WO2018131727A1 - 윤활제 자동 공급장치 - Google Patents

윤활제 자동 공급장치 Download PDF

Info

Publication number
WO2018131727A1
WO2018131727A1 PCT/KR2017/000340 KR2017000340W WO2018131727A1 WO 2018131727 A1 WO2018131727 A1 WO 2018131727A1 KR 2017000340 W KR2017000340 W KR 2017000340W WO 2018131727 A1 WO2018131727 A1 WO 2018131727A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
pressure plate
lubricant
pendulum
machine
Prior art date
Application number
PCT/KR2017/000340
Other languages
English (en)
French (fr)
Inventor
하정수
Original Assignee
볼보 컨스트럭션 이큅먼트 에이비
하정수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 볼보 컨스트럭션 이큅먼트 에이비, 하정수 filed Critical 볼보 컨스트럭션 이큅먼트 에이비
Priority to PCT/KR2017/000340 priority Critical patent/WO2018131727A1/ko
Publication of WO2018131727A1 publication Critical patent/WO2018131727A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N13/00Lubricating-pumps
    • F16N13/02Lubricating-pumps with reciprocating piston
    • F16N13/06Actuation of lubricating-pumps
    • F16N13/10Actuation of lubricating-pumps with mechanical drive
    • F16N13/12Actuation of lubricating-pumps with mechanical drive with ratchet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N13/00Lubricating-pumps
    • F16N13/02Lubricating-pumps with reciprocating piston
    • F16N13/06Actuation of lubricating-pumps
    • F16N13/18Actuation of lubricating-pumps relative movement of pump parts being produced by inertia of one of the parts or of a driving member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/14Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated the lubricant being conveyed from the reservoir by mechanical means

