WO2018131502A1 - 高選択性腐食センサーシステム - Google Patents

高選択性腐食センサーシステム Download PDF

Info

Publication number
WO2018131502A1
WO2018131502A1 PCT/JP2017/047220 JP2017047220W WO2018131502A1 WO 2018131502 A1 WO2018131502 A1 WO 2018131502A1 JP 2017047220 W JP2017047220 W JP 2017047220W WO 2018131502 A1 WO2018131502 A1 WO 2018131502A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
corrosion
plasmon resonance
surface plasmon
metal
Prior art date
Application number
PCT/JP2017/047220
Other languages
English (en)
French (fr)
Inventor
照和 小迫
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to EP17891313.3A priority Critical patent/EP3570009A4/en
Priority to CN201780079198.9A priority patent/CN110100171A/zh
Publication of WO2018131502A1 publication Critical patent/WO2018131502A1/ja
Priority to US16/445,549 priority patent/US10753854B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/04Corrosion probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance

Definitions

  • the present invention relates to a highly selective corrosion sensor system. Specifically, the present invention relates to a highly selective corrosion sensor system that can analyze and measure various corrosive environments for metals using a surface plasmon resonance sensor.
  • Various sensors have been proposed as sensors that can analyze and measure the environment that causes metal corrosion. For example, salinity derived from seawater flying from the ocean has a great effect on metal corrosion. Therefore, a quartz oscillator type sensor has been proposed as a sensor for measuring the amount of sea salt (see, for example, Patent Document 1). This quartz crystal type sensor measures by utilizing the fact that the resonance frequency of the quartz crystal changes due to adhesion of flying sea salt or the like.
  • quartz resonator type sensor is intended only for flying sea salt, and cannot measure other factors affecting metal corrosion (for example, sulfur oxide (SOx), wetting time, etc.).
  • metal corrosion for example, sulfur oxide (SOx), wetting time, etc.
  • SOx sulfur oxide
  • wetting time etc.
  • it is not suitable for corrosion measurement in urban and rural areas where the concentration of incoming sea salt is relatively low, away from the coast.
  • ACM sensor galvanic corrosion sensor
  • the galvanic sensor can measure various corrosive environments as described above, it is difficult to estimate how the corrosive environment changes thereafter.
  • it is difficult to measure in a dry state because a certain amount of electrolyte exists on the sensor surface and needs to be sufficiently wetted.
  • the measurement requires a long period (monthly), and quick evaluation is difficult.
  • a surface plasmon resonance sensor is useful because it can measure changes in the surrounding medium on the sensor surface at a nanoscale such as several nanometers to several hundred nanometers, and can perform nondestructive and noninvasive corrosion evaluation.
  • Patent Document 3 proposes that a surface plasmon resonance sensor be used to detect metal corrosion caused by biobacteria in an anaerobic environment.
  • the conventional surface plasmon resonance sensor has the advantages as described above, there are some problems. For example, if only a single metal is used as the sensor material, it cannot be determined whether the shift of the resonance peak is caused by corrosion of the metal or by deposits. In other words, what exists on the sensor surface cannot be identified. As means for solving this problem, for example, in biosensors, an attempt is made to provide a functional film for selectively attaching and fixing a specific substance on the sensor surface. However, even if a substance other than the target substance does not adhere to the sensor surface, it will be detected. In addition, since the surface plasmon resonance sensor also captures changes in the surrounding medium, a single sensor alone cannot be distinguished from a sensor signal originating from metal corrosion.
  • the surface plasmon resonance sensor described in Patent Document 3 a vapor deposition film of gold or silver is used as the metal material of the sensor.
  • gold and silver are corrosion-resistant metals, the shift of the measured resonance peak is not considered to be corrosion of the sensor surface, but is presumed to be caused by deposits on the sensor surface. That is, the surface plasmon resonance sensor described in Patent Document 3 is not suitable as a sensor for detecting metal corrosion.
  • a single surface plasmon resonance sensor is a low-selectivity sensor that can only evaluate a single corrosive environment, and can be used as a high-selectivity sensor for estimating a wide variety of corrosive environments. Can not.
  • An object of the present invention is to provide a highly selective corrosion sensor system capable of estimating a wide variety of metal corrosive environments with high sensitivity, high selectivity and in a short period of time.
  • the highly selective corrosion sensor system comprises at least two or more of a surface plasmon resonance sensor and a localized surface plasmon resonance sensor, each having a different corrosion resistance and corrosion tendency with respect to a corrosive environment.
  • a light projecting means for projecting light toward each sensor in the sensor group;
  • Detecting means for detecting light emitted from each sensor in the sensor group as signal intensity corresponding to the intensity of the light;
  • a database that stores information on the corrosion of the metal under measurement;
  • Analyzing means for recognizing a pattern based on a plurality of signal intensities detected by the detecting means and information accumulated in the database and analyzing the degree of corrosion of the metal to be measured; Is provided.
  • the highly selective corrosion sensor system relates to the highly selective corrosion sensor system of the first aspect, wherein the sensor group includes (1) a surface plasmon resonance sensor having a metal thin film on the sensor surface, 2) A plurality of surface plasmon resonance sensors having different metal thin film materials on the sensor surface, (3) a surface plasmon resonance sensor having a functional film on the sensor surface, and (4) a plurality of surfaces having different functional film materials on the sensor surface.
  • Localized surface plasmon resonance sensor having a functional film on the surface, and (8) metal fine particles in the sensor section
  • a sensor group (any one of (1), (3), (5), and (7)) including at least one selected from the group consisting of a plurality of localized surface plasmon resonance sensors each having a different surface functional film material Excluding those consisting of only one group).
  • the highly selective corrosion sensor system according to the third aspect of the present invention relates to the highly selective corrosion sensor system according to the second aspect, wherein the surface plasmon resonance sensor of (1) or (2) is provided on the end face of the optical fiber, or It has a structure in which a metal thin film is formed in the region of the optical fiber partially including a region where the cladding is removed and the core is exposed.
  • the highly selective corrosion sensor system according to the fourth aspect of the present invention relates to the highly selective sensor system of the second aspect, wherein the localized surface plasmon resonance sensor according to (5) or (6) It has a structure in which metal fine particles are arranged.
  • the highly selective corrosion sensor system according to the fifth aspect of the present invention relates to the highly selective sensor system according to the fourth aspect, wherein each of a large number of metal fine particles is a dielectric sphere wrapped in a metal thin film.
  • the highly selective corrosion sensor system according to the sixth aspect of the present invention relates to the highly selective sensor system according to the second aspect, wherein the localized surface plasmon resonance sensor according to (5) or (6) is provided on the end face of the optical fiber. Or it has the structure where many metal microparticles
  • the high-selectivity corrosion sensor system according to the seventh aspect of the present invention relates to the high-selectivity sensor system according to the sixth aspect, wherein each of a large number of metal fine particles is a dielectric sphere wrapped in a metal thin film.
  • the highly selective corrosion sensor system according to the eighth aspect of the present invention relates to the highly selective corrosion sensor system according to the first to seventh aspects.
  • the sensor group includes a surface plasmon in which the metal thin film on the sensor surface is a gold film.
  • a resonance sensor or a surface plasmon resonance sensor in which a protective film is formed on a metal thin film on the sensor surface is included as a reference sensor.
  • FIG. 1 It is a figure which shows typically the LSPR sensor which has arrange
  • (A) is a schematic view of an LSPR sensor in which a part of the clad on the side surface of the optical fiber is removed, and a large number of metal fine particles are arranged in the removed region, and (B) is the same as (A).
  • the highly selective corrosion sensor system of the present embodiment includes at least two of a surface plasmon resonance sensor (hereinafter also referred to as “SPR sensor”) and a localized surface plasmon resonance sensor (hereinafter also referred to as “LSPR sensor”).
  • SPR sensor surface plasmon resonance sensor
  • LSPR sensor localized surface plasmon resonance sensor
  • the highly selective corrosion sensor system includes at least two or more sensors (hereinafter collectively referred to as “SPR sensor” and “LSPR sensor”) of a small number of SPR sensors and LSPR sensors having different corrosion resistance and corrosion tendency with respect to the corrosive environment.
  • the corrosive environment of many metals is estimated by recognizing the pattern of the signal intensity ratio according to "SPR sensor”. This makes it possible to evaluate a wide variety of corrosive environments that could not be achieved with a single SPR sensor having low selectivity in a short period of time with high sensitivity and high definition.
  • the sensor group is composed of two or more SPR sensors having different corrosion resistance / corrosion tendency against a corrosive environment. And in this embodiment, in order to make the corrosion resistance and corrosion tendency with respect to each corrosive environment different in two or more SPR sensors, the materials of the metal thin film and / or the functional film serving as the sensor surface are different from each other. .
  • the sensor group includes (1) an SPR sensor having a metal thin film on the sensor surface, (2) a plurality of SPR sensors having different metal thin film materials on the sensor surface, and (3) an SPR sensor having a functional film on the sensor surface, (4) A plurality of SPR sensors having different functional film materials on the sensor surface, (5) a LSPR sensor having metal fine particles in the sensor portion, (6) a plurality of LSPR sensors having different metal fine particles in the sensor portion, (7) And (8) at least one selected from the group consisting of a plurality of different LSPR sensors in which the material of the functional film on the surface of the metal fine particles of the sensor unit is different.
  • those consisting of only one group of (1), (3), (5) and (7) are excluded.
  • the SPR sensor includes a prism 12, a metal thin film 14 formed on one surface of the prism 12, a light projecting unit 16, and a detecting unit 18.
  • the light projecting means 16 makes light incident from one surface (12a) different from the formation surface 12b of the metal thin film 14 of the prism 12, and the light enters the interface between the prism 12 and the metal thin film 14 at various incident angles.
  • the detection means 18 detects the intensity of light totally reflected at the interface between the prism 12 and the metal thin film 14 for each of various incident angles.
  • the vertical component with respect to the interface of the incident light is inside the metal thin film 14. It becomes light called evanescent light that permeates into.
  • the evanescent light propagates along the refractive index interface, but attenuates exponentially as it leaves the interface.
  • the wave vector of the evanescent light; k ev is equal to the wave vector of the incident light in the interface direction; k x . Therefore, k ev is given by: Therefore, the wave number of the evanescent light has different values according to sin ⁇ with respect to various incident angles ⁇ .
  • surface plasmon waves are generated on the metal surface (metal / dielectric constant interface) by the evanescent light generated at the interface between the prism 12 and the metal thin film 14.
  • Surface plasmon waves are collective oscillations of free electrons in a metal localized on the metal surface.
  • n p is the refractive index of the medium on the light incident side
  • ⁇ m is the dielectric constant of the metal thin film
  • ⁇ s is the dielectric constant of the substance attached to the metal thin film surface. Is expressed by the following formula.
  • ⁇ spr changes. That is, in order to generate surface plasmon resonance, it is necessary to change the incident angle of light according to the substance adhering to the surface of the metal thin film. In other words, if the incident angle of light when surface plasmon resonance occurs is known, the dielectric constant of the substance attached to the surface of the metal thin film can be known.
  • the dielectric constant ⁇ s of the substance attached to the metal thin film can be known, and based on the dielectric constant ⁇ s . Substances can be detected.
  • FIG. 3 is a diagram showing a change with time when corrosion is measured by an SPR sensor when an amorphous carbon film is immersed in a 0.3 M nitric acid aqueous solution.
  • FIG. 3 shows a graph when the elapsed time is 0 minutes, 15 minutes, 30 minutes, 45 minutes, 60 minutes, 75 minutes, and 90 minutes in order from the top.
  • the incident angle at which the intensity of reflected light is significantly reduced is the incident angle ⁇ spr of light when surface plasmon resonance occurs.
  • the incident angle ⁇ spr shifts with time. That is, as time passes, corrosion of the surface of the amorphous carbon-based film on the surface of the metal thin film progresses, and the incident angle ⁇ spr is shifted. Therefore, since the incident angle ⁇ spr is shifted according to the corrosion state (the peak position is shifted), the corrosion state can be estimated from the incident angle ⁇ spr .
  • the surface plasmon resonance described above occurs in the region of the wavelength of light from the surface of the metal thin film, whereas the localized surface plasmon resonance is the same as the particle diameter on the surface of extremely small metal particles of nanoscale below the wavelength of light. Occurs in a localized state.
  • LSPR occurs in a specific wavelength region, and the wavelength region depends on the material, shape, size, and surrounding medium of the metal nanoparticles.
  • FIG. 4 is a graph when the intensity of scattered light generated when light with a wavelength of 200 to 700 nm is incident on aluminum nanoparticles (diameter: 50 nm, height: 35 nm columnar shape) is detected for each oxidation state. .
  • FIG. 4 shows graphs when the oxidation state is 0%, 9%, 19%, and 27% in order from the top.
  • FIG. 4 shows that the intensity peak of the scattered light derived from the localized surface plasmon resonance shifts as the oxidation state progresses. That is, the progress of metal corrosion can be detected on a nanoscale by the LSPR sensor.
  • the SPR sensor is (1) a single SPR sensor having a metal thin film on the sensor surface, or (2) a plurality of SPR sensors each having a different material for the metal thin film on the sensor surface.
  • a sensor group is configured in combination with the LSPR sensor.
  • a plurality of SPR sensors having different metal thin film materials on the sensor surface have different metal thin film materials, so that the corrosion progress rate and corrosion progress of each metal thin film with respect to the corrosive environment are different. Therefore, even in the same corrosive environment, the SPR peak shift amount and the degree of change in peak intensity are different for each metal material.
  • the form shown in FIG. 5 As the form of the SPR sensor having a metal thin film on the sensor surface, the form shown in FIG. In this form, the metal thin film 14 is directly formed on the prism 12. In this embodiment, when the metal thin film 14 can no longer be used due to corrosion, it is necessary to replace the prism 12 together with the metal thin film 14, which is disadvantageous in terms of cost and takes time to set the optical system. Therefore, the embodiment shown in FIG. 5 that solves such a problem is preferable. In FIG. 5, the same components as those in FIG. In the form shown in FIG. 5, the metal thin film 14 is not directly formed on the prism 12, but the transparent substrate 20 on which the metal thin film 14 is formed is in close contact with the prism 12 via index oil.
