WO2018133233A1 - 一种交联度可控的涂层的制备方法 - Google Patents

一种交联度可控的涂层的制备方法 Download PDF

Info

Publication number
WO2018133233A1
WO2018133233A1 PCT/CN2017/081778 CN2017081778W WO2018133233A1 WO 2018133233 A1 WO2018133233 A1 WO 2018133233A1 CN 2017081778 W CN2017081778 W CN 2017081778W WO 2018133233 A1 WO2018133233 A1 WO 2018133233A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
discharge
unsaturated hydrocarbon
monomer
hydrocarbon derivative
Prior art date
Application number
PCT/CN2017/081778
Other languages
English (en)
French (fr)
Inventor
宗坚
Original Assignee
江苏菲沃泰纳米科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏菲沃泰纳米科技有限公司 filed Critical 江苏菲沃泰纳米科技有限公司
Publication of WO2018133233A1 publication Critical patent/WO2018133233A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16

Definitions

  • the invention belongs to the technical field of plasma chemical vapor deposition, and in particular relates to a preparation method of a coating with controllable degree of crosslinking.
  • Plasma chemical vapor deposition is a technique in which a reactive gas is activated by a plasma to promote a chemical reaction on a surface of the substrate or in a near surface space to form a solid film.
  • plasma coating technology has: ( 1 Dry process, the resulting film is uniform without pinholes; (2) the coating preparation temperature is low, can be carried out under normal temperature conditions, effectively avoiding damage to temperature sensitive devices; (3) The plasma process can not only prepare coatings with a thickness of micron and can prepare ultra-thin nano-scale coatings; (4) The plasma polymerized film is stable in chemical and physical properties such as solvent resistance, chemical corrosion resistance, heat resistance, and abrasion resistance; (5) the adhesion between the plasma polymerization film and the substrate is good.
  • Fluorocarbon resin with a strong C-F The bond is a skeleton, and its heat resistance, chemical resistance, cold resistance, low temperature flexibility, weather resistance and electrical properties are better than other resins, and it also has non-adhesiveness and non-wetting property. Therefore, the fluorocarbon resin coating is particularly suitable for the protection of the surface of the material, not only can give the material good physical and chemical durability, but also can give the material excellent waterproof and oil proof functions. In recent years, the preparation of fluorocarbon protective coatings by plasma technology has been studied and applied in microelectronics, optics, medical, precision equipment and high-end clothing.
  • the present invention provides a method for preparing a coating with controllable degree of crosslinking in order to solve the above technical problem, by introducing a polyfunctional unsaturated monomer component into a plasma polymerization process to form a dense network structure.
  • the degree of crosslinking of the polymer coating is adjusted to significantly improve the solvent resistance, solvent permeability, and adhesion of the coating.
  • a method for preparing a coating with controllable degree of crosslinking characterized in that the method comprises the following steps:
  • the monomer vapor is:
  • the plasma power supply is turned off, the monomer vapor is stopped, and the vacuum is continuously applied to maintain the vacuum of the reaction chamber to 10-200. After 1-5 minutes, the mixture is introduced into the atmosphere to an atmospheric pressure, and then the substrate is taken out.
  • the medium substrate is a solid material including electronic parts, electrical parts, fabrics or garments, liquid containers, laboratory equipment, membrane materials, optical devices.
  • the volume of the plasma chamber in the step (1) is 50 to 1000 liters, and the temperature of the plasma chamber is controlled at 30 to 60. °C; the flow rate of the inert gas or nitrogen gas is 5 to 300 sccm, and the inert gas is one of argon gas or helium gas, or a mixture of helium gas and argon gas.
  • the monomer steam is introduced to atomize and volatilize the monomer through the feeding pump, and the low pressure is 10 ⁇ 200.
  • the millitorr is introduced into the reaction chamber, and the flow rate of the monomer vapor is 10-1000 ⁇ L/min.
  • the monofunctional unsaturated fluorocarbon resin includes:
  • the polyfunctional unsaturated hydrocarbon derivative includes:
  • the power of the plasma discharge is set to 2 to 500 W before the introduction of the monomer vapor in the step (2), and the continuous discharge time is 300 ⁇ 600s, carry out bombardment pretreatment of the substrate by glow discharge, clean the surface impurities of the substrate and activate the surface of the substrate.
  • the power of the plasma discharge in the step (2) is 2 ⁇ 500W, and the continuous discharge time is 600 ⁇ 7200s.
  • the plasma discharge mode is radio frequency discharge, microwave discharge, intermediate frequency discharge or electric spark discharge.
