WO2018131712A1 - 無方向性電磁鋼板 - Google Patents

無方向性電磁鋼板 Download PDF

Info

Publication number
WO2018131712A1
WO2018131712A1 PCT/JP2018/000981 JP2018000981W WO2018131712A1 WO 2018131712 A1 WO2018131712 A1 WO 2018131712A1 JP 2018000981 W JP2018000981 W JP 2018000981W WO 2018131712 A1 WO2018131712 A1 WO 2018131712A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
oriented electrical
content
less
electrical steel
Prior art date
Application number
PCT/JP2018/000981
Other languages
English (en)
French (fr)
Inventor
屋鋪 裕義
義顕 名取
竹田 和年
務川 進
松本 卓也
晃司 藤田
諸星 隆
雅文 宮嵜
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US16/470,122 priority Critical patent/US11053574B2/en
Priority to KR1020197019611A priority patent/KR102286319B1/ko
Priority to JP2018561449A priority patent/JP6870687B2/ja
Priority to PL18739441T priority patent/PL3569728T3/pl
Priority to CN201880004720.1A priority patent/CN110023525B/zh
Priority to EP18739441.6A priority patent/EP3569728B1/en
Priority to BR112019009604-3A priority patent/BR112019009604B1/pt
Publication of WO2018131712A1 publication Critical patent/WO2018131712A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a non-oriented electrical steel sheet.
  • Si When adding alloy elements with the same content (mass%), except for P, which has a large adverse effect on cold rolling properties, Si tends to increase electrical resistance and reduce iron loss. It is an effective element. Therefore, in the said patent document 1, it is disclosed that Si content shall be 6 mass% or less, and in the said patent document 2, it is disclosed that Si content shall be 5.0 mass% or less, Patent Document 3 discloses that the Si content is 8.0% by mass or less. Patent Document 1 and Patent Document 2 also disclose that the Al content is 0.0050% or less and the electrical resistance is increased with Si and Mn to reduce the iron loss.
  • Patent Documents 1 to 3 have not been sufficiently reduced in high-frequency iron loss such as W 10/400 .
  • the reason for this is that high alloying is indispensable for reducing high-frequency iron loss.
  • Patent Documents 1 to 3 do not discuss high-frequency iron loss. Since the lower limit and the distribution of appropriate addition amounts of Si, Al, and Mn are not considered, it is considered that the reduction of high-frequency iron loss as in W 10/400 was not sufficient.
  • An object of the present invention is to provide a non-oriented electrical steel sheet having good cold rollability and excellent magnetic properties, particularly high-frequency iron loss.
  • the non-oriented electrical steel sheet according to one aspect of the present invention has a chemical composition of mass%, C: more than 0%, 0.0050% or less, Si: 3.0% to 4.0%, Mn : 1.2% to 3.3%, P: more than 0%, less than 0.030%, S: more than 0%, 0.0050% or less, sol.
  • Al more than 0%, 0.0040% or less, N: more than 0%, 0.0040% or less, one or more of La, Ce, Pr, Nd: 0.0005% to 0.0200% in total , Ca: 0.0005% to 0.0100%, Ti: 0.0005% to 0.0100%, Sn: 0% to 0.10%, Sb: 0% to 0.10%, Mg: 0% to 0.0100%, and the balance consists of Fe and impurities, Si-0.5 ⁇ Mn: 2.0% or more, and Si + 0.5 ⁇ Mn: 3.8% or more.
  • the chemical composition is selected from Sn: 0.005% to 0.10%, Sb: 0.005% to 0.10% 1 You may contain seed or two kinds.
  • the chemical composition may contain Mg: 0.0005% to 0.0100%.
  • a non-oriented electrical steel sheet having good cold rollability and excellent magnetic properties can be obtained.
  • Al is an alloying element that exhibits an effect of increasing electric resistance like Si.
  • Al as well as Si, causes a decrease in cold rollability.
  • the Al content increases, the hysteresis loss tends to deteriorate and the magnetic properties tend to deteriorate. Therefore, it is difficult to contain a large amount of Al as an alloy element in the non-oriented electrical steel sheet.
  • the non-oriented electrical steel sheet it is preferable to reduce the Al content in order to suppress a decrease in magnetic properties due to deterioration of hysteresis loss.
  • the steel material with a reduced Al content has a decreased grain growth property and a reduced magnetic property.
  • the present inventors diligently studied a method capable of suppressing a decrease in grain growth property and improving both the cold rolling property and the magnetic property even when the Al content is reduced. As a result, it is effective to contain Mn, which has little adverse effect on cold rollability, together with Si, and to further contain one or more of La, Ce, Pr, Nd and Ti in combination. I found out.
  • non-oriented electrical steel sheet according to one embodiment of the present invention (the non-oriented electrical steel sheet according to this embodiment) will be described in detail with reference to FIG.
  • FIG. 1 is a diagram schematically showing the structure of a non-oriented electrical steel sheet according to this embodiment.
  • the non-oriented electrical steel sheet 10 according to the present embodiment includes a ground iron 11 having a predetermined chemical composition, as schematically shown in FIG.
  • the non-oriented electrical steel sheet according to the present embodiment may be composed only of the ground iron 11, it is preferable to further have an insulating coating 13 on the surface of the ground iron 11.
  • ground iron 11 of the non-oriented electrical steel sheet 10 will be described in detail.
  • the base iron 11 of the non-oriented electrical steel sheet 10 according to the present embodiment is in mass%, C: more than 0%, 0.0050% or less, Si: 3.0% to 4.0%, Mn: 1.2 % To 3.3%, P: more than 0%, less than 0.030%, S: more than 0%, 0.0050% or less, sol.
  • Al more than 0%, 0.0040% or less, N: more than 0%, 0.0040% or less, one or more of La, Ce, Pr, Nd: 0.0005% to 0.0200% in total , Ca: 0.0005% to 0.0100%, Ti: 0.0005% to 0.0100%, Sn: 0% to 0.10%, Sb: 0% to 0.10%, Mg: 0% to When the value represented by “Si + 0.5 ⁇ Mn” is calculated using the Si content and the Mn content, the balance is 3.8 when 0.0100% is contained and the balance is Fe and impurities. %, And when the value represented by “Si ⁇ 0.5 ⁇ Mn” is calculated using the Si content and the Mn content, it is 2.0% or more.
  • the ground iron 11 of the non-oriented electrical steel sheet 10 contains at least one selected from Sn: 0.005% to 0.10%, Sb: 0.005% to 0.10%. It is preferable to do.
  • ground iron 11 of the non-oriented electrical steel sheet 10 preferably contains Mg: 0.0005% to 0.0100%.
  • C is an element that is inevitably contained, and is an element that causes iron loss deterioration (increase in iron loss).
  • the C content exceeds 0.0050%, iron loss deterioration occurs in the non-oriented electrical steel sheet, and good magnetic properties cannot be obtained. Therefore, in the non-oriented electrical steel sheet according to the present embodiment, the C content is set to 0.0050% or less.
  • the C content is preferably 0.0040% or less, and more preferably 0.0030% or less. The smaller the C content, the better.
  • C is an inevitably contained element, and the lower limit is made to exceed 0%. Further, if the C content is reduced to less than 0.0005%, the cost is significantly increased. Therefore, the C content may be 0.0005% or more.
  • Si silicon
  • Si is an element that increases the electrical resistance of steel, reduces eddy current loss, and improves high-frequency iron loss.
  • Si has a large solid solution strengthening ability, it is an element effective for increasing the strength of non-oriented electrical steel sheets.
  • the Si content needs to be 3.0% or more. Si content becomes like this. Preferably it is 3.1% or more, More preferably, it is 3.2% or more.
  • the Si content exceeds 4.0%, the workability is remarkably deteriorated and it is difficult to perform cold rolling, or the steel sheet is broken during the cold rolling (that is, , Cold rollability is reduced). Therefore, the Si content is 4.0% or less.
  • the Si content is preferably 3.9% or less, more preferably 3.8% or less.
  • Mn manganese
  • Mn manganese
  • Si silicon
  • the Mn content is preferably 1.3% or more, more preferably 1.4% or more, and further preferably 1.5% or more.
  • the Mn content is 3.3% or less.
  • the Mn content is preferably 3.2% or less, more preferably 3.1% or less, and even more preferably 3.0% or less.
  • P more than 0%, less than 0.030%
  • P phosphorus
  • the P content is preferably 0.020% or less, and more preferably 0.010% or less. The smaller the P content, the better.
  • P is an element that is inevitably contained, and the lower limit is made to exceed 0%. If the P content is less than 0.001%, a significant cost increase is caused. Therefore, the lower limit is preferably set to 0.001% or more. More preferably, it is 0.002% or more.
  • S sulfur
  • S is an element inevitably contained.
  • S is an element that increases the iron loss by forming fine precipitates of MnS and degrades the magnetic properties of the non-oriented electrical steel sheet. Therefore, the S content needs to be 0.0050% or less.
  • the S content is preferably 0.0040% or less, and more preferably 0.0035% or less. The smaller the S content, the better.
  • S is an element that is unavoidably contained, and the lower limit is made to exceed 0%. An attempt to reduce the S content below 0.0001% results in a significant cost increase. Therefore, the S content is preferably 0.0001% or more.
  • Al is an element that, when dissolved in steel, reduces eddy current loss and improves high-frequency iron loss by increasing the electrical resistance of the non-oriented electrical steel sheet.
  • the non-oriented electrical steel sheet according to the present embodiment positively contains Mn, which is an element that increases the electrical resistance without degrading workability as compared with Al. Therefore, it is not necessary to positively contain Al.
  • sol. If the Al (acid-soluble Al) content exceeds 0.0040%, fine nitrides precipitate in the steel, hinders crystal grain growth during hot-rolled sheet annealing and finish annealing, and deteriorates magnetic properties. . Therefore, sol.
  • the Al content is 0.0040% or less.
  • the Al content is preferably 0.0030% or less, more preferably 0.0020% or less.
  • Al is an element inevitably contained, and the lower limit is made over 0%. Also, sol. Attempting to reduce the Al content below 0.0001% results in a significant cost increase. Therefore, sol.
  • the Al content may be 0.0001% or more.
  • N nitrogen
  • nitrogen is an element inevitably contained.
  • N is an element that forms fine nitrides in the steel to increase iron loss and degrade the magnetic properties of the non-oriented electrical steel sheet. Therefore, the N content needs to be 0.0040% or less.
  • the N content is preferably 0.0030% or less, more preferably 0.0020% or less.
  • N is an element inevitably contained, and the lower limit is made over 0%. Further, the smaller the N content, the better.
  • the N content may be 0.0001% or more. More preferably, it is 0.0003% or more.
  • Ti titanium
  • Ti titanium
  • C, N, O, etc. in the ground iron to form fine precipitates such as TiN, TiC, Ti oxide, etc., and inhibits the growth of crystal grains during annealing, thereby deteriorating magnetic properties. It is. Therefore, conventionally, in order to reduce the Ti content in the ground iron as much as possible, highly purified raw materials of Mn and Si have been used.
  • one or more of La, Ce, Pr and Nd described below are compounded together with Ti to grow crystal grains during annealing.
  • the Ti content is set to 0.0005% or more.
  • the Ti content is set to 0.0005% or more and 0.0100% or less.
  • the Ti content is Preferably, they are 0.0015% or more and 0.0080% or less, More preferably, they are 0.0025% or more and 0.0060% or less.
  • La, Ce, Pr and Nd are elements that combine with S to form coarse sulfides, sulfates, or both, thereby suppressing the precipitation of fine MnS and promoting crystal grain growth during annealing. is there. Furthermore, La, Ce, Pr, and Nd are fine precipitates such as TiN, TiC, and Ti oxide generated due to Ti, sulfides or sulfides of La, Ce, Pr, and Nd, or both. It is an element which improves the magnetic properties by improving the grain growth property by composite precipitation.
  • the content of one or more of La, Ce, Pr and Nd needs to be 0.0005% or more in total.
  • the content of one or more of La, Ce, Pr and Nd exceeds 0.0200% in total, the coarsening effect of the fine precipitates is saturated and economical. This is not preferable because it is disadvantageous. Therefore, the content of one or more of La, Ce, Pr and Nd is 0.0200% or less in total.
  • the content of one or more of La, Ce, Pr and Nd is preferably 0.0010% or more and 0.0150% or less in total, more preferably 0.0020% or more and 0.005% or less in total. 0100% or less.
  • Ca 0.0005% to 0.0100%
  • Ca is an element that suppresses the precipitation of fine MnS and promotes the growth of crystal grains during annealing by combining with S to form a coarse compound. Furthermore, it is an element effective in avoiding nozzle clogging caused by oxides during continuous casting by containing one or more of La, Ce, Pr, and Nd in combination.
  • the Ca content needs to be 0.0005% or more. Preferably, it is 0.0010% or more.
  • the Ca content exceeds 0.0100%, the effect of improving crystal grain growth and the effect of suppressing nozzle clogging are saturated, which is economically disadvantageous. Therefore, the Ca content is set to 0.0100% or less.
  • the Ca content is preferably 0.0080% or less, more preferably 0.0060% or less.
  • Sn (tin) and Sb (antimony) are elements useful for securing a low iron loss by segregating on the surface and suppressing oxidation and nitridation during annealing. Therefore, in the non-oriented electrical steel sheet according to the present embodiment, at least one of Sn and Sb may be contained in the ground iron in order to obtain the above effect.
  • the Sn or Sb content is preferably 0.005% or more. More preferably, it is 0.010% or more.
  • the Sn or Sb content is preferably 0.10% or less in each case. More preferably, each is 0.05% or less.
  • Sn and Sb are optional elements and do not necessarily need to be contained, so the lower limit is 0%.
  • the non-oriented electrical steel sheet according to the present embodiment may contain Mg in order to obtain the above effect.
  • the Mg content is preferably 0.0005% or more.
  • the Mg content is preferably 0.0100% or less.
  • the Mg content is more preferably 0.0050% or less. Since Mg is an optional element and does not necessarily need to be contained, the lower limit is 0%.
  • the non-oriented electrical steel sheet according to the present embodiment basically includes the above elements, with the balance being Fe and impurities.
  • the non-oriented electrical steel sheet according to the present embodiment may further contain elements such as Ni (nickel), Cr (chromium), Cu (copper), and Mo (molybdenum) other than the elements described above. . Even if each of these elements is contained in an amount of 0.50% or less, the effect of the non-oriented electrical steel sheet according to the present embodiment is not impaired.
  • elements such as Pb (lead), Bi (bismuth), V (vanadium), As (arsenic), and B (boron) may be further contained. Even if 0.0050% or less of each of these elements is contained, the effect of the non-oriented electrical steel sheet according to the present embodiment is not impaired.
  • the non-oriented electrical steel sheet according to the present embodiment needs to be controlled so that the Si content and the Mn content satisfy a predetermined relationship after controlling the content of each element as described above. is there.
  • Si + 0.5 ⁇ Mn 3.8% or more
  • the alloy is increased in alloy to increase the electrical resistance of the steel sheet. It is effective.
  • high-frequency iron loss can be further reduced by adding Si and Mn so that Si + 0.5 ⁇ Mn is 3.8% or more. Therefore, Si + 0.5 ⁇ Mn is set to 3.8% or more.
  • Si + 0.5 ⁇ Mn is preferably 3.9% or more, more preferably 4.0% or more, and further preferably 4.4% or more.
  • the substantial upper limit of Si + 0.5 ⁇ Mn is a value calculated from the upper limits of the contents of Si and Mn.
  • Si-0.5 ⁇ Mn 2.0% or more
