WO2010134470A1 - 表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサ - Google Patents

表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサ Download PDF

Info

Publication number
WO2010134470A1
WO2010134470A1 PCT/JP2010/058178 JP2010058178W WO2010134470A1 WO 2010134470 A1 WO2010134470 A1 WO 2010134470A1 JP 2010058178 W JP2010058178 W JP 2010058178W WO 2010134470 A1 WO2010134470 A1 WO 2010134470A1
Authority
WO
WIPO (PCT)
Prior art keywords
film thickness
different
dielectric member
excitation sensor
plasmon
Prior art date
Application number
PCT/JP2010/058178
Other languages
English (en)
French (fr)
Inventor
高敏 彼谷
英隆 二宮
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011514392A priority Critical patent/JPWO2010134470A1/ja
Publication of WO2010134470A1 publication Critical patent/WO2010134470A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence

Definitions

  • the present invention relates to a surface plasmon enhanced fluorescence measuring apparatus based on the principle of surface plasmon excitation enhanced fluorescence spectroscopy (SPFS), and a plasmon excitation sensor used in the surface plasmon enhanced fluorescence measuring apparatus.
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • SPFS Surface plasmon excitation-enhanced fluorescence spectroscopy
  • Such a surface plasmon enhanced fluorescence measuring apparatus 100 has a basic structure as shown in FIG. 10, first a metal thin film 102, a reaction layer 104 formed on one side of the metal thin film 102, and the metal thin film 102. And a dielectric member 106 formed on the other side surface of the plasmon excitation sensor 108.
  • the plasmon excitation sensor 108 includes a light source 112 that is incident on the dielectric member 106 and irradiates the excitation light 110 toward the metal thin film 102 on the dielectric member 106 side.
  • the light receiving means 116 for receiving the metal thin film reflected light 114 reflected by the light is provided.
  • a light detection means 120 for receiving the fluorescence 118 emitted from the fluorescent substance labeled with the analyte captured by the reaction layer 104 is provided.
  • a wavelength selection function member 124 is provided.
  • a reaction layer 104 in which an analyte labeled with a fluorescent substance is captured in advance is formed on the metal thin film 102, and in this state, a dielectric is formed from the light source 112.
  • a specific angle (resonance angle) 126 When the excitation light 110 is irradiated into the member 106 and the excitation light 110 is incident on the metal thin film 102 at a specific angle (resonance angle) 126, a dense wave (surface plasmon) is generated on the metal thin film 102. .
  • the resonance angle 126 at which the dense wave (surface plasmon) occurs can be obtained.
  • the light detection means 120 By receiving the increased fluorescence 118 by the light detection means 120 via the light collecting member 122 and the wavelength selection function member 124, it becomes possible to detect an extremely small amount and / or extremely low concentration of the analyte. ing.
  • the present inventors have already devised to prevent quenching by providing another dielectric member 128 between the metal thin film 102 and the reaction layer 104. . Further, the addition of such a dielectric member 128 has an effect of further enhancing the electric field enhancement, and plays an important role in performing ultra-high accuracy fluorescence detection.
  • Such a surface plasmon enhanced fluorescence measuring apparatus 100 is particularly suitable for observing minute molecular activities such as between biomolecules.
  • the conventional surface plasmon enhanced fluorescence measuring apparatus 100 when one type of analyte is captured in the reaction layer 104, it is necessary to prepare the plasmon excitation sensor 108 each time the analyte to be detected is changed. Currently, it takes cost and time to perform analyte detection.
  • the present invention has been made in view of such a situation, and a surface on which a fluorescent substance labeled with an analyte trapped at a desired position in a reaction layer can be reliably excited to detect fluorescence with high sensitivity. It is an object of the present invention to provide a plasmon excitation sensor used in a plasmon enhanced fluorescence measurement device and a surface plasmon enhanced fluorescence measurement device.
  • an object of the present invention is to provide a surface plasmon enhanced fluorescence measuring apparatus and a plasmon excitation sensor used for the surface plasmon enhanced fluorescence measuring apparatus that can detect a plurality of analytes at low cost and in a short time.
  • the present invention was invented to solve the problems in the prior art as described above,
  • the plasmon excitation sensor of the present invention is By irradiating one side of the metal thin film with excitation light and enhancing the electric field on the metal thin film, the fluorescent material in the reaction layer formed on the other side of the metal thin film is excited, thereby enhancing the fluorescence.
  • a plasmon excitation sensor used in a surface plasmon enhanced fluorescence measuring device that is detected by a light detection means is A first dielectric member; A metal thin film formed on an upper surface of the first dielectric member; A second dielectric member formed on the upper surface of the metal thin film; A reaction layer formed on an upper surface of the second dielectric member; Consisting of at least The second dielectric member is A part of the film thickness has a different film thickness part different from other parts.
  • the second dielectric member is provided between the metal thin film and the reaction layer, it is possible to prevent a phenomenon that fluorescence is hardly generated by quenching. Further, if the second dielectric member has a different film thickness portion, it is possible to reliably classify an area where the electric field is desired to be enhanced and an area where the electric field is not desired using an electric field enhancement characteristic which varies depending on the film thickness.
  • the resonance angle of the excitation light is set so that the optimum electric field enhancement occurs when the film thickness is different, the electric field enhancement is performed only at the different film thickness portion. It is possible to focus on the electric field enhancement area and improve the S / N ratio and detect fluorescence with high sensitivity.
  • the resonance angles at which dense waves (surface plasmons) are generated differ depending on the thickness of the second dielectric member, a plurality of types of analytes are captured in the reaction layer of the plasmon excitation sensor.
  • the analyte of the reaction layer is positioned and captured in accordance with the positions of the “location of the different film thickness portion” and the “location having the main film thickness” of the second dielectric member, By changing the angle of the resonance angle, it is possible to detect different analytes at each location, thereby reducing the cost of the analyte detection and shortening the detection time.
  • the plasmon excitation sensor of the present invention is The different film thickness portion is The second dielectric member is provided in a plurality of locations.
  • a plurality of different film thickness portions are provided in this way, it can be surely divided into an area where electric field enhancement is desired and an area where it is not. Furthermore, two or more types of analyte detection can be performed on the same plasmon excitation sensor.
  • the plasmon excitation sensor of the present invention is The plurality of different film thickness portions are configured such that each thickness of the different film thickness portions is constant.
  • a plurality of electric field enhancement areas can be provided in one plasmon excitation sensor, so that desired analyte detection can be reliably performed and detection accuracy is improved. be able to.
  • the plasmon excitation sensor of the present invention is The plurality of different film thickness portions are composed of a plurality of different film thickness portions having different thicknesses.
  • the second dielectric member may be composed of a plurality of different film thickness portions having different thicknesses. For example, by changing the resonance angle, the same type of analyte detection as the number of thickness types can be detected on the same plasmon excitation sensor.
  • the plasmon excitation sensor of the present invention is The plurality of different film thickness portions include a portion in which the thickness of each of the different film thickness portions is constant and a portion having a thickness different from the constant portion.
  • the electric field enhancement area is set as one plasmon.
  • a plurality of locations can be provided in the excitation sensor, and desired analyte detection can be performed reliably, and the same type of analyte detection as the number of locations having different thicknesses can be performed on the same plasmon excitation sensor.
  • the plasmon excitation sensor of the present invention is The plurality of different film thickness portions have the same shape when viewed from above.
  • the electric field enhancement effect tends to be the same for each shape, and therefore the analyte detection accuracy can be made substantially constant.
  • the plasmon excitation sensor of the present invention is The plurality of different film thickness portions are formed of a plurality of different top-view shapes.
  • the electric field enhancement effect varies depending on the difference in shape and the resonance angle if the plurality of different thickness portions are configured in a plurality of different top view shapes.
  • the shape suitable for enhancement can be examined, and more accurate analyte detection can be performed.
  • the plasmon excitation sensor of the present invention is The plurality of different film thickness portions include a portion in which a top view shape of each of the different film thickness portions has the same shape and a portion having a different shape different from the same shape.
  • each of the plurality of different film thickness portions has a portion having the same shape in top view and a portion having a different shape different from the same shape, an analyte for each shape is obtained.
  • the detection accuracy can be made substantially constant, and a shape suitable for electric field enhancement can be examined in accordance with the resonance angle.
  • the surface plasmon enhanced fluorescence measuring device of the present invention is The plasmon excitation sensor according to any one of the above is provided.
  • the second dielectric member is a surface plasmon enhanced fluorescence measuring device provided with a plasmon excitation sensor having a different thickness portion, an electric field enhancement area can be partially created, so that the analyte detection is accurate. Can be done well.