  • the plasma during radio frequency discharge The energy output mode of the control plasma RF is pulse or continuous output.
  • the pulse width is 2 ⁇ s-1ms, and the repetition frequency is 20Hz-10kHz.
  • a pulsed voltage is applied to increase the uniformity of film formation and to reduce free radicals remaining in the coating.
  • the plasma facilitates cross-linking to form a network structure
  • the active groups with higher energy in the monomer component are broken to form active sites, and the additional active sites introduced are cross-linked in a plasma environment to form a network structure, a network structure. It has better compactness and can effectively improve the protective performance of the film.
  • plasma polymerization uses a monofunctional monomer to obtain a loose coating structure.
  • the crosslinked structure is formed by a plurality of active sites formed by random interruption of the monomer during plasma glow discharge to form a crosslinked structure.
  • the present invention introduces an additional cross-linking point by introducing other monomer components having a polyfunctional cross-linking structure to form a cross-linked structure, and the introduction of a cross-linking structure of the polyfunctional group, so that the coating forms a dense network structure, and the introduction is much
  • the functional monomer accounts for the mass percentage of the monomer. 10-80%. Not only can the material be given good physical and chemical durability, but it can also impart excellent water and oil repellency to the material.
  • the surface is activated to obtain a plurality of active sites, and the active sites are combined with the active sites of the monomers with strong chemical bonds, so that the film obtained by the coating has superior bonding force and mechanical strength.
  • a method for preparing a coating with controllable degree of crosslinking characterized in that the method comprises the following steps:
  • the plasma chamber has a volume of 50 liters and the plasma chamber has a temperature of 30 °C.
  • the monomer vapor is:
  • a mixture of a monofunctional unsaturated fluorocarbon resin and a polyfunctional unsaturated hydrocarbon derivative wherein the monofunctional unsaturated fluorocarbon resin is 1H, 1H, 2H, 2H-perfluorooctyl acrylate, the polyfunctional unsaturated hydrocarbon derivative is triethylene glycol divinyl ether, and the polyfunctional unsaturated hydrocarbon derivative in the monomer 10% by mass ;
  • the monomer steam is introduced into the reaction chamber by atomizing and volatilizing the monomer through a feed pump, and the flow rate of the monomer vapor is 10 ⁇ L/min;
  • the plasma discharge power is set to 2W before the monomer vapor is introduced, and the continuous discharge time is 600s.
  • the glow discharge is performed on the substrate by bombardment pretreatment to clean the surface impurities of the substrate and activate the surface of the substrate.
  • the plasma discharge power is 2W and the continuous discharge time is 7200s.
  • the plasma discharge mode is a radio frequency discharge, and the energy output mode of controlling the plasma radio frequency in the plasma radio frequency discharge process is a pulse output, the pulse width is 2 ⁇ s, and the repetition frequency is 20 Hz.
  • a pulsed voltage is applied to increase the uniformity of film formation and to reduce free radicals remaining in the coating.
  • the plasma power supply is turned off, the monomer vapor is stopped, and the vacuum is continuously applied to maintain the vacuum of the reaction chamber at 10 mTorr. After 1 min, it is introduced into the atmosphere to an atmospheric pressure, and then the substrate is taken out.
  • step (1) the vacuum in the reaction chamber is pumped to 50 mTorr, and an inert gas is introduced; the substrate is a solid material, and the solid material is Electrical components.
  • the volume of the plasma chamber is 200 L, the temperature of the plasma chamber is controlled at 40 ° C; the flow rate of the inert gas is 50 sccm, and the inert gas is helium.
  • step (2) The monomer vapor introduced in step (2) is:
  • a mixture of a monofunctional unsaturated fluorocarbon resin and a polyfunctional unsaturated hydrocarbon derivative the monofunctional unsaturated fluorocarbon resin being 2- Ethyl perfluorooctyl acrylate
  • the polyfunctional unsaturated hydrocarbon derivative is diethylene glycol divinyl ether
  • the polyfunctional unsaturated hydrocarbon derivative in the monomer accounts for 30% by mass ;
  • the monomer steam is introduced into the reaction chamber by atomizing and volatilizing the monomer through a feed pump, and the flow rate of the monomer vapor is 100 ⁇ L/min;
  • step (2) the power of the plasma discharge is set to 150 W before the introduction of the monomer vapor, and the continuous discharge time is 500 s.
  • the power of the plasma discharge in step (2) is 100W, and the continuous discharge time is 6000s.
  • the plasma discharge mode is microwave discharge.
