WO2018133236A1 - 一种低粘附、耐蚀涂层的制备方法 - Google Patents

一种低粘附、耐蚀涂层的制备方法 Download PDF

Info

Publication number
WO2018133236A1
WO2018133236A1 PCT/CN2017/081791 CN2017081791W WO2018133236A1 WO 2018133236 A1 WO2018133236 A1 WO 2018133236A1 CN 2017081791 W CN2017081791 W CN 2017081791W WO 2018133236 A1 WO2018133236 A1 WO 2018133236A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
discharge
unsaturated hydrocarbon
monomer
preparing
Prior art date
Application number
PCT/CN2017/081791
Other languages
English (en)
French (fr)
Inventor
宗坚
Original Assignee
江苏菲沃泰纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏菲沃泰纳米科技有限公司 filed Critical 江苏菲沃泰纳米科技有限公司
Publication of WO2018133236A1 publication Critical patent/WO2018133236A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515

Definitions

  • the invention belongs to the technical field of plasma chemical vapor deposition, and in particular relates to a preparation method of a low adhesion and corrosion resistant coating.
  • Metal and non-metallic materials are highly susceptible to corrosion by acid-base solutions in special acid-base environments, which greatly reduce the mechanical properties (plasticity, strength, toughness, etc.) of the material, destroy the geometric shape of the components, and increase the inter-component Wear and tear, reduce optical and electrical physical properties, etc., shorten the service life of the equipment and even cause safety accidents. Therefore, in order to improve the service life of materials and reduce production costs, it is necessary to take effective anti-corrosion measures.
  • Polymer coatings are often used for material surface protection due to their economical, easy-to-coat and wide application range, which can give materials good physical and chemical durability.
  • the protective film formed on the surface of the protected material can effectively isolate the contact between the material and the corrosive liquid, protect the material from erosion and damage, thereby improving the reliability and safety of the material. Coefficient and guarantee its service life.
  • the conventional coating has a large contact area with these solutions, and the adhesion is high, so the corrosive liquid has a large permeation area, which increases the permeation path of the corrosive liquid.
  • Super lyophobic surface due to its excellent lyophobicity (liquid contact angle) >150°), low liquid adhesion (rolling angle ⁇ 10°) is widely used in fields such as flow drag reduction, self-cleaning, anti-fog, anti-frost and anti-corrosion.
  • the corrosion protection of the material is achieved by the excellent barrier property of the super-lyophobic coating on the corrosive liquid to inhibit the permeation damage of the corrosive medium to the coating.
  • the super-lyophobic (superhydrophobic, super oleophobic) coating is difficult to prepare, selective to the substrate, poorly bonded to the substrate, and high in cost, and difficult to apply on a large scale.
  • Plasma chemical vapor deposition It is a technique of activating a reaction gas with a plasma to promote a chemical reaction on a surface of a substrate or a near surface to form a solid film.
  • the plasma chemical vapor deposition coating has:
  • the plasma polymerization film is stable in chemical and physical properties such as solvent resistance, chemical corrosion resistance, heat resistance, and abrasion resistance.
  • the plasma polymerization film has good adhesion to the substrate.
  • a uniform film can also be formed on the surface of the substrate having irregular irregularities.
  • the invention provides a preparation method of a low adhesion and corrosion resistant coating for solving the above technical problems.
  • the plasma chemical vapor deposition technology can control the deposition rate of a monomer to form a dense and rough coating on the surface of the substrate.
  • a method for preparing a low adhesion and corrosion resistant coating comprising the steps of:
  • the monomer vapor component introduced in the step (2) is:
  • the substrate in the step (1) is a metal product, and the metal product is copper, iron, aluminum, magnesium and alloy products thereof.
  • the volume of the plasma chamber in the step (1) is 50-1000 L, and the temperature of the plasma chamber is controlled at 30-60 ° C. The plasma is discharged at this temperature to facilitate polymerization of the monomer.
  • the flow rate of inert gas or nitrogen is 5 ⁇ 300sccm
  • the inert gas is one of argon or helium or a mixture of argon and helium.
  • the purpose of the inert gas or nitrogen is to obtain a stable plasma environment.
  • the monomer is:
  • a mixture of at least one polyfunctional unsaturated hydrocarbon derivative and at least one polyfunctional unsaturated hydrocarbon derivative is provided.
  • the monofunctional unsaturated fluorocarbon resin includes:
  • the fluorocarbon resin coating is particularly suitable for the protection of the surface of the material, not only can give the material good physical and chemical durability, and can impart excellent waterproof and oil proof functions to the material, and can be widely applied to separation, optics, medical, electronics, The field of painting of precision instruments and high-end clothing.
  • the polyfunctional unsaturated hydrocarbon derivative includes:
  • the polyfunctional unsaturated hydrocarbon derivative has a plurality of crosslinking points which, when added, enhance the protective properties of the coating network.
  • a glow discharge is performed before the first monomer vapor is introduced, and the substrate is subjected to bombardment pretreatment, and the power of the glow discharge is 2 ⁇ 500W, discharge time is 300 ⁇ 600s.
  • the bombardment pretreatment can clean impurities on the surface of the substrate, and at the same time, activate the surface of the substrate, facilitate deposition of the coating, and improve the adhesion of the coating to the substrate.