  • a plurality of types of analytes are captured in the reaction layer in accordance with the positions of the different film thickness portions, a plurality of analytes can be detected with high accuracy on the same sensor.
  • the fluorescent substance labeled with the analyte trapped at a desired position in the reaction layer is surely excited to detect fluorescence with high sensitivity. It is possible to provide a surface plasmon enhanced fluorescence measuring apparatus and a plasmon excitation sensor used in the surface plasmon enhanced fluorescence measuring apparatus that can be performed.
  • a surface plasmon enhanced fluorescence measuring apparatus and a surface capable of detecting a plurality of types of analytes on the same sensor by providing different film thickness portions of the second dielectric member at a plurality of locations and changing the film thickness respectively.
  • a plasmon excitation sensor used in a plasmon enhanced fluorescence measurement apparatus can be provided.
  • FIG. 1 is a schematic view of a surface plasmon enhanced fluorescence measuring apparatus according to the present invention.
  • FIG. 2 is a schematic view for explaining a first embodiment of the plasmon excitation sensor used in the surface plasmon enhanced fluorescence measuring apparatus of the present invention.
  • FIG. 3 is a view for explaining a first embodiment of the plasmon excitation sensor used in the surface plasmon enhanced fluorescence measuring apparatus of the present invention, in which the size of the reaction layer is adjusted to the size of the detection area.
  • FIG. FIG. 4 is a schematic view for explaining a second embodiment of the plasmon excitation sensor used in the surface plasmon enhanced fluorescence measuring apparatus of the present invention.
  • FIG. 1 is a schematic view of a surface plasmon enhanced fluorescence measuring apparatus according to the present invention.
  • FIG. 2 is a schematic view for explaining a first embodiment of the plasmon excitation sensor used in the surface plasmon enhanced fluorescence measuring apparatus of the present invention.
  • FIG. 3 is a view for explaining
  • FIG. 5 is a top view of the second dielectric layer in the plasmon excitation sensor of the present invention.
  • FIG. 6 is a top view of another second dielectric layer in the plasmon excitation sensor of the present invention.
  • FIG. 7 is a schematic view for explaining a third embodiment of the plasmon excitation sensor used in the surface plasmon enhanced fluorescence measuring apparatus of the present invention.
  • FIG. 8 is a schematic view for explaining another form of the first dielectric member of the plasmon excitation sensor of the present invention.
  • FIG. 9 is a graph showing the relationship between the film thickness of the second dielectric member and the electric field enhancement intensity.
  • FIG. 10 is a schematic view of a conventional surface plasmon enhanced fluorescence measuring apparatus.
  • FIG. 11 is a schematic view of a conventional surface plasmon enhanced fluorescence measuring apparatus.
  • FIG. 1 is a schematic diagram of a surface plasmon enhanced fluorescence measuring apparatus according to the present invention.
  • FIG. 2 is a schematic diagram for explaining a first embodiment of a plasmon excitation sensor used in the surface plasmon enhanced fluorescence measuring apparatus according to the present invention.
  • FIG. 3 is a schematic diagram for explaining a case where the size of the reaction layer is adjusted to the size of the detection area.
  • the plasmon excitation sensor used in the surface plasmon enhanced fluorescence measuring device and the surface plasmon enhanced fluorescence measuring device of the present invention reliably excites a fluorescent substance labeled with an analyte trapped at a desired position in the reaction layer, and has high sensitivity. Fluorescence detection can be performed, and a plurality of analytes can be detected at low cost and in a short time.
  • “surface plasmon” in the present specification is used in a broad sense, and includes “localized plasmon”.
  • the “different thickness portion” refers to a location where the thickness of the second dielectric member is different from the location having the main thickness.
  • the part having the main film thickness and the part having a different film thickness change depending on where “the part having the main film thickness” is determined. .
  • the shape of the second dielectric member is a convex shape as shown in FIG. 2, if the substantially central portion is a “different film thickness portion”, the portion that is one step lower than the substantially central portion is “main. A portion having a film thickness ".
  • the substantially central portion is a “portion having a main film thickness”
  • the portion that is one step lower than the substantially central portion is a “different film thickness portion”.
  • location having main film thickness and “although the portion having a different film thickness (a portion having a different film thickness) (a portion having a different film thickness) may be referred to as a portion having a main film thickness, for convenience of explanation, each step will be described as a portion having a different film thickness.
  • the surface plasmon enhanced fluorescence measuring apparatus 10 of the present invention includes a first dielectric member 16, a metal thin film 12 formed on the upper surface of the first dielectric member 16, and a metal thin film 12.
  • a plasmon excitation sensor 18 having a second dielectric member 38 formed on the upper surface and a reaction layer 14 formed on the upper surface of the second dielectric member 38 is provided.
  • the plasmon excitation sensor 18 includes a light source 22 that is incident on the first dielectric member 16 and irradiates the excitation light 20 toward the metal thin film 12 on the first dielectric member 16 side.
  • Light receiving means 26 for receiving the metal thin film reflected light 24 reflected by the metal thin film 12 is provided.
  • the excitation light 20 emitted from the light source 22 is preferably a laser beam, and an LD laser having a wavelength of 200 to 900 nm and 0.001 to 1,000 mW, or a semiconductor laser having a wavelength of 230 to 800 nm and 0.01 to 100 mW is suitable. .
  • a light detection means 30 for receiving the fluorescence 28 generated in the reaction layer 14 is provided on the reaction layer 14 side of the plasmon excitation sensor 18.
  • the light detection means 30 it is preferable to use an ultra-sensitive photomultiplier tube or a CCD image sensor capable of multipoint measurement.
  • a wavelength selection function member 34 is provided.
  • any condensing system may be used as long as it aims at efficiently condensing the fluorescent signal on the light detecting means 30.
  • a simple condensing system a commercially available objective lens used in a microscope or the like may be used.
  • the magnification of the objective lens is preferably 10 to 100 times.
  • an optical filter As the wavelength selection function member 34, an optical filter, a cut filter, or the like can be used.
  • the optical filter include a neutral density (ND) filter and a diaphragm lens.
  • the cut filter includes external light (illumination light outside the device), excitation light (excitation light transmission component), stray light (excitation light scattering component at various points), and plasmon scattering light (excitation light originated from plasmon A filter that removes various types of noise light such as scattered light generated due to the influence of structures or deposits on the surface of the excitation sensor) and autofluorescence of the enzyme fluorescent substrate, such as an interference filter and a color filter.
  • a reaction layer 14 in which an analyte previously labeled with a fluorescent substance is captured is provided on the metal thin film 12.
  • the first dielectric member 16 is irradiated with excitation light 20, and the excitation light 20 is a metal thin film at a specific angle (resonance angle (an angle formed by the excitation light 20 and the perpendicular of the metal thin film 12 when the electric field is enhanced) 36).
  • a specific angle resonance angle (an angle formed by the excitation light 20 and the perpendicular of the metal thin film 12 when the electric field is enhanced
  • the fluorescent material generated in the reaction layer 14 on the metal thin film 12 is efficiently excited, thereby increasing the amount of the fluorescent light 28 emitted from the fluorescent material and condensing the fluorescent light 28.
  • the light detection means 30 via the member 32 and the wavelength selection function member 34, it is possible to detect an extremely small amount and / or extremely low concentration of the analyte.
  • the material of the metal thin film 12 of the plasmon excitation sensor 18 is preferably made of at least one metal selected from the group consisting of gold, silver, aluminum, copper, and platinum, more preferably made of gold. It consists of a metal alloy.
  • Such a metal is suitable for the metal thin film 12 because it is stable against oxidation and has a large electric field enhancement due to dense waves (surface plasmons).
  • examples of the method for forming the metal thin film 12 include sputtering, vapor deposition (resistance heating vapor deposition, electron beam vapor deposition, etc.), electrolytic plating, electroless plating, and the like.
  • the sputtering method and the vapor deposition method are preferable because the thin film formation conditions can be easily adjusted.
  • the thickness of the metal thin film 12 ranges from gold: 5 to 500 nm, silver: 5 to 500 nm, aluminum: 5 to 500 nm, copper: 5 to 500 nm, platinum: 5 to 500 nm, and alloys thereof: 5 to 500 nm. It is preferable to be within.
  • the thickness of the metal thin film 12 is within the above range, close-packed waves (surface plasmons) are easily generated, which is preferable. Moreover, if it is the metal thin film 12 which has such thickness, a magnitude
  • specimens used for analyte detection include blood, serum, plasma, urine, nasal fluid, saliva, stool, body cavity fluid (eg, cerebrospinal fluid, ascites, pleural effusion).
  • the analyte contained in the sample is, for example, a nucleic acid (DNA, RNA, polynucleotide, oligonucleotide, PNA (peptide nucleic acid), which may be single-stranded or double-stranded, or nucleoside.
  • Nucleotides and their modified molecules Nucleotides and their modified molecules), proteins (polypeptides, oligopeptides, etc.), amino acids (including modified amino acids), carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids, or modified molecules thereof, Specific examples thereof include a complex, and may be a carcinoembryonic antigen such as AFP ( ⁇ -fetoprotein), a tumor marker, a signal transduction substance, a hormone, and the like, and is not particularly limited.
  • AFP ⁇ -fetoprotein
