RU2554838C2 - Способ очистки для установок нанесения покрытий - Google Patents

Способ очистки для установок нанесения покрытий Download PDF

Info

Publication number
RU2554838C2
RU2554838C2 RU2012136472/02A RU2012136472A RU2554838C2 RU 2554838 C2 RU2554838 C2 RU 2554838C2 RU 2012136472/02 A RU2012136472/02 A RU 2012136472/02A RU 2012136472 A RU2012136472 A RU 2012136472A RU 2554838 C2 RU2554838 C2 RU 2554838C2
Authority
RU
Russia
Prior art keywords
coating
release layer
cleaning
layer
auxiliary surfaces
Prior art date
Application number
RU2012136472/02A
Other languages
English (en)
Other versions
RU2012136472A (ru
Inventor
Петер НЕФФ
Original Assignee
Эрликон Серфиз Солюшнз Аг, Трюббах
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эрликон Серфиз Солюшнз Аг, Трюббах filed Critical Эрликон Серфиз Солюшнз Аг, Трюббах
Publication of RU2012136472A publication Critical patent/RU2012136472A/ru
Application granted granted Critical
Publication of RU2554838C2 publication Critical patent/RU2554838C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4407Cleaning of reactor or reactor parts by using wet or mechanical methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Изобретение относится к способу очистки вспомогательных поверхностей установок для нанесения покрытий, которые содержат камеру для нанесения покрытия. Перед нанесением покрытия наносят антиадгезионный слой на вспомогательные поверхности камеры для нанесения покрытия. После нанесения покрытия осуществляют обработку вспомогательных поверхностей с помощью струйной обработки сухим льдом и/или снегом CO2. В результате упрощается очистка поверхности детали и при этом исключается их износ. 3 з.п. ф-лы, 4 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к способу очистки для установок нанесения покрытий, в частности вакуумных установок нанесения покрытий. При нанесении покрытия в камерах для нанесения покрытия, как правило, принудительно покрываются также поверхности, покрытие которых нежелательно. Такими поверхностями могут быть, например, части камеры, а также части покрываемых подложек, а также поверхности держателя и прочие вспомогательные поверхности. После нанесения одного или нескольких покрытий их нужно очищать, как правило, с большим трудом. Это необходимо, в частности, в том случае, когда у нежелательно покрытых деталей в процессе нанесения покрытия возникает изменение поверхностных свойств, например электропроводности. С помощью способа согласно изобретению эта очистка сильно упрощается. В рамках настоящей заявки нежелательно покрываемые поверхности называются вспомогательными поверхностями, тогда как намеренно покрываемые поверхности называются целевыми поверхностями. Вспомогательные поверхности находятся под разными электрическими потенциалами, такими как ток подмагничивания, с осуществлением изоляции или с заземлением. Это ведет к тому, что на вспомогательных поверхностях образуются покрытия с разной величиной сцепления.
Предшествующий уровень техники
Из уровня техники известно, что такие нежелательные покрытия удаляют различными способами, такими как, например, пескоструйная обработка, шлифование, очистка щетками или даже дополнительная механическая обработка или химические процессы снятия покрытия. Все эти способы являются популярной, широко применяющейся в данной отрасли практикой. С одной стороны, из-за зачастую сильной адгезии этих нежелательных покрытий к вспомогательным поверхностям их почти полное удаление требует очень много времени. В некоторых случаях вспомогательные поверхности требуется чистить после каждой операции нанесения покрытия (цикла). Некоторые требуют таких способов очистки, как, например, жидкостное химическое удаление покрытий или пескоструйная обработка.
Кроме того, следует отметить, что все абразивные способы очистки (пескоструйная обработка, шлифование и так далее) означают дополнительный сильный износ материала обрабатываемых компонентов. Это дополнительно приводит к очень высоким расходам на обслуживание (замена изношенных компонентов).
Кроме того, износ материала ведет к снижению надежности процесса, так как при этом при известных обстоятельствах более не соблюдаются механические допуски, релевантные для процесса нанесения покрытия.
Известен способ удаления загрязнений или покрытий на поверхностях с помощью струйной обработки сухим льдом. При этом в качестве среды для струйной обработки применяются твердые кристаллы льда CO2. В результате снятия давления на выходе сопла в жидком CO2 образуется снег CO2, который ускоряется до сверхзвуковой скорости с помощью внешней обрамляющей струи сжатого воздуха и направляется на очищаемую поверхность. Согласно WO02/072313, можно также удалять покрытия. Однако при толщине слоя менее 2 мкм возникают проблемы, так как термомеханические эффекты струи сухого льда при такой толщине проявляются не в полной мере. Соответственно, для очистки деталей установок для нанесений покрытий физическим осаждением из газовой фазы (PVD - physical vapor deposition) или установок для нанесений покрытий химическим осаждением из газовой фазы (CVD - chemical vapor deposition) эти способы до сих пор не применялись.
