧基基团。进一步的,取代基团独立优选自F、Cl,或选自碳原子数为1~10的取代或非取代的烷基或环烷基、氟代烷基、烷氧基或硫代烷氧基。
进一步的,所述Ar可优选自取代或非取代的下述基团:噻吩、苯并噻吩、苯、萘、蒽、菲、芘、呋喃、苯并呋喃、噻唑、苯并噻唑、异噻唑、苯并异噻唑、吡咯、苯并吡咯、咪唑、苯并咪唑、吡唑、苯并吡唑、噁唑、苯并噁唑、异噁唑、苯并异噁唑、吡啶、嘧啶、苯并嘧啶、吡嗪、苯并吡嗪、哒嗪、苯并哒嗪、喹啉、异喹啉、嘌呤、喋啶、哒嗪、吲哚。
式(Ⅰ)中,R1~R7分别独立地选自氢原子、卤素原子、氰基、硝基、羟基、碳原子数为1~30的取代或非取代的烷基或环烷基、氟代烷基、氯代烷基、烷氧基或硫代烷氧基、碳原子数为1~30的羧基、碳原子数为1~30的酯基、碳原子数为1~30的酰基、碳原子数为1~30的取代或非取代的氨基、碳原子数为6~30的取代或非取代的芳基、碳原子数为4~30的取代或非取代的杂环芳基。
上述杂环芳基指包含一个或多个选自B、N、O、S、P、P=O、Si和P的杂原子且具有4~30个环碳原子的单环或稠环芳基。
进一步的,R1~R7分别独立地优选自氢原子、卤素原子、氰基、硝基、羟基、碳原子数为1~20的取代或非取代的烷基或环烷基、氟代烷基、氯代烷基、烷氧基或硫代烷氧基、碳原子数为1~20的羧基、碳原子数为1~20的酯基、碳原子数为1~20的酰基、碳原子数为1~20的取代或非取代的氨基、碳原子数为6~18的取代或非取代的芳基、碳原子数为4~18的取代或非取代的杂环芳基。
当上述R1~R7上有取代基时,该取代基团独立选自F、Cl、Br、I、CHO、CN,或选自碳原子数为1~30的取代或非取代的烷基或环烷基、氟代烷基、氯代烷基、烷氧基或硫代烷氧基基团。进一步的,优选取代取代基团选自F、Cl、Br,或选自碳原子数为1~20的取代或非取代的烷基或环烷基、氟代烷基、烷氧基或硫代烷氧基基团。
进一步的,R1~R7可分别独立优选自氢原子,或选自取代或非取代的下述基团:噻吩、苯并噻吩、苯、萘、蒽、菲、芘、呋喃、苯并呋喃、噻唑、苯并噻唑、异噻唑、苯并异噻唑、吡咯、苯并吡咯、咪唑、苯并咪唑、吡唑、苯并吡唑、噁唑、苯并噁唑、异噁唑、苯并异噁唑、吡啶、嘧啶、苯并嘧啶、吡嗪、苯并吡嗪、哒嗪、苯并哒嗪、喹啉、异喹啉、嘌呤、喋啶、哒嗪、吲哚、咔唑、二苯胺、苯氧、二苯基硼、二苯基膦、二苯基膦氧、三苯基硅。进一步的,取代基团最优选为选自F、Cl,或选自碳原子数为1~10的取代或非取代的烷基或环烷基、氟代烷基、烷氧基或硫代烷氧基基团。
更进一步的,R2~R7可优选为氢原子;R1选自取代或非取代的下述基团:噻吩、苯并噻吩、苯、萘、蒽、菲、芘、呋喃、苯并呋喃、噻唑、苯并噻唑、异噻唑、苯并异噻唑、吡咯、苯并吡咯、咪唑、苯并咪唑、吡唑、苯并吡唑、噁唑、苯并噁唑、异噁唑、苯并异噁唑、吡啶、嘧啶、苯并嘧啶、吡嗪、苯并吡嗪、哒嗪、苯并哒嗪、喹啉、异喹啉、嘌呤、喋啶、哒嗪、吲哚、咔唑、二苯胺、苯氧、二苯基硼、二苯基膦、二苯基膦氧、三苯基硅。进一步的,取代基团最优选为选自F、Cl,或选自碳原子数为1~10的取代或非取代的烷基或环烷基、氟代烷基、烷氧基或硫代烷氧基基团。
在本发明铱配合物的配体L中,在结构设计上采用三个芳环并联形成一个大的共轭体系,同时引入2个位于邻位的吸电子性的氮杂原子,这样有效地降低了分子HOMO轨道和LUMO轨道的裂分,达到了配合物发光红移的目的。更进一步的,采用如此刚性结构的配体,可有效控制本发明铱配合物的几何异构化,并且限制配合物分子内的转动,提高了本发明铱配合物应用于发光时的发光效率。同时,还可以减少所述铱配合物三线态激子间的淬灭,保证本发明铱配合物用于发光时不存在大电流密度下效率滚降的问题。
另外,更重要的是,由于进行配位的N原子所在的位阻基团与进行配位的C原子所在的位阻基团同时位于该两个配位原子的同一侧,因此金属铱元素可与该两个配位原子从另一侧进行螯合而不会受到任何位阻基团的阻碍,使配体间空间位阻效应的影响大大降低;同时,相较于之前的报道的C^N=CH型的配体,该C^N=N型苯并[g]酞嗪类配体的两个氮原子处在相邻位置,在与铱原子配位时不存在邻位碳氢原子的位阻效应,配位能力更强,有利于形成稳定的三配位均配结构。
作为本发明通式化合物的具体优选结构化合物,以下列举了化合物CT1-CT48、CBT1-CBT48、CBF1-CBF48、CP1-CP48。本发明优选的化合物并不限于下述具体结构。 其中化合物CT1-CT48的化学结构式如下所示:
Figure PCTCN2017115586-appb-000002
Figure PCTCN2017115586-appb-000003
Figure PCTCN2017115586-appb-000004
Figure PCTCN2017115586-appb-000005
Figure PCTCN2017115586-appb-000006
Figure PCTCN2017115586-appb-000007
Figure PCTCN2017115586-appb-000008
Figure PCTCN2017115586-appb-000009
Figure PCTCN2017115586-appb-000010
Figure PCTCN2017115586-appb-000011
Figure PCTCN2017115586-appb-000012
Figure PCTCN2017115586-appb-000013
Figure PCTCN2017115586-appb-000014
Figure PCTCN2017115586-appb-000015
Figure PCTCN2017115586-appb-000016
Figure PCTCN2017115586-appb-000017
本发明提供的铱金属配合物具有以下优点:
第一、所述L配体中,采用大共轭体系的苯并[g]酞嗪类杂芳基类配体,降低了分子HOMO轨道和LUMO轨道的裂分,使得所述铱配合物波长红移从而用作近红外发光材料;
第二、具有刚性结构的L配体,可有效控制所述铱配合物的几何异构化以及限制所述铱配合物分子内的转动,提高所述铱配合物的发光效率,并且还可以减少铱配合物三线态激子间的淬灭,克服含有该铱配合物的有机电致发光器件在大电流密度下效率滚降的问题;
第三、参与配位的N原子和C原子与金属铱原子配位时不会受到位阻基团的阻碍,配位键稳定,从而使所述铱配合物具有很高的稳定性,而且有利于改善应用该铱配合物的有机电致发光器件的使用寿命。
第四、由于该铱配合物为均配三配位结构,所以不存在由于辅助配体引入造成的不利于发光的配体-配体电荷转移激发态以及其他额外引入的非辐射跃迁的途径,从而保证了所述铱配合物的高效发光。
本发明的另一目的在于提供一种上述的铱金属配合物在有机电致发光器件中的用途。
本发明还提供了一种有机电致发光器件,包括第一电极、第二电极和位于所述第一电极和第二电极之间的一层或多层有机层,该有机层中包含有下述通式(Ⅰ)所示的一种铱金属配合物,其分子式为L3Ir,其中Ir为中心金属原子,L为配体:
Figure PCTCN2017115586-appb-000018
其中,Ar选自碳原子数为6~30的取代或非取代的芳基、碳原子数为4~30的取代或非取代的杂环芳基;
R1~R7分别独立地选自氢原子、卤素原子、氰基、硝基、羟基、碳原子数为1~30的取代或非取代的烷基或环烷基、氟代烷基、氯代烷基、烷氧基或硫代烷氧基,或选自碳原子数为1~30的羧基、碳原子数为1~30的酯基、碳原子数为1~30的酰基、碳原子数为1~30的取代或非取代的氨基、碳原子数为6~30的取代或非取代的芳基、碳原子数为4~30的取代或非取代的杂环芳基;
上述杂环芳基指包含一个或多个选自B、N、O、S、P、P=O、Si和P的杂原子且具有4~30个环碳原子的单环或稠环芳基;
上述Ar或R1~R7上的取代基团独立选自F、Cl、Br、I、CHO、CN,或选自碳原子数为1~30的取代或非取代的烷基或环烷基、氟代烷基、烷氧基或硫代烷氧基基团。
附图说明
从下面结合附图对本发明实施例的详细描述中,本发明的这些和/或其它方面和优点将变得更加清楚并更容易理解,其中:
图1为本发明化合物所制备的电致发光器件的器件结构图;
图2为本发明实施例194中所制备器件OLED-2的电致发光谱图;
图3为本发明实施例194中所制备器件OLED-2的电压-电流密度图;
图4为本发明实施例194中所制备器件OLED-2的电压-辐照出射度图;
图5为本发明实施例194中所制备器件OLED-2的电流密度-外量子效率图。
具体实施方式
为了使本领域技术人员更好地理解本发明,下面结合附图和具体实施方式对本发明作进一步详细说明。
化合物合成实施方式:
实施例中未提到的合成方法的化合物的都是通过商业途径获得的原料产品。
下面由以下三个配体:配体1、配体2和配体3的制备方法为例说明本发明铱金属配合物中L配体的制备方法。
Figure PCTCN2017115586-appb-000019
配体1               配体2                  配体3
当L配体为分别选自配体1、配体2或配体3时,该L配体可依据下述路线制备:
Figure PCTCN2017115586-appb-000020
工艺特点:
本工艺适用最广,两侧都可以进行碳-碳偶联,碳-氧偶联和碳-氮偶联,从而可以构造出对称以及不对称的配体。
工艺摘要:
首先2,3-萘二羧酸(1份)与水合肼(0.5-100份)在溶剂(0.5-1000份)中进行脱水缩合反应,从而得到苯并[g]邻苯二甲酰肼。然后苯并[g]邻苯二甲酰肼(1份)在三氯氧磷(0.5-100份)中进行氯代反应从而得到1,4-二氯苯并[g]酞嗪。之后,1,4-二氯苯并[g]酞嗪(1份)和芳基硼酸(0.5-100份)在催化剂(0.5-10份)和碱(0.5-1000份)的存在下在溶剂(0.5-1000份)中通过铃木偶联反应(suzuki reaction),实现碳-碳偶联得到相应一侧取代配体;或者1,4-二氯苯并[g]酞嗪(1份)和芳香酚类(0.5-100份)化合物在碱(0.5-1000份)的存在下,在溶剂(0.5-1000份)中里面实现碳-氧偶联,得到相应一侧取代配体;或者1,4-二氯苯并[g]酞嗪(1份)在NaH(0.5-100份)的存在下与芳香胺(0.5-100份)类化合物在溶剂(0.5-1000份)中实现碳-氮偶联,得到相应一侧取代配体。最后,1-氯-4-(2-噻吩基)-苯并[g]酞嗪(1份)和芳基硼酸(0.5-100份)在催化剂(0.5-10份)和碱(0.5-1000份)的存在下在溶剂(0.5-1000份)中通过铃木偶联反应(suzuki reaction),实现碳-碳偶联得到相应配体;或者1-氯-4-(2-噻吩基)-苯并[g]酞嗪(1份)和芳香酚类(0.5-100份)化合物在碱(0.5-1000份)的存在下,在溶剂(0.5-1000份)中实现碳-氧偶联,得到相应配体;或者1-氯-4-(2-噻吩基)-苯并[g]酞嗪(1份)在NaH(0.5-100份)的存在下与芳香胺(0.5-100份)类化合物在溶剂(0.5-1000份)中实现碳-氮偶联,得到相应配体。
具体优选工艺步骤如下:
将10mmol 2,3-萘二羧酸和12mmol的80%水合肼在乙酸中氮气下回流16h。然后反应溶液在0℃下冷却过夜,之后抽滤,用水和甲醇淋洗,最后在甲醇中重结晶得到白色苯并[g]邻苯二甲酰肼,产率为70%。
将10mmol苯并[g]邻苯二甲酰肼和40mmol三氯氧磷混合在一起,然后氮气下回流5h。反应完毕后将混合液倒入冰水中,在用氨水碱化,然后搅拌15分钟。之后抽滤,用水和石油醚淋洗。干燥后得到黄色1,4-二氯苯并[g]酞 嗪,产率为80%。
将0.512g(4mmol)的2-噻吩硼酸和0.462g(0.4mmol)四(三苯基膦)钯,1.66g(12mmol)碳酸钾,20ml甲苯,16ml乙醇和10ml蒸馏水加入到100ml圆底烧瓶里面,氮气下搅拌回流24h。冷却到室温以后,用二氯甲烷萃取,然后用水洗涤有机层,然后在用无水硫酸镁干燥有机层。浓缩后用硅胶柱层析提纯。得到黄色1-氯-(2-噻吩基)-苯并[g]酞嗪,产率为70%。
将4mmol的1-氯-4-(2-噻吩基)-苯并[g]酞嗪、4.8mmol的2-噻吩硼酸、0.4mmol四(三苯基膦)钯、12mmol碳酸钾、20ml甲苯、16ml乙醇和10ml蒸馏水加入到100ml圆底烧瓶里面,氮气下搅拌回流24h。冷却到室温以后,用二氯甲烷萃取,然后用水洗涤有机层,然后在用无水硫酸镁干燥有机层。浓缩后用硅胶柱层析提纯。得到黄色1,4-双(2-噻吩基)苯并[g]酞嗪固体,产率为70%。
将4mmol的1-氯-4-(2-噻吩基)-苯并[g]酞嗪、4.8mmol的2,5-双三氟甲基苯酚和12mmol碳酸钾的碳酸钾加入到100ml的圆底烧瓶中,氮气下搅拌,在110摄氏度下反应5h。冷却后将反应液倒入水中,抽滤,干燥后用硅胶柱层析,得到黄色1-(2,5-双三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪固体,产率为60%。
将4mmol的咔唑加入到20ml的无水DMF中,氮气环境下搅拌溶解后,在加入4mmol的60%的NaH(在矿物油中),搅拌1h后再氮气氛围下加入含有4mmol1-氯-(2-噻吩基)-苯并[g]酞嗪的无水DMF溶液,之后在室温下搅拌12h,最后得到相应的1-(9-咔唑基)-4-(2-噻吩基)-苯并[g]酞嗪固体,产率为60%。
由上可知,只要替换起始的羧酸原料就可以对本发明金属铱配合物的结构通式(Ⅰ)中的R2-R7部分进行控制;只要替换之后的偶联原料即可以对本发明金属铱配合物的结构通式(Ⅰ)中的Ar和R1部分进行控制。
以下实施例1~实施例192分别说明所述铱配合物CT1-CT48、CBT1-CBT48、CBF1-CBF48和CP1-CP48的制备方法。
实施例1:铱配合物CT1的制备
Figure PCTCN2017115586-appb-000021
将2mmol的1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,1mmol的IrCl3·3H2O,乙二醇独甲醚(30ml)和蒸馏水(10ml)在氮气110℃下搅拌24h,冷却到室温以后,抽滤,用水、乙醇和正己烷洗涤,真空干燥后得到黑色铱二氯桥连中间体。将1mmol铱二氯桥连中间体,2.2mmol的1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪和9mmol的Na2CO3加入到10ml的乙二醇独乙醚中,130℃下反应12h,之后抽滤,硅胶柱层析后得到黑紫色固体,产率为40%。
ESI-HRMS(高分辨电喷雾离子化质谱)[m/z]:1289[M+H]+
元素分析(C60H33IrN6S6):Anal.Calcd(理论值):C,67.11;H,3.99;N,6.52;Found(测量值):C,67.13;H,3.96;N,6.62。
实施例2:铱配合物CT2的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3,4,5,6-五三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率45%。
ESI-MS(电喷雾离子化质谱)[m/z]:2225[M+H]+
元素分析(C81H24F45IrN6S3):Anal.Calcd(理论值):C,43.74;H,1.09;N,3.78;Found(测量值):C,43.72;H,1.11;N,3.74。
实施例3:铱配合物CT3的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3,4,6-四三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率42%。
ESI-MS(电喷雾离子化质谱)[m/z]:2021[M+H]+
元素分析(C78H27F36IrN6S3):Anal.Calcd(理论值):C,46.37;H,1.35;N,4.16;Found(测量值):C,46.35;H,1.31;N,4.19。
实施例4:铱配合物CT4的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3,4,5-四三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率45%。
ESI-MS(电喷雾离子化质谱)[m/z]:2021[M+H]+
元素分析(C78H27F36IrN6S3):Anal.Calcd(理论值):C,46.37;H,1.35;N,4.16;Found(测量值):C,46.39;H,1.31;N,4.20。
实施例5:铱配合物CT5的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3,5,6-四三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率46%。
ESI-MS(电喷雾离子化质谱)[m/z]:2021[M+H]+
元素分析(C78H27F36IrN6S3):Anal.Calcd(理论值):C,46.37;H,1.35;N,4.16;Found(测量值):C,46.32;H,1.39;N,4.11。
实施例6:铱配合物CT6的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,4,6-三三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率40%。
ESI-MS(电喷雾离子化质谱)[m/z]:1817[M+H]+
元素分析(C75H30F27IrN6S3):Anal.Calcd(理论值):C,49.59;H,1.66;N,4.63;Found(测量值):C,49.62;H,1.59;N,4.64。
实施例7:铱配合物CT7的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3,6-三三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率46%。
ESI-MS(电喷雾离子化质谱)[m/z]:1817[M+H]+
元素分析(C75H30F27IrN6S3):Anal.Calcd(理论值):C,49.59;H,1.66;N,4.63;Found(测量值):C,49.60;H,1.62;N,4.65。
实施例8:铱配合物CT8的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3,4-三三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率43%。
ESI-MS(电喷雾离子化质谱)[m/z]:1817[M+H]+
元素分析(C75H30F27IrN6S3):Anal.Calcd(理论值):C,49.59;H,1.66;N,4.63;Found(测量值):C,49.57;H,1.59;N,4.61。
实施例9:铱配合物CT9的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(3,4,5-三三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率38%。
ESI-MS(电喷雾离子化质谱)[m/z]:1817[M+H]+