  • the fluorescent substance is not particularly limited as long as it is a substance that emits fluorescence 28 by being irradiated with predetermined excitation light 20 or excited by using a field effect.
  • the fluorescence 28 in this specification includes various types of light emission such as phosphorescence.
  • the first dielectric member 16 various optically transparent inorganic substances, natural polymers, and synthetic polymers can be used. From the viewpoints of chemical stability, manufacturing stability, and optical transparency, silicon dioxide. It is preferable to contain (SiO 2 ) or titanium dioxide (TiO 2 ).
  • such a surface plasmon enhanced fluorescence measuring apparatus 10 adjusts the optimum angle (resonance angle 36) of surface plasmon resonance by the excitation light 20 irradiated from the light source 22 onto the metal thin film 12, so that an angle variable unit (not shown) can be used.
  • a computer (not shown) for processing the information input to the light detection means 30.
  • the angle variable unit (not shown) synchronizes the light receiving means 26 and the light source 22 in order to obtain the total reflection attenuation (ATR) condition with a servo motor, and enables an angle change of 45 to 85 °, and the resolution. Is preferably 0.01 ° or more.
  • the surface plasmon enhanced fluorescence measuring apparatus 10 of the present invention having the above-described configuration has a characteristic structure particularly in the second dielectric member 38 of the plasmon excitation sensor 18.
  • Such a second dielectric member 38 has a structure in which a part of the film thickness has a different film thickness part 40 different from other parts.
  • an embodiment of the plasmon excitation sensor 18 having the second dielectric member 38 having such a structure will be described.
  • the second dielectric member 38 used in the plasmon excitation sensor 18 of the present invention has a part of its film thickness (substantially central portion in this figure) different from the other parts. Part 40.
  • the second dielectric member 38 has different electric field enhancement effects depending on the film thickness, and the resonance angle 36 that causes plasmon resonance varies depending on the film thickness of the second dielectric member 38. Confirmed by the people.
  • the electric field enhancement is caused by the difference in electric field enhancement due to the difference in film thickness. It is possible to distinguish between areas and areas that are not.
  • the electric field enhancement area can be limited to the substantially central portion (other than the substantially central portion). If fluorescence excitation is performed only in the central part (other than the substantially central part) and only this part is detected by the light detection means 30, the detection range is narrowed, so the S / N ratio is improved and the analyte is obtained with ultra-high accuracy. Can be detected.
  • the second dielectric member 38 is made of basically the same material as the first dielectric member 16 and can use various optically transparent inorganic substances, natural polymers, and synthetic polymers, and is chemically stable. From the viewpoints of properties, manufacturing stability and optical transparency, it is preferable to contain silicon dioxide (SiO 2 ) or titanium dioxide (TiO 2 ).
  • the different film thickness portion 40 of the second dielectric member 38 can be masked on the second dielectric member 38 and etched to form the different film thickness portion 40 at a desired position. Further, the different thickness portion 40 may be formed by partially laminating another dielectric member on the same thickness dielectric member.
  • the lower limit of the film thickness T of the second dielectric member 38 is 50 nm. If it is more than the lower limit, it is possible to reduce the influence of quenching and to obtain an electric field enhancement more advantageous than when the dielectric is not used (film thickness T is zero).
  • Appropriate ranges for the second dielectric member 38 are 50 nm to 1000 nm and 10,000 nm or more.
  • the electric field enhancement intensity varies irregularly under the TiO2 film thickness condition, and has several peaks within the above condition range (see FIG. 9 described later). Therefore, by setting the film thickness T condition within this range, the electric field enhancement can be set to a high value, so that not only detection with high sensitivity is possible, but also depending on the setting conditions of different film thicknesses. This is because the contrast of the electric field enhancement can be set large.
  • the height of the reaction layer 14 on the upper surface is different. Since the fluorescence 28 is generated from the fluorescent material captured by the reaction layer 14, the height of the portion where the fluorescence is generated is different if the height of the reaction layer 14 is different.
  • a confocal optical system is used for the light detection unit 30, and the focal position is moved to the respective regions of the reaction layer 14 having different heights while slightly moving the light detection unit 30 up and down. It is possible to detect each region in sequence by matching them in order.
  • the electric field enhancement area is formed by setting the substantially central portion of the second dielectric member 38 as the different film thickness portion 40 in advance, the area located immediately above the different film thickness portion 40 of the reaction layer 14. Only the detection area 42 may be used, and the analyte may be captured only in the detection area 42.
  • the plasmon excitation sensor 18 in the present embodiment is provided with the different film thickness portion 40 in a part of the second dielectric member 38, the electric field enhancement area can be narrowed down.
  • the fluorescent substance labeled with the analyte captured at the desired position can be reliably excited to detect fluorescence with high sensitivity.
  • the plasmon excitation sensor 18 shown in FIG. 4 is a schematic view in the second embodiment of the present invention.
  • the plasmon excitation sensor 18 shown in FIG. 4 has basically the same configuration as the plasmon excitation sensor 18 of the first embodiment shown in FIG. 2 or FIG. Detailed description thereof will be omitted.
  • the plasmon excitation sensor 18 shown in FIG. 4 is different from the first embodiment in that a plurality of different film thickness portions 40 of the second dielectric member 38 are provided.
  • the thickness of the second dielectric member 38 is set so that the portions of the film thickness T3 of the different film thickness portion 40 and the portions of the film thickness T4 that are not so alternate.
  • the portions of the film thickness T3 of the different film thickness portion 40 and the portions of the film thickness T4 that are not so alternate are not so alternate.
  • FIG. 5 it is possible to adopt a type in which square shapes are alternately arranged, or a type in which triangular shapes are arranged as shown in FIG.
  • the area of the film thickness T3 of the different film thickness portion 40 is set as the electric field enhancement area by setting the resonance angle 36, a plurality of electric field enhancement areas can be obtained on the sensor.
  • the present inventors have confirmed that the electric field enhancement area can be easily formed at the apex portion of the shape. For this reason, if a plurality of different film thickness portions 40 are provided, naturally a plurality of vertex portions are formed, so that the electric field enhancement effect can be further enhanced.
  • electric field enhancement areas can be provided at a plurality of locations, and the electric field enhancement effect can be enhanced. Analyte detection can be performed.
  • the plasmon excitation sensor 18 shown in FIG. 7 is a schematic diagram in the third embodiment of the present invention.
  • the plasmon excitation sensor 18 shown in FIG. 7 has basically the same configuration as the plasmon excitation sensor 18 of the first embodiment shown in FIG. 2 or FIG. Detailed description thereof will be omitted.
  • the plasmon excitation sensor 18 shown in FIG. 7 is an embodiment in that a plurality of different film thickness portions 40 of the second dielectric member 38 are provided and a plurality of different film thickness portions 40 having different thicknesses. 1 and different.
  • Such a second dielectric member 38 detects each different analyte in the reaction layer 14 immediately above each different film thickness portion 40 at a position corresponding to each different film thickness portion 40. Areas 42a, 42b, and 42c are formed. For this reason, a plurality of types of analytes can be detected on the same sensor 18 only by changing the resonance angle 36 of the excitation light 20 for each of the detection areas 42a, 42b, and 42c.
  • a plate-like dielectric member 16b is superimposed on a dielectric member 16a having a substantially triangular cross section. It may be a laminated body, and is not particularly limited.
  • the material of each member may be the same.
  • the shapes of the different film thickness portions 40 of the second dielectric member 38 may be the same or different as shown in FIGS. 5 and 6, and other than these shapes, a circular shape or a star shape Any shape can be used, and various modifications can be made without departing from the object of the present invention.
  • the metal thin film 12 is made of Au with a thickness of 50 nm
  • the second dielectric member 38 is made of TiO 2 with a thickness T
  • the reaction layer thereon. 14 was arranged with water (H 2 0).
  • the relationship with the electric field enhancement intensity also referred to as electric field enhancement maximum value
  • FIG. 1 the relationship with the electric field enhancement intensity (also referred to as electric field enhancement maximum value) when the film thickness T of the second dielectric member 38 was changed was calculated. The result is shown in FIG.
  • FIG. 9 is a graph showing the relationship between the film thickness T of the second dielectric member 38 and the electric field enhancement intensity.
  • the horizontal axis is the film thickness T (nm), and the vertical axis is the electric field enhancement.
  • the electric field enhancement is less than 1 time and is affected by quenching.
  • the electric field enhancement has a peak of 25 to 30 times at the film thicknesses of 400 nm and 1000 nm.
  • the electric field enhancement is 20 times or more.
  • the electric field enhancement can be set high by setting the film thickness T of the different film thickness portion 40 so as to have such a peak, highly sensitive detection is possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 反応層の所望位置に捕捉されたアナライトを標識した蛍光物質を、確実に励起させて高感度に蛍光検出を行うことができ、さらに複数のアナライト検出を低コストでしかも短時間で行うことのできる表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサを提供することを目的とする。 プラズモン励起センサは、第1誘電体部材と、前記第1誘電体部材の上面に形成された金属薄膜と、前記金属薄膜の上面に形成された第2誘電体部材と、前記第2誘電体部材の上面に形成された反応層と、から少なくとも構成され、前記第2誘電体部材は、その膜厚の一部が他の部分とは異なる異膜厚部を有する。