  • step (3) keep the vacuum of the reaction chamber at 60 mTorr for 2 min and then pass to the atmosphere to an atmospheric pressure.
  • step (1) the vacuum in the reaction chamber is pumped to 200 mTorr, and an inert gas is introduced; the substrate is a solid material, and the solid material is Clothing.
  • the volume of the plasma chamber is 1000 L, the temperature of the plasma chamber is controlled at 60 ° C; the flow rate of the inert gas is 300 sccm, and the inert gas is argon.
  • step (2) The monomer vapor introduced in step (2) is:
  • a mixture of a monofunctional unsaturated fluorocarbon resin and two polyfunctional unsaturated hydrocarbon derivatives the monofunctional unsaturated fluorocarbon resin being 2-( Perfluorobutyl)ethyl acrylate
  • the two polyfunctional unsaturated hydrocarbon derivatives are diethylene glycol divinyl ether, ethylene glycol diacrylate, and the polyfunctional unsaturated in the monomer
  • the percentage by mass of hydrocarbon derivatives is 80% ;
  • the monomer steam is introduced into the reaction chamber by atomizing and volatilizing the monomer through a feed pump, and introducing the reaction chamber from a low pressure of 200 mTorr.
  • the flow rate of the monomer vapor is 1000 ⁇ L/min;
  • step (2) the power of the plasma discharge is set to 300 W before the introduction of the monomer vapor, and the continuous discharge time is 450 s.
  • the power of the plasma discharge in step (2) is 500W, and the continuous discharge time is 600s.
  • the plasma discharge mode is a spark discharge.
  • step (3) keep the vacuum of the reaction chamber at 200 mTorr for 5 min and then pass to the atmosphere to an atmospheric pressure.
  • step (1) the vacuum in the reaction chamber is pumped to 80 mTorr, and an inert gas is introduced; the substrate is a solid material, and the solid material is Fabric.
  • the volume of the plasma chamber is 600 L, the temperature of the plasma chamber is controlled at 45 ° C, the flow rate of the inert gas is 150 sccm, and the inert gas is a mixture of helium and argon.
  • step (2) The monomer vapor introduced in step (2) is:
  • polyfunctional unsaturated hydrocarbon derivative ethylene glycol diacrylate
  • the polyfunctional unsaturated hydrocarbon derivative is diethylene glycol divinyl ether
  • the monomer steam is introduced into the reaction chamber by atomizing and volatilizing the monomer through a feed pump, and the flow rate of the monomer vapor is 600 ⁇ L/min;
  • step (2) the power of the plasma discharge is set to 400 W before the introduction of the monomer vapor, and the continuous discharge time is 200 s.
  • the power of the plasma discharge in step (2) is 300W, and the continuous discharge time is 4500s.
  • the plasma discharge mode is microwave discharge.
  • step (3) keep the vacuum of the reaction chamber at 120 mTorr for 3 min and then pass to the atmosphere to an atmospheric pressure.
  • step (1) the vacuum in the reaction chamber is pumped to 160 mTorr, and an inert gas is introduced; the substrate is a solid material, and the solid material is Electronic components.
  • the volume of the plasma chamber is 800 L, the temperature of the plasma chamber is controlled at 55 ° C; the flow rate of the inert gas is 260 sccm, and the inert gas is argon.
  • step (2) The monomer vapor introduced in step (2) is:
  • the monomer steam is introduced into the reaction chamber by atomizing and volatilizing the monomer through a feed pump, and the flow rate of the monomer vapor is 800 ⁇ L/min;
  • step (2) the power of the plasma discharge is set to 500W before the monomer vapor is introduced, and the continuous discharge time is 300s. Performing a glow discharge on the substrate for bombardment pretreatment;
  • the power of the plasma discharge in step (2) is 100W, and the continuous discharge time is 7000s.
  • the plasma discharge mode is radio frequency discharge.
  • step (3) keep the vacuum of the reaction chamber at 100 mTorr for 3 min and then pass to the atmosphere to an atmospheric pressure.
  • the coating prepared by the methods described in the above Examples 1 to 5 has excellent resistance to dissolution of organic solvents, and the test results are as follows:
  • Example 1 Organic solvent resistant (IPA) solubility Film thickness Before soaking Soak for 48h
  • Example 1 100nm 20nm
  • Example 2 100nm 80nm
  • Example 3 100nm 100nm
  • Example 4 100nm 95nm
  • Example 5 100nm 102nm
  • Example 1 100nm 25nm
  • Example 2 100nm 75nm
  • Example 3 100nm 98nm
  • Example 4 100nm 90nm
  • Example 5 100nm 100nm Organic solvent resistant (n-hexane) solubility Film thickness Before soaking Soak for 48h
  • Example 1 100nm 23nm
  • Example 2 100nm 86nm
  • Example 3 100nm 100nm
  • Example 4 100nm 98nm
  • Example 5 100nm 96nm Organic solvent resistant (acetone) solubility Film thickness Before soaking Soak for 48h
  • Example 1 100nm 19nm
  • Example 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Polymerisation Methods In General (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