  • the prism 12 can be disposed semi-permanently at a predetermined position, and the setting of the optical system is easy.
  • the metal material constituting the metal thin film may be any metal material that can cause surface plasmon resonance, and examples thereof include Au, Ag, Cu, Al, and alloys containing them.
  • the thickness of the metal thin film may be any film thickness that can cause surface plasmon resonance, and can be several nm to several hundred nm, for example.
  • the above (1) and (2) SPR sensors do not have a structure in which a metal thin film is formed on one surface of the prism, but the region of the optical fiber having a portion where the end surface of the optical fiber or the cladding is removed and the core is exposed. It is also possible to adopt a structure in which a metal thin film is formed. According to such a configuration, sensing can be easily performed even in a narrow and deep environment as compared with the case where a metal thin film is formed on one surface of the prism.
  • FIG. 6 shows a configuration in which a metal thin film 32 is formed on the end face of the optical fiber 30.
  • the optical fiber 30 has a configuration in which a cladding 36 covers the periphery of the core 34, and light incident from one end of the optical fiber 30 propagates through the core 34 and is incident at an angle greater than total reflection on the metal thin film 32 on the end face on the other end side. Then, surface plasmon resonance occurs on the surface of the metal thin film 32. That is, like the SPR sensor of FIGS. 1 and 5, the outer surface of the metal thin film 32 becomes the sensor surface. And the measurement of the optical spectrum using such an SPR sensor detects the reflected light which entered from the end of the optical fiber 30, reflected the end surface (metal thin film 32) of the other end side, and returned to the one end side again. It can be carried out.
  • FIG. 7 shows the optical fiber 30 having a region where the cladding 36 is removed and the core 34 is exposed, and a metal thin film 32 is formed in the cladding removal region of the optical fiber 30.
  • surface plasmon resonance occurs on the surface of the metal thin film due to the evanescent light generated on the surface of the core 34. That is, like the SPR sensor of FIGS. 1 and 5, the outer surface of the metal thin film 32 becomes the sensor surface. And the measurement of the optical spectrum using such an SPR sensor can be performed by detecting light incident from one end, propagated through the cladding removal region, and emitted from the other end.
  • the SPR sensor is either (3) a single SPR sensor having a functional film on the sensor surface, or (4) a plurality of SPR sensors having different functional film materials on the sensor surface.
  • a sensor group is configured in combination with an LSPR sensor.
  • the functional film is a film that selectively attaches and fixes a specific substance, and is formed on the metal thin film as described above.
  • the functional film is selected and employed according to the specific substance in order to adhere and fix the specific substance.
  • a functional film that adsorbs a specific antibody is formed on the surface of a metal thin film.
  • a functional film that adsorbs a specific antibody is formed on the surface of a metal thin film.
  • a specific gas such as hydrogen, carbon dioxide, corrosive gas, or volatile organic compound (VOC)
  • VOC volatile organic compound
  • a functional film that adsorbs the specific gas is formed on the surface of the metal thin film.
  • ions such as Na + , Li + , K + , NH 4 + , Al 3+ , Zn 2+
  • a functional film such as an ionophore
  • the above SPR sensors (3) and (4) can be configured by forming a metal thin film and a functional film in this order on the end face of the optical fiber in the same manner as the SPR sensors (1) and (2). According to such a configuration, sensing can be easily performed even in a narrow and deep environment as compared with the case where a metal thin film is formed on one surface of the prism.
  • the LSPR sensor is (5) a single LSPR sensor having metal fine particles in the sensor part, or (6) a plurality of LSPR sensors having different metal fine particles in the sensor part. And when it is independent, a sensor group is comprised in combination with another SPR sensor or LSPR sensor. In addition, a plurality of SPR sensors having different metal fine particle materials (metal elements) in the sensor portion have different metal fine particle materials, so that the corrosion progress rate and corrosion progress process of each metal thin film with respect to a corrosive environment are different. Therefore, even in the same corrosive environment, the peak shift amount of LSPR and the degree of change in peak intensity differ for each metal material.
  • the metal fine particles include (1) a spherical shape, (2) a nanorod shape such as a rugby ball shape and a cigar shape, which is slightly longer than a spherical shape, and (3) a metal thin film coated on the surface of a dielectric sphere. And core-shell type nanoparticles.
  • the particle diameter of these metal fine particles is usually several nm to several hundred nm.
  • LSPR sensors are roughly classified into a type using a substrate and a type using an optical fiber. Each type will be described below.
  • the surface of the metal fine particle is a sensing region.
  • a sensor unit 40 ⁇ / b> A shown in FIG. 8 includes a large number of metal fine particles 44 arranged on a substrate 42. Further, the sensor unit 40B shown in FIG. 9 includes a large number of dielectric spheres 46 encased in a metal thin film 48 on a substrate 42.
  • the optical spectrum measurement using such an LSPR sensor includes a transmitted light type based on the transmitted light of the sensor unit 40A or 40B, a reflected light type based on the reflected light of the sensor unit 40A or 40B, and a scattered light of the sensor unit 40A or 40B. Scattered light type based on
  • FIG.10 and FIG.11 has shown typically the sensor part of the LSPR sensor of the type which uses an optical fiber.
  • a sensor unit 50 ⁇ / b> A shown in FIG. 10 has a large number of metal fine particles 54 arranged on the end face of the optical fiber 52.
  • the sensor unit 50B shown in FIG. 11 is formed by arranging a large number of dielectric spheres wrapped in a metal thin film 56 on the end face of the optical fiber 52.
  • Optical spectrum measurement using such an LSPR sensor can be performed by detecting reflected light that has entered from one end of the optical fiber 52, reflected from the end face on the other end side, and returned to the one end side again.
  • FIG. 12 (A) shows an optical fiber 60A partially having a region where the cladding 66 is removed and the core 62 is exposed, as in FIG. 7, and a large number of metal fine particles 64 are arranged in the cladding removal region of the optical fiber 60A.
  • the optical fiber 60B shown in FIG. 12B is formed by arranging a large number of dielectric spheres wrapped in a metal thin film 68 in the cladding removal region. That is, the clad removal region of the optical fibers 60A and 60B becomes the sensor unit. And the measurement of the optical spectrum using such an LSPR sensor can be performed by detecting light incident from one end, propagated through the cladding removal region, and emitted from the other end.
  • the sensors (2), (4), (6), and (8) can be configured independently, or can be configured by combining the sensors.
  • the number of sensors (SPR sensors, LSPR sensors) in the sensor group according to the present embodiment is preferably 5 or more, including the reference sensor, from the viewpoint of improving the accuracy of pattern recognition described later. If there is, it is possible to measure with sufficient accuracy.
  • a reference sensor it is preferable to use an SPR sensor in which a metal thin film on the sensor surface is a gold film. Since the gold film has corrosion resistance and corrosion does not proceed, it can be used as an index in comparison with another metal that does not have corrosion resistance. Such a measurement using the reference sensor will be described later.
  • the light projecting unit includes, for example, a light source, a collimator lens, a polarizer, and a condenser lens.
  • a semiconductor laser can be used as the light source.
  • the light emitted from the light source is converted into a parallel light beam by a collimating lens and guided to a polarizer.
  • the polarizer is for converting incident light into p-polarized light that causes surface plasmon.
  • the light that has been converted into a parallel light beam by the collimator lens is converted into p-polarized light by the polarizer and travels toward the condensing lens.
  • the light transmitted through the condenser lens is guided to each SPR sensor.
  • a chopper may be disposed immediately after the light source in order to increase the signal-to-noise ratio (S / N ratio).
  • the optical wavelength division multiplexing communication technology it is possible to simultaneously process a plurality of light beams having different wavelengths with a single optical fiber.
  • the wavelength of light at which surface plasmon resonance occurs differs depending on the material.
  • an optical wavelength multiplexing communication technique different nanoparticles can be simultaneously evaluated with one optical fiber.
  • a plurality of light sources are required as input light, and a branching optical element is used to collect the input light on one optical fiber.
  • a spectroscope that separates (separates wavelengths) output light from the SPR sensor, a wavelength selection filter, or the like is used.
  • the detection means includes a light receiving element that receives light emitted from each sensor in the sensor group and photoelectrically converts the received light. By this light receiving element, the received light is converted into an electric signal having information indicating the intensity.
  • Information on the corrosion of the metal to be measured is accumulated in the database. Specifically, information relating to corrosion of the metal to be measured is associated with a combination of signal strength patterns detected by each sensor of the sensor group and stored in the storage unit of the information processing apparatus.
  • the information on the corrosion of the metal to be measured includes information such as a corrosion factor, a corrosion progress level, a corrosion progress rate, and a corrosion progress process (eg, corrosion progress monotonically or corrosion progress is saturated). For example, when the sensor group is composed of five SPR sensors with different metal thin films on the sensor surface, the degree of progression of metal corrosion is classified and digitized for these five strength patterns.
  • the analysis means analyzes the degree of corrosion of the metal to be measured by recognizing a pattern based on a plurality of signal intensities detected by the detection means and information stored in the database.
  • an information processing apparatus such as a personal computer is used, and the analysis is executed by processing of a pattern recognition program.
  • the analysis includes a Widrow-Hoff learning rule (delta rule, orthogonalization learning, least squares learning), Bayesian decision measurement, maximum likelihood method, clustering, principal component analysis ( ⁇ KL expansion; Karhumen-Loeve expansion), Fisher Theories such as linear discriminant method (also known as Fisher method), parameter estimation, Markov model, nonparametric Bayes model, MT system, etc. can be adopted.
  • reaction rate equation the reaction can be modeled on the basis of the accelerated deterioration test result, and the material life under various temperature environments can be estimated.
  • the metal life prediction is as follows: “Kenji Ichikawa, Ryuji Kajita, Research Report of Industrial Safety Research Institute, RIIS-RR-87, 1987.” “Insulation degradation diagnosis of rubber gloves for high pressure-Thermal degradation characteristics of natural rubber insulation materials”
  • the reaction rate equation is given by the following equation (1).
  • Expression (7) indicates that a linear relationship is established between the inverse of the temperature T f (constant temperature) at the time of evaluation and the logarithm of the lifetime t f .
  • the slope of the straight line obtained by plotting ln (t f ) and (1 / T f ) obtained under different constant temperature conditions is E / R, and the intercept with the vertical axis corresponds to the constant in equation (7). . Therefore, the activation energy E and the constant value can be derived from the linear plot.
  • the obtained value is substituted into equation (7) to obtain an equation giving the relationship between temperature and life. That is, it is possible to predict the lifetime at an arbitrary temperature for a material that involves a chemical reaction.
  • the SPR sensor responds to both the change in the metal thin film on the sensor surface and the change in the surrounding environment on the sensor surface, and it can be determined as follows whether the reaction is caused by any change. .
  • the reference sensor uses corrosive-resistant gold on the sensor surface, so the sensor signal changes due to corrosion. Does not occur.
  • the metal thin film corrodes, so that the sensor reacts due to the metal thin film corrosion and a signal changes.
  • the sensor for measurement by comparing the sensor for measurement with the sensor for reference, whether the change in sensor signal is due to the change in the metal thin film on the sensor surface, or the change in the surrounding environment on the sensor surface It can be determined as follows. (1) When the signal of the sensor for reference does not change and the signal of the sensor for measurement changes, it can be determined that the corrosion of the metal thin film on the sensor surface has progressed but the surrounding environment has not changed. (2) When neither the signal of the reference sensor nor the signal of the measuring sensor changes, it can be determined that the corrosion of the metal thin film on the sensor surface does not proceed and the surrounding environment is not changed. (3) When both the signal of the reference sensor and the signal of the measurement sensor change, it can be determined that at least the surrounding environment has changed (the progress of corrosion of the metal thin film on the sensor surface is unknown).
  • the change over time of the corrosion deterioration is measured. That is, under different temperature conditions, the time from the initial state to the lower limit value of a predetermined deterioration index, using the change in peak position of the optical spectrum derived from surface plasmon resonance or the change in peak intensity as an index of corrosion progression ( Measure life time).
  • the different temperature conditions are room temperature or more and three or more temperature conditions.
  • the above prediction of the life reaching time is intended for the case where only the metal thin film is formed on the sensor surface. Even when a corrosion protection film such as an amorphous carbon-based film, graphene, a coating film, or a resin is formed on the metal thin film, it is possible to predict the lifetime. That is, even an SPR sensor having a corrosion protection film formed on the surface of a metal thin film responds to both changes in the corrosion protection film on the sensor surface and changes in the surrounding environment on the sensor surface. Accordingly, as in the case where the surface is a metal thin film, it is possible to determine which change is caused by the reaction using the reference sensor and the measurement sensor as follows.
  • the change over time of the corrosion deterioration is measured in the same way as in the case of the sensor with a metal thin film, and based on the Arrhenius equation. It is possible to predict the lifetime of the corrosion protection film.
  • the highly selective corrosion sensor system of this embodiment classifies a wide variety of atmospheric corrosive environments such as volcanic gas environments, seawater environments, sulfur oxide environments, and nitrogen oxide environments, and estimates the progress of metal corrosion. be able to. In addition, it is possible to detect nanoscale corrosion, and it is possible to predict corrosion rate with high sensitivity and high accuracy. Furthermore, the sensor of this embodiment can perform nondestructive and non-contact measurement on a metal to be measured, and sensor replacement is easy.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