Description

表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサ
 本発明は、表面プラズモン励起増強蛍光分光法(SPFS;Surface Plasmon-field enhanced Fluorescence Spectroscopy)の原理に基づいた表面プラズモン増強蛍光測定装置およびこの表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサに関する。
 従来より、表面プラズモン励起増強蛍光分光法(SPFS)の原理に基づき、例えば生体内の極微少なアナライトの検出が行われている。
 表面プラズモン励起増強蛍光分光法(SPFS)は、光源より照射したレーザ光(励起光)が金属薄膜表面で全反射減衰(ATR;attenuated total reflectance)する条件において、金属薄膜表面に粗密波(表面プラズモン)を発生させることによって、光源より照射したレーザ光(励起光)が有するフォトン量を数十倍~数百倍に増やし(表面プラズモンの電場増強効果)、これにより金属薄膜近傍の蛍光物質を効率良く励起させ、この励起された蛍光を検出することで極微量および/または極低濃度のアナライトを検出するようにしたものである。
 近年、このような表面プラズモン励起増強蛍光分光法(SPFS)の原理に基づいた表面プラズモン増強蛍光測定装置の開発が進められており、例えば特許文献1や特許文献2などにその技術開示がなされている。
 このような表面プラズモン増強蛍光測定装置100は、図10に示したように基本的な構造において、まず金属薄膜102と、金属薄膜102の一方側面に形成された反応層104と、この金属薄膜102の他方側面に形成された誘電体部材106と、を有するプラズモン励起センサ108を備えている。
 そして、プラズモン励起センサ108の誘電体部材106側には、誘電体部材106内に入射され、金属薄膜102に向かって励起光110を照射する光源112を備え、さらに光源112から照射され金属薄膜102で反射した金属薄膜反射光114を受光する受光手段116が備えられている。
 一方、プラズモン励起センサ108の反応層104側には、反応層104で捕捉されたアナライトを標識した蛍光物質が発する蛍光118を受光する光検出手段120が設けられている。
 なお、反応層104と光検出手段120との間には、蛍光118を効率よく集光するための集光部材122と、蛍光118以外に含まれる光を除去し、必要な蛍光のみを選択する波長選択機能部材124が設けられている。
 そして、表面プラズモン増強蛍光測定装置100の使用においては、金属薄膜102上に、あらかじめ蛍光物質で標識されたアナライトが捕捉された反応層104を形成しておき、この状態で光源112より誘電体部材106内に励起光110を照射し、この励起光110が特定の角度(共鳴角)126で金属薄膜102に入射することで、金属薄膜102上に粗密波(表面プラズモン)を生ずることとなる。
 なお、金属薄膜102上に粗密波(表面プラズモン)が生ずる際には、励起光110と金属薄膜102中の電子振動とがカップリングし、金属薄膜反射光114の光量減少という現象が生ずる。
 このため、受光手段116で受光される金属薄膜反射光114のシグナルが変化(光量が減少)する地点を見つければ、粗密波(表面プラズモン)が生ずる共鳴角126を得ることができる。
 そして、この粗密波(表面プラズモン)を生ずる現象により、金属薄膜102上の反応層104の蛍光物質が効率良く励起され、これにより蛍光物質が発する蛍光118の光量が増大することとなる。
 この増大した蛍光118を、集光部材122および波長選択機能部材124を介して光検出手段120で受光することで、極微量および/または極低濃度のアナライトを検出することができるようになっている。
 なお、上記した表面プラズモン増強蛍光測定装置100のように、金属薄膜102上に直に蛍光分子が載せられていると、クエンチングにより蛍光118が生じ難くなるという現象が生ずる場合がある。
 このため図11に示したように、金属薄膜102と反応層104との間に、さらに別の誘電体部材128を設けることでクエンチングを防止するといった工夫が既に本発明者らによってなされている。また、このような誘電体部材128の追加は、電場増強をさらに高める効果を有しており、超高精度な蛍光検出を行うのに重要な役割をなしている。
 このような表面プラズモン増強蛍光測定装置100は、特に生体分子間などの微細な分子活動を観察するのに好適である。
特許第3294605号公報 特開2006-208069号公報
 従来の表面プラズモン増強蛍光測定装置100では、反応層104において1種類のアナライトが捕捉されている場合、検出対象となるアナライトが替わる度にプラズモン励起センサ108を用意する必要があり、複数のアナライト検出を行うのに、コストや時間がかかっているのが現状である。
 本発明はこのような現状に鑑みなされたものであって、反応層の所望位置に捕捉されたアナライトを標識した蛍光物質を、確実に励起させて高感度に蛍光検出を行うことのできる表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサを提供することを目的とする。
 さらに本発明は、複数のアナライト検出を低コストでしかも短時間に行うことのできる表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサを提供することを目的とする。
 本発明は、前述したような従来技術における問題点を解決するために発明されたものであって、
 本発明のプラズモン励起センサは、
 金属薄膜の一方側に励起光を照射し、前記金属薄膜上の電場を増強させることにより、前記金属薄膜の他方側に形成された反応層の蛍光物質を励起させ、これにより増強された蛍光を光検出手段にて検出するようにした表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサであって、
 前記プラズモン励起センサは、
 第1誘電体部材と、
 前記第1誘電体部材の上面に形成された金属薄膜と、
 前記金属薄膜の上面に形成された第2誘電体部材と、
 前記第2誘電体部材の上面に形成された反応層と、
 から少なくとも構成され、
 前記第2誘電体部材は、
 その膜厚の一部が他の部分とは異なる異膜厚部を有することを特徴とする。
 このように、金属薄膜と反応層との間に第2誘電体部材を設けているのでクエンチングにより蛍光が生じ難くなるという現象を防ぐことが可能となる。また第2誘電体部材が異膜厚部を有していれば、膜厚によって異なる電場増強特性を利用して、電場増強させたいエリアと、そうでないエリアとに確実に区分けすることができる。
 このため、例えば異膜厚部の膜厚の際に最適な電場増強が生ずるよう励起光の共鳴角を設定しておけば、異膜厚部でのみ電場増強がなされるため、蛍光検出エリアを電場増強エリアに絞ることができ、S/N比を向上させて高感度に蛍光検出を行うことができる。
 また、第2誘電体部材の膜厚の違いにより粗密波(表面プラズモン)が生ずる共鳴角がそれぞれ異なることが確認されているため、プラズモン励起センサの反応層に複数種類のアナライトを捕捉していても、第2誘電体部材の「異膜厚部の箇所」と「主となる膜厚を有する箇所」のそれぞれの位置に合わせて反応層のアナライトを位置決めして捕捉しておけば、共鳴角の角度を変えることによりそれぞれの箇所で異なるアナライトの検出を行うことができ、アナライト検出におけるコストを抑えるとともに、検出時間を短縮させることができる。
 また、本発明のプラズモン励起センサは、
 前記異膜厚部が、
 前記第2誘電体部材に複数箇所設けられていることを特徴とする。
 このように異膜厚部が複数箇所設けられていれば、少なくとも電場増強させたいエリアと、そうでないエリアとに確実に区分けすることができる。さらに、2種類以上のアナライト検出を同一のプラズモン励起センサ上で行うことができるようになる。
 また、本発明のプラズモン励起センサは、
 複数の前記異膜厚部は、前記異膜厚部のそれぞれの厚みが一定となるように構成されていることを特徴とする。
 このように、異膜厚部のそれぞれの厚みが一定であれば、電場増強エリアを1つのプラズモン励起センサに複数箇所設けることができるため、確実に所望のアナライト検出が行え、検出精度を高めることができる。
 また、本発明のプラズモン励起センサは、
 複数の前記異膜厚部は、複数の異なる厚みの前記異膜厚部から構成されていることを特徴とする。
 第2誘電体部材の膜厚の違いにより粗密波(表面プラズモン)が生ずる共鳴角がそれぞれ異なることが確認されているため、このように、複数の異なる厚みの異膜厚部から構成されていれば、共鳴角を変更することにより厚みの種類の数と同じ種類のアナライト検出を同一のプラズモン励起センサ上で行うことができる。
 また、本発明のプラズモン励起センサは、
 複数の前記異膜厚部は、前記異膜厚部のそれぞれの厚みが一定である部分と、前記一定である部分とは異なる厚みを有する部分と、を有することを特徴とする。
 このように、複数の異膜厚部のうちでそれぞれの厚みが一定である部分と、この一定である部分とは異なる厚みを有する部分とを有していれば、電場増強エリアを1つのプラズモン励起センサに複数箇所設けることができ、確実に所望のアナライト検出が行えるとともに、厚みの違う箇所の数と同じ種類のアナライト検出を同一のプラズモン励起センサ上で行うことができる。
 また、本発明のプラズモン励起センサは、
 複数の前記異膜厚部は、前記異膜厚部の上面視形状が同一形状であることを特徴とする。
 このように、複数の異膜厚部のそれぞれの上面視形状が同一形状であれば、形状ごとに電場増強効果が同様となる傾向にあるためアナライト検出精度も略一定とすることができる。
 また、本発明のプラズモン励起センサは、
 複数の前記異膜厚部は、複数種類の異なる上面視形状から構成されていることを特徴とする。
 このように、複数の異膜厚部が複数種類の異なる上面視形状で構成されていれば、形状の違いや共鳴角により電場増強効果が異なることが確認されているため、共鳴角に合わせ電場増強に適した形状を調べることができ、より高精度なアナライト検出を行うことができる。
 また、本発明のプラズモン励起センサは、
 複数の前記異膜厚部は、前記異膜厚部のそれぞれの上面視形状が、同一形状である部分と、前記同一形状とは異なる異形状である部分と、を有することを特徴とする。
 このように、複数の異膜厚部のうちでそれぞれの上面視形状が同一形状である部分と、この同一形状とは異なる異形状である部分とを有していれば、形状ごとのアナライト検出精度を略一定とすることができるとともに、共鳴角に合わせ電場増強に適した形状を調べることができる。
 また、本発明の表面プラズモン増強蛍光測定装置は、
 上記いずれかに記載のプラズモン励起センサを配設してなることを特徴とする。