一种交联度可控的涂层的制备方法,主要包括以下步骤:首先,将基材置于等离子体室的反应腔体内,对反应腔体连续抽真空,将反应腔体内的真空度抽到10-200毫托,通入惰性气体或氮气,提供稳定的等离子体环境;其次,通入单体蒸汽,开启等离子体放电,进行化学气相沉积,该单体蒸汽为至少一种单官能度不饱和氟碳树脂和至少一种多官能度不饱和烃类衍生物混合物,该多官能度不饱和烃类衍生物所占质量百分比为10%-80%;或至少一种多官能度不饱和烃类衍生物和至少一种多官能度不饱和烃类衍生物的混合物;最后,放电结束,关闭等离子体电源,停止通入单体蒸汽,持续抽真空,保持反应腔体真空度为10-200毫托1-5min后通入大气至一个大气压,然后取出基材即可。

Description

一种交联度可控的涂层的制备方法
技术领域
本发明属于等离子化学气相沉积技术领域,特别涉及一种交联度可控的涂层的制备方法。
背景技术
等离子体化学气相沉积是一种用等离子体激活反应气体,促进在基体表面或近表面空间进行化学反应,生成固态膜的技术。等离子体涂层技术与其他涂层制备方法相比具有:( 1 )干式工艺,生成的薄膜均匀无针孔;( 2 )涂层制备温度低,可在常温条件下进行,有效避免对温度敏感器件的损伤;( 3 )等离子体工艺不仅可以制备厚度为微米级的涂层而且可以制备超薄的纳米级涂层;( 4 )等离子体聚合薄膜的耐溶剂性、耐化学腐蚀性、耐热性、耐磨损性等化学物理性质稳定;( 5 )等离子体聚合膜与基材的黏接性良好。
氟碳树脂以牢固的 C-F 键为骨架,同其他树脂相比,其耐热性、耐化学品性、耐寒性、低温柔韧性、耐候性和电性能等均较好,此外还具有不黏附性、不湿润性。故氟碳树脂涂层特别适合用于材料表面的防护,不仅可以赋予材料良好的物理、化学耐久性而且可以赋予材料优异的防水、防油功能。近年来,通过等离子体技术制备氟碳防护涂层在微电子、光学、医用、精密设备、高端衣物的研究及应用较多。
目前公开的大多是通过等离子体引发单官能度不饱和氟碳树脂聚合来获得防护性涂层。但是,由于等离子体环境及机理较为复杂,难以通过等离子体聚合工艺参数控制聚合物涂层的交联程度。例如日本后藤田正夫等研究了通过等离子体聚合制备耐溶剂性和耐水性的聚合物膜。但是发现交联密度大的涂层虽有较好的黏接性及耐溶剂性,然而涂层却会因溶剂作用膨润剥离。这可能由于等离子体聚合应用的氟碳树脂多为单官能的氟碳单体,形成的涂层线性成分较多,交联点不足,严重制约了涂层对基材的保护能力。
发明内容
本发明为解决上述技术问题提供了一种交联度可控的涂层的制备方法,通过在等离子体聚合过程中引入多官能度不饱和单体组分,形成致密网状结构,以此来调节聚合物涂层的交联度,从而显著提高涂层的耐溶剂溶解性、抗溶剂渗透性、黏接性。
本发明为实现上述目的所采用的技术方案如下:
一种交联度可控的涂层的制备方法,其特征在于:主要包括以下步骤:
( 1 ) 将基材置于等离子体室的反应腔体内,对反应腔体连续抽真空,将反应腔体内的真空度抽到 10-200 毫托,通入惰性气体或氮气,提供稳定的等离子体环境;
( 2 )通入单体蒸汽,开启等离子体放电,进行化学气相沉积;
所述单体蒸汽为:
至少一种单官能度不饱和氟碳树脂和至少一种多官能度不饱和烃类衍生物混合物,所述多官能度不饱和烃类衍生物所占质量百分比为 10%-80% ;
或至少一种多官能度不饱和烃类衍生物和至少一种多官能度不饱和烃类衍生物的混合物;
( 3 )放电结束,关闭等离子体电源,停止通入单体蒸汽, 持续抽真空,保持反应腔体真空度为 10-200 毫托 1-5min 后通入大气至一个大气压,然后取出基材即可。
所述步骤( 1 )中基材为固体材料,所述固体材料包括电子部件、电器部件、织物或服装、液体容器、实验器材、膜材料、光学器件。
所述步骤( 1 )中的等离子体室容积为 50~1000 升, 等离子体室的温度控制在 30~60 ℃;通入惰性气体或氮气的流量为 5~300sccm ,所述惰性气体为氩气或氦气中的一种 ,或者氦气和氩气的混合物 。
所述步骤( 2 )中:通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压 10~200 毫托引入反应腔体, 所述通入单体蒸汽的流量为 10-1000 µ L/min 。
所述单官能度不饱和氟碳树脂包括:
3-( 全氟 -5- 甲基己基 )-2- 羟基丙基甲基丙烯酸酯、 2-( 全氟癸基 ) 乙基甲基丙烯酸酯、 2-( 全氟己基 ) 乙基甲基丙烯酸酯、 2-( 全氟十二烷基 ) 乙基丙烯酸酯、 2- 全氟辛基丙烯酸乙酯、 1H,1H,2H,2H- 全氟辛醇丙烯酸酯、 2-( 全氟丁基 ) 乙基丙烯酸酯、 (2H- 全氟丙基 )-2- 丙烯酸酯、 ( 全氟环己基 ) 甲基丙烯酸酯、 3,3,3- 三氟 -1- 丙炔、 1- 乙炔基 -3,5- 二氟苯或 4- 乙炔基三氟甲苯;
所述多官能度不饱和烃类衍生物包括:
乙氧基化三羟甲基丙烷三丙烯酸酯、二缩三丙二醇二丙烯酸酯、二乙烯苯、聚乙二醇二丙烯酸酯、三乙二醇二乙烯基醚、 1,6- 己二醇二丙烯酸酯、 二丙烯酸乙二醇酯、 二乙二醇二乙烯基醚或二丙烯酸新戊二醇酯。