多種多様な金属腐食性環境を高感度・高選択にかつ短期間で推定することができる高選択性腐食センサーシステムを提供する。センサー面の金属薄膜の材料がそれぞれ異なる複数の表面プラズモン共鳴センサー、センサー面の機能膜の材料がそれぞれ異なる複数の表面プラズモン共鳴センサー、それぞれ異なる金属微粒子による複数の局在表面プラズモン共鳴センサーからなる群より選択される少なくとも1つを含むセンサー群と、各センサーに向けて光を投光する投光手段と、各センサーから出射する光を、その強度に応じた信号強度として検出する検出手段と、被測定金属の腐食に関する情報が蓄積されたデータベースと、検出手段により検出された複数の信号強度と、データベースに蓄積された情報とに基づきパターン認識して被測定金属の腐食の程度を解析する解析手段と、を備える、高選択性腐食センサーシステムである。

Description

高選択性腐食センサーシステム
 本発明は、高選択性腐食センサーシステムに関する。詳細には、本発明は、表面プラズモン共鳴センサーを用い、金属に対する種々の腐食性環境を分析・計測し得る高選択性腐食センサーシステムに関する。
 金属の腐食の原因となる環境の分析・計測が可能なセンサーとして種々のセンサーが提案されている。例えば、海洋から飛来する海水に由来する塩分は、金属の腐食に対する影響は大きい。そこで、その海塩量を計測するセンサーとして、水晶振動子型センサーが提案されている(例えば、特許文献1参照)。この水晶振動子型センサーは、水晶振動子の共振周波数が飛来海塩などの付着により変化することを利用して計測する。
 しかし、上記水晶振動子型センサーは、飛来海塩のみを対象としており、それ以外の金属腐食に影響を与える因子(例えば、硫黄酸化物(SOx)、濡れ時間など)を計測することはできない。また、海岸部から離れた、飛来海塩濃度が比較的低い都市部や農村部での腐食計測には適さない。さらに、原理的には、腐食性物質以外のものが付着しても検出信号が変化するため、特定の腐食性物質の同定は困難である。
 また、大気環境下における金属腐食は、主に金属表面が降雨、結露などにより濡れた場合に進行する。これに対して、従来の電気化学的な計測手法は、没水環境下における金属腐食を想定しており、大気環境下における腐食評価には適さない。そこで、大気環境下での腐食評価のためのセンサーとしては、例えば、ガルバニック型腐食センサー(ACMセンサー)が提案されている(例えば、特許文献2参照)。このセンサーを用いることで、海塩付着量、降雨時間、結露時間、乾燥時間などの腐食性環境を計測することができる。
 しかし、ガルバニック型センサーは、上記のように種々の腐食性環境を計測することができるが、腐食性環境がその後どのように推移するかの推定は困難である。また、腐食が進行したことを示す信号の検出のためには、ある程度の電解質がセンサー面に存在し、かつ、十分に濡れる必要があることから、乾燥状態での計測は困難である。また、計測には長期間(月単位)を要し、迅速な評価は困難である。
 一方、表面プラズモン共鳴センサーは、センサー面の周囲媒質変化を数nm~数百nmといったナノスケールで計測することができ、しかも非破壊、非侵襲な腐食評価が可能であり有用である。例えば、特許文献3には、嫌気性環境でバイオ菌により発生した金属の腐食に対して、表面プラズモン共鳴センサーにより検知することが提案されている。
特開平11-326019号公報 特開2001-201451号公報 特開2011-2423号公報
 従来の表面プラズモン共鳴センサーは、上記のような利点があるが、いくつかの問題点もある。例えば、単一金属をセンサー材料として用いたのみでは、共鳴ピークのシフトが金属の腐食由来なのか、あるいは付着物由来なのかを判別することができない。つまり、センサー面に何が存在するかを同定することができない。これを解決する手段として、例えば、バイオセンサーでは、センサー面に特定の物質を選択的に付着・固定させる機能膜を設ける試みがなされている。しかし、センサー面に目的物質以外の物質が付着せずに存在するだけでも検出してしまう。
 また、表面プラズモン共鳴センサーは周囲の媒質変化をも捉えてしまうため、単一のセンサーのみでは金属腐食の由来となるセンサー信号と区別することができない。
 さらに、特許文献3に記載の表面プラズモン共鳴センサーでは、センサーの金属材料として金又は銀の蒸着膜を用いている。しかし、金や銀は腐食耐性がある金属であることから、測定される共鳴ピークのシフトはセンサー面の腐食とは考えられず、センサー面の付着物によるものと推定される。つまり、特許文献3に記載の表面プラズモン共鳴センサーは、金属の腐食を検知するセンサーには適さない。
 このように、単一の表面プラズモン共鳴センサーは、単一の腐食性環境のみしか評価できない低選択性センサーであり、多種多様な金属腐食性環境を推定する高選択性センサーとしては利用することができない。
 本発明は、このような従来技術が有する課題に鑑みてなされたものである。そして本発明の目的は、多種多様な金属腐食性環境を高感度・高選択にかつ短期間で推定することができる高選択性腐食センサーシステムを提供することにある。
 本発明の第1の態様に係る高選択性腐食センサーシステムは、表面プラズモン共鳴センサー及び局在表面プラズモン共鳴センサーのうちの少なくとも2以上からなり、それぞれ腐食性環境に対する腐食耐性・腐食傾向が異なるセンサー群と、
 センサー群中の各センサーに向けて光を投光する投光手段と、
 センサー群中の各センサーから出射する光を、該光の強度に応じた信号強度として検出する検出手段と、
 被測定金属の腐食に関する情報が蓄積されたデータベースと、
 検出手段により検出された複数の信号強度と、データベースに蓄積された情報とに基づきパターン認識して被測定金属の腐食の程度を解析する解析手段と、
を備える。
 本発明の第2の態様に係る高選択性腐食センサーシステムは、第1の態様の高選択性腐食センサーシステムに関し、センサー群が、(1)センサー面に金属薄膜を有する表面プラズモン共鳴センサー、(2)センサー面の金属薄膜の材料がそれぞれ異なる複数の表面プラズモン共鳴センサー、(3)センサー面に機能膜を有する表面プラズモン共鳴センサー、(4)センサー面の機能膜の材料がそれぞれ異なる複数の表面プラズモン共鳴センサー、(5)センサー部に金属微粒子を有する局在表面プラズモン共鳴センサー、(6)センサー部の金属微粒子がそれぞれ異なる複数の局在表面プラズモン共鳴センサー、(7)センサー部の金属微粒子表面に機能膜を有する局在表面プラズモン共鳴センサー、及び(8)センサー部の金属微粒子表面の機能膜の材料がそれぞれ異なる複数の局在表面プラズモン共鳴センサーからなる群より選択される少なくとも1つを含むセンサー群((1)、(3)(5)及び(7)のいずれか1つの群のみからなるものを除く)である。
 本発明の第3の態様に係る高選択性腐食センサーシステムは、第2の態様の高選択性腐食センサーシステムに関し、(1)又は(2)の表面プラズモン共鳴センサーが、光ファイバーの端面に、又はクラッドが除去されコアが露出する領域を一部に有する光ファイバーの当該領域に金属薄膜が形成された構造を有する。
 本発明の第4の態様に係る高選択性腐食センサーシステムは、第2の態様の高選択性センサーシステムに関し、(5)又は(6)の局在表面プラズモン共鳴センサーが、基板上に多数の金属微粒子が配置された構造を有する。
 本発明の第5の態様に係る高選択性腐食センサーシステムは、第4の態様の高選択性センサーシステムに関し、多数の金属微粒子のそれぞれが、金属薄膜に包まれた誘電体球である。
 本発明の第6の態様に係る高選択性腐食センサーシステムは、第2の態様の高選択性センサーシステムに関し、(5)又は(6)の局在表面プラズモン共鳴センサーが、光ファイバーの端面に、又はクラッドが除去されコアが露出する領域を一部に有する光ファイバーの当該領域に多数の金属微粒子が配置された構造を有する。
 本発明の第7の態様に係る高選択性腐食センサーシステムは、第6の態様の高選択性センサーシステムに関し、多数の金属微粒子のそれぞれが、金属薄膜に包まれた誘電体球である。
 本発明の第8の態様に係る高選択性腐食センサーシステムは、第1乃至第7の態様の高選択性腐食センサーシステムに関し、センサー群には、センサー面の金属薄膜が金膜である表面プラズモン共鳴センサー又はセンサー面の金属薄膜に保護膜を形成した表面プラズモン共鳴センサーを参照用センサーとして含む。
 本発明によれば、多種多様な金属腐食性環境を高感度・高選択にかつ短期間で推定することができる高選択性腐食センサーシステムを提供することができる。
SPRセンサーの概要を模式的に示す図である。 SPRセンサーにおいて、光源からの光の入射角に対する反射光強度の関係を示すグラフである。 アモルファス炭素系膜の腐食に従いSPR共鳴角がシフトすることを示すグラフである。 アルミニウム製ナノ粒子の散乱光のスペクトルを示す図である。 図1とは異なるSPRセンサーの形態を模式的に示す図である。 光ファイバーの端面をセンサー面としたSPRセンサーを模式的にす図である。 光ファイバーの側面のクラッドを一部除去し、その除去した領域をセンサー面としたSPRセンサーを模式的に示す図である。 基板上に多数の金属微粒子を配置したLSPRセンサーを模式的に示す図である。 基板上に、金属薄膜に包まれた誘電体球を多数配置したLSPRセンサーを模式的に示す図である。 光ファイバーの端面に多数の金属微粒子を配置してセンサー部としたLSPRセンサーを模式的に示す図である。 光ファイバーの端面に、金属薄膜に包まれた誘電体球を多数配置してセンサー部としたLSPRセンサーを模式的に示す図である。 (A)は、光ファイバーの側面のクラッドを一部除去し、その除去した領域に多数の金属微粒子を配置してセンサー部としたLSPRセンサーの模式図、(B)は、(A)と同様にクラッドを除去した領域に、金属薄膜に包まれた誘電体球を多数配置してセンサー部としたLSPRセンサーの模式図である。 経過時間に対する金属の劣化指標の変化を示すグラフである。 金属の寿命予測のためのアレニウスプロットを示す図である。