 このように第2誘電体部材が異膜厚部を有したプラズモン励起センサを配設した表面プラズモン増強蛍光測定装置であれば、部分的に電場増強エリアを作ることができるのでアナライト検出を精度良く行うことができる。
 また、異膜厚部の位置に合わせて複数種類のアナライトを反応層に捕捉しておけば、同一センサ上で、複数のアナライト検出を高精度に行うことができる。
 本発明によれば、第2誘電体部材に異膜厚部を設けることで、反応層の所望位置に捕捉されたアナライトを標識した蛍光物質を、確実に励起させて高感度に蛍光検出を行うことのできる表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサを提供することができる。
 また、第2誘電体部材の異膜厚部を複数箇所に設け、それぞれ膜厚を変えておけば、複数種類のアナライト検出を同一センサ上で行うことのできる表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサを提供することができる。
図1は、本発明の表面プラズモン増強蛍光測定装置の概略図である。 図2は、本発明の表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサの第1の実施例を説明するための概略図である。 図3は、本発明の表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサの第1の実施例を説明するためのものであって、反応層の大きさを検出エリアの大きさに合わせた場合を説明する概略図である。 図4は、本発明の表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサの第2の実施例を説明するための概略図である。 図5は、本発明のプラズモン励起センサにおける第2誘電体層の上面図である。 図6は、本発明のプラズモン励起センサにおける他の第2誘電体層の上面図である。 図7は、本発明の表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサの第3の実施例を説明するための概略図である。 図8は、本発明のプラズモン励起センサの第1誘電体部材の他の形態を説明するための概略図である。 図9は、第2誘電体部材の膜厚と電場増強度との関係をしめすグラフである。 図10は、従来の表面プラズモン増強蛍光測定装置の概略図である。 図11は、従来の表面プラズモン増強蛍光測定装置の概略図である。
 以下、本発明の実施の形態について、図面に基づいてより詳細に説明する。
 図1は、本発明の表面プラズモン増強蛍光測定装置の概略図、図2は、本発明の表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサの第1の実施例を説明するための概略図、図3は、反応層の大きさを検出エリアの大きさに合わせた場合を説明する概略図である。
 本発明の表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサは、反応層の所望位置に捕捉されたアナライトを標識した蛍光物質を、確実に励起させて高感度に蛍光検出を行うことができ、また複数のアナライト検出を低コストでしかも短時間で行うことができるものである。
 また、本明細書中でいう「表面プラズモン」とは、広義の意味で用いられるものであって、「局在プラズモン」についても含まれるものである。さらに、本明細書中で「異膜厚部」とは、第2誘電体部材の膜厚が、主となる膜厚を有する箇所とは異なる膜厚を有する箇所を指すものである。ここで主な膜厚を有する箇所と、これとは膜厚が異なる箇所(異膜厚部)とは、どこを「主な膜厚を有する箇所」とするかで、その都度変わるものである。
 例えば、第2誘電体部材の形状が図2に示したように凸字形状である場合、略中央部を「異膜厚部」とすると、略中央部から一段下がった部分が「主となる膜厚を有する部分」となる。
 反対に、略中央部を「主となる膜厚を有する部分」とすると、略中央部から一段下がった部分が「異膜厚部」となる。また、図7に示したように複数の段を有する(異なる膜厚部分を複数有する)第2誘電体部材の場合には、いずれの段についても「主な膜厚を有する箇所」と、「主な膜厚を有する箇所とは膜厚が異なる箇所(異膜厚部)」となり得るものであるが、説明の便宜上、いずれの段も異膜厚部として説明する。
 <表面プラズモン増強蛍光測定装置10>
 本発明の表面プラズモン増強蛍光測定装置10は、図1に示したように、まず第1誘電体部材16と、第1誘電体部材16の上面に形成された金属薄膜12と、金属薄膜12の上面に形成された第2誘電体部材38と、第2誘電体部材38の上面に形成された反応層14と、を有するプラズモン励起センサ18を備えている。
 そして、プラズモン励起センサ18の第1誘電体部材16側には、第1誘電体部材16内に入射され、金属薄膜12に向かって励起光20を照射する光源22を備え、さらに光源22から照射され金属薄膜12に反射した金属薄膜反射光24を受光する受光手段26が備えられている。
 光源22から照射される励起光20としてはレーザ光が好ましく、波長200~900nm、0.001~1,000mWのLDレーザ、または波長230~800nm、0.01~100mWの半導体レーザが好適である。
 一方、プラズモン励起センサ18の反応層14側には、反応層14で生じた蛍光28を受光する光検出手段30が設けられている。光検出手段30としては、超高感度の光電子増倍管、または多点計測が可能なCCDイメージセンサを用いることが好ましい。
 なお、プラズモン励起センサ18の反応層14と光検出手段30との間には、光を効率よく集光するための集光部材32と、光の内で蛍光28のみを選択するように形成された波長選択機能部材34が設けられている。
 集光部材32としては、光検出手段30に蛍光シグナルを効率よく集光することを目的とするものであれば、任意の集光系で良い。簡易な集光系としては、顕微鏡などで使用されている市販の対物レンズを転用してもよい。対物レンズの倍率としては、10~100倍が好ましい。
 一方、波長選択機能部材34としては、光学フィルタ,カットフィルタなどを用いることができる。光学フィルタとしては、減光(ND)フィルタ,ダイアフラムレンズなどが挙げられる。
 さらにカットフィルタとしては、外光(装置外の照明光),励起光(励起光の透過成分),迷光(各所での励起光の散乱成分),プラズモンの散乱光(励起光を起源とし、プラズモン励起センサ表面上の構造体または付着物などの影響で発生する散乱光),酵素蛍光基質の自家蛍光などの各種ノイズ光を除去するフィルタであって、例えば干渉フィルタ,色フィルタなどが挙げられる。
 そして、このような表面プラズモン増強蛍光測定装置10の使用においては、金属薄膜12上に、例えばあらかじめ蛍光物質で標識されたアナライトが捕捉された反応層14を設け、この状態で、光源22より第1誘電体部材16内に励起光20を照射し、この励起光20が特定の角度(共鳴角(電場増強時に励起光20と金属薄膜12の垂線とから成る角度)符号36)で金属薄膜12に入射することで、金属薄膜12上に粗密波(表面プラズモン)を生ずるようになる。
 なお、金属薄膜12上に粗密波(表面プラズモン)が生ずる際には、励起光20と金属薄膜12中の電子振動とがカップリングし、金属薄膜反射光24のシグナルが変化(光量が減少)することとなるため、受光手段26で受光される金属薄膜反射光24のシグナルが変化(光量が減少)する地点を見つければ良い。
 そして、この粗密波(表面プラズモン)により、金属薄膜12上の反応層14で生じた蛍光物質が効率良く励起され、これにより蛍光物質が発する蛍光28の光量が増大し、この蛍光28を集光部材32および波長選択機能部材34を介して光検出手段30で受光することで、極微量および/または極低濃度のアナライトを検出することができる。
 なお、プラズモン励起センサ18の金属薄膜12の材質としては、好ましくは金,銀,アルミニウム,銅,および白金からなる群から選ばれる少なくとも1種の金属からなり、より好ましくは金からなり、さらにこれら金属の合金から成ることである。
 このような金属は、酸化に対して安定であり、かつ粗密波(表面プラズモン)による電場増強が大きくなることから金属薄膜12に好適である。
 また、金属薄膜12の形成方法としては、例えばスパッタリング法,蒸着法(抵抗加熱蒸着法,電子線蒸着法など),電解メッキ,無電解メッキ法などが挙げられる。中でもスパッタリング法,蒸着法は、薄膜形成条件の調整が容易であるため好ましい。
 さらに金属薄膜12の厚さとしては、金:5~500nm、銀:5~500nm、アルミニウム:5~500nm、銅:5~500nm、白金:5~500nm、およびそれらの合金:5~500nmの範囲内であることが好ましい。
 電場増強効果の観点からは、金:20~70nm、銀:20~70nm、アルミニウム:10~50nm、銅:20~70nm、白金:20~70nm、およびそれらの合金:10~70nmの範囲内であることがより好ましい。
 金属薄膜12の厚さが上記範囲内であれば、粗密波(表面プラズモン)が発生し易く好適である。また、このような厚さを有する金属薄膜12であれば、大きさ(縦×横)は特に限定されないものである。
 さらに、アナライト検出時に用いられる検体としては、血液,血清,血漿,尿,鼻孔液,唾液,便,体腔液(髄液,腹水,胸水等)などが挙げられる。また、検体中に含有されるアナライトは、例えば、核酸(一本鎖であっても二本鎖であってもよいDNA,RNA,ポリヌクレオチド,オリゴヌクレオチド,PNA(ペプチド核酸)等、またはヌクレオシド,ヌクレオチドおよびそれらの修飾分子),タンパク質(ポリペプチド、オリゴペプチド等),アミノ酸(修飾アミノ酸も含む。),糖質(オリゴ糖,多糖類,糖鎖等),脂質,またはこれらの修飾分子,複合体などが挙げられ、具体的には、AFP(αフェトプロテイン)等のがん胎児性抗原や腫瘍マーカー,シグナル伝達物質,ホルモンなどであってもよく、特に限定されない。
 さらに蛍光物質としては、所定の励起光20を照射するか、または電界効果を利用することで励起し、蛍光28を発する物質であれば特に限定されないものである。なお本明細書でいう蛍光28とは、燐光など各種の発光も含まれるものである。
 また、第1誘電体部材16としては、光学的に透明な各種の無機物,天然ポリマー,合成ポリマーを用いることができ、化学的安定性,製造安定性および光学的透明性の観点から、二酸化ケイ素(SiO)または二酸化チタン(TiO)を含むことが好ましい。
 さらに、このような表面プラズモン増強蛍光測定装置10は、光源22から金属薄膜12に照射される励起光20による表面プラズモン共鳴の最適角(共鳴角36)を調整するため、角度可変部(図示せず)や、光検出手段30に入力された情報を処理するためのコンピュータ(図示せず)などを有しても良いものである。
 ここで、角度可変部(図示せず)は、サーボモータで全反射減衰(ATR)条件を求めるために受光手段26と光源22とを同期し、45~85°の角度変更を可能とし、分解能が0.01°以上であることが好ましい。