  • Si-0.5 ⁇ Mn ⁇ 2.0 it is possible to suppress a decrease in magnetic characteristics. The reason for this is not clear, but by setting Si-0.5 ⁇ Mn ⁇ 2.0, a thin oxide layer of dense SiO 2 is likely to be formed on the surface of the steel sheet during finish annealing, so that the finish annealing is smooth. This is considered to be because oxidation and nitridation in the thermal process are suppressed.
  • Si is a ferrite phase formation promoting element (so-called ferrite former element).
  • Mn is an austenite phase formation promoting element (so-called austenite former element). Therefore, depending on the respective contents of Si and Mn, the metal structure of the non-oriented electrical steel sheet changes, and the non-oriented electrical steel sheet becomes a component system having a transformation point or a component system having no transformation point. It becomes.
  • the non-oriented electrical steel sheet according to the present embodiment it is required to appropriately increase the average crystal grain size in the base iron, and the component system having no transformation point is to increase the crystal grain size. It becomes an effective means. Therefore, it is preferable that the respective contents of Si and Mn satisfy a predetermined relationship so that the component system does not have a transformation point.
  • the ability to promote austenite phase formation by Mn (in other words, the effect of canceling the ability to promote ferrite phase formation) is considered to be about 0.5 times the ability to promote ferrite phase formation by Si. Therefore, the equivalent amount of the ferrite phase formation promoting ability in the present embodiment can be expressed as “Si ⁇ 0.5 ⁇ Mn” based on the Si content.
  • the value of Si-0.5 ⁇ Mn is set to 2.0% or more. Preferably it is 2.1% or more.
  • the upper limit of Si-0.5 ⁇ Mn is not particularly specified, but from the range of Si content and Mn content of the non-oriented electrical steel sheet according to the present embodiment, Si-0.5 ⁇ Mn. The value of Mn cannot exceed 3.4%. Therefore, the upper limit value of Si-0.5 ⁇ Mn is substantially 3.4%.
  • spark discharge emission analysis method ICP emission analysis method
  • combustion-infrared absorption method when measuring C and S with high accuracy
  • inert gas melting-red when measuring O and N with high accuracy
  • An external absorption method / thermal conductivity method or the like may be used as appropriate.
  • the thickness (the thickness t in FIG. 1) of the ground iron 11 in the non-oriented electrical steel sheet 10 according to the present embodiment is set to 0.40 mm or less. Is preferred.
  • the thickness t of the ground iron 11 in the non-oriented electrical steel sheet 10 is preferably 0.10 mm or more and 0.40 mm or less.
  • the plate thickness t of the ground iron 11 in the non-oriented electrical steel sheet 10 is more preferably 0.15 mm or more and 0.35 mm or less.
  • ground iron 11 of the non-oriented electrical steel sheet 10 according to the present embodiment has been described in detail.
  • the iron loss is composed of eddy current loss and hysteresis loss.
  • the insulating coating 13 provided in the non-oriented electrical steel sheet 10 according to the present embodiment is not particularly limited as long as it is used as an insulating film of the non-oriented electrical steel sheet, and a known insulating coating is used. It is possible to use.
  • an insulating film for example, a composite insulating film mainly containing an inorganic substance and further containing an organic substance can be exemplified.
  • the composite insulating film is mainly composed of at least one of inorganic substances such as metal chromate, metal phosphate or colloidal silica, Zr compound, Ti compound, and fine organic resin particles are dispersed. It is an insulating coating.
  • metal phosphates, Zr or Ti coupling agents, or insulating films using these carbonates or ammonium salts as starting materials are available.
  • metal phosphates, Zr or Ti coupling agents, or insulating films using these carbonates or ammonium salts as starting materials are available.
  • metal phosphates, Zr or Ti coupling agents, or insulating films using these carbonates or ammonium salts as starting materials are available.
  • insulating films using these carbonates or ammonium salts as starting materials are available.
  • insulating films using these carbonates or ammonium salts as starting materials are available.
  • the adhesion amount of the insulating coating 13 as described above is not particularly limited. For example, it is preferably about 0.1 g / m 2 or more and 2.0 g / m 2 or less per side, and 0.3 g per side. / M 2 or more and 1.5 g / m 2 or less is more preferable.
  • the insulating coating 13 so as to have the above-described adhesion amount, it is possible to maintain excellent uniformity.
  • various known measuring methods can be used.
  • the adhesion amount of the insulating coating 13 is calculated from, for example, a mass difference between before and after removing the insulating coating 13 by removing only the insulating coating 13 by immersing the non-oriented electrical steel sheet 10 on which the insulating coating 13 is formed in a hot alkaline solution. Is possible.
  • the non-oriented electrical steel sheet 10 according to the present embodiment has excellent magnetic properties by having the above structure.
  • various magnetic properties shown by the non-oriented electrical steel sheet 10 according to the present embodiment are the Epstein method defined in JIS C2550 and the single plate magnetic property measurement method (Single Sheet Tester: SST) defined in JIS C2556. ) And can be measured.
  • the non-oriented electrical steel sheet 10 according to this embodiment has been described in detail above with reference to FIG.
  • FIG. 2 is a diagram illustrating an example of a flow of a method for manufacturing a non-oriented electrical steel sheet according to the present embodiment.
  • a steel ingot (slab) having the above-described chemical composition is heated, and hot rolling is performed on the heated steel ingot to obtain a hot-rolled steel sheet. Is obtained (step S101).
  • the heating temperature of the steel ingot at the time of hot rolling is not particularly specified, but it is preferably, for example, 1050 ° C. to 1300 ° C.
  • the heating temperature of the steel ingot is more preferably 1050 ° C. to 1250 ° C.
  • the thickness of the hot-rolled steel sheet after hot rolling is not particularly specified, but is preferably about 1.6 mm to 3.5 mm in consideration of the final sheet thickness of the base iron.
  • the hot rolling step is preferably completed while the temperature of the steel sheet is in the range of 700 ° C to 1000 ° C.
  • the end temperature of hot rolling is more preferably 750 ° C. to 950 ° C.
  • hot-rolled sheet annealing (annealing for hot-rolled steel sheet) is performed (step S103).
  • continuous annealing it is preferable to perform annealing on a hot-rolled steel sheet, for example, at 750 ° C. to 1200 ° C. and including soaking for 10 seconds to 10 minutes.
  • box annealing it is preferable to perform annealing on a hot-rolled steel sheet, for example, at 650 ° C. to 950 ° C. and including soaking for 30 minutes to 24 hours.
  • the hot-rolled plate annealing step may be omitted for cost reduction.
  • step S105 pickling is performed (step S105). Thereby, the scale layer mainly composed of oxides formed on the surface of the steel sheet during the hot-rolled sheet annealing is removed.
  • hot-rolled sheet annealing is box annealing, it is preferable to implement a pickling process before hot-rolled sheet annealing from a viewpoint of descaling property.
  • Step S107 After the pickling step (when hot-rolled plate annealing is performed by box annealing, it may be after the hot-rolled plate annealing step), cold rolling is performed on the hot-rolled steel plate. (Step S107). In the cold rolling, it is preferable to roll the pickled plate from which the scale has been removed at a rolling reduction such that the final thickness of the base iron is 0.10 mm or more and 0.40 mm or less.
  • finish annealing is performed on the cold-rolled steel sheet obtained by the cold rolling step (step S109).
  • the temperature raising process of finish annealing is rapid heating. By rapidly performing the heating in the temperature raising process, a recrystallized texture that is advantageous in magnetic properties is formed in the iron core 11.
  • the finish annealing is preferably performed by continuous annealing.
  • the average temperature raising rate is preferably 1 ° C./second to 2000 ° C./second.
  • the dew point is preferably 30 ° C. or lower.
  • the average heating rate is more preferably 5 ° C./second to 1500 ° C./second, the ratio of H 2 in the atmosphere is more preferably 15% to 90% by volume, and the dew point of the atmosphere is More preferably, it is 20 degrees C or less, More preferably, it is 10 degrees C or less.
  • the above average heating rate is obtained by using direct heating or indirect heating using a radiant tube, or using a known heating method such as energization heating or induction heating. It is possible to realize.
  • the soaking temperature is set to 700 ° C. to 1100 ° C.
  • the soaking time is set to 1 second to 300 seconds
  • the atmosphere has an H 2 ratio of 10% to 100% by volume.
  • the dew point of the atmosphere is preferably 20 ° C. or lower.
  • the soaking temperature is more preferably 750 ° C. to 1050 ° C.
  • the proportion of H 2 in the atmosphere is more preferably 15% by volume to 90% by volume
  • the dew point of the atmosphere is more preferably 10%. It is 0 degreeC or less, More preferably, it is 0 degreeC or less.
  • the average cooling rate is preferably 1 ° C./second to 50 ° C./second to 200 ° C. or lower.
  • the average cooling rate is more preferably 5 ° C./second to 30 ° C./second.
  • the non-oriented electrical steel sheet 10 according to this embodiment can be manufactured.
  • step S111 After the finish annealing, an insulating coating forming process is performed as necessary (step S111).
  • the step of forming the insulating film is not particularly limited, and the treatment liquid may be applied and dried by a known method using the above-described known insulating film treatment liquid.
  • the surface of the base iron on which the insulating film is formed may be subjected to any pretreatment such as degreasing with alkali or pickling with hydrochloric acid, sulfuric acid or phosphoric acid before applying the treatment liquid. Moreover, the surface as it is after finish annealing without performing these pretreatments may be used.
  • non-oriented electrical steel sheet according to the present invention will be specifically described with reference to examples.
  • the examples shown below are merely examples of the non-oriented electrical steel sheets according to the present invention, and the non-oriented electrical steel sheets according to the present invention are not limited to the following examples.
  • Example 1 A steel slab containing the composition shown in Table 1 below, the balance being Fe and impurities, was heated to 1150 ° C. and then rolled to 2.0 mm thickness by hot rolling. Subsequently, the hot-rolled steel sheet was subjected to hot-rolled sheet annealing in a continuous annealing type annealing furnace with a soaking temperature of 1000 ° C. and a soaking time of 40 seconds, followed by cold rolling to obtain a 0.25 mm thick cold steel sheet. A rolled steel sheet was used. This cold-rolled steel sheet was subjected to finish annealing with a soaking temperature of 1000 ° C. and a soaking time of 15 seconds. Thereafter, a non-oriented electrical steel sheet was manufactured by further applying and baking a solution containing an acrylic resin emulsion mainly composed of a metal phosphate to both surfaces of the steel sheet to form a composite insulating film.
  • the finish annealing was performed in a mixed atmosphere of H 2 and N 2 with a dew point of ⁇ 30 ° C. and a H 2 ratio of 30% by volume in the temperature raising process and the soaking process. Moreover, the average temperature increase rate in the temperature rising process during the finish annealing was 20 ° C./second, and the average cooling rate in the cooling process was 20 ° C./second. After finish annealing, it was cooled to 200 ° C. or lower.
  • test number 1 the Ti content deviated higher than the present range.
  • Test No. 8 in which the total content of La, Ce, Pr and Nd deviated lower than the range of the present invention, was inferior in iron loss and magnetic flux density.
  • test number 9 in which the Ca content deviated lower than the range of the present invention was abandoned because of nozzle clogging during continuous casting.
  • test numbers 2, 3, 4, 5, 6, 7, and 10 in which the chemical composition of the steel sheet is within the scope of the present invention were excellent in both iron loss and magnetic flux density.
  • Example 2 A steel slab containing the composition shown in Table 2 and the balance being Fe and impurities was heated to 1150 ° C. and then rolled to 2.0 mm thickness by hot rolling. Subsequently, the hot-rolled steel sheet was subjected to hot-rolled sheet annealing in a continuous annealing-type annealing furnace under a condition that the soaking temperature was 1000 ° C. and the soaking time was 40 seconds, and then cold-rolled to perform 0.25 mm thick A rolled steel sheet was obtained. Thereafter, the cold-rolled steel sheet was subjected to finish annealing under conditions where the soaking temperature was 1000 ° C. and the soaking time was 15 seconds. Thereafter, a non-oriented electrical steel sheet was manufactured by further applying and baking a solution containing an acrylic resin emulsion mainly composed of a metal phosphate to both surfaces of the steel sheet to form a composite insulating film.
  • the above-described finish annealing was performed in a mixed atmosphere of H 2 and N 2 with an atmospheric dew point of ⁇ 30 ° C. and a H 2 ratio of 20% by volume in the temperature raising process and the soaking process. Moreover, the average temperature increase rate in the temperature rising process during the finish annealing was 20 ° C./second, and the average cooling rate in the cooling process was 20 ° C./second. After finish annealing, it was cooled to 200 ° C. or lower.
  • Test No. 14 in which the P content deviated higher than the range of the present invention and Test No. 23 in which the Si content deviated higher than the range of the present invention were broken during cold rolling, so magnetic measurement could not be performed.
  • test number 22 in which the Mn content deviated higher than the range of the present invention was inferior in iron loss and magnetic flux density. Further, in test No. 21 in which Si-0.5 ⁇ Mn was out of the range of the present invention, the iron loss and the magnetic flux density were inferior.
  • Example 3 A steel slab containing the composition shown in Table 3 below, the balance being Fe and impurities, was heated to 1150 ° C. and then rolled to a thickness of 2.0 mm by hot rolling. Subsequently, the hot-rolled steel sheet was subjected to hot-rolled sheet annealing in a continuous annealing-type annealing furnace under the conditions that the soaking temperature was 1000 ° C. and the soaking time was 40 seconds, and then cold-rolled to perform 0.25 mm thick A rolled steel sheet was obtained. Thereafter, the cold-rolled steel sheet was subjected to finish annealing under conditions where the soaking temperature was 800 ° C. and the soaking time was 15 seconds.
  • the non-oriented electrical steel sheet was manufactured by apply
  • the above-described finish annealing was performed in a mixed atmosphere of H 2 and N 2 with an atmospheric dew point of ⁇ 30 ° C. and a H 2 ratio of 20% by volume in the temperature raising process and the soaking process. Moreover, the average temperature increase rate in the temperature rising process during finish annealing was 15 ° C./second, and the average cooling rate in the cooling process was 15 ° C./second. After finish annealing, it was cooled to 200 ° C. or lower.
  • the iron loss and the magnetic flux density were inferior.
  • the iron loss was inferior in the test number 30 in which Si + 0.5 ⁇ Mn was slightly lowered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