  • the plasma discharge mode described in the above is radio frequency discharge, microwave discharge, intermediate frequency discharge or electric spark discharge.
  • the radio frequency plasma is a plasma generated by ionizing the air around the electrode with high frequency and high voltage.
  • the microwave method utilizes the energy of the microwave to excite the plasma, and has the advantages of high energy utilization efficiency.
  • the electrodeless discharge and the plasma are pure, it is an excellent method for high-quality, high-rate, large-area preparation.
  • the energy output mode of controlling the plasma radio frequency in the plasma radio frequency discharge process is pulse or continuous output, and the energy output mode of the plasma radio frequency is pulse output, the pulse width is 2 ⁇ s-1 ms, and the repetition frequency is 20Hz-10kHz.
  • the process plasma of continuous plasma RF discharge deposition has a certain etching on the deposited film, and the pulsed RF discharge gives a certain deposition time in a continuous manner, which is beneficial to the thickness and compactness of the coating.
  • the introduction of the polyfunctional cross-linking structure allows the coating to form a dense network structure.
  • the plasma polymerization uses a monofunctional monomer to obtain a coating of a loose structure.
  • the crosslinked structure is formed by a plurality of active sites formed by random interruption of the monomer during plasma glow discharge to form a crosslinked structure.
  • an additional crosslinking point is introduced by introducing other monomer components having a polyfunctional crosslinked structure to form a crosslinked structure.
  • the higher energy active groups in the monomer component are broken to form active sites, and the additional active sites introduced are cross-linked in a plasma environment to form a low solid surface energy fluorocarbon. polymer.
  • the deposition rate is controlled to construct a multi-stage structure in which micrometers and nanometers are combined with a certain roughness on the surface of the low surface energy substance.
  • the method of the invention has universal applicability in large-area preparation on the surface of various metals and alloy substrates. Corrosive liquids are easily slipped off from such low adhesion lyophobic surfaces, reducing the contact area of corrosive liquids with the coating, reducing the accumulation of corrosive liquids on the coating surface and reducing the penetration of corrosive liquids into the coating. Corrosion inhibition.
  • a method for preparing a low adhesion and corrosion resistant coating comprising the steps of:
  • the substrate is a metal product
  • the metal product is a copper product
  • the volume of the plasma chamber in step (1) is 1000L, the temperature of the plasma chamber is controlled at 30 °C; the flow rate of the inert gas is 5 sccm, the inert gas is argon.
  • the monomer vapor component introduced in the step (2) is:
  • the monofunctional unsaturated fluorocarbon resin is: 2-(perfluorohexyl)ethyl methacrylate;
  • the polyfunctional unsaturated hydrocarbon derivatives are: diethylene glycol divinyl ether and neopentyl glycol diacrylate.
  • step (2)
  • the monomer steam is introduced into the reaction chamber by atomizing and volatilizing the monomer through a feed pump, and the flow rate of the monomer vapor is 10 ⁇ L/min;
  • the substrate is subjected to bombardment pretreatment by performing glow discharge before the first monomer vapor is introduced in the step (2).
  • Step ( 2 The plasma discharge mode is radio frequency discharge, and the energy output mode of controlling the plasma radio frequency during the plasma RF discharge process is pulse output, the pulse width is 2 ⁇ s, and the repetition frequency is 20 Hz.
  • step (1) 1.
  • the vacuum in the reaction chamber is pumped to 40 mTorr, and an inert gas is introduced; the metal product is iron; the volume of the plasma chamber is 870L.
  • the temperature of the plasma chamber was controlled at 35 ° C; the flow rate of the inert gas was 15 sccm, and the inert gas was helium.
  • step (2) 1.
  • the monomer vapor is introduced to a vacuum of 80 mTorr, and the plasma discharge is turned on.
  • the plasma discharge power is 25 W, and the discharge time is 5800s, chemical vapor deposition, preparation of dense coating; after the deposition of dense coating, the power of plasma discharge is adjusted to 220W, the discharge time is 780s;
  • the monomer vapor component introduced in the step (2) is:
  • the monofunctional unsaturated fluorocarbon resin is: 3-(perfluoro-5-methylhexyl)-2-hydroxypropyl methacrylate, 2- Ethyl perfluorooctyl acrylate and 1H, 1H, 2H, 2H-perfluorooctyl acrylate;
  • the polyfunctional unsaturated hydrocarbon derivative is: polyethylene glycol diacrylate
  • step (2)
  • the monomer steam is introduced into the reaction chamber by atomizing and volatilizing the monomer through a feed pump, and the flow rate of the monomer vapor is 50 ⁇ L/min;
  • Step ( 2 The plasma discharge mode is radio frequency discharge, and the energy output mode of controlling the plasma radio frequency during the plasma RF discharge process is pulse output, the pulse width is 1 ms, and the repetition frequency is 10 kHz.
  • step (3) keep the vacuum of the reaction chamber at 40 mTorr for 2 min and then pass to the atmosphere to an atmospheric pressure.
  • step (1) 1.
  • the vacuum in the reaction chamber is pumped to 90 mTorr, and an inert gas is introduced; the metal product is an aluminum product; the volume of the plasma chamber is 680 L.
  • the temperature of the plasma chamber was controlled at 40 ° C; the flow rate of the inert gas was 50 sccm, and the inert gas was a mixture of helium and argon.