Документ WO 08/040819 описывает усовершенствование указанного выше способа очистки струями сухого льда, сводящееся к тому, что на требующей очищения поверхности предусматривается функциональный слой, с которым загрязнения сцепляются в меньшей степени по сравнению с их сцеплением с очищаемой поверхностью. В качестве функционального слоя предлагается слой, полученный полимеризацией в плазме. В качестве загрязнений в данной заявке в общем упоминаются как органические, так и неорганические материалы, которые нужно удалять. Функциональный слой имеет в данном случае меньшую теплопроводность, чем очищаемый предмет, и загрязнения на функциональном слое удерживаются менее прочно, чем на поверхности предмета, находящейся под функциональным слоем. Однако в таких условиях усиливаются некоторые недостатки, связанные с установками для нанесения покрытий физическим или химическим осаждением из газовой фазы:
- в процессе нанесения покрытия, то есть при работе вакуумной камеры, загрязнения должны очень хорошо сцепляться с поверхностью, так как иначе отслаивание может привести к тому, что нежелательным образом будут загрязняться сами покрываемые подложки;
- в вакуумных камерах вследствие вакуума устанавливаются очень низкие температуры, которые при запуске процесса нанесения покрытия могут внезапно очень резко возрастать. Покрытие с низкой теплопроводностью при таких колебаниях температуры может очень быстро повредиться;
- слой, полученный полимеризацией в плазме, сам наносится в рамках CVD-процесса. Поэтому при известных условиях следует ожидать сходства свойств функционального слоя и загрязнений;
- слой, полученный полимеризацией в плазме, не проводит электричество. Однако детали камеры для нанесения покрытия должны, как правило, иметь проводящую поверхность, чтобы не оказывать отрицательного влияния на электрические и/или магнитные условия для процесса нанесения покрытия.
Постановка технической задачи для настоящего изобретения
Таким образом, было бы желательным разработать способ, устраняющий, по меньшей мере частично, недостатки предшествующего уровня техники. Конкретно, было бы желательным разработать упрощенный способ очистки вспомогательных поверхностей, который, кроме того, можно было бы реализовать с существенно меньшими временными затратами и который не приводил бы к износу материала очищаемых деталей.
Решение поставленной задачи
Основная идея настоящего изобретения состоит в том, чтобы подвергнуть вспомогательные поверхности предварительной обработке еще до операции нанесения покрытия так, чтобы при последующем процессе нанесения покрытия адгезия материала покрытия к вспомогательным поверхностям сильно снижалась по сравнению с адгезией без предварительной обработки. Таким образом, очистка сильно упрощается.
Такая предварительная обработка, согласно изобретению, может состоять, например, в том, чтобы нанести на вспомогательные поверхности соответствующий "антиадгезионный слой". Антиадгезионный слой отличается низкой адгезией к вспомогательным поверхностям или низкой адгезией к загрязнениям на антиадгезионном слое. Так как антиадгезионный слой после нанесения собственно покрытия находится между вспомогательной поверхностью и материалом, нанесенным в процессе покрытия, то сцепление материала покрытия сильно снижается. В зависимости от типа процесса нанесения покрытия, антиадгезионный слой должен быть термостойким, электропроводящим и безопасным с точки зрения вакуумной техники. В частности, безвредность для вакуумной техники является необходимым условием для PVD-процессов. Предпочтительно, нанесение антиадгезионного слоя не должно оказывать отрицательного влияния на свойства собственно слоя, находящегося на целевой поверхности.
Для очистки может применяться, как описано выше, способ струйной обработки сухим льдом. Сам этот способ очистки достаточно известен специалисту, например, из WO08/040819 или WO02/072312 и поэтому не раскрывается подробнее.
Подробное описание изобретения
Ниже изобретение поясняется подробнее на примерах и с помощью чертежей.
На фиг.1 схематически показан процесс предварительной обработки согласно изобретению.
На фиг.2 схематически показан пример применения маскирующего шаблона.
На фиг.3 схематически показан упрощенный процесс очистки после операции нанесения покрытия.
На фиг.4 схематически показано сечение поверхности, снабженной антиадгезионным слоем и покрытием.
Нижеследующее описание ограничивается PVD-процессом, при этом рамки изобретения не ограничиваются таким процессом.
Для такого PVD-процесса важно, чтобы антиадгезионный слой был пригоден для вакуума. Это означает, однако, что в антиадгезионном слое не должно иметься никаких связующих или подобных вспомогательных веществ.