Definitions

  • the present invention relates to an automatic lubricant supply device, and more particularly, to convert the inertial force caused by vibration of the machine, movement of the machine, external force, and various factors generated inside the machine into kinetic energy, and thus power for discharging lubricant. It relates to an automatic lubricant supply device used as a.
  • vibration occurs.
  • construction machinery such as excavators generally work or move in harsh environments, where significant vibrations occur. That is, the vibration is generated not only by the simple operation of the machine but also by various factors such as the movement of the machine and the external force applied to the machine. Accordingly, not only construction machinery such as excavators, but also numerous components or devices mounted or attached to various machines are always subjected to the force caused by such vibration, that is, inertial force according to Newton's first law of motion.
  • parts such as bearings, pumps, gears, cylinders, etc. are constantly friction with other parts while rotating or sliding. At this time, if the friction is continued in this way, heat is generated in the friction portion, and eventually the breakage of the component occurs. Therefore, a lubricant is supplied to the site to prevent friction between the parts and to smoothly operate these parts.
  • This automatic lubricant supply device is a method of injecting lubricant through a hydraulic hose from an electrically driven pump.
  • the automatic lubrication supply device injects lubricant to each part through a pump, even when a small amount of application is required, the device size is more than necessary, and the structure of the device is complicated because a hydraulic hose must be connected to the pump and each part. And there is a problem that the price is also expensive.
  • electricity is not supplied, it is not operated, and when an abnormality occurs in the electrical system, the supply of lubricant is stopped, which causes a problem in the operation of the machine, which in turn shortens the life of the machine.
  • the present invention has been made to solve the problems of the prior art as described above, the object of the present invention is to provide the inertial force caused by vibration of the machine, movement of the machine, external force and various factors generated inside the machine, etc. It is to provide an automatic lubricant supply device which is converted into kinetic energy and used as a power for lubrication discharge.
  • the automatic lubricant supply device for automatically supplying a lubricant to the machine, the case having a receiving space, the discharge hole is formed on one side; It is disposed in the receiving space so as to be movable toward the discharge hole, and partitions the receiving space into a first zone on the upstream side and a second zone on the downstream side based on the discharge hole, and filled in the first zone when moving.
  • a pressure plate for pressurizing the lubricant to discharge the lubricant to the outside through the discharge hole;
  • an energy conversion unit installed in the second zone, connected to the pressure plate, and converting an inertial force induced by the machine into kinetic energy and using the energy conversion unit as a power for moving the pressure plate.
  • the energy conversion unit by the inertial force induced by the machine includes a pendulum originally located by gravity after rotation in a first direction or a second direction opposite to the first direction, and a plurality of gears connected to each other And a gear assembly connected to the pendulum and operated by rotation of the pendulum to move the pressure plate.
  • the gear assembly the first rotation shaft is installed in the second zone, the first gear connected to the first rotation shaft, the second gear to rotate in engagement with the first gear, and the vertical from one side of the bottom surface of the case It is installed in the direction, and the thread is formed on the outer peripheral surface in the longitudinal direction, the pressure plate and the second gear may be coupled in sequence, and the pressure plate and the screw is formed, and may include a second rotating shaft fixed to the second gear have.
  • the pendulum may be connected to the first rotation shaft.
  • the energy converter is formed between the first rotational shaft and the first gear or between the first rotational shaft and the pendulum, the ratchet for rotating the first gear in the first direction or the second direction. It may further include.
  • the ratchet may also include a ratchet wheel and a pawl.
  • the pawl may be formed in the first gear or the pendulum, and the ratchet wheel may be formed in the first rotation shaft corresponding to the first gear or the pendulum in which the pawl is formed.
  • the ratchet wheel may be formed in the first gear or the pendulum, and the pawl may be formed in the first gear or the first rotation shaft corresponding to the pendulum in which the ratchet wheel is formed.
  • the second rotation shaft may rotate in the same direction as the second gear.
  • the pressure plate may be rotated in the direction opposite to the rotation direction of the second rotary shaft to move toward the outlet side.
  • the second gear may be relatively larger in diameter than the first gear.
  • the second gear may be formed in a size corresponding to the pressure plate.
  • the gear assembly may further include a third gear disposed between the first gear and the second gear.
  • the gear assembly may further include a fourth gear coupled to the second rotation shaft between the pressure plate and the second gear and engaged with the first gear to rotate.
  • the pressure plate may include a sealing member mounted on an outer circumferential surface.
  • the pressure plate may further include a trench formed along an outer circumferential surface to fix the sealing member.
  • the automatic lubricant supply device may further include a cover coupled to the other side of the case to seal the internal space.
  • Lubricants can be automatically discharged to the outside without additional power such as electricity or hydraulic pressure.
  • the device when a separate power source such as electricity or hydraulic pressure is not used, the device can be configured with a relatively small size, thereby reducing manufacturing cost and freeing the installation space.
  • FIG. 1 is a perspective view showing an automatic lubricant supply device according to a first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing an automatic lubricant supply device according to a first embodiment of the present invention.
  • FIG 3 is a partial perspective view showing the arrangement of the pressure plate in the automatic lubricant supply apparatus according to the first embodiment of the present invention.
  • Figure 4 is a front view showing a state in which the cover is separated in the automatic lubricant supply apparatus according to the first embodiment of the present invention.
  • 5 to 7 are schematic views showing the rotation of the pendulum in the automatic lubricant supply device according to the first embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the installation structure of the ratchet in the automatic lubricant supply apparatus according to the first embodiment of the present invention.
  • FIG. 9 is a perspective view showing a state in which the cover is separated in the automatic lubricant supply apparatus according to a second embodiment of the present invention.
  • FIG. 10 is a front view of FIG. 9.
  • FIG. 11 is a perspective view showing a state in which a cover is removed in the automatic lubricant supply apparatus according to the third embodiment of the present invention.
  • FIG. 12 is a front view of FIG. 11.
  • the automatic lubricant supply device 100 for smooth operation of the various components mounted on the machine, for example, construction machinery such as excavators, It is a device that automatically supplies lubricant to the site where contact occurs.
  • the automatic lubricant supply apparatus 100 converts the inertial force caused by vibration of the machine, movement of the machine, external force and various factors generated inside the machine to kinetic energy when the machine is operated. It is a device used to power lubricant discharge.
  • the automatic lubricant supply device 100 is formed to include a case 110, the pressure plate 120 and the energy conversion unit 130.
  • Case 110 forms the appearance of the automatic lubricant supply device (100).
  • the case 110 has a receiving space.
  • the accommodation space of the case 110 is divided into a first zone A and a second zone B by the pressure plate 120.
  • the first zone A is filled with lubricant
  • the second zone B is provided with an energy conversion unit 130.
  • the second zone B may be formed to have a relatively wider width than the first zone B to provide an installation space of the energy conversion unit 130.
  • the first zone A in which the lubricant is filled is gradually reduced in size by the pressure plate 120 when the lubricant is discharged, which will be described in more detail below.
  • the discharge hole 111 is formed on one side of the case 110.
  • the discharge hole 111 provides a discharge passage of the lubricant filled in the first zone (A). That is, the lubricant is discharged to the outside through the discharge hole 111 to lubricate various parts of the machine.
  • the lubricant is automatically discharged during the machine operation, so that continuous lubrication is achieved during the machine operation. As such, continuous lubrication of the machine by the lubricant that is automatically discharged prevents damage or breakage due to friction between components, thereby extending the life of the machine.
  • the discharge hole 111 when the automatic lubricant supply device 100 is not used may be closed by a separate member.
  • the other side of the case 110 in which the discharge hole 111 is formed at one side is opened.
  • the first zone A in which the lubricant is filled is sealed by one side of the case 110 and the pressure plate 120 disposed to be opposite thereto, and the second energy conversion unit 130 is installed.
  • Zone B is exposed to the outside.
  • the automatic lubricant supply device 100 according to the first embodiment of the present invention includes a cover 140.
  • the cover 140 is coupled to the other side of the case 110 to seal the inner space, that is, the second zone (B).
  • the cover 140 may be coupled to the other side of the case 110 in various forms such as interference fit, male and female coupling or sliding coupling.
  • the pressure plate 120 is a device for discharging the lubricant to the outside through the discharge hole 111 formed on one side of the case 110 by pressing the lubricant filled in the first zone (A).
  • a part of the case 110 forming the first zone A has a cylindrical shape.
  • the pressure plate 120 corresponds to the cross section of the cylinder in order to partition the accommodation space into the first zone A on the upstream side and the second zone B on the downstream side based on the discharge hole 111. It is made of a disk structure of a size and is disposed in the receiving space of the case 110 to face one side of the case 110 in which the discharge hole 111 is formed.
  • the pressure plate may include a sealing member 124 mounted on the outer peripheral surface of the 120.
  • the sealing member 124 may be formed of an O-ring.
  • the pressure plate 120 may include a trench 123 is formed along the outer peripheral surface to fix the sealing member 124.
  • the pressure plate 120 includes a through hole 121 formed in the center portion and the thread 122 formed along the wall surface of the through hole 121.
  • the through hole 121 and the thread 122 are screwed with the second rotating shaft 135 and the thread 136 of the energy conversion unit 130 to be described later, the interaction between the pressure plate 120 and the energy conversion unit 130 This will be described in more detail below.
  • the energy conversion unit 130 is installed in the second zone B of the case 110 partitioned by the pressure plate 120.
  • the energy conversion unit 130 is connected to the pressure plate 120, the kinetic energy that is the power for moving the pressure plate 120 inertial force caused by the vibration of the machine, the movement of the machine, external force and various factors generated inside the machine, etc.
  • the machine when the lubricant is automatically discharged by the energy conversion unit 130, the machine may be continuously lubricated during the operation of the machine, and thus, the machine life may be extended.
  • the structure can be simplified, the device can be configured in a relatively small size, free from constraints on the installation space, and easy to maintain The manufacturing cost can be reduced as well.
  • the energy converter 130 may include a pendulum 133 and a gear assembly.
  • the pendulum 133 is repositioned by gravity after rotation in a first direction or a second direction opposite to the first direction by inertial forces induced by the machine.
  • the gear assembly includes a plurality of gears connected to each other, it is connected to the pendulum 133. This gear assembly is operated by the rotation of the pendulum 133, to move the pressure plate 120.
  • the gear assembly according to the first embodiment of the present invention includes a first rotation shaft 131, a first gear 132, a second gear 134, and a second rotation shaft 135. Can be formed.
  • the first rotating shaft 131 is installed in the second zone (B).
  • the first rotation shaft 131 may be installed at a position not overlapping with the pressure plate 120 in the vertical direction.
  • the first rotation shaft 131 may be installed at the side of the pressure plate 120.
  • the first gear 132 is connected to one side of the first rotation shaft 131 in the longitudinal direction, and the pendulum 133 is connected to the other side.
  • the first rotating shaft 131 is rotated in accordance with the rotation of the pendulum 133, thereby, the first gear 132 is rotated.
  • the first gear 132 is connected to the first rotation shaft 131.
  • the second gear 134 meshes with the first gear 132. Accordingly, when the first gear 132 is rotated in the first direction, for example clockwise, the second gear 134 is rotated in the second direction, for example counterclockwise. The first gear 132 is rotated by the rotation of the first rotary shaft 131.
  • the first gear 132 is installed to be rotatable only in one direction, for example, the first direction, which will be described in more detail below.
  • the pendulum 133 connected to the first rotating shaft 131 of the gear assembly is initially located in the gravity direction (FIG. 5), and is positioned by the inertial force induced by the machine. The energy is changed. That is, the pendulum 133 rotates in the first direction (FIG. 6) or in the second direction by the inertial force induced by the machine. (FIG. 7) As described above, the pendulum rotated in the first direction or the second direction (FIG. 7). 133 is returned to the gravity direction again by gravity.
  • the inertial force induced from the machine is converted into kinetic energy for moving the first rotating shaft 131 and the first gear 132, and the kinetic energy is converted into the second gear 134 and the second. Is transmitted to the rotating shaft 135, the pressure plate 120 is moved in the direction to discharge the lubricant.
  • the second gear 134 is a driven gear that is rotated by the first gear 132 and is disposed in engagement with the first gear 132.
  • the second gear 134 rotates in the second direction.
  • the degree of movement of the pressure plate 120 is determined according to the degree of rotation of the second gear 134.
  • the second gear 134 be formed to have the largest diameter, and, firstly, the diameter of the second gear 132 is preferably larger than that of the first gear 132.
  • the second gear 134 according to the first embodiment of the present invention may be connected to the pressure plate 120. Most preferably, they are formed in corresponding sizes.
  • the second rotating shaft 135 is installed in a vertical direction from one bottom surface of the case 110.
  • the thread 136 is formed on the longitudinal outer circumferential surface of the second rotation shaft 135.
  • the pressure plate 120 and the second gear 134 are sequentially coupled to the longitudinal outer circumferential surface of the second rotation shaft 135.
  • the second rotary shaft 135 is coupled to the pressure plate 120 through the through hole 121 of the pressure plate 120, and thus, the thread 136 and the pressure plate 120 of the second rotary shaft 135 through.
  • the threads 122 formed along the inner wall of the ball 121 are engaged with each other. That is, the second rotating shaft 135 is screwed with the pressure plate 120.
  • the second rotating shaft 135 is also coupled to the second gear 134, at this time, the second gear 134 is fixed.
  • the second rotation shaft 135 also rotates in the second direction.
  • the sealing member 124 attached to the outer circumferential surface of the pressure plate 120 more specifically, the outer circumferential surface of the pressure plate 120 is in close contact with the inner wall of the case 110, and the pressure plate 120 and the second rotating shaft 135.
  • Is a screw coupling when the second rotary shaft 135 is rotated in the second direction, the pressure plate 120 rotates in the first direction and is advanced to the discharge port 111 side formed on one side of the case 110. Done.
  • the pressure plate 120 when the pressure plate 120 is advanced toward the outlet 111, the lubricant filled in the first zone A partitioned by the pressure plate 120 is pressurized. As a result, the lubricant is discharged to the outside through the discharge port 111 to lubricate the various parts.
  • the first gear 132 rotates only in one direction, for example, a clockwise first direction.
  • the energy conversion unit 130 may include a ratchet 137 to enable rotation of the first gear 132 in one direction.
  • the ratchet 137 is formed between the first rotation shaft 131 and the first gear 132.
  • the ratchet 137 may be formed between the first rotation shaft 131 and the pendulum 133.
  • the position of the ratchet 137 may be particularly defined by the first rotation shaft 131.
  • the first gear 132 is not limited.
  • the ratchet 137 may be formed to include the ratchet wheel 138 and the pawl 139. As shown in FIG. 8, the pawl 139 may be formed in the first gear 132. In this case, the ratchet wheel 138 may be formed on the first rotation shaft 131 corresponding to the first gear 132 in which the pawl 139 is formed. In this case, when the pendulum 133 rotates in the second direction counterclockwise due to the inertia force, the first rotation shaft 131 also rotates in the second direction, whereby the ratchet wheel 138 also moves in the second direction.
  • the ratchet wheel 138 is idle due to the coupling structure with the pawl 139, and as a result, the rotational force in the second direction is not transmitted to the first gear 132, the first gear 132 Does not rotate. Accordingly, the second gear 134 also does not rotate, and the pressure plate 120 does not move, and as a result, the lubricant is not discharged.
  • the first rotation shaft 131 and the ratchet wheel 138 also rotate in the first direction.
  • the first gear 132 also rotates in the first direction by the pawl 139.
  • the second gear 134 and the second rotation shaft 135 rotate in the second direction, whereby the pressure plate 120 moves forward to pressurize the lubricant, and as a result, the lubricant discharges the outlet 111. Through the case 110 is discharged to the outside.
  • the first gear 132 is rotated only in the first direction by the ratchet 137, whereby the pressure plate 120 is formed only on one side of the case 110 Only the operation to move forward to the outlet 111 is made.
  • the ratchet wheel 138 may be formed on the first gear 132, and the pawl 139 may be formed on the first rotation shaft 131.
  • the ratchet 137 is formed between the first rotation shaft 131 and the pendulum 133. That is, when the ratchet 137 is formed between the first rotation shaft 131 and the pendulum 133, the ratchet wheel 138 may be formed on the first rotation shaft 131, and the pole 139 may be the pendulum 133. ) May be formed.
  • the ratchet wheel 138 may be formed on the pendulum 133, so that the pole 139 is the first It may be formed on the rotating shaft 131.
  • a ratchet 137 is formed between the first rotation shaft 131 and the pendulum 133, at which time the ratchet wheel 138 is formed on the first rotation shaft 131, and the pole 139 is formed on the pendulum 133.
  • the ratchet wheel 138 when the pendulum 133 rotates in the first direction by the inertial force, the ratchet wheel 138 also rotates in the first direction by the pawl 139, whereby the first rotation shaft 131 also rotates in the first direction. Rotate As a result, the first gear 132 also rotates in the first direction.
  • the ratchet wheel 138 is formed on the pendulum 133 and the ratchet wheel 138 is formed on the first rotation shaft 131 even when the pawl 139 is formed on the first rotation shaft 131.
  • the first gear 132 is rotated only in the first direction.
  • the lubricant filled in the first zone A partitioned between the pressure plate 120 and the discharge hole 111 is pressurized and discharged to the outside through the discharge hole 111.
  • the pendulum 133 rotated in the first direction is rotated in the original position, that is, in the second direction by gravity
  • the rotation force in the second direction is transmitted to the first gear 132 by the latch 137. Therefore, the first gear 132, the second gear 134, and the second rotation shaft 135 do not rotate.
  • the pressure plate 120 also stops the forward operation, so that the lubricant is no longer discharged.
  • the rotational force in the second direction is not transmitted to the first gear 132 by the latch 137, so that the first gear ( 132, the second gear 134 and the second rotation shaft 135 do not rotate.
  • the pressure plate 120 also stops the forward operation, so that the lubricant is no longer discharged.
  • the pendulum 133 rotated in the second direction is rotated in the original position, that is, in the first direction by gravity, the rotational force in the first direction is transmitted to the first gear 132.
  • the first gear 132 rotates in the first direction.
  • the second gear 134 meshed with the first gear 132 rotates in the second direction, and accordingly, the second rotation shaft 135 also rotates in the second direction.
  • the pressure plate 120 rotates in the first direction and is transferred to the discharge hole 111.
  • the lubricant filled in the first zone A is pressurized and discharged to the outside through the discharge hole 111.
  • the automatic lubricant supply device 100 is converted from the inertial force caused by the vibration of the machine, movement of the machine, external force and various factors generated inside the machine when the machine is operating.
  • the kinetic energy that is, the rotational force of the pendulum 133 as the power for lubricating the lubricant
  • the lubricant can be automatically discharged to the outside without a separate power such as electric or hydraulic pressure, thereby maintaining Lubrication can be achieved to extend the life of the machine.
  • FIG. 9 is a perspective view illustrating a state in which a cover is separated from the automatic lubricant supply device according to the second embodiment of the present invention
  • FIG. 10 is a front view of FIG. 9.
  • the automatic lubricant supply device 200 includes a case 110, a pressure plate 120, and an energy conversion unit 230.
  • the same reference numerals are assigned to the same components, and detailed description thereof is omitted. do.
  • the energy conversion unit 230 includes a pendulum 133 and a gear assembly.
  • the gear assembly includes a first rotation shaft 131, a first gear 132, a second gear 134, a second rotation shaft 135, and a third gear 235.
  • the third gear 235 is disposed between the first gear 132 and the second gear 134. Accordingly, when the first gear 132 rotates in the first direction, the third gear 235 meshed with the first gear 132 rotates in the second direction. In addition, as the third gear 235 rotates in the second direction, the second gear 134 meshed with it rotates in the first direction, and as a result, the second rotation shaft 135 also rotates in the first direction. . As such, when the second rotation shaft 135 rotates in the first direction, the pressure plate 120 screwed to the second rotation shaft 135 rotates in the second direction and the discharge hole formed in the case 110 ( 1) to the side of 111).
  • the lubricant filled in the first zone (A in FIG. 3) partitioned between the pressure plate 120 and the discharge hole 111 is pressurized and discharged to the outside through the discharge hole 111.
  • the second rotating shaft 135 is rotated in the second direction to move the pressure plate 120
  • the second rotating shaft 135 is the first Rotate in the direction.
  • the rotation direction of the second rotation shaft 135 for the movement of the pressure plate 120 may be changed by changing the structure of the thread 136, the second rotation shaft 135 for the movement of the pressure plate 120 in the present invention. Is not particularly limited to any one direction.
  • the third gear 235 when the third gear 235 is disposed between the first gear 132 and the second gear 134, the first gear 132 and the second gear 134 It is possible to match the direction of rotation.
  • FIG. 11 is a perspective view illustrating a state in which a cover is separated in an automatic lubricant supply device according to a third exemplary embodiment of the present invention
  • FIG. 12 is a front view of FIG. 11.
  • the automatic lubricant supply device 300 includes a case 110, a pressure plate 120, and an energy conversion unit 330.
  • the same reference numerals are assigned to the same components, and detailed description thereof is omitted. do.
  • the energy conversion unit 330 includes a pendulum 133 and a gear assembly.
  • the gear assembly includes a first rotation shaft 131, a first gear 132, a second gear 134, a second rotation shaft 135, and a fourth gear 335.
  • the fourth gear 335 is coupled to the second rotation shaft 135 between the pressure plate 120 and the second gear 134.
  • the fourth gear 335 rotates by meshing with the first gear 132, and thus, the second gear 134, which is similarly coupled to the second rotation shaft 135, is also the same as the fourth gear 335.
  • the fourth gear 335 meshed with the first gear 132 rotates in the second direction. Accordingly, the second gear 134 and the second rotation shaft 135 also rotate in the second direction. As such, when the second rotation shaft 135 rotates in the second direction, the pressure plate 120 screwed with the second rotation shaft 135 rotates in the first direction and the discharge hole formed in the case 110 ( 1) to the side of 111). As a result, the lubricant filled in the first zone (A in FIG. 3) partitioned between the pressure plate 120 and the discharge hole 111 is pressurized and discharged to the outside through the discharge hole 111.
  • the fourth gear 335 is formed relatively smaller in diameter than the first gear 132.
  • the rotation speed is increased compared to the first gear 132, and accordingly, the second rotation shaft ( The rotation speed of 135 is also increased.
  • the moving speed of the pressure plate 120 is also increased, so that the lubricant can be discharged faster.
  • the gear assembly having various shapes or structures may be used to control the rotational direction of the second rotary shaft 135 or the moving speed of the pressure plate 120 and the discharge speed of the lubricant.
  • the gear assembly may be implemented in various ways by changing the number, shape, structure, and the like of the gears in addition to the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Details Of Gearings (AREA)