元素分析(C75H30F27IrN6S3):Anal.Calcd(理论值):C,49.59;H,1.66;N,4.63;Found(测量值):C,49.58;H,1.65;N,4.58。
实施例10:铱配合物CT10的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3,5-三三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率43%。
ESI-MS(电喷雾离子化质谱)[m/z]:1817[M+H]+
元素分析(C75H30F27IrN6S3):Anal.Calcd(理论值):C,49.59;H,1.66;N,4.63;Found(测量值):C,49.66;H,1.57;N,4.66。
实施例11:铱配合物CT11的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,4,5-三三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率48%。
ESI-MS(电喷雾离子化质谱)[m/z]:1817[M+H]+
元素分析(C75H30F27IrN6S3):Anal.Calcd(理论值):C,49.59;H,1.66;N,4.63;Found(测量值):C,49.55;H,1.65;N,4.63。
实施例12:铱配合物CT12的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,4-双三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率50%。
ESI-MS(电喷雾离子化质谱)[m/z]:1613[M+H]+
元素分析(C72H33F18IrN6S3):Anal.Calcd(理论值):C,53.63;H,2.06;N,5.21;Found(测量值):C,53.66;H,2.04;N,5.22。
实施例13:铱配合物CT13的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,6-双三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率47%。
ESI-MS(电喷雾离子化质谱)[m/z]:1613[M+H]+
元素分析(C72H33F18IrN6S3):Anal.Calcd(理论值):C,53.63;H,2.06;N,5.21;Found(测量值):C,53.64;H,2.02;N,5.25。
实施例14:铱配合物CT14的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,5-双三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率49%。
ESI-MS(电喷雾离子化质谱)[m/z]:1613[M+H]+
元素分析(C72H33F18IrN6S3):Anal.Calcd(理论值):C,53.63;H,2.06;N,5.21;Found(测量值):C,53.59;H,2.07;N,5.22。
实施例15:铱配合物CT15的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(3,5-双三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率52%。
ESI-MS(电喷雾离子化质谱)[m/z]:1613[M+H]+
元素分析(C72H33F18IrN6S3):Anal.Calcd(理论值):C,53.63;H,2.06;N,5.21;Found(测量值):C,53.63;H,2.08;N,5.20。
实施例16:铱配合物CT16的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(3,4-双三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率54%。
ESI-MS(电喷雾离子化质谱)[m/z]:1613[M+H]+
元素分析(C72H33F18IrN6S3):Anal.Calcd(理论值):C,53.63;H,2.06;N,5.21;Found(测量值):C,53.60;H,2.02;N,5.21。
实施例17:铱配合物CT17的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3-双三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率48%。
ESI-MS(电喷雾离子化质谱)[m/z]:1613[M+H]+
元素分析(C72H33F18IrN6S3):Anal.Calcd(理论值):C,53.63;H,2.06;N,5.21;Found(测量值):C,53.62;H,2.01;N,5.26。
实施例18:铱配合物CT18的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2-五氟乙基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率49%。
ESI-MS(电喷雾离子化质谱)[m/z]:1613[M+H]+
元素分析(C72H33F18IrN6S3):Anal.Calcd(理论值):C,53.63;H,2.06;N,5.21;Found(测量值):C,53.69;H,2.00;N,5.22。
实施例19:铱配合物CT19的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(3-三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率54%。
ESI-MS(电喷雾离子化质谱)[m/z]:1409[M+H]+
元素分析(C69H36F9IrN6S3):Anal.Calcd(理论值):C,58.84;H,2.58;N,5.97;Found(测量值):C,58.88;H,2.55;N,5.92。
实施例20:铱配合物CT20的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2-三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率50%。
ESI-MS(电喷雾离子化质谱)[m/z]:1409[M+H]+
元素分析(C69H36F9IrN6S3):Anal.Calcd(理论值):C,58.84;H,2.58;N,5.97;Found(测量值):C,58.82;H,2.58;N,5.96。
实施例21:铱配合物CT21的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(4-三氟甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率52%。
ESI-MS(电喷雾离子化质谱)[m/z]:1409[M+H]+
元素分析(C69H36F9IrN6S3):Anal.Calcd(理论值):C,58.84;H,2.58;N,5.97;Found(测量值):C,58.86;H,2.55;N,5.99。
实施例22:铱配合物CT22的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3,4,5,6-五三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率42%。
ESI-MS(电喷雾离子化质谱)[m/z]:2273[M+H]+
元素分析(C81H24F45IrN6O3S3):Anal.Calcd(理论值):C,42.81;H,1.06;N,3.70;Found(测量值):C,42.78;H,1.09;N,3.71。
实施例23:铱配合物CT23的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3,4,6-四三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率40%。
ESI-MS(电喷雾离子化质谱)[m/z]:2069[M+H]+
元素分析(C78H27F36IrN6O3S3):Anal.Calcd(理论值):C,45.29;H,1.32;N,4.06;Found(测量值):C,45.30;H,1.29;N,4.09。
实施例24:铱配合物CT24的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3,4,5-四三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率46%。
ESI-MS(电喷雾离子化质谱)[m/z]:2069[M+H]+
元素分析(C78H27F36IrN6O3S3):Anal.Calcd(理论值):C,45.29;H,1.32;N,4.06;Found(测量值):C,45.31;H,1.31;N,4.10。
实施例25:铱配合物CT25的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3,5,6-四三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率42%。
ESI-MS(电喷雾离子化质谱)[m/z]:2069[M+H]+
元素分析(C78H27F36IrN6O3S3):Anal.Calcd(理论值):C,45.29;H,1.32;N,4.06;Found(测量值):C,45.28;H,1.30;N,4.07。
实施例26:铱配合物CT26的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,4,6-三三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率46%。
ESI-MS(电喷雾离子化质谱)[m/z]:1865[M+H]+
元素分析(C75H30F27IrN6O3S3):Anal.Calcd(理论值):C,48.32;H,1.62;N,4.51;Found(测量值):C,48.33;H,1.62;N,4.52。
实施例27:铱配合物CT27的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3,6-三三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率40%。
ESI-MS(电喷雾离子化质谱)[m/z]:1865[M+H]+
元素分析(C75H30F27IrN6O3S3):Anal.Calcd(理论值):C,48.32;H,1.62;N,4.51;Found(测量值):C,48.36;H,1.60;N,4.50。
实施例28:铱配合物CT28的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3,4-三三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率46%。
ESI-MS(电喷雾离子化质谱)[m/z]:1865[M+H]+
元素分析(C75H30F27IrN6O3S3):Anal.Calcd(理论值):C,48.32;H,1.62;N,4.51;Found(测量值):C,48.31;H,1.64;N,4.50。
实施例29:铱配合物CT29的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(3,4,5-三三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率46%。
ESI-MS(电喷雾离子化质谱)[m/z]:1865[M+H]+
元素分析(C75H30F27IrN6O3S3):Anal.Calcd(理论值):C,48.32;H,1.62;N,4.51;Found(测量值):C,48.30;H,1.61;N,4.54。
实施例30:铱配合物CT30的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3,5-三三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率42%。
ESI-MS(电喷雾离子化质谱)[m/z]:1865[M+H]+
元素分析(C75H30F27IrN6O3S3):Anal.Calcd(理论值):C,48.32;H,1.62;N,4.51;Found(测量值):C,48.32;H,1.59;N,4.52。
实施例31:铱配合物CT31的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,4,5-三三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率40%。
ESI-MS(电喷雾离子化质谱)[m/z]:1865[M+H]+
元素分析(C75H30F27IrN6O3S3):Anal.Calcd(理论值):C,48.32;H,1.62;N,4.51;Found(测量值):C,48.35;H,1.58;N,4.51。
实施例32:铱配合物CT32的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,4-双三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率46%。
ESI-MS(电喷雾离子化质谱)[m/z]:1661[M+H]+
元素分析(C72H33F18IrN6O3S3):Anal.Calcd(理论值):C,52.08;H,2.00;N,5.06;Found(测量值):C,52.04;H,1.98;N,5.08。
实施例33:铱配合物CT33的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,6-双三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率48%。
ESI-MS(电喷雾离子化质谱)[m/z]:1661[M+H]+
元素分析(C72H33F18IrN6O3S3):Anal.Calcd(理论值):C,52.08;H,2.00;N,5.06;Found(测量值):C,52.07;H,2.02;N,5.09。
实施例34:铱配合物CT34的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,5-双三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率45%。
ESI-MS(电喷雾离子化质谱)[m/z]:1661[M+H]+
元素分析(C72H33F18IrN6O3S3):Anal.Calcd(理论值):C,52.08;H,2.00;N,5.06;Found(测量值):C,52.09;H,2.00;N,5.05。
实施例35:铱配合物CT35的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(3,5-双三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率42%。
ESI-MS(电喷雾离子化质谱)[m/z]:1661[M+H]+
元素分析(C72H33F18IrN6O3S3):Anal.Calcd(理论值):C,52.08;H,2.00;N,5.06;Found(测量值):C,52.07;H,2.02;N,5.05。
实施例36:铱配合物CT36的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(3,4-双三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率45%。
ESI-MS(电喷雾离子化质谱)[m/z]:1661[M+H]+
元素分析(C72H33F18IrN6O3S3):Anal.Calcd(理论值):C,52.08;H,2.00;N,5.06;Found(测量值):C,52.08;H,2.01;N,5.09。
实施例37:铱配合物CT37的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,3-双三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率56%。
ESI-MS(电喷雾离子化质谱)[m/z]:1661[M+H]+
元素分析(C72H33F18IrN6O3S3):Anal.Calcd(理论值):C,52.08;H,2.00;N,5.06;Found(测量值):C,52.01;H,1.99;N,5.10。
实施例38:铱配合物CT38的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2-五氟乙基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率50%。
ESI-MS(电喷雾离子化质谱)[m/z]:1661[M+H]+
元素分析(C72H33F18IrN6O3S3):Anal.Calcd(理论值):C,52.08;H,2.00;N,5.06;Found(测量值):C,52.07;H,2.04;N,5.01。
实施例39:铱配合物CT39的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(3-三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率55%。
ESI-MS(电喷雾离子化质谱)[m/z]:1457[M+H]+
元素分析(C69H36F9IrN6O3S3):Anal.Calcd(理论值):C,56.90;H,2.49;N,5.77;Found(测量值):C,56.92;H,2.47;N,5.77。
实施例40:铱配合物CT40的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2-三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率58%。
ESI-MS(电喷雾离子化质谱)[m/z]:1457[M+H]+
元素分析(C69H36F9IrN6O3S3):Anal.Calcd(理论值):C,56.90;H,2.49;N,5.77;Found(测量值):C,56.88;H,2.51;N,5.80。
实施例41:铱配合物CT41的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(4-三氟甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率50%。
ESI-MS(电喷雾离子化质谱)[m/z]:1457[M+H]+
元素分析(C69H36F9IrN6O3S3):Anal.Calcd(理论值):C,56.90;H,2.49;N,5.77;Found(测量值):C,56.89;H,2.45;N,5.82。