 上記した構成を有する本発明の表面プラズモン増強蛍光測定装置10は、特にプラズモン励起センサ18の第2誘電体部材38において特徴的な構造を有している。
 このような第2誘電体部材38には、その膜厚の一部が他の部分とは異なる異膜厚部40を有する構造となっている。以下、このような構造の第2誘電体部材38を有するプラズモン励起センサ18の実施例について説明する。
 <第2誘電体部材38>
 本発明のプラズモン励起センサ18に用いられる第2誘電体部材38は、図2に示したように、その膜厚の一部(本図では略中央部分)が他の部分とは異なる異膜厚部40を有している。
 このような第2誘電体部材38は、その膜厚の違いによって電場増強効果が異なり、また第2誘電体部材38の膜厚の違いにより、プラズモン共鳴を生ずる共鳴角36も異なることが本発明者らによって確認された。
 つまり、図2に示したプラズモン励起センサ18のように、第2誘電体部材38の一部に異膜厚部40が設けられていると、膜厚の違いによる電場増強の違いにより、電場増強エリアとそうでないエリアとに区分けが可能となる。
 例えば、図2において、第2誘電体部材38の略中央部の異膜厚部40の膜厚T1の際に電場増強効果が高まるよう、予め共鳴角36を設定した場合には、この第2誘電体部材38の異膜厚部40に対応する略中央部のエリアのみで電場増強がなされるため、このエリアの直上に位置する反応層14のアナライトだけが検出対象となる。
 逆に第2誘電体部材38の略中央部以外の箇所を異膜厚部40とし、この膜厚T2の際に電場増強効果が高まるよう予め共鳴角36を設定した場合には、この第2誘電体部材38の略中央部以外のエリアでのみ、電場増強がなされるため、このエリアの直上に位置する反応層14のアナライトだけが検出対象となる。
 このため、反応層14が第2誘電体部材38の面方向外形寸法と略同サイズであっても、電場増強エリアは略中央部分(略中央部分以外)に限定できるため、反応層14の略中央部(略中央部以外)でのみ蛍光励起がなされ、この部分だけを光検出手段30で検出するようにすれば、検出範囲が狭まるためS/N比が向上し、超高精度にアナライトの検出を行うことができる。
 このような第2誘電体部材38は、第1誘電体部材16と基本的に同様の材質からなり、光学的に透明な各種の無機物,天然ポリマー,合成ポリマーを用いることができ、化学的安定性,製造安定性および光学的透明性の観点からは、二酸化ケイ素(SiO)または二酸化チタン(TiO)を含むことが好ましい。
 また、第2誘電体部材38の異膜厚部40は、第2誘電体部材38上にマスキングを行い、エッチング処理することで所望の位置に異膜厚部40を形成することができる。さらに同一膜厚の誘電体部材上に部分的に他の誘電体部材を積層することにより異膜厚部40を形成しても良い。
 第2誘電体部材38の膜厚Tの下限値としては50nmである。下限値以上であればクエンチングの影響を少なくすることができ、且つ誘電体未使用時(膜厚Tがゼロ)よりも有利な電場増強を得ることが可能となる。第2誘電体部材38の適正な範囲としては50nm~1000nmおよび10000nm以上である。電場増強度はTiO2膜厚条件で不規則に変動し、上記条件範囲内にいくつかのピークを持つ(後述の図9参照)。従ってこの範囲で膜厚Tの条件を設定することで、電場増強度としても高値に設定することができるため、測定上高感度な検出が可能となるだけでなく、異膜厚の設定条件によっては電場増強度のコントラストを大きく設定することが可能となるためである。
 また第2誘電体部材の異なる複数種類の膜厚の組み合わせとして、一の膜厚Taの領域での電場増強が最適となる共鳴角36で励起光20を照射したときに他の膜厚Tbの領域では膜厚Taの電場増強の強度よりも弱い電場増強となるように設定するものがある。これは反応層の蛍光物質(及びアナライト)の捕捉数が想定した量よりも多く、膜厚Taの領域では電場増強により蛍光物質から発せられる蛍光28の光量が光検出手段の検出感度を超えてオーバーレンジしていたような場合に有効である。これよりも電場増強の強度が弱い膜厚Tbの領域を検出対象とすればオーバーレンジを防ぐことができる。
 また第2誘電体部材の膜厚Tを異ならせることにより、この上面にある反応層14の高さが異なることになる。蛍光28は、反応層14に捕捉されている蛍光物質から発生するので、反応層14の高さが異なれば、蛍光が発生する箇所の高さが異なることになる。このような構成を利用するために、光検出手段30に共焦点光学系を用いて、光検出手段30を上下に僅かに移動させながら焦点位置を、異なる高さの反応層14のそれぞれの領域に順に合わせてゆくことにより、各領域の検出を順次行うことが可能となる。
 また、図3に示したように、予め第2誘電体部材38の略中央部を異膜厚部40として電場増強エリアにした場合、反応層14の異膜厚部40の直上に位置するエリアのみを検出エリア42とし、この検出エリア42にのみアナライトを捕捉するようにしても良い。
 このように、本実施例におけるプラズモン励起センサ18は、第2誘電体部材38の一部に異膜厚部40が設けられているため、電場増強エリアを絞ることができ、これにより反応層14の所望位置に捕捉されたアナライトを標識した蛍光物質を確実に励起させて高感度に蛍光検出を行うことができる。
 次に、図4に示したプラズモン励起センサ18は、本発明の第2の実施例における概略図である。
 図4に示したプラズモン励起センサ18は、図2または図3に示した第1の実施例のプラズモン励起センサ18と基本的には同じ構成であるので、同じ構成部材には同じ参照番号を付してその詳細な説明を省略する。
 図4に示したプラズモン励起センサ18は、第2誘電体部材38の異膜厚部40が複数箇所設けられている点で、実施例1と異なっている。
 このような第2誘電体部材38は、第2誘電体部材38の膜厚が、異膜厚部40の膜厚T3の部分と、そうでない膜厚T4の部分とが交互となるように設定されており、例えば図5に示したように四角形状を交互に並べたタイプや図6に示したように三角形状を並べたタイプなどとすることができる。
 この場合、共鳴角36の設定により異膜厚部40の膜厚T3のエリアを電場増強エリアに設定しておけば、電場増強エリアをセンサ上に複数得ることができる。また電場増強エリアは、形状の頂点部分にでき易いことが本発明者らによって確認されている。このため複数の異膜厚部40を設ければ、当然頂点部分が複数形成されるため、さらに電場増強効果を高めることができる。
 したがって、例えば図5および図6に示したように複数の異膜厚部40を形成すれば、電場増強エリアを複数個所に設けることができ、しかも電場増強効果も高められるため、超高精度にアナライトの検出を行うことができる。
 次に、図7に示したプラズモン励起センサ18は、本発明の第3の実施例における概略図である。図7に示したプラズモン励起センサ18は、図2または図3に示した第1の実施例のプラズモン励起センサ18と基本的には同じ構成であるので、同じ構成部材には同じ参照番号を付してその詳細な説明を省略する。
 図7に示したプラズモン励起センサ18は、第2誘電体部材38の異膜厚部40が複数箇所設けられており、複数の異なる厚みの異膜厚部40から構成されている点で実施例1と異なっている。
 このような第2誘電体部材38は、それぞれの異膜厚部40の直上の反応層14に、それぞれの異膜厚部40と対応する箇所に、それぞれ異なるアナライトを捕捉するようにした検出エリア42a,42b,42cが形成されている。このため、検出エリア42a,42b,42c毎に励起光20の共鳴角36を変えるだけで、複数種類のアナライトを同一センサ18上で検出することができる。
 このため、複数のアナライト検出を低コストでしかも短時間で行うことができる。以上、本発明における表面プラズモン増強蛍光測定装置10およびこれに用いられるプラズモン励起センサ18の好ましい形態について説明したが、本発明は上記の形態に限定されるものではないものである。
 例えばプラズモン励起センサ18の第1誘電体部材16は一つの部材からなっていても、図8に示したように断面略三角状の誘電体部材16aの上に板状の誘電体部材16bを重ねた積層体であっても良く、特に限定されないものである。なお、複数の部材から誘電体部材16が構成されている場合には、それぞれの部材の材質を同様にすれば良い。
 また、第2誘電体部材38の異膜厚部40の形状は図5や図6に示したように全て同一であっても異なっていても良く、またこれらの形状以外の円形状、星形状など如何なる形状であっても良く、本発明の目的を逸脱しない範囲で種々の変更が可能なものである。
 次に、第2誘電体部材38の膜厚Tと電場増強度との関係について説明する。実施例として、第1誘電体部材16をガラスBK7(n=1.52)、金属薄膜12を膜厚50nmのAu、第2誘電体部材38をTiOで膜厚T、その上の反応層14には水(H0)を配置させた。この条件で、第2誘電体部材38の膜厚Tを変更した際の電場増強度(電場増強最大値ともいう)との関係を計算した。その結果を図9に示す。
 図9は第2誘電体部材38の膜厚Tと電場増強度との関係を示したグラフである。横軸は、膜厚T(nm)であり縦軸は電場増強度である。同図からわかるように10nm≦膜厚T≦50nmの範囲では電場増強度は1倍以下であり、クエンチングの影響を受けている。100nm≦膜厚T≦1000nmの範囲においては、400nm、1000nmの膜厚において電場増強度が25~30倍のピークを持つ。10000nm≦膜厚Tの範囲においては電場増強度が20倍以上となっている。
 異膜厚部40の膜厚Tをこのようなピークとなるように設定することにより電場増強度として高く設定することができるので高感度の検出が可能となる。また複数の異なる厚みの異膜厚部の組み合わせる際に一方をピークとなる膜厚に設定し、他方をピークとなる膜厚からずらした設定とすることにより両者のコントラストを大きくすることが可能となる。
 10 表面プラズモン増強蛍光測定装置
 12 金属薄膜
 14 反応層
 16 誘電体部材
 16a 誘電体部材
 16b 誘電体部材
 18 プラズモン励起センサ
 20 励起光
 22 光源
 24 金属薄膜反射光
 26 受光手段
 28 蛍光
 30 光検出手段
 32 集光部材
 34 波長選択機能部材
 36 共鳴角
 38 誘電体部材
 40 異膜厚部
 42 検出エリア
 42a 検出エリア
 42b 検出エリア
 42c 検出エリア
  T1 膜厚
  T2 膜厚
  T3 膜厚
  T4 膜厚
 100 表面プラズモン増強蛍光測定装置
 102 金属薄膜
 104 反応層
 106 誘電体部材
 108 プラズモン励起センサ
 110 励起光
 112 光源
 114 金属薄膜反射光
 116 受光手段
 118 蛍光
 120 光検出手段
 122 集光部材
 124 波長選択機能部材
 126 共鳴角
 128 誘電体部材