Abstract

본 발명은 윤활제 자동 공급장치에 관한 것으로서 더욱 상세하게는 기계 운용 시 기계의 진동, 기계의 이동, 외력 및 기계 내부에서 발생되는 다양한 요인 등에 의해 유발되는 관성력을 운동 에너지로 변환시켜 윤활제 배출을 위한 동력으로 사용하는 윤활제 자동 공급장치에 관한 것이다. 이를 위해, 본 발명은, 기계에 윤활제를 자동으로 공급하는 윤활제 자동 공급장치에 있어서, 수용공간을 가지며, 일측에 배출공이 형성되어 있는 케이스; 상기 배출공을 향해 이동 가능하게 상기 수용공간에 배치되고, 상기 배출공을 기준으로 상기 수용공간을 상류측의 제1 구역 및 하류측의 제2 구역으로 구획하며, 이동 시 상기 제1 구역에 충진되어 있는 상기 윤활제를 가압하여 상기 배출공을 통해 상기 윤활제를 외부로 배출시키는 압력판; 및 상기 제2 구역에 설치되고, 상기 압력판과 연결되며, 상기 기계에서 유발되는 관성력을 운동 에너지로 변환시켜, 상기 압력판 이동을 위한 동력으로 사용하는 에너지 변환부를 포함하는 윤활제 자동 공급장치를 제공한다.