实施例42:铱配合物CT42的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2,6-双甲基苯氧基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率60%。
ESI-MS(电喷雾离子化质谱)[m/z]:1337[M+H]+
元素分析(C72H51IrN6O3S3):Anal.Calcd(理论值):C,64.70;H,3.85;N,6.29;Found(测量值):C,64.72;H,3.82;N,6.27。
实施例43:铱配合物CT43的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率63%。
ESI-MS(电喷雾离子化质谱)[m/z]:977[M+H]+
元素分析(C48H27IrN6S3):Anal.Calcd(理论值):C,59.06;H,2.79;N,8.61;Found(测量值):C,59.05;H,2.77;N,8.65。
实施例44:铱配合物CT44的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-氯-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率70%。
ESI-MS(电喷雾离子化质谱)[m/z]:1079[M+H]+
元素分析(C48H24Cl3IrN6S3):Anal.Calcd(理论值):C,53.41;H,2.24;N,7.79;Found(测量值):C,53.39;H,2.25;N,7.83。
实施例45:铱配合物CT45的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-溴-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率68%。
ESI-MS(电喷雾离子化质谱)[m/z]:1213[M+H]+
元素分析(C48H24Br3IrN6S3):Anal.Calcd(理论值):C,47.53;H,1.99;N,6.93;Found(测量值):C,47.56;H,2.01;N,6.91。
实施例46:铱配合物CT46的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(9-咔唑基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率52%。
ESI-MS(电喷雾离子化质谱)[m/z]:1472[M+H]+
元素分析(C84H48IrN9S3):Anal.Calcd(理论值):C,68.55;H,3.29;N,8.57;Found(测量值):C,68.59;H,3.28;N,8.59。
实施例47:铱配合物CT47的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(9-(3,6-双叔丁基咔唑基))-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率40%。
ESI-MS(电喷雾离子化质谱)[m/z]:1810[M+H]+
元素分析(C108H96IrN9S3):Anal.Calcd(理论值):C,71.73;H,5.35;N,6.97;Found(测量值):C,71.71;H,5.39;N,6.99。
实施例48:铱配合物CT48的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中R1基团不同,用1-(二苯胺基)-4-(2-噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率46%。
ESI-MS(电喷雾离子化质谱)[m/z]:1478[M+H]+
元素分析(C84H54IrN9S3):Anal.Calcd(理论值):C,68.27;H,3.68;N,8.53;Found(测量值):C,68.29;H,3.66;N,8.56
以下实施例49至实施例为96化合物CBT1至CBT48的制备方法。
实施例49:铱配合物CBT1的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1,4-双(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:1523[M+H]+
元素分析(C84H45IrN6S6):Anal.Calcd(理论值):C,66.25;H,2.98;N,5.52;Found(测量值):C,66.23;H,3.00;N,5.51。
实施例50:铱配合物CBT2的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,5,6-五三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:2376[M+H]+
元素分析(C93H30F45IrN6S3):Anal.Calcd(理论值):C,47.04;H,1.27;N,3.54;Found(测量值):C,47.06;H,1.26;N,3.56。
实施例51:铱配合物CBT3的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,6-四三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率40%。
ESI-MS(电喷雾离子化质谱)[m/z]:2171[M+H]+
元素分析(C90H33F36IrN6S3):Anal.Calcd(理论值):C,49.80;H,1.53;N,3.87;Found(测量值):C,49.85;H,1.50;N,3.88。
实施例52:铱配合物CBT4的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,5-四三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率45%。
ESI-MS(电喷雾离子化质谱)[m/z]:2171[M+H]+
元素分析(C90H33F36IrN6S3):Anal.Calcd(理论值):C,49.80;H,1.53;N,3.87;Found(测量值):C,49.81;H,1.49;N,3.90。
实施例53:铱配合物CBT5的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,5,6-四三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率45%。
ESI-MS(电喷雾离子化质谱)[m/z]:2171[M+H]+
元素分析(C90H33F36IrN6S3):Anal.Calcd(理论值):C,49.80;H,1.53;N,3.87;Found(测量值):C,49.79;H,1.51;N,3.89。
实施例54:铱配合物CBT6的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4,6-三三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率48%。
ESI-MS(电喷雾离子化质谱)[m/z]:1967[M+H]+
元素分析(C87H36F27IrN6S3):Anal.Calcd(理论值):C,53.13;H,1.85;N,4.27;Found(测量值):C,53.12;H,1.84;N,4.30。
实施例55:铱配合物CBT7的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,6-三三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率50%。
ESI-MS(电喷雾离子化质谱)[m/z]:1967[M+H]+
元素分析(C87H36F27IrN6S3):Anal.Calcd(理论值):C,53.13;H,1.85;N,4.27;Found(测量值):C,53.11;H,1.88;N,4.31。
实施例56:铱配合物CBT8的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4-三三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率55%。
ESI-MS(电喷雾离子化质谱)[m/z]:1967[M+H]+
元素分析(C87H36F27IrN6S3):Anal.Calcd(理论值):C,53.13;H,1.85;N,4.27;Found(测量值):C,53.10;H,1.81;N,4.28。
实施例57:铱配合物CBT9的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,4,5-三三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率50%。
ESI-MS(电喷雾离子化质谱)[m/z]:1967[M+H]+
元素分析(C87H36F27IrN6S3):Anal.Calcd(理论值):C,53.13;H,1.85;N,4.27;Found(测量值):C,53.11;H,1.88;N,4.27。
实施例58:铱配合物CBT10的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,5-三三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率48%。
ESI-MS(电喷雾离子化质谱)[m/z]:1967[M+H]+
元素分析(C87H36F27IrN6S3):Anal.Calcd(理论值):C,53.13;H,1.85;N,4.27;Found(测量值):C,53.15;H,1.90;N,4.22。
实施例59:铱配合物CBT11的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4,5-三三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率55%。
ESI-MS(电喷雾离子化质谱)[m/z]:1967[M+H]+
元素分析(C87H36F27IrN6S3):Anal.Calcd(理论值):C,53.13;H,1.85;N,4.27;Found(测量值):C,53.18;H,1.82;N,4.27。
实施例60:铱配合物CBT12的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4-双三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率60%。
ESI-MS(电喷雾离子化质谱)[m/z]:1763[M+H]+
元素分析(C84H39F18IrN6S3):Anal.Calcd(理论值):C,57.24;H,2.23;N,4.77;Found(测量值):C,57.28;H,2.21;N,4.75。
实施例61:铱配合物CBT13的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,6-双三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率61%。
ESI-MS(电喷雾离子化质谱)[m/z]:1763[M+H]+
元素分析(C84H39F18IrN6S3):Anal.Calcd(理论值):C,57.24;H,2.23;N,4.77;Found(测量值):C,57.21;H,2.25;N,4.78。
实施例62:铱配合物CBT14的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,5-双三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率55%。
ESI-MS(电喷雾离子化质谱)[m/z]:1763[M+H]+
元素分析(C84H39F18IrN6S3):Anal.Calcd(理论值):C,57.24;H,2.23;N,4.77;Found(测量值):C,57.24;H,2.27;N,4.80。
实施例63:铱配合物CBT15的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,5-双三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率63%。
ESI-MS(电喷雾离子化质谱)[m/z]:1763[M+H]+
元素分析(C84H39F18IrN6S3):Anal.Calcd(理论值):C,57.24;H,2.23;N,4.77;Found(测量值):C,57.28;H,2.29;N,4.71。
实施例64:铱配合物CBT16的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,4-双三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率60%。
ESI-MS(电喷雾离子化质谱)[m/z]:1763[M+H]+
元素分析(C84H39F18IrN6S3):Anal.Calcd(理论值):C,57.24;H,2.23;N,4.77;Found(测量值):C,57.20;H,2.23;N,4.78。
实施例65:铱配合物CBT17的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3-双三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率66%。
ESI-MS(电喷雾离子化质谱)[m/z]:1763[M+H]+
元素分析(C84H39F18IrN6S3):Anal.Calcd(理论值):C,57.24;H,2.23;N,4.77;Found(测量值):C,57.28;H,2.21;N,4.75。
实施例66:铱配合物CBT18的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2-五氟乙基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率60%。
ESI-MS(电喷雾离子化质谱)[m/z]:1763[M+H]+
元素分析(C84H39F18IrN6S3):Anal.Calcd(理论值):C,57.24;H,2.23;N,4.77;Found(测量值):C,57.25;H,2.25;N,4.79。
实施例67:铱配合物CBT19的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3-三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率65%。
ESI-MS(电喷雾离子化质谱)[m/z]:1559[M+H]+
元素分析(C81H42F9IrN6S3):Anal.Calcd(理论值):C,62.42;H,2.72;N,5.39;Found(测量值):C,62.40;H,2.72;N,5.36。
实施例68:铱配合物CBT20的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2-三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率69%。
ESI-MS(电喷雾离子化质谱)[m/z]:1559[M+H]+
元素分析(C81H42F9IrN6S3):Anal.Calcd(理论值):C,62.42;H,2.72;N,5.39;Found(测量值):C,62.44;H,2.71;N,5.36。
实施例69:铱配合物CBT21的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(4-三氟甲基苯基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率66%。
ESI-MS(电喷雾离子化质谱)[m/z]:1559[M+H]+
元素分析(C81H42F9IrN6S3):Anal.Calcd(理论值):C,62.42;H,2.72;N,5.39;Found(测量值):C,62.41;H,2.75;N,5.32。
实施例70:铱配合物CBT22的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,5,6-五三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率41%。
ESI-MS(电喷雾离子化质谱)[m/z]:2424[M+H]+
元素分析(C93H30F45IrN6O3S3):Anal.Calcd(理论值):C,46.11;H,1.25;N,3.47;Found(测量值):C,46.13;H,1.25;N,3.49。
实施例71:铱配合物CBT23的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,6-四三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率46%。
ESI-MS(电喷雾离子化质谱)[m/z]:2219[M+H]+
元素分析(C90H33F36IrN6O3S3):Anal.Calcd(理论值):C,48.72;H,1.50;N,3.79;Found(测量值):C,48.75;H,1.49;N,3.75。
实施例72:铱配合物CBT24的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,5-四三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率44%。
ESI-MS(电喷雾离子化质谱)[m/z]:2219[M+H]+
元素分析(C90H33F36IrN6O3S3):Anal.Calcd(理论值):C,48.72;H,1.50;N,3.79;Found(测量值):C,48.75;H,1.47;N,3.75。
实施例73:铱配合物CBT25的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,5,6-四三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率47%。
ESI-MS(电喷雾离子化质谱)[m/z]:2219[M+H]+
元素分析(C90H33F36IrN6O3S3):Anal.Calcd(理论值):C,48.72;H,1.50;N,3.79;Found(测量值):C,48.75;H,1.49;N,3.75。
实施例74:铱配合物CBT26的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4,6-三三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率52%。