Авторы изобретения обнаружили, что, согласно первому варианту осуществления настоящего изобретения, этого можно достичь, если при нанесении антиадгезионного слоя на вспомогательные поверхности использовать суспензию порошка в легколетучем растворителе при соответствующем соотношении составных компонентов смеси. Легколетучий растворитель не должен образовывать химического соединения с применяющимся порошком или с обрабатываемой поверхностью. Благодаря применению летучего растворителя в качестве несущей среды суспензии обеспечивается то, что растворитель уже непосредственно после процесса напыления полностью улетучивается и на поверхности остается только слабо сцепляющийся слой порошка. В качестве растворителя очень хорошо подходит, например, изопропанол.
Кроме того, авторы изобретения обнаружили, что в качестве материала для порошка подходит чистый графит. Графитовый порошок, в частности, является достаточно термостойким, электропроводящим, выдерживает вакуум, имеет антиадгезионные свойства и поэтому может использоваться в PVD-процессе.
Нанесение покрытия проводится, например, напылением с помощью пистолета-распылителя. Это можно осуществлять без газа или с газом. В последнем случае подходит, наряду с прочим, воздух, азот или также CO2. Важные в процессе напыления факторы воздействия (например, давление распыления, размер сопла пистолета, соотношение компонентов смеси в суспензии, расстояние, на котором производится распыление, и продолжительность распыления) могут быть согласованы в широком диапазоне, чтобы для большого числа применений обеспечить равномерное нанесение слоя соответствующей толщины. В зависимости от применения возможны также другие способы нанесения (промазывание, погружение и прочее).
Антиадгезионный слой обеспечивает то, что материал покрытия, нанесенный во время PVD-процесса на обработанные вспомогательные поверхности, можно по существу полностью удалить после PVD-процесса, как описано выше, используя способ струйной обработки сухим льдом. Это можно осуществить посредством струйной обработки гранулами или снегом CO2. Следующая возможность состоит в том, чтобы применить обработку смешанной струей из сухого льда и воды, как это описано в DE102006002653. Прочей дополнительной обработки не требуется, вспомогательные поверхности можно немедленно снова снабдить новым антиадгезионным слоем для последующего применения.
Благодаря высокой эффективности и простоте в применении возможны самые разнообразные применения, например, в условиях PVD-процесса.
При электродуговом распылении часто применяются так называемые удерживающие кольца. Они окружают мишень источника испарения, содержащую материал покрытия, и служат для того, чтобы электрическая дуга была ограничена зоной поверхности мишени. Из-за близости колец к материалу мишени в процессе нанесения покрытия способом PVD на них самих осаждается много материала покрытия, и для их очистки до сих пор требовались очень агрессивные методы, такие как, например, пескоструйная обработка или даже дополнительная обработка резкой. Благодаря нанесению, согласно изобретению, графитового порошка сохраняется необходимая электропроводность. Материал покрытия, нанесенный в PVD-процессе, находится на слое графита. Графитовый слой, включая покрытие, можно легко удалить с удерживающего кольца.
Это же относится к подложкодержателям, которые удерживают покрываемые подложки в процессе нанесения покрытия. Из-за их пространственной близости к покрываемым подложкам они также покрываются в значительной степени. До сих пор подложкодержатели после нанесения покрытия должны были подвергаться пескоструйной обработке, что требовало много времени и тем самым больших затрат. Пескоструйная обработка ведет к высокому износу. Поэтому наряду со сниженной надежностью процесса нужно было часто заменять дорогостоящие держатели. Если же подложкодержатель обработать заранее, согласно изобретению, антиадгезионным слоем, то после PVD-процесса его можно чистить легко, быстро и без износа.
Это же относится к карусели и защитным листам от напыления в установках PVD. Если установка дополнительно содержит аноды для создания плазменного разряда, например источники напыления, низковольтные дуговые разрядники и устройства для травления, то их предпочтительно также можно обработать перед этапом нанесения покрытия путем нанесения антиадгезионного слоя.
Согласно другому варианту осуществления настоящего изобретения, сам антиадгезионный слой наносят в установке покрытия как относительно рыхлый слой. Для этого подложкодержатели в разобранном состоянии вводят в установку нанесения покрытий. Такой слой может быть, например, PVD-слоем, который наносят без напряжения смещения. Такой слой может быть также графитовым слоем.