所述步骤( 2 )中通入单体蒸汽之前设置等离子体放电的功率为 2~500W ,持续放电时间为 300~600s , 进行辉光放电对基材进行轰击预处理,清理基材表面杂质,活化基材表面。
所述步骤( 2 )中等离子体放电的功率为 2~500W ,持续放电时间为 600~7200s ,所述等离子体放电方式为射频放电、微波放电、中频放电或电火花放电。
所述等离子体射频放电过程中 控制等离子体射频的能量输出方式为脉冲或连续输出,等离子体射频的能量输出方式为脉冲输出时, 脉宽为 2μs-1ms 、重复频率为 20Hz-10kHz ,施加脉冲式电压以增加成膜的均匀性以及减少涂层中残留的自由基。
本发明的上述技术方案与现有技术相比,具有以下优点:
( 1 )等离子体利于相互交联形成网状结构
等离子体在进行辉光放电时,单体组分中能量较高的活性基团被打断形成活性点,被引入的额外活性点在等离子环境下相互交联,形成网状结构,网状结构具有更优的致密性,能够有效提高薄膜的防护性能。
( 2 )多官能度单体利于形成交联结构
一般等离子体聚合选用单官能度单体,得到涂层结构疏松。而且交联结构是由于单体在等离子体辉光放电时随机被打断形成的众多活性点通过交互连接的方式而形成交联结构。本发明通过引入带有多官能团交联结构的其他单体组分而引入额外的交联点以形成交联结构多官能团交联结构的引入,使得涂层形成致密的网状结构,引入的多官能度单体占单体质量百分比为 10-80% 。不仅可以赋予材料良好的物理、化学耐久性而且可以赋予材料优异的防水、防油功能。
( 3 )基材与单体活性点的结合提高了结合力和机械强度
基材在等离子环境下,表面被活化得到众多活性位点,这些活性位点与单体的活性点以较强的化学键相互结合,因此涂层所得的薄膜具有较优的结合力和机械强度。
具体实施方式
下面结合具体实施例详细说明本发明,但本发明并不局限于具体实施例。
实施例 1
一种交联度可控的涂层的制备方法,其特征在于:主要包括以下步骤:
( 1 ) 将基材置于等离子体室的反应腔体内,所述 基材为固体材料,所述固体材料为电子部件, 对反应腔体连续抽真空,将反应腔体内的真空度抽到 10 毫托,通入氮气,,提供稳定的等离子体环境,通入的氮气流量为 5sccm ;
等离子体室容积为 50 升, 等离子体室的温度控制在 30 ℃。
( 2 )通入单体蒸汽 , 开启等离子体放电,进行化学气相沉积;
所述单体蒸汽为:
一种单官能度不饱和氟碳树脂和一种多官能度不饱和烃类衍生物的混合物,所述单官能度不饱和氟碳树脂为 1H,1H,2H,2H- 全氟辛醇丙烯酸酯,所述 多官能度不饱和烃类衍生物为 三乙二醇二乙烯基醚 ,所述单体中多官能度不饱和烃类衍生物所占质量百分比为 10% ;
通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压 10 毫托引入反应腔体, 所述通入单体蒸汽的流量为 10 µ L/min ;
通入单体蒸汽之前设置等离子体放电的功率为 2W ,持续放电时间为 600s , 进行辉光放电对基材进行轰击预处理,清理基材表面杂质,活化基材表面。
等离子体放电的功率为 2W ,持续放电时间为 7200s ,所述等离子体放电方式为射频放电,所述等离子体射频放电过程中 控制等离子体射频的能量输出方式为脉冲输出, 脉宽为 2μs 、重复频率为 20Hz ,施加脉冲式电压以增加成膜的均匀性以及减少涂层中残留的自由基。
( 3 )放电结束,关闭等离子体电源,停止通入单体蒸汽, 持续抽真空,保持反应腔体真空度为 10 毫托 1min 后通入大气至一个大气压,然后取出基材即可。
实施例 2
本实施例与实施例 1 基本的工艺步骤相同,不同的工艺参数如下:
1 、步骤 ( 1 )中将反应腔体内的真空度抽到 50 毫托,通入惰性气体;基材为固体材料,固体材料为 电器部件。 等离子体室的容积为 200L ,等离子体室的温度控制在 40 ℃;通入惰性气体的流量为 50sccm ,惰性气体为氦气。
2 、步骤 ( 2 )中 通入的单体蒸汽为:
一种单官能度不饱和氟碳树脂和一种多官能度不饱和烃类衍生物的混合物,所述单官能度不饱和氟碳树脂为 2- 全氟辛基丙烯酸乙酯,所述 多官能度不饱和烃类衍生物为二乙二醇二乙烯基醚,所述单体中多官能度不饱和烃类衍生物所占质量百分比为 30% ;
通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压 50 毫托引入反应腔体, 所述通入单体蒸汽的流量为 100 µ L/min ;
步骤( 2 )中通入单体蒸汽之前设置等离子体放电的功率为 150W ,持续放电时间为 500s , 进行辉光放电对基材进行轰击预处理;
步骤( 2 )中等离子体放电的功率为 100W ,持续放电时间为 6000s ,所述等离子体放电方式为微波放电。
3 、步骤( 3 )中保持反应腔体真空度为 60 毫托 2min 后通入大气至一个大气压。
实施例 3
本实施例与实施例 1 基本的工艺步骤相同,不同的工艺参数如下:
