WO2018130046A1 - 氮化物半导体发光器件及其制作方法 - Google Patents

氮化物半导体发光器件及其制作方法 Download PDF

Info

Publication number
WO2018130046A1
WO2018130046A1 PCT/CN2017/116518 CN2017116518W WO2018130046A1 WO 2018130046 A1 WO2018130046 A1 WO 2018130046A1 CN 2017116518 W CN2017116518 W CN 2017116518W WO 2018130046 A1 WO2018130046 A1 WO 2018130046A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
nitride semiconductor
emitting device
semiconductor light
Prior art date
Application number
PCT/CN2017/116518
Other languages
English (en)
French (fr)
Inventor
孙钱
冯美鑫
周宇
高宏伟
杨辉
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Priority to JP2019538141A priority Critical patent/JP6829497B2/ja
Priority to DE112017006795.2T priority patent/DE112017006795B4/de
Priority to US16/477,128 priority patent/US10840419B2/en
Publication of WO2018130046A1 publication Critical patent/WO2018130046A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0045Devices characterised by their operation the devices being superluminescent diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2031Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/2086Methods of obtaining the confinement using special etching techniques lateral etch control, e.g. mask induced
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2201Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure in a specific crystallographic orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/3013AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0217Removal of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • H01S5/04253Electrodes, e.g. characterised by the structure characterised by the material having specific optical properties, e.g. transparent electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Definitions

  • the present invention relates to a semiconductor optoelectronic device and a method of fabricating the same, and more particularly to a nitride semiconductor light emitting device having a ridge waveguide structure, such as a III-V nitride semiconductor laser, a super luminescent diode, and a method of fabricating the same, belonging to a semiconductor The field of optoelectronic technology.
  • III-V nitride semiconductors are called third-generation semiconductor materials and have the advantages of large band gap, good chemical stability, and strong radiation resistance.
  • the forbidden band width covers from deep ultraviolet, whole visible light, to near infrared.
  • the range can be used to fabricate semiconductor light-emitting devices such as light-emitting diodes, lasers, and superluminescent light-emitting diodes.
  • III-V nitride semiconductor-based lasers and super luminescent diodes have the advantages of simple fabrication, small size, light weight, long life and high efficiency, and are expected to be widely used in laser display, laser illumination and laser storage in the future. .
  • Nitride semiconductor optoelectronic devices are typically pn junction structures.
  • ferrocene CP 2 Mg
  • the ionization energy of the Mg acceptor in the nitride is high (GaN: 170 meV, AlN: 470 meV), usually Less than 10% of Mg acceptors are ionized, resulting in a lower concentration of holes in the p-type nitride semiconductor.
  • the Mg acceptor concentration in the p-type nitride semiconductor is high, and the effective mass of the holes is large, the mobility of holes is low, resulting in a large resistance of the p-type nitride semiconductor.
  • the super luminescent diode, etc. have a good light field limitation, it is generally required to control the thickness of the p-type nitride semiconductor to 500 nm or more, which makes the series resistance of the device large. Approximately 30% or more of the voltage drop across the laser is caused by the series resistance of the laser. The thermal power of the laser is high, and the junction temperature rises sharply, which seriously affects the performance and life of the laser.
  • the Al composition in the p-type AlGaN optical confinement layer is higher, the ionization energy of the Mg acceptor is larger, the hole concentration in the p-type AlGaN optical confinement layer is lower, the series resistance of the laser is larger, and the thermal power is more Larger, the junction temperature is higher; at the same time, the hole concentration is low, causing asymmetry of electron hole injection, which affects the injection efficiency of the laser. These factors all affect the threshold current density and lifetime of the ultraviolet laser.
  • a nitride semiconductor laser or a super luminescent diode generally employs AlGaN as an optical confinement layer.
  • the refractive index difference between the AlGaN optical confinement layer and the waveguide layer is small (about 5%), resulting in a small optical confinement factor (about 2.5%) of the laser or super luminescent diode.
