WO2009151245A2 - 터보 블로어 및 이에 사용되는 고속 회전체 - Google Patents

터보 블로어 및 이에 사용되는 고속 회전체 Download PDF

Info

Publication number
WO2009151245A2
WO2009151245A2 PCT/KR2009/003059 KR2009003059W WO2009151245A2 WO 2009151245 A2 WO2009151245 A2 WO 2009151245A2 KR 2009003059 W KR2009003059 W KR 2009003059W WO 2009151245 A2 WO2009151245 A2 WO 2009151245A2
Authority
WO
WIPO (PCT)
Prior art keywords
gear
oil
shaft
motor
bull gear
Prior art date
Application number
PCT/KR2009/003059
Other languages
English (en)
French (fr)
Other versions
WO2009151245A3 (ko
Inventor
정규옥
정현욱
정진욱
Original Assignee
주식회사 에어젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080053860A external-priority patent/KR100895667B1/ko
Priority claimed from KR1020090035014A external-priority patent/KR101095614B1/ko
Application filed by 주식회사 에어젠 filed Critical 주식회사 에어젠
Priority to CN200980121594.9A priority Critical patent/CN102057164B/zh
Priority to EP09762632A priority patent/EP2314879A2/en
Priority to US12/996,810 priority patent/US20120107099A1/en
Priority to JP2011513414A priority patent/JP5356513B2/ja
Publication of WO2009151245A2 publication Critical patent/WO2009151245A2/ko
Publication of WO2009151245A3 publication Critical patent/WO2009151245A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/059Roller bearings

