WO2018133238A1 - 一种具有多层结构的防液涂层的制备方法 - Google Patents

一种具有多层结构的防液涂层的制备方法 Download PDF

Info

Publication number
WO2018133238A1
WO2018133238A1 PCT/CN2017/081795 CN2017081795W WO2018133238A1 WO 2018133238 A1 WO2018133238 A1 WO 2018133238A1 CN 2017081795 W CN2017081795 W CN 2017081795W WO 2018133238 A1 WO2018133238 A1 WO 2018133238A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
coating
plasma
discharge
reaction chamber
Prior art date
Application number
PCT/CN2017/081795
Other languages
English (en)
French (fr)
Inventor
宗坚
Original Assignee
江苏菲沃泰纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏菲沃泰纳米科技有限公司 filed Critical 江苏菲沃泰纳米科技有限公司
Publication of WO2018133238A1 publication Critical patent/WO2018133238A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material

Definitions

  • the invention belongs to the technical field of plasma chemical vapor deposition, and in particular relates to a preparation method of a liquid proof coating.
  • Polymer coatings are often used for material surface protection due to their economical, easy-to-coat and wide application range, which can give materials good physical and chemical durability.
  • it has been widely used in preventing liquid penetration and corrosion.
  • the polymer coating is poor in crystallinity and the coating is mostly amorphous, which does not effectively prevent the penetration of the liquid into the coating.
  • the main methods for improving the barrier properties of polymer coatings are:
  • a polymer coating is prepared by using a monomer excellent in permeability resistance.
  • a monomer excellent in permeability resistance For example, the United States Union Carbide Co. Developed and applied a new conformal coating material, Parylene coating (patented), which is a paraxylene polymer with low water, gas permeability and high barrier effect, which can achieve moisture and water resistance. Anti-rust, acid and alkali corrosion resistance.
  • Patent CN 201510203553.1 A method of inhibiting the penetration of corrosive liquids by sheet graphene is disclosed.
  • Patent CN 201010598950.0 A high barrier anti-penetration pesticide packaging film was prepared by multi-layer coextrusion technology.
  • Plasma chemical vapor deposition It is a technique of activating a reaction gas with a plasma to promote a chemical reaction on a surface of a substrate or a near surface to form a solid film.
  • the plasma chemical vapor deposition coating has:
  • the plasma polymerization film is stable in chemical and physical properties such as solvent resistance, chemical corrosion resistance, heat resistance, and abrasion resistance.
  • the plasma polymerization film has good adhesion to the substrate.
  • a uniform film can also be formed on the surface of the substrate having irregular irregularities.
  • plasma polymer coatings have many applications in waterproofing, rust prevention, oil proofing, and mildew resistance of electronic appliances, mechanical parts, and clothing.
  • the polymer coating prepared by the plasma method has a certain solvent resistance and chemical resistance for the crosslinked coating, the liquid resistance of the polymer coating is still insufficient, which is mainly attributed to:
  • the polymer coating prepared by the plasma method has a large amount of linear structure, the polymer network is loose, and the liquid is resistant to dissolution and permeability.
  • the coating prepared by increasing the plasma energy or adding a crosslinked structure to increase the polymer network has a large hardness, and the temperature change easily causes the coating to crack and the liquid-repellent property to decrease.
  • the present invention provides a method for preparing a liquid-repellent coating having a multi-layer structure for solving the above technical problems, and preparing a polymer coating having a soft and hard spacer multilayer structure by independently controlling plasma chemical vapor deposition, the hard coating layer having Excellent barrier properties, soft coating with excellent creep mobility, soft coating can migrate in a temperature-changing environment to compensate for the defect of liquid coating resistance caused by deformation cracking.
  • the multi-layer coating monomer components belong to the same category, the compatibility is significantly better than the multi-layer bonding, so the bonding strength between the layers of the coating is strong. Thereby, the liquid-repellent property of the polymer coating prepared by the plasma method is improved.
  • a method for preparing a liquid-repellent coating having a multi-layer structure comprising: the following steps:
  • the purpose is to discharge the residual exhaust gas, and pass the second monomer vapor to a vacuum of 30-300.
  • the mTorr, plasma discharge is turned on, and chemical vapor deposition is performed to prepare a second coating layer, that is, a hard coat layer; the hard coat layer has a large degree of crosslinking, a good compactness, and a relatively large hardness.
  • the first monomer vapor component is a monofunctional unsaturated fluorocarbon resin
  • the second monomer vapor component is a mixture of a monofunctional unsaturated fluorocarbon resin and at least one polyfunctional unsaturated hydrocarbon derivative, and the polyfunctional unsaturated hydrocarbon derivative in the second monomer The percentage by mass is 10-80% .
  • the substrate in the step (1) is a solid material, and the solid material includes an electronic component, an electrical component, a fabric or a garment.
  • the volume of the plasma chamber in the step (1) is 50-1000L, and the temperature of the plasma chamber is controlled at 30 ⁇ 60. °C; plasma discharge at this temperature facilitates polymerization of the monomer.
  • the flow rate of inert gas or nitrogen is 5 ⁇ 300sccm
  • the inert gas is one of argon or helium or a mixture of argon and helium.
  • the purpose of the inert gas or nitrogen is to obtain a stable plasma environment.
  • the first monomer vapor is introduced into the reaction chamber by atomizing and volatilizing the first monomer through a feed pump, and introducing the reaction chamber from a low pressure of 10-200 mTorr.
  • the flow rate of the first monomer vapor is 10-300 ⁇ L/min;
  • the second monomer vapor is introduced into the reaction chamber by atomizing and volatilizing the second monomer through a feed pump, and introducing the reaction chamber under a pressure of less than 10 mTorr.
  • the flow rate of the second monomer vapor is 10-300 ⁇ L/min.
  • the first monomer is a monofunctional unsaturated fluorocarbon resin
  • the second monomer is a mixture of a monofunctional unsaturated fluorocarbon resin and at least one polyfunctional unsaturated hydrocarbon derivative, and the second monomer is polyfunctional
  • the percentage by mass of unsaturated hydrocarbon derivatives is 10-80%.
  • the monofunctional unsaturated fluorocarbon resin includes:
  • the monofunctional unsaturated fluorocarbon resin has the following advantages: a fluorocarbon resin with a strong C-F
  • the bond is a skeleton, and its heat resistance, chemical resistance, cold resistance, low temperature flexibility, weather resistance and electrical properties are better than other resins, and it also has non-adhesiveness and non-wetting property. Therefore, the fluorocarbon resin coating is particularly suitable for the protection of the surface of the material, not only can give the material good physical and chemical durability, and can impart excellent waterproof and oil proof functions to the material, and can be widely applied to separation, optics, medical, electronics, The field of painting of precision instruments and high-end clothing.