 以下、図面を用いて本発明の実施形態に係る高選択性腐食センサーシステムについて詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率と異なる場合がある。
 本実施形態の高選択性腐食センサーシステムは、表面プラズモン共鳴センサー(以下、「SPRセンサー」とも呼ぶ)及び局在表面プラズモン共鳴センサー(以下、「LSPRセンサー」とも呼ぶ)のうちの少なくとも2以上からなり、それぞれ腐食性環境に対する腐食耐性・腐食傾向が異なるセンサー群と、このセンサー群中の各センサーに向けて光を投光する投光手段と、このセンサー群中の各センサーから出射する光を、該光の強度に応じた信号強度として検出する検出手段と、被測定金属の腐食に関する情報が蓄積されたデータベースとを用いる。そして、センサー群が検出した各検出信号をパターン認識して腐食性環境を推定するものである。
 すなわち、本実施形態の高選択性腐食センサーシステムは、それぞれにおいて腐食性環境に対する腐食耐性・腐食傾向が異なる少数のSPRセンサー及びLSPRセンサーのうちの少なくとも2以上のセンサー(以下、これらを纏めて単に「SPRセンサー」と呼ぶことがある。)による信号強度比をパターン認識することにより、数多くの金属の腐食性環境を推定するものである。これにより、低選択性である単一のSPRセンサーではなし得なかった多種多様な腐食性環境の評価を短期間で高感度、高精細に行うことができる。なお、「(腐食性環境に対する)腐食耐性が異なる」とは、腐食に対する耐久性が異なることを意味し、「(腐食性環境に対する)腐食傾向が異なる」とは、腐食の進行速度や腐食の進行過程などが異なることを意味する。以下に、本実施形態の高選択性腐食センサーシステムの各構成要素について順次説明する。
[センサー群]
 センサー群は、腐食性環境に対する腐食耐性・腐食傾向が異なる2以上のSPRセンサーから構成される。そして、本実施形態においては、2以上のSPRセンサーにおいてそれぞれの腐食性環境に対する腐食耐性・腐食傾向を異ならせるために、センサー面となる金属薄膜及び/又は機能膜の材料をそれぞれ異なる材料としている。すなわち、センサー群は、(1)センサー面に金属薄膜を有するSPRセンサー、(2)センサー面の金属薄膜の材料がそれぞれ異なる複数のSPRセンサー、(3)センサー面に機能膜を有するSPRセンサー、(4)センサー面の機能膜の材料がそれぞれ異なる複数のSPRセンサー、(5)センサー部に金属微粒子を有するLSPRセンサー、(6)センサー部の金属微粒子がそれぞれ異なる複数のLSPRセンサー、(7)センサー部の金属微粒子表面に機能膜を有するLSPRセンサー、及び(8)センサー部の金属微粒子表面の機能膜の材料がそれぞれ異なる複数のLSPRセンサーからなる群より選択される少なくとも1つを含む。ただし、(1)、(3)、(5)及び(7)のいずれか1群のみからなるものを除く。
 ここで、SPRセンサーのセンシング原理について説明する。一般に、SPRセンサーは、図1に示すように、プリズム12と、プリズム12の一面に形成された金属薄膜14と、投光手段16と、検出手段18とを備える。投光手段16は、プリズム12の金属薄膜14の形成面12bとは別の一面(12a)から光を入射させ、プリズム12と金属薄膜14との界面に対して種々の入射角で光が入射するようにその光射出位置が制御される。また、検出手段18は、プリズム12と金属薄膜14との界面で全反射した光の強度を種々の入射角毎に検出する。
 上記構成において、投光手段16からプリズム12と金属薄膜14との界面に対して光を全反射角以上の入射角θで入射させると、入射光の界面との垂直成分が金属薄膜14の内部に浸透するエバネッセント光と呼ばれる光となる。このエバネッセント光は、屈折率界面に沿って伝播するが、界面から離れるに伴い、指数関数的に減衰する。このエバネッセント光の波数ベクトル;kevは、入射光の界面方向の波数ベクトル;kと等しくなる。従って、kevは次式で与えられる。よって、エバネッセント光の波数は、種々の入射角θに対して、sinθに従い異なる値をもつ。
Figure JPOXMLDOC01-appb-M000001
[n;プリズム側の屈折率、ω;光の角周波数、c;真空中の光速である。]
 一方、プリズム12と金属薄膜14との界面に発生したエバネッセント光によって、金属表面(金属/誘電率界面)に表面プラズモン波が発生する。表面プラズモン波は金属表面に局在した、金属中の自由電子の集団的振動である。
 表面プラズモン波の波数とエバネッセント光の波数とが等しくなるような特定の入射角度で光を入射させたとき、表面プラズモン共鳴と呼ばれる現象が発生する。そのとき、入射光のエネルギーは表面プラズモン波の励起に使われるため、図2に示すように、全反射光の強度が著しく減少する。
 表面プラズモン波は金属薄膜の表面の状態に対して非常に敏感であるため、金属薄膜表面に物質が付着すると全反射光の強度の減少が観測される光の入射角度にずれが生じる。表面プラズモン共鳴が発生するときの光の入射角度θsprは、光入射側の媒質の屈折率をn、金属薄膜の誘電率をε、金属薄膜表面に付着した物質の誘電率をεとするとき、以下の式で表される。
Figure JPOXMLDOC01-appb-M000002
 光入射側の媒質の屈折率n及び金属薄膜の誘電率εは一定であるから、金属薄膜表面の物質の誘電率εの変化により、表面プラズモン共鳴が発生するときの光の入射角度θsprが変化する。すなわち、表面プラズモン共鳴を発生させるには、金属薄膜表面に付着する物質に応じて光の入射角度を変化させる必要がある。逆に言えば、表面プラズモン共鳴が発生するときの光の入射角度が分かれば、金属薄膜表面に付着する物質の誘電率を知ることができる。従って、この全反射光の強度の減少が観測される光の入射角度のずれを観測することにより、金属薄膜に付着した物質の誘電率εを知ることができ、その誘電率εに基づき物質を検出することができる。
 以下に一例として、「日本機械学会誌 Vol. 117, No. 1144, p. 182 (2014), 東京工業大学、赤坂大樹 准教授」より引用した例を示す。図3は、アモルファス炭素系膜を0.3Mの硝酸水溶液に浸漬させたときの腐食をSPRセンサーで測定したときの経時変化を示す図である。図3においては、上から順に、経時時間が0分、15分、30分、45分、60分、75分、90分のときのグラフを示している。いずれのグラフにおいても、反射光の強度に著しい減少が見られる入射角が表面プラズモン共鳴が発生するときの光の入射角θsprである。また、時間の経過に従い、入射角θsprがシフトしていることが分かる。つまり、時間の経過に伴い、金属薄膜表面のアモルファス炭素系膜表面の腐食が進行し、入射角θsprがシフトしていることを示している。従って、腐食の状態に応じて入射角θsprがシフトする(ピーク位置がシフトする)ことから、入射角θsprにより腐食状態を推定することができる。
 次に、LSPRセンサーを利用したセンシングの原理について以下に説明する。上述の表面プラズモン共鳴は金属薄膜の表面から光の波長程度の領域で起こるのに対して、局在表面プラズモン共鳴は光の波長以下のナノスケールの極めて小さい金属微粒子の表面に、粒子径と同程度の範囲に局在した状態で起こる。そして、LSPRは、特定の波長領域で起こるが、その波長領域は金属ナノ粒子の材料、形状、サイズ、周囲媒質に依存する。
 以下に一例として、「Mark W. Knight, et al., ACS Nano, 2014, 8(1), pp. 834-840.」より引用した例を示す。図4は、アルミニウム製ナノ粒子(直径:50nm、高さ:35nmの円柱状)に、波長200~700nmの光を入射したときに生じる散乱光の強度を酸化状態別に検出したときのグラフである。図4においては、上から順に、酸化状態が0%、9%、19%、27%のときのグラフを示している。図4より、酸化状態が進むと、局在表面プラズモン共鳴由来の散乱光の強度ピークがシフトしていることが分かる。すなわち、LSPRセンサーにより、金属の腐食の進行をナノスケールで検出することができる。
 次いで、本実施形態に係るセンサー群における各SPRセンサーについて説明する。
(センサー面に金属薄膜を有するSPRセンサー)
 当該SPRセンサーは、(1)センサー面に金属薄膜を有するSPRセンサー単独、又は(2)センサー面の金属薄膜の材料がそれぞれ異なる複数のSPRセンサーであり、単独の場合は、他のSPRセンサー又はLSPRセンサーと組合せてセンサー群が構成される。そして、センサー面の金属薄膜の材料がそれぞれ異なる複数のSPRセンサーは、金属薄膜の材料が異なるが故に腐食性環境に対するそれぞれの金属薄膜の腐食進行速度、腐食進行過程が異なる。従って、同一腐食性環境であっても、SPRのピークシフト量、ピーク強度の変化の度合いは金属材料ごとに異なる。