  • Less than traditional III-V GaAs or InP based semiconductor Body laser or super luminescent diode (8%). Therefore, the luminescent material required for the lasing of the nitride semiconductor laser or the super luminescent diode is higher in gain and the threshold current is larger.
  • the current electro-optical conversion efficiency of nitride semiconductor lasers or super-emitting diodes is still less than 40%, and the rest of the electric power is converted into heat. power.
  • the conventional laser or super luminescent diode is packaged in a formal package. The heat is transferred to the heat sink through a laser or super luminescent diode structure of about 3 ⁇ m thick and a substrate of about 100 ⁇ m thick. The heat in the laser or super luminescent diode The conduction path is very long, and the thermal resistance of the laser or super luminescent diode is large due to the low thermal conductivity of the substrate. The thermal power of the laser or super luminescent diode is large, so the junction temperature of the device is high, which seriously affects the performance and life of the device.
  • the (0001) gallium-faced III-V nitride semiconductor material has good chemical stability, acid and alkali resistance, and corrosion resistance with respect to GaAs or InP-based materials.
  • the ridge shape needs to be formed by dry etching, and then the device is packaged by flip-chip or formal mounting.
  • Such a process has the following drawbacks: First, the current is injected through the p-type layer in the device ridge type, the area of the implanted region is small, the device resistance is large, and the p-type layer is thick, and the series resistance of the device is large, which is easy to cause The junction temperature rises, affecting device performance and lifetime. Second, the refractive index difference of different materials in the nitride semiconductor is small, the light field limitation of the device is weak, the required threshold material gain is large, and the threshold current is high.
  • the heat source inside the device is far away from the heat sink, and the thermal conductivity of the substrate is low, resulting in a large thermal resistance of the device; while for the flip-chip package, the heat source is away from heat.
  • the distance between the sinking is close, but the thermal conductivity of the insulating dielectric film such as SiO2 in other regions outside the ridge of the protection device is very low, and the heat can only be transmitted to the heat sink through the ridge shape, resulting in a small heat dissipation area of the device and a large thermal resistance;
  • the surface of the light-emitting cavity is very close to the solder, and it is easily contaminated, causing short-circuit leakage and causing degradation of device performance.
  • dry etching not only causes sidewall roughness, causes light scattering, and the like. Dry etching also introduces surface states, damage and defects. These surface states, damages and defects will not only become non-radiative recombination centers, affecting the efficiency of lasers or superluminescent diodes, but also become leakage channels, affecting device reliability. And stability.
  • the main object of the present application is to provide a nitride semiconductor light-emitting device and a method of fabricating the same to overcome the deficiencies of the prior art.
  • the technical solution adopted by the present application includes:
  • Embodiments of the present application provide a nitride semiconductor light emitting device including an epitaxial structure having a first surface and a second surface opposite to the first surface, the first surface being The nitrogen surface is located on the n-side of the epitaxial structure, the second surface is located on the p-type side of the epitaxial structure, and the n-side of the epitaxial structure is in electrical contact with the n-type electrode, and the p-type side and the p-type The electrodes are in electrical contact and the first face is formed with a ridge waveguide structure.
  • the epitaxial structure includes an n-type contact layer, an n-side waveguide layer, an active region, a p-side waveguide layer, and a p-type contact layer, which are sequentially disposed, and the n-type electrode is in electrical contact with the n-type contact layer.
  • the p-type electrode is in electrical contact with the p-type contact layer.
  • the p-type electrode is in full contact with the p-type contact layer.
  • an ohmic contact is formed between the n-type electrode and the n-type contact layer, and an ohmic contact is formed between the p-type electrode and the p-type contact layer.
  • the p-type electrode is also coupled to a support sheet.
  • the p-type electrode is connected to the support sheet through a bonding layer.
  • the bonding layer comprises a metal bonding layer or a non-metal bonding layer.
  • a light field limiting layer is disposed between the p-type electrode and the support sheet.
  • the light field limiting layer is disposed between the p-type electrode and the bonding layer.
  • the light field limiting layer comprises at least one low refractive index material.