この無方向性電磁鋼板は、化学組成が、質量%で、C:0%超、0.0050%以下、Si:3.0%~4.0%、Mn:1.2%~3.3%、P:0%超、0.030%未満、S:0%超、0.0050%以下、sol.Al:0%超、0.0040%以下、N:0%超、0.0040%以下、La、Ce、Pr、Ndの1種又は2種以上:合計で0.0005%~0.0200%、Ca:0.0005%~0.0100%、Ti:0.0005%~0.0100%、Sn:0%~0.10%、Sb:0%~0.10%、Mg:0%~0.0100%、を含有し、残部がFe及び不純物からなり、Si-0.5×Mn:2.0%以上であり、Si+0.5×Mn:3.8%以上である。

Description

無方向性電磁鋼板
 本発明は、無方向性電磁鋼板に関する。
 本願は、2017年01月16日に、日本に出願された特願2017-005212号に基づき優先権を主張し、その内容をここに援用する。
 昨今、地球環境問題が注目されており、省エネルギーへの取り組みに対する要求は、一段と高まってきている。なかでも電気機器の高効率化は、近年強く要望されている。このため、モータや発電機又は変圧器等の鉄心材料として広く使用されている無方向性電磁鋼板においても、磁気特性の向上に対する要請が更に強まっている。近年、高効率化が進展する電気自動車やハイブリッド自動車用のモータや発電機、及び、コンプレッサ用モータにおいては、その傾向が顕著である。
 無方向性電磁鋼板の磁気特性の向上のためには、鋼中に合金元素を添加することで鋼板の電気抵抗を上げ、渦電流損を低減することが有効である。そのため、例えば以下の特許文献1及び特許文献2に開示されているように、Si、Al、Mnといった電気抵抗を上昇させる効果を有する元素を添加して、磁気特性の改善(鉄損の低下、磁束密度の増加等)を図ることが行われている。
国際公開第2016/027565号 日本国特開2016-130360号公報 国際公開第2016/136095号
 同一の含有量(質量%)で合金元素を添加することを考えた場合に、冷間圧延性への悪影響の大きいPを除くと、Siが、電気抵抗を上昇させやすく、鉄損の低減に有効な元素である。そのため、上記特許文献1では、Si含有量を6質量%以下とすることが開示されており、上記特許文献2では、Si含有量を5.0質量%以下とすることが開示されており、特許文献3では、Si含有量を8.0質量%以下とすることが開示されている。
 また、特許文献1及び特許文献2では、Al含有量を0.0050%以下とし、SiとMnで電気抵抗を上昇させて、鉄損を低減することも開示されている。
 しかしながら、発明者らが検討した結果、特許文献1~特許文献3に示された鋼板では、W10/400のような高周波鉄損の低減は十分ではなかった。その理由として、高周波鉄損の低減には高合金化が不可欠であるが、特許文献1~特許文献3では、高周波鉄損については検討されておらず、高周波鉄損低減に必要な合金量の下限値や、Si、Al、Mnの適正な添加量の配分が考慮されていないので、W10/400のような高周波鉄損の低減が十分ではなかったと考えられる。
 本発明は、上記問題に鑑みてなされた。本発明の目的は、冷間圧延性が良好で、磁気特性、特に高周波鉄損の優れる、無方向性電磁鋼板を提供することにある。
 上記課題を解決するために、本発明者らは鋭意検討を行った。その結果、(i)Al含有量を所定の値以下とすること、(ii)電気抵抗の上昇に寄与し、冷間圧延性への悪影響が少ないMnをSiとともに含有させること、及び(iii)La、Ce、Pr、Ndの1種又は2種以上とTiとを更に含有させること、によって、良好な冷間圧延性を確保しつつ、粒成長性の低下を防止して磁気特性を向上させることができるとの知見を得て、本発明を完成するに至った。
 上記知見に基づき完成された本発明の要旨は、以下の通りである。
(1)本発明の一態様に係る無方向性電磁鋼板は、化学組成が、質量%で、C:0%超、0.0050%以下、Si:3.0%~4.0%、Mn:1.2%~3.3%、P:0%超、0.030%未満、S:0%超、0.0050%以下、sol.Al:0%超、0.0040%以下、N:0%超、0.0040%以下、La、Ce、Pr、Ndの1種又は2種以上:合計で0.0005%~0.0200%、Ca:0.0005%~0.0100%、Ti:0.0005%~0.0100%、Sn:0%~0.10%、Sb:0%~0.10%、Mg:0%~0.0100%、を含有し、残部がFe及び不純物からなり、Si-0.5×Mn:2.0%以上であり、Si+0.5×Mn:3.8%以上である。
(2)上記(1)に記載の無方向性電磁鋼板では、前記化学組成が、Sn:0.005%~0.10%、Sb:0.005%~0.10%、から選ばれる1種または2種を含有してもよい。
(3)上記(1)または(2)に記載の無方向性電磁鋼板では、前記化学組成が、Mg:0.0005%~0.0100%を含有してもよい。
 本発明の上記態様によれば、良好な冷間圧延性、及び優れた磁気特性を有する無方向性電磁鋼板が得られる。
本発明の一実施形態に係る無方向性電磁鋼板の構造を模式的に示した図である。 同実施形態に係る無方向性電磁鋼板の製造方法の流れの一例を示した図である。
 以下に図面を参照しながら、本発明の好適な実施の一形態について詳細に説明する。本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(無方向性電磁鋼板について)
 無方向性電磁鋼板においては、先だって説明したように、高周波鉄損を低減するために、一般的には、鋼中に合金元素を含有させて鋼板の電気抵抗を上げて、渦電流損を低減させる。ここで、同一の含有量(質量%)の合金元素を含有させることを考えた場合に、Siが、電気抵抗を上昇させやすいので、鉄損の低減に有効な元素である。しかしながら、本発明者らによる検討の結果、Si含有量が4.0質量%を超える場合には、無方向性電磁鋼板の冷間圧延性が著しく低下することが明らかとなった。
 また、Alも、Siと同様に電気抵抗の上昇効果を示す合金元素である。しかしながら、本発明者らによる検討の結果、AlもSiと同様に冷間圧延性の低下を招くことが明らかとなった。また、Al含有量が多くなると、ヒステリシス損が劣化して磁気特性が低下する傾向がある。そのため、無方向性電磁鋼板に、合金元素としてAlを大量に含有させることは、困難である。無方向性電磁鋼板において、ヒステリシス損の劣化による磁気特性の低下を抑制するためには、Al含有量は、少なくすることが好ましい。一方で、本発明者らが鋭意検討を行った結果、Al含有量を低減した鋼材では、粒成長性が低下して、磁気特性が低下することも明らかとなった。
 本発明者らは、Al含有量を低減した場合でも、粒成長性の低下を抑制でき、冷間圧延性と磁気特性とを共に向上させることが可能な方法について鋭意検討を行った。その結果、冷間圧延性への悪影響が少ないMnをSiとともに含有させた上で、更に、La、Ce、Pr、Ndの1種又は2種以上及びTiを複合的に含有させることが有効であることを見出した。
 以下では、図1を参照しながら、本発明の一実施形態に係る無方向性電磁鋼板(本実施形態に係る無方向性電磁鋼板)について、詳細に説明する。
 図1は、本実施形態に係る無方向性電磁鋼板の構造を模式的に示した図である。本実施形態に係る無方向性電磁鋼板10は、図1に模式的に示したように、所定の化学組成の地鉄11を有している。本実施形態に係る無方向性電磁鋼板は、地鉄11のみからなってもよいが、地鉄11の表面に、絶縁被膜13を更に有していることが好ましい。
 以下では、まず、本実施形態に係る無方向性電磁鋼板10の地鉄11について、詳細に説明する。
<地鉄の化学組成について>
 本実施形態に係る無方向性電磁鋼板10の地鉄11は、質量%で、C:0%超、0.0050%以下、Si:3.0%~4.0%、Mn:1.2%~3.3%、P:0%超、0.030%未満、S:0%超、0.0050%以下、sol.Al:0%超、0.0040%以下、N:0%超、0.0040%以下、La、Ce、Pr、Ndの1種又は2種以上:合計で0.0005%~0.0200%、Ca:0.0005%~0.0100%、Ti:0.0005%~0.0100%、 Sn:0%~0.10%、Sb:0%~0.10%、Mg:0%~0.0100%を含有し、残部がFe及び不純物からなり、Si含有量、及び、Mn含有量を用いて、「Si+0.5×Mn」で表される値を計算した場合に、3.8%以上であり、Si含有量、及び、Mn含有量を用いて、「Si-0.5×Mn」で表される値を計算した場合に、2.0%以上である。
 また、本実施形態に係る無方向性電磁鋼板10の地鉄11は、Sn:0.005%~0.10%、Sb:0.005%~0.10%から選ばれる少なくとも1種を含有することが好ましい。
 また、本実施形態に係る無方向性電磁鋼板10の地鉄11は、Mg:0.0005%~0.0100%を含有することが好ましい。
 以下では、本実施形態に係る地鉄11の化学組成が上記のように規定される理由について、詳細に説明する。以下では、特に断りの無い限り、化学組成に係る「%」は「質量%」を表す。
[C:0%超、0.0050%以下]
 C(炭素)は、不可避的に含有される元素であるとともに、鉄損劣化(鉄損の増加)を引き起こす元素である。C含有量が0.0050%を超える場合には、無方向性電磁鋼板において鉄損劣化が生じ、良好な磁気特性を得ることができない。従って、本実施形態に係る無方向性電磁鋼板では、C含有量を、0.0050%以下とする。C含有量は、好ましくは0.0040%以下であり、より好ましくは0.0030%以下である。
 C含有量は、少なければ少ないほど好ましいが、Cは不可避的に含有される元素であり、下限を0%超とする。また、C含有量を0.0005%よりも低減させようとすると、大幅なコストアップとなる。従って、C含有量は、0.0005%以上としてもよい。
[Si:3.0%~4.0%]
 Si(ケイ素)は、鋼の電気抵抗を上昇させて渦電流損を低減させ、高周波鉄損を改善する元素である。また、Siは、固溶強化能が大きいため、無方向性電磁鋼板の高強度化にも有効な元素である。無方向性電磁鋼板において、高強度化は、モータの高速回転時の変形抑制や疲労破壊抑制といった観点から必要である。このような効果を十分に発揮させるためには、Si含有量を3.0%以上とすることが必要である。Si含有量は、好ましくは3.1%以上、より好ましくは3.2%以上である。