ESI-MS(电喷雾离子化质谱)[m/z]:2015[M+H]+
元素分析(C87H36F27IrN6O3S3):Anal.Calcd(理论值):C,51.87;H,1.80;N,4.17;Found(测量值):C,51.88;H,1.82;N,4.15。
实施例75:铱配合物CBT27的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,6-三三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率51%。
ESI-MS(电喷雾离子化质谱)[m/z]:2015[M+H]+
元素分析(C87H36F27IrN6O3S3):Anal.Calcd(理论值):C,51.87;H,1.80;N,4.17;Found(测量值):C,51.85;H,1.88;N,4.15。
实施例76:铱配合物CBT28的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4-三三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率56%。
ESI-MS(电喷雾离子化质谱)[m/z]:2015[M+H]+
元素分析(C87H36F27IrN6O3S3):Anal.Calcd(理论值):C,51.87;H,1.80;N,4.17;Found(测量值):C,51.81;H,1.84;N,4.15。
实施例77:铱配合物CBT29的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,4,5-三三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率55%。
ESI-MS(电喷雾离子化质谱)[m/z]:2015[M+H]+
元素分析(C87H36F27IrN6O3S3):Anal.Calcd(理论值):C,51.87;H,1.80;N,4.17;Found(测量值):C,51.88;H,1.85;N,4.14。
实施例78:铱配合物CBT30的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,5-三三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率54%。
ESI-MS(电喷雾离子化质谱)[m/z]:2015[M+H]+
元素分析(C87H36F27IrN6O3S3):Anal.Calcd(理论值):C,51.87;H,1.80;N,4.17;Found(测量值):C,51.89;H,1.84;N,4.11。
实施例79:铱配合物CBT31的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4,5-三三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率60%。
ESI-MS(电喷雾离子化质谱)[m/z]:2015[M+H]+
元素分析(C87H36F27IrN6O3S3):Anal.Calcd(理论值):C,51.87;H,1.80;N,4.17;Found(测量值):C,51.87;H,1.81;N,4.15。
实施例80:铱配合物CBT32的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4-双三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率59%。
ESI-MS(电喷雾离子化质谱)[m/z]:1811[M+H]+
元素分析(C84H39F18IrN6O3S3):Anal.Calcd(理论值):C,55.72;H,2.17;N,4.64;Found(测量值):C,55.75;H,2.19;N,4.65。
实施例81:铱配合物CBT33的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,6-双三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率66%。
ESI-MS(电喷雾离子化质谱)[m/z]:1811[M+H]+
元素分析(C84H39F18IrN6O3S3):Anal.Calcd(理论值):C,55.72;H,2.17;N,4.64;Found(测量值):C,55.74;H,2.11;N,4.66。
实施例82:铱配合物CBT34的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,5-双三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率60%。
ESI-MS(电喷雾离子化质谱)[m/z]:1811[M+H]+
元素分析(C84H39F18IrN6O3S3):Anal.Calcd(理论值):C,55.72;H,2.17;N,4.64;Found(测量值):C,55.71;H,2.15;N,4.68。
实施例83:铱配合物CBT35的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,5-双三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率64%。
ESI-MS(电喷雾离子化质谱)[m/z]:1811[M+H]+
元素分析(C84H39F18IrN6O3S3):Anal.Calcd(理论值):C,55.72;H,2.17;N,4.64;Found(测量值):C,55.77;H,2.16;N,4.61。
实施例84:铱配合物CBT36的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,4-双三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率60%。
ESI-MS(电喷雾离子化质谱)[m/z]:1811[M+H]+
元素分析(C84H39F18IrN6O3S3):Anal.Calcd(理论值):C,55.72;H,2.17;N,4.64;Found(测量值):C,55.74;H,2.17;N,4.62。
实施例85:铱配合物CBT37的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3-双三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率64%。
ESI-MS(电喷雾离子化质谱)[m/z]:1811[M+H]+
元素分析(C84H39F18IrN6O3S3):Anal.Calcd(理论值):C,55.72;H,2.17;N,4.64;Found(测量值):C,55.77;H,2.20;N,4.60。
实施例86:铱配合物CBT38的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2-五氟乙基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率60%。
ESI-MS(电喷雾离子化质谱)[m/z]:1811[M+H]+
元素分析(C84H39F18IrN6O3S3):Anal.Calcd(理论值):C,55.72;H,2.17;N,4.64;Found(测量值):C,55.71;H,2.20;N,4.69。
实施例87:铱配合物CBT39的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3-三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率64%。
ESI-MS(电喷雾离子化质谱)[m/z]:1607[M+H]+
元素分析(C81H42F9IrN6O3S3):Anal.Calcd(理论值):C,60.55;H,2.64;N,5.23;Found(测量值):C,60.59;H,2.61;N,5.22。
实施例88:铱配合物CBT40的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2-三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率61%。
ESI-MS(电喷雾离子化质谱)[m/z]:1607[M+H]+
元素分析(C81H42F9IrN6O3S3):Anal.Calcd(理论值):C,60.55;H,2.64;N,5.23;Found(测量值):C,60.51;H,2.68;N,5.23。
实施例89:铱配合物CBT41的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(4-三氟甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率55%。
ESI-MS(电喷雾离子化质谱)[m/z]:1607[M+H]+
元素分析(C81H42F9IrN6O3S3):Anal.Calcd(理论值):C,60.55;H,2.64;N,5.23;Found(测量值):C,60.54;H,2.63;N,5.24。
实施例90:铱配合物CBT42的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,6-双甲基苯氧基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率62%。
ESI-MS(电喷雾离子化质谱)[m/z]:1487[M+H]+
元素分析(C84H57IrN6O3S3):Anal.Calcd(理论值):C,67.86;H,3.86;N,5.65;Found(测量值):C,67.88;H,3.80;N,5.66。
实施例91:铱配合物CBT43的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率70%。
ESI-MS(电喷雾离子化质谱)[m/z]:1127[M+H]+
元素分析(C60H33IrN6S3):Anal.Calcd(理论值):C,63.98;H,2.95;N,7.46;Found(测量值):C,63.99;H,2.96;N,7.50。
实施例92:铱配合物CBT44的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-氯-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率60%。
ESI-MS(电喷雾离子化质谱)[m/z]:1229[M+H]+
元素分析(C60H30Cl3IrN6S3):Anal.Calcd(理论值):C,58.61;H,2.46;N,6.83;Found(测量值):C,58.62;H,2.44;N,6.80。
实施例93:铱配合物CBT45的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-溴-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率62%。
ESI-MS(电喷雾离子化质谱)[m/z]:1363[M+H]+
元素分析(C60H30Br3IrN6S3):Anal.Calcd(理论值):C,52.87;H,2.22;N,6.17;Found(测量值):C,52.82;H,2.25;N,6.14。
实施例94:铱配合物CBT46的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(9-咔唑基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率45%。
ESI-MS(电喷雾离子化质谱)[m/z]:1623[M+H]+
元素分析(C96H54IrN9S3):Anal.Calcd(理论值):C,71.09;H,3.36;N,7.77;Found(测量值):C,71.08;H,3.35;N,7.80。
实施例95:铱配合物CBT47的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(9-(3,6-双叔丁基咔唑基))-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪 产率40%。
ESI-MS(电喷雾离子化质谱)[m/z]:1960[M+H]+
元素分析(C120H102IrN9S3):Anal.Calcd(理论值):C,73.59;H,5.25;N,6.44;Found(测量值):C,73.60;H,5.25;N,6.42。
实施例96:铱配合物CBT48的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(二苯胺基)-4-(2-苯并[b]噻吩基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率49%。
ESI-MS(电喷雾离子化质谱)[m/z]:1629[M+H]+
元素分析(C96H60IrN9S3):Anal.Calcd(理论值):C,70.83;H,3.71;N,7.74;Found(测量值):C,70.86;H,3.75;N,7.77。
以下实施例97至实施例144为化合物CBF1至CBF48的制备方法。
实施例97:铱配合物CBF1的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1,4-双(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率33%。
ESI-MS(电喷雾离子化质谱)[m/z]:1427[M+H]+
元素分析(C84H45IrN6O6):Anal.Calcd(理论值):C,70.72;H,3.18;N,5.89;Found(测量值):C,70.70;H,3.24;N,5.82
实施例98:铱配合物CBF2的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,5,6-五三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率43%。
ESI-MS(电喷雾离子化质谱)[m/z]:2327[M+H]+
元素分析(C93H30F45IrN6O3):Anal.Calcd(理论值):C,48.01;H,1.30;N,3.61;Found(测量值):C,47.89;H,1.32;N,3.69
实施例99:铱配合物CBF3的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,6-四三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率34%。
ESI-MS(电喷雾离子化质谱)[m/z]:2123[M+H]+
元素分析(C90H33F36IrN6O3):Anal.Calcd(理论值):C,50.93;H,1.57;N,3.96;Found(测量值):C,51.02;H,1.54;N,3.92
实施例100:铱配合物CBF4的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,5-四三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率43%。
ESI-MS(电喷雾离子化质谱)[m/z]:2123[M+H]+
元素分析(C90H33F36IrN6O3):Anal.Calcd(理论值):C,50.93;H,1.57;N,3.96;Found(测量值):C,50.83;H,1.50;N,4.08
实施例101:铱配合物CBF5的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,5,6-四三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:2123[M+H]+
元素分析(C90H33F36IrN6O3):Anal.Calcd(理论值):C,50.93;H,1.57;N,3.96;Found(测量值):C,51.10;H,1.48;N,3.94。
实施例102:铱配合物CBF6的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4,6-三三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率45%。
ESI-MS(电喷雾离子化质谱)[m/z]:1919[M+H]+
元素分析(C87H36F27IrN6O3):Anal.Calcd(理论值):C,54.47;H,1.89;N,4.38;Found(测量值):C,54.39;H,1.94;N,4.51。
实施例103:铱配合物CBF7的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,6-三三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率45%。
ESI-MS(电喷雾离子化质谱)[m/z]:1919[M+H]+
元素分析(C87H36F27IrN6O3):Anal.Calcd(理论值):C,54.47;H,1.89;N,4.38;Found(测量值):C,54.50;H,1.84;N,4.24
实施例104:铱配合物CBF8的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4-三三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率42%。
ESI-MS(电喷雾离子化质谱)[m/z]:1919[M+H]+
元素分析(C87H36F27IrN6O3):Anal.Calcd(理论值):C,54.47;H,1.89;N,4.38;Found(测量值):C,54.37;H,1.72;N,4.49
实施例105:铱配合物CBF9的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,4,5-三三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率33%。
ESI-MS(电喷雾离子化质谱)[m/z]:1919[M+H]+
元素分析(C87H36F27IrN6O3):Anal.Calcd(理论值):C,54.47;H,1.89;N,4.38;Found(测量值):C,54.63;H,1.99;N,4.21
实施例106:铱配合物CBF10的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,5-三三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率34%。
ESI-MS(电喷雾离子化质谱)[m/z]:1919[M+H]+