  • the embodiment of the present application further provides a method for fabricating a nitride semiconductor light emitting device, including:
  • the first face is a nitrogen face is located on the n-side of the epitaxial structure, and the second face is located on a p-side of the epitaxial structure;
  • Removing the substrate further providing an n-type electrode on the first surface of the epitaxial structure, and forming the n-type electrode to form an ohmic contact with the n-side of the epitaxial structure;
  • a first surface of the epitaxial structure is etched or etched to form a ridge waveguide structure.
  • the manufacturing method includes: providing an etch mask on the first surface of the epitaxial structure, and then etching or etching the first surface of the epitaxial structure by a dry etching or a wet etching process; Forming a ridge waveguide structure.
  • the fabrication method includes etching a first side of the epitaxial structure using a wet etching process to form a ridge waveguide structure.
  • the manufacturing method further includes bonding the p-type electrode to the support sheet with a bonding material.
  • the bonding material comprises a metal bonding material or a non-metal bonding material.
  • the fabricating method further comprises: forming a light field limiting layer on the p-type electrode, and then bonding the light field limiting layer to the support sheet with a bonding material.
  • the light field limiting layer comprises at least one low refractive index material.
  • the fabrication method includes sequentially growing an n-type contact layer, an n-type optical confinement layer, an n-side waveguide layer, an active region, a p-side waveguide layer, an electron blocking layer, and a p-type contact on a substrate. a layer forming the epitaxial structure.
  • the fabrication method further comprises depositing a conductive material as a p-type electrode in the p-type contact layer and performing ohmic contact annealing to form an ohmic contact between the p-type electrode and the p-type contact layer.
  • the p-type electrode is in contact with the p-type contact layer.
  • the manufacturing method further includes: after completing the fabrication of the n-type electrode, using an lithography process to provide an etch mask on the first side of the epitaxial structure, followed by a wet etching process.
  • the first side of the epitaxial structure is etched to form a ridge waveguide structure.
  • the fabricating method further comprises: etching or etching the epitaxial structure by a dry etching or a wet etching process after exposing the n-type electrode from the insulating film; A mesa structure is formed on one side of the ridge waveguide structure, and a p-type electrode is distributed on the bottom of the mesa structure, and then a thick electrode is formed on the p-type electrode and the n-type electrode.
  • the manufacturing method further comprises: preparing the nitride by using at least one of cleavage, dry etching, wet etching, or a combination of two or more methods after the thickened electrode is fabricated.
  • the cavity surface of the semiconductor light emitting device is fabricated.
  • the foregoing nitride semiconductor light-emitting device includes a nitride semiconductor laser, a super luminescent diode, or the like, and is not limited thereto.
  • the nitride semiconductor light-emitting device comprises a III-V nitride semiconductor laser or a super luminescent diode.
  • the nitride semiconductor light-emitting device of the present application particularly a III-V nitride semiconductor laser or a super luminescent diode, has low resistance, low internal loss, small threshold current, small thermal resistance, stability and reliability. Good performance and other advantages, can greatly improve the performance and life of the device, especially to effectively improve the performance and lifetime of devices containing thicker and high Al-component AlGaN materials such as UV lasers or super-radiation LEDs, while the nitride semiconductor of this application
  • the preparation process of the device is simple and easy to implement.
  • FIG. 1 is a schematic diagram showing the epitaxial structure of a nitride semiconductor laser or a super luminescent diode (hereinafter referred to as "device") in an exemplary embodiment of the present application.
  • FIG. 2 is a schematic view showing the structure of a device after forming a p-type ohmic contact in an exemplary embodiment of the present application.
  • FIG 3 is a schematic view showing the structure of a device after removing a substrate in an exemplary embodiment of the present application.
  • FIG. 4 is a schematic structural view of a device after depositing an insulating dielectric film in an exemplary embodiment of the present application.
  • FIG. 5 is a schematic structural view of a device after a thickened electrode is fabricated in an exemplary embodiment of the present application.
  • FIG. 6 is a schematic structural view of a device after a planar electrode structure is fabricated in an exemplary embodiment of the present application.