1 、步骤 ( 1 )中将反应腔体内的真空度抽到 200 毫托,通入惰性气体;基材为固体材料,固体材料为 服装。 等离子体室的容积为 1000L ,等离子体室的温度控制在 60 ℃;通入惰性气体的流量为 300sccm ,惰性气体为氩气。
2 、步骤 ( 2 )中 通入的单体蒸汽为:
一种单官能度不饱和氟碳树脂和两种多官能度不饱和烃类衍生物的混合物,所述单官能度不饱和氟碳树脂为 2-( 全氟丁基 ) 乙基丙烯酸酯,所述两种 多官能度不饱和烃类衍生物为二乙二醇二乙烯基醚、二丙烯酸乙二醇酯,所述单体中多官能度不饱和烃类衍生物所占质量百分比为 80% ;
通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压 200 毫托引入反应腔体, 所述通入单体蒸汽的流量为 1000 µ L/min ;
步骤( 2 )中通入单体蒸汽之前设置等离子体放电的功率为 300W ,持续放电时间为 450s , 进行辉光放电对基材进行轰击预处理;
步骤( 2 )中等离子体放电的功率为 500W ,持续放电时间为 600s ,所述等离子体放电方式为电火花放电。
3 、步骤( 3 )中保持反应腔体真空度为 200 毫托 5min 后通入大气至一个大气压。
实施例 4
本实施例与实施例 1 基本的工艺步骤相同,不同的工艺参数如下:
1 、步骤 ( 1 )中将反应腔体内的真空度抽到 80 毫托,通入惰性气体;基材为固体材料,固体材料为 织物。 等离子体室的容积为 600L ,等离子体室的温度控制在 45 ℃;通入惰性气体的流量为 150sccm ,惰性气体为氦气与氩气的混合物。
2 、步骤 ( 2 )中 通入的单体蒸汽为:
一种多官能度不饱和烃类衍生物和一种多官能度不饱和烃类衍生物的混合物,所述多官能度不饱和烃类衍生物为二丙烯酸乙二醇酯 ,所述 多官能度不饱和烃类衍生物为二乙二醇二乙烯基醚;
通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压 80 毫托引入反应腔体, 所述通入单体蒸汽的流量为 600 µ L/min ;
步骤( 2 )中通入单体蒸汽之前设置等离子体放电的功率为 400W ,持续放电时间为 200s , 进行辉光放电对基材进行轰击预处理;
步骤( 2 )中等离子体放电的功率为 300W ,持续放电时间为 4500s ,所述等离子体放电方式为微波放电。
3 、步骤( 3 )中保持反应腔体真空度为 120 毫托 3min 后通入大气至一个大气压。
实施例 5
本实施例与实施例 1 基本的工艺步骤相同,不同的工艺参数如下:
1 、步骤 ( 1 )中将反应腔体内的真空度抽到 160 毫托,通入惰性气体;基材为固体材料,固体材料为 电子部件。 等离子体室的容积为 800L ,等离子体室的温度控制在 55 ℃;通入惰性气体的流量为 260sccm ,惰性气体为氩气。
2 、步骤 ( 2 )中 通入的单体蒸汽为:
一种多官能度不饱和烃类衍生物和一种多官能度不饱和烃类衍生物的混合物,所述多官能度不饱和烃类衍生物为二丙烯酸乙二醇酯 ,所述 多官能度不饱和烃类衍生物为 二丙烯酸新戊二醇酯 ;
通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压 80 毫托引入反应腔体, 所述通入单体蒸汽的流量为 800 µ L/min ;
步骤( 2 )中通入单体蒸汽之前设置等离子体放电的功率为 500W ,持续放电时间为 300s , 进行辉光放电对基材进行轰击预处理;
步骤( 2 )中等离子体放电的功率为 100W ,持续放电时间为 7000s ,所述等离子体放电方式为射频放电。
3 、步骤( 3 )中保持反应腔体真空度为 100 毫托 3min 后通入大气至一个大气压。
上述实施例 1 至实施例 5 所述的方法制备得到的涂层具有优异的耐有机溶剂溶解性能,测试结果如下:
耐有机溶剂 ( IPA ) 溶解性
膜厚
浸泡前 浸泡 48h
实施例 1 100nm 20nm
实施例 2 100nm 80nm
实施例 3 100nm 100nm
实施例 4 100nm 95nm
实施例 5 100nm 102nm
耐有机溶剂 (乙醇) 溶解性
膜厚
浸泡前 浸泡 48h
实施例 1 100nm 25nm
实施例 2 100nm 75nm
实施例 3 100nm 98nm
实施例 4 100nm 90nm
实施例 5 100nm 100nm
耐有机溶剂 ( 正己烷 ) 溶解性
膜厚
浸泡前 浸泡 48h
实施例 1 100nm 23nm
实施例 2 100nm 86nm
实施例 3 100nm 100nm
实施例 4 100nm 98nm
实施例 5 100nm 96nm
耐有机溶剂 (丙酮) 溶解性
膜厚
浸泡前 浸泡 48h
实施例 1 100nm 19nm
实施例 2 100nm 72nm
实施例 3 100nm 100nm
实施例 4 100nm 95nm
实施例 5 100nm 90nm