元素分析(C87H36F27IrN6O3):Anal.Calcd(理论值):C,54.47;H,1.89;N,4.38;Found(测量值):C,54.42;H,1.75;N,4.45
实施例107:铱配合物CBF11的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4,5-三三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率45%。
ESI-MS(电喷雾离子化质谱)[m/z]:1919[M+H]+
元素分析(C87H36F27IrN6O3):Anal.Calcd(理论值):C,54.47;H,1.89;N,4.38;Found(测量值):C,54.49;H,1.80;N,4.31
实施例108:铱配合物CBF12的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4-双三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率43%。
ESI-MS(电喷雾离子化质谱)[m/z]:1715[M+H]+
元素分析(C84H39F18IrN6O3):Anal.Calcd(理论值):C,58.85;H,2.29;N,4.90;Found(测量值):C,58.78;H,2.31;N,4.84
实施例109:铱配合物CBF13的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,6-双三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率43%。
ESI-MS(电喷雾离子化质谱)[m/z]:1715[M+H]+
元素分析(C84H39F18IrN6O3):Anal.Calcd(理论值):C,58.85;H,2.29;N,4.90;Found(测量值):C,58.89;H,2.34;N,5.03
实施例110:铱配合物CBF14的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,5-双三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率45%。
ESI-MS(电喷雾离子化质谱)[m/z]:1715[M+H]+
元素分析(C84H39F18IrN6O3):Anal.Calcd(理论值):C,58.85;H,2.29;N,4.90;Found(测量值):C,58.94;H,2.21;N,4.95
实施例111:铱配合物CBF15的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,5-双三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率43%。
ESI-MS(电喷雾离子化质谱)[m/z]:1715[M+H]+
元素分析(C84H39F18IrN6O3):Anal.Calcd(理论值):C,58.85;H,2.29;N,4.90;Found(测量值):C,58.79;H,2.26;N,4.83
实施例112:铱配合物CBF16的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,4-双三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率34%。
ESI-MS(电喷雾离子化质谱)[m/z]:1715[M+H]+
元素分析(C84H39F18IrN6O3):Anal.Calcd(理论值):C,58.85;H,2.29;N,4.90;Found(测量值):C,58.81;H,2.18;N,4.87
实施例113:铱配合物CBF17的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3-双三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率36%。
ESI-MS(电喷雾离子化质谱)[m/z]:1715[M+H]+
元素分析(C84H39F18IrN6O3):Anal.Calcd(理论值):C,58.85;H,2.29;N,4.90;Found(测量值):C,58.81;H,2.36;N,4.76
实施例114:铱配合物CBF18的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2-五氟乙基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率37%。
ESI-MS(电喷雾离子化质谱)[m/z]:1715[M+H]+
元素分析(C84H39F18IrN6O3):Anal.Calcd(理论值):C,58.85;H,2.29;N,4.90;Found(测量值):C,58.90;H,2.41;N,4.98
实施例115:铱配合物CBF19的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3-三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率37%。
ESI-MS(电喷雾离子化质谱)[m/z]:1511[M+H]+
元素分析(C81H42F9IrN6O3):Anal.Calcd(理论值):C,64.41;H,2.80;N,5.56;Found(测量值):C,64.34;H,2.75;N,5.63
实施例116:铱配合物CBF20的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2-三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:1511[M+H]+
元素分析(C81H42F9IrN6O3):Anal.Calcd(理论值):C,64.41;H,2.80;N,5.56;Found(测量值):C,64.45;H,2.91;N,5.54
实施例117:铱配合物CBF21的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(4-三氟甲基苯基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率37%。
ESI-MS(电喷雾离子化质谱)[m/z]:1511[M+H]+
元素分析(C81H42F9IrN6O3):Anal.Calcd(理论值):C,64.41;H,2.80;N,5.56;Found(测量值):C,64.52;H,2.89;N,5.50
实施例118:铱配合物CBF22的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,5,6-五三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率46%。
ESI-MS(电喷雾离子化质谱)[m/z]:2375[M+H]+
元素分析(C93H30F45IrN6O6):Anal.Calcd(理论值):C,47.04;H,1.27;N,3.54;Found(测量值):C,46.98;H,1.33;N,3.48
实施例119:铱配合物CBF23的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,6-四三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率42%。
ESI-MS(电喷雾离子化质谱)[m/z]:2171[M+H]+
元素分析(C90H33F36IrN6O6):Anal.Calcd(理论值):C,49.80;H,1.53;N,3.87;Found(测量值):C,49.86;H,1.59;N,3.81
实施例120:铱配合物CBF24的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,5-四三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率44%。
ESI-MS(电喷雾离子化质谱)[m/z]:2171[M+H]+
元素分析(C90H33F36IrN6O6):Anal.Calcd(理论值):C,49.80;H,1.53;N,3.87;Found(测量值):C,49.77;H,1.61;N,3.96
实施例121:铱配合物CBF25的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,5,6-四三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率43%。
ESI-MS(电喷雾离子化质谱)[m/z]:2171[M+H]+
元素分析(C90H33F36IrN6O6):Anal.Calcd(理论值):C,49.80;H,1.53;N,3.87;Found(测量值):C,49.84;H,1.60;N,3.99
实施例122:铱配合物CBF26的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4,6-三三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率33%。
ESI-MS(电喷雾离子化质谱)[m/z]:1967[M+H]+
元素分析(C87H36F27IrN6O6):Anal.Calcd(理论值):C,53.14;H,1.85;N,4.27;Found(测量值):C,53.10;H,1.91;N,4.23
实施例123:铱配合物CBF27的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,6-三三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率36%。
ESI-MS(电喷雾离子化质谱)[m/z]:1967[M+H]+
元素分析(C87H36F27IrN6O6):Anal.Calcd(理论值):C,53.14;H,1.85;N,4.27;Found(测量值):C,53.21;H,1.88;N,4.36
实施例124:铱配合物CBF28的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4-三三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率38%。
ESI-MS(电喷雾离子化质谱)[m/z]:1967[M+H]+
元素分析(C87H36F27IrN6O6):Anal.Calcd(理论值):C,53.14;H,1.85;N,4.27;Found(测量值):C,53.24;H,1.79;N,4.20
实施例125:铱配合物CBF29的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,4,5-三三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率38%。
ESI-MS(电喷雾离子化质谱)[m/z]:1967[M+H]+
元素分析(C87H36F27IrN6O6):Anal.Calcd(理论值):C,53.14;H,1.85;N,4.27;Found(测量值):C,53.22;H,1.81;N,4.33
实施例126:铱配合物CBF30的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,5-三三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率42%。
ESI-MS(电喷雾离子化质谱)[m/z]:1967[M+H]+
元素分析(C87H36F27IrN6O6):Anal.Calcd(理论值):C,53.14;H,1.85;N,4.27;Found(测量值):C,53.08;H,1.91;N,4.24
实施例127:铱配合物CBF31的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4,5-三三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率43%。
ESI-MS(电喷雾离子化质谱)[m/z]:1967[M+H]+
元素分析(C87H36F27IrN6O6):Anal.Calcd(理论值):C,53.14;H,1.85;N,4.27;Found(测量值):C,53.06;H,1.89;N,4.15
实施例128:铱配合物CBF32的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4-双三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率43%。
ESI-MS(电喷雾离子化质谱)[m/z]:1763[M+H]+
元素分析(C84H39F18IrN6O6):Anal.Calcd(理论值):C,57.24;H,2.23;N,4.77;Found(测量值):C,57.18;H,2.21;N,4.82
实施例129:铱配合物CBF33的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,6-双三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率44%。
ESI-MS(电喷雾离子化质谱)[m/z]:1763[M+H]+
元素分析(C84H39F18IrN6O6):Anal.Calcd(理论值):C,57.24;H,2.23;N,4.77;Found(测量值):C,57.29;H,2.16;N,4.75
实施例130:铱配合物CBF34的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,5-双三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率41%。
ESI-MS(电喷雾离子化质谱)[m/z]:1763[M+H]+
元素分析(C84H39F18IrN6O6):Anal.Calcd(理论值):C,57.24;H,2.23;N,4.77;Found(测量值):C,57.27;H,2.30;N,4.68
实施例131:铱配合物CBF35的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,5-双三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率42%。
ESI-MS(电喷雾离子化质谱)[m/z]:1763[M+H]+
元素分析(C84H39F18IrN6O6):Anal.Calcd(理论值):C,57.24;H,2.23;N,4.77;Found(测量值):C,57.31;H,2.29;N,4.73
实施例132:铱配合物CBF36的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,4-双三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率41%。
ESI-MS(电喷雾离子化质谱)[m/z]:1763[M+H]+
元素分析(C84H39F18IrN6O6):Anal.Calcd(理论值):C,57.24;H,2.23;N,4.77;Found(测量值):C,57.19;H,2.18;N,4.80
实施例133:铱配合物CBF37的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3-双三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率41%。
ESI-MS(电喷雾离子化质谱)[m/z]:1763[M+H]+
元素分析(C84H39F18IrN6O6):Anal.Calcd(理论值):C,57.24;H,2.23;N,4.77;Found(测量值):C,57.27;H,2.11;N,4.85
实施例134:铱配合物CBF38的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2-五氟乙基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率43%。
ESI-MS(电喷雾离子化质谱)[m/z]:1763[M+H]+
元素分析(C84H39F18IrN6O6):Anal.Calcd(理论值):C,57.24;H,2.23;N,4.77;Found(测量值):C,57.41;H,2.19;N,4.68
实施例135:铱配合物CBF39的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3-三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率40%。
ESI-MS(电喷雾离子化质谱)[m/z]:1559[M+H]+
元素分析(C81H42F9IrN6O6):Anal.Calcd(理论值):C,62.43;H,2.72;N,5.39;Found(测量值):C,62.39;H,2.71;N,5.48
实施例136:铱配合物CBF40的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2-三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率40%。
ESI-MS(电喷雾离子化质谱)[m/z]:1559[M+H]+
元素分析(C81H42F9IrN6O6):Anal.Calcd(理论值):C,62.43;H,2.72;N,5.39;Found(测量值):C,62.48;H,2.75;N,5.34
实施例137:铱配合物CBF41的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(4-三氟甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率40%。
ESI-MS(电喷雾离子化质谱)[m/z]:1559[M+H]+
元素分析(C81H42F9IrN6O6):Anal.Calcd(理论值):C,62.43;H,2.72;N,5.39;Found(测量值):C,62.37;H,2.81;N,5.33。
实施例138:铱配合物CBF42的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,6-双甲基苯氧基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率40%。
ESI-MS(电喷雾离子化质谱)[m/z]:1439[M+H]+
元素分析(C84H57IrN6O6):Anal.Calcd(理论值):C,70.13;H,3.99;N,5.84;Found(测量值):C,70.09;H,4.04;N,5.81
实施例139:铱配合物CBF43的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率40%。