  • the polyfunctional unsaturated hydrocarbon derivative includes:
  • the polyfunctional unsaturated hydrocarbon derivative has a plurality of crosslinking points which, when added, enhance the protective properties of the coating network.
  • a glow discharge is performed before the first monomer vapor is introduced, and the substrate is subjected to bombardment pretreatment, and the power of the glow discharge is 2 ⁇ 500W, discharge time is 300 ⁇ 600s.
  • the bombardment pretreatment can clean impurities on the surface of the substrate, and at the same time, activate the surface of the substrate, facilitate deposition of the coating, and improve the adhesion of the coating to the substrate.
  • the power of turning on the plasma discharge in the step (2) is 2-500 W, and the continuous discharge time is 300-600.
  • the plasma discharge mode is radio frequency discharge, microwave discharge, intermediate frequency discharge or electric spark discharge.
  • the radio frequency plasma is a plasma generated by ionizing the air around the electrode with high frequency and high voltage.
  • the microwave method utilizes the energy of the microwave to excite the plasma, and has the advantages of high energy utilization efficiency.
  • the electrodeless discharge and the plasma are pure, it is an excellent method for high-quality, high-rate, large-area preparation.
  • the plasma during radio frequency discharge The energy output mode of the control plasma RF is pulse or continuous output.
  • the pulse width is 2 ⁇ s-1ms, and the repetition frequency is 20Hz-10kHz. .
  • the process plasma of continuous plasma RF discharge deposition has a certain etching on the deposited film, and the pulsed RF discharge gives a certain deposition time in a continuous manner, which is beneficial to the thickness and compactness of the coating.
  • the number of times of repeating step (2) in the step (3) is 3-15 times.
  • the invention prepares a multilayer coating layer with soft coating and hard coating alternately distributed on the surface of the substrate, the hard coating layer in the multilayer structure coating has excellent barrier property, and the soft coating layer has excellent creep property. Mobility, the soft coating can migrate in a temperature-changing environment to compensate for the defect of the liquid coating due to deformation cracking, thereby greatly improving the liquid resistance and permeability of the coating. Liquidity and permeability have increased respectively 20%-40% and 30%-45%.
  • a single hard coat layer has better barrier properties, it is prone to cracking under temperature and deformation; a single soft coat layer has poor barrier properties, but has high deformability.
  • the advantages of both layers can be combined to compensate for their respective shortcomings.
  • the hard coating has good barrier properties and can resist penetration. Even after deformation cracking, the soft coating can be added to the cracking position to improve the overall protection performance of the coating.
  • a method for preparing a liquid-repellent coating having a multi-layer structure comprising: the following steps:
  • step (1) placing the substrate in the reaction chamber of the plasma chamber, continuously evacuating the reaction chamber, and pumping the vacuum in the reaction chamber to 10
  • the mTorr is supplied with an inert gas; in step (1), the substrate is a solid material, and the solid material is an electronic component.
  • the volume of the plasma chamber in step (1) is 50L, the temperature of the plasma chamber is controlled at 30 °C; the flow rate of the inert gas is 5 sccm, the inert gas is argon.
  • the vacuum is reduced to less than 10 mTorr, and the second monomer vapor is introduced to a vacuum of 30.
  • plasma discharge is turned on, chemical vapor deposition is performed to prepare a second coating, that is, a hard coat layer;
  • the first monomer vapor component is a monofunctional unsaturated fluorocarbon resin, and the monofunctional unsaturated fluorocarbon resin is 2-perfluorooctyl acrylate ;
  • the second monomer vapor component is a mixture of a monofunctional unsaturated fluorocarbon resin and a polyfunctional unsaturated hydrocarbon derivative, the monofunctional unsaturated fluorocarbon resin being 1H, 1H, 2H, 2H- Perfluorooctyl acrylate
  • the polyfunctional unsaturated hydrocarbon derivative is diethylene glycol divinyl ether; and the polyfunctional unsaturated hydrocarbon derivative in the second monomer accounts for 10% by mass.
  • the first monomer vapor is introduced into the reaction chamber by atomizing and volatilizing the first monomer through a feed pump, and introducing the reaction chamber from a low pressure of 10 mTorr.
  • the flow rate of the first monomer vapor is 10 ⁇ L/min;
  • the second monomer vapor is introduced into the reaction chamber by atomizing and volatilizing the second monomer through a feed pump, and introducing the reaction chamber under a pressure of less than 10 mTorr.
  • the flow rate of the second monomer vapor was 10 ⁇ L/min.
  • the substrate is subjected to bombardment pretreatment by performing glow discharge before the first monomer vapor is introduced in the step (2).
  • the power of the plasma discharge in step (2) is 2W, and the continuous discharge time is 600. In seconds, the plasma discharge mode is RF discharge.
  • the energy output mode of the control plasma RF is pulse output, the pulse width is 2 ⁇ s, and the repetition frequency is 20Hz.
  • step (3) repeating the above step (2) twice, forming a coating of a multilayer structure in which a soft coating layer and a hard coating layer are alternately distributed on the surface of the substrate;
  • step (1) the vacuum in the reaction chamber is pumped to 40 mTorr, and an inert gas is introduced; the substrate is a solid material, and the solid material is Electrical components.
  • the volume of the plasma chamber is 180L, the temperature of the plasma chamber is controlled at 40 °C, the flow rate of the inert gas is 45 sccm, and the inert gas is helium.
  • step (2) the first monomer vapor is introduced to a vacuum of 80 mTorr, and the second monomer vapor is introduced to a vacuum of 60.
  • the first monomer vapor component is a monofunctional unsaturated fluorocarbon resin, and the monofunctional unsaturated fluorocarbon resin is 3-(perfluoro-5-methylhexyl) -2-hydroxypropyl methacrylate ;
  • the second monomer vapor component is a mixture of a monofunctional unsaturated fluorocarbon resin and two polyfunctional unsaturated hydrocarbon derivatives, the monofunctional unsaturated fluorocarbon resin being 2-perfluorooctyl acrylate
  • the two polyfunctional unsaturated hydrocarbon derivatives are diethylene glycol divinyl ether and ethylene glycol diacrylate; and the mass percentage of the polyfunctional unsaturated hydrocarbon derivative in the second monomer is 20% ?
  • the first monomer steam is introduced into the reaction chamber by atomizing and volatilizing the first monomer through a feed pump, and introducing the reaction chamber from a low pressure of 40 mTorr.
  • the flow rate of the first monomer vapor is 50 ⁇ L/min;