Description

윤활제 자동 공급장치
본 발명은 윤활제 자동 공급장치에 관한 것으로서 더욱 상세하게는 기계 운용 시 기계의 진동, 기계의 이동, 외력 및 기계 내부에서 발생되는 다양한 요인 등에 의해 유발되는 관성력을 운동 에너지로 변환시켜 윤활제 배출을 위한 동력으로 사용하는 윤활제 자동 공급장치에 관한 것이다.
일반적으로, 기계를 동작시키게 되면, 진동이 발생하게 된다. 특히, 굴삭기와 같은 건설기계는 대체적으로 척박한 환경에서 작업하거나 이동하게 되는데, 이 경우, 상당한 진동이 발생하게 된다. 즉, 진동은 기계의 단순한 동작 뿐만 아니라, 기계의 이동이나 기계에 가해지는 외력 등 다양한 요인에 의해 발생된다. 이에 따라, 굴삭기와 같은 건설기계 뿐만 아니라 다양한 기계들에 장착 혹은 부착되어 있는 수많은 부품이나 장치들은 항상 이러한 진동에 의해 유발되는 힘, 즉, 뉴턴의 운동 제1 법칙에 따른 관성력을 받게 된다.
한편, 기계 운용 시 예컨대, 베어링이나 펌프, 기어, 실린더 등과 같은 부품들은 회전운동이나 슬라이딩 운동을 하면서 지속적으로 다른 부품과 마찰을 일으키게 된다. 이때, 이와 같이 마찰이 계속되면, 마찰 부분에 열이 발생하게 되고, 결국에는 부품의 파손이 발생된다. 그러므로, 부품 간의 마찰을 방지하고, 이러한 부품들의 원활한 동작을 위해, 해당 부위에 윤활제가 공급된다.
하지만, 종래에는 작업자가 이러한 윤활제를 해당 부위에 일일이 주입해주어야 하는 불편함이 있었다. 또한, 윤활제를 주입하는 동안에는 기계의 작동을 중지시켜야만 했는데, 이로 인해, 시간적, 금전적 손실이 발생되었다.
이를 해결하기 위해, 자동 윤활제 공급장치가 제안되었다. 이러한 자동 윤활제 공급장치는 전기에 의해 구동되는 펌프로부터 유압 호스를 통해 윤활제를 주입하는 방식이다. 하지만, 이러한 자동 윤활 공급장치는 펌프를 통해 각 부위에 윤활제를 주입하는 방식이므로, 소량 적용 시에도 필요 이상의 장치 크기가 요구되며, 펌프와 각 부위에 유압 호스를 연결해야 하므로, 장치의 구조가 복잡하고, 가격 또한 고가인 문제가 있다. 또한, 전기가 공급되지 않으면, 동작되지 않기 때문에, 전기계통에 이상 발생 시 윤활제 공급이 중단되어, 기계의 작동에 문제를 일으키게 되고, 결국에는 기계의 수명을 단축시키는 결과를 초래하게 된다.
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 기계 운용 시 기계의 진동, 기계의 이동, 외력 및 기계 내부에서 발생되는 다양한 요인 등에 의해 유발되는 관성력을 운동 에너지로 변환시켜 윤활제 배출을 위한 동력으로 사용하는 윤활제 자동 공급장치를 제공하는 것이다.
이를 위해, 본 발명은, 기계에 윤활제를 자동으로 공급하는 윤활제 자동 공급장치에 있어서, 수용공간을 가지며, 일측에 배출공이 형성되어 있는 케이스; 상기 배출공을 향해 이동 가능하게 상기 수용공간에 배치되고, 상기 배출공을 기준으로 상기 수용공간을 상류측의 제1 구역 및 하류측의 제2 구역으로 구획하며, 이동 시 상기 제1 구역에 충진되어 있는 상기 윤활제를 가압하여 상기 배출공을 통해 상기 윤활제를 외부로 배출시키는 압력판; 및 상기 제2 구역에 설치되고, 상기 압력판과 연결되며, 상기 기계에서 유발되는 관성력을 운동 에너지로 변환시켜, 상기 압력판 이동을 위한 동력으로 사용하는 에너지 변환부를 포함하는 윤활제 자동 공급장치를 제공한다.
여기서, 상기 에너지 변환부는, 상기 기계에서 유발되는 관성력에 의해 제1 방향 또는 상기 제1 방향과 반대되는 제2 방향으로 회전 후 중력에 의해 원 위치되는 진자, 및 서로 연결되는 복수 개의 기어를 포함하고, 상기 진자와 연결되며, 상기 진자의 회전에 의해 동작되어, 상기 압력판을 이동시키는 기어 조립체를 포함할 수 있다.
이때, 상기 기어 조립체는, 상기 제2 구역에 설치되는 제1 회전축, 상기 제1 회전축에 연결되는 제1 기어, 상기 제1 기어에 맞물려 회전하는 제2 기어, 및 상기 케이스의 일측 바닥면으로부터 수직 방향으로 설치되고, 길이방향 외주면에는 나사산이 형성되고, 상기 압력판 및 상기 제2 기어가 차례로 결합되되, 상기 압력판과는 나사 결합을 이루고, 상기 제2 기어와는 고정되는 제2 회전축을 포함할 수 있다.
또한, 상기 진자는 상기 제1 회전축에 연결될 수 있다.
이때, 상기 에너지 변환부는 상기 제1 회전축과 상기 제1 기어 사이 또는 상기 제1 회전축과 상기 진자 사이에 형성되어, 상기 제1 기어를 상기 제1 방향 또는 상기 제2 방향으로 회전 가능하게 하는 래칫을 더 포함할 수 있다.
또한, 상기 래칫은 래칫 휠 및 폴을 포함할 수 있다.
그리고 상기 폴은 상기 제1 기어 또는 상기 진자에 형성되고, 상기 래칫 휠은 상기 폴이 형성되는 상기 제1 기어 또는 상기 진자와 대응되는 상기 제1 회전축에 형성될 수 있다.
또한, 상기 래칫 휠은 상기 제1 기어 또는 상기 진자에 형성되고, 상기 폴은 상기 래칫 휠이 형성되는 상기 제1 기어 또는 상기 진자와 대응되는 상기 제1 회전축에 형성될 수 있다.
한편, 상기 제2 회전축은 상기 제2 기어와 동일 방향으로 회전할 수 있다.
이때, 상기 압력판은 상기 제2 회전축의 회전 방향과 반대 방향으로 회전하며 상기 배출구 측으로 전진할 수 있다.
또한, 상기 제2 기어는 상기 제1 기어보다 직경이 상대적으로 클 수 있다.
이때, 상기 제2 기어는 상기 압력판과 대응되는 크기로 형성될 수 있다.
한편, 상기 기어 조립체는 상기 제1 기어와 상기 제2 기어 사이에 배치되는 제3 기어를 더 포함할 수 있다.
또한, 상기 기어 조립체는 상기 압력판과 상기 제2 기어 사이의 상기 제2 회전축에 결합되고, 상기 제1 기어에 맞물려 회전하는 제4 기어를 더 포함할 수 있다.
또한, 상기 압력판은 외주면에 장착되는 씰링부재를 포함할 수 있다.
이때, 상기 압력판은 외주면을 따라 형성되어 상기 씰링부재를 고정하는 트렌치를 더 포함할 수 있다.
한편, 상기 윤활제 자동 공급장치는 상기 케이스의 타측에 결합되어 상기 내부공간을 밀폐시키는 커버를 더 포함할 수 있다.
본 발명에 따르면, 기계 운용 시 기계의 진동, 기계의 이동, 외력 및 기계 내부에서 발생되는 다양한 요인 등에 의해 유발되는 관성력으로부터 변환된 운동 에너지, 즉, 진자의 회전력를 윤활제 배출을 위한 동력으로 사용함으로써, 전기나 유압과 같은 별도의 동력 없이도 윤활제를 자동으로 외부에 배출시킬 수 있다.
또한, 본 발명에 따르면, 윤활제를 자동으로 배출시킴에 따라, 기계 운용 중 기계에 지속적인 윤활이 이루어지게 되고, 이를 통해, 기계의 수명을 연장시킬 수 있다.
또한, 본 발명에 따르면, 기계 운용에 따라 자연 발생되는 관성력 이외에 인공적으로 만들어지는 전기나 유압과 같은 별도의 동력을 사용하지 않음으로써, 구조를 단순화할 수 있고, 유지보수를 용이하게 할 수 있다.
또한, 본 발명에 따르면, 전기나 유압과 같은 별도의 동력을 사용하지 않을 경우, 비교적 작은 크기로 장치를 구성할 수 있기 때문에, 제조원가를 줄일 수 있고, 설치 공간에 대한 제약으로부터 자유로울 수 있다.
도 1은 본 발명의 제1 실시 예에 따른 윤활제 자동 공급장치를 나타낸 사시도이다.
도 2는 본 발명의 제1 실시 예에 따른 윤활제 자동 공급장치를 나타낸 분해 사시도이다.
도 3은 본 발명의 제1 실시 예에 따른 윤활제 자동 공급장치에서, 압력판의 배치 모습을 나타낸 부분 사시도이다.
도 4는 본 발명의 제1 실시 예에 따른 윤활제 자동 공급장치에서, 커버가 분리된 상태를 나타낸 정면도이다.
도 5 내지 도 7은 본 발명의 제1 실시 예에 따른 윤활제 자동 공급장치에서, 진자의 회전 모습을 나타낸 모식도들이다.
도 8은 본 발명의 제1 실시 예에 따른 윤활제 자동 공급장치에서, 래칫의 설치 구조를 나타낸 모식도이다.
도 9는 본 발명의 제2 실시 예에 따른 윤활제 자동 공급장치에서, 커버가 분리된 상태를 나타낸 사시도이다.
도 10은 도 9의 정면도이다.
도 11은 본 발명의 제3 실시 예에 따른 윤활제 자동 공급장치에서, 커버가 분리된 상태를 나타낸 사시도이다.
도 12는 도 11의 정면도이다.
이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 윤활제 자동 공급장치에 대해 상세히 설명한다.
아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.
도 1 및 도 2에 도시한 바와 같이, 본 발명의 제1 실시 예에 따른 윤활제 자동 공급장치(100)는 기계, 예컨대, 굴삭기와 같은 건설기계에 장착되어 있는 각종 부품들의 원활한 동작을 위해, 부품 간의 접촉이 일어나는 부위에 윤활제를 자동으로 공급하는 장치이다. 또한, 본 발명의 제1 실시 예에 따른 윤활제 자동 공급장치(100)는 기계 운용 시 기계의 진동, 기계의 이동, 외력 및 기계 내부에서 발생되는 다양한 요인 등에 의해 유발되는 관성력을 운동 에너지로 변환시켜 윤활제 배출을 위한 동력으로 사용하는 장치이다.
이를 위해, 본 발명의 제1 실시 예에 따른 윤활제 자동 공급장치(100)는 케이스(110), 압력판(120) 및 에너지 변환부(130)를 포함하여 형성된다.
케이스(110)는 윤활제 자동 공급장치(100)의 외관을 이룬다. 케이스(110)는 수용공간을 갖는다. 도 3에 도시한 바와 같이, 케이스(110)의 수용공간은 압력판(120)에 의해 제1 구역(A)과 제2 구역(B)으로 구획된다. 제1 구역(A)에는 윤활제가 충진되어 있고, 제2 구역(B)에는 에너지 변환부(130)가 설치된다. 이때, 제2 구역(B)은 에너지 변환부(130)의 설치 공간을 제공하기 위해, 제1 구역(B)보다 폭이 상대적으로 넓게 형성될 수 있다. 또한, 윤활제가 충진되어 있는 제1 구역(A)은 윤활제 배출 시 압력판(120)에 의해 공간의 크기가 점차 줄어들게 되는데, 이에 대해서는 하기에서 보다 상세히 설명하기로 한다.
한편, 케이스(110)의 일측에는 배출공(111)이 형성된다. 배출공(111)은 제1 구역(A)에 충진되어 있는 윤활제의 배출 통로를 제공한다. 즉, 윤활제는 배출공(111)을 통해 외부로 배출되어, 기계의 각종 부품들을 윤활하게 된다. 본 발명의 제1 실시 예에서, 윤활제는 기계 운용 중 자동으로 배출되고, 이에 따라, 기계 운용 중 지속적인 윤활이 이루어지게 된다. 이와 같이, 자동 배출되는 윤활제에 의해 기계에 지속적인 윤활이 이루어지게 되면, 부품 간의 마찰로 인한 손상 혹은 파손이 방지되어, 기계의 수명은 연장될 수 있다. 여기서, 윤활제 자동 공급장치(100) 미 사용 시 배출공(111)은 별도의 부재에 의해 폐쇄될 수 있다.
일측에 배출공(111)이 형성되어 있는 케이스(110)의 타측은 개구되어 있다. 보다 상세하게, 윤활제가 충진되어 있는 제1 구역(A)은 케이스(110)의 일측과, 이와 대향되게 배치되는 압력판(120)에 의해 밀폐되어 있고, 에너지 변환부(130)가 설치되는 제2 구역(B)은 외부로 노출되어 있다. 본 발명의 제1 실시 예에 따른 윤활제 자동 공급장치(100)는 커버(140)를 포함한다. 커버(140)는 케이스(110)의 타측에 결합되어, 내부공간, 즉, 제2 구역(B)을 밀폐시킨다. 커버(140)는 억지끼움, 암수결합 또는 슬라이딩 결합 등 다양한 형태로 케이스(110)의 타측에 결합될 수 있다.