Согласно другому варианту осуществления настоящего изобретения, в качестве антиадгезионного слоя предлагается медное электродуговое покрытие. В отличие от слоя, полученного полимеризацией в плазме, медь очень хорошо проводит электричество и имеет более высокую теплопроводность, чем, например, неорганические неметаллические покрытия, нанесенные посредством PVD. Иными словами, в качестве антиадгезионного слоя могут применяться металлические, то есть хорошо проводящие тепло слои, термические свойства которых очень сильно отличаются от свойств слоев, нанесенных с помощью PVD. Толщина медного электродугового покрытия предпочтительно находится в диапазоне 0,1-0,4 мм, при этом толщина слоя загрязнений - в диапазоне 1-100 мкм.
Согласно другому варианту осуществления, предлагается снабдить эту поверхность так называемым наноуплотнением. Известно, что благодаря этому эффекту, известному как так называемый «эффект лотоса», загрязнения хуже сцепляются со структурированной поверхностью и, таким образом, их можно легче отделить. При соответствующем выборе размера элемента структуры можно по существу регулировать силу сцепления. В частности, благодаря структурированию предотвращаются напряжения на поверхности, так что в меньшей степени происходят отслаивания от поверхности в процессе нанесения покрытия.
Ниже на конкретном примере осуществления описывается способ, согласно изобретению, применяемый для очистки покрытых поверхностей анода, являющихся частью устройства травления предусмотренного в установке для нанесения покрытия.
Возникающая при этом проблема состоит в том, что в каждом PVD-процессе поверхность анода сильно покрывается прочно сцепленным материалом покрытия. Если поверх него в последующих процессах нанесения покрытий будет продолжаться нанесение покрытия, то со временем образуется очень толстое и очень трудноудаляемое (требующее много времени) отложение.
Если осаждаются плохо проводящие или не проводящие слои, то эти плохо проводящие или не проводящие отложения на аноде могут привести к тому, что уже после одной операции нанесения покрытия более не будет обеспечиваться функция анода, так что в таких процессах обязательно требуется очистка анода после каждой загрузки.
Чтобы провести данную очистку, осуществляют, например, следующие этапы.
Исходной точкой является анод, свободный от отложений и остатков, то есть "свежий" анод, еще до первого процесса нанесения покрытия или после очистительной обработки.
На первом этапе в этом примере закрывается и/или маскируется непосредственное окружение покрываемой антиадгезионным слоем поверхности анода, которая в этом случае представляет собой вспомогательную поверхность, согласно определенной в описании изобретения дефиниции. Для этого подходит, например, листовой шаблон с согласованной прорезью и соответствующей геометрией. Шаблон размещается так, чтобы снабжать антиадгезионным слоем только желаемые области.
На втором этапе примера пистолетом-распылителем в процессе распыления наносится антиадгезионный слой. При этом на маскированный анод напыляется суспензия, содержащая материал антиадгезионного слоя.
Для получения напыляемой суспензии графитовый порошок вводился в изопропанол. В описываемом примере анод представляет собой металлическую поверхность, установленную вертикально. Поэтому нужно принимать во внимание то, что дистанцию напыления и толщину нанесенного слоя выбирают таким образом, чтобы предотвратить стекание лишнего растворителя с поверхности. При этом предпочтительно, если легколетучий растворитель в аэрозоле испаряется в основном уже между распылительным соплом и обрабатываемой поверхностью. Таким образом достигается оптимальное покрытие графитовым порошком. При этом значение имеет также соотношение составных компонентов смеси: растворителя и графитового порошка. Чтобы предотвратить стекание, нужно иметь как можно более высокое содержание графитовой составляющей. Разумеется, нужно также следить за тем, чтобы сопло пистолета-распылителя не забивалось. Подходящим оказалось использование от 50 мл до 150 мл IPA на 10 г графитового порошка. Предпочтительно используется 100 мл изопропанола (IPA) на 10 г графитового порошка.
Применяемый графитовый порошок должен по существу не содержать примесей связующих веществ или других добавок. В настоящем примере применялся порошок с чистотой 99,9%. Предпочтительными значениями размера частиц графитового порошка оказались значения от 0,2 мкм до 150 мкм как максимальный размер. Предпочтительно применяется графитовый порошок, размер частиц которого составляет не более 20 мкм.
В качестве пистолета-распылителя применялся стандартный пистолет-распылитель с наливным стаканом. Размер сопла находится, например, в интервале от 0,3 мм до 2 мм и предпочтительно составляет 0,8 мм.