  • the second monomer vapor is introduced into the reaction chamber by atomizing and volatilizing the second monomer through a feed pump, and introducing the reaction chamber under a pressure of less than 10 mTorr.
  • the flow rate of the second monomer vapor was 40 ⁇ L/min.
  • the power of turning on the plasma discharge in step (2) is 30W, and the continuous discharge time is 500. In seconds, the plasma discharge mode is microwave discharge.
  • step (1) the vacuum in the reaction chamber is pumped to 100 mTorr, and an inert gas is introduced; the substrate is a solid material, and the solid material is Clothing.
  • the volume of the plasma chamber is 350L, the temperature of the plasma chamber is controlled at 50 °C, the flow rate of the inert gas is 90 sccm, and the inert gas is a mixed gas of helium and argon.
  • step (2) the first monomer vapor is introduced to a vacuum of 160 mTorr, and the second monomer vapor is introduced to a vacuum of 150.
  • the first monomer vapor component is a monofunctional unsaturated fluorocarbon resin, and the monofunctional unsaturated fluorocarbon resin is 2-(perfluorododecyl) Ethyl acrylate ;
  • the second monomer vapor component is a mixture of a monofunctional unsaturated fluorocarbon resin and three polyfunctional unsaturated hydrocarbon derivatives, the monofunctional unsaturated fluorocarbon resin being 2-(perfluorobutyl)ethyl Acrylate
  • the three polyfunctional unsaturated hydrocarbon derivatives are ethoxylated trimethylolpropane triacrylate, polyethylene glycol diacrylate and neopentyl glycol diacrylate.
  • the mass percentage of the polyfunctional unsaturated hydrocarbon derivative in the second monomer is 34%.
  • the first monomer vapor is introduced into the reaction chamber by atomizing and volatilizing the first monomer through a feed pump, and introducing the reaction chamber from a low pressure of 100 mTorr.
  • the flow rate of the first monomer vapor is 90 ⁇ L/min;
  • the second monomer vapor is introduced into the reaction chamber by atomizing and volatilizing the second monomer through a feed pump, and introducing the reaction chamber under a pressure of less than 10 mTorr.
  • the flow rate of the second monomer vapor was 80 ⁇ L/min.
  • the power of the plasma discharge in step (2) is 90W, and the continuous discharge time is 400. In seconds, the plasma discharge mode is medium frequency discharge.
  • step (1) the vacuum in the reaction chamber is pumped to 150 mTorr, and nitrogen gas is introduced; the substrate is a solid material, and the solid material is Fabric.
  • the volume of the plasma chamber was 650 L, the temperature of the plasma chamber was controlled at 55 ° C, and the flow rate of nitrogen gas was 140 sccm.
  • step (2) the first monomer vapor is introduced to a vacuum of 200 mTorr, and the second monomer vapor is introduced to a vacuum of 200.
  • the first monomer vapor component is a monofunctional unsaturated fluorocarbon resin, and the monofunctional unsaturated fluorocarbon resin is 3,3,3-trifluoro-1-propyne ;
  • the second monomer vapor component is a mixture of a monofunctional unsaturated fluorocarbon resin and three polyfunctional unsaturated hydrocarbon derivatives, and the monofunctional unsaturated fluorocarbon resin is 3,3,3-trifluoro-1. - Propyne
  • the three polyfunctional unsaturated hydrocarbon derivatives are tripropylene glycol diacrylate, divinylbenzene and polyethylene glycol diacrylate; and the polyfunctional unsaturated hydrocarbon derivative in the second monomer 58% by mass .
  • the first monomer vapor is introduced into the reaction chamber by atomizing and volatilizing the first monomer through a feed pump, and introducing the reaction chamber from a low pressure of 150 mTorr.
  • the flow rate of the first monomer vapor is 160 ⁇ L/min;
  • the second monomer vapor is introduced into the reaction chamber by atomizing and volatilizing the second monomer through a feed pump, and introducing the reaction chamber under a pressure of less than 10 mTorr.
  • the flow rate of the second monomer vapor was 150 ⁇ L/min.
  • the power of the plasma discharge in step (2) is 320W, and the continuous discharge time is 350.
  • the plasma discharge mode is electric spark discharge.
  • step (1) the vacuum in the reaction chamber is pumped to 200 mTorr, and an inert gas is introduced; the substrate is a solid material, and the solid material is Electronic components.
  • the volume of the plasma chamber is 1000 L, the temperature of the plasma chamber is controlled at 60 ° C; the flow rate of the inert gas is 300 sccm, and the inert gas is argon.
  • step (2) the first monomer vapor is introduced to a vacuum of 300 mTorr, and the second monomer vapor is introduced to a vacuum of 300.
  • the first monomer vapor component is a monofunctional unsaturated fluorocarbon resin, and the monofunctional unsaturated fluorocarbon resin is 4-ethynyl benzotrifluoride;
  • the second monomer vapor component is a mixture of a monofunctional unsaturated fluorocarbon resin and four polyfunctional unsaturated hydrocarbon derivatives, the monofunctional unsaturated fluorocarbon resin being 1-ethynyl-3,5-di Fluorobenzene
  • the four polyfunctional unsaturated hydrocarbon derivatives are divinylbenzene, polyethylene glycol diacrylate, ethylene glycol diacrylate, and diethylene glycol divinyl ether.
  • the polyfunctional unsaturated hydrocarbon derivative in the second monomer accounts for 80% by mass.
  • the first monomer steam is introduced into the reaction chamber by atomizing and volatilizing the first monomer through a feed pump, and introducing the reaction chamber from a low pressure of 200 mTorr.
  • the flow rate of the first monomer vapor is 300 ⁇ L/min;
  • the second monomer vapor is introduced into the reaction chamber by atomizing and volatilizing the second monomer through a feed pump, and introducing the reaction chamber under a pressure of less than 10 mTorr.
  • the flow rate of the second monomer vapor was 300 ⁇ L/min.
  • the power of the plasma discharge in step (2) is 500W, and the continuous discharge time is 300.
  • the plasma discharge mode is RF discharge
  • the energy output mode of the control plasma RF during plasma RF discharge is pulse output
  • the pulse width is 1ms
  • the repetition frequency is 10kHz.
  • the plasma discharge mode is RF discharge
  • the energy output mode of the control plasma RF is plasma output during plasma RF discharge.
  • the pulse width is 0.2ms and the repetition rate is 2kHz.
  • the plasma discharge mode is RF discharge, and the plasma RF discharge process
  • the energy output of the control plasma RF is continuous output.
  • the above embodiment 1 to the embodiment 7 The coating prepared by the method has excellent hydrophobicity, oleophobicity, low adhesion and resistance to dissolution by organic solvents, and the test results are as follows:
  • Example 2 Example 3
  • Example 4 Example 5
  • Example 6 Example 7 Water contact angle 125° 128° 130° 118° 115° 120° 123° Adhesion Low adhesion, water droplets slip easily Low adhesion, water droplets slip easily Low adhesion, water droplets slip easily Low adhesion, water droplets slip easily Low adhesion, water droplets slip easily Low adhesion, water droplets slip easily Low adhesion, water droplets slip easily Low adhesion, water droplets slip easily Low adhesion, water droplets slip easily Low adhesion, water droplets slip easily Low adhesion, water droplets slip easily Oil contact angle 104° 105° 99° 87° 75° 95° 100°