  • step (2) 1.
  • the monomer vapor is introduced to a vacuum of 160 mTorr, and the plasma discharge is turned on.
  • the plasma discharge power is 60 W
  • the discharge time is At 4500s
  • chemical vapor deposition was performed to prepare a dense coating. After the deposition of the dense coating was completed, the power of the plasma discharge was adjusted to 300 W and the discharge time was 650 s.
  • the monomer vapor component introduced in the step (2) is:
  • the monofunctional unsaturated fluorocarbon resin is: 2-(perfluorohexyl)ethyl methacrylate, 2-(perfluorododecyl) Ethyl acrylate, 3,3,3-trifluoro-1-propyne and 1-ethynyl-3,5-difluorobenzene;
  • the polyfunctional unsaturated hydrocarbon derivative is: 1,6-hexanediol diacrylate and neopentyl glycol diacrylate;
  • step (2)
  • the monomer steam is introduced into the reaction chamber by atomizing and volatilizing the monomer through a feed pump, and the flow rate of the monomer vapor is 160 ⁇ L/min;
  • Step ( 2 The plasma discharge mode is radio frequency discharge, and the energy output mode of controlling the plasma radio frequency during the plasma radio frequency discharge process is continuous output.
  • step (3) keep the vacuum of the reaction chamber at 80 mTorr for 3 min and then pass to the atmosphere to an atmospheric pressure.
  • step (1) 1.
  • the vacuum in the reaction chamber is pumped to 150 mTorr, and nitrogen gas is introduced; the metal product is magnesium; the volume of the plasma chamber is 560L.
  • the temperature of the plasma chamber was controlled at 45 ° C; the flow rate of nitrogen gas was 150 sccm.
  • step (2) 1.
  • the monomer vapor is introduced to a vacuum of 200 mTorr, and the plasma discharge is turned on.
  • the plasma discharge power is 120 W, and the discharge time is 2400s, chemical vapor deposition, preparation of dense coating; after the deposition of dense coating, the power of plasma discharge is adjusted to 400W, and the discharge time is 320s;
  • the monomer vapor component introduced in the step (2) is:
  • the monofunctional unsaturated fluorocarbon resin is: 2-(perfluorohexyl)ethyl methacrylate, 2-(perfluorododecyl) Ethyl acrylate, 1H, 1H, 2H, 2H-perfluorooctyl acrylate, 3,3,3-trifluoro-1-propyne and 4-ethynylbenzotrifluoride;
  • the polyfunctional unsaturated hydrocarbon derivatives are: ethoxylated trimethylolpropane triacrylate, divinylbenzene and ethylene glycol diacrylate
  • step (2)
  • the monomer steam is introduced into the reaction chamber by atomizing and volatilizing the monomer through a feed pump, and the flow rate of the monomer vapor is 450 ⁇ L/min;
  • the plasma discharge mode in the step (2) is an electric spark discharge
  • step (3) keep the vacuum of the reaction chamber at 110 mTorr for 4 min and then pass to the atmosphere to an atmospheric pressure.
  • step (1) 1.
  • the vacuum in the reaction chamber is pumped to 180 mTorr, and an inert gas is introduced; the metal product is a copper alloy product; the volume of the plasma chamber is 240L, the temperature of the plasma chamber is controlled at 55 ° C; the flow rate of the inert gas is 220 sccm, and the inert gas is argon.
  • step (2) 1.
  • the monomer vapor is introduced to a vacuum of 250 mTorr, and the plasma discharge is turned on.
  • the plasma discharge power is 130 W, and the discharge time is 1500s, chemical vapor deposition, preparation of dense coating; after the deposition of dense coating, the power of plasma discharge is adjusted to 450W, the discharge time is 180s;
  • the monomer vapor component introduced in the step (2) is:
  • the polyfunctional unsaturated hydrocarbon derivative is: diethylene glycol divinyl ether;
  • the polyfunctional unsaturated hydrocarbon derivative is: tripropylene glycol diacrylate
  • step (2)
  • the plasma discharge mode in the step (2) is an intermediate frequency discharge
  • step (3) keep the vacuum of the reaction chamber at 140 mTorr for 4 min and then pass to the atmosphere to an atmospheric pressure.
  • step (1) 1.
  • the vacuum in the reaction chamber is pumped to 200 mTorr, and an inert gas is introduced; the metal product is an aluminum alloy product; the volume of the plasma chamber is 50L.
  • the temperature of the plasma chamber was controlled at 60 ° C; the flow rate of the inert gas was 300 sccm, and the inert gas was argon gas.
  • step (2) 1.
  • the monomer vapor is introduced to a vacuum of 300 mTorr, and the plasma discharge is turned on.
  • the plasma discharge power is 150 W, and the discharge time is 600s, chemical vapor deposition, preparation of dense coating; after the deposition of dense coating, the power of plasma discharge is adjusted to 500W, and the discharge time is 60s;
  • the monomer vapor component introduced in the step (2) is:
  • the polyfunctional unsaturated hydrocarbon derivative is: tripropylene glycol diacrylate, divinylbenzene and diethylene glycol divinyl ether;
  • the polyfunctional unsaturated hydrocarbon derivative is: 1,6-hexanediol diacrylate
  • step (2)
  • the monomer steam is introduced to atomize and volatilize the monomer through the feed pump, and the low pressure is 200.
  • the millitorr is introduced into the reaction chamber, and the flow rate of the monomer vapor is 1000 ⁇ L/min;
  • the plasma discharge mode in the step (2) is a microwave discharge
  • step (3) keep the vacuum of the reaction chamber at 200 mTorr for 5 min and then pass to the atmosphere to an atmospheric pressure.
  • Example 1 Alkali resistance (sodium acetate) corrosion time (h)
  • Example 2 Example 3 96
  • Example 4 100
  • Example 5 160
  • Example 6 148
  • Example 1 Salt tolerance (5% sodium chloride solution) Corrosion time ( h ) Example 1 144 Example 2 160 Example 3 143 Example 4 130 Example 5 160 Example 6 180