압력판(120)은 제1 구역(A)에 충진되어 있는 윤활제를 가압하여 케이스(110)의 일측에 형성되어 있는 배출공(111)을 통해 윤활제를 외부로 배출시키는 장치이다. 이때, 본 발명의 제1 실시 예에서, 제1 구역(A)을 이루는 케이스(110)의 일 부분은 원기둥 형상을 이루고 있다. 따라서, 압력판(120)은 배출공(111)을 기준으로, 수용공간을 상류측의 제1 구역(A)과 하류측의 제2 구역(B)으로 구획하기 위해, 상기 원기둥의 단면과 대응되는 크기의 디스크 구조로 이루어지고, 배출공(111)이 형성되어 있는 케이스(110)의 일측과 대향되게 케이스(110)의 수용공간에 배치된다.
또한, 본 발명의 제1 실시 예에서는, 제1 구역(A)에 충진되어 있는 윤활제가 에너지 변환부(130)가 설치되어 있는 제2 구역(B)으로 누유되는 현상을 방지하기 위해, 압력판(120)의 외주면에 장착되는 씰링부재(124)를 포함할 수 있다. 예를 들어, 씰링부재(124)는 오링(O-ring)으로 이루어질 수 있다. 이때, 씰링부재(124)의 안정적인 장착을 위해, 압력판(120)은 외주면을 따라 형성되어 씰링부재(124)를 고정하는 트렌치(123)를 포함할 수 있다.
한편, 압력판(120)은 중심 부위에 형성되는 관통공(121) 및 관통공(121)의 벽면을 따라 형성되어 있는 나사산(122)을 포함한다. 관통공(121)과 나사산(122)은 후술될 에너지 변환부(130)의 제2 회전축(135) 및 나사산(136)과 나사 결합되어, 압력판(120)과 에너지 변환부(130) 간의 상호 작용을 가능하게 하는데, 이에 대해서는 하기에서 보다 상세히 설명하기로 한다.
에너지 변환부(130)는 압력판(120)에 의해 구획되는 케이스(110)의 제2 구역(B)에 설치된다. 이러한 에너지 변환부(130)는 압력판(120)과 연결되며, 기계의 진동, 기계의 이동, 외력 및 기계 내부에서 발생되는 다양한 요인 등에 의해 유발되는 관성력을 압력판(120) 이동을 위한 동력인 운동 에너지로 변환시키는 장치이다. 즉, 에너지 변환부(130)는 전기나 유압과 같은 별도의 동력 없이 오직 자연 발생되는 관성력을 이용하여 압력판(120)을 이동시키고, 이를 통해, 케이스(110)의 제1 구역(A)에 충진되어 있는 윤활제를 자동을 외부에 배출시키는 장치이다. 이와 같이, 에너지 변환부(130)에 의해 윤활제가 자동으로 배출되면, 기계 운용 중 기계를 지속적으로 윤활시킬 수 있어, 결국, 기계 수명을 연장시킬 수 있다. 또한, 전기나 유압과 같은 별도의 인공적인 동력을 사용하지 않게 되면, 구조를 단순화시킬 수 있고, 비교적 작은 크기로 장치를 구성할 수 있어, 설치 공간에 대한 제약으로부터 자유로울 수 있고, 유지보수를 용이하게 할 수 있으며, 제조원가 또한 줄일 수 있다.
이러한 에너지 변환부(130)는 진자(133) 및 기어 조립체를 포함할 수 있다. 진자(133)는 기계에서 유발되는 관성력에 의해 제1 방향 또는 제1 방향과 반대되는 제2 방향으로 회전 후 중력에 의해 원 위치된다. 또한, 기어 조립체는 서로 연결되는 복수 개의 기어를 포함하고, 진자(133)와 연결된다. 이러한 기어 조립체는 진자(133)의 회전에 의해 동작되어, 압력판(120)을 이동시킨다.
도 4에 도시한 바와 같이, 본 발명의 제1 실시 예에 따른 기어 조립체는 제1 회전축(131), 제1 기어(132), 제2 기어(134) 및 제2 회전축(135)을 포함하여 형성될 수 있다.
제1 회전축(131)은 제2 구역(B)에 설치된다. 이때, 제1 회전축(131)은 압력판(120)과 수직방향으로 중첩되지 않는 위치에 설치될 수 있다. 예를 들어, 제1 회전축(131)은 압력판(120)의 측부에 설치될 수 있다. 이러한 제1 회전축(131)의 길이방향 일측에는 제1 기어(132)가 연결되고, 타측에는 진자(133)가 연결된다. 제1 회전축(131)은 진자(133)의 회전에 따라 회전하게 되고, 이에 따라, 제1 기어(132)가 회전하게 된다.
제1 기어(132)는 제1 회전축(131)에 연결된다. 또한, 제1 기어(132)에는 제2 기어(134)가 맞물린다. 이에 따라, 제1 기어(132)가 제1 방향, 예컨대, 시계방향으로 회전 시 제2 기어(134)는 제2 방향, 예컨대, 시계 반대방향으로 회전한다. 이러한 제1 기어(132)는 제1 회전축(131)의 회전에 의해 회전한다. 이때, 본 발명의 제1 실시 예에서, 제1 기어(132)는 일 방향, 예컨대, 제1 방향으로만 회전 가능하게 설치되는데, 이에 대해서는 하기에서 보다 상세히 설명하기로 한다.
한편, 도 5 내지 도 7에 도시한 바와 같이, 기어 조립체의 제1 회전축(131)에 연결되는 진자(133)는 초기에는 중력방향으로 위치하다가(도 5), 기계에서 유발되는 관성력에 의해 위치 에너지가 변화된다. 즉, 진자(133)는 기계에서 유발되는 관성력에 의해 제1 방향으로 회전하거나(도 6) 제2 방향으로 회전한다.(도 7) 이와 같이, 제1 방향 또는 제2 방향으로 회전한 진자(133)는 중력에 의해 다시 중력방향으로 돌아오게 된다. 이러한 진자(133)의 움직임을 통해, 기계로부터 유발되는 관성력은 제1 회전축(131) 및 제1 기어(132)를 움직이는 운동 에너지로 변환되고, 이러한 운동 에너지가 제2 기어(134) 및 제2 회전축(135)에 전달되어, 압력판(120)이 윤활제를 배출시키는 방향으로 이동하게 된다.
제2 기어(134)는 제1 기어(132)에 의해 회전하는 종동기어로, 제1 기어(132)와 맞물리는 형태로 배치된다. 본 발명의 제1 실시 예에서, 제1 기어(132)는 제1 방향으로만 회전하므로, 제2 기어(134)는 제2 방향으로 회전한다. 본 발명의 제1 실시 예에서는 제2 기어(134)의 회전 정도에 따라, 압력판(120)의 이동 정도가 결정된다. 한편, 케이스(110)의 제1 구역(A)에 충진되어 있는 윤활제는 일정하게 그리고 지속적으로 외부로 배출되는 것이 중요하다. 그러므로 제2 기어(134)는 최대한 직경이 크게 형성되는 것이 바람직하고, 일단, 제1 기어(132)보다 직경이 상대적으로 크게 형성되는 것이 바람직하다. 이때, 에너지 변환부(130)가 설치되는 케이스(110)의 제2 구역(B)의 크기는 한정되어 있으므로, 본 발명의 제1 실시 예에 따른 제2 기어(134)는 압력판(120)과 대응되는 크기로 형성되는 것이 가장 바람직하다.
제2 회전축(135)은 케이스(110)의 일측 바닥면으로부터 수직 방향으로 설치된다. 이러한 제2 회전축(135)의 길이방향 외주면에는 나사산(136)이 형성되어 있다. 제2 회전축(135)의 길이방향 외주면에는 압력판(120)과 제2 기어(134)가 차례로 결합된다. 이때, 제2 회전축(135)은 압력판(120)의 관통공(121)을 통해 압력판(120)과 결합되고, 이에 따라, 제2 회전축(135)의 나사산(136)과 압력판(120)의 관통공(121) 내벽을 따라 형성되어 있는 나사산(122)은 서로 맞물리게 된다. 즉, 제2 회전축(135)은 압력판(120)과 나사 결합을 이루게 된다. 한편, 제2 회전축(135)은 제2 기어(134)와도 관통 결합되는데, 이때, 제2 기어(134)와는 고정된다. 그 결과, 제2 기어(134)가 제2 방향으로 회전하게 되면, 제2 회전축(135) 또한 제2 방향으로 회전하게 된다. 이때, 압력판(120)의 외주면, 보다 상세하게는 압력판(120)의 외주면에 장착되어 있는 씰링부재(124)는 케이스(110)의 내벽과 밀착되어 있고, 압력판(120)과 제2 회전축(135)은 나사 결합을 이루고 있으므로, 제2 회전축(135)이 제2 방향으로 회전하게 되면, 압력판(120)은 제1 방향으로 회전하며 케이스(110)의 일측에 형성되어 있는 배출구(111) 측으로 전진하게 된다. 이와 같이, 압력판(120)이 배출구(111) 측으로 전진하게 되면, 압력판(120)에 의해 구획된 제1 구역(A)에 충진되어 있는 윤활제는 가압된다. 그 결과, 윤활제는 배출구(111)를 통해 외부로 배출되어, 각종 부품들을 윤활하게 된다.
한편, 상술한 바와 같이, 본 발명의 제1 실시 예에서는 압력판(120)을 전진시키기 위해, 제1 기어(132)가 일 방향, 예컨대, 시계방향인 제1 방향으로만 회전한다.
도 8에 도시한 바와 같이, 본 발명의 제1 실시 예에 따른 에너지 변환부(130)는 제1 기어(132)의 일 방향 회전을 가능하게 하기 위해, 래칫(137)을 포함할 수 있다. 본 발명의 제1 실시 예에서, 래칫(137)은 제1 회전축(131)과 제1 기어(132) 사이에 형성된다. 하지만, 이는 일례일 뿐, 래칫(137)은 제1 회전축(131)과 진자(133) 사이에 형성될 수도 있는 바, 본 발명에서, 래칫(137)의 형성 위치를 특별히 제1 회전축(131)과 제1 기어(132) 사이로 한정하는 것은 아니다.
이러한 래칫(137)은 래칫 휠(138)과 폴(139)을 포함하여 형성될 수 있다. 도 8에 도시한 바와 같이, 폴(139)은 제1 기어(132)에 형성될 수 있다. 이 경우, 래칫 휠(138)은 폴(139)이 형성되어 있는 제1 기어(132)와 대응되는 제1 회전축(131)에 형성될 수 있다. 이 경우, 진자(133)가 관성력에 의해 시계 반대방향인 제2 방향으로 회전할 때, 제1 회전축(131) 또한 제2 방향으로 회전하고, 이에 따라, 래칫 휠(138)도 제2 방향으로 회전한다. 이때, 래칫 휠(138)은 폴(139)과의 결합 구조에 의해 헛돌게 되고, 그 결과, 제2 방향으로의 회전력은 제1 기어(132)에 전달되지 않게 되므로, 제1 기어(132)는 회전하지 않는다. 이에 따라, 제2 기어(134) 또한 회전하지 않아, 압력판(120)은 이동되지 않고, 그 결과, 윤활제는 배출되지 않는다.
그 다음, 제2 방향으로 회전한 진자(133)가 중력에 의해 다시 제1 방향으로 회전할 때, 제1 회전축(131) 및 래칫 휠(138)은 제1 방향으로 회전한다. 그리고 래칫 휠(138)이 제1 방향으로 회전 시 폴(139)에 의해 제1 기어(132) 또한 제1 방향으로 회전하게 된다. 이에 따라, 제2 기어(134) 및 제2 회전축(135)이 제2 방향으로 회전하고, 이에 의해, 압력판(120)이 전진하여, 윤활제를 가압하게 되고, 그 결과, 윤활제가 배출구(111)를 통해 케이스(110) 외부로 배출된다.
또한, 진자(133)가 관성력에 의해 제1 방향으로 회전할 때, 제1 회전축(131) 및 래칫 휠(138) 또한 제1 방향으로 회전한다. 그리고 래칫 휠(138)이 제1 방향으로 회전 시 폴(139)에 의해 제1 기어(132) 또한 제1 방향으로 회전하게 된다. 이에 따라, 제2 기어(134) 및 제2 회전축(135)이 제2 방향으로 회전하고, 이에 의해, 압력판(120)이 전진하여, 윤활제를 가압하게 되고, 그 결과, 윤활제가 배출구(111)를 통해 케이스(110) 외부로 배출된다.
그 다음, 제1 방향으로 회전한 진자(133)가 중력에 의해 다시 제2 방향으로 회전할 때, 제2 회전축(131) 및 래칫 휠(138)은 제2 방향으로 회전한다. 이 경우, 래칫 휠(138)은 폴(139)과의 결합 구조에 의해 헛돌게 되고, 그 결과, 제2 방향으로의 회전력은 제1 기어(132)에 전달되지 않게 되므로, 제1 기어(132)는 회전하지 않는다. 이에 따라, 제2 기어(134) 또한 회전하지 않아, 압력판(120)은 이동되지 않고, 그 결과, 윤활제는 배출되지 않는다.
이와 같이, 본 발명의 제1 실시 예에서, 제1 기어(132)는 래칫(137)에 의해 제1 방향으로만 회전하고, 이로 인해, 압력판(120)은 오직 케이스(110)의 일측에 형성되어 있는 배출구(111) 측으로 전진하는 동작만 하게 된다.