Abstract

一种具有多层结构防液涂层的制备方法,包括以下步骤:(1)将基材置于反应腔体内,连续抽真空,通入惰性气体或氮气,(2)分别通入第一单体蒸汽、第二单体蒸汽,开启等离子体放电,制备软涂层和硬涂层;第一单体蒸汽成分为单官能度不饱和氟碳树脂;第二单体蒸汽成分为单官能度不饱和氟碳树脂与至少一种多官能度不饱和烃类衍生物的混合物,重复上述步骤(2)至少2次,在基材表面形成软涂层、硬涂层交替分布的多层结构的涂层。

Description

一种具有多层结构的防液涂层的制备方法
技术领域
本发明属于等离子化学气相沉积技术领域,具体涉及到 一种防液涂层 的制备方法 。
背景技术
聚合物涂层由于经济、易涂装、适用范围广等特点常用于材料表面的防护,可以赋予材料良好的物理、化学耐久性。近年来基于聚合物涂层的阻隔性,其在防液体渗透、腐蚀方面应用颇多。但是聚合物涂层结晶性差,涂层多为无定形,不能有效地阻止液体对涂层的渗透。提高聚合物涂层防渗透性的方法主要有:
( 1 )选用耐渗透性优异的单体制备聚合物涂层。例如美国 Union Carbide Co. 开发应用了一种新型敷形涂层材料,派瑞林涂层(专利),它是一种对二甲苯的聚合物,具有低水、气体渗透性、高屏障效果,能够达到防潮、防水、防锈、抗酸碱腐蚀的作用。
( 2 )聚合物涂层中添加具有片层结构的纳米填料(蒙脱土、石墨烯等)以增加腐蚀性介质在涂层中的渗透路径。专利 CN 201510203553.1 公开了一种片层石墨烯抑制腐蚀性液体渗透的方法。
( 3 )多层复合,通过将不同渗透性材料复合来提高涂层的耐液体渗透性。专利 CN 201010598950.0 通过多层共挤技术制备了一种高阻隔防渗透农药包装膜。
但这些技术仍存在很多不足,如一些高端的防渗透单体,如派瑞林涂层制备存在原料成本高、涂层制备条件苛刻,即高温、高真空度要求、成膜速率低,难以广泛应用;而纳米填料的加入存在分散性差,容易产生涂层缺陷;复合涂层各层间粘合力差,易开裂。
等离子体化学气相沉积( plasma chemical vapor deposition, PCVD )是一种用等离子体激活反应气体,促进在基体表面或近表面空间进行化学反应,生成固态膜的技术。等离子体化学气相沉积法涂层具有:
( 1 )是干式工艺,生成薄膜均匀无针孔。
( 2 )等离子体聚合膜的耐溶剂性、耐化学腐蚀性、耐热性、耐磨损性能等化学、物理性质稳定。
( 3 )等离子体聚合膜与基体黏接性良好。
( 4 )在凹凸极不规则的基材表面也可制成均一薄膜。
( 5 )基材和单体的选择性宽。
基于以上优点,等离子体法聚合物涂层在电子电器、机械部件、服装等防水、防锈、防油、防霉等方面有众多应用。虽然通过等离子体法制备的聚合物涂层为交联涂层具有一定的耐溶剂性、耐化学腐蚀性,但聚合物涂层的防液性还存在不足之处,这主要归因于:
( 1 )等离子体法制备的聚合物涂层中有大量的线性结构,聚合物网络疏松,耐液体溶解、渗透性不足。
( 2 )通过提高等离子体能量或加入交联结构来提高聚合物网络来制备的涂层,硬度较大,在温度变化容易引起涂层开裂,防液性能下降。
发明内容
本发明为解决上述技术问题提供一种具有多层结构的防液涂层的制备方法,通过独立控制等离子化学气相沉积制备具有软、硬间隔的多层结构的聚合物涂层,硬涂层具有优异的阻隔性,软涂层具有优异的蠕变迁移性,软涂层可在变温环境下迁移弥补硬涂层因变形开裂而引起的抗液体渗透性下降的缺陷。此外,由于多层涂层单体成分属于同一类别,相容性明显优于多层贴合,因此涂层各层间的结合力较强。从而提高了等离子体法制备的聚合物涂层的防液性能。
本发明所采用的技术方案如下:
一种具有多层结构的防液涂层的制备方法,其特征在于:包括以下步骤:
( 1 )将基材置于等离子体室的反应腔体内,对反应腔体连续抽真空,将反应腔体内的真空度抽到 10-200 毫托,通入惰性气体或氮气;
( 2 )通入第一单体蒸汽到真空度为 30-300 毫托,开启等离子体放电,进行化学气相沉积,制备第一涂层,即软涂层;软涂层的交联度较低,变形能力强。
停止通入第一单体蒸汽,待真空度降低到 10 毫托以下,目的是为了排出残余的尾气,通入第二单体蒸汽到真空度为 30-300 毫托,开启等离子体放电,进行化学气相沉积,制备第二涂层,即硬涂层;硬涂层交联度大,致密性好,硬度相对较大。
所述第一单体蒸汽成分为单官能度不饱和氟碳树脂;
所述第二单体蒸汽成分为单官能度不饱和氟碳树脂与至少一种多官能度不饱和烃类衍生物的混合物,且所述第二单体中多官能度不饱和烃类衍生物所占质量百分比为 10-80% 。
( 3 )重复上述步骤( 2 )至少 2 次,在基材表面形成软涂层、硬涂层交替分布的多层结构的涂层;
( 4 )停止等离子体放电,停止通入第二单体蒸汽,持续抽真空,保持反应腔体真空度为 10-200 毫托 1-5min 后通入大气至一个大气压,然后取出基材即可。
所述步骤( 1 )中基材为固体材料,所述固体材料包 括电子部件、电器部件、织物或服装。
所述步骤( 1 )中等离子体室的容积为 50-1000L ,等离子体室的温度控制在 30~60 ℃;等离子体在此温度下放电利于单体的聚合。
通入惰性气体或氮气的流量为 5~300sccm ,所述惰性气体为氩气或氦气中的一种,或氩气和氦气的混合物。惰性气体或氮气的目的在于获得稳定的等离子体环境。
所述步骤( 2 )中:
通入第一单体蒸汽为将第一单体通过加料泵进行雾化、挥发,由低压 10-200 毫托引入反应腔体, 所述通入第一单体蒸汽的流量为 10-300 µ L/min ;
通入第二单体蒸汽为将第二单体通过加料泵进行雾化、挥发,由低于 10 毫托压力下引入反应腔体, 所述通入第二单体蒸汽的流量为 10-300 µ L/min 。
所述第一单体为 单官能度不饱和氟碳树脂;所述第二单体为单官能度不饱和氟碳树脂与至少一种多官能度不饱和烃类衍生物的混合物,且所述第二单体中多官能度不饱和烃类衍生物所占质量百分比为 10-80% 。
所述单官能度不饱和氟碳树脂包括:
3-( 全氟 -5- 甲基己基 )-2- 羟基丙基甲基丙烯酸酯、 2-( 全氟癸基 ) 乙基甲基丙烯酸酯、 2-( 全氟己基 ) 乙基甲基丙烯酸酯、 2-( 全氟十二烷基 ) 乙基丙烯酸酯、 2- 全氟辛基丙烯酸乙酯、 1H,1H,2H,2H- 全氟辛醇丙烯酸酯、 2-( 全氟丁基 ) 乙基丙烯酸酯、 (2H- 全氟丙基 )-2- 丙烯酸酯、 ( 全氟环己基 ) 甲基丙烯酸酯、 3,3,3- 三氟 -1- 丙炔、 1- 乙炔基 -3,5- 二氟苯或 4- 乙炔基三氟甲苯。
该单官能度不饱和氟碳树脂具有以下优点:氟碳树脂以牢固的 C-F 键为骨架,同其他树脂相比,其耐热性、耐化学品性、耐寒性、低温柔韧性、耐候性和电性能等均较好,此外还具有不黏附性、不湿润性。故氟碳树脂涂层特别适合用于材料表面的防护,不仅可以赋予材料良好的物理、化学耐久性而且可以赋予材料优异的防水、防油功能,可以广泛应用于分离、光学、医用、电子、精密器械及高档衣物等的涂装领域。
所述多官能度不饱和烃类衍生物包括:
乙氧基化三羟甲基丙烷三丙烯酸酯、二缩三丙二醇二丙烯酸酯、二乙烯苯、聚乙二醇二丙烯酸酯、 1,6- 己二醇二丙烯酸酯、 二丙烯酸乙二醇酯、 二乙二醇二乙烯基醚或二丙烯酸新戊二醇酯。该多官能度不饱和烃类衍生物具有多个交联点,加入后可以增强涂层网络的防护性能。