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Polymerisation Methods In General (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种在金属基材表面形成低粘附、耐蚀涂层的制备方法,包括:(1)将基材置于等离子体室的反应腔体内,连续抽真空,通入惰性气体或氮气;(2)通入单体蒸汽,开启等离子体放电,进行化学气相沉积,制备致密涂层;致密涂层沉积完成后,调节等离子体放电的功率和放电时间,制备粗糙涂层;在基材表面上制备内层为致密涂层、外层为粗糙涂层的低粘附、耐蚀涂层;单体蒸汽成分为:至少一种单官能度不饱和氟碳树脂和至少一种多官能度不饱和烃类衍生物的混合物;或至少一种多官能度不饱和烃类衍生物和至少一种多官能度不饱和烃类衍生物的混合物;(3)停止等离子体放电,停止通入单体蒸汽,持续抽真空 1-5min后通入大气至一个大气压,然后取出基材即可。

Description

一种低粘附、耐蚀涂层的制备方法
技术领域
本发明属于等离子化学气相沉积技术领域,具体涉及到 一种低粘附、耐蚀涂层的制备方法。
背景技术
金属以及非金属材料在特殊的酸碱盐环境中极易受到酸碱盐溶液的腐蚀而大幅度降低材料的力学性能(塑性、强度、韧性等),破坏构件的几何外形,增加零部件间的磨损,降低光学和电学物理性能等,使设备的使用寿命缩短,甚至带来安全事故。所以,为了提高材料的使用寿命、减少生产成本,采取有效的防腐蚀措施是十分有必要的。
聚合物涂层由于经济、易涂装、适用范围广等特点常用于材料表面的防护,可以赋予材料良好的物理、化学耐久性。基于聚合物涂层的阻隔性,其在被保护材料表面形成的保护膜可有效地隔离材料与腐蚀性液体的接触,可保护材料免遭侵蚀、破坏,从而提高材料的可靠性,增加其安全系数,并保证其使用寿命。但是,传统的涂层与这些溶液接触面积较大,粘附作用较高,故腐蚀性液体渗透面积较大,增加了腐蚀性液体的渗透路径。超疏液表面由于它具有优异的疏液性(对液体接触角 >150° )、低液体粘附力(滚动角 <10° )在流动减阻、自清洁、防雾、抗霜、防腐蚀等领域得到广泛应用。近年来有众多研究及专利, CN201410331901.9 、 CN201310331586.5 等,通过超疏液涂层对腐蚀性液体的优异阻隔性能来抑制腐蚀介质对涂层的渗透破坏来实现对材料的腐蚀防护。而超疏液(超疏水、超疏油)涂层制备困难、对基体的有选择性、与基体的结合力差、成本高难以大规模应用。
等离子体化学气相沉积( plasma chemical vapor deposition, PCVD )是一种用等离子体激活反应气体,促进在基体表面或近表面空间进行化学反应,生成固态膜的技术。等离子体化学气相沉积法涂层具有:
( 1 )是干式工艺,生成薄膜均匀无针孔。
( 2 )等离子体聚合膜的耐溶剂性、耐化学腐蚀性、耐热性、耐磨损性能等化学、物理性质稳定。
( 3 )等离子体聚合膜与基体黏接性良好。
( 4 )在凹凸极不规则的基材表面也可制成均一薄膜。
( 5 )基材和单体的选择性宽。
发明内容
本发明为解决上述技术问题提供一种低粘附、耐蚀涂层的制备方法,通过等离子体化学气相沉积技术,控制单体的沉积速率可以在基材表面制备致密与粗糙涂层结合的具有多级结构的低粘附疏液表面。
本发明所采用的技术方案如下:
一种低粘附、耐蚀涂层的制备方法,其特征在于:包括以下步骤:
( 1 )将基材置于等离子体室的反应腔体内,对反应腔体连续抽真空,将反应腔体内的真空度抽到 10-200 毫托,通入惰性气体或氮气;
( 2 )通入单体蒸汽到真空度为 30-300 毫托,开启等离子体放电,等离子体放电的功率为 2~150W ,放电时间为 600~7200s , 进行化学气相沉积,制备致密涂层;致密涂层沉积完成后,调节等离子体放电的功率为 160~500W ,放电时间为 60~1000s , 进行化学气相沉积,制备粗糙涂层;在基材表面上制备内层为致密涂层、外层为粗糙涂层的低粘附、耐蚀涂层;
所述步骤( 2 )中通入的单体蒸汽成分为:
至少一种单官能度不饱和氟碳树脂和至少一种多官能度不饱和烃类衍生物的混合物,所述单体蒸汽中多官能度不饱和烃类衍生物所占的质量分数为 10%-80% ;
至少一种多官能度不饱和烃类衍生物和至少一种多官能度不饱和烃类衍生物的混合物;
( 3 )停止等离子体放电,停止通入单体蒸汽,持续抽真空,保持反应腔体真空度为 10-200 毫托 1-5min 后通入大气至一个大气压,然后取出基材即可。
所述步骤( 1 )中基材为金属制品,所述金属制品为铜、铁、铝、镁及其合金制品。
所述步骤( 1 )中等离子体室的容积为 50-1000L ,等离子体室的温度控制在 30~60℃ ;等离子体在此温度下放电利于单体的聚合。
通入惰性气体或氮气的流量为 5~300sccm ,所述惰性气体为氩气或氦气中的一种,或氩气和氦气的混合物。惰性气体或氮气的目的在于获得稳定的等离子体环境。
所述步骤( 2 )中:
通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压 10-200 毫托引入反应腔体,所述通入单体蒸汽的流量为 10-1000µL/min ;
所述单体为:
至少一种单官能度不饱和氟碳树脂和至少一种多官能度不饱和烃类衍生物的混合物,所述单体蒸汽中多官能度不饱和烃类衍生物所占的质量分数为 10%-80% ;
至少一种多官能度不饱和烃类衍生物和至少一种多官能度不饱和烃类衍生物的混合物。
所述单官能度不饱和氟碳树脂包括:
3-( 全氟 -5- 甲基己基 )-2- 羟基丙基甲基丙烯酸酯、 2-( 全氟癸基 ) 乙基甲基丙烯酸酯、 2-( 全氟己基 ) 乙基甲基丙烯酸酯、 2-( 全氟十二烷基 ) 乙基丙烯酸酯、 2- 全氟辛基丙烯酸乙酯、 1H,1H,2H,2H- 全氟辛醇丙烯酸酯、 2-( 全氟丁基 ) 乙基丙烯酸酯、 (2H- 全氟丙基 )-2- 丙烯酸酯、 ( 全氟环己基 ) 甲基丙烯酸酯、 3,3,3- 三氟 -1- 丙炔、 1- 乙炔基 -3,5- 二氟苯或 4- 乙炔基三氟甲苯;该单官能度不饱和氟碳树脂具有以下优点:氟碳树脂以牢固的 C-F 键为骨架,同其他树脂相比,其耐热性、耐化学品性、耐寒性、低温柔韧性、耐候性和电性能等均较好,此外还具有不黏附性、不湿润性。故氟碳树脂涂层特别适合用于材料表面的防护,不仅可以赋予材料良好的物理、化学耐久性而且可以赋予材料优异的防水、防油功能,可以广泛应用于分离、光学、医用、电子、精密器械及高档衣物等的涂装领域。