В качестве среды для инициирования процесса напыления используется сжатый воздух при давлении от 0,2 до 1,0 бар, предпочтительно от 0,5 до 0,7 бар. Сжатый воздух должен быть освобожден от масла и по возможности не содержать частиц, чтобы не внести загрязнения в суспензию и тем самым в антиадгезионный слой. Нужно следить, в частности, за тем, чтобы пневматикой пистолета не заносились загрязнения.
Перед каждым применением суспензию гомогенизируют. Это можно осуществить взбалтыванием, встряхиванием, ультразвуковой обработкой или другими известными специалисту способами.
Распыление проводится на дистанции напыления, составляющей от 50 мм до 250 мм, в идеале от 100 мм до 200 мм. Как упоминалось выше, большая дистанция напыления более предпочтительна в том отношении, что растворитель уже во время распыления имеет возможность испариться. Однако слишком большая дистанция напыления ведет к слишком широкому рассеиванию в пространстве.
Толщина наносимого антиадгезионного слоя составляет в этом примере от 0,05 мм до 2,0 мм. Критерий "оптическое сплошное покрытие" в настоящем примере оказался подходящим и благодаря своей простоте предпочтительным. По меньшей мере, когда сами вспомогательные поверхности не являются графитовыми поверхностями, этого легко можно достичь благодаря оптическим свойствам графитового порошка. Нанесение антиадгезионного слоя в примере проводится за несколько этапов распыления, предпочтительно проводимых равномерно.
После нанесения антиадгезионного слоя предпочтительно нужно принимать во внимание следующее: так как слой порошка сцепляется с поверхностью в основном силами адгезии, после напыления нужно по возможности избегать соприкосновений вспомогательных поверхностей. Поэтому предпочтительно там, где это возможно, обрабатывать компоненты в смонтированном состоянии или использовать соответственно подходящие устройства и/или инструменты ("вспомогательные системы обработки"), чтобы избежать повреждения антиадгезионного слоя.
На третьем этапе удаляют листовой шаблон, применявшийся для маскировки. Необходимо отметить еще раз, что такая маскировка требуется не в каждом случае, но в примере она применялась.
Таким образом, предварительная обработка завершается и можно обычным путем наносить собственно PVD-покрытие. Это значит, что в камеры для нанесения покрытия загружают обрабатываемые детали, камеру закрывают и откачивают, наносят покрытие, например, путем электродугового испарения и вслед за этим камеры для нанесения покрытия продувают и открывают. При этом проведенная, согласно изобретению, предварительная обработка анода не оказывает отрицательного влияния на покрытие.
После того как камера для нанесения покрытия открыта, вспомогательные поверхности можно очистить, согласно изобретению, с помощью струйной обработки сухим льдом. Снег CO2 очищает бережно, без влаги, без остатков и пригоден для вакуума.
Перед следующей операцией нанесения покрытия анод снова обрабатывают в соответствии с этапами 1-3.
В идеале эта процедура проводится после каждой операции нанесения покрытия. Однако можно также отказаться от струйной очистки сухим льдом после одного процесса нанесения покрытия и обновлять антиадгезионный слой только после нескольких циклов нанесения покрытия.
Изобретение было описано на примере установки для нанесения PVD-покрытия и при предварительной обработке находящегося в вакуумной камере ΙΕΤ-анода (ITE=Innova etching technology). В этом примере удалось снизить временные затраты на очистку с прежних 20 минут до нескольких минут. Кроме того, благодаря способу, согласно изобретению, анод сберегается. Предварительная обработка, согласно изобретению, предпочтительно может применяться при других способах нанесения покрытий, в частности при других способах вакуумного напыления. В таких случаях при необходимости можно согласовать материал антиадгезионного слоя.
Другие области применения упоминались выше. В частности, изобретение предпочтительно также можно применять в случае покрываемых подложек, когда, например, необходимо покрыть только часть поверхности подложки. До сих пор нужно было непокрываемые части поверхности подложки экранировать держателями. В отличие от этого, благодаря способу согласно изобретению, на непокрываемые части поверхности подложки можно нанести антиадгезионный слой, который после нанесения покрытия можно простым образом удалить способом струйной очистки сухим льдом.
Для часто повторяющихся однотипных обработок антиадгезионным слоем (например, каруселей, подложкодержателей, подложек и так далее) в усовершенствованном варианте выполнения настоящего изобретения предпочтительно применять автоматическое распылительное устройство.
Список ссылочных позиций
1 - пистолет-распылитель с наливным стаканом
2 - подача сжатого воздуха
3 - суспензия
4 - распылительное сопло
5 - вспомогательная поверхность
6 - маскирующий шаблон
7 - туман, образованный разбрызгиванием
8 - сопло для распыления струи сухого льда
9 - антиадгезионный слой, покрытый наслоениями
10 - антиадгезионный слой
11 - наслоения в результате PVD-процесса