所述步骤( 2 )中通入第一单体蒸汽之前进行辉光放电对基材进行轰击预处理 , 辉光放电的功率为 2~500W ,放电时间为 300~600s 。该轰击预处理可以清理基材表面的杂质,同时可以活化基材的表面,利于涂层的沉积,提高涂层与基材的结合力。
所述步骤( 2 )中开启等离子体放电的功率为 2-500W ,持续放电时间为 300-600 秒,所述等离子体放电方式为射频放电、微波放电、中频放电或电火花放电。
射频等离子体是利用高频高压使电极周围的空气电离而产生的等离子体。微波法是利用微波的能量激发等离子体,具有能量利用效率高的优点,同时由于无电极放电,等离子体纯净,是目前高质量、高速率、大面积制备的优异方法。
所述等离子体射频放电过程中 控制等离子体射频的能量输出方式为脉冲或连续输出,等离子体射频的能量输出方式为脉冲输出时, 脉宽为 2μs-1ms 、重复频率为 20Hz-10kHz 。
连续式等离子体射频放电沉积的过程等离子体对沉积膜有一定的刻蚀,脉冲射频放电相对连续式给予一定的沉积时间有利于涂层的做厚、致密。
所述步骤( 3 )中重复步骤( 2 )的次数为 3-15 次。
本发明的上述技术方案与现有技术相比具有以下优点:
1 、硬涂层和软涂层相结合的方式,充分提高了涂层的性能
本发明在基材表面上制备了软涂层、硬涂层交替分布的多层结构涂层,该多层结构涂层中的硬涂层具有优异的阻隔性,软涂层具有优异的蠕变迁移性,软涂层可在变温环境下迁移弥补硬涂层因变形开裂而引起的抗液体渗透性下降的缺陷,从而大幅度提高了涂层的防液性和渗透性,该涂层的防液性和渗透性分别提高了 20%-40% 和 30%-45% 。
2 、本发明方法制备的软涂层与硬涂层交替分布的多层结构的防液涂层具有以下优点:
单一硬涂层虽然具有较好的阻隔性,但是在温度及形变下容易发生开裂;单一软涂层阻隔性能差,但是变形能力强。多层交替兼顾两种的优点同时能弥补各自的缺点。硬涂层阻隔性好,可以防渗透,即使变形开裂后软涂层能够补充到开裂位置提高涂层整体防护性能。
具体实施方式
下面结合附图和具体实施例详细说明本发明,但本发明并不局限于具体实施例。
实施例 1
一种具有多层结构的防液涂层的制备方法,其特征在于:包括以下步骤:
( 1 )将基材置于等离子体室的反应腔体内,对反应腔体连续抽真空,将反应腔体内的真空度抽到 10 毫托,通入惰性气体;步骤( 1 )中基材为固体材料,固体材料为 电子部件。
步骤( 1 )中等离子体室的容积为 50L ,等离子体室的温度控制在 30 ℃;通入惰性气体的流量为 5sccm ,惰性气体为氩气。
( 2 )通入第一单体蒸汽到真空度为 30 毫托,开启等离子体放电,进行化学气相沉积,制备第一涂层,即软涂层;
停止通入第一单体蒸汽,待真空度降低到 10 毫托以下,通入第二单体蒸汽到真空度为 30 毫托,开启等离子体放电,进行化学气相沉积,制备第二涂层,即硬涂层;
所述第一单体蒸汽成分为单官能度不饱和氟碳树脂,该单官能度不饱和氟碳树脂为 2- 全氟辛基丙烯酸乙酯 ;
所述第二单体蒸汽成分为单官能度不饱和氟碳树脂与一种多官能度不饱和烃类衍生物的混合物,该单官能度不饱和氟碳树脂为 1H,1H,2H,2H- 全氟辛醇丙烯酸酯 ,该多官能度不饱和烃类衍生物为二乙二醇二乙烯基醚;且第二单体中多官能度不饱和烃类衍生物所占质量百分比为 10% 。
通入第一单体蒸汽为将第一单体通过加料泵进行雾化、挥发,由低压 10 毫托引入反应腔体, 所述通入第一单体蒸汽的流量为 10 µ L/min ;
通入第二单体蒸汽为将第二单体通过加料泵进行雾化、挥发,由低于 10 毫托压力下引入反应腔体, 所述通入第二单体蒸汽的流量为 10 µ L/min 。
步骤( 2 )中通入第一单体蒸汽之前进行辉光放电对基材进行轰击预处理。
步骤( 2 )中开启等离子体放电的功率为 2W ,持续放电时间为 600 秒,等离子体放电方式为射频放电,等离子体射频放电过程中 控制等离子体射频的能量输出方式为脉冲输出, 脉宽为 2μs 、重复频率为 20Hz 。
( 3 )重复上述步骤( 2 ) 2 次,在基材表面形成软涂层、硬涂层交替分布的多层结构的涂层;
( 4 )停止等离子体放电,停止通入第二单体蒸汽,持续抽真空,保持反应腔体真空度为 10 毫托 1min 后通入大气至一个大气压,然后取出基材即可。
实施例 2
本实施例与实施例 1 基本的工艺步骤相同,不同的工艺参数如下:
1 、步骤( 1 )中将反应腔体内的真空度抽到 40 毫托,通入惰性气体;基材为固体材料,固体材料为 电器部件。 等离子体室的容积为 180L ,等离子体室的温度控制在 40 ℃;通入惰性气体的流量为 45sccm ,惰性气体为氦气。
2 、步骤( 2 )中通入第一单体蒸汽到真空度为 80 毫托,通入第二单体蒸汽到真空度为 60 毫托;
第一单体蒸汽成分为单官能度不饱和氟碳树脂,该单官能度不饱和氟碳树脂为 3-( 全氟 -5- 甲基己基 )-2- 羟基丙基甲基丙烯酸酯 ;
第二单体蒸汽成分为单官能度不饱和氟碳树脂与两种多官能度不饱和烃类衍生物的混合物,该单官能度不饱和氟碳树脂为 2- 全氟辛基丙烯酸乙酯 ,该两种多官能度不饱和烃类衍生物为二乙二醇二乙烯基醚和二丙烯酸乙二醇酯;且第二单体中多官能度不饱和烃类衍生物所占质量百分比为 20% ?
通入第一单体蒸汽为将第一单体通过加料泵进行雾化、挥发,由低压 40 毫托引入反应腔体, 所述通入第一单体蒸汽的流量为 50 µ L/min ;
通入第二单体蒸汽为将第二单体通过加料泵进行雾化、挥发,由低于 10 毫托压力下引入反应腔体, 所述通入第二单体蒸汽的流量为 40 µ L/min 。
步骤( 2 )中开启等离子体放电的功率为 30W ,持续放电时间为 500 秒,等离子体放电方式为微波放电。
3 、重复上述步骤( 2 ) 3 次。
4 、保持反应腔体真空度为 60 毫托 2min 后通入大气至一个大气压。
实施例 3
本实施例与实施例 1 基本的工艺步骤相同,不同的工艺参数如下:
1 、步骤( 1 )中将反应腔体内的真空度抽到 100 毫托,通入惰性气体;基材为固体材料,固体材料为 服装。 等离子体室的容积为 350L ,等离子体室的温度控制在 50 ℃;通入惰性气体的流量为 90sccm ,惰性气体为氦气与氩气的混合气体。
2 、步骤( 2 )中通入第一单体蒸汽到真空度为 160 毫托,通入第二单体蒸汽到真空度为 150 毫托;
第一单体蒸汽成分为单官能度不饱和氟碳树脂,该单官能度不饱和氟碳树脂为 2-( 全氟十二烷基 ) 乙基丙烯酸酯 ;
第二单体蒸汽成分为单官能度不饱和氟碳树脂与三种多官能度不饱和烃类衍生物的混合物,该单官能度不饱和氟碳树脂为 2-( 全氟丁基 ) 乙基丙烯酸酯 ,该三种多官能度不饱和烃类衍生物为 乙氧基化三羟甲基丙烷三丙烯酸酯 、 聚乙二醇二丙烯酸酯和二丙烯酸新戊二醇酯 ;且第二单体中多官能度不饱和烃类衍生物所占质量百分比为 34% 。
通入第一单体蒸汽为将第一单体通过加料泵进行雾化、挥发,由低压 100 毫托引入反应腔体, 所述通入第一单体蒸汽的流量为 90 µ L/min ;