한편, 래칫 휠(138)이 제1 기어(132)에 형성되고, 폴(139)이 제1 회전축(131)에 형성될 수도 있다. 이는, 래칫(137)이 제1 회전축(131)과 진자(133) 사이에 형성되는 경우도 마찬가지이다. 즉, 래칫(137)이 제1 회전축(131)과 진자(133) 사이에 형성되는 경우, 래칫 휠(138)은 제1 회전축(131)에 형성될 수 있고, 폴(139)은 진자(133)에 형성될 수 있다. 또한, 래칫(137)이 제1 회전축(131)과 진자(133) 사이에 형성되는 경우, 래칫 휠(138)은 진자(133)에 형성될 수도 있고, 이에 따라, 폴(139)은 제1 회전축(131)에 형성될 수 있다.
래칫(137)이 제1 회전축(131)과 진자(133) 사이에 형성되고, 이때, 래칫 휠(138)이 제1 회전축(131)에 형성되고, 폴(139)이 진자(133)에 형성된 경우, 진자(133)가 관성력에 의해 제1 방향으로 회전할 때, 폴(139)에 의해 래칫 휠(138) 또한 제1 방향으로 회전하고, 이에 의해, 제1 회전축(131)도 제1 방향으로 회전한다. 그 결과, 제1 기어(132) 또한 제1 방향으로 회전하게 된다.
그 다음, 제1 방향으로 회전한 진자(133)가 중력에 의해 다시 제2 방향으로 회전할 때, 래칫 휠(138)과 폴(139) 간의 결합 구조에 의해 진자(133)는 헛돌게 되고, 이에 따라, 제1 회전축(131)과 제1 기어(132)는 회전하지 않는다.
또한, 진자(133)가 관성력에 의해 제2 방향으로 회전할 때, 진자(133)는 헛돌게 되고, 그 결과, 래칫 휠(137), 제1 회전축(131) 및 제1 기어(132)는 회전하지 않는다.
그 다음, 제2 방향으로 회전한 진자(133)가 중력에 의해 다시 제1 방향으로 회전할 때, 폴(139)에 의해 래칫 휠(138) 또한 제1 방향으로 회전하고, 이에 의해, 제1 회전축(131) 및 제1 기어(132) 또한 제1 방향으로 회전하게 된다.
래칫 휠(138)이 진자(133)에 형성되고, 폴(139)이 제1 회전축(131)에 형성되는 경우에도 래칫 휠(138)이 제1 회전축(131)에 형성되고, 폴(139)이 진자(133)에 형성되는 경우와 마찬가지로, 제1 방향으로만 제1 기어(132)를 회전시키게 된다.
이하, 본 발명의 제1 실시 예에 따른 윤활제 자동 공급장치의 작용에 대하여 설명하기로 한다.
먼저, 기계 운용 중 유발되는 관성력에 의해 진자(133)가 제1 방향으로 회전하면, 제1 방향으로의 회전력이 제1 기어(132)에 전달되고, 이에 따라, 제1 기어(132)가 제1 방향으로 회전한다. 그 결과, 제1 기어(132)에 맞물려 있는 제2 기어(134)는 제2 방향으로 회전하고, 이에 따라, 제2 회전축(135) 또한 제2 방향으로 회전한다. 이와 같이, 제2 회전축(135)이 제2 방향으로 회전하면, 제2 회전축(135)과 나사 결합되어 있는 압력판(120)이 제1 방향으로 회전하며 케이스(110)에 형성되어 있는 배출공(111) 측으로 전전하게 된다. 그 결과, 압력판(120)과 배출공(111) 사이에 구획되어 있는 제1 구역(A)에 충진되어 있는 윤활제가 가압되어, 배출공(111)을 통해 외부로 배출된다. 한편, 제1 방향으로 회전한 진자(133)가 중력에 의해 원 위치, 즉, 제2 방향으로 회전하게 되면, 제2 방향으로의 회전력은 래치(137)에 의해 제1 기어(132)에 전달되지 않아, 제1 기어(132), 제2 기어(134) 및 제2 회전축(135)은 회전하지 않는다. 그 결과, 압력판(120) 또한 전진 동작이 중지되어, 윤활제의 배출은 더 이상 이루어지지 않는다.
또한, 기계 운용 중 유발되는 관성력에 의해 진자(133)가 제2 방향으로 회전하면, 제2 방향으로의 회전력은 래치(137)에 의해 제1 기어(132)에 전달되지 않아, 제1 기어(132), 제2 기어(134) 및 제2 회전축(135)은 회전하지 않는다. 그 결과, 압력판(120) 또한 전진 동작이 중지되어, 윤활제의 배출은 더 이상 이루어지지 않는다. 이때, 제2 방향으로 회전한 진자(133)가 중력에 의해 원 위치, 즉, 제1 방향으로 회전하게 되면, 제1 방향으로의 회전력이 제1 기어(132)에 전달되고, 이에 따라, 제1 기어(132)가 제1 방향으로 회전한다. 그 결과, 제1 기어(132)에 맞물려 있는 제2 기어(134)는 제2 방향으로 회전하고, 이에 따라, 제2 회전축(135) 또한 제2 방향으로 회전한다. 이와 같이, 제2 회전축(135)이 제2 방향으로 회전하면, 압력판(120)이 제1 방향으로 회전하며 배출공(111) 측으로 전전하게 된다. 그 결과, 제1 구역(A)에 충진되어 있는 윤활제가 가압되어, 배출공(111)을 통해 외부로 배출된다.
상술한 바와 같이, 본 발명의 제1 실시 예에 따른 윤활제 자동 공급장치(100)는 기계 운용 시 기계의 진동, 기계의 이동, 외력 및 기계 내부에서 발생되는 다양한 요인 등에 의해 유발되는 관성력으로부터 변환된 운동 에너지, 즉, 진자(133)의 회전력을 윤활제 배출을 위한 동력으로 사용함으로써, 전기나 유압과 같은 별도의 동력 없이도 윤활제를 자동으로 외부에 배출시킬 수 있고, 이를 통해, 기계 운용 중 기계에 지속적인 윤활이 이루어지게 하여, 기계의 수명을 연장시킬 수 있게 된다.
이하, 본 발명의 제2 실시 예에 따른 윤활제 자동 공급장치에 대하여, 도 9 및 도 10을 참조하여 설명하기로 한다.
도 9는 본 발명의 제2 실시 예에 따른 윤활제 자동 공급장치에서, 커버가 분리된 상태를 나타낸 사시도이고, 도 10은 도 9의 정면도이다.
도 9 및 도 10에 도시한 바와 같이, 본 발명의 제2 실시 예에 따른 윤활제 자동 공급장치(200)는 케이스(110), 압력판(120) 및 에너지 변환부(230)를 포함하여 형성된다.
본 발명의 제2 실시 예는 본 발명의 제1 실시 예와 비교하여, 에너지 변환부에만 차이가 있을 뿐이므로, 나머지 동일한 구성요소들에 대해서는 동일한 도면 부호를 부여하고, 이들에 대한 상세한 설명은 생략한다.
본 발명의 제2 실시 예에 따른 에너지 변환부(230)는 진자(133) 및 기어 조립체를 포함한다. 이때, 기어 조립체는 제1 회전축(131), 제1 기어(132), 제2 기어(134), 제2 회전축(135) 및 제3 기어(235)를 포함한다.
본 발명의 제2 실시 예에서, 제3 기어(235)는 제1 기어(132)와 제2 기어(134) 사이에 배치된다. 이에 따라, 제1 기어(132)가 제1 방향으로 회전할 때, 이와 맞물려 있는 제3 기어(235)는 제2 방향으로 회전하게 된다. 또한, 제3 기어(235)가 제2 방향으로 회전함에 따라, 이와 맞물려 있는 제2 기어(134)는 제1 방향으로 회전하고, 그 결과, 제2 회전축(135) 또한 제1 방향으로 회전한다. 이와 같이, 제2 회전축(135)이 제1 방향으로 회전하면, 제2 회전축(135)과 나사 결합되어 있는 압력판(120)이 제2 방향으로 회전하며 케이스(110)에 형성되어 있는 배출공(도 1의 111) 측으로 전진하게 된다. 그 결과, 압력판(120)과 배출공(111) 사이에 구획되어 있는 제1 구역(도 3의 A)에 충진되어 있는 윤활제가 가압되어, 배출공(111)을 통해 외부로 배출된다. 여기서, 본 발명의 제1 실시 예에서는 압력판(120)의 이동을 위해 제2 회전축(135)이 제2 방향으로 회전한 반면, 본 발명의 제2 실시 예에서는 제2 회전축(135)이 제1 방향으로 회전한다. 이와 같이 압력판(120)의 이동을 위한 제2 회전축(135)의 회전 방향은 나사산(136)의 구조 변경을 통해 변경될 수 있으므로, 본 발명에서는 압력판(120)의 이동을 위한 제2 회전축(135)의 회전 방향을 특별히 어느 한 방향으로 한정하지 않는다.
본 발명의 제2 실시 예와 같이, 제1 기어(132)와 제2 기어(134) 사이에 제3 기어(235)를 배치하게 되면, 제1 기어(132)와 제2 기어(134)의 회전 방향을 일치시킬 수 있게 된다.
이하, 본 발명의 제3 실시 예에 따른 윤활제 자동 공급장치에 대하여, 도 11 및 도 12를 참조하여 설명하기로 한다.
도 11은 본 발명의 제3 실시 예에 따른 윤활제 자동 공급장치에서, 커버가 분리된 상태를 나타낸 사시도이고, 도 12는 도 11의 정면도이다.
도 11 및 도 12에 도시한 바와 같이, 본 발명의 제3 실시 예에 따른 윤활제 자동 공급장치(300)는 케이스(110), 압력판(120) 및 에너지 변환부(330)를 포함하여 형성된다.
본 발명의 제3 실시 예는 본 발명의 제1 실시 예와 비교하여, 에너지 변환부에만 차이가 있을 뿐이므로, 나머지 동일한 구성요소들에 대해서는 동일한 도면 부호를 부여하고, 이들에 대한 상세한 설명은 생략한다.
본 발명의 제3 실시 예에 따른 에너지 변환부(330)는 진자(133) 및 기어 조립체를 포함한다. 이때, 기어 조립체는 제1 회전축(131), 제1 기어(132), 제2 기어(134), 제2 회전축(135) 및 제4 기어(335)를 포함한다.
본 발명의 제3 실시 예에서, 제4 기어(335)는 압력판(120)과 제2 기어(134) 사이의 제2 회전축(135)에 결합된다. 이때, 제4 기어(335)는 제1 기어(132)에 맞물려 회전하고, 이에 따라, 동일하게 제2 회전축(135)에 결합되어 있는 제2 기어(134) 또한 제4 기어(335)와 동일한 방향으로 회전하게 된다.
제1 기어(132)가 제1 방향으로 회전할 때, 이와 맞물려 있는 제4 기어(335)는 제2 방향으로 회전하게 된다. 이에 따라, 제2 기어(134) 및 제2 회전축(135) 또한 제2 방향으로 회전한다. 이와 같이, 제2 회전축(135)이 제2 방향으로 회전하면, 제2 회전축(135)과 나사 결합되어 있는 압력판(120)이 제1 방향으로 회전하며 케이스(110)에 형성되어 있는 배출공(도 1의 111) 측으로 전진하게 된다. 그 결과, 압력판(120)과 배출공(111) 사이에 구획되어 있는 제1 구역(도 3의 A)에 충진되어 있는 윤활제가 가압되어, 배출공(111)을 통해 외부로 배출된다.
여기서, 본 발명의 제3 실시 예에서, 제4 기어(335)는 제1 기어(132)보다 직경이 상대적으로 작게 형성된다. 이와 같이, 제4 기어(335)의 직경이 이와 맞물리는 제1 기어(132)의 직경보다 상대적으로 작게 형성되면, 제1 기어(132) 대비 회전 속도가 증가되고, 이에 따라, 제2 회전축(135)의 회전 속도 또한 증가된다. 그 결과, 압력판(120)의 이동 속도 또한 증가되어, 윤활제를 보다 빠르게 배출시킬 수 있게 된다.
이와 같이, 본 발명의 실시 예들에서는 다양한 형태 혹은 구조의 기어 조립체를 구비함으로써, 제2 회전축(135)의 회전 방향이나 압력판(120)의 이동 속도 및 이에 따른 윤활제의 배출 속도 등을 제어할 수 있다. 이때, 기어 조립체는 본 발명의 실시 예들 외에도 기어의 개수, 형태, 구조 등의 변화를 통해 다양하게 구현될 수 있다.
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.
<부호의 설명>
100, 200, 300; 윤활제 자동 공급장치 110; 케이스
111; 배출공 120; 압력판
121; 관통공 122; 나사산
123; 트렌치 124; 씰링부재
130, 230, 330; 에너지 변환부 131; 제1 회전축
132; 제1 기어 133; 진자
134; 제2 기어 135; 제2 회전축
136; 나사산 137; 래칫
138; 래칫 휠 139; 폴
140; 커버 235; 제3 기어
335; 제4 기어