 センサー面に金属薄膜を有するSPRセンサーの形態としては、上述の図1に示す形態が挙げられる。この形態は、プリズム12に金属薄膜14を直接形成した形態である。この形態では、金属薄膜14が腐食により使用できなくなった場合には、金属薄膜14とともにプリズム12をも交換する必要があるためコスト的に不利であるし、光学系のセッティングにも手間がかかる。そこで、そのような問題を解消した図5に示す形態が好ましい。図5において、図1と同じ構成要素には同じ符号を付している。図5に示す形態においては、プリズム12に金属薄膜14を直接形成したのではなく、金属薄膜14が形成された透明基板20をインデックスオイルを介してプリズム12に密着している。この形態であれば、金属薄膜14が使用不能になった場合でも、プリズム12はそのままで、金属薄膜14が形成された透明基板20のみを取り替えればよい。従って、コスト的に有利であるし、プリズム12は半永久的に所定の位置に配置しておくことができ、光学系のセッティングが容易である。
 金属薄膜を構成する金属材料としては、表面プラズモン共鳴を起こし得る金属材料であればよく、Au、Ag、Cu、Al、及びそれらを含む合金などが挙げられる。
 金属薄膜の厚みとしては、表面プラズモン共鳴を起こし得る膜厚であればよく、例えば数nm~数百nmとすることができる。
 以上の(1)及び(2)SPRセンサーは、プリズムの一面に金属薄膜が形成された構造ではなく、光ファイバーの端面、又はクラッドが除去されコアが露出する領域を一部に有する光ファイバーの当該領域に金属薄膜を形成された構造とすることもできる。そのような構成によると、プリズムの一面に金属薄膜を形成する場合と比較して狭小かつ深部環境においても容易にセンシングすることができる。
 図6は、光ファイバー30の端面に金属薄膜32を形成した構成を示している。光ファイバー30はコア34の周囲をクラッド36が覆う構成であり、光ファイバー30の一端から入射した光は、コア34内を伝搬し、他端側の端面の金属薄膜32で全反射以上の角度で入射すると金属薄膜32の表面で表面プラズモン共鳴が起こる。つまり、図1及び図5のSPRセンサーと同様に、金属薄膜32の外側面がセンサー面となる。そして、このようなSPRセンサーを用いた光学スペクトルの測定は、光ファイバー30の一端から入射し、他端側の端面(金属薄膜32)を反射して再び一端側に戻った反射光を検出して行うことができる。
 一方、図7は、クラッド36が除去されコア34が露出する領域を一部に有する光ファイバー30を示し、光ファイバー30のクラッド除去領域に金属薄膜32が形成されている。この構成においては、コア34の表面で発生したエバネッセント光により金属薄膜表面に表面プラズモン共鳴が起こる。つまり、図1及び図5のSPRセンサーと同様に、金属薄膜32の外側面がセンサー面となる。そして、このようなSPRセンサーを用いた光学スペクトルの測定は、一端から入射し、クラッド除去領域を伝搬し、他端から出射した光を検出して行うことができる。
(センサー面に機能膜を有するSPRセンサー)
 当該SPRセンサーは、(3)センサー面に機能膜を有するSPRセンサー単独か、又は(4)センサー面の機能膜の材料がそれぞれ異なる複数のSPRセンサーであり、単独の場合は、他のSPRセンサー又はLSPRセンサーと組合せてセンサー群を構成する。また、機能膜は、特定の物質を選択的に付着・固定させる膜であり、上記のような金属薄膜上に形成される。
 機能膜は、特定の物質を付着・固定させるため、当該物質に応じて選択して採用される。例えば、ウイルスを検知する場合、金属薄膜の表面に特定の抗体を吸着する機能膜を形成する。また、水素、二酸化炭素、腐食ガス、揮発性有機化合物(VOC)などの特定のガスを検知する場合、金属薄膜の表面に特定のガスを吸着する機能膜を形成する。さらに、Na、Li、K、NH 、Al3+、Zn2+、などのイオンを検知する場合、金属薄膜の表面に特定のイオンを吸着する機能膜(イオノフォアなど)を形成する。
 以上の(3)及び(4)のSPRセンサーは、(1)及び(2)のSPRセンサーと同様、光ファイバーの端面に金属薄膜及び機能膜をこの順に形成して構成することもできる。そのような構成によると、プリズムの一面に金属薄膜を形成する場合と比較して狭小かつ深部環境においても容易にセンシングすることができる。
(センサー部に金属微粒子を有する局在表面プラズモン共鳴センサー)
 当該LSPRセンサーは、(5)センサー部に金属微粒子を有するLSPRセンサー単独か、又は(6)センサー部の金属微粒子がそれぞれ異なる複数のLSPRセンサーである。そして、単独の場合は、他のSPRセンサー又はLSPRセンサーと組合せてセンサー群が構成される。また、センサー部の金属微粒子の材料(金属元素)がそれぞれ異なる複数のSPRセンサーは、金属微粒子の材料が異なるが故に腐食性環境に対するそれぞれの金属薄膜の腐食進行速度、腐食進行過程が異なる。従って、同一腐食性環境であっても、LSPRのピークシフト量、ピーク強度の変化の度合いは金属材料ごとに異なる。
 金属微粒子としては、(1)球形、(2)ラグビーボール形状、葉巻形状など、球形よりもやや細長い形状などのナノロッド形状をしたもの、(3)誘電体球の表面に金属薄膜がコーティングされたコアシェル型ナノ粒子、などが挙げられる。これら金属微粒子の粒径は、通常数nm~数百nmである。
 このようなLSPRセンサーは、基板を使用するタイプと、光ファイバーを使用するタイプとに大別される。以下に、それぞれのタイプについて説明する。なお、LSPRセンサーにおいては、金属微粒子の表面がセンシングする領域となる。
 図8及び図9は、基板を使用するタイプのLSPRセンサーのセンサー部を模式的に示している。図8に示すセンサー部40Aは、基板42上に多数の金属微粒子44が配置されてなる。また、図9に示すセンサー部40Bは、基板42上に、金属薄膜48に包まれた誘電体球46を多数配置してなる。このようなLSPRセンサーを用いた光学スペクトルの測定は、センサー部40A又は40Bの透過光に基づく透過光型、センサー部40A又は40Bの反射光に基づく反射光型、センサー部40A又は40Bの散乱光に基づく散乱光型が挙げられる。
 一方、図10及び図11は、光ファイバーを使用するタイプのLSPRセンサーのセンサー部を模式的に示している。図10に示すセンサー部50Aは、光ファイバー52の端面に多数の金属微粒子54が配置されてなる。一方、図11に示すセンサー部50Bは、光ファイバー52の端面に、金属薄膜56に包まれた誘電体球を多数配置してなる。このようなLSPRセンサーを用いた光学スペクトルの測定は、光ファイバー52の一端から入射し、他端側の端面を反射して再び一端側に戻った反射光を検出して行うことができる。
 さらに、図12(A)は、図7と同様に、クラッド66が除去されコア62が露出する領域を一部に有する光ファイバー60Aを示し、光ファイバー60Aのクラッド除去領域に多数の金属微粒子64が配置されている。一方、図12(B)に示す光ファイバー60Bは、クラッド除去領域に、金属薄膜68に包まれた誘電体球を多数配置してなる。つまり、光ファイバー60A、60Bのクラッド除去領域がセンサー部となる。そして、このようなLSPRセンサーを用いた光学スペクトルの測定は、一端から入射し、クラッド除去領域を伝搬し、他端から出射した光を検出して行うことができる。
 本実施形態に係るセンサー群は、(2)、(4)、(6)及び(8)のセンサーはそれぞれ単独で構成することができるし、各センサーを組み合わせて構成することもできる。
 本実施形態に係るセンサー群中のセンサー(SPRセンサー、LSPRセンサー)の個数は、後述するパターン認識の精度を向上させる観点から、参照用センサーを含めて5個以上とすることが好ましく、7個あれば十分な精度の測定をすることができる。
 一方、参照用センサーとして、センサー面の金属薄膜を金膜としたSPRセンサーを使用することが好ましい。金膜は腐食耐性を有し、腐食が進行することがないため、腐食耐性を有しない別の金属との対比において指標となりうる。このようなに参照用センサーを用いた測定については後述する。
[投光手段]
 投光手段は、例えば、光源と、コリメートレンズと、偏光子と、集光レンズとから構成される。光源としては、半導体レーザを用いることができる。光源から出射された光は、コリメートレンズによって平行光束とされ偏光子に導かれる。偏光子は、入射した光を表面プラズモンを引き起こすp偏光とするためのものであり、コリメートレンズにより平行光束とされた光は、偏光子によってp偏光とされ、集光レンズに向けて進む。集光レンズを透過した光は各SPRセンサーに導かれる。また、必要に応じて、信号対雑音比(S/N比:signal-to-noise ratio)を強めるためにチョッパーを光源の直後に配置してもよい。
 また、光波長多重通信技術を利用することにより、複数の異なる波長の光を光ファイバー1本で同時に処理することができる。一般に、ナノ粒子において、表面プラズモン共鳴が起こる光の波長は材料ごとに異なるが、光波長多重通信技術を利用すれば、1本の光ファイバーで異なるナノ粒子を同時に評価することが可能となる。この場合、入力光となる光源は複数必要であり、1本の光ファイバーに入力光を集約するために分岐光学素子を用いる。また、検出側では、SPRセンサーからの出力光を分光(波長を分離)する分光器、もしくは波長選択フィルターなどを用いる。