所述多官能度不饱和烃类衍生物包括:
乙氧基化三羟甲基丙烷三丙烯酸酯、二缩三丙二醇二丙烯酸酯、二乙烯苯、聚乙二醇二丙烯酸酯、 1,6- 己二醇二丙烯酸酯、二丙烯酸乙二醇酯、二乙二醇二乙烯基醚或二丙烯酸新戊二醇酯。该多官能度不饱和烃类衍生物具有多个交联点,加入后可以增强涂层网络的防护性能。
所述步骤( 2 )中通入第一单体蒸汽之前进行辉光放电对基材进行轰击预处理 , 辉光放电的功率为 2~500W ,放电时间为 300~600s 。该轰击预处理可以清理基材表面的杂质,同时可以活化基材的表面,利于涂层的沉积,提高涂层与基材的结合力。
所述步骤( 2 )中所述等离子体放电方式为射频放电、微波放电、中频放电或电火花放电。射频等离子体是利用高频高压使电极周围的空气电离而产生的等离子体。微波法是利用微波的能量激发等离子体,具有能量利用效率高的优点,同时由于无电极放电,等离子体纯净,是目前高质量、高速率、大面积制备的优异方法。
所述等离子体射频放电过程中控制等离子体射频的能量输出方式为脉冲或连续输出,等离子体射频的能量输出方式为脉冲输出时,脉宽为 2μs-1ms 、重复频率为 20Hz-10kHz 。连续式等离子体射频放电沉积的过程等离子体对沉积膜有一定的刻蚀,脉冲射频放电相对连续式给予一定的沉积时间有利于涂层的做厚、致密。
本发明的上述技术方案与现有技术相比具有以下优点:
1 、多官能团交联结构的引入使得涂层形成致密的网状结构,一般等离子体聚合选用单官能度单体,得到疏松结构的涂层。交联结构是由于单体在等离子体辉光放电时随机被打断形成的众多活性点通过交互连接的方式而形成交联结构。在这一基础上通过引入带有多官能团交联结构的其他单体组分而引入额外的交联点以形成交联结构。
2 、等离子体辉光放电时,单体组分中能量较高的活性基团被打断形成活性点,被引入的额外活性点在等离子环境下相互交联,形成低的固体表面能的氟碳聚合物。同时控制沉积速率在低表面能物质的表面上构建有一定粗糙度的微米与纳米相结合的多级结构。
3 、本发明方法具有普适性在多种金属及合金基体表面大面积制备。腐蚀性液体极易从这种低粘附疏液表面滑落,降低腐蚀性液体与涂层的接触面积,减少腐蚀性液体在涂层表面的聚集从而降低腐蚀性液体对涂层的渗透,实现对腐蚀的抑制作用。
具体实施方式
下面结合附图和具体实施例详细说明本发明,但本发明并不局限于具体实施例。
实施例 1
一种低粘附、耐蚀涂层的制备方法,其特征在于:包括以下步骤:
( 1 )将基材置于等离子体室的反应腔体内,对反应腔体连续抽真空,将反应腔体内的真空度抽到 10 毫托,通入惰性气体;
步骤( 1 )中基材为金属制品,所述金属制品为铜制品。
步骤( 1 )中等离子体室的容积为 1000L ,等离子体室的温度控制在 30℃ ;通入惰性气体的流量为 5sccm ,所述惰性气体为氩气。
( 2 )通入单体蒸汽到真空度为 30 毫托,开启等离子体放电,等离子体放电的功率为 2W ,放电时间为 7200s , 进行化学气相沉积,制备致密涂层;致密涂层沉积完成后,调节等离子体放电的功率为 160W ,放电时间为 1000s , 进行化学气相沉积,制备粗糙涂层;在基材表面上制备内层为致密涂层、外层为粗糙涂层的低粘附、耐蚀涂层;
所述步骤( 2 )中通入的单体蒸汽成分为:
一种单官能度不饱和氟碳树脂和两种多官能度不饱和烃类衍生物的混合物,所述单体蒸汽中多官能度不饱和烃类衍生物所占的质量分数为 10% ;
所述单官能度不饱和氟碳树脂为: 2-( 全氟己基 ) 乙基甲基丙烯酸酯;
所述多官能度不饱和烃类衍生物为:二乙二醇二乙烯基醚和二丙烯酸新戊二醇酯。
步骤( 2 )中:
通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压 10 毫托引入反应腔体,所述通入单体蒸汽的流量为 10µL/min ;
步骤( 2 )中通入第一单体蒸汽之前进行辉光放电对基材进行轰击预处理。
步骤( 2 )中所述等离子体放电方式为射频放电,等离子体射频放电过程中控制等离子体射频的能量输出方式为脉冲输出,脉宽为 2μs 、重复频率为 20Hz 。
( 3 )停止等离子体放电,停止通入单体蒸汽,持续抽真空,保持反应腔体真空度为 10 毫托 1min 后通入大气至一个大气压,然后取出基材即可。
实施例 2
本实施例与实施例 1 基本的工艺步骤相同,不同的工艺参数如下:
1 、步骤( 1 )中:
将反应腔体内的真空度抽到 40 毫托,通入惰性气体;金属制品为铁制品;等离子体室的容积为 870L ,等离子体室的温度控制在 35℃ ;通入惰性气体的流量为 15sccm ,所述惰性气体为氦气。
2 、步骤( 2 )中:
通入单体蒸汽到真空度为 80 毫托,开启等离子体放电,等离子体放电的功率为 25W ,放电时间为 5800s , 进行化学气相沉积,制备致密涂层;致密涂层沉积完成后,调节等离子体放电的功率为 220W ,放电时间为 780s ;
所述步骤( 2 )中通入的单体蒸汽成分为:
三种单官能度不饱和氟碳树脂和一种多官能度不饱和烃类衍生物的混合物,所述单体蒸汽中多官能度不饱和烃类衍生物所占的质量分数为 25% ;
所述单官能度不饱和氟碳树脂为: 3-( 全氟 -5- 甲基己基 )-2- 羟基丙基甲基丙烯酸酯、、 2- 全氟辛基丙烯酸乙酯和 1H,1H,2H,2H- 全氟辛醇丙烯酸酯;
所述多官能度不饱和烃类衍生物为:聚乙二醇二丙烯酸酯;
步骤( 2 )中:
通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压 40 毫托引入反应腔体,所述通入单体蒸汽的流量为 50µL/min ;
步骤( 2 )中所述等离子体放电方式为射频放电,等离子体射频放电过程中控制等离子体射频的能量输出方式为脉冲输出,脉宽为 1ms 、重复频率为 10kHz 。
3 、步骤( 3 )中:保持反应腔体真空度为 40 毫托 2min 后通入大气至一个大气压。
实施例 3
本实施例与实施例 1 基本的工艺步骤相同,不同的工艺参数如下:
1 、步骤( 1 )中:
将反应腔体内的真空度抽到 90 毫托,通入惰性气体;金属制品为铝制品;等离子体室的容积为 680L ,等离子体室的温度控制在 40℃ ;通入惰性气体的流量为 50sccm ,所述惰性气体为氦气和氩气的混合物。
2 、步骤( 2 )中:
通入单体蒸汽到真空度为 160 毫托,开启等离子体放电,等离子体放电的功率为 60W ,放电时间为 4500s , 进行化学气相沉积,制备致密涂层;致密涂层沉积完成后,调节等离子体放电的功率为 300W ,放电时间为 650s ;