  • Figure 7 is a schematic view showing the structure of a device having a vertical structure in an exemplary embodiment of the present application.
  • FIG. 8 is a schematic diagram showing an epitaxial structure of a nitride semiconductor laser or a super luminescent diode (hereinafter referred to as "device") in another exemplary embodiment of the present application.
  • FIG. 9 is a schematic structural view of a device after forming a p-type ohmic contact in another exemplary embodiment of the present application.
  • FIG. 10 is a schematic structural view of a device after depositing a light field limiting layer and a bonding material in another exemplary embodiment of the present application.
  • FIG. 11 is a schematic structural view of a device after removing a substrate in another exemplary embodiment of the present application.
  • FIG. 12 is a schematic structural view of a device after depositing an insulating dielectric film in another exemplary embodiment of the present application.
  • Figure 13 is a schematic view showing the structure of a device having a mesa structure in another exemplary embodiment of the present application.
  • a nitride semiconductor light emitting device includes an epitaxial structure having a first surface and a second surface opposite to the first surface, the first surface being The nitrogen surface is located on the n-side of the epitaxial structure, the second surface is located on the p-type side of the epitaxial structure, and the n-side of the epitaxial structure is in electrical contact with the n-type electrode, and the p-type side and the p-type The electrodes are in electrical contact and the first face is formed with a ridge waveguide structure.
  • the epitaxial structure includes an n-type contact layer, an n-side waveguide layer, an active region, a p-side waveguide layer, and a p-type contact layer, which are sequentially disposed, and the n-type electrode is in electrical contact with the n-type contact layer.
  • the p-type electrode is in electrical contact with the p-type contact layer.
  • an ohmic contact is formed between the n-type electrode and the n-type contact layer, and an ohmic contact is formed between the p-type electrode and the p-type contact layer.
  • the p-type electrode is in contact with the p-type contact layer.
  • n-type contact layer and the n-side waveguide layer are further provided with an n-type optical confinement layer.
  • a p-type optical confinement layer is further disposed between the p-side waveguide layer and the p-type contact layer.
  • an electron blocking layer is further disposed between the p-side waveguide layer and the p-type contact layer.
  • the electron blocking layer is disposed between the p-side waveguide layer and the p-type optical confinement layer.
  • the n-type contact layer is subjected to a thinning treatment, and the thickness thereof is preferably 5 to 3000 nm.
  • the first surface of the epitaxial structure is further covered with a thickened electrode, and the thickened electrode is electrically connected to the n-type electrode.
  • the ridge-shaped waveguide structure preferably has a ridge width of 0.5 to 100 ⁇ m, and the ridge depth is preferably 0 to 2 ⁇ m, particularly preferably greater than 0 and less than or equal to 2 ⁇ m.
  • the material of the n-type contact layer, the p-type contact layer, the n-type optical confinement layer, the p-type optical confinement layer, the p-side waveguide layer, and the n-side waveguide layer may be selected from a group III-V nitride.
  • Al x1 In y1 Ga (1-x1-y1) N may be included, wherein x1 and y1 are each greater than or equal to 0 and less than or equal to 1, and 0 ⁇ (x1 + y1) ⁇ 1.
  • the material of the active region may be selected from a group III-V nitride, and may include, for example, Al x2 In y2 Ga (1-x2-y2) N or Al x3 In y3 Ga (1-x3- Y3) N, wherein x2, y2, x3, and y3 are each greater than or equal to 0 and less than or equal to 1, and 0 ⁇ (x2+y2) ⁇ 1, 0 ⁇ (x3 + y3) ⁇ 1.
  • the material of the n-type electrode and the p-type electrode includes any one or a combination of two or more of Ni, Ti, Pd, Pt, Au, Al, TiN, ITO, IGZO, and the like, and Limited to this.
  • the p-type electrode is also connected to the support sheet.
  • the support sheet includes any one of a silicon substrate, a copper support sheet, a molybdenum copper support sheet, a molybdenum support sheet, and a ceramic substrate, and is not limited thereto.