Definitions

  • the present invention relates to a turbo blower, and more particularly, to a turbo blower capable of minimizing the axial load and the radial load generated during driving and a high speed rotating body used therein.
  • Turbo blowers use high speed rotors to achieve high output with low volume.
  • the high speed rotor may be classified into a direct drive method directly connected to a high speed motor and an indirect drive method connected to a general motor through a gear increaser that increases the rotation speed according to the driving method.
  • the high speed rotor of the direct drive type is usually supported by an air bearing.
  • air bearings do not have high durability of parts, so there are many restrictions on their use for a long time (for example, 3 years or more).
  • a conventional gear increaser used in the indirect drive system consists of a bull gear fixed to a motor shaft and a pinion gear mounted to a high speed rotating body and engaged with the bull gear.
  • the turbo blower with a gear increaser is required to improve the structure to reduce the radial load and the axial load on the high speed rotor and the bull gear during its operation.
  • a turbo blower with a gear increaser uses a gear box with a built-in bull gear and pinion gear.
  • the gear box In order to assemble the gear box into a turbomachine, the gear box itself must not only be divided horizontally but also the shafts of these gears are supported. Bearings shall also be manufactured by dividing them horizontally.
  • Indirectly driven turbo blowers require an oil pump for lubrication, increasing the number of parts.
  • the bull gear and the motor shaft are conventionally fixed by shrinkage, when the bull gear needs to be replaced due to wear of the bull gear or the like, there is a problem that the bull gear disassembly and assembly are difficult.
  • the present invention seeks to provide a turbo blower capable of minimizing the axial and radial loads acting on the high speed rotor and the bull gear.
  • An object of the present invention is to provide a turbo blower capable of circulating and supplying lubricating oil to a high-speed rotating body by forming an oil circulation structure in the turbo blower without installing an oil pump for lubricating oil supply.
  • the present invention is to provide a turbo blower that can simplify the assembly and disassembly of the high-speed rotor, the bull gear and the motor.
  • a turbo blower includes: i) a motor having a motor shaft, ii) a gear housing having a bull gear fastened to the motor shaft, and a pinion gear engaged with the bull gear, and iii) a pinion gear on an outer circumferential surface thereof. And a rotating shaft housing in which a rotating shaft is formed, an impeller coupled to one end of the rotating shaft, and a rotating shaft and pinion gear and at least one first composite bearing, and partially cut to expose the pinion gear.
  • a high speed rotating body which is integrally coupled and iv) a scroll part which surrounds the impeller and discharges compressed air.
  • the first composite bearing includes: i) a composite bearing block having a sliding bearing block and a ball bearing block integrally; ii) a sliding bearing formed on the outer circumferential surface of the rotating shaft and embedded in the sliding bearing block to constitute the sliding bearing together with the sliding bearing block. Axle, and iii) a ball bearing embedded in the ball bearing block.
  • the first composite bearing is located at both sides of the pinion gear, and the set gap of the sliding bearing may be larger than the set gap of the ball bearing.
  • the sliding bearing shaft inclines a plurality of oil grooves and a plurality of tapered grooves to form an oil film on the surface thereof, and the sliding bearing block forms a side pressure buffer groove in a portion of the inner surface facing the bull gear to absorb side pressure caused by the bull gear. can do.
  • the high speed rotor forms a vent hole at the end of the rotor housing facing the impeller, the pinion gear is formed in the shape of a helical gear, and the direction of the helical gear is such that the force of the rotation shaft is drawn in the opposite direction to the impeller direction when the rotation axis rotates. Can be set.
  • the gear housing may form an arc-shaped guide cover having a plurality of oil guide grooves surrounding a part of the bull gear on an inner wall thereof, and may form an oil box connected to an end of the guide cover on an inner upper portion thereof.
  • the gear housing forms an oil pipe therein to supply lubricant oil collected in the oil box to the first composite bearing, one end of the oil pipe being connected to an oil outlet formed in the oil box, and the other end of the oil pipe being the first composite bearing. It can be connected to an oil supply port formed in the bearing.
  • the rotary housing may form a steam outlet for discharging the steam
  • the turbo blower may further include a steam cooler connected with the steam outlet and the oil box.
  • the steam cooler can condense the steam discharged to the steam outlet and supply it to the oil box.
  • the gear housing forms an oil reservoir at the bottom thereof, the oil reservoir forms a pair of holes up and down on the side wall thereof, and the gear housing further includes a communication tube communicating the pair of holes, and a control valve installed at the communication tube. Can be.
  • the bull gear is fastened directly to the motor shaft, the gear housing forms a joining surface having an opening larger than the diameter of the bull gear on the side facing the motor, the joining surface can be coupled to the motor.
  • a pinion gear meshing with the bull gear is formed on the outer circumferential surface, ii) an impeller coupled to one end of the rotation shaft, iii) a pair of pinion gears installed on both sides A first composite bearing, and iv) a rotating shaft housing containing a rotating shaft, a pinion gear, and a pair of first composite bearings, partially cut away to expose the pinion gear.
  • Each of the pair of first composite bearings includes: i) a composite bearing block having a sliding bearing block and a ball bearing block integrally; ii) formed on the outer circumferential surface of the rotating shaft and embedded in the sliding bearing block to slide the sliding bearing together with the sliding bearing block. And a sliding bearing shaft constituting the ball bearing, and iii) a ball bearing embedded in the ball bearing block.
  • the setting gap of the sliding bearing is larger than the setting gap of the ball bearing, and the sliding bearing shaft forms a plurality of oil grooves and a plurality of taper grooves inclined on the surface thereof, and the sliding bearing block has a lateral pressure caused by a bull gear on its inner surface.
  • the side pressure buffer groove may be formed in the direction opposite to the direction in which the side pressure exerts.
  • Turbo blower according to another embodiment of the present invention, i) a motor having a motor shaft, ii) a bull gear detachably coupled to the motor shaft, the center of the bull gear for forming a fixed shaft for installation, iii) fixed A second composite bearing provided between the shaft and the bull gear, the second composite bearing having a neighboring tapered roller bearing and a ball bearing along a direction parallel to the motor shaft, and iv) a rotating shaft having a pinion gear engaged with the bull gear on an outer circumferential surface thereof; It includes a high speed rotating body having an impeller coupled to one end of the.
  • the turbo blower comprises: i) a motor cover fastened to the motor and supporting the motor shaft; and ii) a bull gear and pinion gear, and an opening having a diameter larger than the diameter of the bull gear on the side engaged with the motor cover. It may further comprise a housing.
  • the motor shaft forms a flange on the outer peripheral surface of the end facing the bull gear, the bull gear is fastened to the motor shaft by a plurality of coupling bolts passing through the bull gear and the flange, and the gear housing faces the coupling bolt of any of the plurality of coupling bolts.
  • An opening can be formed in the site
  • the motor cover has a recess formed convexly toward the motor to accommodate a portion of the high speed rotating body in the recess.
  • the high speed rotating body includes: i) a pair of first composite bearings disposed on both sides of the pinion gear, and ii) a rotating shaft and a pair of first composite bearings, assembled in the gear housing, the pinion inside the gear housing. It may further include a rotating housing dislodged to expose the gear.
  • Each of the first composite bearings includes: i) a composite bearing block having a sliding bearing block and a ball bearing block integrally; ii) a sliding bearing formed on the outer circumferential surface of the rotating shaft and embedded in the sliding bearing block to constitute the sliding bearing together with the sliding bearing block. Bearing axis, and iii) a ball bearing embedded in the ball bearing block.
  • the setting gap of the sliding bearing is larger than the setting gap of the ball bearing, and the sliding bearing shaft can form a plurality of oil grooves and a plurality of taper grooves on the surface thereof to be inclined.
  • the gear housing forms an arc-shaped guide cover surrounding a part of the bull gear and a stepped protrusion located outside the side of the bull gear on its inner wall, and the protrusion has a temporary reservoir inside the assembly of the gear housing and the motor cover. Can be formed.
  • the guide cover may form a plurality of oil guide grooves extending in the inner surface along the direction of rotation of the bull gear.
  • the gear housing may further include a first oil pipe that forms a first through hole at a portion where the temporary reservoir is formed and connects the first through hole and the fixed shaft to the outside of the gear housing.
  • the fixed shaft is fastened to the gear housing, the fixed shaft forms an oil ball therein, and a flow path is formed between the fixed shaft and the motor shaft to guide the lubricant supplied to the oil ball to the second composite bearing.
  • a second oil is formed at the bottom of the protrusion, and the gear housing forms a third through hole in a portion in contact with the rotor housing, and the second oil connects the first through hole and the third through hole inside the gear housing. It may further comprise a tube.
  • the rotor housing forms an oil flow path connecting the first compound bearing and the third through hole of the impeller side of the pair of first composite bearings therein, and the first of the pair of the first composite bearings on the opposite side of the impeller of the pair of the first composite bearings. It may further include a third oil pipe connecting the composite bearing and the oil passage.
  • the high speed rotor further includes a support positioned between the impeller side first composite bearing and the impeller, the support and the rotor housing form an oil outlet, and the rotor housing connects the oil outlet and the gear housing from the outside to lube oil. It may further include a fourth oil pipe for recovering.
  • the turbo blower includes: i) a bearing and a sealing member installed side by side along the direction away from the bull gear on the outer circumferential surface of the motor shaft; and ii) a fifth oil which connects the sealing member and the interior of the motor cover to recover the lubricating oil that has reached the sealing member. It may further comprise a tube.
  • Turbo blower according to another embodiment of the present invention, i) a motor having a motor shaft and assembled with the motor cover, ii) a detachably coupled to the motor shaft, the fire to form a hollow for installing a fixed shaft in the center Gear, iii) a pinion gear on the outer circumferential surface of which a pinion gear is formed, an impeller coupled to one end of the rotation shaft, at least one first composite bearing supporting the rotation shaft, and a rotation shaft and a first composite bearing;
  • a high speed rotary body comprising a rotating housing partially cut to expose the gears; iv) a second composite provided between the fixed shaft and the bull gear, the tapered roller bearings and ball bearings adjacent in parallel with the motor shaft; Bearings, v) a gear housing containing a bull gear and a pinion gear and having an opening having a diameter larger than the diameter of the bull gear on the side engaging with the motor cover, and vi) It includes a scroll for enclosing the impeller to discharge the compressed air.
  • the composite bearing is adopted to absorb both the axial load and the radial load of the high-speed rotating body and the bull gear, and to provide high precision assembly using the integrated composite bearing block, thereby providing a wide range of applications in the field of turbo blowers. This is possible.
  • the high speed rotor, the bull gear and the motor can be easily disassembled.
  • FIG. 1 is a front view of a turbo blower according to a first embodiment of the present invention.
  • FIG. 2 is a left side view of the turbo blower shown in FIG. 1.
  • FIG. 2 is a left side view of the turbo blower shown in FIG. 1.
  • FIG. 3 is a perspective view of the gear housing of the turbo blower shown in FIG. 1 as viewed from the impeller side.
  • FIG. 4 is a perspective view of the gear housing of the turbo blower shown in FIG. 1 as viewed from the motor side.
  • FIG. 5 is a cross-sectional view illustrating a high speed rotor in the turbo blower illustrated in FIG. 1.
  • FIG. 6 is a front view illustrating a rotation shaft of the turbo blower illustrated in FIG. 1.
  • FIG. 7 is a schematic diagram showing a lubricating oil circulation system using a front sectional view, a side sectional view, and a sectional view of a high speed rotating body of the gear housing of the turbo blower shown in FIG. 1.
  • FIG 8 is a plan view of a turbo blower according to a second exemplary embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the motor shaft and the bull gear in the A direction of the turbo blowers shown in FIG. 8.
  • FIG. 10 is a partially enlarged view of FIG. 9.
  • FIG. 11 is a partially enlarged view illustrating a gear housing and a bull gear part of the turbo blower illustrated in FIG. 8.
  • FIG. 12 is a perspective view of the motor cover of the turbo blower illustrated in FIG. 8 as viewed from the direction B.
  • FIG. 12 is a perspective view of the motor cover of the turbo blower illustrated in FIG. 8 as viewed from the direction B.
  • FIG. 13 is a perspective view of the gear housing of the turbo blower shown in FIG. 8 as viewed from the direction C.
  • FIG. 13 is a perspective view of the gear housing of the turbo blower shown in FIG. 8 as viewed from the direction C.
  • FIG. 15 is a front view of the gear housing shown in FIG. 13 as viewed from the D direction.
  • FIG. 15 is a front view of the gear housing shown in FIG. 13 as viewed from the D direction.
  • FIG. 16 is a front view of the turbo blower shown in FIG. 8 viewed from the C direction.
  • FIG. 16 is a front view of the turbo blower shown in FIG. 8 viewed from the C direction.
  • FIG. 17 is a right side view of the turbo blower of FIG. 8 viewed in the B direction.
  • FIG. 17 is a right side view of the turbo blower of FIG. 8 viewed in the B direction.
  • FIG. 18 is a front view illustrating a high speed rotor in the turbo blower illustrated in FIG. 8.
  • FIG. 1 is a front view of the turbo blower 100 according to the first exemplary embodiment of the present invention.
  • FIG. 2 is a left side view of the turbo blower 100 illustrated in FIG. 1.
  • the turbo blower 100 of the first embodiment includes a support 10, a motor 11, a gear housing 12, and a scroll portion 13.
  • the motor 11 and the gear housing 12 are fixed on the support 10, and a part of the high speed rotating body 20 described later is located inside the gear housing 12.
  • the motor shaft 14 coupled to the motor 11 and the rotation shaft 21 of the high speed rotor 20 are eccentric rather than directly connected. That is, the bull gear 15 is directly fastened to the motor shaft 14, the pinion gear 16 is formed on the rotating shaft 21, and the bull gear 15 and the pinion gear 16 mesh with each other to form the motor 11. Drive the high speed rotor 20 by increasing the power of.
  • the bull gear shaft supporting the bull gear can be removed from the conventional speed increase gear box, and the problem of sealing between the motor and the gear box is solved and the number of parts Can reduce the manufacturing cost.
  • the gear housing 12 is integrally manufactured and the gear housing engaged with the motor 11 ( One side of 12) is manufactured to have a shape larger than the diameter of the bull gear 15 opened.
  • the motor 11 is provided with a bracket 17 for fastening the gear housing 13.
  • FIG. 3 is a perspective view of the gear housing 12 of the turbo blower 100 shown in FIG. 1 as viewed from the impeller 22 side
  • FIG. 4 is a motor of the gear housing 12 of the turbo blower 100 shown in FIG. It is a perspective view seen from (11) side.
  • reference numeral 121 is a first engagement surface for fastening the high speed rotor 20 and the scroll unit 13 to the gear housing 12.
  • reference numeral 122 is a second engagement surface for fastening the gear housing 12 itself to the bracket 17 of the motor 11.
  • the fastening body 20 or the bracket 17 of the motor 11 to the first and second coupling surfaces 121 and 122 of the gear housing 12 may be a general mechanical coupling method such as bolts and nuts. have.
  • general sealing devices such as rubber pads are provided on the first and second coupling surfaces 121 and 122 to block the outside and the inside of the gear housing 12 to seal the inside, and the coupling method and the sealing device are conventional. Detailed description thereof will be omitted.
  • the bull gear having a large diameter is first assembled to the motor shaft 14 during assembly, and the second engagement surface 122 of the gear housing 12 is mounted to the bracket 17 of the motor 11. ), And then the high speed rotating body 20 and the scroll unit 13 may be sequentially assembled to the first engagement surface 121 of the gear housing 12.
  • FIG. 5 is a cross-sectional view illustrating the high speed rotor 20 of the turbo blower 100 illustrated in FIG. 1, and the dotted line is an exploded view showing only the first composite bearing 26.
  • the high speed rotating body 20 includes a rotating shaft 21, a rotating body housing 23 including the rotating shaft 21, and a sliding bearing 24 and a ball bearing 25 integrally formed with each other. And a pair of first composite bearings 26 and an impeller 22 coupled to one end of the rotary shaft 21.
  • the rotor housing 23 is formed in a cylindrical shape as a whole, and is manufactured integrally unlike the split type used in a conventional high speed rotor.
  • the rotor housing 23 is partially cut at the portion where the pinion gear 16 formed on the rotation shaft 21 is located so that the pinion gear 16 is exposed to the outside of the rotor housing 23.
  • the pinion gear 16 thus exposed is engaged with the bull gear 15 inside the gear housing 12.
  • a flange 27 is formed in the middle portion of the rotor housing 23, and a plurality of fastening holes 271 are formed in the flange 27, so that the rotor housing 23 is formed in the gear housing 12. It is possible to assemble on the first coupling surface 121.
  • the rotor housing 23 forms a plurality of holes for supplying and discharging lubricant to the first composite bearing 26 described later. This hole will be described later.
  • the first composite bearing 26 is positioned on both sides of the pinion gear 16 around the pinion gear 16 formed on the rotation shaft 21.
  • the first composite bearing 26 has a configuration in which the sliding bearing shaft 241 and the ball bearing 25 are installed together in one composite bearing block 28.
  • the first composite bearing 26 includes a composite bearing block 28, a sliding bearing shaft 241, and a ball bearing 25.
  • the composite bearing block 28 is provided with the sliding bearing block 281 and the ball bearing block 282 integrally.
  • the sliding bearing shaft 241 is formed on the outer circumferential surface of the rotating shaft 21 and is built in the sliding bearing block 281 to constitute the sliding bearing 24 together with the sliding bearing block 281.
  • the ball bearing 25 is embedded in the ball bearing block 282.
  • the ball bearing 25 includes a ball 251 that directly supports a load during low speed operation, and an outer ring 252 and an inner ring 253 surrounding the ball 251.
  • reference numeral 261 denotes a ring fastened between the composite bearing block 28 and the rotor housing 23, and 262 denotes a fastening of the ball bearing 25 to the composite bearing block 28.
  • Reference numeral 263 denotes a nut for fixing the composite bearing block 28 to the rotation shaft 21.
  • the reason why the first composite bearing 26 is used for the high speed rotor 20 in the turbo blower 100 of the first embodiment is as follows.
  • the turbo blower 100 of the first embodiment can solve all of these problems by including the first composite bearing 26 composed of the sliding bearing 24 and the ball bearing 25 in the high speed rotating body 20.
  • the turbo blower 100 may support the drive of the high speed rotor 20 with the ball bearing 25 during the initial low speed drive, and may support the drive of the high speed rotor 20 with the sliding bearing 24 during the high speed drive. have.
  • the load supporting action is automatically changed in accordance with the driving region (rotational speed). That is, in the low speed drive including the start operation and the stop operation, a load is applied to the ball 251 so that the ball bearing 25 supports the load, and the sliding bearing 24 is operated in a no load state.
  • the rotational speed is increased, the thickness of the oil film formed on the sliding bearing 24 increases, and the sliding bearing 24 supports the load at a predetermined speed or more, and the ball bearing 25 is operated under no load.
  • the setting gap of the sliding bearing 24 is formed larger than the setting gap of the ball bearing 25.
  • the setting gap of the sliding bearing 24 means the difference between the diameter of the inner surface of the sliding bearing block 281 and the diameter of the sliding bearing shaft 241, and the setting gap of the ball bearing 25 is equal to the inner diameter of the outer ring 252.
  • the diameter of the ball 251 in the difference of the outer diameter of the inner ring 253 means a limit value.
  • the setting gap of the ball bearing 25 may be 0.1 mm.
  • the sliding bearing 24 of the first composite bearing 26 may form an oil film without installing a separate oil pump.
  • FIG. 6 is a front view showing the rotation shaft 21 of the turbo blower 100 shown in FIG. 1, and shows the left side view and the right side view of the rotation shaft 21 together.
  • a plurality of oil grooves 242 and a plurality of tapered grooves 243 for oil supply are formed on a surface of the sliding bearing shaft 241 formed on the rotation shaft 21.
  • the oil groove 242 and the tapered groove 243 are formed to be inclined in the direction of the rotation shaft 21.