Claims (4)

1. Способ очистки вспомогательных поверхностей установок для нанесения покрытий, которые содержат камеру для нанесения покрытия, содержащий следующие этапы:
- нанесение антиадгезионного слоя на вспомогательные поверхности камеры для нанесения покрытия, предшествующее нанесению покрытия,
- обработка вспомогательных поверхностей с помощью струйной обработки сухим льдом и/или путем очистки струями снега диоксида углерода (CO2), следующая за нанесением покрытия.
2. Способ по п.1, отличающийся тем, что антиадгезионный слой содержит суспензию порошка из графитового порошка в летучем растворителе.
3. Способ по п.1, отличающийся тем, что антиадгезионный слой включает в себя металлический слой, который существенно толще, чем слой, наносимый в процессе нанесения покрытия.
4. Способ по п.1, отличающийся тем, что антиадгезионный слой представляет собой слой, антиадгезионное воздействие которого основано на эффекте лотоса.
RU2012136472/02A 2010-01-25 2010-12-22 Способ очистки для установок нанесения покрытий RU2554838C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010005762.2 2010-01-25
DE102010005762A DE102010005762A1 (de) 2010-01-25 2010-01-25 Reinigungsverfahren für Beschichtungsanlagen
PCT/EP2010/007971 WO2011088884A1 (de) 2010-01-25 2010-12-22 Reinigungsverfahren für beschichtungsanlagen