  • the p-type electrode is connected to the support sheet by a bonding layer.
  • the bonding layer includes a metal bonding layer or a non-metal bonding layer.
  • the metal bonding layer includes any one or a combination of two or more of AuSn, NiSn, AuAu, and NiGe, and is not limited thereto.
  • the non-metal bonding layer includes any one of a combination of two or more of NaCl, SiO 2 , CrO 2 , Al 2 O 3 , and diamond.
  • a light field limiting layer is disposed between the p-type electrode and the support sheet.
  • the light field limiting layer is disposed between the p-type electrode and the bonding layer.
  • the light field limiting layer comprises at least one low refractive index material.
  • the material of the light field limiting layer comprises SiO 2 , SiN x , TiO 2 , ZrO 2 , AlN, Al 2 O 3 , Ta 2 O 5 , HfO 2 , HfSiO 4 , AlON, porous GaN, TiN, ITO, and Any one or a combination of two or more of IGZO is not limited thereto.
  • the nitride semiconductor light-emitting device includes a nitride semiconductor laser or a super luminescent diode.
  • the nitride semiconductor light-emitting device comprises a III-V nitride semiconductor laser or a super luminescent diode.
  • a method for fabricating a nitride semiconductor light-emitting device includes:
  • the epitaxial structure having a first face bonded to the substrate and a second face opposite to the first face, the first face being a nitrogen face is located on the n-side of the epitaxial structure, and the second face is located on a p-side of the epitaxial structure;
  • Removing the substrate further providing an n-type electrode on the first surface of the epitaxial structure, and forming the n-type electrode to form an ohmic contact with the n-side of the epitaxial structure;
  • a first surface of the epitaxial structure is etched or etched to form a ridge waveguide structure.
  • the manufacturing method includes: providing an etch mask on the first surface of the epitaxial structure, and then etching or etching the first surface of the epitaxial structure by a dry etching or a wet etching process; Forming a ridge waveguide structure.
  • the fabrication method includes etching a first side of the epitaxial structure using a wet etching process to form a ridge waveguide structure.
  • the manufacturing method includes: forming a etch mask on a first surface of the epitaxial structure by a photolithography process.
  • the ridge-shaped waveguide structure preferably has a ridge width of 0.5 to 100 ⁇ m, and the ridge depth is preferably 0 to 2 ⁇ m, particularly preferably greater than 0 and less than or equal to 2 ⁇ m.
  • the manufacturing method further includes bonding the p-type electrode to the support sheet with a bonding material.
  • the material of the support sheet can be as described above.
  • the bonding material comprises a metal bonding material or a non-metal bonding material, and the material thereof may also be as described above.
  • the fabricating method further comprises: forming a light field limiting layer on the p-type electrode, and then bonding the light field limiting layer to the support sheet with a bonding material.
  • the light field limiting layer comprises at least one low refractive index material.
  • the material of the light field limiting layer may also be as described above.
  • the fabrication method includes sequentially growing an n-type contact layer, an n-type optical confinement layer, an n-side waveguide layer, an active region, a p-side waveguide layer, an electron blocking layer, and a p-type contact on a substrate. a layer forming the epitaxial structure.
  • the fabricating method further comprises sequentially forming a p-type optical confinement layer and a p-type contact layer on the electron blocking layer.
  • the fabrication method further comprises depositing a conductive material as a p-type electrode in the p-type contact layer and performing ohmic contact annealing to form an ohmic contact between the p-type electrode and the p-type contact layer.
  • the p-type electrode is in contact with the p-type contact layer;
  • the manufacturing method further includes: after removing the substrate, further thinning the n-type contact layer, and then depositing a conductive material as an n-type electrode in the n-type contact layer, and An ohmic contact annealing is performed to form an ohmic contact between the n-type electrode and the n-type contact layer.
  • the n-type contact layer has a thickness of 5 to 3000 nm;
  • the manufacturing method further includes: after completing the fabrication of the n-type electrode, using an lithography process to provide an etch mask on the first side of the epitaxial structure, followed by a wet etching process.