  • the inclination direction of the oil groove 242 and the tapered groove 243 located on one side of the pinion gear 16 is the inclination direction of the oil groove 242 and the tapered groove 243 located on the other side of the pinion gear 16.
  • each of the tapered grooves 243 is formed to have a deep contact portion with the oil groove 242 and to have a small depth in a direction away from the oil groove 242.
  • the oil groove 242 formed on the surface of the sliding bearing shaft 241 serves to supply oil, and the tapered groove 243 generates pressure in the oil supplied to the oil groove 242 to form an oil film. Play a role. Therefore, the oil groove 242 and the tapered groove 243 serve as an oil pump when the rotating shaft 21 rotates.
  • the turbo blower 100 may solve both the friction and the lubricating oil pressurization caused by the high speed rotation without installing the oil pump by supplying only the lubricating oil to the first composite bearing 26.
  • the turbo blower 100 since the turbo blower 100 has a structure in which the rotation speed of the rotation shaft 21 is increased by the bull gear 15 and the pinion gear 16, side pressure inevitably occurs due to gear driving.
  • This side pressure normally acts toward the pinion gear 16 having a smaller diameter from the side of the large bull gear 15, and the actual direction in which the side pressure acts is not the 3 o'clock direction perpendicular to the vertical line of the center of the rotation axis 21.
  • the lower side is about 5 o'clock.
  • a means for buffering the side pressure acting on the pinion gear 16 of the rotating shaft 21 should be applied.
  • a side pressure buffer groove 29 (see dotted line in FIG. 5) is formed in the inner surface of the sliding bearing block 281.
  • the side pressure buffer groove 29 is formed in a portion of the inner surface of the sliding bearing block 281 facing the bull gear 15 (the direction opposite to the direction in which the side pressure exerts).
  • the length and depth of the side pressure buffer groove 29 are determined by load calculation in accordance with the specification of the high speed rotating body 20.
  • the side pressure buffer groove 29 may be formed in an arc shape of 180 degrees or less.
  • An oil film is not formed in the part in which the side pressure buffer groove 29 is formed among the composite bearing blocks 28, but an oil film is formed only on the opposite side, that is, the side pressure side. Therefore, the side pressure by the bull gear 15 is eliminated and smooth high speed rotation is attained.
  • the impeller 22 is installed on one side (left side of FIG. 5) of the rotating shaft 21 in the high speed rotating body 20.
  • a negative pressure ( ⁇ ) is formed at the inlet of the impeller 22, and a positive pressure (+) is formed at the outlet of the impeller 22. Therefore, the axial load is generated in the direction in which the impeller 22 is installed (left side of FIG. 5) based on the rotation shaft 21.
  • a vent hole (231) is formed at the end of the rotating body housing (23) facing the impeller (22), and (2) the pinion gear (16) formed on the rotating shaft (21). Adjust the helical gear direction of the 3, install the ball bearing 25 in the composite bearing block (28).
  • the positive pressure (+) formed at the back of the impeller 22 is removed by the vent hole 231 of the rotor housing 23.
  • the pinion gear 16 is formed in a helical gear shape.
  • the direction of the helical gear is set so that the force to be pulled in the direction opposite to the impeller 22 direction (right side in Fig. 5) is generated when the rotating shaft 21 rotates to solve the axial load. If necessary, the basic axial load bearing capacity of the ball bearing 25 is used to mitigate the axial load.
  • the lubricating oil circulation system serves to circulate and supply the lubricating oil to the high speed rotating body 20 without using an oil pump.
  • FIG. 7 is a schematic view showing a lubricating oil circulation system using the front and side cross-sectional views of the gear housing 12 and the cross-sectional view of the high speed rotor 20 among the turbo blowers 100 shown in FIG. 1.
  • the guide cover 30 surrounding the bull gear 15 is formed on an inner wall surface of the gear housing 12.
  • the guide cover 30 is formed with a plurality of oil guide grooves 301.
  • an oil box 31 connected to an end of the guide cover 30 is formed at an inner upper portion of the gear housing 12.
  • the guide cover 30 and the oil guide groove 301 are lubricating oil contained in the oil reservoir 32 under the gear housing 12 by the gear teeth of the bull gear 15. It moves along), falls to the oil box 31 by gravity and is collected in the oil box 31. At this time, the lubricant remaining on the surface of the bull gear 15 serves to lubricate the bull gear 15 and the pinion gear 16 at the moment when the bull gear 15 and the pinion gear 16 contact each other.
  • the lubricating oil collected in the oil box 31 is partially discharged to the oil outlet 311 by gravity and supplied to the oil supply port 232 formed in the rotor housing 23 of the high speed rotor 20 along the oil pipe. do.
  • the lubricating oil supplied to the oil supply port 232 of the rotor housing 23 is divided in two directions so that a small amount is supplied to the ball bearing 25, and most of it is supplied to the sliding bearing 24.
  • the lubricating oil supplied to the sliding bearing 24 forms an oil film pressurized by the tapered groove 243 formed in the sliding bearing shaft 241 to support the rotating shaft 21.
  • the lubricating oil used for the sliding bearing 24 moves in a direction opposite to the supplied direction, and is discharged to the cutout portion of the rotor housing 23 for exposing the pinion gear 16 so that the oil reservoir under the gear housing 12 is lowered. Drop to (32).
  • the lubricating oil supplied to the first composite bearing 26 may generate oil vapor while evaporating.
  • the oil vapor is discharged to the inside of the gear housing 12 and the outside of the gear housing 12 about the flange 27 of the rotating body housing 23. Since the oil vapor discharged into the gear housing 12 is supplied back to the first composite bearing 26 by the circulation structure of the lubricating oil, there is no problem. However, in the case of the oil vapor discharged to the outside of the gear housing 12, subsequent processing is performed. Is needed.
  • the lubricating oil supplied to the oil box 31 through the condensed oil supply port 35 is recovered to the oil storage tank 32 through the oil pipe 36, and the trace amount of oil remaining in the oil box 31 is oiled. It is discharged to the outside through the exhaust port 37 of the box 31.
  • the oil box 31 is provided with a partition 38 having an upper portion open and a through hole formed therein. Therefore, the oil box 31 may temporarily store the lubricant oil collected by the guide cover 30 and the oil guide groove 301 and the condensed lubricant oil supplied from the oil vapor cooler 34 temporarily.
  • lubricating oil is stored in the oil storage tank 32 formed by sealing the gear housing 12, and the hole is formed in the side wall of the oil storage tank 32 up and down.
  • the control valve 39 is provided in the communication pipe which communicated these holes. Therefore, the control valve 39 may be adjusted to maintain an appropriate amount of lubricating oil required for driving the high speed rotating body 20 in the oil reservoir 32.
  • a large amount of lubricating oil is required in consideration of the lubrication of the lubricating oil when the high speed rotating body 20 is initially driven. Therefore, if the quantity of the lubricating oil supplied to the control valve 39 is controlled suitably, the lubricating oil of the quantity required for the drive of the high speed rotating body 20 can be hold
  • reference numeral 40 denotes a pressure regulating valve for controlling a pressure difference in communication with the vent hole 231 before and after the impeller 22.
  • FIG 8 is a partial cutaway plan view of a turbo blower 110 according to a second exemplary embodiment of the present invention.
  • the same members as those of the first embodiment described above will be described with the same reference numerals.
  • the turbo blower 110 of the second embodiment includes a motor shaft 14, a bull gear 15, a high speed rotor 20, and a second composite bearing 42.
  • the motor shaft 14 is coupled to the motor 11 and rotates at high speed when the motor 11 is operated.
  • the bull gear 15 is detachably coupled to the motor shaft 14, and forms a hollow in which the fixed shaft 41 and the second composite bearing 42 are located at the center thereof.
  • the high speed rotating body 20 includes a rotating shaft 21 having a pinion gear 16 engaged with the bull gear 15, and an impeller 22 coupled to one end of the rotating shaft 21.
  • the turbo blower 110 further includes a motor cover 43, a gear housing 120, an inlet guide vane 44, and a scroll unit 13.
  • the motor cover 43 is fastened to the front of the motor 11 toward the impeller 22, and the gear housing 120 is fastened to the front of the motor cover 43 toward the impeller 22.
  • the entire motor shaft 14 and the bull gear 15 and a part of the high speed rotating body 20 are located.
  • the inlet guide vane 44 is installed in the suction passage to adjust the flow rate of the gas flowing into the impeller 22.
  • a radial load is generated in the bull gear 15 by the load of the bull gear 15 itself and the force of the pinion gear 16 pushing the bull gear 15.
  • An axial load is also generated by the helical shape of the bull gear 15 and the pinion gear 16.
  • the second composite bearing 42 described below effectively reduces the radial load and the axial load acting on the bull gear 15 by supporting the bull gear 15 inside the bull gear 15.
  • FIG. 9 is a cross-sectional view of the motor shaft 14 and the bull gear 15 in the A direction among the turbo blowers 110 shown in FIG. 8, and FIG. 10 is a partially enlarged view of FIG. 9.
  • the second composite bearing 42 has a tapered roller bearing 45 and a ball installed in a direction parallel to the motor shaft 14 between the fixed shaft 41 and the bull gear 15.
  • Bearing 46 The tapered roller bearing 45 includes a roller 451 fitted in an inclined direction, an inner ring 452 and an outer ring 453 surrounding the roller 451.
  • the ball bearing 46 includes a ball 461 and an inner ring 462 and an outer ring 463 surrounding the ball 461.
  • the inner ring 462 is fitted to the fixed shaft 41, and the outer ring 463 is coupled to the bull gear 15.
  • the tapered roller bearing 45 simultaneously reduces the radial and axial loads acting on the bull gear 15, and the ball bearing 46 once again reduces the radial loads acting on the bull gear 15.
  • the turbo blower 110 of the second embodiment thus minimizes the radial and axial loads acting on the bull gear 15 via the second composite bearing 42. As a result, it is possible to prevent the occurrence of noise due to the positional movement of the bull gear 15, the breakage of the bull gear 15 and the deformation of the motor shaft 14.
  • the fixed shaft 41 is fastened to the gear housing 120 using the fixed block 47 and the bolt 48, and is positioned so that its center coincides with the center of the motor shaft 14.
  • An oil hole 411 for supplying lubricating oil to the second composite bearing 42 is formed in the fixed shaft 41 in a direction parallel to the fixed shaft 41. At this time, a predetermined interval exists between the fixed shaft 41 and the motor shaft 14 to form a flow path for guiding the lubricating oil to the second composite bearing 42.
  • the motor shaft 14 does not overlap the bull gear 15, and the flange 141 is fixed to the outer peripheral surface of the end of the motor shaft 14 facing the bull gear 15.
  • the bull gear 15 may be fastened to the motor shaft 14 by a mechanical coupling method using a plurality of coupling bolts 49 passing through the bull gear 15 and the flange 141.
  • the bull gear 15 is coupled to the motor shaft 14 in a detachable manner rather than a permanent coupling such as heat shrinkage, when the bull gear 15 needs to be replaced or repaired, Assembling and disassembling the motor shaft 14 can be facilitated.
  • FIG. 11 is a partially enlarged view illustrating a gear housing 120 and a bull gear 15 in the turbo blower 110 illustrated in FIG. 8.
  • the gear housing 120 forms an opening 123 at a portion of the gear housing 120 facing one of the coupling bolts 49.
  • a tool (not shown) may be inserted through the opening 123 to separate the coupling bolt 49. That is, after separating the coupling bolt 49 by using a tool, turn the bull gear 15 by hand to place the other coupling bolt 49 at the opening 123 position, and then insert the tool to separate the coupling bolt 49. . This process may be repeated to separate all the plurality of coupling bolts 49.
  • the bull gear 15 with all of the coupling bolts 49 removed is supported by the second composite bearing 42.
  • the gear housing 120 and the motor cover 43 are separated in this state, the motor 11 and The motor shaft 14 can be easily disassembled from the bull gear 15 and the gear housing 120.
  • turbo blower 110 of the second embodiment the configuration and the functions of the high speed rotating body 20 and the first composite bearing 26 are the same as those of the first embodiment described above, and thus a detailed description thereof will be omitted.
  • FIG. 12 is a perspective view of the motor cover 43 in the B direction of the turbo blower 110 illustrated in FIG. 8.
  • the motor cover 43 forms a hollow 431 for accommodating the motor shaft 14, and a third engagement surface fastened to the motor 11 along the circumference of the hollow 431. 432 is formed.
  • the motor cover 43 is provided with a recess 50 formed convexly toward the motor 11 to enlarge the internal space of the motor cover 43 and the gear housing 120 assembly toward the motor 11.
  • the turbo blower 110 of the second embodiment forms the recess 50 in the motor cover 43, the turbo blower 110 may accommodate the recess 50 in the opposite side of the impeller 22 of the high speed rotating body 20. Therefore, the large high speed rotating body 20 can also be installed easily.
  • FIG. 13 is a perspective view of the gear housing 120 of the turbo blower 110 illustrated in FIG. 8, viewed from the direction C, and FIG. 14 is a cross-sectional view taken along line II of FIG. 13.
  • the gear housing 120 is formed in such a manner that the side fastened to the motor cover 43 is larger than the diameter of the bull gear 15. That is, the gear housing 120 is formed from the edge of the vertical wall 51 and the vertical wall 51 forming two hollows for accommodating the fixed shaft 41 of the bull gear 15 and the high-speed rotating body 20. It includes a side wall 52 that extends toward the motor cover 43, the sides fastened to the motor cover 43 is made of an open form.
  • the bull gear 15 and the motor shaft 41 are assembled, and the gear housing 120 is fastened to the motor cover 43 so as to surround the bull gear 15, and then the gear housing.
  • the fixed shaft 41 and the high speed rotating body 20 can be assembled to the 120, and the scroll portion 13 can be assembled to the rotating body housing 23 sequentially. Disassembly is reversed from the assembly sequence described above.
  • the detachable coupling structure of the bull gear 15 and the motor shaft 14 and the shape of the gear housing 120 with one open side can simplify assembly and disassembly of the turbo blower 110.
  • FIG. 15 is a front view of the gear housing 120 shown in FIG. 13 as viewed from the D direction.
  • a roughly arc-shaped guide cover 30 is formed on an inner surface of the vertical wall 51 of the gear housing 120 to surround a part of the bull gear 15.
  • the guide cover 30 protrudes from the inner surface of the vertical wall 51 toward the motor cover 43, and its width w1 (see FIG. 14) is the width w2 of the side wall 52 of the gear housing 120. 14).
  • the guide cover 30 is formed to have an inner diameter larger than the diameter of the bull gear 15 and is positioned at a distance from the bull gear 15.
  • the direction of rotation of the bull gear 15 is counterclockwise, and the guide cover 30 has a shape in which approximately 4/4 quadrants are cut off based on FIG. 15.
  • An oil guide groove 301 is formed in the inner surface of the guide cover 30 along the rotational direction of the bull gear 15.
  • the oil guide groove 301 is provided in plurality in a distance from each other along the direction parallel to the motor shaft 14 (see Fig. 14).
  • a stepped protrusion 53 is formed on the upper surface of the inner surface of the vertical wall 51 of the gear housing 120, that is, the side surface of the bull gear 15.
  • the protrusion 53 forms a step that is lowered toward the side wall 52.
  • One end of the protrusion 53 is connected to the side wall 52, and the other end is positioned at a distance from the upper end of the guide cover 30 along the horizontal and vertical directions with reference to FIG. 15.
  • the width of the protrusion 53 is equal to the width of the guide cover 30.
  • an oil reservoir 32 is formed under the assembly of the gear housing 120 and the motor cover 43, an oil flow path is formed between the bull gear 15 and the guide cover 30, and the lubricant oil is placed on the protrusion 53.
  • a temporary reservoir 54 is formed for collecting the water and circulating the collected lubricant again.
  • the lubricating oil contained in the oil reservoir 32 is scattered by the gear teeth of the bull gear 15 and follows the oil guide groove 301 formed in the guide cover 30 by gravity. It falls over the protrusion 53 and is collected in the temporary reservoir 54.
  • the lubricating oil collected in the temporary storage tank 54 is supplied to the second composite bearing 42 of the bull gear 15 and the first composite bearing 26 of the high speed rotating body 20 by the circulation structure described below. .
  • the guide cover 30 and the protrusion 53 are integrally formed with the gear housing 120. Therefore, it is possible to avoid the hassle of assembling the oil reservoir and the temporary reservoir in the gear housing inside, and the oil reservoir 32 by fastening the gear housing 120 and the motor cover 43 in an airtight state. And the temporary reservoir 54 can be easily formed.
  • FIG. 16 is a front view of the turbo blower 100 illustrated in FIG. 8 as viewed in the C direction, and shows a part of the outer surface of the gear housing 120 inside the dotted line.
  • a first oil pipe 55 connecting the temporary reservoir 54 and the fixed shaft 41 of the bull gear 15 is disposed outside the vertical wall 51 of the gear housing 120. Is installed. That is, a first through hole 56 is formed at a position corresponding to the temporary reservoir 54 on the vertical wall 51 of the gear housing 120, and one end of the first oil pipe 55 is formed through the first through hole ( 56). The other end of the first oil pipe 55 is connected to an oil ball 411 formed on the fixed shaft 41.
  • FIG. 9 a part of the first oil pipe 55 connected to the fixed shaft 41 is illustrated by a dotted line.
  • the first oil pipe 55 provides the lubricant collected in the temporary reservoir 54 to the oil ball 411 of the fixed shaft 41, and the lubricant provided to the oil ball 411 is a ball bearing.
  • FIG. 17 is a right side view of the turbo blower 110 of FIG. 8 viewed in the B direction, and shows a portion of the motor cover 43 and shows the inside of the gear housing 120.
  • FIG. 18 is a front view illustrating the high speed rotor 20 of the turbo blower 110 illustrated in FIG. 8.
  • a second oil pipe 57 for delivering the lubricant oil collected in the temporary reservoir 54 to the high speed rotating body 20 is provided inside the vertical wall 51 of the gear housing 120.
  • a second through hole 58 is formed at a lower end of the protrusion 53, and one end of the second oil pipe 57 is connected to the second through hole 58.
  • a third through hole 59 is formed at a portion of the vertical wall 51 of the gear housing 120 overlapping the rotating body housing 23, and the other end of the second oil pipe 57 is formed through the third through hole ( 59).
  • the inside of the rotor housing 23 has a first compound bearing 26 (the first compound bearing 26 on the left side based on FIG. 18) of the pair of first compound bearings 26 on the impeller 22.
  • An oil flow path 60 connecting the third through hole 59 is formed.
  • a third that connects the first composite bearing 26 (the first composite bearing 26 on the right side based on FIG. 18) and the oil passage 60 to the outside of the rotor housing 23 is opposite to the impeller 22.
  • An oil pipe 61 is installed.
  • the lubricant collected in the temporary reservoir 54 is provided to the high-speed rotating body 20 through the second oil pipe 57, the supplied lubricant oil is impeller through the oil flow path 60 and the third oil pipe 61 (22)
  • the first composite bearing 26 on the side and the first composite bearing 26 on the opposite side to the impeller 22 are supplied separately.
  • the lubricating oil provided to the first composite bearing 26 on the impeller 22 lubricates these bearings while sequentially passing through the sliding bearing 24 and the ball bearing 25.
  • a lubrication hole 63 is formed at the support 62 positioned between the ball bearing 25 and the impeller 22 and the rotor housing 23 surrounding the rotor 62, and the fourth outer portion of the rotor housing 23.
  • An oil pipe 64 is installed to connect the lubrication port 63 and the gear housing 120. Therefore, the used lubricant flows into the gear housing 120 through the fourth oil pipe 64 and is collected in the oil reservoir 32.
  • the lubricating oil provided to the first composite bearing 26 opposite the impeller 22 via the third oil pipe 61 is supplied to the sliding bearing 24 and the ball bearing 25 to lubricate these bearings, The lubricating oil drops through the cutout portion formed to expose the pinion gear 16 in the rotor housing 23 and is collected in the oil reservoir 32.
  • the bearing 65 and the sealing member 66 are installed side by side along the direction away from the bull gear 15 on the outer circumferential surface of the motor shaft 14. Since the lubricating oil scatters at high speed also toward the motor shaft 14 in the process of rotating the bull gear 15, the bearing 65 can be sufficiently lubricated using the scattered lubricating oil.
  • the sealing member 66 is provided with a fifth oil pipe 67 to recover the lubricating oil that has passed through the bearing 65 and reaches the sealing member 66 to the oil reservoir 32.
  • the turbo blower 110 of the second embodiment may include the second composite bearing 42 of the bull gear 15 and the first composite bearing of the high-speed rotating body 20 without installing a separate oil pump for lubricating oil supply.
  • Lubricating oil can be circulated and supplied. Therefore, the number of parts can be reduced by simplifying the lubricant supply structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명은 터보 블로어 및 이에 사용되는 고속 회전체에 관한 것이다. 터보 블로어는, i) 모터 축을 구비하는 모터, ii) 모터 축에 체결된 불 기어와, 불 기어와 맞물리는 피니언 기어를 내장하는 기어 하우징, iii) 외주면에 피니언 기어가 형성된 회전축과, 회전축의 일단에 결합되는 임펠러, 및 회전축과 피니언 기어 및 적어도 하나의 제1 복합 베어링을 내장하고 피니언 기어가 노출되도록 일부가 절개된 회전체 하우징을 포함하며, 기어 하우징에 일부분이 내장되어 결합되는 고속 회전체, 및 iv) 임펠러를 감싸면서 압축된 공기를 배출하는 스크롤부를 포함한다.