Claims (8)

  1. 一种交联度可控的涂层的制备方法,其特征在于:主要包括以下步骤:
    ( 1 ) 将基材置于等离子体室的反应腔体内,对反应腔体连续抽真空,将反应腔体内的真空度抽到 10-200 毫托,通入惰性气体或氮气;
    ( 2 )通入单体蒸汽,开启等离子体放电,进行化学气相沉积;
    所述单体蒸汽为:
    至少一种单官能度不饱和氟碳树脂和至少一种多官能度不饱和烃类衍生物混合物,所述多官能度不饱和烃类衍生物所占质量百分比为 10%-80% ;
    或至少一种多官能度不饱和烃类衍生物和至少一种多官能度不饱和烃类衍生物的混合物;
    ( 3 )放电结束,关闭等离子体电源,停止通入单体蒸汽, 持续抽真空,保持反应腔体真空度为 10-200 毫托 1-5min 后通入大气至一个大气压,然后取出基材即可。
  2. 根据权利要求 1 所述的一种交联度可控的涂层的制备方法,其特征在于:所述步骤( 1 )中基材为固体材料,所述固体材料包括电子部件、电器部件、织物或服装、液体容器、实验器材、膜材料、光学器件。
  3. 根据权利要求 1 所述的一种交联度可控的涂层的制备方法,其特征在于:所述步骤( 1 )中的等离子体室容积为 50~1000 升, 等离子体室的温度控制在 30~60 ℃;通入惰性气体或氮气的流量为 5~300sccm ,所述惰性气体为氩气或氦气中的 一种,或者氦气和氩气的混合物。
  4. 根据权利要求 1 所述的一种交联度可控的涂层的制备方法,其特征在于: 所述步骤( 2 )中:通入单体蒸汽为将单体通过加料泵进行雾化、挥发,由低压 10~200 毫托引入反应腔体, 所述通入单体蒸汽的流量为 10-1000 µ L/min 。
  5. 根据权利要求 1 所述的一种交联度可控的涂层的制备方法,其特征在于: 所述单官能度不饱和氟碳树脂包括:
    3-( 全氟 -5- 甲基己基 )-2- 羟基丙基甲基丙烯酸酯、 2-( 全氟癸基 ) 乙基甲基丙烯酸酯、 2-( 全氟己基 ) 乙基甲基丙烯酸酯、 2-( 全氟十二烷基 ) 乙基丙烯酸酯、 2- 全氟辛基丙烯酸乙酯、 1H,1H,2H,2H- 全氟辛醇丙烯酸酯、 2-( 全氟丁基 ) 乙基丙烯酸酯、 (2H- 全氟丙基 )-2- 丙烯酸酯、 ( 全氟环己基 ) 甲基丙烯酸酯、 3,3,3- 三氟 -1- 丙炔、 1- 乙炔基 -3,5- 二氟苯或 4- 乙炔基三氟甲苯;
    所述多官能度不饱和烃类衍生物包括:
    乙氧基化三羟甲基丙烷三丙烯酸酯、二缩三丙二醇二丙烯酸酯、二乙烯苯、聚乙二醇二丙烯酸酯、三乙二醇二乙烯基醚、 1,6- 己二醇二丙烯酸酯、 二丙烯酸乙二醇酯、 二乙二醇二乙烯基醚或二丙烯酸新戊二醇酯。
  6. 根据权利要求 1 所述的一种交联度可控的涂层的制备方法,其特征在于: 所述步骤( 2 )中通入单体蒸汽之前设置等离子体放电的功率为 2~500W ,持续放电时间为 300~600s , 进行辉光放电对基材进行轰击预处理。
  7. 根据权利要求 1 所述的一种交联度可控的涂层的制备方法,其特征在于:所述步骤( 2 )中等离子体放电的功率为 2~500W ,持续放电时间为 600~7200s ,所述等离子体放电方式为射频放电、微波放电、中频放电或电火花放电。
  8. 根据权利要求 7 所述的一种交联度可控的涂层的制备方法,其特征在于: 所述等离子体射频放电过程中 控制等离子体射频的能量输出方式为脉冲或连续输出,等离子体射频的能量输出方式为脉冲输出时, 脉宽为 2μs-1ms 、重复频率为 20Hz-10kHz 。
PCT/CN2017/081778 2017-01-23 2017-04-25 一种交联度可控的涂层的制备方法 WO2018133233A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710049172.1 2017-01-23
CN201710049172.1A CN106906456B (zh) 2017-01-23 2017-01-23 一种交联度可控的涂层的制备方法

Publications (1)

Publication Number Publication Date
WO2018133233A1 true WO2018133233A1 (zh) 2018-07-26

Family

ID=59207240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081778 WO2018133233A1 (zh) 2017-01-23 2017-04-25 一种交联度可控的涂层的制备方法

Country Status (2)