所述步骤( 2 )中通入的单体蒸汽成分为:
四种单官能度不饱和氟碳树脂和二种多官能度不饱和烃类衍生物的混合物,所述单体蒸汽中多官能度不饱和烃类衍生物所占的质量分数为 45% ;
所述单官能度不饱和氟碳树脂为: 2-( 全氟己基 ) 乙基甲基丙烯酸酯、 2-( 全氟十二烷基 ) 乙基丙烯酸酯、 3,3,3- 三氟 -1- 丙炔和 1- 乙炔基 -3,5- 二氟苯;
所述多官能度不饱和烃类衍生物为: 1,6- 己二醇二丙烯酸酯和二丙烯酸新戊二醇酯;
步骤( 2 )中:
通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压 90 毫托引入反应腔体,所述通入单体蒸汽的流量为 160µL/min ;
步骤( 2 )中所述等离子体放电方式为射频放电,等离子体射频放电过程中控制等离子体射频的能量输出方式为连续输出。
3 、步骤( 3 )中:保持反应腔体真空度为 80 毫托 3min 后通入大气至一个大气压。
实施例 4
本实施例与实施例 1 基本的工艺步骤相同,不同的工艺参数如下:
1 、步骤( 1 )中:
将反应腔体内的真空度抽到 150 毫托,通入氮气;金属制品为镁制品;等离子体室的容积为 560L ,等离子体室的温度控制在 45℃ ;通入氮气的流量为 150sccm 。
2 、步骤( 2 )中:
通入单体蒸汽到真空度为 200 毫托,开启等离子体放电,等离子体放电的功率为 120W ,放电时间为 2400s , 进行化学气相沉积,制备致密涂层;致密涂层沉积完成后,调节等离子体放电的功率为 400W ,放电时间为 320s ;
所述步骤( 2 )中通入的单体蒸汽成分为:
五种单官能度不饱和氟碳树脂和三种多官能度不饱和烃类衍生物的混合物,所述单体蒸汽中多官能度不饱和烃类衍生物所占的质量分数为 80% ;
所述单官能度不饱和氟碳树脂为: 2-( 全氟己基 ) 乙基甲基丙烯酸酯、 2-( 全氟十二烷基 ) 乙基丙烯酸酯、 1H,1H,2H,2H- 全氟辛醇丙烯酸酯、 3,3,3- 三氟 -1- 丙炔和 4- 乙炔基三氟甲苯;
所述多官能度不饱和烃类衍生物为:乙氧基化三羟甲基丙烷三丙烯酸酯、二乙烯苯和二丙烯酸乙二醇酯
步骤( 2 )中:
通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压 150 毫托引入反应腔体,所述通入单体蒸汽的流量为 450µL/min ;
步骤( 2 )中所述等离子体放电方式为电火花放电;
3 、步骤( 3 )中:保持反应腔体真空度为 110 毫托 4min 后通入大气至一个大气压。
实施例 5
本实施例与实施例 1 基本的工艺步骤相同,不同的工艺参数如下:
1 、步骤( 1 )中:
将反应腔体内的真空度抽到 180 毫托,通入惰性气体;金属制品为铜合金制品;等离子体室的容积为 240L ,等离子体室的温度控制在 55℃ ;通入惰性气体的流量为 220sccm ,所述惰性气体为氩气。
2 、步骤( 2 )中:
通入单体蒸汽到真空度为 250 毫托,开启等离子体放电,等离子体放电的功率为 130W ,放电时间为 1500s , 进行化学气相沉积,制备致密涂层;致密涂层沉积完成后,调节等离子体放电的功率为 450W ,放电时间为 180s ;
所述步骤( 2 )中通入的单体蒸汽成分为:
一种多官能度不饱和烃类衍生物和一种多官能度不饱和烃类衍生物的混合物;
所述 一种多官能度不饱和烃类衍生物为:二乙二醇二乙烯基醚;
所述一种多官能度不饱和烃类衍生物为:二缩三丙二醇二丙烯酸酯;
步骤( 2 )中:
通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压 180 毫托引入反应腔体,所述通入单体蒸汽的流量为 800µL/min ;
步骤( 2 )中所述等离子体放电方式为中频放电;
3 、步骤( 3 )中:保持反应腔体真空度为 140 毫托 4min 后通入大气至一个大气压。
实施例 6
本实施例与实施例 1 基本的工艺步骤相同,不同的工艺参数如下:
1 、步骤( 1 )中:
将反应腔体内的真空度抽到 200 毫托,通入惰性气体;金属制品为铝合金制品;等离子体室的容积为 50L ,等离子体室的温度控制在 60℃ ;通入惰性气体的流量为 300sccm ,所述惰性气体为氩气。
2 、步骤( 2 )中:
通入单体蒸汽到真空度为 300 毫托,开启等离子体放电,等离子体放电的功率为 150W ,放电时间为 600s , 进行化学气相沉积,制备致密涂层;致密涂层沉积完成后,调节等离子体放电的功率为 500W ,放电时间为 60s ;
所述步骤( 2 )中通入的单体蒸汽成分为:
三种多官能度不饱和烃类衍生物和一种多官能度不饱和烃类衍生物的混合物;
所述 一种多官能度不饱和烃类衍生物为:二缩三丙二醇二丙烯酸酯、二乙烯苯和二乙二醇二乙烯基醚;
所述一种多官能度不饱和烃类衍生物为: 1,6- 己二醇二丙烯酸酯;
步骤( 2 )中:
通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压 200 毫托引入反应腔体,所述通入单体蒸汽的流量为 1000µL/min ;
步骤( 2 )中所述等离子体放电方式为微波放电;
3 、步骤( 3 )中:保持反应腔体真空度为 200 毫托 5min 后通入大气至一个大气压。
上述实施例 1 到实施例 6 得到的低粘附、耐蚀性进行测试,制备的涂层对水滴的滚动角较小,具有优异的低粘附性,同时具有优异的疏水性,结果如下:
水接触角 水粘附性 油接触角
实施例 1 145° 滚动角 10° ,不粘水 105°
实施例 2 148° 滚动角 15° ,不粘水 97°
实施例 3 140° 滚动角 15° ,不粘水 103°
实施例 4 142° 滚动角 23° ,不沾水 101°
实施例 5 133° 滚动角 35° ,沾水 70°
实施例 6 126 滚动角 55° ,沾水 65°
耐酸碱盐溶液腐蚀性测试结果如下:
耐酸性(醋酸)锈蚀时间( h )
实施例 1 102
实施例 2 144
实施例 3 118
实施例 4 90
实施例 5 120
实施例 6 150
耐碱性(醋酸钠)锈蚀时间( h )
实施例 1 148
实施例 2 126
实施例 3 96
实施例 4 100
实施例 5 160
实施例 6 148
耐盐性( 5% 氯化钠溶液)
锈蚀时间( h )
实施例 1 144
实施例 2 160
实施例 3 143
实施例 4 130
实施例 5 160
实施例 6 180