Description

터보 블로어 및 이에 사용되는 고속 회전체
본 발명은 터보 블로어에 관한 것으로서, 보다 상세하게는 구동시 발생하는 축 방향 하중과 반경 방향 하중을 최소화할 수 있는 터보 블로어 및 이에 사용되는 고속 회전체에 관한 것이다.
터보 블로어는 적은 부피로 높은 출력을 얻기 위하여 고속 회전체를 사용한다. 고속 회전체는 구동 방식에 따라 고속 모터에 직결되는 직접 구동 방식과, 회전 속도를 증가시키는 기어 증속기를 통해 일반 모터에 연결되는 간접 구동 방식으로 분류할 수 있다.
직접 구동 방식의 고속 회전체는 통상 공기 베어링(air bearing)에 의해 지지된다. 그런데 공기 베어링은 부품의 내구성이 높지 않으므로 장기간(예를 들어 3년 이상) 사용에 많은 제약이 따른다.
간접 구동 방식에 사용되는 통상의 기어 증속기는 모터 축에 고정되는 불 기어와, 고속 회전체에 설치되며 불 기어에 맞물리는 피니언 기어로 이루어진다. 그런데 기어 증속기를 구비한 터보 블로어는 그 작용시 고속 회전체와 불 기어에 반경 방향 하중과 축 방향 하중이 발생하므로 이를 줄이기 위한 구조 개선이 요구된다.
또한, 기어 증속기를 구비한 터보 블로어는 불 기어와 피니언 기어를 내장하는 기어 박스를 사용하게 되는데, 기어 박스를 터보 기계에 조립하기 위해서는 기어 박스 자체를 수평으로 분할해야 할 뿐만 아니라 이 기어들의 축을 지지하는 베어링 또한 수평으로 분할하여 제작하여야 한다.
이와 같이 기어 박스를 분할하여 제작할 경우 제작상의 정밀도가 문제되고, 터보 기계를 조립한 다음 고속 회전을 위하여 기어 축들을 조심(centering)할 경우 조립의 정밀도가 어려워진다. 또한, 부품 수가 늘어나 제작 비용이 증가한다.
간접 구동 방식의 터보 블로어는 윤활유 공급을 위해 오일 펌프를 구비해야 하므로 부품 수가 증가한다. 또한, 종래에는 불 기어와 모터 축이 열박음으로 고정되어 있으므로, 불 기어의 이 마모 등에 의해 불 기어를 교체할 필요가 있을 때, 불 기어의 분해와 조립이 어려운 문제점이 있다.
본 발명은 고속 회전체 및 불 기어에 작용하는 축 방향 하중과 반경 방향 하중을 최소화할 수 있는 터보 블로어를 제공하고자 한다.
본 발명은 터보 블로어 내에 오일 순환 구조를 형성하여 윤활유 공급을 위한 오일 펌프를 설치하지 않고도 고속 회전체에 윤활유를 순환시켜 공급할 수 있는 터보 블로어를 제공하고자 한다.
본 발명은 고속 회전체와 불 기어 및 모터의 조립과 분해를 간편하게 할 수 있는 터보 블로어를 제공하고자 한다.
본 발명의 일 실시예에 따른 터보 블로어는, i) 모터 축을 구비하는 모터, ii) 모터 축에 체결된 불 기어와, 불 기어와 맞물리는 피니언 기어를 내장하는 기어 하우징, iii) 외주면에 피니언 기어가 형성된 회전축과, 회전축의 일단에 결합되는 임펠러, 및 회전축과 피니언 기어 및 적어도 하나의 제1 복합 베어링을 내장하고 피니언 기어가 노출되도록 일부가 절개된 회전체 하우징을 포함하며, 기어 하우징에 일부분이 내장되어 결합되는 고속 회전체, 및 iv) 임펠러를 감싸면서 압축된 공기를 배출하는 스크롤부를 포함한다.
제1 복합 베어링은, i) 미끄럼 베어링 블록과 볼 베어링 블록을 일체로 구비한 복합 베어링 블록, ii) 회전축의 외주면에 형성되며 미끄럼 베어링 블록에 내장되어 미끄럼 베어링 블록과 함께 미끄럼 베어링을 구성하는 미끄럼 베어링 축, 및 iii) 볼 베어링 블록에 내장되는 볼 베어링을 포함할 수 있다.
제1 복합 베어링은 피니언 기어의 양측에 위치하며, 미끄럼 베어링의 설정 갭은 볼 베어링의 설정 갭보다 클 수 있다. 미끄럼 베어링 축은 그 표면에 유막 형성을 위한 복수의 오일 홈과 복수의 테이퍼 홈을 경사지게 형성하고, 미끄럼 베어링 블록은 그 내면 중 불 기어를 향한 부분에 측압 완충 홈을 형성하여 불 기어에 의한 측압을 흡수할 수 있다.
고속 회전체는 임펠러를 향한 회전체 하우징의 단부에 벤트 홀을 형성하고, 피니언 기어는 헬리컬 기어 형상으로 형성되며, 헬리컬 기어의 방향은 회전축 회전시 회전축이 임펠러 방향의 반대 방향으로 끌리는 힘이 발생하도록 설정될 수 있다.
기어 하우징은 그 내벽면에 불 기어의 일부를 둘러싸면서 복수의 오일 가이드 홈을 구비한 원호 모양의 가이드 커버를 형성하고, 그 내측 상부에 가이드 커버의 단부와 이어지는 오일 박스를 형성할 수 있다.
기어 하우징은 그 내부에 오일관을 형성하여 오일 박스에 수집된 윤활유를 제1 복합 베어링으로 공급하고, 오일관의 일단은 오일 박스에 형성된 오일 배출구와 연결되며, 오일관의 다른 일단은 제1 복합 베어링에 형성된 오일 공급구와 연결될 수 있다.
회전체 하우징은 유증기를 배출하기 위한 증기 배출구를 형성하고, 터보 블로어는 증기 배출구 및 오일 박스와 연결되는 유증기 냉각기를 더욱 포함할 수 있다. 유증기 냉각기는 증기 배출구로 배출된 유증기를 응축시켜 오일 박스에 공급할 수 있다.
기어 하우징은 그 하부에 오일 저장조를 형성하고, 오일 저장조는 그 측벽에 상하로 한 쌍의 홀을 형성하며, 기어 하우징은 한 쌍의 홀을 연통시킨 연통관과, 연통관에 설치된 제어 밸브를 더욱 포함할 수 있다.
불 기어는 모터 축에 직접 체결되고, 기어 하우징은 모터를 향한 측면에 불 기어의 직경보다 큰 개구부를 가지는 결합면을 형성하며, 결합면은 모터에 결합될 수 있다.
본 발명의 일 실시예에 따른 고속 회전체는, i) 불 기어와 맞물리는 피니언 기어가 외주면에 형성된 회전축, ii) 회전축의 일단에 결합되는 임펠러, iii) 피니언 기어의 양측에 설치되는 한 쌍의 제1 복합 베어링, 및 iv) 회전축, 피니언 기어, 및 한 쌍의 제1 복합 베어링을 내장하며, 피니언 기어가 노출되도록 일부가 절개된 회전체 하우징을 포함한다.
한 쌍의 제1 복합 베어링 각각은, i) 미끄럼 베어링 블록과 볼 베어링 블록을 일체로 구비한 복합 베어링 블록, ii) 회전축의 외주면에 형성되며 미끄럼 베어링 블록에 내장되어 미끄럼 베어링 블록과 함께 미끄럼 베어링을 구성하는 미끄럼 베어링 축, 및 iii) 볼 베어링 블록에 내장되는 볼 베어링을 포함할 수 있다.
미끄럼 베어링의 설정 갭은 볼 베어링의 설정 갭보다 크고, 미끄럼 베어링 축은 그 표면에 유막 형성을 위한 복수의 오일 홈과 복수의 테이퍼 홈을 경사지게 형성하며, 미끄럼 베어링 블록은 그 내면에 불 기어에 의한 측압을 흡수하기 위하여 측압이 미치는 방향의 반대 방향으로 측압 완충 홈을 형성할 수 있다.
본 발명의 다른 일 실시예에 따른 터보 블로어는, i) 모터 축을 구비하는 모터, ii) 모터 축에 착탈 가능하게 결합되며, 그 중심에 고정 축 설치를 위한 중공을 형성하는 불 기어, iii) 고정 축과 불 기어 사이에 설치되며, 모터 축과 나란한 방향을 따라 이웃한 테이퍼 롤러 베어링과 볼 베어링을 구비하는 제2 복합 베어링, 및 iv) 외주면에 불 기어와 맞물리는 피니언 기어가 형성된 회전축과, 회전축의 일단에 결합되는 임펠러를 구비하는 고속 회전체를 포함한다.
터보 블로어는, i) 모터에 체결되며, 모터 축을 지지하는 모터 커버, 및 ii) 불 기어와 피니언 기어를 내장하며, 모터 커버와 체결되는 측면에 불 기어의 직경보다 큰 직경의 개구부를 형성한 기어 하우징을 더욱 포함할 수 있다.
모터 축은 불 기어를 향한 단부 외주면에 플랜지를 형성하고, 불 기어는 불 기어와 플랜지를 관통하는 복수의 결합 볼트에 의해 모터 축에 체결되며, 기어 하우징은 복수의 결합 볼트 중 어느 한 결합 볼트와 마주하는 부위에 개구부를 형성할 수 있다. 모터 커버는 모터를 향해 볼록하게 형성된 리세스를 구비하여 리세스에 고속 회전체의 일부를 수용할 수 있다.
고속 회전체는, i) 피니언 기어의 양측에 배치되는 한 쌍의 제1 복합 베어링, 및 ii) 회전축과 한 쌍의 제1 복합 베어링을 내장하고, 기어 하우징에 조립되며, 기어 하우징의 내부에서 피니언 기어를 노출시키기 위해 부불 절개된 회전체 하우징을 더욱 포함할 수 있다.
제1 복합 베어링 각각은, i) 미끄럼 베어링 블록과 볼 베어링 블록을 일체로 구비한 복합 베어링 블록, ii) 회전축의 외주면에 형성되며 미끄럼 베어링 블록에 내장되어 미끄럼 베어링 블록과 함께 미끄럼 베어링을 구성하는 미끄럼 베어링 축, 및 iii) 볼 베어링 블록에 내장되는 볼 베어링을 포함할 수 있다.
미끄럼 베어링의 설정 갭은 볼 베어링의 설정 갭보다 크고, 미끄럼 베어링 축은 그 표면에 유막 형성을 위한 복수의 오일 홈과 복수의 테이퍼 홈을 경사지게 형성할 수 있다.
기어 하우징은 그 내벽면에 불 기어의 일부를 둘러싸는 원호 모양의 가이드 커버 및 불 기어의 측면 외측에 위치하는 계단 모양의 돌출부를 형성하며, 돌출부는 기어 하우징과 모터 커버의 조립체 내부에 임시 저장조를 형성할 수 있다.
가이드 커버는 그 내면에 불 기어의 회전 방향을 따라 길게 이어진 복수의 오일 가이드 홈을 형성할 수 있다. 기어 하우징은 임시 저장조가 형성된 부위에 제1 관통구를 형성하고, 기어 하우징의 외부에서 제1 관통구와 고정 축을 연결하는 제1 오일관을 더욱 포함할 수 있다.
고정 축은 기어 하우징에 체결되고, 고정 축은 그 내부에 오일구를 형성하며, 고정 축과 모터 축 사이에 유로가 형성되어 오일구로 공급된 윤활유를 제2 복합 베어링으로 안내할 수 있다.
돌출부는 그 하단에 제2 관통구를 형성하고, 기어 하우징은 회전체 하우징과 맞닿는 부분에 제3 관통구를 형성하며, 기어 하우징의 내부에서 제1 관통구와 제3 관통구를 연결하는 제2 오일관을 더욱 포함할 수 있다.
회전체 하우징은 그 내부에 한 쌍의 제1 복합 베어링 중 임펠러측 제1 복합 베어링과 제3 관통구를 연결하는 오일 유로를 형성하고, 그 외부에서 한 쌍의 제1 복합 베어링 중 임펠러 반대측의 제1 복합 베어링과 오일 유로를 연결하는 제3 오일관을 더욱 포함할 수 있다.
고속 회전체는 임펠러측 제1 복합 베어링과 임펠러 사이에 위치하는 지지체를 더욱 포함하고, 지지체와 회전체 하우징은 오일 배출구를 형성하며, 회전체 하우징은 그 외부에서 오일 배출구와 기어 하우징을 연결하여 윤활유를 회수하는 제4 오일관을 더욱 포함할 수 있다.
터보 블로어는, i) 모터 축의 외주면에 불 기어와 멀어지는 방향을 따라 나란하게 설치된 베어링 및 실링 부재와, ii) 실링 부재와 모터 커버의 내부를 연결하여 실링 부재에 도달한 윤활유를 회수하는 제5 오일관을 더욱 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 터보 블로어는, i) 모터 축을 구비하며 모터 커버와 조립되는 모터, ii) 모터 축에 착탈 가능하게 결합되며, 그 중심에 고정 축 설치를 위한 중공을 형성하는 불 기어, iii) 외주면에 불 기어와 맞물리는 피니언 기어가 형성된 회전축과, 회전축의 일단에 결합되는 임펠러와, 회전축을 지지하는 적어도 하나의 제1 복합 베어링과, 회전축과 제1 복합 베어링을 내장하며 피니언 기어가 노출되도록 부분 절개된 회전체 하우징을 포함하는 고속 회전체, iv) 고정 축과 불 기어 사이에 설치되며, 모터 축과 나란한 방향을 따라 이웃한 테이퍼 롤러 베어링과 볼 베어링을 구비하는 제2 복합 베어링, v) 불 기어와 피니언 기어를 내장하며, 모터 커버와 체결되는 측면에 불 기어의 직경보다 큰 직경의 개구부를 형성한 기어 하우징, 및 vi) 임펠러를 감싸면서 압축된 공기를 배출하는 스크롤부를 포함한다.
본 발명에 따르면 복합 베어링을 채용하여 고속 회전체 및 불 기어의 축 방향 하중과 반경 방향 하중을 모두 흡수하고, 일체형 복합 베어링 블록을 사용하여 고 정밀도의 조립을 제공하게 되어 터보 블로어 분야에서 폭넓은 응용이 가능하다.
본 발명에 따르면 효율적인 윤활유 제공 시스템을 제공하여 오일 펌프를 사용하지 않고도 장기적으로 안정된 운전을 할 수 있는 터보 블로어를 제공할 수 있다.
본 발명에 따르면 종래와 같이 불 기어에 동력을 전달하기 위한 불 기어 회전축을 사용하지 않고도 불 기어에 동력을 전달할 수 있고, 소량의 부품을 사용하고도 경제적이고도 수명이 긴 터보 블로어를 제공할 수 있다.
본 발명에 따르면 불 기어의 교체나 보수 작업이 필요할 때 고속 회전체와 불 기어 및 모터를 용이하게 조립 분해할 수 있다.
도 1은 본 발명의 제1 실시예에 따른 터보 블로어의 정면도이다.
도 2는 도 1에 도시한 터보 블로어의 좌측면도이다.
도 3은 도 1에 도시한 터보 블로어 중 기어 하우징을 임펠러 쪽에서 바라본 사시도이다.
도 4는 도 1에 도시한 터보 블로어 중 기어 하우징을 모터 쪽에서 바라본 사시도이다.
도 5는 도 1에 도시한 터보 블로어 중 고속 회전체를 나타낸 단면도이다.
도 6은 도 1에 도시한 터보 블로어의 회전축을 나타낸 정면도이다.
도 7은 도 1에 도시한 터보 블로어 중 기어 하우징의 정단면도와 측단면도 및 고속 회전체의 단면도를 이용하여 윤활유 순환 시스템을 나타낸 개략도이다.
도 8은 본 발명의 제2 실시예에 따른 터보 블로어의 평면도이다.
도 9는 도 8에 도시한 터보 블로어 중 모터 축과 불 기어를 A 방향에서 바라본 단면도이다.
도 10은 도 9의 부분 확대도이다.
도 11은 도 8에 도시한 터보 블로어 중 기어 하우징과 불 기어 부분을 나타낸 부분 확대도이다.
도 12는 도 8에 도시한 터보 블로어 중 모터 커버를 B 방향에서 바라본 사시도이다.
도 13은 도 8에 도시한 터보 블로어 중 기어 하우징을 C 방향에서 바라본 사시도이다.
도 14는 도 13의 I-I선 단면도이다.
도 15는 도 13에 도시한 기어 하우징을 D 방향에서 바라본 정면도이다.
도 16은 도 8에 도시한 터보 블로어를 C 방향에서 바라본 정면도이다.
도 17은 도 8의 터보 블로어를 B 방향에서 바라본 우측면도이다.
도 18은 도 8에 도시한 터보 블로어 중 고속 회전체를 나타낸 정면도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
도 1은 본 발명의 제1 실시예에 따른 터보 블로어(100)의 정면도로서 고속 회전체(20) 부분을 절단하여 나타내었다. 도 2는 도 1에 도시한 터보 블로어(100)의 좌측면도이다.
도 1과 도 2를 참고하면, 제1 실시예의 터보 블로어(100)는 지지대(10), 모터(11), 기어 하우징(12), 및 스크롤부(13)를 포함한다. 지지대(10) 위에 모터(11)와 기어 하우징(12)이 고정되고, 기어 하우징(12)의 내부에 후술하는 고속 회전체(20)의 일부분이 위치한다.
제1 실시예의 터보 블로어(100)에서 모터(11)에 결합된 모터 축(14)과 고속 회전체(20)의 회전축(21)은 직결되지 않고 편심되어 위치한다. 즉, 모터 축(14)에는 불 기어(15)가 직접 체결되고, 회전축(21)에는 피니언 기어(16)가 형성되어 있으며, 불 기어(15)와 피니언 기어(16)가 맞물려 모터(11)의 동력을 증속하여 고속 회전체(20)를 구동한다.
제1 실시예에서는 전술한 동력 전달 구조를 채택함으로써 종래의 증속용 기어 박스에서 불 기어를 지지하는 불 기어 축을 제거할 수 있고, 모터와 기어 박스 사이를 실링해야 하는 문제도 해결함과 아울러 부품 수를 줄일 수 있어서 제조 원가를 낮출 수 있다.
이와 같이 불 기어(15)를 모터 축(14)에 직접 체결하기 위해, 도 3과 도 4에 도시한 바와 같이 기어 하우징(12)을 일체로 제작하고, 모터(11)와 체결되는 기어 하우징(12)의 일 측면을 불 기어(15)의 직경보다 크게 오픈시킨 형태로 제작한다. 아울러 모터(11)에는 기어 하우징(13)을 체결하기 위한 브라켓(17)이 설치된다.
도 3은 도 1에 도시한 터보 블로어(100)의 기어 하우징(12)을 임펠러(22) 쪽에서 바라본 사시도이고, 도 4는 도 1에 도시한 터보 블로어(100)의 기어 하우징(12)을 모터(11) 쪽에서 바라본 사시도이다.
도 3에서 도면 부호 121은 고속 회전체(20) 및 스크롤부(13)를 기어 하우징(12)에 체결하기 위한 제1 결합면이다. 도 4에서 도면 부호 122는 기어 하우징(12) 자체를 모터(11)의 브라켓(17)에 체결하기 위한 제2 결합면이다.