ESI-MS(电喷雾离子化质谱)[m/z]:1079[M+H]+
元素分析(C60H33IrN6O3):Anal.Calcd(理论值):C,66.84;H,3.09;N,7.79;Found(测量值):C,66.71;H,3.05;N,7.85
实施例140:铱配合物CBF44的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-氯-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率40%。
ESI-MS(电喷雾离子化质谱)[m/z]:1182[M+H]+
元素分析(C60H30Cl3IrN6O3):Anal.Calcd(理论值):C,60.99;H,2.56;N,7.11;Found(测量值):C,60.93;H,2.64;N,7.15
实施例141:铱配合物CBF45的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-溴-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率40%。
ESI-MS(电喷雾离子化质谱)[m/z]:1316[M+H]+
元素分析(C60H30Br3IrN6O3):Anal.Calcd(理论值):C,54.81;H,2.30;N,6.39;Found(测量值):C,54.87;H,2.26;N,6.47。
实施例142:铱配合物CBF46的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(9-咔唑基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率38%。
ESI-MS(电喷雾离子化质谱)[m/z]:1574[M+H]+
元素分析(C96H54IrN9O3):Anal.Calcd(理论值):C,73.27;H,3.46;N,8.01;Found(测量值):C,73.23;H,3.52;N,7.94。
实施例143:铱配合物CBF47的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(9-(3,6-双叔丁基咔唑基))-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率39%。
ESI-MS(电喷雾离子化质谱)[m/z]:1911[M+H]+
元素分析(C120H102IrN9O3):Anal.Calcd(理论值):C,75.45;H,5.38;N,6.60;Found(测量值):C,75.41;H,5.49;N,6.56。
实施例144:铱配合物CBF48的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(二苯胺基)-4-(2-苯并[b]呋喃基)-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:1580[M+H]+
元素分析(C96H60IrN9O3):Anal.Calcd(理论值):C,72.99;H,3.83;N,7.98;Found(测量值):C,73.01;H,3.92;N,8.04。
以下实施例145至实施例192为化合物CP1至CP48的制备方法。
实施例145:铱配合物CP1的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,6-双甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:1271[M+H]+
元素分析(C72H45IrN6):Anal.Calcd(理论值):C,73.73;H,4.52;N,6.61;Found(测量值):C,73.76;H,4.55;N,6.10。
实施例146:铱配合物CP2的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,5,6-五三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率30%。
ESI-MS(电喷雾离子化质谱)[m/z]:2207[M+H]+
元素分析(C87H30F45IrN6):Anal.Calcd(理论值):C,47.36;H,1.37;N,3.81;Found(测量值):C,47.35;H,1.40;N,3.85。
实施例147:铱配合物CP3的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,6-四三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:2003[M+H]+
元素分析(C84H33F36IrN6):Anal.Calcd(理论值):C,50.39;H,1.66;N,4.20;Found(测量值):C,50.37;H,1.70;N,4.16。
实施例148:铱配合物CP4的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,5-四三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率36%。
ESI-MS(电喷雾离子化质谱)[m/z]:2003[M+H]+
元素分析(C84H33F36IrN6):Anal.Calcd(理论值):C,50.39;H,1.66;N,4.20;Found(测量值):C,50.35;H,1.64;N,4.21。
实施例149:铱配合物CP5的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,5,6-四三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率36%。
ESI-MS(电喷雾离子化质谱)[m/z]:2003[M+H]+
元素分析(C84H33F36IrN6):Anal.Calcd(理论值):C,50.39;H,1.66;N,4.20;Found(测量值):C,50.38;H,1.65;N,4.24。
实施例150:铱配合物CP6的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4,6-三三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率30%。
ESI-MS(电喷雾离子化质谱)[m/z]:1799[M+H]+
元素分析(C81H36F27IrN6):Anal.Calcd(理论值):C,54.10;H,2.02;N,4.67;Found(测量值):C,54.11;H,2.03;N,4.70。
实施例151:铱配合物CP7的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,6-三三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率32%。
ESI-MS(电喷雾离子化质谱)[m/z]:1799[M+H]+
元素分析(C81H36F27IrN6):Anal.Calcd(理论值):C,54.10;H,2.02;N,4.67;Found(测量值):C,54.15;H,2.07;N,4.73。
实施例152:铱配合物CP8的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4-三三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:1799[M+H]+
元素分析(C81H36F27IrN6):Anal.Calcd(理论值):C,54.10;H,2.02;N,4.67;Found(测量值):C,54.16;H,2.01;N,4.62。
实施例153:铱配合物CP9的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,4,5-三三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率38%。
ESI-MS(电喷雾离子化质谱)[m/z]:1799[M+H]+
元素分析(C81H36F27IrN6):Anal.Calcd(理论值):C,54.10;H,2.02;N,4.67;Found(测量值):C,54.08;H,1.99;N,4.70。
实施例154:铱配合物CP10的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,5-三三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率38%。
ESI-MS(电喷雾离子化质谱)[m/z]:1799[M+H]+
元素分析(C81H36F27IrN6):Anal.Calcd(理论值):C,54.10;H,2.02;N,4.67;Found(测量值):C,54.09;H,2.05;N,4.71。
实施例155:铱配合物CP11的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4,5-三三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率30%。
ESI-MS(电喷雾离子化质谱)[m/z]:1799[M+H]+
元素分析(C81H36F27IrN6):Anal.Calcd(理论值):C,54.10;H,2.02;N,4.67;Found(测量值):C,54.14;H,2.00;N,4.70。
实施例156:铱配合物CP12的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4-双三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率33%。
ESI-MS(电喷雾离子化质谱)[m/z]:1595[M+H]+
元素分析(C78H39F18IrN6):Anal.Calcd(理论值):C,58.76;H,2.47;N,5.27;Found(测量值):C,58.75;H,2.50;N,5.25。
实施例157:铱配合物CP13的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,6-双三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率36%。
ESI-MS(电喷雾离子化质谱)[m/z]:1595[M+H]+
元素分析(C78H39F18IrN6):Anal.Calcd(理论值):C,58.76;H,2.47;N,5.27;Found(测量值):C,58.71;H,2.52;N,5.27。
实施例158:铱配合物CP14的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,5-双三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率32%。
ESI-MS(电喷雾离子化质谱)[m/z]:1595[M+H]+
元素分析(C78H39F18IrN6):Anal.Calcd(理论值):C,58.76;H,2.47;N,5.27;Found(测量值):C,58.79;H,2.44;N,5.22。
实施例159:铱配合物CP15的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,5-双三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:1595[M+H]+
元素分析(C78H39F18IrN6):Anal.Calcd(理论值):C,58.76;H,2.47;N,5.27;Found(测量值):C,58.71;H,2.49;N,5.25。
实施例160:铱配合物CP16的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,4-双三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率30%。
ESI-MS(电喷雾离子化质谱)[m/z]:1595[M+H]+
元素分析(C78H39F18IrN6):Anal.Calcd(理论值):C,58.76;H,2.47;N,5.27;Found(测量值):C,58.76;H,2.47;N,5.29。
实施例161:铱配合物CP17的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3-双三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:1595[M+H]+
元素分析(C78H39F18IrN6):Anal.Calcd(理论值):C,58.76;H,2.47;N,5.27;Found(测量值):C,58.70;H,2.44;N,5.32。
实施例162:铱配合物CP18的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2-五氟乙基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率34%。
ESI-MS(电喷雾离子化质谱)[m/z]:1595[M+H]+
元素分析(C78H39F18IrN6):Anal.Calcd(理论值):C,58.76;H,2.47;N,5.27;Found(测量值):C,58.75;H,2.45;N,5.36。
实施例163:铱配合物CP19的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3-三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:1391[M+H]+
元素分析(C75H42F9IrN6):Anal.Calcd(理论值):C,64.79;H,3.04;N,6.04;Found(测量值):C,64.80;H,3.08;N,6.00。
实施例164:铱配合物CP20的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2-三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:1391[M+H]+
元素分析(C75H42F9IrN6):Anal.Calcd(理论值):C,64.79;H,3.04;N,6.04;Found(测量值):C,64.74;H,3.00;N,6.10。
实施例165:铱配合物CP21的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(4-三氟甲基苯基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率31%。
ESI-MS(电喷雾离子化质谱)[m/z]:1391[M+H]+
元素分析(C75H42F9IrN6):Anal.Calcd(理论值):C,64.79;H,3.04;N,6.04;Found(测量值):C,64.75;H,3.04;N,6.11。
实施例166:铱配合物CP22的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,5,6-五三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:2255[M+H]+
元素分析(C87H30F45IrN6O3):Anal.Calcd(理论值):C,46.35;H,1.34;N,3.73;Found(测量值):C,46.33;H,1.37;N,3.70。
实施例167:铱配合物CP23的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,6-四三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率30%。
ESI-MS(电喷雾离子化质谱)[m/z]:2051[M+H]+
元素分析(C84H33F36IrN6O3):Anal.Calcd(理论值):C,49.21;H,1.62;N,4.10;Found(测量值):C,49.26;H,1.65;N,4.11。
实施例168:铱配合物CP24的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4,5-四三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率36%。
ESI-MS(电喷雾离子化质谱)[m/z]:2051[M+H]+
元素分析(C84H33F36IrN6O3):Anal.Calcd(理论值):C,49.21;H,1.62;N,4.10;Found(测量值):C,49.19;H,1.59;N,4.17。
实施例169:铱配合物CP25的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,5,6-四三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率30%。
ESI-MS(电喷雾离子化质谱)[m/z]:2051[M+H]+
元素分析(C84H33F36IrN6O3):Anal.Calcd(理论值):C,49.21;H,1.62;N,4.10;Found(测量值):C,49.17;H,1.66;N,4.10。
实施例170:铱配合物CP26的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4,6-三三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率38%。
ESI-MS(电喷雾离子化质谱)[m/z]:1847[M+H]+
元素分析(C81H36F27IrN6O3):Anal.Calcd(理论值):C,52.69;H,1.97;N,4.55;Found(测量值):C,52.65;H,1.99;N,4.59。
实施例171:铱配合物CP27的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,6-三三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率32%。
ESI-MS(电喷雾离子化质谱)[m/z]:1847[M+H]+
元素分析(C81H36F27IrN6O3):Anal.Calcd(理论值):C,52.69;H,1.97;N,4.55;Found(测量值):C,52.67;H,1.95;N,4.57。
实施例172:铱配合物CP28的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,4-三三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率32%。
ESI-MS(电喷雾离子化质谱)[m/z]:1847[M+H]+