Claims (9)

  1. 一种低粘附、耐蚀涂层的制备方法,其特征在于:包括以下步骤:
    ( 1 )将基材置于等离子体室的反应腔体内,对反应腔体连续抽真空,将反应腔体内的真空度抽到 10-200 毫托,通入惰性气体或氮气;
    ( 2 )通入单体蒸汽到真空度为 30-300 毫托,开启等离子体放电, 等离子体放电的功率为 2~150W ,放电时间为 600~7200s , 进行化学气相沉积,制备致密涂层;致密涂层沉积完成后,调节 等离子体放电的功率为 160~500W ,放电时间为 60~1000s , 进行化学气相沉积,制备粗糙涂层;在基材表面上制备内层为致密涂层、外层为粗糙涂层的低粘附、耐蚀涂层;
    所述步骤( 2 )中 通入的单体蒸汽成分为:
    至少一种单官能度不饱和氟碳树脂和至少一种多官能度不饱和烃类衍生物的混合物,所述单体蒸汽中多官能度不饱和烃类衍生物所占的质量分数为 10%-80% ;
    至少一种多官能度不饱和烃类衍生物和至少一种多官能度不饱和烃类衍生物的混合物;
    ( 3 )停止等离子体放电,停止通入单体蒸汽,持续抽真空,保持反应腔体真空度为 10-200 毫托 1-5min 后通入大气至一个大气压,然后取出基材即可。
  2. 根据权利要求 1 所述的 一种低粘附、耐蚀涂层的制备方法,其特征在于:所述步骤( 1 )中基材为金属制品,所述金属制品为 铜、铁、铝、镁及其合金制品。
  3. 根据权利要求 1 所述的 一种低粘附、耐蚀涂层的制备方法,其特征在于:所述步骤( 1 )中等离子体室的容积为 50-1000L ,等离子体室的温度控制在 30~60 ℃;通入惰性气体或氮气的流量为 5~300sccm ,所述惰性气体为氩气或氦气中的一种,或氩气和氦气的混合物。
  4. 根据权利要求 1 所述的 一种低粘附、耐蚀涂层的制备方法,其特征在于:所述步骤( 2 )中:
    通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压 10-200 毫托引入反应腔体, 所述通入单体蒸汽的流量为 10-1000 µ L/min ;
  5. 根据权利要求 4 所述的 一种低粘附、耐蚀涂层的制备方法,其特征在于:所述单体为:
    至少一种单官能度不饱和氟碳树脂和至少一种多官能度不饱和烃类衍生物的混合物,所述单体蒸汽中多官能度不饱和烃类衍生物所占的质量分数为 10%-80% ;
    至少一种多官能度不饱和烃类衍生物和至少一种多官能度不饱和烃类衍生物的混合物。
  6. 根据权利要求 1 或 5 所述的 一种低粘附、耐蚀涂层的制备方法,其特征在于:
    所述单官能度不饱和氟碳树脂包括:
    3-( 全氟 -5- 甲基己基 )-2- 羟基丙基甲基丙烯酸酯、 2-( 全氟癸基 ) 乙基甲基丙烯酸酯、 2-( 全氟己基 ) 乙基甲基丙烯酸酯、 2-( 全氟十二烷基 ) 乙基丙烯酸酯、 2- 全氟辛基丙烯酸乙酯、 1H,1H,2H,2H- 全氟辛醇丙烯酸酯、 2-( 全氟丁基 ) 乙基丙烯酸酯、 (2H- 全氟丙基 )-2- 丙烯酸酯、 ( 全氟环己基 ) 甲基丙烯酸酯、 3,3,3- 三氟 -1- 丙炔、 1- 乙炔基 -3,5- 二氟苯或 4- 乙炔基三氟甲苯;
    所述多官能度不饱和烃类衍生物包括:
    乙氧基化三羟甲基丙烷三丙烯酸酯、二缩三丙二醇二丙烯酸酯、二乙烯苯、聚乙二醇二丙烯酸酯、 1,6- 己二醇二丙烯酸酯、 二丙烯酸乙二醇酯、 二乙二醇二乙烯基醚或二丙烯酸新戊二醇酯。
  7. 根据权利要求 1 所述的 一种低粘附、耐蚀涂层的制备方法,其特征在于:所述步骤( 2 )中通入第一单体蒸汽之前进行辉光放电对基材进行轰击预处理。
  8. 根据权利要求 1 所述的 一种低粘附、耐蚀涂层的制备方法,其特征在于:所述步骤( 2 )中所述等离子体放电方式为射频放电、微波放电、中频放电或电火花放电。
  9. 根据权利要求 8 所述的 一种低粘附、耐蚀涂层的制备方法,其特征在于:所述等离子体射频放电过程中 控制等离子体射频的能量输出方式为脉冲或连续输出,等离子体射频的能量输出方式为脉冲输出时, 脉宽为 2μs-1ms 、重复频率为 20Hz-10kHz 。
PCT/CN2017/081791 2017-01-23 2017-04-25 一种低粘附、耐蚀涂层的制备方法 WO2018133236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710049243.8 2017-01-23
CN201710049243.8A CN107058981B (zh) 2017-01-23 2017-01-23 一种低粘附、耐蚀涂层的制备方法