通入第二单体蒸汽为将第二单体通过加料泵进行雾化、挥发,由低于 10 毫托压力下引入反应腔体, 所述通入第二单体蒸汽的流量为 80 µ L/min 。
步骤( 2 )中开启等离子体放电的功率为 90W ,持续放电时间为 400 秒,等离子体放电方式为中频放电。
3 、重复上述步骤( 2 ) 7 次。
4 、保持反应腔体真空度为 90 毫托 3min 后通入大气至一个大气压。
实施例 4
本实施例与实施例 1 基本的工艺步骤相同,不同的工艺参数如下:
1 、步骤( 1 )中将反应腔体内的真空度抽到 150 毫托,通入氮气;基材为固体材料,固体材料为 织物。 等离子体室的容积为 650L ,等离子体室的温度控制在 55 ℃;通入氮气的流量为 140sccm 。
2 、步骤( 2 )中通入第一单体蒸汽到真空度为 200 毫托,通入第二单体蒸汽到真空度为 200 毫托;
第一单体蒸汽成分为单官能度不饱和氟碳树脂,该单官能度不饱和氟碳树脂为 3,3,3- 三氟 -1- 丙炔 ;
第二单体蒸汽成分为单官能度不饱和氟碳树脂与三种多官能度不饱和烃类衍生物的混合物,该单官能度不饱和氟碳树脂为 3,3,3- 三氟 -1- 丙炔 ,该三种多官能度不饱和烃类衍生物为 二缩三丙二醇二丙烯酸酯 、 二乙烯苯和聚乙二醇二丙烯酸酯 ;且第二单体中多官能度不饱和烃类衍生物所占质量百分比为 58% 。
通入第一单体蒸汽为将第一单体通过加料泵进行雾化、挥发,由低压 150 毫托引入反应腔体, 所述通入第一单体蒸汽的流量为 160 µ L/min ;
通入第二单体蒸汽为将第二单体通过加料泵进行雾化、挥发,由低于 10 毫托压力下引入反应腔体, 所述通入第二单体蒸汽的流量为 150 µ L/min 。
步骤( 2 )中开启等离子体放电的功率为 320W ,持续放电时间为 350 秒,等离子体放电方式为电火花放电。
3 、重复上述步骤( 2 ) 15 次。
4 、保持反应腔体真空度为 140 毫托 4min 后通入大气至一个大气压。
实施例 5
本实施例与实施例 1 基本的工艺步骤相同,不同的工艺参数如下:
1 、步骤( 1 )中将反应腔体内的真空度抽到 200 毫托,通入惰性气体;基材为固体材料,固体材料为 电子部件。 等离子体室的容积为 1000L ,等离子体室的温度控制在 60 ℃;通入惰性气体的流量为 300sccm ,惰性气体为氩气。
2 、步骤( 2 )中通入第一单体蒸汽到真空度为 300 毫托,通入第二单体蒸汽到真空度为 300 毫托;
第一单体蒸汽成分为单官能度不饱和氟碳树脂,该单官能度不饱和氟碳树脂为 4- 乙炔基三氟甲苯 ;
第二单体蒸汽成分为单官能度不饱和氟碳树脂与四种多官能度不饱和烃类衍生物的混合物,该单官能度不饱和氟碳树脂为 1- 乙炔基 -3,5- 二氟苯 ,该四种多官能度不饱和烃类衍生物为 二乙烯苯、聚乙二醇二丙烯酸酯、 二丙烯酸乙二醇酯和 二乙二醇二乙烯基醚 ;且第二单体中多官能度不饱和烃类衍生物所占质量百分比为 80% 。
通入第一单体蒸汽为将第一单体通过加料泵进行雾化、挥发,由低压 200 毫托引入反应腔体, 所述通入第一单体蒸汽的流量为 300 µ L/min ;
通入第二单体蒸汽为将第二单体通过加料泵进行雾化、挥发,由低于 10 毫托压力下引入反应腔体, 所述通入第二单体蒸汽的流量为 300 µ L/min 。
步骤( 2 )中开启等离子体放电的功率为 500W ,持续放电时间为 300 秒,等离子体放电方式为射频放电,等离子体射频放电过程中 控制等离子体射频的能量输出方式为脉冲输出, 脉宽为 1ms 、重复频率为 10kHz 。
3 、重复上述步骤( 2 ) 20 次。
4 、保持反应腔体真空度为 200 毫托 5min 后通入大气至一个大气压。
实施例 6
本实施例与实施例 5 基本的工艺步骤相同,不同的工艺参数如下:
1 、等离子体放电方式为射频放电,等离子体射频放电过程中 控制等离子体射频的能量输出方式为脉冲输出, 脉宽为 0.2ms 、重复频率为 2kHz 。
实施例 7
本实施例与实施例 5 基本的工艺步骤相同,不同的工艺参数如下:
1 、等离子体放电方式为射频放电,等离子体射频放电过程中 控制等离子体射频的能量输出方式为连续输出。
上述实施例 1 到实施例 7 所述的方法制备得到的涂层具有优异的疏水、疏油、低粘附和耐有机溶剂溶解的性能,测试结果如下:
1 、疏水、疏油、低粘附性测试:
疏水 / 油性
实施例 1 实施例 2 实施例 3 实施例 4 实施例 5 实施例 6 实施例 7
水接触角 125° 128° 130° 118° 115° 120° 123°
粘附性 低粘附,水滴容易滑落 低粘附,水滴容易滑落 低粘附,水滴容易滑落 低粘附,水滴容易滑落 低粘附,水滴容易滑落 低粘附,水滴容易滑落 低粘附,水滴容易滑落
油接触角 104° 105° 99° 87° 75° 95° 100°
2 、 耐有机溶剂溶解的性能测试
耐有机溶剂( IPA )溶解性
膜厚 重量
浸泡前 浸泡 48h 浸泡前 浸泡 48h
实施例 1 123nm 125nm 0.53g 0.54g
实施例 2 120nm 123nm 0.51g 0.51g
实施例 3 100nm 103nm 0.39g 0.38g
实施例 4 203nm 204nm 0.67g 0.65g
实施例 5 198nm 200nm 1.01g 1.00g
实施例 6 103nm 102nm 0.41g 0.45g
实施例 7 203nm 202nm 1.21g 1.20g
耐有机溶剂(乙醇)溶解性
膜厚 重量
浸泡前 浸泡 48h 浸泡前 浸泡 48h
实施例 1 95nm 97nm 0.23g 0.24g
实施例 2 110nm 113nm 0.41g 0.41g
实施例 3 127nm 130nm 0.57g 0.58g
实施例 4 198nm 200nm 0.66g 0.67g
实施例 5 183nm 185nm 0.91g 0.92g
实施例 6 103nm 100nm 0.41g 0.40g
实施例 7 203nm 202nm 1.21g 1.22g
耐有机溶剂(正己烷)溶解性
膜厚 重量
浸泡前 浸泡 48h 浸泡前 浸泡 48h
实施例 1 150nm 152nm 0.63g 0.64g
实施例 2 130nm 133nm 0.51g 0.52g
实施例 3 137nm 135nm 0.77g 0.78g
实施例 4 187nm 188nm 0.61g 0.60g
实施例 5 193nm 194nm 0.90g 0.89g
实施例 6 103nm 102nm 0.77g 0.76g
实施例 7 203nm 204nm 0.61g 0.63g
耐有机溶剂(丙酮)溶解性
膜厚 重量
浸泡前 浸泡 48h 浸泡前 浸泡 48h
实施例 1 90nm 91nm 0.28g 0.30g
实施例 2 101nm 103nm 0.31g 0.33g
实施例 3 125nm 127nm 0.52g 0.53g
实施例 4 205nm 206nm 1.05g 1.06g
实施例 5 81nm 85nm 0.45g 0.48g
实施例 6 103nm 100nm 0.77g 0.77g
实施例 7 203nm 200nm 0.61g 0.62g