元素分析(C81H36F27IrN6O3):Anal.Calcd(理论值):C,52.69;H,1.97;N,4.55;Found(测量值):C,52.64;H,1.92;N,4.59。
实施例173:铱配合物CP29的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,4,5-三三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率32%。
ESI-MS(电喷雾离子化质谱)[m/z]:1847[M+H]+
元素分析(C81H36F27IrN6O3):Anal.Calcd(理论值):C,52.69;H,1.97;N,4.55;Found(测量值):C,52.72;H,2.00;N,4.50。
实施例174:铱配合物CP30的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3,5-三三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率38%。
ESI-MS(电喷雾离子化质谱)[m/z]:1847[M+H]+
元素分析(C81H36F27IrN6O3):Anal.Calcd(理论值):C,52.69;H,1.97;N,4.55;Found(测量值):C,52.70;H,1.94;N,4.55。
实施例175:铱配合物CP31的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4,5-三三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率34%。
ESI-MS(电喷雾离子化质谱)[m/z]:1847[M+H]+
元素分析(C81H36F27IrN6O3):Anal.Calcd(理论值):C,52.69;H,1.97;N,4.55;Found(测量值):C,52.63;H,1.99;N,4.54。
实施例176:铱配合物CP32的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,4-双三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率34%。
ESI-MS(电喷雾离子化质谱)[m/z]:1643[M+H]+
元素分析(C78H39F18IrN6O3):Anal.Calcd(理论值):C,57.04;H,2.39;N,5.12;Found(测量值):C,56.99;H,2.42;N,5.09。
实施例177:铱配合物CP33的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,6-双三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率38%。
ESI-MS(电喷雾离子化质谱)[m/z]:1643[M+H]+
元素分析(C78H39F18IrN6O3):Anal.Calcd(理论值):C,57.04;H,2.39;N,5.12;Found(测量值):C,57.01;H,2.44;N,5.08。
实施例178:铱配合物CP34的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,5-双三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率32%。
ESI-MS(电喷雾离子化质谱)[m/z]:1643[M+H]+
元素分析(C78H39F18IrN6O3):Anal.Calcd(理论值):C,57.04;H,2.39;N,5.12;Found(测量值):C,57.05;H,2.36;N,5.15。
实施例179:铱配合物CP35的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,5-双三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率34%。
ESI-MS(电喷雾离子化质谱)[m/z]:1643[M+H]+
元素分析(C78H39F18IrN6O3):Anal.Calcd(理论值):C,57.04;H,2.39;N,5.12;Found(测量值):C,57.06;H,2.37;N,5.11。
实施例180:铱配合物CP36的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3,4-双三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率39%。
ESI-MS(电喷雾离子化质谱)[m/z]:1643[M+H]+
元素分析(C78H39F18IrN6O3):Anal.Calcd(理论值):C,57.04;H,2.39;N,5.12;Found(测量值):C,57.05;H,2.37;N,5.16。
实施例181:铱配合物CP37的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,3-双三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率33%。
ESI-MS(电喷雾离子化质谱)[m/z]:1643[M+H]+
元素分析(C78H39F18IrN6O3):Anal.Calcd(理论值):C,57.04;H,2.39;N,5.12;Found(测量值):C,57.07;H,2.35;N,5.13。
实施例182:铱配合物CP38的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2-五氟乙基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率39%。
ESI-MS(电喷雾离子化质谱)[m/z]:1643[M+H]+
元素分析(C78H39F18IrN6O3):Anal.Calcd(理论值):C,57.04;H,2.39;N,5.12;Found(测量值):C,57.01;H,2.38;N,5.16。
实施例183:铱配合物CP39的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(3-三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率39%。
ESI-MS(电喷雾离子化质谱)[m/z]:1439[M+H]+
元素分析(C75H42F9IrN6O3):Anal.Calcd(理论值):C,62.63;H,2.94;N,5.84;Found(测量值):C,62.65;H,2.90;N,5.84。
实施例184:铱配合物CP40的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2-三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率32%。
ESI-MS(电喷雾离子化质谱)[m/z]:1439[M+H]+
元素分析(C75H42F9IrN6O3):Anal.Calcd(理论值):C,62.63;H,2.94;N,5.84;Found(测量值):C,62.60;H,2.98;N,5.81。
实施例185:铱配合物CP41的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(4-三氟甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率38%。
ESI-MS(电喷雾离子化质谱)[m/z]:1439[M+H]+
元素分析(C75H42F9IrN6O3):Anal.Calcd(理论值):C,62.63;H,2.94;N,5.84;Found(测量值):C,62.66;H,2.92;N,5.88。
实施例186:铱配合物CP42的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(2,6-双甲基苯氧基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:1319[M+H]+
元素分析(C78H57IrN6O3):Anal.Calcd(理论值):C,71.05;H,4.36;N,6.37;Found(测量值):C,71.05;H,4.33;N,6.38。
实施例187:铱配合物CP43的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:959[M+H]+
元素分析(C54H33IrN6):Anal.Calcd(理论值):C,67.69;H,3.47;N,8.77;Found(测量值):C,67.70;H,3.50;N,8.74。
实施例188:铱配合物CP44的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-氯-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率30%。
ESI-MS(电喷雾离子化质谱)[m/z]:1061[M+H]+
元素分析(C54H30Cl3IrN6):Anal.Calcd(理论值):C,61.10;H,2.85;N,7.92;Found(测量值):C,61.07;H,2.86;N,7.95。
实施例189:铱配合物CP45的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-溴-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率35%。
ESI-MS(电喷雾离子化质谱)[m/z]:1195[M+H]+
元素分析(C54H30Br3IrN6):Anal.Calcd(理论值):C,54.28;H,2.53;N,7.03;Found(测量值):C,54.25;H,2.59;N,7.00。
实施例190:铱配合物CP46的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(9-咔唑基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率38%。
ESI-MS(电喷雾离子化质谱)[m/z]:1454[M+H]+
元素分析(C90H54IrN9):Anal.Calcd(理论值):C,74.36;H,3.74;N,8.67;Found(测量值):C,74.35;H,3.72;N,8.66。
实施例191:铱配合物CP47的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(9-(3,6-双叔丁基咔唑基))-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率32%。
ESI-MS(电喷雾离子化质谱)[m/z]:1792[M+H]+
元素分析(C114H102IrN9):Anal.Calcd(理论值):C,76.48;H,5.74;N,7.04;Found(测量值):C,76.50;H,5.77;N,7.03。
实施例192:铱配合物CP48的制备
本实施例与实施例1基本相同,其不同之处在于:L配体中Ar和R1基团不同,用1-(二苯胺基)-4-苯基-苯并[g]酞嗪替换1-(2,6-双甲基苯基)-4-(2-噻吩基)-苯并[g]酞嗪,产率30%。
ESI-MS(电喷雾离子化质谱)[m/z]:1460[M+H]+
元素分析(C90H60IrN9):Anal.Calcd(理论值):C,74.05;H,4.14;N,8.64;Found(测量值):C,74.06;H,4.15;N,8.63。
化合物应用实施方式:
本发明的铱金属配合物可以应用在有机电致发光器件即OLED器件中作为发光材料。
请参见图1,本发明进一步提供一种有机电致发光器件10,包括一阳极120、一空穴传输层130、一有机发光层140、一电子传输层160以及一阴极170。所述有机发光层140包括所述铱配合物。所述阳极120、空穴传输层130、有机发光层140、电子传输层160以及阴极170依次层叠设置。
阳极120用于向空穴传输层130注入空穴,阳极120由导电材料组成,该导电材料可选自铟锡氧(ITO),铟锌氧(IZO),二氧化锡(SnO2),氧化锌(ZnO)、银、铝、金、铂以及钯中的一种或几种。
空穴传输层130用于将空穴从所述阳极120传输到所述有机发光层140。空穴传输层130的材料为具有较高空穴迁移率的材料,可选自酞菁化合物以及芳香胺类化合物中的一种或几种,例如,4,4’-二[N-(1-萘基)-N-苯基氨基]联苯(NPB)、N,N'-二(3-甲基苯基)-N,N'-二苯基联苯(TPD)、1,3,5-三(3-甲基二苯氨基)苯(m-MTDATA)或聚乙烯基咔唑(PVK)等。
有机发光层140可发射深红光或近红外光。有机发光层140包括一主体材料和本发明的铱配合物。主体材料通过接收空穴和电子产生激子,然后向本发明的铱配合物转移激子的能量,铱配合物利用转移的能量通过形成激子的方式而发光。本发明的铱配合物在OLED器件的有机发光层140中的用量可以根据实际需要进行调控。
主体材料可选自含咔唑类共轭小分子、芳基硅类小分子以及金属配合物中的一种或几种,例如,聚乙烯基咔唑/2-(4-联苯基)-5-苯基恶二唑(PVK/PBD)、4,4’-(N,N’-二咔唑基)-联苯(CBP)、8-羟基喹啉铝(Alq3)、镓双核配合物Ga2(saph)2q2或双(10-羟基苯并[h]喹啉)铍(Bebq2)、2-(12-苯基吲哚[2,3-a]咔唑)-4,6-二苯基-1,3,5-三嗪(DIC-TRZ)等。
电子传输层160用于将电子从阴极170传输到所述有机发光层140。电子传输层160的材料为具有较高电子迁移率的材料,可以为噁唑类化合物、金属络合物、喹啉类化合物、喔啉类化合物、二氮蒽衍生物及二氮菲衍生物的一种或几种,例如,8-羟基喹啉铝(Alq3)及其衍生物等。
阴极170用于向所述电子传输层160注入电子。阴极170的材料可以采用锂、镁、铝、钙、铝锂合金、镁银合金、镁铟合金等低功函数的金属或合金,或金属与金属氟化物交替形成的电极层。
有机电致发光器件10可进一步包括一空穴阻挡层150,用于阻挡空穴向所述电子传输层160的传输,从而提高载流子传输效率,有利于获得高效的发光效率。空穴阻挡层150可设置在所述有机发光层140与所述电子传输层160之间。空穴阻挡层150的材料可选自2,9-二甲基-4,7-二苯基-1,10-菲啰啉(BCP)、4,7-二苯基-1,10-菲啰啉(BPhen)、1,3,5-三(2-N-苯基苯并咪唑基)苯(TPBI)以及3-(4-二苯基)-5-(4-叔丁基苯基)-4-(4-乙基苯基)-1,2,4-三唑(TAZ)中的一种或几种。空穴阻挡层150的材料也可与所述电子传输层160的材料相同。
有机电致发光器件10可以进一步包括一基板110,用于承载所述阳极120、空穴传输层130、有机发光层140、电子传输层160以及阴极170。基板110为透明材料,例如玻璃或塑料。基板110可具有光滑的表面,以便容易进行处理。
可以理解,有机电致发光器件10还可进一步包括一个或两个中间层,比如空穴注入层、电子注入层以及电子阻挡层等。
以下实施例193~实施例194分别制备了一种有机电致发光器件10,该有机电致发光器件10分别为OLED-1、OLED-2、OLED-3。
实施例193:OLED-1的制备
将涂布了ITO透明导电层的玻璃板在一清洗剂中超声处理,在去离子水中冲洗,在丙酮和乙醇混合溶剂中超声除油,在洁净环境下烘烤至完全除去水份,用紫外光和臭氧清洗,并用低能阳离子束轰击ITO透明导电层表面,即得到带有阳极120的玻璃板,其中,ITO透明导电层为阳极120。
将上述带有阳极120的玻璃板置于真空腔内,抽真空至1×10-5~9×10-3Pa,在上述阳极120上真空蒸镀NPB作为空穴传输层130,蒸镀速率为0.1nm/s,蒸镀膜厚为40nm。
在空穴传输层130远离玻璃板的表面上真空蒸镀一层掺杂所述铱配合物CT34的DIC-TRZ薄膜作为器件的有机 发光层140,所述铱配合物CT34与DIC-TRZ的蒸镀速率比为1:10,CT34在DIC-TRZ中的掺杂浓度为10wt%,其蒸镀总速率为0.1nm/s,蒸镀总膜厚为20nm。
在有机发光层140上真空蒸镀一层TPBi材料作为有机电致发光器件10的电子传输层160,其蒸镀速率为0.1nm/s,蒸镀总膜厚为30nm。
在电子传输层160远离有机发光层140的表面依次真空蒸镀Mg和Ag合金层和Ag(银)层作为有机电致发光器件10的阴极170,其中Mg和Ag合金层的蒸镀速率为2.0~3.0nm/s,厚度为100nm,Ag层的蒸镀速率为0.3nm/s,厚度为100nm。
实施例194:OLED-2的制备
本实施例与实施例241基本相同,其不同之处在于:所述铱配合物为CT12。
实施例195:OLED-3的制备
本实施例与实施例193基本相同,其不同之处在于:所述发光染料采用现有技术中的Ir(mpbqx-g)2acac,其化学结构式如下所示。
Figure PCTCN2017115586-appb-000022
所述OLED-1、OLED-2和OLED-3的性能详见表1。
表1:
Figure PCTCN2017115586-appb-000023
表1中,“ITO/NPB(40nm)/DIC-TRZ:10 wt%CT34(20nm)/TPBi(30nm)/Mg:Ag(100nm)/Ag(100nm)”是指:NPB形成厚度为40nm的膜;DIC-TRZ和10 wt%CT34形成厚度为20nm的膜;TPBi形成厚度为30nm的膜;Mg:Ag形成厚度为100nm的膜;Ag形成厚度为100nm的膜。以此类推,可得知表1结构组成中的其它部分的含义,这里不再赘述。
图2至图5是所述OLED-2的表征图,从中可分别得知OLED-2的发光波长、电流密度、辐照出射度和最大外量子效率。从图5可以看出,可得知所述OLED-2的量子外发光效率可达到4.5%,在大电流密度条件下,OLED-2仍然保持较高的外量子效率,且效率滚降效应很低。
因此,由表1以及图2至图4得知,所述有机电致发光器件10可以发出深红光至近红外区的光,所述有机电致发光器件10的辐照出射度均在40W/m2(15V)以上,具有较高的发光效率,且效率滚降效应很低。相比于现有已报道的异配型的Ir(mpbqx-g)2acac,本申请中的铱配合物所制备的器件具有更高的辐照出射度和更高的外量子效率,达到基于Ir(mpbqx-g)2acac器件的两倍以上。
由上述器件实施例可知,将本发明的铱金属配合物应用到有机电致发光器件中后具有以下优点:第一、可以发 出近红外区的光;第二、具有较高的量子效率;第三、具有较高的辐照出射度;第四、效率滚降现象受到了明显抑制,可在大电流密度条件下使用。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (8)

  1. 一种铱金属配合物,分子式为L3Ir,其中Ir为中心金属原子,L为配体,该配合物的结构通式如下式(Ⅰ)所示:
    Figure PCTCN2017115586-appb-100001
    所述式(Ⅰ)中,Ar选自碳原子数为6~30的取代或非取代的芳基、碳原子数为4~30的取代或非取代的杂环芳基;