Publications (2)

Publication Number Publication Date
RU2012136472A RU2012136472A (ru) 2014-03-10
RU2554838C2 true RU2554838C2 (ru) 2015-06-27

Family

ID=43706705

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012136472/02A RU2554838C2 (ru) 2010-01-25 2010-12-22 Способ очистки для установок нанесения покрытий

Country Status (12)

Country Link
US (1) US20120298139A1 (ru)
EP (1) EP2529040A1 (ru)
JP (1) JP2013518177A (ru)
KR (1) KR20120120944A (ru)
CN (1) CN102812154B (ru)
BR (1) BR112012018524A2 (ru)
CA (1) CA2788448A1 (ru)
DE (1) DE102010005762A1 (ru)
MX (1) MX2012008661A (ru)
RU (1) RU2554838C2 (ru)
SG (2) SG10201500561SA (ru)
WO (1) WO2011088884A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012003514A1 (de) * 2012-02-24 2013-08-29 Acp-Advanced Clean Production Gmbh Verfahren und Vorrichtung zur Reinigung von Oberflächen mittels Kohlendioxid-Schnee unter Zufuhr synergetischer Medien
WO2017031571A1 (en) * 2015-08-22 2017-03-02 Novena Tec Inc. Process chamber shielding system and method
WO2020096091A1 (ko) * 2018-11-09 2020-05-14 주식회사 그리너지 리튬메탈 음극의 표면처리방법, 표면처리된 리튬메탈 음극 및 이를 포함하는 리튬금속전지
FR3088564B1 (fr) * 2018-11-16 2020-12-25 Safran Aircraft Engines Procede de compactage d'une peinture anti-corrosion d'une piece de turbomachine
CN109663790B (zh) * 2018-12-12 2021-02-19 盐城市国泰混凝土有限公司 一种混凝土搅拌车回厂余料的清洗方法
DE102019110642A1 (de) * 2019-04-25 2020-10-29 Vtd Vakuumtechnik Dresden Gmbh Anode für PVD-Prozesse

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU93013933A (ru) * 1993-03-18 1995-07-27 Проектно-строительное предприятие "Инсерв" Способ очистки поверхностей
JP2000119840A (ja) * 1998-10-09 2000-04-25 Kyodo International:Kk 成膜装置のクリーニング方法、スパッタリングターゲットのクリーニング方法及びこれらに使用するクリーニング装置
EP1772529A1 (de) * 2005-10-07 2007-04-11 Siemens Aktiengesellschaft Trockene Zusammensetzung, Verwendung derer, Schichtsystem und Verfahren zur Beschichtung

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170735A (ja) * 1992-12-03 1994-06-21 Shin Etsu Chem Co Ltd 多結晶ダイヤモンド砥石の製造方法
JPH1136061A (ja) * 1997-07-17 1999-02-09 Mitsubishi Materials Corp 物理蒸着装置のマスキング治具
JP2000044843A (ja) * 1998-08-04 2000-02-15 Mitsubishi Heavy Ind Ltd コーティング材料及びその製造方法
WO2001082368A2 (en) * 2000-04-25 2001-11-01 Tokyo Electron Limited Method of depositing metal film and metal deposition cluster tool including supercritical drying/cleaning module
JP3984833B2 (ja) * 2001-01-16 2007-10-03 キヤノン株式会社 現像剤担持体の再生方法
JP4200662B2 (ja) * 2001-02-19 2008-12-24 富士ゼロックス株式会社 画像表示媒体の製造方法
DE10111235A1 (de) 2001-03-08 2002-09-19 Linde Ag Verfahren zur Strahlbehandlung mit Strahlmitteln
ITMI20010134U1 (it) 2001-03-12 2002-09-12 Valentini Guido Platorello operativo di forma sostanzialmente circolare per utensile portatile
JP2002339059A (ja) * 2001-05-16 2002-11-27 Mitsubishi Heavy Ind Ltd 真空蒸着装置
US20030037879A1 (en) * 2001-08-24 2003-02-27 Applied Materials, Inc. Top gas feed lid for semiconductor processing chamber
JP3876167B2 (ja) * 2002-02-13 2007-01-31 川崎マイクロエレクトロニクス株式会社 洗浄方法および半導体装置の製造方法
US7002790B2 (en) * 2002-09-30 2006-02-21 Medtronic, Inc. Capacitor in an implantable medical device
US6902628B2 (en) * 2002-11-25 2005-06-07 Applied Materials, Inc. Method of cleaning a coated process chamber component
JP4653406B2 (ja) * 2004-03-10 2011-03-16 株式会社アルバック 水崩壊性Al複合材料、水崩壊性Al溶射膜、及び水崩壊性Al粉の製造方法、並びに成膜室用構成部材及び成膜材料の回収方法
US7384486B2 (en) * 2004-03-26 2008-06-10 Taiwan Semiconductor Manufacturing Co., Ltd. Chamber cleaning method
ES2276186T3 (es) * 2004-05-06 2007-06-16 Siemens Aktiengesellschaft Procedimiento para ajustar la conductividad electrica de un recubrimiento de una pieza constructiva de maquina, cuya conductividad electrica puede modificarse mediante presion, mediante radiacion de hielo seco.
DE102006002653B4 (de) 2005-01-27 2009-10-08 Luderer Schweißtechnik GmbH Trockeneisstrahlverfahren
JP5557208B2 (ja) 2006-10-06 2014-07-23 フラウンホファー ゲゼルシャフト ツール フェルドルンク デル アンゲヴァントテン フォルシュンク エー ファウ 汚染した物体、汚染した物体をドライアイスで洗浄するための装置、汚染物を除去するための方法、及び機能皮膜の使用
DE102007033788A1 (de) * 2007-07-09 2009-01-15 Gerd Wurster Vorbehandlungsanlage und Verfahren zur Vorbehandlung von Werkstücken
CA2744032C (en) * 2008-11-20 2018-07-31 Oerlikon Trading Ag, Trubbach Cleaning method for coating systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU93013933A (ru) * 1993-03-18 1995-07-27 Проектно-строительное предприятие "Инсерв" Способ очистки поверхностей
JP2000119840A (ja) * 1998-10-09 2000-04-25 Kyodo International:Kk 成膜装置のクリーニング方法、スパッタリングターゲットのクリーニング方法及びこれらに使用するクリーニング装置
EP1772529A1 (de) * 2005-10-07 2007-04-11 Siemens Aktiengesellschaft Trockene Zusammensetzung, Verwendung derer, Schichtsystem und Verfahren zur Beschichtung