Claims (9)

  1.  金属薄膜の一方側に励起光を照射し、前記金属薄膜上の電場を増強させることにより、前記金属薄膜の他方側に形成された反応層の蛍光物質を励起させ、これにより増強された蛍光を光検出手段にて検出するようにした表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサであって、
     前記プラズモン励起センサは、
     第1誘電体部材と、
     前記第1誘電体部材の上面に形成された金属薄膜と、
     前記金属薄膜の上面に形成された第2誘電体部材と、
     前記第2誘電体部材の上面に形成された反応層と、
     から少なくとも構成され、
     前記第2誘電体部材は、
     その膜厚の一部が他の部分とは異なる異膜厚部を有することを特徴とするプラズモン励起センサ。
  2.  前記異膜厚部が、
     前記第2誘電体部材に複数箇所設けられていることを特徴とする請求項1に記載のプラズモン励起センサ。
  3.  複数の前記異膜厚部は、前記異膜厚部のそれぞれの厚みが一定となるように構成されていることを特徴とする請求項2に記載のプラズモン励起センサ。
  4.  複数の前記異膜厚部は、複数の異なる厚みの前記異膜厚部から構成されていることを特徴とする請求項2に記載のプラズモン励起センサ。
  5.  複数の前記異膜厚部は、前記異膜厚部のそれぞれの厚みが一定である部分と、前記一定である部分とは異なる厚みを有する部分と、を有することを特徴とする請求項2に記載のプラズモン励起センサ。
  6.  複数の前記異膜厚部は、前記異膜厚部の上面視形状が同一形状であることを特徴とする請求項2から5のいずれかに記載のプラズモン励起センサ。
  7.  複数の前記異膜厚部は、複数種類の異なる上面視形状から構成されていることを特徴とする請求項2から5のいずれかに記載のプラズモン励起センサ。
  8.  複数の前記異膜厚部は、前記異膜厚部のそれぞれの上面視形状が、同一形状である部分と、前記同一形状とは異なる異形状である部分と、を有することを特徴とする請求項2から5のいずれかに記載のプラズモン励起センサ。
  9.  請求項1から8のいずれかに記載のプラズモン励起センサを配設してなることを特徴とする表面プラズモン増強蛍光測定装置。
PCT/JP2010/058178 2009-05-20 2010-05-14 表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサ WO2010134470A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011514392A JPWO2010134470A1 (ja) 2009-05-20 2010-05-14 表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009122047 2009-05-20
JP2009-122047 2009-05-20