Country Link
CN (1) CN106906456B (zh)
WO (1) WO2018133233A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107587120B (zh) * 2017-08-23 2018-12-18 江苏菲沃泰纳米科技有限公司 一种具有调制结构的高绝缘纳米防护涂层的制备方法
CN107686986B (zh) * 2017-08-23 2018-12-18 江苏菲沃泰纳米科技有限公司 一种调制结构的有机硅纳米防护涂层的制备方法
US11185883B2 (en) 2017-08-23 2021-11-30 Jiangsu Favored Nanotechnology Co., LTD Methods for preparing nano-protective coating
CN112575317A (zh) * 2017-08-23 2021-03-30 江苏菲沃泰纳米科技股份有限公司 一种高绝缘性纳米防护涂层的制备方法
US11389825B2 (en) 2017-08-23 2022-07-19 Jiangsu Favored Nanotechnology Co., LTD Methods for preparing nano-protective coating with a modulation structure
CN108097055B (zh) * 2017-12-11 2021-03-05 浙江海洋大学 一种用于油气回收的中空纤维膜的镀层方法
CN108554745B (zh) * 2018-03-28 2021-09-28 中国科学院宁波材料技术与工程研究所 一种dlc膜层的表面处理方法
CN109354903B (zh) * 2018-10-24 2020-01-17 江苏菲沃泰纳米科技有限公司 一种高透明低色差纳米涂层及其制备方法
CN109267038B (zh) * 2018-10-24 2019-12-06 江苏菲沃泰纳米科技有限公司 一种耐磨自交联的纳米涂层及其制备方法
CN110195218A (zh) * 2019-05-20 2019-09-03 何金宁 一种微波cvd纳米防水复合工艺
CN111621208B (zh) * 2020-05-18 2021-11-05 江苏菲沃泰纳米科技股份有限公司 防水膜层及其制备方法、应用和产品
CN112980223B (zh) * 2021-03-04 2021-12-21 江苏菲沃泰纳米科技股份有限公司 一种复合涂层、制备方法及器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320062A (zh) * 1998-07-24 2001-10-31 英国国防部 表面涂层
CN1322264A (zh) * 1998-09-07 2001-11-14 宝洁公司 具有超级疏水涂层的纺织品和衣服
CN1539896A (zh) * 2003-10-30 2004-10-27 复旦大学 一种改进高分子基底水阻隔性的方法
CN104718258A (zh) * 2012-08-13 2015-06-17 欧洲等离子公司 表面涂层

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623433B2 (ja) * 1988-10-17 1994-03-30 株式会社半導体エネルギー研究所 炭素を主成分とする被膜の作製方法
SG53005A1 (en) * 1996-07-03 1998-09-28 Novellus Systems Inc Method for depositing substituted fluorcarbon polymeric layers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320062A (zh) * 1998-07-24 2001-10-31 英国国防部 表面涂层
CN1322264A (zh) * 1998-09-07 2001-11-14 宝洁公司 具有超级疏水涂层的纺织品和衣服
CN1539896A (zh) * 2003-10-30 2004-10-27 复旦大学 一种改进高分子基底水阻隔性的方法
CN104718258A (zh) * 2012-08-13 2015-06-17 欧洲等离子公司 表面涂层

Also Published As

Publication number Publication date
CN106906456B (zh) 2018-04-20
CN106906456A (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
WO2018133233A1 (zh) 一种交联度可控的涂层的制备方法
WO2018133235A1 (zh) 一种梯度递减结构防液涂层的制备方法
WO2018133237A1 (zh) 一种防水耐电击穿涂层的制备方法
WO2018133234A1 (zh) 一种梯度递增结构防液涂层的制备方法
WO2017116130A1 (ko) 내플라즈마 코팅막 및 이의 형성방법
WO2018133238A1 (zh) 一种具有多层结构的防液涂层的制备方法
WO2018133236A1 (zh) 一种低粘附、耐蚀涂层的制备方法
WO2017193561A1 (zh) 一种栅控等离子体引发气相聚合表面涂层的装置及方法
CN109267038B (zh) 一种耐磨自交联的纳米涂层及其制备方法
WO2018151892A1 (en) Surface coating for plasma processing chamber components
TW201230193A (en) Showerhead configurations for plasma reactors
WO2021040442A2 (ko) 레이저 기반 멀티인쇄장치 및 이를 이용한 표면 모폴로지가 제어된 대면적 페로브스카이트 박막의 제조방법
US5788870A (en) Promotion of the adhesion of fluorocarbon films
CN112410736A (zh) 一种物理气相沉积的方法
EP0825642A2 (en) Plasma process for high photoresist selectivity and improved polymer adhesion
JPWO2008032627A1 (ja) ドライエッチング方法
US3723277A (en) Method for the production of masks in the manufacture of semiconductor components
TW202219308A (zh) 利用低溫氟化的金屬氧化物
US20030104185A1 (en) Method for producing a multi-functional, multi-ply layer on a transparent plastic substrate and a multi-functional multi-ply layer produced according to said method
TWI235771B (en) Method of forming a fluorocarbon polymer film on a substrate using a passivation layer
JP2022553646A (ja) プラズマチャンバコンポーネントの無機コーティング
WO2015056954A1 (ko) 마그네슘합금의 내식성 표면처리 방법 및 이에 의해 표면처리된 마그네슘합금소재
WO2024063243A1 (ko) 초음파 분무를 통한 다공성 고분자 구조체 및 이의 제조방법
WO2015119469A1 (ko) 플라즈마 중합을 이용한 카테콜아민 합성방법
KR20220018053A (ko) 플라즈마 프로세싱 챔버 컴포넌트들을 위한 실란트 (sealant) 코팅

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892815

Country of ref document: EP

Kind code of ref document: A1