Also Published As

Publication number Publication date
RU2012136472A (ru) 2014-03-10
SG182730A1 (en) 2012-08-30
KR20120120944A (ko) 2012-11-02
BR112012018524A2 (pt) 2016-08-23
CA2788448A1 (en) 2011-07-28
US20120298139A1 (en) 2012-11-29
EP2529040A1 (de) 2012-12-05
MX2012008661A (es) 2012-10-15
JP2013518177A (ja) 2013-05-20
CN102812154B (zh) 2015-07-15
CN102812154A (zh) 2012-12-05
WO2011088884A1 (de) 2011-07-28
SG10201500561SA (en) 2015-05-28
DE102010005762A1 (de) 2011-07-28

Similar Documents

Publication Publication Date Title
RU2554838C2 (ru) Способ очистки для установок нанесения покрытий
CN108878246B (zh) 用于腔室部件的多层等离子体侵蚀保护
US10002745B2 (en) Plasma treatment process for in-situ chamber cleaning efficiency enhancement in plasma processing chamber
US5401319A (en) Lid and door for a vacuum chamber and pretreatment therefor
KR20110063775A (ko) 프로세스 키트 차폐물 및 이의 사용 방법
CN103038385A (zh) 溅射成膜装置及防附着部件
JP2009255277A (ja) 表面処理方法、シャワーヘッド部、処理容器及びこれらを用いた処理装置
JP2007324353A (ja) 半導体加工装置用部材およびその製造方法
RU2510664C2 (ru) Способ очистки для установок для нанесения покрытий
JP2010275574A (ja) スパッタリング装置および半導体装置製造方法
US20090311145A1 (en) Reaction chamber structural parts with thermal spray ceramic coating and method for forming the ceramic coating thereof
RU2052540C1 (ru) Способ нанесения пленочного покрытия
US11384430B2 (en) Method for conditioning a ceramic coating
JP6486215B2 (ja) プラズマ処理装置
US20240017299A1 (en) Methods for removing deposits on the surface of a chamber component
WO2020101793A3 (en) Device and method for plasma treatment of electronic materials
CN102082071B (zh) 陶瓷喷涂部件制造方法
JP2003049260A (ja) 成膜装置用部材およびその製造方法
RU2000109697A (ru) Способ ионно-плазменного нанесения покрытий на подложку
JP2008108953A (ja) 半導体基板裏面異物除去方法
Mattox Surface Preparation
JP2005243765A (ja) プラズマ処理装置におけるクリーニング方法及びプラズマ処理装置

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171223