Publications (1)

Publication Number Publication Date
WO2010134470A1 true WO2010134470A1 (ja) 2010-11-25

Family

ID=43126151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058178 WO2010134470A1 (ja) 2009-05-20 2010-05-14 表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサ

Country Status (2)

Country Link
JP (1) JPWO2010134470A1 (ja)
WO (1) WO2010134470A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215478A (ja) * 2011-03-31 2012-11-08 Fujifilm Corp 検出方法および検出装置
WO2012172987A1 (ja) * 2011-06-17 2012-12-20 コニカミノルタホールディングス株式会社 表面プラズモン励起増強蛍光分光測定方法および表面プラズモン励起増強蛍光分光測定装置
US20140061506A1 (en) * 2011-05-19 2014-03-06 Konica Minolta, Inc. Surface plasmon-field enhanced fluorescence measurement device and fluorescence detection method using the same
WO2016093039A1 (ja) * 2014-12-09 2016-06-16 コニカミノルタ株式会社 検出チップおよび検出方法
WO2016093037A1 (ja) * 2014-12-09 2016-06-16 コニカミノルタ株式会社 検出装置および検出方法
WO2018131502A1 (ja) * 2017-01-16 2018-07-19 矢崎総業株式会社 高選択性腐食センサーシステム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337036A (ja) * 2000-05-25 2001-12-07 Masao Karube 差動式sprセンサー及び該センサーを用いた測定法
JP2006177725A (ja) * 2004-12-21 2006-07-06 Sony Corp 物質間の相互作用検出部と該検出部を用いるバイオアッセイ用基板、装置及び方法
WO2007105771A1 (ja) * 2006-03-15 2007-09-20 Omron Corporation 表面プラズモン共鳴センサ用チップおよび表面プラズモン共鳴センサ
JP2009079970A (ja) * 2007-09-26 2009-04-16 Fujifilm Corp 分子分析光検出方法およびそれに用いられる分子分析光検出装置、並びにサンプルプレート
JP2009080011A (ja) * 2007-09-26 2009-04-16 Fujifilm Corp 蛍光検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337036A (ja) * 2000-05-25 2001-12-07 Masao Karube 差動式sprセンサー及び該センサーを用いた測定法
JP2006177725A (ja) * 2004-12-21 2006-07-06 Sony Corp 物質間の相互作用検出部と該検出部を用いるバイオアッセイ用基板、装置及び方法
WO2007105771A1 (ja) * 2006-03-15 2007-09-20 Omron Corporation 表面プラズモン共鳴センサ用チップおよび表面プラズモン共鳴センサ
JP2009079970A (ja) * 2007-09-26 2009-04-16 Fujifilm Corp 分子分析光検出方法およびそれに用いられる分子分析光検出装置、並びにサンプルプレート
JP2009080011A (ja) * 2007-09-26 2009-04-16 Fujifilm Corp 蛍光検出方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215478A (ja) * 2011-03-31 2012-11-08 Fujifilm Corp 検出方法および検出装置
US20140061506A1 (en) * 2011-05-19 2014-03-06 Konica Minolta, Inc. Surface plasmon-field enhanced fluorescence measurement device and fluorescence detection method using the same
US9551662B2 (en) * 2011-05-19 2017-01-24 Konica Minolta, Inc Surface plasmon-field enhanced fluorescence measurement device and fluorescence detection method using the same
WO2012172987A1 (ja) * 2011-06-17 2012-12-20 コニカミノルタホールディングス株式会社 表面プラズモン励起増強蛍光分光測定方法および表面プラズモン励起増強蛍光分光測定装置
JPWO2012172987A1 (ja) * 2011-06-17 2015-02-23 コニカミノルタ株式会社 表面プラズモン励起増強蛍光分光測定方法および表面プラズモン励起増強蛍光分光測定装置
US9068945B2 (en) 2011-06-17 2015-06-30 Konica Minolta, Inc. Surface plasmon-field enhanced fluorescence spectroscopic measurement method and surface plasmon-field enhanced fluorescence spectroscopic measurement device
WO2016093037A1 (ja) * 2014-12-09 2016-06-16 コニカミノルタ株式会社 検出装置および検出方法
WO2016093039A1 (ja) * 2014-12-09 2016-06-16 コニカミノルタ株式会社 検出チップおよび検出方法
JPWO2016093039A1 (ja) * 2014-12-09 2017-09-14 コニカミノルタ株式会社 検出チップおよび検出方法
JPWO2016093037A1 (ja) * 2014-12-09 2017-09-14 コニカミノルタ株式会社 検出装置および検出方法
US10254228B2 (en) 2014-12-09 2019-04-09 Konica Minolta, Inc. Detection chip and detection method
WO2018131502A1 (ja) * 2017-01-16 2018-07-19 矢崎総業株式会社 高選択性腐食センサーシステム
JP2018115867A (ja) * 2017-01-16 2018-07-26 矢崎総業株式会社 高選択性腐食センサーシステム
US10753854B2 (en) 2017-01-16 2020-08-25 Yazaki Corporation High selectivity corrosion sensor system

Also Published As

Publication number Publication date
JPWO2010134470A1 (ja) 2012-11-12

Similar Documents

Publication Publication Date Title
JP5573843B2 (ja) 表面プラズモン増強蛍光測定装置
JP5637266B2 (ja) 表面プラズモン増強蛍光センサおよび表面プラズモン増強蛍光センサに用いられる集光部材
US9551662B2 (en) Surface plasmon-field enhanced fluorescence measurement device and fluorescence detection method using the same
WO2010134470A1 (ja) 表面プラズモン増強蛍光測定装置および表面プラズモン増強蛍光測定装置に用いられるプラズモン励起センサ
EP2208053A2 (en) Microelectronic optical evanescent field sensor
JP5949761B2 (ja) 表面プラズモン励起増強蛍光分光測定方法および表面プラズモン励起増強蛍光分光測定装置
JP2011257216A (ja) 表面プラズモン増強蛍光センサおよび表面プラズモン増強蛍光センサに用いられるチップ構造体ユニット
JP2010203900A (ja) 表面プラズモン増強蛍光センサおよび表面プラズモン増強蛍光センサに用いられるチップ構造体
JP6003645B2 (ja) 蛍光検出装置およびこれを用いた蛍光検出方法
JP5831230B2 (ja) 表面プラズモン増強蛍光測定装置
WO2014007134A1 (ja) センサーチップ
JP5895965B2 (ja) 表面プラズモン増強蛍光センサおよび表面プラズモン増強蛍光センサに用いられるチップ構造体
WO2014017433A1 (ja) 光学式検体検出装置
JP5891990B2 (ja) 光学式検体検出装置
JP5663905B2 (ja) チップ構造体
JP5387131B2 (ja) 表面プラズモン増強蛍光センサおよび表面プラズモン増強蛍光センサに用いられるチップ構造体ならびに表面プラズモン増強蛍光センサを用いた検体検出方法
JP5786985B2 (ja) 表面プラズモン増強蛍光センサおよび表面プラズモン増強蛍光センサに用いられるチップ構造体ユニット
JP2012251863A (ja) 表面プラズモン励起増強蛍光測定装置および表面プラズモン励起増強蛍光測定装置に用いられるセンサ構造体
JP5803933B2 (ja) 表面プラズモン励起増強蛍光測定装置およびこれに用いられるセンサ構造体、ならびにこのセンサ構造体に配設される補助誘電体部材
JP5516197B2 (ja) プラズモン励起センサおよび該センサを用いたアッセイ法
JP2012220256A (ja) 表面プラズモン測定装置に用いられるセンサーチップおよびセンサーチップを用いた表面プラズモン測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777703

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011514392

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777703

Country of ref document: EP

Kind code of ref document: A1