[検出手段]
 検出手段は、センサー群中の各センサーから出射する光を受光し、受光した光を光電変換する受光素子を備える。この受光素子により、受光した光はその強弱を示す情報を有する電気信号に変換される。
[データベース]
 データベースには、被測定金属の腐食に関する情報が蓄積される。具体的には、センサー群の各センサーにより検出される信号の強弱パターンの組合せに対して、被測定金属の腐食に関する情報を対応づけて情報処理装置の記憶部などに記憶させる。被測定金属の腐食に関する情報としては、腐食要因、腐食進行レベル、腐食進行速度、腐食進行過程(例;腐食進行が単調に進行、もしくは腐食進行が飽和傾向)などの情報が挙げられる。例えば、センサー群が、センサー面となる金属薄膜が異なる5つのSPRセンサーから構成される場合において、これら5つの強弱パターンに対し、金属の腐食の進行の度合いを分類して数値化するなどして記憶させる。
 上記のような信号の強弱パターンと、被測定金属の腐食に関する情報との組合せを多数準備してデータベースとして記憶しておくことが好ましい。
[解析手段]
 解析手段は、検出手段により検出された複数の信号強度と、データベースに蓄積された情報とに基づきパターン認識して被測定金属の腐食の程度を解析する。当該解析には、例えば、パソコンなどの情報処理装置を用い、パターン認識プログラムの処理により実行される。例えば、解析には、Widrow-Hoffの学習則(デルタルール、直交化学習、最小二乗学習)、ベイズ決定測、最尤法、クラスタリング、主成分分析(≒KL展開;Karhumen-Loeve展開)、フィッシャーの線形判別法(別名;フィッシャーの方法)、パラメーター推定、マルコフモデル、ノンパラメトリックベイズモデル、MTシステムなどの理論を採用することができる。
 次いで、金属の寿命予測について説明する。反応速度式を用いることにより、加速劣化試験結果を基に反応をモデル化し、様々な温度環境下での材料寿命が推定することができる。以下に、金属の寿命予測について、“市川健二, 田中隆二、産業安全研究所研究報告 RIIS-RR-87, 1987. “高圧用ゴム手袋の絶縁劣化診断―天然ゴム絶縁材料の熱劣化特性―”を引用して説明する。まず、反応速度式は下記式(1)で与えられる。
Figure JPOXMLDOC01-appb-M000003
 式(1)中、αは反応率(例えば、反応物質濃度の変化率)であり、反応完了時をα = 1とすれば、反応途中の材料に含まれる反応物質濃度はf(α) = (1-α)nで与えられるとする。また、nは反応次数を指定するパラメーターである。仮に、反応物質の濃度変化が材料の絶縁性、機械的強度などの材料物性Pの変化を誘発するならば、Pは反応率αの関数として下記式(2)で与えられる。
Figure JPOXMLDOC01-appb-M000004
 さらに、以上の前提条件下では、物性Pの反応速度式も上記式(2)と同じ形式で記述できると仮定すれば、下記式(3)で与えられる。
Figure JPOXMLDOC01-appb-M000005
 ここで、k(T)にアレニウスの式を代入し、反応が温度一定の下、t = 0からt = tまで進行した時に、物性がP0からPまで変化するとして上記(3)を積分し、下記式(4)が得られる。
Figure JPOXMLDOC01-appb-M000006
 式(4)の左辺の不定積分をH(P)とおけば、下記式(5)が得られる。
Figure JPOXMLDOC01-appb-M000007
 上記式(5)において両辺の対数をとり整理すると下記式(6)が得られる。
Figure JPOXMLDOC01-appb-M000008
 ここで、物性PがPfまで低下(劣化)するのに要する時間を寿命tfとし、劣化過程中の温度をTf(一定温度)とすれば、上記式(6)の右辺第2項は常に定数(H(Pf)、H(P0)は固定値)となる。よって、熱劣化寿命式として下記式(7)が得られる。
Figure JPOXMLDOC01-appb-M000009
 式(7)は、評価時の温度Tf(一定温度)の逆数と寿命時間tfの対数との間に直線関係が成立することを示している。異なる定温条件下で得た、ln(tf)と(1/ Tf)をプロットし得られる直線の傾きはE/Rであり、縦軸との切片は式(7)における定数に相当する。よって、直線プロットから活性化エネルギーEとconstant値を導出することができる。得られた値を式(7)に代入し、温度と寿命の関係を与える式を得る。つまり、化学反応を伴う材料に関して、任意の温度における寿命予測が可能となる。
 一方、SPRセンサーは、センサー面の金属薄膜の変化、及びセンサー面の周囲環境の変化のいずれにも反応するが、いずれの変化に起因する反応なのかを以下のようにして判定することができる。前提として、センサー面の金属薄膜を金膜とした参照用センサーを用いた場合、当該参照用センサーは耐腐食性を有する金をセンサー面に用いていることから、腐食に起因するセンサー信号に変化は生じない。これに対して、金膜以外の金属薄膜をセンサー面とした測定用センサーは、当該金属薄膜が腐食するため、金属薄膜腐食によりセンサーが反応して信号に変化が生じる。このことから、測定用センサーと参照用センサーとを比較することにより、センサー信号の変化が、センサー面の金属薄膜の変化に起因するものなのか、あるいはセンサー面の周囲環境の変化に起因するものなのかを以下のようにして判定することができる。
(1)参照用センサーの信号は変化せず、測定用センサーの信号が変化した場合、センサー面の金属薄膜の腐食は進行したが、周囲環境は変化していないと判定することができる。
(2)参照用センサーの信号も、測定用センサーの信号も変化しない場合、センサー面の金属薄膜の腐食も進行せず、周囲環境も変化していないと判定することができる。
(3)参照用センサーの信号も、測定用センサーの信号も変化した場合、少なくとも周囲環境が変化したと判定することができる(センサー面の金属薄膜の腐食の進行は不明)。
 上記判定により測定用センサー面の金属薄膜の腐食が進行したと判断されるなら、腐食劣化の経時変化を計測する。すなわち、異なる温度条件下において、表面プラズモン共鳴由来の光学スペクトルのピーク位置の変化、又はピーク強度の変化を腐食進行の指標として、初期状態から予め定めた劣化指標の下限値になるまでの時間(寿命到達時間)を計測する。異なる温度条件とは、室温以上であって3つ以上の温度条件とする。例えば、室温以上の温度T(T~T(T>T>T>室温))の3つの温度条件にてそれぞれ、初期の劣化指標(P)から劣化指標の下限値(P)までの時間(寿命到達時間)t(t~t)を計測する。これをグラフで示すと図13のようになる。そして、温度T~Tと、計測により得られた寿命到達時間t(t~t)とを、横軸:1/T、縦軸:lntの座標系にプロットすると、図14に示すように、上記式(lnt=E/RT+A)に基づく一次直線が得られる。得られた直線から、傾きと縦軸切片とを得ることにより、任意の温度Tにおける寿命到達時間tを算出することができる。図14において、一例として室温における寿命到達時間をプロットしている。
 以上の寿命到達時間の予測は、センサー面に金属薄膜のみが形成されたものを対象としている。当該金属薄膜に、アモルファス炭素系膜、グラフェン、塗装膜、樹脂などの腐食保護膜が形成されている場合でも寿命到達時間の予測は可能である。すなわち、金属薄膜の表面に腐食保護膜が形成されているSPRセンサーであっても、センサー面の腐食保護膜の変化、及びセンサー面の周囲環境の変化のいずれにも反応する。従って、表面が金属薄膜の場合と同様に、参照用センサーと測定用センサーとを用いて、いずれの変化に起因する反応なのかを以下のようにして判定することができる。
(1)参照用センサーの信号は変化せず、測定用センサーの信号が変化した場合、センサー面の腐食保護膜の腐食は進行したが、周囲環境は変化していないと判定することができる。
(2)参照用センサーの信号も、測定用センサーの信号も変化しない場合、センサー面の腐食保護膜の腐食も進行せず、周囲環境も変化していないと判定することができる。
(3)参照用センサーの信号も、測定用センサーの信号も変化した場合、少なくとも周囲環境が変化したと判定することができる(センサー面の腐食保護膜の腐食の進行は不明)。
 また、上記判定により測定用センサー面の腐食保護膜の腐食が進行したと判断されるなら、表面が金属薄膜のセンサーの場合と同様に、腐食劣化の経時変化を計測し、アレニウスの式に基づき、腐食保護膜の寿命到達時間を予測することができる。
 本実施形態の高選択性腐食センサーシステムにより、火山性ガス環境、海水環境、硫黄酸化物環境、窒素酸化物環境など、多種多様な大気腐食性環境を分類し、金属の腐食の進行を推定することができる。また、ナノスケールの腐食検知をすることができ、高感度かつ高精度な腐食速度予測が可能となる。さらに、本実施形態のセンサーは、測定対象となる金属に対して非破壊、非接触で測定することができるし、センサー交換も容易である。
12 プリズム
14 金属薄膜
16 投光手段
18 検出手段
20 透明基板
30 52 60A 60B 光ファイバー
32 金属薄膜
34 62 コア
36 66 クラッド
40A 40B 50A 50B センサー部
42 基板
44 54 64 金属微粒子
46 誘電体球
48 56 68 金属薄膜