Claims (10)

  1. 一种具有多层结构的防液涂层的制备方法,其特征在于:包括以下步骤:
    ( 1 )将基材置于等离子体室的反应腔体内,对反应腔体连续抽真空,将反应腔体内的真空度抽到 10-200 毫托,通入惰性气体或氮气;
    ( 2 )通入第一单体蒸汽到真空度为 30-300 毫托,开启等离子体放电,进行化学气相沉积,制备第一涂层,即软涂层;
    停止通入第一单体蒸汽,待真空度降低到 10 毫托以下,通入第二单体蒸汽到真空度为 30-300 毫托,开启等离子体放电,进行化学气相沉积,制备第二涂层,即硬涂层;
    所述第一单体蒸汽成分为单官能度不饱和氟碳树脂;
    所述第二单体蒸汽成分为单官能度不饱和氟碳树脂与至少一种多官能度不饱和烃类衍生物的混合物,且所述第二单体中多官能度不饱和烃类衍生物所占质量百分比为 10-80% 。
    ( 3 )重复上述步骤( 2 )至少 2 次,在基材表面形成软涂层、硬涂层交替分布的多层结构的涂层;
    ( 4 )停止等离子体放电,停止通入第二单体蒸汽,持续抽真空,保持反应腔体真空度为 10-200 毫托 1-5min 后通入大气至一个大气压,然后取出基材即可。
  2. 根据权利要求 1 所述的 一种具有多层结构的防液涂层的制备方法,其特征在于:所述步骤( 1 )中基材为固体材料,所述固体材料包 括电子部件、电器部件、织物或服装。
  3. 根据权利要求 1 所述的 一种具有多层结构的防液涂层的制备方法,其特征在于:所述步骤( 1 )中等离子体室的容积为 50-1000L ,等离子体室的温度控制在 30~60 ℃;通入惰性气体或氮气的流量为 5~300sccm ,所述惰性气体为氩气或氦气中的一种,或氩气和氦气的混合物。
  4. 根据权利要求 1 所述的 一种具有多层结构的防液涂层的制备方法,其特征在于:所述步骤( 2 )中:
    通入第一单体蒸汽为将第一单体通过加料泵进行雾化、挥发,由低压 10-200 毫托引入反应腔体, 所述通入第一单体蒸汽的流量为 10-300 µ L/min ;
    通入第二单体蒸汽为将第二单体通过加料泵进行雾化、挥发,由低于 10 毫托压力下引入反应腔体, 所述通入第二单体蒸汽的流量为 10-300 µ L/min 。
  5. 根据权利要求 4 所述的 一种具有多层结构的防液涂层的制备方法,其特征在于:所述第一单体为 单官能度不饱和氟碳树脂;所述第二单体为单官能度不饱和氟碳树脂与至少一种多官能度不饱和烃类衍生物的混合物,且所述第二单体中多官能度不饱和烃类衍生物所占质量百分比为 10-80% 。
  6. 根据权利要求 1 或 5 所述的 一种具有多层结构的防液涂层的制备方法,其特征在于:
    所述单官能度不饱和氟碳树脂包括:
    3-( 全氟 -5- 甲基己基 )-2- 羟基丙基甲基丙烯酸酯、 2-( 全氟癸基 ) 乙基甲基丙烯酸酯、 2-( 全氟己基 ) 乙基甲基丙烯酸酯、 2-( 全氟十二烷基 ) 乙基丙烯酸酯、 2- 全氟辛基丙烯酸乙酯、 1H,1H,2H,2H- 全氟辛醇丙烯酸酯、 2-( 全氟丁基 ) 乙基丙烯酸酯、 (2H- 全氟丙基 )-2- 丙烯酸酯、 ( 全氟环己基 ) 甲基丙烯酸酯、 3,3,3- 三氟 -1- 丙炔、 1- 乙炔基 -3,5- 二氟苯或 4- 乙炔基三氟甲苯;
    所述多官能度不饱和烃类衍生物包括:
    乙氧基化三羟甲基丙烷三丙烯酸酯、二缩三丙二醇二丙烯酸酯、二乙烯苯、聚乙二醇二丙烯酸酯、 1,6- 己二醇二丙烯酸酯、 二丙烯酸乙二醇酯、 二乙二醇二乙烯基醚或二丙烯酸新戊二醇酯。
  7. 根据权利要求 1 所述的 一种具有多层结构的防液涂层的制备方法,其特征在于:所述步骤( 2 )中通入第一单体蒸汽之前进行辉光放电对基材进行轰击预处理。
  8. 根据权利要求 1 所述的 一种具有多层结构的防液涂层的制备方法,其特征在于:所述步骤( 2 )中开启等离子体放电的功率为 2-500W ,持续放电时间为 300-600 秒,所述等离子体放电方式为射频放电、微波放电、中频放电或电火花放电。
  9. 根据权利要求 8 所述的 一种具有多层结构的防液涂层的制备方法,其特征在于:所述等离子体射频放电过程中 控制等离子体射频的能量输出方式为脉冲或连续输出,等离子体射频的能量输出方式为脉冲输出时, 脉宽为 2μs-1ms 、重复频率为 20Hz-10kHz 。
  10. 根据权利要求 1 所述的 一种具有多层结构的防液涂层的制备方法,其特征在于:所述步骤( 3 )中重复步骤( 2 )的次数为 3-15 次。
PCT/CN2017/081795 2017-01-23 2017-04-25 一种具有多层结构的防液涂层的制备方法 WO2018133238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710049296.X 2017-01-23
CN201710049296.XA CN107058982B (zh) 2017-01-23 2017-01-23 一种具有多层结构防液涂层的制备方法