 一方、Si含有量が4.0%を超える場合には、加工性が著しく劣化し、冷間圧延を実施することが困難となったり、冷間圧延の途中で鋼板が破断したりする(すなわち、冷間圧延性が低下する)。従って、Si含有量は、4.0%以下とする。Si含有量は、好ましくは3.9%以下であり、より好ましくは3.8%以下である。
[Mn:1.2%~3.3%]
 Mn(マンガン)は、電気抵抗を上昇させることで渦電流損を低減し、高周波鉄損を改善するために有効な元素である。また、Mnは、Siより固溶強化能は小さいものの、加工性を劣化させることなく、高強度化に寄与できる元素である。このような効果を十分に発揮させるために、Mn含有量を1.2%以上とすることが必要である。Mn含有量は、好ましくは1.3%以上、より好ましくは1.4%以上、更に好ましくは1.5%以上である。
 一方、Mn含有量が3.3%を超える場合には、磁束密度の低下が顕著となる。従って、Mn含有量は、3.3%以下とする。Mn含有量は、好ましくは3.2%以下であり、より好ましくは3.1%以下であり、更に好ましくは3.0%以下である。
[P:0%超、0.030%未満]
 P(リン)は、Si及びMn含有量が多い高合金鋼において、著しく加工性を劣化させて冷間圧延を困難にする元素である。従って、P含有量は、0.030%未満とする。P含有量は、好ましくは0.020%以下であり、より好ましくは、0.010%以下である。
 P含有量は、少なければ少ないほど良いが、Pは不可避的に含有される元素であり、下限を0%超とする。P含有量を0.001%未満にしようとすると、大幅なコストアップを招く。従って、下限を0.001%以上とすることが好ましい。より好ましくは0.002%以上である。
[S:0%超、0.0050%以下]
 S(硫黄)は、不可避的に含有される元素である。また、Sは、MnSの微細析出物を形成することで鉄損を増加させ、無方向性電磁鋼板の磁気特性を劣化させる元素である。そのため、S含有量は、0.0050%以下とする必要がある。S含有量は、好ましくは0.0040%以下であり、より好ましくは、0.0035%以下である。
 S含有量は、少なければ少ないほど好ましいが、Sは不可避的に含有される元素であり、下限を0%超とする。S含有量を0.0001%よりも低減させようとすると、大幅なコストアップを招く。従って、S含有量は、0.0001%以上とすることが好ましい。
[sol.Al:0%超、0.0040%以下]
 Al(アルミニウム)は、鋼中に固溶されると、無方向性電磁鋼板の電気抵抗を上昇させることで渦電流損を低減し、高周波鉄損を改善する元素である。しかしながら、本実施形態に係る無方向性電磁鋼板では、Alよりも加工性を劣化させずに電気抵抗を上昇させる元素であるMnを積極的に含有させる。そのため、Alを積極的に含有させる必要はない。また、sol.Al(酸可溶Al)含有量が0.0040%を超えると、鋼中に微細な窒化物が析出して熱延板焼鈍や仕上焼鈍での結晶粒成長を阻害し、磁気特性が劣化する。従って、sol.Al含有量は、0.0040%以下とする。sol.Al含有量は、好ましくは0.0030%以下、より好ましくは0.0020%以下である。
 一方、Alは不可避的に含有される元素であり、下限を0%超とする。また、sol.Al含有量を0.0001%よりも低減させようとすると、大幅なコストアップを招く。従って、sol.Al含有量は、0.0001%以上としてもよい。
[N:0%超、0.0040%以下]
 N(窒素)は、不可避的に含有される元素である。また、Nは、鋼中で微細な窒化物を形成して鉄損を増加させ、無方向性電磁鋼板の磁気特性を劣化させる元素である。そのため、N含有量は、0.0040%以下とする必要がある。N含有量は、好ましくは0.0030%以下であり、より好ましくは0.0020%以下である。
 一方、Nは不可避的に含有される元素であり、下限を0%超とする。また、N含有量は、少なければ少ないほど良いが、N含有量を0.0001%よりも低減させようとすると、大幅なコストアップを招く。従って、N含有量は、0.0001%以上としてもよい。より好ましくは、0.0003%以上である。
[Ti:0.0005%~0.0100%]
 Ti(チタン)は、上記MnやSiの原材料中に不可避的に含有される。Tiは、地鉄中のC、N、Oなどと結合してTiN、TiC、Ti酸化物などの微小析出物を形成し、焼鈍中の結晶粒の成長を阻害して磁気特性を劣化させる元素である。そのため、従来、地鉄中のTi含有量を極力少なくするために、高純度化されたMnやSiの原材料を利用することが行われてきた。
 しかしながら、本発明者らが検討を行った結果、以下で説明するLa、Ce、Pr及びNdの1種又は2種以上を、Tiとともに複合的に含有させることで、焼鈍中の結晶粒の成長を阻害せずに、粒成長性を保持可能であることが明らかとなった。その原因はまだ明確ではないが、生成したTiN、TiC、Ti酸化物等の微小析出物がLa、Ce、Pr及びNdの1種又は2種以上の化合物と合体することで粗大化されて、結晶粒の成長を阻害しない、より大きな析出物になったためと考えられる。すなわち、粗大な析出物が生成されることによって粒成長を阻害する微小な析出物が減少し、粒成長性の低下が抑制されると考えられる。
 更に、従来、地鉄中におけるTi含有量を極力少なくするために、原材料の高純度化が図られてきたが、La、Ce、Pr及びNdの1種又は2種以上を含有させることでTiの悪影響を回避可能であるので、原材料の過度の高純度化を図らなくともよくなる。その結果、より高性能な無方向性電磁鋼板をより低コストで製造することが可能となる。
 本実施形態に係る無方向性電磁鋼板では、La、Ce、Pr及びNdの1種又は2種以上を含有させることにより、原材料からTiが混入しても結晶粒成長性が確保できる。そのため、原材料の過度の高純度化を図る必要がない。コストの観点からTiを含有するMnやSiの原材料を使用することを考慮し、Ti含有量は0.0005%以上とする。しかしながら、Ti含有量が0.0100%を超える場合には、許容される最大量のLa、Ce、Pr及びNdの1種又は2種以上を含有させたとしても、Tiによる悪影響を防止することが困難となる。従って、Ti含有量は、0.0005%以上、0.0100%以下とする。La、Ce、Pr及びNdの1種又は2種以上と複合的に含有されることによる粒成長性の改善効果をより確実に発現させ、かつ低コスト化をはかるために、Ti含有量は、好ましくは、0.0015%以上、0.0080%以下であり、より好ましくは、0.0025%以上、0.0060%以下である。
[La、Ce、Pr及びNdの1種又は2種以上:合計で0.0005%~0.0200%]
 La、Ce、Pr、Ndは、Sと結合して粗大な硫化物、硫酸化物又はこれらの両方を形成することで微細なMnSの析出を抑制し、焼鈍時の結晶粒成長を促進する元素である。更に、La、Ce、Pr、Ndは、Tiに起因して生成されるTiN、TiC、Ti酸化物等の微小析出物を、La、Ce、Pr、Ndの硫化物もしくは硫酸化物又はこれらの両方に複合析出させて結晶粒成長性を改善し、磁気特性を向上させる元素である。このような効果を得るために、La、Ce、Pr及びNdの1種又は2種以上の含有量は、合計で0.0005%以上であることが必要である。一方、La、Ce、Pr及びNdの1種又は2種以上の含有量が合計で0.0200%を超える場合には、上記のような微小析出物の粗大化効果が飽和する上、経済的に不利となるので好ましくない。従って、La、Ce、Pr及びNdの1種又は2種以上の含有量は、合計で0.0200%以下とする。La、Ce、Pr及びNdの1種又は2種以上の含有量は、好ましくは合計で0.0010%以上、0.0150%以下であり、より好ましくは合計で0.0020%以上、0.0100%以下である。
[Ca:0.0005%~0.0100%]
 Ca(カルシウム)は、Sと結合して粗大な化合物を形成することで微細なMnSの析出を抑制し、焼鈍時の結晶粒成長を促進する元素である。更に、La、Ce、Pr、Ndの1種又は2種以上との複合含有により、連続鋳造時の酸化物起因のノズル閉塞を回避するのに有効な元素である。このような効果を得るために、Ca含有量は、0.0005%以上であることが必要である。好ましくは、0.0010%以上である。
 一方、Ca含有量が0.0100%を超える場合には、上記のような結晶粒成長性の改善効果やノズル閉塞の抑制効果が飽和し、経済的に不利となる。従って、Ca含有量は、0.0100%以下とする。Ca含有量は、好ましくは0.0080%以下であり、より好ましくは0.0060%以下である。
[Sn:0%~0.10%]
[Sb:0%~0.10%]
 Sn(スズ)及びSb(アンチモン)は、表面に偏析し焼鈍中の酸化や窒化を抑制することで、低い鉄損を確保するのに有用な元素である。従って、本実施形態に係る無方向性電磁鋼板では、上記効果を得るために、Sn又はSbの少なくとも何れか一方を、地鉄中に含有させてもよい。上記効果を十分に発揮させるためには、Sn又はSbの含有量を、それぞれ0.005%以上とすることが好ましい。より好ましくは、0.010%以上である。
 一方、Sn又はSbの含有量がそれぞれ0.10%を超える場合には、地鉄の延性が低下して冷間圧延が困難となる可能性がある。従って、Sn又はSbの含有量は、含有させる場合でも、それぞれ0.10%以下とすることが好ましい。より好ましくは、それぞれ0.05%以下である。
 Sn、Sbは任意元素であり、必ずしも含有させる必要がないので、下限は0%である。
[Mg:0%~0.0100%]
 Mg(マクネシウム)は、Sと結合して粗大な化合物を形成する。MgとSとの粗大な化合物が形成されると、微細なMnSの析出が抑制され、焼鈍時の結晶粒成長が促進されるので、低い鉄損を確保するのに有利である。従って、本実施形態に係る無方向性電磁鋼板では、上記効果を得るために、Mgを含有させてもよい。効果を十分に発揮させるためには、Mg含有量を、0.0005%以上とすることが好ましい。一方、Mg含有量が0.0100%を超える場合には、結晶粒成長性の改善効果が飽和し、経済的に不利となるので好ましくない。従って、Mg含有量は、0.0100%以下とすることが好ましい。Mgを地鉄中に含有させる場合に、Mg含有量は、より好ましくは、0.0050%以下である。