  • the first side of the epitaxial structure is etched to form a ridge waveguide structure.
  • the manufacturing method further includes: after forming the ridge waveguide structure, covering the at least part of the region other than the ridge waveguide structure on the first surface of the epitaxial structure, and making the n-type electrode Exposed from the insulating film.
  • the material of the insulating film can also be as described above.
  • the manufacturing method further includes: forming a thickened electrode on the n-type electrode;
  • the fabricating method further comprises: etching or etching the epitaxial structure by a dry etching or a wet etching process after exposing the n-type electrode from the insulating film; A mesa structure is formed on one side of the ridge waveguide structure, and a p-type electrode is distributed on the bottom of the mesa structure, and then a thick electrode is formed on the p-type electrode and the n-type electrode.
  • the manufacturing method further comprises: preparing the nitride by using at least one of cleavage, dry etching, wet etching, or a combination of two or more methods after the thickened electrode is fabricated.
  • the cavity surface of the semiconductor light emitting device is fabricated.
  • the material of the substrate includes any one of GaN, AlN, sapphire, SiC, Si, or a combination of two or more thereof, and is not limited thereto.
  • n-type contact layer a material of the n-type contact layer, the p-type contact layer, the n-type optical confinement layer, the p-type optical confinement layer, the p-side waveguide layer, the n-side waveguide layer, the active region, the n-type electrode, and the p-type electrode The same can be said as described above.
  • the corrosion reagent used in the wet etching process includes an alkaline solution or an acidic solution.
  • the alkaline solution includes any one or a combination of two or more of potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH);
  • the acidic solution includes Any one or a combination of two of phosphoric acid (H 3 PO 4 ) and hydrofluoric acid (HF); however, they are not limited thereto.
  • a preparation process of a nitride semiconductor laser or a super luminescent diode includes:
  • an epitaxial structure of the device including an n-type contact layer, an n-type optical confinement layer, an n-side waveguide layer, an active region, a p-side waveguide layer, an electron blocking layer, and a p-type optical confinement layer And p-type contact layer, as shown in Figure 1.
  • the epitaxial wafer is cleaned, a p-type ohmic contact metal is deposited on the p-type contact layer, and ohmic contact annealing is performed to form a better ohmic contact, as shown in FIG.
  • the epitaxial wafer is flip-chip bonded to the support sheet, and the p-face ohmic contact electrode (i.e., the p-type electrode) of the device faces downward to be bonded to the material on the support sheet.
  • the p-face ohmic contact electrode i.e., the p-type electrode
  • the substrate and a portion of the n-type contact layer are removed by thinning, grinding, laser lift-off, dry etching or wet etching, leaving a thin n-type contact layer to form an n-type ohmic contact electrode, as shown in FIG. Shown.
  • n-type ohmic contact metal i.e., an n-type electrode
  • n-type ohmic contact layer i.e., the aforementioned n-type contact layer
  • a nitrogen-coated n-type ohmic contact electrode ie, the aforementioned n-type electrode
  • a photoresist spin-coated with a photoresist
  • photolithography is performed, followed by dry etching or wet etching to form a ridge of the device (ie, a ridge waveguide structure).
  • An insulating dielectric film is deposited to protect other areas outside the device ridge and prevent current from being injected from these areas, as shown in FIG.
  • the insulating dielectric film over the ridge and the photoresist are peeled off to expose an n-type ohmic contact electrode.
  • a thickened electrode is formed over the n-type ohmic contact electrode (i.e., the aforementioned n-type electrode) by photolithography, metal deposition, and lift-off processes, as shown in FIG.
  • the cavity surface of the laser or the super luminescent diode is prepared, and the preparation method includes any one of cleavage, dry etching, wet etching, or a combination of two or more, and is not limited thereto.
  • the film and lobes are then formed to form the die of the device.