Publications (1)

Publication Number Publication Date
WO2018133238A1 true WO2018133238A1 (zh) 2018-07-26

Family

ID=59599188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081795 WO2018133238A1 (zh) 2017-01-23 2017-04-25 一种具有多层结构的防液涂层的制备方法

Country Status (2)

Country Link
CN (1) CN107058982B (zh)
WO (1) WO2018133238A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109267039B (zh) * 2018-10-24 2019-11-29 江苏菲沃泰纳米科技有限公司 一种聚氨酯纳米涂层及其制备方法
CN109267041B (zh) * 2018-10-24 2020-04-21 江苏菲沃泰纳米科技有限公司 一种防静电防液纳米涂层及其制备方法
CN109354903B (zh) * 2018-10-24 2020-01-17 江苏菲沃泰纳米科技有限公司 一种高透明低色差纳米涂层及其制备方法
CN109433543A (zh) * 2018-10-24 2019-03-08 江苏菲沃泰纳米科技有限公司 一种聚酰亚胺纳米涂层及其制备方法
CN110665768B (zh) 2019-07-26 2022-04-26 江苏菲沃泰纳米科技股份有限公司 防水纳米膜及其制备方法、应用和产品
CN112331817B (zh) * 2020-08-14 2022-08-23 安徽德亚电池有限公司 一种电极材料的制备方法
CN115569819A (zh) * 2022-08-31 2023-01-06 宁波大学 一种水下超亲油的表面功能化涂层及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322264A (zh) * 1998-09-07 2001-11-14 宝洁公司 具有超级疏水涂层的纺织品和衣服
CN1539896A (zh) * 2003-10-30 2004-10-27 复旦大学 一种改进高分子基底水阻隔性的方法
CN102686769A (zh) * 2010-01-04 2012-09-19 德国罗特·劳股份有限公司 用于沉积多层式层和/或梯度层的方法
CN104718258A (zh) * 2012-08-13 2015-06-17 欧洲等离子公司 表面涂层

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224948B1 (en) * 1997-09-29 2001-05-01 Battelle Memorial Institute Plasma enhanced chemical deposition with low vapor pressure compounds
US6217659B1 (en) * 1998-10-16 2001-04-17 Air Products And Chemical, Inc. Dynamic blending gas delivery system and method
US20030173545A1 (en) * 2000-04-10 2003-09-18 Mamoru Hino Composition for antistatic hard coat, antistatic hard coat, process for producing the same, and multilayered film with antistatic hard coat
US20050271893A1 (en) * 2004-06-04 2005-12-08 Applied Microstructures, Inc. Controlled vapor deposition of multilayered coatings adhered by an oxide layer
US8080312B2 (en) * 2006-06-22 2011-12-20 Kennametal Inc. CVD coating scheme including alumina and/or titanium-containing materials and method of making the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322264A (zh) * 1998-09-07 2001-11-14 宝洁公司 具有超级疏水涂层的纺织品和衣服
CN1539896A (zh) * 2003-10-30 2004-10-27 复旦大学 一种改进高分子基底水阻隔性的方法
CN102686769A (zh) * 2010-01-04 2012-09-19 德国罗特·劳股份有限公司 用于沉积多层式层和/或梯度层的方法
CN104718258A (zh) * 2012-08-13 2015-06-17 欧洲等离子公司 表面涂层

Also Published As

Publication number Publication date
CN107058982B (zh) 2018-06-19
CN107058982A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2018133238A1 (zh) 一种具有多层结构的防液涂层的制备方法
WO2018133236A1 (zh) 一种低粘附、耐蚀涂层的制备方法
WO2018133235A1 (zh) 一种梯度递减结构防液涂层的制备方法
WO2018133233A1 (zh) 一种交联度可控的涂层的制备方法
WO2018133239A1 (zh) 一种防尘表面的制备方法
WO2015196738A1 (zh) 氮化碳改性二氧化钛超亲水多孔薄膜及其制备方法与应用
WO2018133234A1 (zh) 一种梯度递增结构防液涂层的制备方法
US4933060A (en) Surface modification of fluoropolymers by reactive gas plasmas
WO2017193561A1 (zh) 一种栅控等离子体引发气相聚合表面涂层的装置及方法
JP2007165883A (ja) 有機シリコン酸化膜及び多層レジスト構造を形成するための方法
US20100189923A1 (en) Method of forming hardmask by plasma cvd
EP3569733A1 (en) Method for preparing waterproof and electric breakdown-resistant coating
US9992875B2 (en) Coated electrical assembly
US20090130330A1 (en) Method for producing Functional Fluorocarbon Polymer Layers by Means of Plasma Polymerization of Perfluorocycloalkanes
WO2018098980A1 (zh) 一种等离子体聚合涂层装置
KR950012616A (ko) 반도체 장치의 식각 공정동안 불순물을 제어하기 위한 중합체 증착 방법
US20120257364A1 (en) Coated Electrical Assembly
CN112236473B (zh) 分散液、带树脂的金属箔的制造方法、及印刷基板的制造方法
WO2021187724A1 (ko) 수소 도핑된 액체금속 산화물을 포함하는 전도성 액체금속 미세입자, 그를 포함하는 전도성 잉크 및 그의 제조방법
CN111954921A (zh) 用于图案化应用的碳硬掩模及相关的方法
CN109267038A (zh) 一种耐磨自交联的纳米涂层及其制备方法
WO2018120018A1 (zh) 一种pvc表/里面印刷热复合水墨涂料
WO2016086660A1 (zh) 基于压密技术制成的新型硬木
JP2005209771A (ja) 薄膜製造装置及びその方法
WO2020076138A1 (ko) 복합 코팅액, 이를 이용하여 제조된 금속 기판 구조체, 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893073

Country of ref document: EP

Kind code of ref document: A1