기어 하우징(12)의 제1, 2 결합면(121, 122)에 고속 회전체(20)나 모터(11)의 브라켓(17)을 체결하는 방법은 볼트와 너트 등 일반적인 기계적 결합 방법을 사용할 수 있다. 그리고 제1, 2 결합면(121, 122)에는 기어 하우징(12)의 외부와 내부를 차단하여 내부를 밀폐시키기 위한 고무 패드 등과 같은 일반적인 실링 장치가 제공되며, 결합 방법과 실링 장치는 통상적인 것이므로 이에 대한 자세한 설명은 생략한다.
전술한 기어 하우징(12)을 제공함으로써 조립시 모터 축(14)에 직경이 큰 불 기어를 먼저 조립하고, 기어 하우징(12)의 제2 결합면(122)을 모터(11)의 브라켓(17)에 조립하고, 그 다음 기어 하우징(12)의 제1 결합면(121)에 고속 회전체(20)와 스크롤부(13)를 순차적으로 조립할 수 있다.
이하에서는 도 5를 참조하여 고속 회전체(20)에 대해 상세하게 설명한다. 도 5는 도 1에 도시한 터보 블로어(100) 중 고속 회전체(20)를 나타낸 단면도로서, 점선 부분은 제1 복합 베어링만(26)을 나타낸 분해도이다.
도 5를 참고하면, 고속 회전체(20)는 회전축(21)과, 회전축(21)을 내장하는 회전체 하우징(23)과, 미끄럼 베어링(24)과 볼 베어링(25)이 일체로 형성된 한 쌍의 제1 복합 베어링(26)과, 회전축(21)의 일단에 결합되는 임펠러(22)를 포함한다.
회전체 하우징(23)은 전체적으로 원통형으로 형성되고, 통상의 고속 회전체에 사용되는 분할식과는 다르게 일체식으로 제작된다. 회전체 하우징(23)은 회전축(21)에 형성된 피니언 기어(16)가 위치하는 부분에서 부분 절개되어 피니언 기어(16)가 회전체 하우징(23)의 외부로 노출되도록 한다. 이렇게 노출된 피니언 기어(16)가 기어 하우징(12) 내부의 불 기어(15)와 맞물린다.
또한, 회전체 하우징(23)의 중간 부분에 플랜지(27)가 형성되고, 이 플랜지(27)에 복수의 체결공(271)이 형성되어 있어서 회전체 하우징(23)을 기어 하우징(12)의 제1 결합면(121) 상에 조립할 수 있게 한다. 또한, 회전체 하우징(23)은 후술하는 제1 복합 베어링(26)에 윤활유를 공급하고 배출하기 위한 다수의 홀을 형성한다. 이 홀에 대해서는 후술한다.
회전축(21)에 형성된 피니언 기어(16)를 중심으로 피니언 기어(16)의 양측에 제1 복합 베어링(26)이 위치한다. 제1 복합 베어링(26)은 하나의 복합 베어링 블록(28) 내부에 미끄럼 베어링 축(241)과 볼 베어링(25)이 함께 설치된 구성으로 이루어진다.
도 5의 점선 부분에 도시한 바와 같이, 제1 복합 베어링(26)은 복합 베어링 블록(28)과, 미끄럼 베어링 축(241)과, 볼 베어링(25)을 포함한다. 복합 베어링 블록(28)은 미끄럼 베어링 블록(281)과 볼 베어링 블록(282)을 일체로 구비한다. 미끄럼 베어링 축(241)은 회전축(21)의 외주면에 형성되며, 미끄럼 베어링 블록(281)에 내장되어 미끄럼 베어링 블록(281)과 함께 미끄럼 베어링(24)을 구성한다. 볼 베어링(25)은 볼 베어링 블록(282)에 내장된다. 볼 베어링(25)은 저속 운전시 하중을 직접 지지하는 볼(251)과, 이 볼(251)을 둘러싸는 외륜(252) 및 내륜(253)을 포함한다.
도 5의 점선 부분에서 도면 부호 261은 복합 베어링 블록(28)과 회전체 하우징(23) 사이에 체결되는 링을 나타내고, 도면 부호 262는 볼 베어링(25)을 복합 베어링 블록(28)에 체결하기 위한 체결 링을 나타낸다. 그리고 도면 부호 263은 복합 베어링 블록(28)을 회전축(21)에 고정하기 위한 너트를 나타낸다.
제1 실시예의 터보 블로어(100)에서 고속 회전체(20)에 제1 복합 베어링(26)을 사용하는 이유는 다음과 같다.
만약 고속 회전체에 미끄럼 베어링만 사용할 경우, 고속 회전에 의해 형성되는 오일의 압력으로 높은 하중을 지지할 수 있지만, 고속 회전이 아닌 기동이나 정지 또는 저속 운전시에 미끄럼 베어링 블록과 회전축이 직접 접촉을 하게 된다. 따라서 기동이 어려울 뿐만 아니라 마찰로 인한 발열과 마모 문제가 발생하며, 이 문제를 해결하기 위해서는 오일 펌프를 사용하여 강제로 윤활을 시켜야만 한다.
이와는 반대로 만약 고속 회전체에 볼 베어링만 사용할 경우, 기동이나 정지 또는 저속 운전시 마찰 문제를 해결할 수 있고, 오일 펌프 없이 가압되지 않은 윤활유만 공급해도 된다는 장점이 있으나, 고속 회전시에 볼 베어링이 높은 하중을 담당하게 되므로 내구성이 저하되는 단점이 있다.
따라서 제1 실시예의 터보 블로어(100)는 고속 회전체(20)에 미끄럼 베어링(24)과 볼 베어링(25)으로 구성된 제1 복합 베어링(26)을 구비함으로써 이러한 문제를 모두 해결할 수 있다.
이와 같이 고속 회전체(20)에 제1 복합 베어링(26)을 적용함으로써 구조적으로 회전축(21)과 복합 베어링 블록(28)은 볼 베어링(25)으로 인해 직접 접촉하지 않게 된다. 따라서 터보 블로어(100)는 초기 저속 구동시 볼 베어링(25)으로 고속 회전체(20)의 구동을 지지하고, 고속 구동시 미끄럼 베어링(24)으로 고속 회전체(20)의 구동을 지지할 수 있다.
전술한 제1 복합 베어링(26)의 구조에 따라, 고속 회전체(20)가 구동을 할 경우 운전 영역(회전 속도)에 따라 하중 지지 작용이 자동으로 변경된다. 즉, 기동 운전 및 정지 운전을 포함하는 저속 구동시에는 볼(251)에 하중이 인가되어 볼 베어링(25)이 하중을 지지하고, 미끄럼 베어링(24)은 무부하 상태로 운전된다. 그리고 회전 속도가 높아지면 미끄럼 베어링(24)에 형성되는 유막의 두께가 증가하면서 일정 속도 이상에서 미끄럼 베어링(24)이 하중을 지지하며, 볼 베어링(25)은 무부하 상태로 운전된다.
이를 위해 미끄럼 베어링(24)의 설정 갭은 볼 베어링(25)의 설정 갭보다 크게 형성된다. 여기서, 미끄럼 베어링(24)의 설정 갭은 미끄럼 베어링 블록(281) 내면의 직경과 미끄럼 베어링 축(241) 직경의 차이를 의미하고, 볼 베어링(25)의 설정 갭은 외륜(252)의 내경과 내륜(253)의 외경의 차에서 볼(251)의 직경을 제한 값을 의미한다. 설정 갭에 대한 차이를 예를 들어 설명하면, 미끄럼 베어링(24)의 설정 갭이 0.2mm인 경우, 볼 베어링(25)의 설정 갭은 0.1mm일 수 있다.
한편 제1 실시예에서 제1 복합 베어링(26)의 미끄럼 베어링(24)은 별도의 오일 펌프를 설치하지 않고도 유막을 형성할 수 있다. 이하에서는 도 6을 참조하여 이점에 대하여 설명한다.
도 6은 도 1에 도시한 터보 블로어(100)의 회전축(21)을 나타낸 정면도로서, 회전축(21)의 좌측면도와 우측면도를 함께 나타내고 있다.
도 6을 참고하면, 회전축(21)에 형성된 미끄럼 베어링 축(241)의 표면에는 오일 공급을 위한 복수의 오일 홈(242)과 복수의 테이퍼 홈(243)이 형성된다. 오일 홈(242)과 테이퍼 홈(243)은 회전축(21) 방향에 경사지게 형성된다. 피니언 기어(16)의 일측에 위치하는 오일 홈(242) 및 테이퍼 홈(243)의 경사 방향은 피니언 기어(16)의 다른 일측에 위치하는 오일 홈(242) 및 테이퍼 홈(243)의 경사 방향과 반대로 이루어진다. 또한 각 테이퍼 홈(243)은 오일 홈(242)과 맞닿는 부분이 깊고, 오일 홈(242)과 멀어지는 방향으로 깊이가 작아지도록 형성된다.
이와 같이 미끄럼 베어링 축(241)의 표면에 형성된 오일 홈(242)은 오일을 공급하는 역할을 하며, 테이퍼 홈(243)은 오일 홈(242)으로 공급된 오일에 압력을 생성시켜 유막을 형성하는 역할을 한다. 따라서 오일 홈(242)과 테이퍼 홈(243)은 회전축(21) 회전시 오일 펌프와 같은 역할을 한다.
즉, 회전축(21)을 고속으로 회전시키면, 회전 방향으로 쐐기 효과가 유발되고, 원심력에 의해 일부 오일이 미끄럼 베어링(24)에 고압을 형성한다. 그 결과, 회전축(21)이 부상하면서 미끄럼 베어링 블록(281)으로부터 분리되며, 회전축(21)은 부상한 상태에서 고속 회전이 가능해진다. 이 상태에서 회전축(21)이 고속 회전을 하면, 볼 베어링(25)은 베어링으로서 역할을 하지 않게 되므로(즉, 회전축(21)과 접촉을 하지 않게 되므로) 결국 고속 회전체(20)의 수명을 연장시킬 수 있다.
따라서 터보 블로어(100)는 제1 복합 베어링(26)에 윤활유만 공급하면 오일 펌프를 설치하지 않아도 고속 회전에 따른 마찰과 윤활유 가압 문제를 모두 해결할 수 있다.
한편, 터보 블로어(100)는 불 기어(15)와 피니언 기어(16)에 의하여 회전축(21)의 회전 속도를 증속시키는 구조이므로, 필연적으로 기어 구동에 따른 측압이 발생하게 된다. 이러한 측압은 통상 직경이 큰 불 기어(15) 쪽에서 직경이 작은 피니언 기어(16) 쪽으로 작용을 하고, 측압이 작용하는 실질적인 방향은 회전축(21) 중심의 수직선에 직각 방향인 3시 방향이 아니라 그 보다 아래 쪽인 약 5시 방향으로 작용하게 된다.
따라서 회전축(21)의 피니언 기어(16)에 작용하는 측압을 완충시킬 수 있는 수단을 적용하여야 한다. 이를 위해, 미끄럼 베어링 블록(281)의 내면에 측압 완충 홈(29)(도 5의 점선 부분 참조)이 형성된다. 측압 완충 홈(29)은 미끄럼 베어링 블록(281)의 내면 중 불 기어(15)를 향한 부분(측압이 미치는 방향의 반대 방향)에 형성된다. 측압 완충 홈(29)의 길이와 깊이는 고속 회전체(20)의 사양에 따라 하중 계산에 의해 정해진다. 측압 완충 홈(29)은 180° 이하의 원호 모양으로 형성될 수 있다.
복합 베어링 블록(28) 중 측압 완충 홈(29)이 형성된 부분에는 유막이 형성되지 않고, 그 반대쪽 즉, 측압이 미치는 쪽에만 유막이 형성된다. 따라서, 불 기어(15)에 의한 측압을 해소하여 원활한 고속 회전이 가능해진다.
이상은 고속 회전체(20)의 반경 방향 하중을 해소하는 방법에 대하여 설명하였다. 그러나 고속 회전체(20)가 고속으로 회전할 때, 임펠러(22) 입구와 임펠러(22) 출구에 작용하는 압력 차에 의해 고속 회전체(20)에는 축 방향 하중이 작용하게 된다. 따라서 이하에서는 고속 회전체(20)에 미치는 축 방향 하중을 해소하는 방법에 대하여 설명한다.
고속 회전체(20)에서 회전축(21)의 일측(도 5를 기준으로 좌측)에 임펠러(22)가 설치된다. 이 경우 임펠러(22)의 입구에 부압(-)이 형성되고, 임펠러(22)의 출구에 양압(+)이 형성된다. 따라서 회전축(21)을 기준으로 임펠러(22)가 설치된 방향(도 5의 좌측)으로 축 방향 하중이 발생한다.
축 방향 하중을 해소하기 위하여, 제1 실시예에서는 ① 임펠러(22)를 향한 회전체 하우징(23)의 단부에 벤트 홀(231)을 형성하고, ② 회전축(21)에 형성된 피니언 기어(16)의 헬리컬 기어 방향을 조절하며, ③ 복합 베어링 블록(28)에 볼 베어링(25)을 설치한다.
회전체 하우징(23)의 벤트 홀(231)에 의하여 임펠러(22) 뒤쪽에 형성된 양압(+)을 제거한다. 피니언 기어(16)는 헬리컬 기어 형상으로 형성된다. 헬리컬 기어의 방향은 회전축(21) 회전시 회전축(21)이 임펠러(22) 방향의 반대 방향(도 5의 우측)으로 끌리는 힘이 발생하도록 설정되어 축 방향 하중을 해소한다. 필요할 경우 볼 베어링(25)의 기본적인 축 방향 하중 지지력으로 축 방향 하중을 완화시킨다.
다음은 터보 블로어(100)의 윤활유 순환 시스템에 대하여 도 7을 참조하여 설명한다. 윤활유 순환 시스템은 오일 펌프를 사용하지 않고 고속 회전체(20)에 윤활유를 순환 공급하는 역할을 한다.
도 7은 도 1에 도시한 터보 블로어(100) 중 기어 하우징(12)의 정단면도와 측단면도 및 고속 회전체(20)의 단면도를 이용하여 윤활유 순환 시스템을 나타낸 개략도이다.
도 7을 참고하면, 기어 하우징(12)의 내벽면에 불 기어(15)를 둘러싸는 가이드 커버(30)가 형성된다. 가이드 커버(30)에는 복수의 오일 가이드 홈(301)이 형성된다. 또한 기어 하우징(12)의 내측 상부에는 가이드 커버(30)의 단부와 이어지는 오일 박스(31)가 형성된다.
따라서 불 기어(15)가 회전하면, 기어 하우징(12) 하부의 오일 저장조(32)에 담겨져 있는 윤활유가 불 기어(15)의 기어 치에 의해 비산하면서 가이드 커버(30)와 오일 가이드 홈(301)을 따라 이동하며, 중력에 의해 오일 박스(31)로 낙하하여 오일 박스(31)에 수집된다. 이때 불 기어(15)의 표면에 남아 있는 윤활유는 불 기어(15)와 피니언 기어(16)가 접촉하는 순간 불 기어(15)와 피니언 기어(16)를 윤활시키는 작용을 한다.
오일 박스(31)에 수집된 윤활유는 중력에 의하여 오일 배출구(311)로 일부가 배출되어 오일관을 따라 고속 회전체(20)의 회전체 하우징(23)에 형성된 오일 공급구(232)로 공급된다.
회전체 하우징(23)의 오일 공급구(232)에 공급된 윤활유는 두 방향으로 나누어져 소량은 볼 베어링(25)으로 공급되고, 대부분은 미끄럼 베어링(24)으로 공급된다. 미끄럼 베어링(24)으로 공급된 윤활유는 회전축(21)이 고속으로 회전하면 미끄럼 베어링 축(241)에 형성된 테이퍼 홈(243)에 의해 가압된 유막을 형성하여 회전축(21)을 지지한다. 미끄럼 베어링(24)에 사용된 윤활유는 공급된 방향과 반대 방향으로 이동하고, 피니언 기어(16)를 노출시키기 위한 회전체 하우징(23)의 절개 부분으로 배출되어 기어 하우징(12) 하부의 오일 저장조(32)로 낙하한다.
한편 고속 회전체(20)가 고속으로 회전하면 제1 복합 베어링(26)에 공급된 윤활유는 증발하면서 유증기를 생성할 수 있다.
유증기는 회전체 하우징(23)의 플랜지(27)를 중심으로 기어 하우징(12)의 내부와 기어 하우징(12)의 외부로 배출된다. 기어 하우징(12)의 내부로 배출되는 유증기는 윤활유의 순환 구조에 의해 제1 복합 베어링(26)으로 다시 공급되므로 별 다른 문제가 없으나, 기어 하우징(12)의 외부로 배출되는 유증기의 경우 후속 처리가 필요하다.
제1 복합 베어링(26)의 내부로부터 임펠러(22)를 향하여 기어 하우징(12)의 외부로 배출된 유증기에 있어서, 그 일부는 응축되고 남은 일부는 증기 상태를 유지한다. 그러면 응축된 윤활유는 회수구(233)를 통하여 오일 저장조(32)의 오일 회수구(33)로 회수된다. 그리고 증기 상태의 유증기는 증기 배출구(234)를 통하여 배출된 다음, 유증기 냉각기(34)에서 응축되고, 오일 박스(31)의 응축유 공급구(35)를 통하여 오일 박스(31)에 재공급된다.
이와 같이 응축유 공급구(35)를 통하여 오일 박스(31)에 공급된 윤활유는 오일관(36)을 통하여 오일 저장조(32)로 회수되고, 오일 박스(31)에 잔존하는 미량의 유증기는 오일 박스(31)의 배기구(37)를 통하여 외부로 배출된다. 여기서 오일 박스(31)에는 상부가 개방되고 내부에 통공이 형성된 격벽(38)이 설치된다. 따라서 오일 박스(31)는 가이드 커버(30)와 오일 가이드 홈(301)에 의해 수집된 윤활유와, 유증기 냉각기(34)로부터 공급받은 응축된 윤활유를 개략적으로 분리하여 임시로 저장할 수 있다.
한편, 기어 하우징(12)을 밀폐하여 형성된 오일 저장조(32)에는 윤활유가 저장되어 있고, 오일 저장조(32)의 측벽에는 상하로 홀이 형성되어 있다. 그리고 이 홀들을 연통시킨 연통관에는 제어 밸브(39)가 설치된다. 따라서 제어 밸브(39)를 조절하여 오일 저장조(32)에 고속 회전체(20)의 구동에 필요한 적정량의 윤활유를 유지할 수 있다.
이를 보다 자세하게 설명하면, 고속 회전체(20)가 최초 구동할 때에 윤활유의 비산을 고려하여 많은 윤활유가 필요하지만, 만약 제어 밸브(39)를 잠그면 오일 저장조(32)의 윤활유는 고갈된다. 따라서 제어 밸브(39)로 공급되는 윤활유의 양을 적절히 제어하면, 고속 회전체(20) 구동에 필요한 양 만큼의 윤활유를 유지할 수 있다.
도 7에서 도면부호 40은 벤트 홀(231)과 연통되어 임펠러(22) 전후에 미치는 압력 차이를 조절하기 위한 압력 조정 밸브를 나타낸다.