  • a preparation process of a nitride semiconductor laser or a super luminescent diode includes:
  • an epitaxial structure of the device comprising: an n-type contact layer, an n-type optical confinement layer, an n-side waveguide layer, an active region, a p-side waveguide layer, an electron blocking layer, and a p-type contact layer; Alternatively, it includes an n-type contact layer, an n-type optical confinement layer, an n-side waveguide layer, an active region, a p-side waveguide layer, an electron blocking layer, a p-type optical confinement layer, and a p-type contact layer, as shown in FIG.
  • the epitaxial wafer is cleaned, and a transparent conductive film (i.e., a p-type electrode) is deposited on the entire surface of the p-type contact layer, and ohmic contact annealing is performed to form a good ohmic contact, as shown in FIG.
  • a transparent conductive film i.e., a p-type electrode
  • the low refractive index material 1 and the low refractive index material 2 are periodically alternately deposited over the transparent conductive film, followed by deposition of the bonding material as shown in FIG.
  • the epitaxial wafer is flip-chip bonded to the support sheet with the bonding surface of the device facing downward and bonded to the material on the support sheet.
  • n-type ohmic contact electrode ie, n-type Electrode
  • n-type ohmic contact metal i.e., an n-type electrode
  • n-type ohmic contact layer i.e., the aforementioned n-type contact layer
  • a photoresist is spin-coated on the n-type n-type ohmic contact electrode (i.e., n-type electrode), and photolithography is performed, followed by dry etching or wet etching techniques to fabricate the ridge shape of the device (i.e., the ridge waveguide structure).
  • An insulating dielectric film is deposited to protect other areas outside the ridge of the device from current injection from these areas, as shown in FIG.
  • the insulating dielectric film over the ridge and the photoresist are peeled off to expose an n-type ohmic contact electrode.
  • a mesa is formed on one side of the ridge by photolithography and wet etching or dry etching, and the bottom of the mesa is a p-type ohmic contact electrode.
  • a thickened electrode is formed over the p-type ohmic contact electrode and the n-type ohmic contact electrode by photolithography, metal deposition, and lift-off processes, as shown in FIG.
  • the cavity surface of the laser or the super luminescent diode is prepared, and the preparation method includes any one or a combination of two or more of cleavage, dry etching, and wet etching, and is not limited thereto, and then coating, lobing, and forming The die of the device.
  • the present application has at least the following advantages:
  • This application passes through a nitride semiconductor light-emitting device
  • the ridge-shaped waveguide structure is formed on the nitrogen surface, and the p-type ohmic contact on the (0001) gallium surface adopts the whole-surface contact method, thereby maximally expanding the area of the p-plane current injection region and reducing the device resistance.
  • the p-type light field confinement layer in the device can be thinned or even omitted, and the series resistance of the device is smaller. In this way, the device resistance of the present application can be made very small, thereby effectively improving the electro-optic efficiency of the device, reducing the thermal power, reducing the junction temperature of the device, and improving device performance and reliability.
  • the device of the present application can use a low refractive index material to limit the light field, and the thickness and refractive index of the low refractive index material are adjustable, which can increase the refractive index difference between the light field limiting layer and the nitride material, and enhance the laser.
  • the limitation of the light field making this application
  • the device has a high optical confinement factor that significantly reduces the threshold material gain of the laser or superluminescent LED, resulting in a reduced threshold current of the device.
  • the threshold current of the laser is greatly reduced.
  • the heat source of the device of the present application has a small distance from the heat sink, and the heat conduction path is short; at the same time, the heat conductivity of the heat sink is high, and the heat generated by the heat source can be transmitted to the heat sink through the entire p-plane, and there is no SiO 2 .
  • the influence of low thermal conductivity dielectric film is not easy to cause problems such as short circuit and cavity surface contamination. Therefore, the device of the present application has small thermal resistance and good heat dissipation, and is also beneficial for improving the performance and reliability of the device.
  • this application is from Nitrogen surface to make the ridge shape of the device,
  • the nitrogen nitride semiconductor is easily corroded, and the ridge shape can be formed by wet etching. Therefore, there is no influence of defects, damage and surface state introduced by dry etching, so that the stability and reliability of the device are better.