 Mgは任意元素であり、必ずしも含有させる必要がないので、下限は0%である。
 本実施形態に係る無方向性電磁鋼板は、上記の元素を含み、残部がFe及び不純物からなることを基本とする。しかしながら、本実施形態に係る無方向性電磁鋼板において、上述した元素以外のNi(ニッケル)、Cr(クロム)、Cu(銅)、及び、Mo(モリブデン)等の元素をさらに含有してもよい。これらの元素をそれぞれ0.50%以下含有しても、本実施形態に係る無方向性電磁鋼板の効果は損なわれない。
 また、上記の元素の他に、Pb(鉛)、Bi(ビスマス)、V(バナジウム)、As(ヒ素)、B(ホウ素)などの元素をさらに含有してもよい。これらの元素がそれぞれ0.0050%以下含まれていても、本実施形態に係る無方向性電磁鋼板の効果は損なわれない。
 本実施形態に係る無方向性電磁鋼板は、上記のように各元素の含有量を制御した上で、Si含有量とMn含有量とが所定の関係性を満足するように制御される必要がある。
[Si+0.5×Mn:3.8%以上]
 鉄損、特に本実施形態に係る無方向性電磁鋼板が目的とするW10/400のような高周波鉄損を低減する(改善する)場合には、高合金化して鋼板の電気抵抗を増加させることが有効である。具体的には、Si+0.5×Mnが3.8%以上となるようにSi、Mnを含有させることで、高周波鉄損をさらに低減することができる。そのため、Si+0.5×Mnを3.8%以上とする。Si+0.5×Mnは、好ましくは3.9%以上、より好ましくは4.0%以上、更に好ましくは4.4%以上である。
 Si+0.5×Mnの実質的な上限は、Si及びMnの含有量の上限から計算される値である。
[Si-0.5×Mn:2.0%以上]
 本実施形態に係る無方向性電磁鋼板では、含有されたLa、Ce、Pr、Nd、Caが、Sを硫化物や酸硫化物として固定する。この場合、鋼板の表面の酸化や窒化が促進され、磁気特性が低下するおそれがある。
 しかしながら、Si-0.5×Mn≧2.0とすることにより、磁気特性の低下を抑制することができる。その理由は明確ではないが、Si-0.5×Mn≧2.0とすることにより、仕上げ焼鈍の加熱時に、緻密なSiOの薄い酸化層が鋼板表面に生じやすくなり、仕上げ焼鈍の均熱過程での酸化や窒化が抑制されるためであると考えられる。
 また、Siは、フェライト相形成促進元素(いわゆる、フェライトフォーマー元素)である。一方で、Mnは、オーステナイト相形成促進元素(いわゆる、オーステナイトフォーマー元素)である。従って、Si及びMnそれぞれの含有量に応じて、無方向性電磁鋼板の金属組織は変化し、無方向性電磁鋼板は、変態点を有する成分系となったり、変態点を有しない成分系となったりする。本実施形態に係る無方向性電磁鋼板では、地鉄における平均結晶粒径を適度に大きくすることが求められており、変態点を有しない成分系とすることは、結晶粒径を大きくするための有効な手段となる。そのため、変態点を有しない成分系となるように、Si及びMnのそれぞれの含有量は、所定の関係性を満たすことが好ましい。
 本発明者らの検討によれば、Mnによるオーステナイト相形成促進能(換言すれば、フェライト相形成促進能を打ち消す効果)は、Siによるフェライト相形成促進能の0.5倍程度と考えられる。そのため、本実施形態におけるフェライト相形成促進能の等量は、Siの含有量を基準として、「Si-0.5×Mn」として表すことができる。
 Si-0.5×Mnの値が2.0%未満である場合には、無方向性電磁鋼板は、変態点を有する成分系となってしまう。その結果、製造途中の高温処理時において鋼板の金属組織がフェライト単相ではなくなり、無方向性電磁鋼板の磁気特性が低下する懸念がある。従って、Si-0.5×Mnの値は、2.0%以上とする。好ましくは2.1%以上である。
 一方、Si-0.5×Mnの上限値は、特に規定するものではないが、本実施形態に係る無方向性電磁鋼板のSi含有量及びMn含有量の範囲から、Si-0.5×Mnの値は、3.4%を超えることはあり得ない。従って、Si-0.5×Mnの上限値は、実質的には、3.4%となる。
 以上、本実施形態に係る無方向性電磁鋼板における地鉄の化学組成について、詳細に説明した。
 無方向性電磁鋼板における地鉄の化学組成を、事後的に測定する場合には、公知の各種測定法を利用することが可能である。例えば、スパーク放電発光分析法、ICP発光分析法、更に、C、Sを精度良く測定する場合には燃焼-赤外吸収法、O、Nを精度良く測定する場合には不活性ガス融解-赤外吸収法/熱伝導率法等を適宜利用すればよい。
<地鉄の板厚について>
 本実施形態に係る無方向性電磁鋼板10における地鉄11の板厚(図1における厚みt)は、渦電流損を低減させて高周波鉄損を低減するために、0.40mm以下とすることが好ましい。一方、地鉄11の板厚tが0.10mm未満である場合には、板厚が薄いために焼鈍ラインの通板が困難となる可能性がある。従って、無方向性電磁鋼板10における地鉄11の板厚tは、0.10mm以上、0.40mm以下とすることが好ましい。無方向性電磁鋼板10における地鉄11の板厚tは、より好ましくは、0.15mm以上、0.35mm以下である。
 以上、本実施形態に係る無方向性電磁鋼板10の地鉄11について、詳細に説明した。
<絶縁被膜について>
 続いて、本実施形態に係る無方向性電磁鋼板10が有していることが好ましい絶縁被膜13について、簡単に説明する。
 無方向性電磁鋼板の磁気特性を向上させるためには、鉄損を低減することが重要である。鉄損は、渦電流損とヒステリシス損とから構成されている。地鉄11の表面に絶縁被膜13を設けることで、鉄心として積層された電磁鋼板間の導通を抑制して鉄心の渦電流損を低減することが可能となるので、無方向性電磁鋼板10の実用的な磁気特性を更に向上させることが可能となる。
 ここで、本実施形態に係る無方向性電磁鋼板10が備える絶縁被膜13は、無方向性電磁鋼板の絶縁被膜として用いられるものであれば、特に限定されるものではなく、公知の絶縁被膜を用いることが可能である。このような絶縁被膜として、例えば、無機物を主体とし、更に有機物を含んだ複合絶縁被膜を挙げることができる。ここで、複合絶縁被膜とは、例えば、クロム酸金属塩、リン酸金属塩又はコロイダルシリカ、Zr化合物、Ti化合物等の無機物の少なくとも何れかを主体とし、微細な有機樹脂の粒子が分散している絶縁被膜である。特に、近年ニーズの高まっている製造時の環境負荷低減の観点からは、リン酸金属塩やZrあるいはTiのカップリング剤、又は、これらの炭酸塩やアンモニウム塩を出発物質として用いた絶縁被膜が好ましく用いられる。
 上記のような絶縁被膜13の付着量は、特に限定するものではないが、例えば、片面あたり0.1g/m以上2.0g/m以下程度とすることが好ましく、片面あたり0.3g/m以上1.5g/m以下とすることがより好ましい。上述した付着量となるように絶縁被膜13を形成することで、優れた均一性を保持することが可能となる。絶縁被膜13の付着量を、事後的に測定する場合には、公知の各種測定法を利用することが可能である。絶縁被膜13の付着量は、例えば、絶縁被膜13を形成した無方向性電磁鋼板10を熱アルカリ溶液に浸漬することで絶縁被膜13のみを除去し、絶縁被膜13の除去前後の質量差から算出することが可能である。
<無方向性電磁鋼板の磁気特性の測定方法について>
 本実施形態に係る無方向性電磁鋼板10は、上記のような構造を有することで、優れた磁気特性を示す。ここで、本実施形態に係る無方向性電磁鋼板10の示す各種の磁気特性は、JIS C2550に規定されたエプスタイン法や、JIS C2556に規定された単板磁気特性測定法(Single Sheet Tester:SST)に則して、測定することが可能である。
 以上、図1を参照しながら、本実施形態に係る無方向性電磁鋼板10について、詳細に説明した。
(無方向性電磁鋼板の製造方法について)
 続いて、図2を参照しながら、以上説明したような本実施形態に係る無方向性電磁鋼板10の好ましい製造方法について、簡単に説明する。
 図2は、本実施形態に係る無方向性電磁鋼板の製造方法の流れの一例を示した図である。
 本実施形態に係る無方向性電磁鋼板10の製造方法では、以上説明したような所定の化学組成を有する鋼塊に対して、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上焼鈍を順に実施する。また、絶縁被膜13を地鉄11の表面に形成する場合には、上記仕上焼鈍の後に絶縁被膜の形成が行われる。以下、本実施形態に係る無方向性電磁鋼板10の製造方法で実施される各工程について、詳細に説明する。
<熱間圧延工程>
 本実施形態に係る無方向性電磁鋼板の製造方法では、まず、上記の化学組成を有する鋼塊(スラブ)を加熱し、加熱された鋼塊に対して熱間圧延を行って、熱延鋼板を得る(ステップS101)。熱間圧延に供する際の鋼塊の加熱温度については、特に規定するものではないが、例えば、1050℃~1300℃とすることが好ましい。鋼塊の加熱温度は、より好ましくは、1050℃~1250℃である。
 また、熱間圧延後の熱延鋼板の板厚についても、特に規定するものではないが、地鉄の最終板厚を考慮して、例えば、1.6mm~3.5mm程度とすることが好ましい。熱間圧延工程は、鋼板の温度が700℃~1000℃の範囲にあるうちに終了することが好ましい。熱間圧延の終了温度は、より好ましくは、750℃~950℃である。
<熱延板焼鈍工程>
 上記熱間圧延の後には、熱延板焼鈍(熱延鋼板に対する焼鈍)が実施される(ステップS103)。連続焼鈍の場合には、熱延鋼板に対して、例えば、750℃~1200℃で、10秒~10分の均熱を含む焼鈍を実施することが好ましい。また、箱焼鈍の場合、熱延鋼板に対して、例えば、650℃~950℃で、30分~24時間の均熱を含む焼鈍を実施することが好ましい。
 熱延板焼鈍工程を実施した場合と比較して磁気特性はやや劣ることになるが、コスト削減のために、熱延板焼鈍工程を省略してもよい。
<酸洗工程>
 上記熱延板焼鈍工程の後には、酸洗が実施される(ステップS105)。これにより、熱延板焼鈍の際に鋼板の表面に形成された、酸化物を主体とするスケール層が除去される。熱延板焼鈍が箱焼鈍である場合、脱スケール性の観点から、酸洗工程は、熱延板焼鈍前に実施することが好ましい。