Claims (8)

  1.  表面プラズモン共鳴センサー及び局在表面プラズモン共鳴センサーのうちの少なくとも2以上からなり、それぞれ腐食性環境に対する腐食耐性・腐食傾向が異なるセンサー群と、
     前記センサー群中の各センサーに向けて光を投光する投光手段と、
     前記センサー群中の各センサーから出射する光を、該光の強度に応じた信号強度として検出する検出手段と、
     被測定金属の腐食に関する情報が蓄積されたデータベースと、
     前記検出手段により検出された複数の信号強度と、前記データベースに蓄積された情報とに基づきパターン認識して被測定金属の腐食の程度を解析する解析手段と、
    を備える、高選択性腐食センサーシステム。
  2.  前記センサー群が、(1)センサー面に金属薄膜を有する表面プラズモン共鳴センサー、(2)センサー面の金属薄膜の材料がそれぞれ異なる複数の表面プラズモン共鳴センサー、(3)センサー面に機能膜を有する表面プラズモン共鳴センサー、(4)センサー面の機能膜の材料がそれぞれ異なる複数の表面プラズモン共鳴センサー、(5)センサー部に金属微粒子を有する局在表面プラズモン共鳴センサー、(6)センサー部の金属微粒子がそれぞれ異なる複数の局在表面プラズモン共鳴センサー、(7)センサー部の金属微粒子表面に機能膜を有する局在表面プラズモン共鳴センサー、及び(8)センサー部の金属微粒子表面の機能膜の材料がそれぞれ異なる複数の局在表面プラズモン共鳴センサーからなる群より選択される少なくとも1つを含むセンサー群((1)、(3)(5)及び(7)のいずれか1つの群のみからなるものを除く)である、請求項1に記載の高選択性腐食センサーシステム。
  3.  前記(1)又は(2)の表面プラズモン共鳴センサーが、光ファイバーの端面に、又はクラッドが除去されコアが露出する領域を一部に有する光ファイバーの当該領域に金属薄膜が形成された構造を有する、請求項2に記載の高選択性腐食センサーシステム。
  4.  前記(5)又は(6)の局在表面プラズモン共鳴センサーが、基板上に多数の金属微粒子が配置された構造を有する、請求項2に記載の高選択性腐食センサーシステム。
  5.  前記多数の金属微粒子のそれぞれが、金属薄膜に包まれた誘電体球である、請求項4に記載の高選択性腐食センサーシステム。
  6.  前記(5)又は(6)の局在表面プラズモン共鳴センサーが、光ファイバーの端面に、又はクラッドが除去されコアが露出する領域を一部に有する光ファイバーの当該領域に多数の金属微粒子が配置された構造を有する、請求項2に記載の高選択性腐食センサーシステム。
  7.  前記多数の金属微粒子のそれぞれが、金属薄膜に包まれた誘電体球である、請求項6に記載の高選択性腐食センサーシステム。
  8.  前記センサー群には、センサー面の金属薄膜が金膜である表面プラズモン共鳴センサー又はセンサー面の金属薄膜に保護膜を形成した表面プラズモン共鳴センサーを参照用センサーとして含む、請求項1乃至7のいずれか1項に記載の高選択性腐食センサーシステム。
PCT/JP2017/047220 2017-01-16 2017-12-28 高選択性腐食センサーシステム WO2018131502A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17891313.3A EP3570009A4 (en) 2017-01-16 2017-12-28 HIGH SELECTIVITY CORROSION SENSOR SYSTEM
CN201780079198.9A CN110100171A (zh) 2017-01-16 2017-12-28 高选择性腐蚀传感器系统
US16/445,549 US10753854B2 (en) 2017-01-16 2019-06-19 High selectivity corrosion sensor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-004963 2017-01-16
JP2017004963A JP6854134B2 (ja) 2017-01-16 2017-01-16 高選択性腐食センサーシステム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/445,549 Continuation US10753854B2 (en) 2017-01-16 2019-06-19 High selectivity corrosion sensor system

Publications (1)

Publication Number Publication Date
WO2018131502A1 true WO2018131502A1 (ja) 2018-07-19

Family

ID=62839611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047220 WO2018131502A1 (ja) 2017-01-16 2017-12-28 高選択性腐食センサーシステム

Country Status (5)

Country Link
US (1) US10753854B2 (ja)
EP (1) EP3570009A4 (ja)
JP (1) JP6854134B2 (ja)
CN (1) CN110100171A (ja)
WO (1) WO2018131502A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7096498B2 (ja) * 2019-02-20 2022-07-06 日本電信電話株式会社 推定方法
JP2020204540A (ja) * 2019-06-18 2020-12-24 矢崎総業株式会社 金属の腐食検出装置及び腐食検出方法
CN111381135B (zh) * 2020-03-27 2021-01-15 西安交通大学 一种电缆外护套绝缘老化检测装置及检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327225A (en) * 1993-01-28 1994-07-05 The Center For Innovative Technology Surface plasmon resonance sensor
JPH11326019A (ja) 1998-05-19 1999-11-26 Natl Res Inst For Metals 海塩粒子量の定量方法
JP2001201451A (ja) 2000-01-20 2001-07-27 Inst Of Physical & Chemical Res Acmセンサとその製造方法
US20020108911A1 (en) * 2000-12-13 2002-08-15 Kun Xiong Pseudo-fouling detector and use thereof to control an industrial water process
WO2010134470A1 (ja) * 2009-05-20 2010-11-25 コニカミノルタホールディングス株式会社 表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサ
JP2011002423A (ja) 2009-06-22 2011-01-06 Hitachi Engineering & Services Co Ltd 人工バリア環境モニタリング装置
JP2016142617A (ja) * 2015-02-02 2016-08-08 セイコーエプソン株式会社 電場増強素子、分析装置、及び電子機器