    R1~R7分别独立地选自氢原子、卤素原子、氰基、硝基、羟基、碳原子数为1~30的取代或非取代的烷基或环烷基、氟代烷基、氯代烷基、烷氧基或硫代烷氧基,或选自碳原子数为1~30的羧基、碳原子数为1~30的酯基、碳原子数为1~30的酰基、碳原子数为1~30的取代或非取代的氨基、碳原子数为6~30的取代或非取代的芳基、碳原子数为4~30的取代或非取代的杂环芳基;
    所述杂环芳基指包含一个或多个选自B、N、O、S、P、P=O、Si和P的杂原子且具有4~30个环碳原子的单环或稠环芳基;
    所述Ar或R1~R7上的取代基团独立选自F、Cl、Br、I、CHO、CN,或选自碳原子数为1~30的取代或非取代的烷基或环烷基、氟代烷基、烷氧基或硫代烷氧基基团。
  2. 根据权利要求1中所述的铱金属配合物,所述通式(Ⅰ)中:
    Ar选自碳原子数为6~18的取代或非取代的芳基、碳原子数为4~18的取代或非取代的杂环芳基;
    R1~R7分别独立地选自氢原子、卤素原子、羟基、碳原子数为1~20的取代或非取代的烷基或环烷基、氟代烷基、氯代烷基、烷氧基或硫代烷氧基,或选自碳原子数为1~20的羧基、碳原子数为1~20的酯基、碳原子数为1~20的酰基、碳原子数为1~20的取代或非取代的氨基、碳原子数为6~18的取代或非取代的芳基、碳原子数为4~18的取代或非取代的杂环芳基;
    所述Ar或R1~R7上的取代基团独立选自F、Cl、Br,或选自碳原子数为1~20的取代或非取代的烷基或环烷基、氟代烷基、烷氧基或硫代烷氧基基团。
  3. 根据权利要求1中所述的铱金属配合物,所述通式(Ⅰ)中:
    Ar选自取代或非取代的下述基团:噻吩、苯并噻吩、苯、萘、蒽、菲、芘、呋喃、苯并呋喃、噻唑、苯并噻唑、异噻唑、苯并异噻唑、吡咯、苯并吡咯、咪唑、苯并咪唑、吡唑、苯并吡唑、噁唑、苯并噁唑、异噁唑、苯并异噁唑、吡啶、嘧啶、苯并嘧啶、吡嗪、苯并吡嗪、哒嗪、苯并哒嗪、喹啉、异喹啉、嘌呤、喋啶、哒嗪、吲哚;
    R1~R7分别独立地选自氢原子,或分别独立选自取代或非取代的下述基团:噻吩、苯并噻吩、苯、萘、蒽、菲、芘、呋喃、苯并呋喃、噻唑、苯并噻唑、异噻唑、苯并异噻唑、吡咯、苯并吡咯、咪唑、苯并咪唑、吡唑、苯并吡唑、噁唑、苯并噁唑、异噁唑、苯并异噁唑、吡啶、嘧啶、苯并嘧啶、吡嗪、苯并吡嗪、哒嗪、苯并哒嗪、喹啉、异喹啉、嘌呤、喋啶、哒嗪、吲哚、咔唑、二苯胺、苯氧、二苯基硼、二苯基膦、二苯基膦氧、三苯基硅;
    所述Ar或R1~R7上的取代基团独立选自F、Cl,或选自碳原子数为1~10的取代或非取代的烷基或环烷基、氟代烷基、烷氧基或硫代烷氧基基团。
  4. 根据权利要求1中所述的铱金属配合物,其通式(Ⅰ)中:
    Ar选自取代或非取代的下述基团:噻吩、苯并噻吩、苯、萘、蒽、菲、芘、呋喃、苯并呋喃、噻唑、苯并噻唑、异噻唑、苯并异噻唑、吡咯、苯并吡咯、咪唑、苯并咪唑、吡唑、苯并吡唑、噁唑、苯并噁唑、异噁唑、苯并异噁唑、吡啶、嘧啶、苯并嘧啶、吡嗪、苯并吡嗪、哒嗪、苯并哒嗪、喹啉、异喹啉、嘌呤、喋啶、哒嗪、吲哚;
    R2~R7选自氢原子,R1选自取代或非取代的下述基团:噻吩、苯并噻吩、苯、萘、蒽、菲、芘、呋喃、苯并呋 喃、噻唑、苯并噻唑、异噻唑、苯并异噻唑、吡咯、苯并吡咯、咪唑、苯并咪唑、吡唑、苯并吡唑、噁唑、苯并噁唑、异噁唑、苯并异噁唑、吡啶、嘧啶、苯并嘧啶、吡嗪、苯并吡嗪、哒嗪、苯并哒嗪、喹啉、异喹啉、嘌呤、喋啶、哒嗪、吲哚、咔唑、二苯胺、苯氧、二苯基硼、二苯基膦、二苯基膦氧、三苯基硅;
    所述Ar或R1上的取代基团独立选自F、Cl,或选自碳原子数为1~10的取代或非取代的烷基或环烷基、氟代烷基、烷氧基或硫代烷氧基基团。
  5. 根据权利要求1-4中任一项所述的铱金属配合物,选自下述具体结构式:
    Figure PCTCN2017115586-appb-100002
    Figure PCTCN2017115586-appb-100003
    Figure PCTCN2017115586-appb-100004
    Figure PCTCN2017115586-appb-100005
    Figure PCTCN2017115586-appb-100006
    Figure PCTCN2017115586-appb-100007
    Figure PCTCN2017115586-appb-100008
    Figure PCTCN2017115586-appb-100009
    Figure PCTCN2017115586-appb-100010
    Figure PCTCN2017115586-appb-100011
    Figure PCTCN2017115586-appb-100012
    Figure PCTCN2017115586-appb-100013
    Figure PCTCN2017115586-appb-100014
    Figure PCTCN2017115586-appb-100015
    Figure PCTCN2017115586-appb-100016
    Figure PCTCN2017115586-appb-100017
  6. 一种根据权利要求1-4中任一项所述的铱金属配合物在有机电致发光器件中的用途。
  7. 一种根据权利要求5中所述的铱金属配合物在有机电致发光器件中的用途。
  8. 一种有机电致发光器件,包括第一电极、第二电极和位于所述第一电极和第二电极之间的一层或多层有机层,该有机层中包含有下述通式(Ⅰ)所示的一种铱金属配合物,其分子式为L3Ir,其中Ir为中心金属原子,L为配体:
    Figure PCTCN2017115586-appb-100018
    Figure PCTCN2017115586-appb-100019
    所述式(Ⅰ)中,Ar选自碳原子数为6~30的取代或非取代的芳基、碳原子数为4~30的取代或非取代的杂环芳基;
    R1~R7分别独立地选自氢原子、卤素原子、氰基、硝基、羟基、碳原子数为1~30的取代或非取代的烷基或环烷基、氟代烷基、氯代烷基、烷氧基或硫代烷氧基,或选自碳原子数为1~30的羧基、碳原子数为1~30的酯基、碳原子数为1~30的酰基、碳原子数为1~30的取代或非取代的氨基、碳原子数为6~30的取代或非取代的芳基、碳原子数为4~30的取代或非取代的杂环芳基;
    所述杂环芳基指包含一个或多个选自B、N、O、S、P、P=O、Si和P的杂原子且具有4~30个环碳原子的单环或稠环芳基;
    所述Ar或R1~R7上的取代基团独立选自F、Cl、Br、I、CHO、CN,或选自碳原子数为1~30的取代或非取代的烷基或环烷基、氟代烷基、烷氧基或硫代烷氧基基团。
PCT/CN2017/115586 2017-01-22 2017-12-12 铱金属配合物及其应用,以及有机电致发光器件 WO2018133579A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019539754A JP6908301B2 (ja) 2017-01-22 2017-12-12 イリジウム金属配位化合物、その応用及び有機エレクトロルミネッセンス素子
US16/479,578 US11502260B2 (en) 2017-01-22 2017-12-12 Iridium complexes and their applications, as well as organic electroluminescent devices
KR1020197024345A KR102301366B1 (ko) 2017-01-22 2017-12-12 이리듐 금속 화합물 및 그 응용과 유기 전계 발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710046271.4A CN108341806B (zh) 2017-01-22 2017-01-22 铱金属配合物及其应用,以及有机电致发光器件
CN201710046271.4 2017-01-22

Publications (1)

Publication Number Publication Date
WO2018133579A1 true WO2018133579A1 (zh) 2018-07-26

Family

ID=62909148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115586 WO2018133579A1 (zh) 2017-01-22 2017-12-12 铱金属配合物及其应用,以及有机电致发光器件

Country Status (5)

Country Link
US (1) US11502260B2 (zh)
JP (1) JP6908301B2 (zh)
KR (1) KR102301366B1 (zh)
CN (1) CN108341806B (zh)
WO (1) WO2018133579A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110305068A (zh) * 2019-06-25 2019-10-08 中昊(大连)化工研究设计院有限公司 一种采用微通道反应器连续制备1,4-二氯酞嗪的方法
WO2020065443A1 (ja) * 2018-09-27 2020-04-02 株式会社半導体エネルギー研究所 発光デバイス、発光装置、発光モジュール、電子機器、照明装置、有機金属錯体、発光材料、有機化合物、及び複核錯体

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7377216B2 (ja) 2018-12-21 2023-11-09 株式会社半導体エネルギー研究所 表示装置、モジュール及び電子機器
TW202036954A (zh) 2018-12-28 2020-10-01 日商半導體能源研究所股份有限公司 發光裝置、照明裝置、顯示裝置、模組及電子機器
US11903232B2 (en) 2019-03-07 2024-02-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device comprising charge-generation layer between light-emitting units
CN111377977B (zh) * 2020-04-23 2023-01-31 安徽工业大学 一种4,7-二芳基噻吩并[2,3-d]哒嗪类环金属铱配合物及其制备方法
CN113956295B (zh) * 2020-07-20 2023-04-11 清华大学 铱金属配合物及其应用以及有机电致发光器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763966A (en) * 1984-07-16 1988-08-16 Fuji Photo Film Co., Ltd. Infrared absorbent
CN104193783A (zh) * 2014-07-31 2014-12-10 石家庄诚志永华显示材料有限公司 苯并异喹啉金属配合物及其制备方法与应用
CN104804045A (zh) * 2015-04-13 2015-07-29 清华大学 近红外发光材料及有机电致发光器件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3929690B2 (ja) * 1999-12-27 2007-06-13 富士フイルム株式会社 オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体
JP4307001B2 (ja) * 2001-03-14 2009-08-05 キヤノン株式会社 金属配位化合物、電界発光素子及び表示装置
CN101200635A (zh) * 2007-11-27 2008-06-18 中山大学 一种磷光铱配合物及其有机电致发光器件
TWI609855B (zh) * 2009-04-28 2018-01-01 環球展覽公司 具有甲基-d3取代之銥錯合物
KR20130121479A (ko) * 2012-04-27 2013-11-06 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
CN102690235A (zh) * 2012-05-25 2012-09-26 南京邮电大学 一类含空穴传输功能基团的铱配合物及其电致发光器件
KR20140032823A (ko) 2012-09-07 2014-03-17 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
CN104004026A (zh) * 2014-06-09 2014-08-27 江西冠能光电材料有限公司 一种电负性磷光材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763966A (en) * 1984-07-16 1988-08-16 Fuji Photo Film Co., Ltd. Infrared absorbent
CN104193783A (zh) * 2014-07-31 2014-12-10 石家庄诚志永华显示材料有限公司 苯并异喹啉金属配合物及其制备方法与应用
CN104804045A (zh) * 2015-04-13 2015-07-29 清华大学 近红外发光材料及有机电致发光器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XUE JIE ET AL.: "Homoleptic Facial Ir (III) Complexes via Facile Synthesis for High-Efficiency and Low-Roll-Off Near-Infrared Organic Light-Emitting - Diodes over - 750 nm", CHEM. MATER., vol. 21, XP055504926 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065443A1 (ja) * 2018-09-27 2020-04-02 株式会社半導体エネルギー研究所 発光デバイス、発光装置、発光モジュール、電子機器、照明装置、有機金属錯体、発光材料、有機化合物、及び複核錯体
JPWO2020065443A1 (ja) * 2018-09-27 2021-10-21 株式会社半導体エネルギー研究所 発光デバイス、発光装置、発光モジュール、電子機器、照明装置、有機金属錯体、発光材料、有機化合物、及び複核錯体
JP7345487B2 (ja) 2018-09-27 2023-09-15 株式会社半導体エネルギー研究所 有機金属錯体、発光材料、発光デバイス、有機化合物および複核錯体
CN110305068A (zh) * 2019-06-25 2019-10-08 中昊(大连)化工研究设计院有限公司 一种采用微通道反应器连续制备1,4-二氯酞嗪的方法

Also Published As

Publication number Publication date
KR20190103436A (ko) 2019-09-04
JP2020509996A (ja) 2020-04-02
JP6908301B2 (ja) 2021-07-21
CN108341806B (zh) 2020-09-22
CN108341806A (zh) 2018-07-31
KR102301366B1 (ko) 2021-09-15
US20190372028A1 (en) 2019-12-05
US11502260B2 (en) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2018133579A1 (zh) 铱金属配合物及其应用,以及有机电致发光器件
JP6503088B2 (ja) 熱活性化増感燐光有機電界発光素子
KR101800869B1 (ko) 유기 전계 발광 소자
TWI475004B (zh) Organic electroluminescent elements
TWI468494B (zh) Organic electroluminescent elements
KR101838675B1 (ko) 유기 전계 발광 소자
KR101411135B1 (ko) 치환된 피리딜기가 연결된 피리도인돌환 구조를 갖는 화합물 및 유기 전계발광 소자
TWI475022B (zh) Organic electroluminescent elements
TWI549942B (zh) N-苯基三咔唑類
CN106831745B (zh) 一种有机电致发光材料以及有机光电装置
WO2018173598A1 (ja) 有機電界発光素子
US8927119B2 (en) Compound having substituted anthracene ring structure and pyridoindole ring structure, and organic electroluminescent device
JP2004131463A (ja) 有機金属錯体、発光色素、有機電界発光素子材料および有機電界発光素子
US11404652B2 (en) Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device, and illumination device
JP5040070B2 (ja) 電荷輸送材料、積層体及び有機電界発光素子
TWI542586B (zh) 具有經取代之聯吡啶基與吡啶并吲哚環結構之化合物及有機電致發光元件
JPWO2007026846A1 (ja) アリールアミン化合物および有機エレクトロルミネッセンス素子
KR101503400B1 (ko) 안트라센계 화합물 및 이를 이용한 유기 전계 발광 소자
TWI387575B (zh) 含聯三伸苯及蒎之芳香族化合物合成暨在有機電激發光元件上之應用
KR101960977B1 (ko) N-사이클로알킬알킬 트리스카바졸
JPH10231479A (ja) 赤色発光有機el素子
CN108623526A (zh) 蒽取代衍生物及其应用
EP2433928A1 (en) N-phenyl triscarbazole
JP2021503502A (ja) 化合物、これを含むコーティング組成物、これを用いた有機発光素子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539754

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197024345

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17893116

Country of ref document: EP

Kind code of ref document: A1