<冷間圧延工程>
 上記酸洗工程の後(熱延板焼鈍が箱焼鈍で実施される場合は、熱延板焼鈍工程の後となる場合もある。)には、熱延鋼板に対し、冷間圧延が実施される(ステップS107)。冷間圧延では、地鉄の最終板厚が0.10mm以上0.40mm以下となるような圧下率で、スケールの除去された酸洗板を圧延することが好ましい。
<仕上焼鈍工程>
 上記冷間圧延工程の後には、冷間圧延工程によって得られた冷延鋼板に対し、仕上焼鈍が実施される(ステップS109)。本実施形態に係る無方向性電磁鋼板の製造方法では、仕上焼鈍の昇温過程を、急速加熱とすることが好ましい。昇温過程の加熱を急速に行うことにより、地鉄11において、磁気特性に有利な再結晶集合組織が形成される。仕上焼鈍の昇温過程を急速加熱とする場合、仕上焼鈍は、連続焼鈍で実施することが好ましい。
 具体的には、昇温過程では、平均昇温速度を1℃/秒~2000℃/秒とすることが好ましい。また、昇温時の炉内の雰囲気を、Hの割合が10体積%~100体積%であるH及びNの混合雰囲気(すなわち、H+N=100体積%)とし、雰囲気の露点を30℃以下とすることが好ましい。平均昇温速度は、より好ましくは、5℃/秒~1500℃/秒であり、雰囲気中のHの割合は、より好ましくは、15体積%~90体積%であり、雰囲気の露点は、より好ましくは、20℃以下であり、更に好ましくは、10℃以下である。上記の平均加熱速度は、例えば、ガス燃焼による加熱の場合には直接加熱やラジアントチューブを用いた間接加熱を用いたり、その他に通電加熱又は誘導加熱等といった公知の加熱方法を用いたりすることで、実現することが可能である。
 昇温過程の後の均熱過程では、均熱温度を、700℃~1100℃とし、均熱時間を、1秒~300秒とし、雰囲気を、Hの割合が10体積%~100体積%であるH及びNの混合雰囲気(すなわち、H+N=100体積%)とし、雰囲気の露点を20℃以下とすることが好ましい。均熱温度は、より好ましくは、750℃~1050℃であり、雰囲気中のHの割合は、より好ましくは、15体積%~90体積%であり、雰囲気の露点は、より好ましくは、10℃以下であり、更に好ましくは、0℃以下である。
 均熱過程の後の冷却過程では、平均冷却速度を1℃/秒~50℃/秒で200℃以下まで冷却することが好ましい。平均冷却速度は、より好ましくは、5℃/秒~30℃/秒である。
 上記のような各工程を含む製造方法によれば、本実施形態に係る無方向性電磁鋼板10を製造することができる。
<絶縁被膜形成工程>
 上記仕上焼鈍の後には、必要に応じて、絶縁被膜の形成工程が実施される(ステップS111)。絶縁被膜の形成工程については、特に限定されるものではなく、上記のような公知の絶縁被膜処理液を用いて、公知の方法により処理液の塗布及び乾燥を行えばよい。
 絶縁被膜が形成される地鉄の表面は、処理液を塗布する前に、アルカリなどによる脱脂処理や、塩酸、硫酸、リン酸などによる酸洗処理など、任意の前処理を施してもよいし、これら前処理を施さずに仕上焼鈍後のままの表面であってもよい。
 以上、図2を参照しながら、本実施形態に係る無方向性電磁鋼板の製造方法について、詳細に説明した。
 以下では、実施例を示しながら、本発明に係る無方向性電磁鋼板について、具体的に説明する。以下に示す実施例は、本発明に係る無方向性電磁鋼板のあくまでも一例であって、本発明に係る無方向性電磁鋼板が下記の例に限定されるものではない。
(実験例1)
 以下の表1に示す組成を含有し、残部がFe及び不純物からなる鋼スラブを、1150℃に加熱した後、熱間圧延にて2.0mm厚に圧延した。続いて、熱延鋼板を連続焼鈍式の焼鈍炉で、均熱温度が1000℃で均熱時間が40秒の熱延板焼鈍を行った後、冷間圧延を行って0.25mm厚の冷延鋼板とした。この冷延鋼板に対し、均熱温度が1000℃で均熱時間が15秒の仕上焼鈍を行った。その後、更にリン酸金属塩を主体とし、アクリル樹脂のエマルジョンを含む溶液を鋼板の両面に塗布及び焼き付けし、複合絶縁被膜を形成することで無方向性電磁鋼板を製造した。
 上記の仕上焼鈍は、昇温過程、均熱過程における、露点が-30℃、Hの割合が30体積%のH及びNの混合雰囲気下で実施した。また、仕上焼鈍時の昇温過程における平均昇温速度を20℃/秒、冷却過程における平均冷却速度を20℃/秒とした。仕上げ焼鈍後は200℃以下まで冷却した。
 表1において、「Tr.」とは、該当する元素を意図して含有させていないことを表す。また、下線は、本発明の範囲から外れていることを表す。
 その後、製造したそれぞれの無方向性電磁鋼板について、JIS C2550に規定されたエプスタイン法により、磁束密度B50及び鉄損W10/400を評価した。得られた結果を、表1にあわせて示した。
Figure JPOXMLDOC01-appb-T000001
 上記表1から明らかなように、La、Ce、Pr及びNdの合計含有量とCa含有量が本発明の範囲より低めに外れた試験番号1、Ti含有量が本発明範囲より高めに外れた試験番号8、La、Ce、Pr及びNdの合計含有量が本発明範囲より低めに外れた試験番号11は、鉄損及び磁束密度が劣っていた。また、Ca含有量が本発明の範囲より低めに外れた試験番号9は、連続鋳造時にノズル閉塞が生じたため、製造を断念した。一方、鋼板の化学組成が本発明の範囲内である試験番号2、3、4、5、6、7及び10は、鉄損と磁束密度とがともに優れていた。
(実験例2)
 表2に示す組成を含有し、残部がFe及び不純物からなる鋼スラブを、1150℃に加熱した後、熱間圧延にて2.0mm厚に圧延した。続いて、熱延鋼板を均熱温度が1000℃で均熱時間が40秒となる条件で連続焼鈍式の焼鈍炉で熱延板焼鈍した後、冷間圧延を行って0.25mm厚の冷延鋼板を得た。その後、この冷延鋼板に対し、均熱温度が1000℃で均熱時間が15秒となる条件で仕上焼鈍を行った。その後、更にリン酸金属塩を主体とし、アクリル樹脂のエマルジョンを含む溶液を鋼板の両面に塗布及び焼き付けし、複合絶縁被膜を形成することで無方向性電磁鋼板を製造した。
 ここで、上記の仕上焼鈍は、昇温過程及び均熱過程における、雰囲気露点が-30℃、Hの割合が20体積%のH及びNの混合雰囲気下で実施した。また、仕上焼鈍時の昇温過程における平均昇温速度を20℃/秒、冷却過程における平均冷却速度を20℃/秒とした。仕上げ焼鈍後は200℃以下まで冷却した。
 表2において、「Tr.」とは、該当する元素を意図して含有させていないことを表す。また、下線は、本発明の範囲から外れていることを表す。
 その後、製造したそれぞれの無方向性電磁鋼板について、JIS C2550に規定されたエプスタイン法により、磁束密度B50及び鉄損W10/400を評価した。得られた結果を、表2にあわせて示した。
Figure JPOXMLDOC01-appb-T000002
 P含有量が本発明の範囲より高めに外れた試験番号14、及び、Si含有量が本発明の範囲より高めに外れた試験番号23は、冷間圧延時に破断したため、磁気測定が出来なかった。鋼板の化学組成が本発明の範囲内である試験番号12、13、15、16、18、19、20、24、25、及び26は、冷間圧延が可能であり、鉄損及び磁束密度が優れていた。一方、sol.Al含有量が本発明の範囲から高めに外れた試験番号17は、sol.Alを除きほぼ同一の組成である本発明の範囲内の試験番号16と比較して鉄損が劣っていた。また、Mn含有量が本発明の範囲より高めに外れた試験番号22は、鉄損と磁束密度とが劣っていた。また、Si-0.5×Mnが本発明の範囲より低めに外れた試験番号21は鉄損と磁束密度とが劣っていた。
(実験例3)
 以下の表3に示す組成を含有し、残部がFe及び不純物からなる鋼スラブを、1150℃に加熱した後、熱間圧延にて2.0mm厚に圧延した。続いて、熱延鋼板を均熱温度が1000℃、均熱時間が40秒となる条件で連続焼鈍式の焼鈍炉で熱延板焼鈍した後、冷間圧延を行って0.25mm厚の冷延鋼板を得た。その後、この冷延鋼板に、均熱温度が800℃、均熱時間が15秒となる条件で仕上焼鈍を行った。その後、リン酸金属塩を主体とし、アクリル樹脂のエマルジョンを含む溶液を鋼板の両面に塗布及び焼き付けし、複合絶縁被膜を形成することで無方向性電磁鋼板を製造した。続いて、上記鋼板に対し、750℃×2hrの歪取焼鈍を施した。
 ここで、上記の仕上焼鈍は、昇温過程及び均熱過程における、雰囲気露点が-30℃、Hの割合が20体積%のH及びNの混合雰囲気下で実施した。また、仕上焼鈍時の昇温過程における平均昇温速度15℃/秒、冷却過程における平均冷却速度を15℃/秒とした。仕上げ焼鈍後は200℃以下まで冷却した。
 表3において、「Tr.」とは、該当する元素を意図して含有させていないことを表す。また、下線は、本発明の範囲から外れていることを表す。
 その後、製造したそれぞれの無方向性電磁鋼板について、JIS C2550に規定されたエプスタイン法により、磁束密度B50及び鉄損W10/400を評価した。得られた結果を、表3にあわせて示した。
Figure JPOXMLDOC01-appb-T000003
 実験例3の各試験番号の無方向性電磁鋼板の磁気特性は、歪取り焼鈍を実施したことにより、歪取り焼鈍を行わない場合と比較すれば、全般的に向上しているものの、特に、鋼板の化学組成が本発明の範囲である試験番号27、28、31、及び32は、鉄損及び磁束密度に優れていた。一方、La、Ce、Pr、Ndの合計含有量、及び、Ca含有量が本発明の範囲から低めに外れた試験番号29は、La、Ce、Pr、Nd、Caを除きほぼ同一の組成である試験番号27と比較して鉄損と磁束密度とが劣っていた。また、Si+0.5×Mnが低めに外れた試験番号30は、鉄損が劣っていた。以上のように、歪取焼鈍を行う場合にも、本発明に係る無方向性電磁鋼板は、磁気特性が向上することが明らかとなった。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明は上記例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 本発明によれば、良好な冷間圧延性、及び優れた磁気特性を有する無方向性電磁鋼板が得られるので、産業上の利用可能性が高い。
 10  無方向性電磁鋼板
 11  地鉄
 13  絶縁被膜