Claims (17)

  1. 기계에 윤활제를 자동으로 공급하는 윤활제 자동 공급장치에 있어서,
    수용공간을 가지며, 일측에 배출공이 형성되어 있는 케이스;
    상기 배출공을 향해 이동 가능하게 상기 수용공간에 배치되고, 상기 배출공을 기준으로, 상기 수용공간을 상류측의 제1 구역 및 하류측의 제2 구역으로 구획하며, 이동 시 상기 제1 구역에 충진되어 있는 상기 윤활제를 가압하여 상기 배출공을 통해 상기 윤활제를 외부로 배출시키는 압력판; 및
    상기 제2 구역에 설치되고, 상기 압력판과 연결되며, 상기 기계에서 유발되는 관성력을 운동 에너지로 변환시켜, 상기 압력판 이동을 위한 동력으로 사용하는 에너지 변환부;
    를 포함하는 윤활제 자동 공급장치.
  2. 제1항에 있어서,
    상기 에너지 변환부는,
    상기 기계에서 유발되는 관성력에 의해 제1 방향 또는 상기 제1 방향과 반대되는 제2 방향으로 회전 후 중력에 의해 원 위치되는 진자, 및
    서로 연결되는 복수 개의 기어를 포함하고, 상기 진자와 연결되며, 상기 진자의 회전에 의해 동작되어, 상기 압력판을 이동시키는 기어 조립체를 포함하는 윤활제 자동 공급장치.
  3. 제2항에 있어서,
    상기 기어 조립체는,
    상기 제2 구역에 설치되는 제1 회전축,
    상기 제1 회전축에 연결되는 제1 기어,
    상기 제1 기어에 맞물려 회전하는 제2 기어, 및
    상기 케이스의 일측 바닥면으로부터 수직 방향으로 설치되고, 길이방향 외주면에는 나사산이 형성되고, 상기 압력판 및 상기 제2 기어가 차례로 결합되되, 상기 압력판과는 나사 결합을 이루고, 상기 제2 기어와는 고정되는 제2 회전축을 포함하는 윤활제 자동 공급장치.
  4. 제3항에 있어서,
    상기 진자는 상기 제1 회전축에 연결되는 윤활제 자동 공급장치.
  5. 제4항에 있어서,
    상기 에너지 변환부는 상기 제1 회전축과 상기 제1 기어 사이 또는 상기 제1 회전축과 상기 진자 사이에 형성되어, 상기 제1 기어를 상기 제1 방향 또는 상기 제2 방향으로 회전 가능하게 하는 래칫을 더 포함하는 윤활제 자동 공급장치.
  6. 제5항에 있어서,
    상기 래칫은 래칫 휠 및 폴을 포함하는 윤활제 자동 공급장치.
  7. 제6항에 있어서,
    상기 폴은 상기 제1 기어 또는 상기 진자에 형성되고, 상기 래칫 휠은 상기 폴이 형성되는 상기 제1 기어 또는 상기 진자와 대응되는 상기 제1 회전축에 형성되는 윤활제 자동 공급장치.
  8. 제6항에 있어서,
    상기 래칫 휠은 상기 제1 기어 또는 상기 진자에 형성되고, 상기 폴은 상기 래칫 휠이 형성되는 상기 제1 기어 또는 상기 진자와 대응되는 상기 제1 회전축에 형성되는 윤활제 자동 공급장치.
  9. 제3항에 있어서,
    상기 제2 회전축은 상기 제2 기어와 동일 방향으로 회전하는 윤활제 자동 공급장치.
  10. 제9항에 있어서,
    상기 압력판은 상기 제2 회전축의 회전 방향과 반대 방향으로 회전하며 상기 배출구 측으로 전진하는 윤활제 자동 공급장치.
  11. 제3항에 있어서,
    상기 제2 기어는 상기 제1 기어보다 직경이 상대적으로 큰 윤활제 자동 공급장치.
  12. 제11항에 있어서,
    상기 제2 기어는 상기 압력판과 대응되는 크기로 형성되는 윤활제 자동 공급장치.
  13. 제3항에 있어서,
    상기 기어 조립체는 상기 제1 기어와 상기 제2 기어 사이에 배치되는 제3 기어를 더 포함하는 윤활제 자동 공급장치.
  14. 제3항에 있어서,
    상기 기어 조립체는 상기 압력판과 상기 제2 기어 사이의 상기 제2 회전축에 결합되고, 상기 제1 기어에 맞물려 회전하는 제4 기어를 더 포함하는 윤활제 자동 공급장치.
  15. 제1항에 있어서,
    상기 압력판은 외주면에 장착되는 씰링부재를 포함하는 윤활제 자동 공급장치.
  16. 제15항에 있어서,
    상기 압력판은 외주면을 따라 형성되어 상기 씰링부재를 고정하는 트렌치를 더 포함하는 윤활제 자동 공급장치.
  17. 제1항에 있어서,
    상기 케이스의 타측에 결합되어 상기 내부공간을 밀폐시키는 커버를 더 포함하는 윤활제 자동 공급장치.
PCT/KR2017/000340 2017-01-10 2017-01-10 윤활제 자동 공급장치 WO2018131727A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/000340 WO2018131727A1 (ko) 2017-01-10 2017-01-10 윤활제 자동 공급장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/000340 WO2018131727A1 (ko) 2017-01-10 2017-01-10 윤활제 자동 공급장치