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570139A (en) * 1994-05-13 1996-10-29 Wang; Yu Surface plasmon high efficiency HDTV projector
US5815278A (en) * 1995-10-25 1998-09-29 University Of Washington Surface plasmon resonance light pipe sensing probe and related interface optics
US5858799A (en) * 1995-10-25 1999-01-12 University Of Washington Surface plasmon resonance chemical electrode
AU766541B2 (en) * 1999-06-29 2003-10-16 Carrier Corporation Biosensors for monitoring air conditioning and refrigeration processes
DE10008006C2 (de) * 2000-02-22 2003-10-16 Graffinity Pharm Design Gmbh SPR-Sensor und SPR-Sensoranordnung
DE10023363C1 (de) * 2000-05-12 2001-12-20 Jandratek Gmbh Plasmonenresonanzsensor
WO2003014711A1 (fr) * 2001-08-07 2003-02-20 Mitsubishi Chemical Corporation Puce de detection a resonance de plasmon de surface et procede et dispositif d'analyse d'echantillon utilisant cette puce
WO2005078415A1 (ja) * 2004-02-13 2005-08-25 Omron Corporation 表面プラズモン共鳴センサー
WO2005120924A1 (en) * 2004-06-11 2005-12-22 Stratech Systems Limited Method and system for rail track scanning and foreign object detection
ES2261009B1 (es) * 2004-06-11 2007-11-16 Consejo Superior De Investigaciones Cientificas. Dispositivo y metodo para detectar cambios en el indice de refraccion de un medio dielectrico.
CN100362337C (zh) * 2004-07-28 2008-01-16 南京航空航天大学 检测单核苷酸多态性的光纤表面等离子体波核酸传感器系统及检测方法
US7397043B2 (en) * 2005-01-26 2008-07-08 Nomadics, Inc. Standoff optical detection platform based on surface plasmon-coupled emission
US7408647B2 (en) * 2005-12-19 2008-08-05 Stanley Electric Co., Ltd. Surface plasmon resonance sensor device
US7652768B2 (en) * 2006-12-01 2010-01-26 Canon Kabushiki Kaisha Chemical sensing apparatus and chemical sensing method
CN100451622C (zh) * 2006-12-01 2009-01-14 清华大学 表面等离子体共振生化多通道外差相位检测方法及系统
US20090004670A1 (en) * 2007-06-29 2009-01-01 Jingwu Zhang Methods for fabricating surface enhanced fluorescent (sef) nanoparticles and their applications in bioassays
TW200918880A (en) * 2007-10-22 2009-05-01 Forward Electronics Co Ltd Cascade-type surface plasmon resonance fiber sensor and the apparatus comprising thereof
CN101424683A (zh) * 2007-10-31 2009-05-06 株式会社精工技研 生物传感器及其制造方法,以及传感器检测系统
CN201302545Y (zh) * 2008-09-28 2009-09-02 邢凤飞 一种光纤表面等离子体共振传感检测装置
KR101279419B1 (ko) * 2009-07-01 2013-06-27 한국과학기술연구원 고민감도 국소 표면 플라즈몬 공진 센서 및 이를 이용한 센서 시스템
TWI404982B (zh) * 2009-09-22 2013-08-11 Nat Univ Chung Cheng Localized plasma resonance sensing device
TW201122412A (en) * 2009-12-22 2011-07-01 Forward Electronics Co Ltd Coating apparatus and method for real-time monitoring thickness change of coating film
CN101769857B (zh) * 2010-01-06 2012-05-09 哈尔滨工程大学 基于环形芯波导的等离子体谐振式光纤生物传感器
KR20110138657A (ko) * 2010-06-21 2011-12-28 (주)미코바이오메드 표면 플라즈몬 공명 센서 모듈 및 이를 포함한 센싱 시스템
CN102095719A (zh) * 2010-12-30 2011-06-15 浙江工业大学 基于表面等离子共振和受激拉曼散射的光纤型传感系统
JP5799559B2 (ja) * 2011-04-12 2015-10-28 セイコーエプソン株式会社 検出装置
CN102156110A (zh) * 2011-05-16 2011-08-17 浙江工商职业技术学院 一种基于局域表面等离子体共振的传感方法
KR101257309B1 (ko) * 2011-11-11 2013-04-23 한국과학기술연구원 광섬유 표면 플라즈몬 공진 센서 및 이를 이용한 센싱 방법
US20130162138A1 (en) * 2011-12-27 2013-06-27 Shinoda Plasma Co., Ltd. Display device and method for producing the same
EP2626691A1 (en) * 2012-02-08 2013-08-14 Stichting IMEC Nederland Surface Wave Sensing
CN103376244B (zh) * 2012-04-18 2016-09-21 中国科学院电子学研究所 表面等离子体共振芯片及应用该芯片的传感器
CN103868457B (zh) * 2014-03-03 2016-08-17 中国计量学院 基于表面等离子共振的光纤多点微位移传感方法及装置
CN105158213B (zh) * 2015-09-11 2018-08-17 暨南大学 基于光纤表面等离子体共振的葡萄糖检测装置及方法
US9823192B1 (en) * 2016-10-17 2017-11-21 Ecolife Technologies, Llc Auto-calibration surface plasmon resonance biosensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327225A (en) * 1993-01-28 1994-07-05 The Center For Innovative Technology Surface plasmon resonance sensor
JPH11326019A (ja) 1998-05-19 1999-11-26 Natl Res Inst For Metals 海塩粒子量の定量方法
JP2001201451A (ja) 2000-01-20 2001-07-27 Inst Of Physical & Chemical Res Acmセンサとその製造方法
US20020108911A1 (en) * 2000-12-13 2002-08-15 Kun Xiong Pseudo-fouling detector and use thereof to control an industrial water process
WO2010134470A1 (ja) * 2009-05-20 2010-11-25 コニカミノルタホールディングス株式会社 表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサ
JP2011002423A (ja) 2009-06-22 2011-01-06 Hitachi Engineering & Services Co Ltd 人工バリア環境モニタリング装置
JP2016142617A (ja) * 2015-02-02 2016-08-08 セイコーエプソン株式会社 電場増強素子、分析装置、及び電子機器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ABDELMALEK, F. ET AL.: "Surface plasmon resonance based on Bragg gratings to test the durability of Au-Al films", MATERIAL LETTERS, vol. 57, November 2002 (2002-11-01), pages 213 - 218, XP004392440 *
KENJI ICHIKAWARYUJI TANAKA: "Kouatsu you gomu tebukuro no zetsuen rekka shindan - tennen gomu zetsuen zairyou no netsu rekka tokusei (Diagnosis of degradation of rubber insulating gloves for use in high voltage working - Thermal degradation of natural rubber insulating material", RESEARCH REPORT OF THE RESEARCH INSTITUTE OF INDUSTRIAL SAFETY, RIIS-RR-87, 1987
MARK W. KNIGHT ET AL., ACS NANO, vol. 117, no. 1, 2014, pages 834 - 840
See also references of EP3570009A4

Also Published As

Publication number Publication date
EP3570009A1 (en) 2019-11-20
US20190302002A1 (en) 2019-10-03
JP6854134B2 (ja) 2021-04-07
JP2018115867A (ja) 2018-07-26
US10753854B2 (en) 2020-08-25
EP3570009A4 (en) 2020-10-21
CN110100171A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
EP0537252B1 (en) Method for carrying out surface plasmon resonance measurement and sensor for use in the method
WO2018131502A1 (ja) 高選択性腐食センサーシステム
Zeng et al. Differentiating surface and bulk interactions in nanoplasmonic interferometric sensor arrays
JP4370945B2 (ja) 誘電率の測定方法
Verma et al. Surface-plasmon-resonance-based fiber-optic sensor for the detection of low-density lipoprotein
Mitsushio et al. Sensor properties and surface characterization of aluminum-deposited SPR optical fibers
CN103064145A (zh) 一种湿度传感光纤及其制备方法与应用
AU2011229130A1 (en) A sensor and a method for characterising a dielectric material
CN104471378B (zh) 局部表面等离子体共振汞探测系统和方法
CN207318351U (zh) 基于spr传感器的溶液浓度检测系统
Haque et al. DNA hybridization detection using graphene-MoSe2–Ag heterostructure-based surface plasmon resonance biosensor
JP3961405B2 (ja) 表面プラズモン共鳴センサおよび屈折率変化測定方法
US8879065B1 (en) Systems and methods for localized surface plasmon resonance sensing
Yun et al. The use of bilayers consisting of graphene and noble metals has been explored for biosensors that employ inverted surface plasmon resonance
Saleviter et al. Label-free binding analysis of 4-(2-Pyridylazo)-resorcinol-based composite layer with cobalt ion using surface plasmon resonance optical sensor
WO2022056288A1 (en) Nanohole array based sensors with various coatings and temperature control for covid-19
Hasan et al. Review of surface plasmon resonance phenomenon applied in different applications
Singh et al. Few-Layer Si and WS2-Based Surface Plasmon Resonance Sensor for Water Salinity Concentration Detection: Theoretical Insight
EP3909928A1 (en) Waveguide with outer coating for analyte detection
KR101264101B1 (ko) 바이오센서의 제조 방법 및 이에 의해 제조된 바이오센서
Kosako et al. Detection of Initial Stage of Aluminum Corrosion in NaCl Solution Utilizing Surface Plasmon Resonance
CN111795947B (zh) 具有共振腔的等离激元波导传感器及其使用和制备方法
De Vos et al. Label-free biosensors on silicon-on-insulator optical chips
Chatterjee et al. Plasmonic Sensor Utilizing Oxide and Antemonene Heterojunction for Glucose Sensing
Cennamo et al. Chemical sensors based on SPR in a Plastic Optical Fiber: Simultaneous detection of Fe (III) and Cu (II)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017891313

Country of ref document: EP