Claims (3)

  1.  化学組成が、質量%で、
     C:0%超、0.0050%以下、
     Si:3.0%~4.0%、
     Mn:1.2%~3.3%、
     P:0%超、0.030%未満、
     S:0%超、0.0050%以下、
     sol.Al:0%超、0.0040%以下、
     N:0%超、0.0040%以下、
     La、Ce、Pr、Ndの1種又は2種以上:合計で0.0005%~0.0200%、
     Ca:0.0005%~0.0100%、
     Ti:0.0005%~0.0100%、
     Sn:0%~0.10%、
     Sb:0%~0.10%、
     Mg:0%~0.0100%、
    を含有し、残部がFe及び不純物からなり、
     Si-0.5×Mn:2.0%以上であり、
     Si+0.5×Mn:3.8%以上である
    ことを特徴とする無方向性電磁鋼板。
  2.  前記化学組成が、
     Sn:0.005%~0.10%、
     Sb:0.005%~0.10%、
    から選ばれる1種または2種を含有する
    ことを特徴とする請求項1に記載の無方向性電磁鋼板。
  3.  前記化学組成が、
     Mg:0.0005%~0.0100%
    を含有する
    ことを特徴とする請求項1または2に記載の無方向性電磁鋼板。
PCT/JP2018/000981 2017-01-16 2018-01-16 無方向性電磁鋼板 WO2018131712A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/470,122 US11053574B2 (en) 2017-01-16 2018-01-16 Non-oriented electrical steel sheet
KR1020197019611A KR102286319B1 (ko) 2017-01-16 2018-01-16 무방향성 전자 강판
JP2018561449A JP6870687B2 (ja) 2017-01-16 2018-01-16 無方向性電磁鋼板
PL18739441T PL3569728T3 (pl) 2017-01-16 2018-01-16 Blacha cienka z niezorientowanej stali elektrotechnicznej
CN201880004720.1A CN110023525B (zh) 2017-01-16 2018-01-16 无方向性电磁钢板
EP18739441.6A EP3569728B1 (en) 2017-01-16 2018-01-16 Non-oriented electrical steel sheet
BR112019009604-3A BR112019009604B1 (pt) 2017-01-16 2018-01-16 Chapa de aço elétrica não orientada