도 8은 본 발명의 제2 실시예에 따른 터보 블로어(110)의 부분 절개 평면도이다. 전술한 제1 실시예와 동일한 부재에 대해서는 같은 도면부호를 사용하여 설명한다.
도 8을 참고하면, 제2 실시예의 터보 블로어(110)는 모터 축(14), 불 기어(15), 고속 회전체(20), 및 제2 복합 베어링(42)을 포함한다.
모터 축(14)은 모터(11)에 결합되어 모터(11) 작동시 고속으로 회전한다. 불 기어(15)는 모터 축(14)에 착탈 가능하게 결합하며, 그 중심에 고정 축(41)과 제2 복합 베어링(42)이 위치하는 중공을 형성한다. 고속 회전체(20)는 불 기어(15)와 맞물리는 피니언 기어(16)가 형성된 회전축(21)과, 회전축(21)의 일단에 결합되는 임펠러(22)를 포함한다.
터보 블로어(110)는 모터 커버(43), 기어 하우징(120), 인렛 가이드 베인(44) 및 스크롤부(13)를 더욱 포함한다. 모터 커버(43)는 임펠러(22)를 향한 모터(11)의 전방에 체결되고, 기어 하우징(120)은 임펠러(22)를 향한 모터 커버(43)의 전방에 체결된다. 모터 커버(43)와 기어 하우징(120)의 조립체 내부에는 모터 축(14)과 불 기어(15) 전체 및 고속 회전체(20)의 일부가 위치한다. 인렛 가이드 베인(44)은 흡입 유로에 설치되어 임펠러(22)로 유입되는 기체의 유량을 조절한다.
모터(11)의 작동으로 모터 축(14)이 회전하면, 불 기어(15)와 피니언 기어(16)가 회전하면서 모터(11)의 동력을 증속하여 고속 회전체(20)를 구동시킨다. 따라서 흡입 유로를 통해 외부 기체가 회전하는 임펠러(22)로 유입되고, 임펠러(22)를 통과하면서 가속 및 압축되며, 압축된 기체가 디퓨저 통로를 거쳐 스크롤부(13)로 배출된다. 도 8에서 기체의 유입 방향과 배출 방향을 화살표로 도시하였다.
전술한 터보 블로어(110)의 작동 과정에서, 불 기어(15)에는 불 기어(15) 자체의 하중과 피니언 기어(16)가 불 기어(15)를 미는 힘에 의해 반경 방향 하중이 발생하고, 불 기어(15)와 피니언 기어(16)의 헬리컬 형상에 의해 축 방향 하중도 발생한다. 다음에 설명하는 제2 복합 베어링(42)이 불 기어(15) 내부에서 불 기어(15)를 지지함에 따라 불 기어(15)에 작용하는 반경 방향 하중과 축 방향 하중을 효과적으로 감소시킨다.
도 9는 도 8에 도시한 터보 블로어(110) 중 모터 축(14)과 불 기어(15)를 A 방향에서 바라본 단면도이고, 도 10은 도 9의 부분 확대도이다.
도 9와 도 10을 참고하면, 제2 복합 베어링(42)은 고정 축(41)과 불 기어(15) 사이에서 모터 축(14)과 나란한 방향을 따라 설치되는 테이퍼 롤러 베어링(45)과 볼 베어링(46)을 포함한다. 테이퍼 롤러 베어링(45)은 경사진 방향으로 끼워진 롤러(451)와, 롤러(451)를 둘러싸는 내륜(452) 및 외륜(453)을 포함한다. 볼 베어링(46)은 볼(461)과, 볼(461)을 둘러싸는 내륜(462) 및 외륜(463)을 포함한다. 내륜(462)은 고정 축(41)에 끼워지고, 외륜(463)은 불 기어(15)에 결합된다.
테이퍼 롤러 베어링(45)은 불 기어(15)에 작용하는 반경 방향 하중과 축 방향 하중을 동시에 감소시키고, 볼 베어링(46)은 불 기어(15)에 작용하는 반경 방향 하중을 다시 한번 감소시킨다. 따라서 제2 실시예의 터보 블로어(110)는 제2 복합 베어링(42)을 통해 불 기어(15)에 작용하는 반경 방향 하중과 축 방향 하중을 최소화한다. 그 결과 불 기어(15)의 위치 이동에 따른 소음 발생과 불 기어(15)의 절손 및 모터 축(14)의 변형을 예방할 수 있다.
고정 축(41)은 고정 블록(47)과 볼트(48)를 이용하여 기어 하우징(120)에 체결되며, 그 중심이 모터 축(14)의 중심과 일치하도록 위치한다. 고정 축(41)의 내부에는 고정 축(41)과 나란한 방향을 따라 제2 복합 베어링(42)으로 윤활유를 공급하기 위한 오일구(411)가 형성된다. 이때 고정 축(41)과 모터 축(14) 사이에 소정의 간격이 존재하여 윤활유를 제2 복합 베어링(42)으로 안내하는 유로를 형성한다.
한편, 모터 축(14)은 불 기어(15)와 중첩되지 않으며, 불 기어(15)를 향한 모터 축(14)의 단부 외주면에 플랜지(141)가 고정된다. 불 기어(15)는 불 기어(15)와 플랜지(141)를 관통하는 복수의 결합 볼트(49)를 이용한 기계적 결합 방법으로 모터 축(14)에 체결될 수 있다. 이 경우 불 기어(15)는 열 박음과 같은 영구적인 결합이 아닌 착탈 가능한 방식으로 모터 축(14)에 결합되므로, 불 기어(15)의 교체나 보수 작업이 필요할 때, 불 기어(15)와 모터 축(14)의 조립과 분해를 용이하게 할 수 있다.
도 11은 도 8에 도시한 터보 블로어(110) 중 기어 하우징(120)과 불 기어(15) 부분을 나타낸 부분 확대도이다.
도 11을 참고하면, 기어 하우징(120)은 복수의 결합 볼트(49) 중 어느 한 결합 볼트(49)와 마주하는 부위에 개구부(123)를 형성한다. 이 개구부(123)를 통해 공구(도시하지 않음)를 넣어 결합 볼트(49)를 분리시킬 수 있다. 즉, 공구를 이용해 결합 볼트(49)를 분리시킨 후 수작업으로 불 기어(15)를 돌려 다른 결합 볼트(49)를 개구부(123) 위치에 놓은 다음 다시 공구를 넣어 결합 볼트(49)를 분리시킨다. 이러한 과정을 반복하여 복수의 결합 볼트(49)를 모두 분리시킬 수 있다.
결합 볼트(49)가 모두 제거된 불 기어(15)는 제2 복합 베어링(42)에 의해 지지되고 있으며, 이 상태에서 기어 하우징(120)과 모터 커버(43)를 분리시키면 모터(11) 및 모터 축(14)을 불 기어(15) 및 기어 하우징(120)으로부터 용이하게 분해할 수 있다.
제2 실시예의 터보 블로어(110)에서 고속 회전체(20) 및 제1 복합 베어링(26)의 구성과 기능은 전술한 제1 실시예와 동일하므로 자세한 설명은 생략한다.
다음으로, 모터 커버(43)와 기어 하우징(120)의 형상에 대해 설명한다.
도 12는 도 8에 도시한 터보 블로어(110) 중 모터 커버(43)를 B 방향에서 바라본 사시도이다.
도 8과 도 12를 참고하면, 모터 커버(43)는 모터 축(14)을 수용하는 중공(431)을 형성하며, 중공(431)의 둘레를 따라 모터(11)에 체결되는 제3 결합면(432)을 형성한다. 또한, 모터 커버(43)에는 모터(11)를 향해 볼록하게 형성된 리세스(50)가 구비되어 모터 커버(43)와 기어 하우징(120) 조립체의 내부 공간을 모터(11) 측으로 확대시킨다.
터보 블로어(110)의 용량이 커질수록 회전축(21)의 길이가 확대되므로, 회전축(21)을 수용할 공간이 요구된다. 제2 실시예의 터보 블로어(110)는 모터 커버(43)에 리세스(50)를 형성함에 따라, 고속 회전체(20) 중 임펠러(22)의 반대측 부위를 리세스(50)에 수용할 수 있으므로, 대형의 고속 회전체(20)도 용이하게 설치할 수 있다.
도 13은 도 8에 도시한 터보 블로어(110) 중 기어 하우징(120)을 C 방향에서 바라본 사시도이고, 도 14는 도 13의 I-I선 단면도이다.
도 13과 도 14를 참고하면, 기어 하우징(120)은 모터 커버(43)에 체결되는 쪽을 불 기어(15)의 직경보다 크게 개방시킨 형태로 이루어진다. 즉, 기어 하우징(120)은 불 기어(15)의 고정 축(41)과 고속 회전체(20) 수용을 위한 2개의 중공을 형성하는 수직벽(51)과, 수직벽(51)의 가장자리로부터 모터 커버(43)를 향해 확장되는 측벽(52)을 포함하며, 모터 커버(43)에 체결되는 쪽이 모두 개방된 형태로 이루어진다.
따라서 도 8에 도시한 바와 같이, 불 기어(15)와 모터 축(41)을 조립하고, 불 기어(15)를 둘러싸도록 기어 하우징(120)을 모터 커버(43)에 체결한 다음, 기어 하우징(120)에 고정 축(41)과 고속 회전체(20)를 조립하고, 회전체 하우징(23)에 스크롤부(13)를 순차적으로 조립할 수 있다. 분해는 전술한 조립 순서와 반대로 이루어진다. 불 기어(15)와 모터 축(14)의 착탈 가능한 결합 구조 및 한쪽이 크게 개방된 기어 하우징(120)의 형상에 의해 터보 블로어(110)의 조립과 분해를 간편하게 할 수 있다.
다음으로, 제2 실시예에 따른 터보 블로어(110)의 윤활유 순환 시스템에 대해 설명한다.
도 15는 도 13에 도시한 기어 하우징(120)을 D 방향에서 바라본 정면도이다.
도 14와 도 15를 참고하면, 기어 하우징(120)의 수직벽(51) 내면에는 불 기어(15)의 일부를 둘러싸는 대략적인 원호 모양의 가이드 커버(30)가 형성된다. 가이드 커버(30)는 수직벽(51)의 내면으로부터 모터 커버(43)를 향해 돌출된 것으로서, 그 폭(w1, 도 14 참조)은 기어 하우징(120)의 측벽(52) 폭(w2, 도 14 참조)과 일치한다. 가이드 커버(30)는 불 기어(15)의 직경보다 큰 내경을 갖도록 형성되어 불 기어(15)와 거리를 두고 위치한다.
도 15에서 불 기어(15)의 회전 방향은 반시계 방향이며, 가이드 커버(30)는 도 15를 기준으로 대략 4/4 분면이 절개된 형상으로 이루어진다. 가이드 커버(30)의 내면에는 불 기어(15)의 회전 방향을 따라 오일 가이드 홈(301)이 형성된다. 이러한 오일 가이드 홈(301)은 모터 축(14)과 나란한 방향을 따라 서로간 거리를 두고 복수개로 구비된다(도 14 참조).
그리고 기어 하우징(120)의 수직벽(51) 내면의 상부, 즉 불 기어(15)의 측면 외측에 계단 모양의 돌출부(53)가 형성된다. 돌출부(53)는 측벽(52)을 향해 낮아지는 단차를 형성한다. 돌출부(53)의 일단은 측벽(52)에 연결되고, 다른 일단은 도 15를 기준으로 수평 및 수직 방향을 따라 가이드 커버(30)의 상측 단부와 거리를 두고 위치한다. 돌출부(53)의 폭은 가이드 커버(30)의 폭과 동일하다.
전술한 기어 하우징(120)을 모터 커버(43)에 체결하면, 측벽(52)과 가이드 커버(30) 및 돌출부(53)가 모터 커버(43)에 밀착되면서 소정의 내부 공간을 형성한다. 즉, 기어 하우징(120)과 모터 커버(43)의 조립체 하부로 오일 저장조(32)가 형성되고, 불 기어(15)와 가이드 커버(30) 사이로 오일 유로가 형성되며, 돌출부(53) 위로 윤활유를 수집하고 수집된 윤활유를 다시 순환시키는 임시 저장조(54)가 형성된다.
따라서 불 기어(15)가 회전하면 오일 저장조(32)에 담겨 있는 윤활유가 불 기어(15)의 기어 치에 의해 비산하면서 가이드 커버(30)에 형성된 오일 가이드 홈(301)을 따라 가다가 중력에 의해 돌출부(53) 위로 낙하하여 임시 저장조(54)에 수집된다. 그리고 임시 저장조(54)에 수집된 윤활유는 다음에 설명하는 순환 구조에 의해 불 기어(15)의 제2 복합 베어링(42) 및 고속 회전체(20)의 제1 복합 베어링(26)으로 공급된다.
전술한 기어 하우징(120) 구조에서 가이드 커버(30)와 돌출부(53)는 기어 하우징(120)과 일체로 형성된다. 따라서 별도의 오일 저장조와 임시 저장조를 제작한 후 이를 기어 하우징 내부에 조립하는 번거로움을 피할 수 있으며, 기어 하우징(120)과 모터 커버(43)를 기밀 상태로 체결하는 것에 의해 오일 저장조(32)와 임시 저장조(54)를 용이하게 형성할 수 있다.
도 16은 도 8에 도시한 터보 블로어(100)를 C 방향에서 바라본 정면도로서 기어 하우징(120)의 외면 일부를 점선 내측에 도시하였다.
도 15과 도 16을 참고하면, 기어 하우징(120)의 수직벽(51) 외부에는 임시 저장조(54)와 불 기어(15)의 고정 축(41)을 연결하는 제1 오일관(55)이 설치된다. 즉, 기어 하우징(120)의 수직벽(51)에는 임시 저장조(54)에 해당하는 위치에 제1 관통구(56)가 형성되고, 제1 오일관(55)의 일단이 제1 관통구(56)에 연결된다. 그리고 제1 오일관(55)의 다른 일단은 고정 축(41)에 형성된 오일구(411)와 연결된다.
도 9에서 고정 축(41)에 연결된 제1 오일관(55)의 일부를 점선으로 도시하였다. 도 9를 참고하면, 제1 오일관(55)은 임시 저장조(54)에 수집된 윤활유를 고정 축(41)의 오일구(411)로 제공하며, 오일구(411)에 제공된 윤활유는 볼 베어링(46)과 테이퍼 롤러 베어링(45)을 순차적으로 거치면서 제2 복합 베어링(42)을 윤활시킨다. 그런 다음 윤활유는 다시 오일 저장조(32)로 낙하하여 오일 저장조(32)에 수집된다.
도 17은 도 8의 터보 블로어(110)를 B 방향에서 바라본 우측면도로서 모터 커버(43)의 일부를 절개하여 기어 하우징(120)의 내부를 도시하였다. 도 18은 도 8에 도시한 터보 블로어(110) 중 고속 회전체(20)를 나타낸 정면도이다.
도 17과 도 18을 참고하면, 기어 하우징(120)의 수직벽(51) 내부에는 임시 저장조(54)에 수집된 윤활유를 고속 회전체(20)로 전달하기 위한 제2 오일관(57)이 설치된다. 이를 위해 돌출부(53)의 하단에 제2 관통구(58)가 형성되고, 제2 오일관(57)의 일단이 제2 관통구(58)에 연결된다. 그리고 회전체 하우징(23)과 중첩되는 기어 하우징(120)의 수직벽(51) 부위에 제3 관통구(59)가 형성되며, 제2 오일관(57)의 다른 일단이 제3 관통구(59)에 연결된다.
그리고 회전체 하우징(23)의 내부에는 한 쌍의 제1 복합 베어링(26) 중 임펠러(22) 측 제1 복합 베어링(26)(도 18을 기준으로 좌측의 제1 복합 베어링(26))과 제3 관통구(59)를 연결하는 오일 유로(60)가 형성된다. 또한, 회전체 하우징(23)의 외부에는 임펠러(22) 반대측 제1 복합 베어링(26)(도 18을 기준으로 우측의 제1 복합 베어링(26))과 오일 유로(60)를 연결하는 제3 오일관(61)이 설치된다.
따라서 임시 저장조(54)에 수집된 윤활유는 제2 오일관(57)을 통해 고속 회전체(20)로 제공되며, 공급된 윤활유는 오일 유로(60)와 제3 오일관(61)을 통해 임펠러(22) 측 제1 복합 베어링(26)과 임펠러(22) 반대측의 제1 복합 베어링(26)으로 나누어 공급된다.
임펠러(22) 측 제1 복합 베어링(26)에 제공된 윤활유는 미끄럼 베어링(24)과 볼 베어링(25)을 순차적으로 거치면서 이들 베어링을 윤활시킨다. 이때 볼 베어링(25)과 임펠러(22) 사이에 위치하는 지지체(62) 및 이를 둘러싸는 회전체 하우징(23) 부위에 윤활구(63)가 형성되고, 회전체 하우징(23)의 외부에서 제4 오일관(64)이 윤활구(63)와 기어 하우징(120)을 연결하도록 설치된다. 따라서 사용된 윤활유는 제4 오일관(64)을 통해 기어 하우징(120)으로 유입되어 오일 저장조(32)에 수집된다.
또한, 제3 오일관(61)을 통해 임펠러(22) 반대측의 제1 복합 베어링(26)에 제공된 윤활유는 미끄럼 베어링(24)과 볼 베어링(25)에 공급되어 이들 베어링을 윤활시키며, 사용된 윤활유는 회전체 하우징(23) 가운데 피니언 기어(16)를 노출시키기 위해 형성된 절개 부분을 통해 낙하하여 오일 저장조(32)에 수집된다.
다시 도 9를 참고하면, 모터 축(14)의 외주면에는 불 기어(15)와 멀어지는 방향을 따라 베어링(65)과 실링 부재(66)가 나란하게 설치된다. 불 기어(15)가 회전하는 과정에서 모터 축(14)을 향해서도 윤활유가 고속으로 비산하므로, 비산된 윤활유를 이용하여 베어링(65)을 충분하게 윤활시킬 수 있다. 실링 부재(66)에는 제5 오일관(67)이 설치되어 베어링(65)을 통과해 실링 부재(66)에 도달한 윤활유를 오일 저장조(32)로 회수한다.
이와 같이 제2 실시예의 터보 블로어(110)는 윤활유 공급을 위한 별도의 오일 펌프를 설치하지 않고도 불 기어(15)의 제2 복합 베어링(42)과 고속 회전체(20)의 제1 복합 베어링(26)에 윤활유를 순환시켜 공급할 수 있다. 따라서 윤활유 공급 구조를 단순화하여 부품 수를 줄일 수 있다.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (30)