Publications (1)

Publication Number Publication Date
WO2018133236A1 true WO2018133236A1 (zh) 2018-07-26

Family

ID=59598389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081791 WO2018133236A1 (zh) 2017-01-23 2017-04-25 一种低粘附、耐蚀涂层的制备方法

Country Status (2)

Country Link
CN (1) CN107058981B (zh)
WO (1) WO2018133236A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108554745B (zh) * 2018-03-28 2021-09-28 中国科学院宁波材料技术与工程研究所 一种dlc膜层的表面处理方法
CN109267040B (zh) * 2018-10-24 2020-03-31 江苏菲沃泰纳米科技有限公司 一种丙烯酰胺纳米涂层及其制备方法
CN109433543A (zh) * 2018-10-24 2019-03-08 江苏菲沃泰纳米科技有限公司 一种聚酰亚胺纳米涂层及其制备方法
CN109267039B (zh) * 2018-10-24 2019-11-29 江苏菲沃泰纳米科技有限公司 一种聚氨酯纳米涂层及其制备方法
CN109267038B (zh) * 2018-10-24 2019-12-06 江苏菲沃泰纳米科技有限公司 一种耐磨自交联的纳米涂层及其制备方法
CN109830492B (zh) * 2019-01-28 2021-05-14 深圳奥拦科技有限责任公司 Cob摄像头模组及其封装方法
CN110397775B (zh) * 2019-08-05 2020-10-02 周天桥 一种化工领域防内层粘附双联开启取样阀
CN112812611B (zh) * 2020-12-30 2022-04-15 广东粤港澳大湾区黄埔材料研究院 一种导电涂层的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320062A (zh) * 1998-07-24 2001-10-31 英国国防部 表面涂层
CN1322264A (zh) * 1998-09-07 2001-11-14 宝洁公司 具有超级疏水涂层的纺织品和衣服
CN1539896A (zh) * 2003-10-30 2004-10-27 复旦大学 一种改进高分子基底水阻隔性的方法
CN102686769A (zh) * 2010-01-04 2012-09-19 德国罗特·劳股份有限公司 用于沉积多层式层和/或梯度层的方法
CN104718258A (zh) * 2012-08-13 2015-06-17 欧洲等离子公司 表面涂层

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0406049D0 (en) * 2004-03-18 2004-04-21 Secr Defence Surface coatings
US8771806B2 (en) * 2005-07-09 2014-07-08 Bang-Kwon Kang Surface coating method for hydrophobic and superhydrophobic treatment in atmospheric pressure plasma
EP2422887A1 (en) * 2010-08-27 2012-02-29 Oticon A/S A method of coating a surface with a water and oil repellant polymer layer
DK2457670T3 (en) * 2010-11-30 2017-09-25 Oticon As Method and apparatus for low pressure plasma induced coating
CN107058980B (zh) * 2017-01-23 2018-04-27 江苏菲沃泰纳米科技有限公司 一种防尘表面的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320062A (zh) * 1998-07-24 2001-10-31 英国国防部 表面涂层
CN1322264A (zh) * 1998-09-07 2001-11-14 宝洁公司 具有超级疏水涂层的纺织品和衣服
CN1539896A (zh) * 2003-10-30 2004-10-27 复旦大学 一种改进高分子基底水阻隔性的方法
CN102686769A (zh) * 2010-01-04 2012-09-19 德国罗特·劳股份有限公司 用于沉积多层式层和/或梯度层的方法
CN104718258A (zh) * 2012-08-13 2015-06-17 欧洲等离子公司 表面涂层

Also Published As

Publication number Publication date
CN107058981A (zh) 2017-08-18
CN107058981B (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
WO2018133236A1 (zh) 一种低粘附、耐蚀涂层的制备方法
WO2018133238A1 (zh) 一种具有多层结构的防液涂层的制备方法
WO2018133239A1 (zh) 一种防尘表面的制备方法
WO2018133235A1 (zh) 一种梯度递减结构防液涂层的制备方法
WO2018133233A1 (zh) 一种交联度可控的涂层的制备方法
EP3569733B1 (en) Method for preparing waterproof and electric breakdown-resistant coating
WO2014077632A1 (ko) 무기 도료 조성물 및 이를 이용한 무기 도막의 형성방법
US4728529A (en) Method of producing diamond-like carbon-coatings
JP2006245510A5 (zh)
US11127568B2 (en) Plasma etching apparatus
WO2018133234A1 (zh) 一种梯度递增结构防液涂层的制备方法
CN112959224A (zh) 一种靶材喷砂后防氧化的方法
WO2017193561A1 (zh) 一种栅控等离子体引发气相聚合表面涂层的装置及方法
WO2020082678A1 (zh) 一种耐磨自交联的纳米涂层及其制备方法
CN113976529A (zh) 一种铜靶材的清洗方法
JPS59184527A (ja) 気相法装置
Yu et al. Engineering the surface and interface of Parylene C coatings by low-temperature plasmas
RU2554838C2 (ru) Способ очистки для установок нанесения покрытий
Barth et al. Adjustment of plasma properties in magnetron sputtering by pulsed powering in unipolar/bipolar hybrid pulse mode
KR101087514B1 (ko) 드라이 에칭 방법
RU2012100186A (ru) Способ нанесения на металлические детали комплексного защитного покрытия против воздействия водорода
Török et al. Surface cleaning and corrosion protection using plasma technology
TWI699441B (zh) 大氣常壓低溫電漿鍍製抗刮疏水層的方法
JP2006117995A (ja) スパッタ装置
US8691380B2 (en) Coated article and method for making the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892574

Country of ref document: EP

Kind code of ref document: A1