Publications (1)

Publication Number Publication Date
WO2018131727A1 true WO2018131727A1 (ko) 2018-07-19

Family

ID=62839599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000340 WO2018131727A1 (ko) 2017-01-10 2017-01-10 윤활제 자동 공급장치

Country Status (1)

Country Link
WO (1) WO2018131727A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109185682A (zh) * 2018-09-28 2019-01-11 张国祥 一种自带黄油机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004038A (ja) * 2001-06-20 2003-01-08 Okuma Corp 直動軸受の潤滑装置及びその潤滑装置を用いた工作機械
KR20110002713A (ko) * 2009-07-02 2011-01-10 인하대학교 산학협력단 자전거 무한윤활공급장치
JP2014020558A (ja) * 2012-07-11 2014-02-03 Sms Meer Gmbh 器具に潤滑剤を供給する潤滑装置
US20140137677A1 (en) * 2012-11-19 2014-05-22 American Piledriving Equipment, Inc. Inertia pump for vibratory equipment
KR20150053980A (ko) * 2012-10-09 2015-05-19 닛본 세이고 가부시끼가이샤 직동 안내 장치에 있어서의 윤활제 공급 구조 및 직동 안내 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004038A (ja) * 2001-06-20 2003-01-08 Okuma Corp 直動軸受の潤滑装置及びその潤滑装置を用いた工作機械
KR20110002713A (ko) * 2009-07-02 2011-01-10 인하대학교 산학협력단 자전거 무한윤활공급장치
JP2014020558A (ja) * 2012-07-11 2014-02-03 Sms Meer Gmbh 器具に潤滑剤を供給する潤滑装置
KR20150053980A (ko) * 2012-10-09 2015-05-19 닛본 세이고 가부시끼가이샤 직동 안내 장치에 있어서의 윤활제 공급 구조 및 직동 안내 장치
US20140137677A1 (en) * 2012-11-19 2014-05-22 American Piledriving Equipment, Inc. Inertia pump for vibratory equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109185682A (zh) * 2018-09-28 2019-01-11 张国祥 一种自带黄油机
CN109185682B (zh) * 2018-09-28 2020-05-05 张国祥 一种自带黄油机

Similar Documents

Publication Publication Date Title
WO2010143813A2 (ko) 동력전달장치
WO2016117809A1 (ko) 동력전달장치
WO2010143814A2 (ko) 동력전달장치
EA030874B1 (ru) Линейный электромеханический привод
CA2925382A1 (en) Planetary gear device
WO2018131727A1 (ko) 윤활제 자동 공급장치
WO2009151245A2 (ko) 터보 블로어 및 이에 사용되는 고속 회전체
WO2015108366A1 (ko) 하이브리드 건설기계의 휠 구동장치 및 휠 구동방법
WO2016200017A1 (ko) 내접식 유성치차 감속기
WO2021167243A1 (ko) 누유 차단 구조를 갖는 감속기
WO2017069391A1 (ko) 터빈의 실링 조립체
US20230142261A1 (en) Electric terminal assembly of a drive unit for use in a mining machine
WO2022014871A1 (ko) 고압 발생이 가능한 다중 윤활유 주입기
WO2017159971A1 (ko) 동력전달장치
WO2013028015A2 (ko) 오일 프리 공기압축기
WO2018043914A1 (ko) 초고 감속용 유성치차 감속장치
WO2013048046A1 (ko) 모터와 스크류를 이용한 콘크리트펌프카용 몰탈 공급장치
WO2016125994A1 (ko) 동력전달장치
WO2016056840A1 (ko) 스프링의 장력을 이용한 축설형 동력전달 및 변환장치
WO2015119356A1 (en) Device for controlling valve of injection molding apparatus
WO2024034894A1 (ko) 짝힘동작의 기어박스
CN207847627U (zh) 采煤机管线保护装置
CN116538244B (zh) 一种减速机的齿轮传动机构
WO2023018124A1 (ko) 정회전 및 역회전에 따라 흡입구 및 토출구의 위치 변경이 불필요한 오일 펌프
WO2014185731A1 (ko) 회전력 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891824

Country of ref document: EP

Kind code of ref document: A1