  1. 모터 축을 구비하는 모터;
    상기 모터 축에 체결된 불 기어와, 상기 불 기어와 맞물리는 피니언 기어를 내장하는 기어 하우징;
    외주면에 상기 피니언 기어가 형성된 회전축과, 상기 회전축의 일단에 결합되는 임펠러, 및 상기 회전축과 상기 피니언 기어 및 적어도 하나의 제1 복합 베어링을 내장하고 상기 피니언 기어가 노출되도록 일부가 절개된 회전체 하우징을 포함하고, 상기 기어 하우징에 일부분이 내장되어 결합되는 고속 회전체; 및
    상기 임펠러를 감싸면서 압축된 공기를 배출하는 스크롤부
    를 포함하는 터보 블로어.
  2. 제1항에 있어서,
    상기 제1 복합 베어링은,
    미끄럼 베어링 블록과 볼 베어링 블록을 일체로 구비한 복합 베어링 블록;
    상기 회전축의 외주면에 형성되며 상기 미끄럼 베어링 블록에 내장되어 상기 미끄럼 베어링 블록과 함께 미끄럼 베어링을 구성하는 미끄럼 베어링 축; 및
    상기 볼 베어링 블록에 내장되는 볼 베어링
    을 포함하는 터보 블로어.
  3. 제2항에 있어서,
    상기 제1 복합 베어링은 상기 피니언 기어의 양측에 위치하고, 상기 미끄럼 베어링의 설정 갭이 상기 볼 베어링의 설정 갭보다 큰 터보 블로어.
  4. 제3항에 있어서,
    상기 미끄럼 베어링 축은 그 표면에 유막 형성을 위한 복수의 오일 홈과 복수의 테이퍼 홈을 경사지게 형성하고, 상기 미끄럼 베어링 블록은 그 내면 중 상기 불 기어를 향한 부분에 측압 완충 홈을 형성하여 상기 불 기어에 의한 측압을 흡수하는 터보 블로어.
  5. 제4항에 있어서,
    상기 고속 회전체는 상기 임펠러를 향한 상기 회전체 하우징의 단부에 벤트 홀을 형성하고, 상기 피니언 기어는 헬리컬 기어 형상으로 형성되며, 상기 헬리컬 기어의 방향은 상기 회전축 회전시 상기 회전축이 상기 임펠러 방향의 반대 방향으로 끌리는 힘이 발생하도록 설정되는 터보 블로어.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 기어 하우징은 그 내벽면에 상기 불 기어의 일부를 둘러싸면서 복수의 오일 가이드 홈을 구비한 원호 모양의 가이드 커버를 형성하고, 그 내측 상부에 상기 가이드 커버의 단부와 이어지는 오일 박스를 형성하는 터보 블로어.
  7. 제6항에 있어서,
    상기 기어 하우징은 그 내부에 오일관을 형성하여 상기 오일 박스에 수집된 윤활유를 상기 제1 복합 베어링으로 공급하고, 상기 오일관의 일단은 상기 오일 박스에 형성된 오일 배출구와 연결되며, 상기 오일관의 다른 일단은 상기 제1 복합 베어링에 형성된 오일 공급구와 연결되는 터보 블로어.
  8. 제7항에 있어서,
    상기 회전체 하우징은 유증기를 배출하기 위한 증기 배출구를 형성하고, 상기 터보 블로어는 상기 증기 배출구 및 상기 오일 박스와 연결되는 유증기 냉각기를 더욱 포함하며, 상기 유증기 냉각기는 상기 증기 배출구로 배출된 유증기를 응축시켜 상기 오일 박스에 공급하는 터보 블로어.
  9. 제8항에 있어서,
    상기 기어 하우징은 그 하부에 오일 저장조를 형성하고, 상기 오일 저장조는 그 측벽에 상하로 한 쌍의 홀을 형성하며, 상기 기어 하우징은 상기 한 쌍의 홀을 연통시킨 연통관과, 상기 연통관에 설치된 제어 밸브를 더욱 포함하는 터보 블로어.
  10. 제6항에 있어서,
    상기 불 기어는 상기 모터 축에 직접 체결되고, 상기 기어 하우징은 상기 모터를 향한 측면에 상기 불 기어의 직경보다 큰 개구부를 가지는 결합면을 형성하며, 상기 결합면이 상기 모터에 결합되는 터보 블로어.
  11. 제7항 내지 제9항 중 어느 한 항에 있어서,
    상기 불 기어는 상기 모터 축에 직접 체결되고, 상기 기어 하우징은 상기 모터를 향한 측면에 상기 불 기어의 직경보다 큰 개구부를 가지는 결합면을 형성하며, 상기 결합면이 상기 모터에 결합되는 터보 블로어.
  12. 불 기어와 맞물리는 피니언 기어가 외주면에 형성된 회전축;
    상기 회전축의 일단에 결합되는 임펠러;
    상기 피니언 기어의 양측에 설치되는 한 쌍의 제1 복합 베어링; 및
    상기 회전축, 상기 피니언 기어, 및 상기 한 쌍의 제1 복합 베어링을 내장하며, 상기 피니언 기어가 노출되도록 일부가 절개된 회전체 하우징
    을 포함하는 고속 회전체.
  13. 제12항에 있어서,
    상기 한 쌍의 제1 복합 베어링 각각은,
    미끄럼 베어링 블록과 볼 베어링 블록을 일체로 구비한 복합 베어링 블록;
    상기 회전축의 외주면에 형성되며 상기 미끄럼 베어링 블록에 내장되어 상기 미끄럼 베어링 블록과 함께 미끄럼 베어링을 구성하는 미끄럼 베어링 축; 및
    상기 볼 베어링 블록에 내장되는 볼 베어링
    을 포함하는 고속 회전체.
  14. 제13항에 있어서,
    상기 미끄럼 베어링의 설정 갭은 상기 볼 베어링의 설정 갭보다 크고, 상기 미끄럼 베어링 축은 그 표면에 유막 형성을 위한 복수의 오일 홈과 복수의 테이퍼 홈을 경사지게 형성하며, 상기 미끄럼 베어링 블록은 그 내면에 상기 불 기어에 의한 측압을 흡수하기 위하여 상기 측압이 미치는 방향의 반대 방향으로 측압 완충 홈을 형성하는 고속 회전체.
  15. 모터 축을 구비하는 모터;
    상기 모터 축에 착탈 가능하게 결합되며, 그 중심에 고정 축 설치를 위한 중공을 형성하는 불 기어;
    상기 고정 축과 상기 불 기어 사이에 설치되며, 상기 모터 축과 나란한 방향을 따라 이웃한 테이퍼 롤러 베어링과 볼 베어링을 구비하는 제2 복합 베어링; 및
    외주면에 상기 불 기어와 맞물리는 피니언 기어가 형성된 회전축과, 상기 회전축의 일단에 결합되는 임펠러를 구비하는 고속 회전체
    를 포함하는 터보 블로어.
  16. 제15항에 있어서,
    상기 터보 블로어는,
    상기 모터에 체결되며, 상기 모터 축을 지지하는 모터 커버; 및
    상기 불 기어와 상기 피니언 기어를 내장하며, 상기 모터 커버와 체결되는 측면에 상기 불 기어의 직경보다 큰 직경의 개구부를 형성한 기어 하우징
    을 더욱 포함하는 터보 블로어.
  17. 제16항에 있어서,
    상기 모터 축은 상기 불 기어를 향한 단부 외주면에 플랜지를 형성하고, 상기 불 기어는 상기 불 기어와 상기 플랜지를 관통하는 복수의 결합 볼트에 의해 상기 모터 축에 체결되며, 상기 기어 하우징은 상기 복수의 결합 볼트 중 어느 한 결합 볼트와 마주하는 부위에 개구부를 형성하는 터보 블로어.
  18. 제16항에 있어서,
    상기 모터 커버는 상기 모터를 향해 볼록하게 형성된 리세스를 구비하여 상기 리세스에 상기 고속 회전체의 일부를 수용하는 터보 블로어.
  19. 제16항 내지 제18항 중 어느 한 항에 있어서,
    상기 고속 회전체는,
    상기 피니언 기어의 양측에 배치되는 한 쌍의 제1 복합 베어링; 및
    상기 회전축과 상기 한 쌍의 제1 복합 베어링을 내장하고, 상기 기어 하우징에 조립되며, 상기 기어 하우징의 내부에서 상기 피니언 기어를 노출시키기 위해 부불 절개된 회전체 하우징
    을 더욱 포함하는 터보 블로어.
  20. 제19항에 있어서,
    상기 제1 복합 베어링 각각은,
    미끄럼 베어링 블록과 볼 베어링 블록을 일체로 구비한 복합 베어링 블록;
    상기 회전축의 외주면에 형성되며 상기 미끄럼 베어링 블록에 내장되어 상기 미끄럼 베어링 블록과 함께 미끄럼 베어링을 구성하는 미끄럼 베어링 축; 및
    상기 볼 베어링 블록에 내장되는 볼 베어링
    을 포함하는 터보 블로어.
  21. 제20항에 있어서,
    상기 미끄럼 베어링의 설정 갭은 상기 볼 베어링의 설정 갭보다 크고, 상기 미끄럼 베어링 축은 그 표면에 유막 형성을 위한 복수의 오일 홈과 복수의 테이퍼 홈을 경사지게 형성하는 터보 블로어.
  22. 제19항에 있어서,
    상기 기어 하우징은 그 내벽면에 상기 불 기어의 일부를 둘러싸는 원호 모양의 가이드 커버 및 상기 불 기어의 측면 외측에 위치하는 계단 모양의 돌출부를 형성하며, 상기 돌출부가 상기 기어 하우징과 상기 모터 커버의 조립체 내부에 임시 저장조를 형성하는 터보 블로어.
  23. 제22항에 있어서,
    상기 가이드 커버는 그 내면에 상기 불 기어의 회전 방향을 따라 길게 이어진 복수의 오일 가이드 홈을 형성하는 터보 블로어.
  24. 제22항에 있어서,
    상기 기어 하우징은 상기 임시 저장조가 형성된 부위에 제1 관통구를 형성하고, 상기 기어 하우징의 외부에서 상기 제1 관통구와 상기 고정 축을 연결하는 제1 오일관을 더욱 포함하는 터보 블로어.
  25. 제24항에 있어서,
    상기 고정 축은 상기 기어 하우징에 체결되고, 상기 고정 축은 그 내부에 오일구를 형성하며, 상기 고정 축과 상기 모터 축 사이에 유로가 형성되어 상기 오일구로 공급된 윤활유를 상기 제2 복합 베어링으로 안내하는 터보 블로어.
  26. 제22항에 있어서,
    상기 돌출부는 그 하단에 제2 관통구를 형성하고, 상기 기어 하우징은 상기 회전체 하우징과 맞닿는 부분에 제3 관통구를 형성하며, 상기 기어 하우징의 내부에서 상기 제1 관통구와 상기 제3 관통구를 연결하는 제2 오일관을 더욱 포함하는 터보 블로어.
  27. 제26항에 있어서,
    상기 회전체 하우징은 그 내부에 상기 한 쌍의 제1 복합 베어링 중 상기 임펠러측 제1 복합 베어링과 상기 제3 관통구를 연결하는 오일 유로를 형성하고, 그 외부에서 상기 한 쌍의 제1 복합 베어링 중 상기 임펠러 반대측의 제1 복합 베어링과 상기 오일 유로를 연결하는 제3 오일관을 더욱 포함하는 터보 블로어.
  28. 제27항에 있어서,
    상기 고속 회전체는 상기 임펠러측 제1 복합 베어링과 상기 임펠러 사이에 위치하는 지지체를 더욱 포함하고, 상기 지지체와 상기 회전체 하우징은 오일 배출구를 형성하며, 상기 회전체 하우징은 그 외부에서 상기 오일 배출구와 상기 기어 하우징을 연결하여 윤활유를 회수하는 제4 오일관을 더욱 포함하는 터보 블로어.
  29. 제25항에 있어서,
    상기 터보 블로어는,
    상기 모터 축의 외주면에 상기 불 기어와 멀어지는 방향을 따라 나란하게 설치된 베어링 및 실링 부재와;
    상기 실링 부재와 상기 모터 커버의 내부를 연결하여 상기 실링 부재에 도달한 윤활유를 회수하는 제5 오일관
    을 더욱 포함하는 터보 블로어.
  30. 모터 축을 구비하며 모터 커버와 조립되는 모터;
    상기 모터 축에 착탈 가능하게 결합되며, 그 중심에 고정 축 설치를 위한 중공을 형성하는 불 기어;
    외주면에 상기 불 기어와 맞물리는 피니언 기어가 형성된 회전축과, 상기 회전축의 일단에 결합되는 임펠러와, 상기 회전축을 지지하는 적어도 하나의 제1 복합 베어링과, 상기 회전축과 상기 제1 복합 베어링을 내장하며 상기 피니언 기어가 노출되도록 부분 절개된 회전체 하우징을 포함하는 고속 회전체;
    상기 고정 축과 상기 불 기어 사이에 설치되며, 상기 모터 축과 나란한 방향을 따라 이웃한 테이퍼 롤러 베어링과 볼 베어링을 구비하는 제2 복합 베어링;
    상기 불 기어와 상기 피니언 기어를 내장하며, 상기 모터 커버와 체결되는 측면에 상기 불 기어의 직경보다 큰 직경의 개구부를 형성한 기어 하우징; 및
    상기 임펠러를 감싸면서 압축된 공기를 배출하는 스크롤부
    를 포함하는 터보 블로어.
PCT/KR2009/003059 2008-06-09 2009-06-08 터보 블로어 및 이에 사용되는 고속 회전체 WO2009151245A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980121594.9A CN102057164B (zh) 2008-06-09 2009-06-08 涡轮式鼓风机及用于该鼓风机的高速旋转体
EP09762632A EP2314879A2 (en) 2008-06-09 2009-06-08 Turbo blower and high speed rotating body used in same
US12/996,810 US20120107099A1 (en) 2008-06-09 2009-06-08 Turbo blower and high speed rotating body used in same
JP2011513414A JP5356513B2 (ja) 2008-06-09 2009-06-08 ターボブロア