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017005212 2017-01-16
JP2017-005212 2017-01-16

Publications (1)

Publication Number Publication Date
WO2018131712A1 true WO2018131712A1 (ja) 2018-07-19

Family

ID=62840169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000981 WO2018131712A1 (ja) 2017-01-16 2018-01-16 無方向性電磁鋼板

Country Status (9)

Country Link
US (1) US11053574B2 (ja)
EP (1) EP3569728B1 (ja)
JP (1) JP6870687B2 (ja)
KR (1) KR102286319B1 (ja)
CN (1) CN110023525B (ja)
BR (1) BR112019009604B1 (ja)
PL (1) PL3569728T3 (ja)
TW (1) TWI654317B (ja)
WO (1) WO2018131712A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067723A1 (ko) * 2018-09-27 2020-04-02 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP2020076138A (ja) * 2018-11-09 2020-05-21 日本製鉄株式会社 無方向性電磁鋼板
JP2020139198A (ja) * 2019-02-28 2020-09-03 日本製鉄株式会社 無方向性電磁鋼板
JP2021080495A (ja) * 2019-11-15 2021-05-27 日本製鉄株式会社 無方向性電磁鋼板の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090156A1 (ja) * 2018-10-31 2020-05-07 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
BR112022016302A2 (pt) * 2020-04-02 2022-11-29 Nippon Steel Corp Chapa de aço elétrico não orientada, e, método para fabricar chapa de aço elétrico não orientada
US20230366058A1 (en) * 2020-11-27 2023-11-16 Nippon Steel Corporation Non-oriented electrical steel sheet, method for producing same, and hot-rolled steel sheet

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024531A (ja) * 2008-07-24 2010-02-04 Nippon Steel Corp 高周波用無方向性電磁鋼鋳片の製造方法
JP2011006731A (ja) * 2009-06-24 2011-01-13 Jfe Steel Corp 分割モータ用コア材料
WO2013046661A1 (ja) * 2011-09-27 2013-04-04 Jfeスチール株式会社 無方向性電磁鋼板
JP2015206092A (ja) * 2014-04-22 2015-11-19 Jfeスチール株式会社 積層電磁鋼板およびその製造方法
CN105132808A (zh) * 2015-10-14 2015-12-09 安徽工业大学 一种复合元素处理的高效电机用无取向硅钢的制备方法
WO2016027565A1 (ja) 2014-08-20 2016-02-25 Jfeスチール株式会社 磁気特性に優れる無方向性電磁鋼板
JP2016041832A (ja) * 2014-08-14 2016-03-31 Jfeスチール株式会社 磁気特性に優れる無方向性電磁鋼板
JP2016130360A (ja) 2015-01-07 2016-07-21 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP2016138316A (ja) * 2015-01-28 2016-08-04 Jfeスチール株式会社 無方向性電磁鋼板とモータコア
JP2016145376A (ja) * 2015-02-06 2016-08-12 新日鐵住金株式会社 無方向性電磁鋼板
WO2016136095A1 (ja) 2015-02-24 2016-09-01 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2017005212A (ja) 2015-06-15 2017-01-05 富士電機株式会社 パワー半導体回路及びパワー半導体素子の実装方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW498107B (en) * 2000-04-07 2002-08-11 Nippon Steel Corp Low iron loss non-oriented electrical steel sheet excellent in workability and method for producing the same
KR100544750B1 (ko) 2001-12-26 2006-01-24 주식회사 포스코 무방향성전기강판의 자장열처리방법
CN100476004C (zh) 2003-05-06 2009-04-08 新日本制铁株式会社 铁损优良的无方向性电磁钢板及其制造方法
DE602004031219D1 (de) 2003-05-06 2011-03-10 Nippon Steel Corp As bezüglich eisenverlusten hervorragend ist, und herstellungsverfahren dafür
TWI293332B (en) * 2003-10-06 2008-02-11 Nippon Steel Corp A high-strength non-oriented electrical steel sheet and a fabricated part and a method of producing the same
WO2006126660A1 (ja) 2005-05-23 2006-11-30 Nippon Steel Corporation 被膜密着性に優れる方向性電磁鋼板およびその製造方法
KR101482354B1 (ko) 2012-12-27 2015-01-13 주식회사 포스코 철손이 우수한 방향성 전기강판 및 그 제조방법
WO2014104393A1 (ja) 2012-12-28 2014-07-03 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5995002B2 (ja) 2013-08-20 2016-09-21 Jfeスチール株式会社 高磁束密度無方向性電磁鋼板およびモータ
JP6406522B2 (ja) * 2015-12-09 2018-10-17 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP6624393B2 (ja) * 2016-12-28 2019-12-25 Jfeスチール株式会社 リサイクル性に優れる無方向性電磁鋼板

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024531A (ja) * 2008-07-24 2010-02-04 Nippon Steel Corp 高周波用無方向性電磁鋼鋳片の製造方法
JP2011006731A (ja) * 2009-06-24 2011-01-13 Jfe Steel Corp 分割モータ用コア材料
WO2013046661A1 (ja) * 2011-09-27 2013-04-04 Jfeスチール株式会社 無方向性電磁鋼板
JP2015206092A (ja) * 2014-04-22 2015-11-19 Jfeスチール株式会社 積層電磁鋼板およびその製造方法
JP2016041832A (ja) * 2014-08-14 2016-03-31 Jfeスチール株式会社 磁気特性に優れる無方向性電磁鋼板
WO2016027565A1 (ja) 2014-08-20 2016-02-25 Jfeスチール株式会社 磁気特性に優れる無方向性電磁鋼板
JP2016130360A (ja) 2015-01-07 2016-07-21 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP2016138316A (ja) * 2015-01-28 2016-08-04 Jfeスチール株式会社 無方向性電磁鋼板とモータコア
JP2016145376A (ja) * 2015-02-06 2016-08-12 新日鐵住金株式会社 無方向性電磁鋼板
WO2016136095A1 (ja) 2015-02-24 2016-09-01 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2017005212A (ja) 2015-06-15 2017-01-05 富士電機株式会社 パワー半導体回路及びパワー半導体素子の実装方法
CN105132808A (zh) * 2015-10-14 2015-12-09 安徽工业大学 一种复合元素处理的高效电机用无取向硅钢的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3569728A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067723A1 (ko) * 2018-09-27 2020-04-02 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP2020076138A (ja) * 2018-11-09 2020-05-21 日本製鉄株式会社 無方向性電磁鋼板
JP7328491B2 (ja) 2018-11-09 2023-08-17 日本製鉄株式会社 無方向性電磁鋼板
JP2020139198A (ja) * 2019-02-28 2020-09-03 日本製鉄株式会社 無方向性電磁鋼板
JP7284383B2 (ja) 2019-02-28 2023-05-31 日本製鉄株式会社 無方向性電磁鋼板
JP2021080495A (ja) * 2019-11-15 2021-05-27 日本製鉄株式会社 無方向性電磁鋼板の製造方法
JP7415135B2 (ja) 2019-11-15 2024-01-17 日本製鉄株式会社 無方向性電磁鋼板の製造方法

Also Published As

Publication number Publication date
TWI654317B (zh) 2019-03-21
EP3569728B1 (en) 2021-09-29
US11053574B2 (en) 2021-07-06
JPWO2018131712A1 (ja) 2019-11-07
EP3569728A4 (en) 2020-06-03
KR102286319B1 (ko) 2021-08-06
PL3569728T3 (pl) 2022-02-07
JP6870687B2 (ja) 2021-05-12
BR112019009604A2 (pt) 2019-08-13
CN110023525B (zh) 2021-04-30
KR20190093619A (ko) 2019-08-09
CN110023525A (zh) 2019-07-16
EP3569728A1 (en) 2019-11-20
TW201829803A (zh) 2018-08-16
BR112019009604B1 (pt) 2022-08-02
US20190316239A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP6593555B2 (ja) 無方向性電磁鋼板及び無方向性電磁鋼板の製造方法
CN110573643B (zh) 无取向电磁钢板
WO2018131712A1 (ja) 無方向性電磁鋼板
JP6724712B2 (ja) 無方向性電磁鋼板
JPH11229095A (ja) 高周波用無方向性電磁鋼板およびその製造方法
CN112930408B (zh) 无取向性电磁钢板的制造方法
JP6900889B2 (ja) 無方向性電磁鋼板
JP2014156633A (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板並びに方向性電磁鋼板用表面ガラスコーティング
TWI809799B (zh) 無方向性電磁鋼板及其製造方法
JP7328597B2 (ja) 無方向性電磁鋼板およびその製造方法
TWI777498B (zh) 無方向性電磁鋼板及其製造方法
KR20240015427A (ko) 무방향성 전기강판 및 그 제조 방법
JP2024517690A (ja) 無方向性電磁鋼板およびその製造方法
CN116829753A (zh) 无取向电磁钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18739441

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019009604

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018561449

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197019611

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019009604

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190510

WWE Wipo information: entry into national phase

Ref document number: 2018739441

Country of ref document: EP