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020080053860A KR100895667B1 (ko) 2008-06-09 2008-06-09 터보 블로어 및 이에 사용되는 고속회전체
KR10-2008-0053860 2008-06-09
KR10-2009-0035014 2009-04-22
KR1020090035014A KR101095614B1 (ko) 2009-04-22 2009-04-22 터보 블로어

Publications (2)

Publication Number Publication Date
WO2009151245A2 true WO2009151245A2 (ko) 2009-12-17
WO2009151245A3 WO2009151245A3 (ko) 2010-03-11

Family

ID=41417225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003059 WO2009151245A2 (ko) 2008-06-09 2009-06-08 터보 블로어 및 이에 사용되는 고속 회전체

Country Status (5)

Country Link
US (1) US20120107099A1 (ko)
EP (1) EP2314879A2 (ko)
JP (1) JP5356513B2 (ko)
CN (1) CN102057164B (ko)
WO (1) WO2009151245A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228333A (zh) * 2010-11-26 2013-07-31 斯奈克玛 排油装置和装有这种排油装置的涡轮机

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2218998B1 (en) * 2009-02-03 2012-12-19 Ipsen, Inc. A sealing mechanism for a vacuum heat treating furnace
CN105264234B (zh) * 2013-09-06 2017-09-19 三菱重工压缩机有限公司 旋转机械
US20150369337A1 (en) * 2014-06-23 2015-12-24 Samsung Techwin Co., Ltd. High-speed rotating machine
CN104613091B (zh) * 2015-01-28 2018-03-27 沈阳世润重工有限公司 一种应用于增速机的巴氏合金滑动轴瓦润滑结构
WO2016210119A1 (en) * 2015-06-23 2016-12-29 Howden Roots Llc Gear drive system and implementation thereof
CN114341502A (zh) * 2019-09-10 2022-04-12 豪顿罗茨有限责任公司 空气压缩机和鼓风机
CN113124000B (zh) * 2021-04-25 2022-12-30 浙江上风高科专风实业股份有限公司 一种磁悬浮鼓风机叶轮装配方法
CN113028041B (zh) * 2021-04-29 2022-08-09 中国航发湖南动力机械研究所 一种防止齿轮搅油的减速器挡风板结构
CN116255359B (zh) * 2023-01-17 2024-04-16 江苏精亚风机有限公司 根据运行工况调整润滑速度的离心风机

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723040B1 (ko) 2005-08-18 2007-05-30 주식회사 에어젠 고속 회전체용 베어링 조립체

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1720988A (en) * 1925-06-05 1929-07-16 Automotive Patent Holding Comp Transmission gearing
US2223715A (en) * 1937-03-11 1940-12-03 Daimler Benz Ag Hydraulic transmission control
GB767426A (en) * 1953-11-09 1957-02-06 Napier & Son Ltd Transmission mechanism including bevel pinions
US2973894A (en) * 1957-06-17 1961-03-07 Turbo Res Corp Centrifugal compressor for starting jet engines
US2987904A (en) * 1958-05-28 1961-06-13 Gen Motors Corp Domestic appliance
US3424372A (en) * 1966-11-30 1969-01-28 Chicago Pneumatic Tool Co Centrifugal gaseous medium compressor
JPS5514347A (en) * 1978-07-17 1980-01-31 Hitachi Ltd Variable speed change device
CN2089991U (zh) * 1990-02-18 1991-12-04 李联奎 节能双用鼓风机
JP2555374Y2 (ja) * 1992-02-04 1997-11-19 群馬日本電気株式会社 複合軸受
US5425345A (en) * 1994-10-31 1995-06-20 Chrysler Corporation Mechanically driven centrifugal air compressor with hydrodynamic thrust load transfer
US5685699A (en) * 1996-06-20 1997-11-11 Carrier Corporation Compressor transmission vent system
JPH11159697A (ja) * 1997-09-29 1999-06-15 Nippon Seiko Kk オイルエア潤滑装置
US6192871B1 (en) * 1998-10-30 2001-02-27 Vortech Engineering, Inc. Compact supercharger
DE10124560B4 (de) * 2000-05-27 2017-01-05 Brandenburgische Forschungs- Und Entwicklungsgesellschaft Cottbus Mbh Kreiskolbenmotor
JP3799979B2 (ja) * 2000-09-14 2006-07-19 日産自動車株式会社 変速比無限大無段変速機
US6524081B2 (en) * 2001-06-01 2003-02-25 Chiang Fu. Wu One-stage transmissible turbocharger
US20030156769A1 (en) * 2002-02-19 2003-08-21 Whang Cheol H. Fluid suspended bearing
US7128061B2 (en) * 2003-10-31 2006-10-31 Vortech Engineering, Inc. Supercharger
CN2913682Y (zh) * 2006-05-23 2007-06-20 谢明顺 四叶罗茨鼓风机
CN200989303Y (zh) * 2006-12-27 2007-12-12 王绍全 开合式罗茨鼓风机

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723040B1 (ko) 2005-08-18 2007-05-30 주식회사 에어젠 고속 회전체용 베어링 조립체

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103228333A (zh) * 2010-11-26 2013-07-31 斯奈克玛 排油装置和装有这种排油装置的涡轮机

Also Published As

Publication number Publication date
JP2011522994A (ja) 2011-08-04
WO2009151245A3 (ko) 2010-03-11
US20120107099A1 (en) 2012-05-03
JP5356513B2 (ja) 2013-12-04
EP2314879A2 (en) 2011-04-27
CN102057164A (zh) 2011-05-11
CN102057164B (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
WO2009151245A2 (ko) 터보 블로어 및 이에 사용되는 고속 회전체
WO2016195238A1 (ko) 직결 구동형 터보 블로워 냉각 구조
US20050211093A1 (en) Air/oil separation system and method
WO2018117682A1 (ko) 스크롤 압축기
US8439236B2 (en) Bridge breaker
US5066192A (en) Oil sealing system for a turbo charger
IT201600120314A1 (it) Turbo-compressore e metodo di funzionamento di un turbo-compressore
WO2023236446A1 (zh) 传动机构
US7186081B2 (en) Air turbine starter enhancement for clearance seal utilization
CN109322859B (zh) 一种减少叶轮磨损的离心泵
JPH052819B2 (ko)
CN111306185A (zh) 一种轴流涡轮增压器半浮动径向轴承结构
KR100895667B1 (ko) 터보 블로어 및 이에 사용되는 고속회전체
SE506370C2 (sv) Tätningssystem vid hydraulmaskin
JP7311029B2 (ja) 過給機
JPH052818B2 (ko)
WO2020189967A1 (ko) 선박용 발전기
CN205716366U (zh) 高频破碎器振动箱轴承的润滑装置
JPH07208191A (ja) ターボチャージャー
WO2021010721A1 (en) Scroll compressor
KR101095614B1 (ko) 터보 블로어
CN220732495U (zh) 高速电机用轴承密封结构
CN220732496U (zh) 高速电机用轴承密封结构
WO2017099384A1 (ko) 스크롤 압축기
CN117266899A (zh) 一种湿式锚钻箱

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980121594.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762632

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 8767/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12996810

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011513414

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009762632

Country of ref document: EP