  • Embodiment 1 A fabrication process of a GaN-based blue laser or a super luminescent diode of the present embodiment includes:
  • S1 growing a nitride semiconductor laser or a superluminescent light emitting diode structure on a GaN substrate using a metal organic chemical vapor deposition (MOCVD) apparatus, comprising: an n-GaN contact layer having a thickness of about 500 nm; and 100 pairs of n-Al 0.16 GaN/ a GaN superlattice structure in which each layer has a thickness of about 2.5 nm as an n-type optical confinement layer; an n-In 0.03 Ga 0.97 N waveguide layer having a thickness of about 100 nm; and a 3-pair In 0.16 Ga 0.84 N/GaN multiple quantum well, each of which The layer In 0.16 Ga 0.84 N quantum well is about 2.5 nm thick, each layer of GaN barrier is about 15 nm thick; the unintentionally doped In 0.03 Ga 0.97 N waveguide layer is about 80 nm thick; p-Al 0.2 Ga 0.8 N electron is about 20 nm thick.
  • MOCVD metal organic
  • Barrier layer 150 pairs of p-Al 0.16 GaN/GaN superlattice structures each having a thickness of about 2.5 nm as a p-type optical confinement layer; and a p-GaN contact layer having a thickness of about 30 nm. See Figure 1.
  • Ti having a thickness of about 50 nm/Pt having a thickness of about 50 nm/A having a thickness of about 100 nm is sequentially deposited to form an n-type ohmic contact.
  • a photoresist is spin-coated on the n-type ohmic contact electrode of the nitrogen surface to perform photolithography to form a ridge-type mask pattern, followed by wet etching using a KOH solution at 80 ° C, and controlling the etching depth to be about 700 nm by controlling the time.
  • SiN having a thickness of about 200 nm is deposited by an inductively coupled plasma chemical vapor deposition apparatus as an insulating dielectric film to protect sidewalls of the laser or superluminescent LED and the etched mesa, as shown in FIG.
  • the support sheet can also be thinned and metal deposited on the other side of the support sheet to form an electrical contact, as shown in FIG.
  • Embodiment 2 A fabrication process of a GaN-based near-ultraviolet laser or a super luminescent diode of the present embodiment includes:
  • an ultraviolet light laser or a super luminescent diode structure is grown on a Si (111) substrate by a metal organic chemical vapor deposition (MOCVD) apparatus, specifically comprising: an n-GaN contact layer having a thickness of about 500 nm; and 120 pairs of n-Al 0.2 GaN/GaN superlattice structure in which each layer has a thickness of about 2.5 nm as an n-type optical confinement layer; an n-Al 0.02 Ga 0.98 N n side waveguide layer having a thickness of about 80 nm; and 2 pairs of In 0.03 Ga 0.97 N/Al 0.08 Ga 0.92 N multiple quantum wells, in which each layer of In 0.03 Ga 0.97 N quantum well is about 2.5 nm thick, each layer of Al 0.08 Ga 0.92 N barrier is about 14 nm thick; unintentionally doped Al 0.02 Ga 0.98 N p side waveguide is about 60 nm thick Layer; p-Al 0.25 Ga 0.75 N electron blocking layer of about 25
  • the Si substrate may be wet etched by a thinning, grinding, etc. method in combination with a normal temperature H 3 PO 4 solution, and then a part of the n-GaN contact layer is etched by inductively coupled plasma (ICP) to leave about 70 nm.
  • ICP inductively coupled plasma
  • Ti having a thickness of about 30 nm/Pt having a thickness of about 30 nm and Au having a thickness of about 50 nm are sequentially deposited to form an n-type ohmic contact.
  • a photoresist is spin-coated on the n-type ohmic contact electrode of the nitrogen surface to perform photolithography to form a ridge-type mask pattern, followed by wet etching using a 70 ° C H 3 PO 4 solution, and controlling the etching depth by controlling the time. 300 nm, forming the ridge shape of a laser or super luminescent diode.
  • SiO 2 having a thickness of about 150 nm is deposited by an inductively coupled plasma chemical vapor deposition apparatus as an insulating dielectric film to protect the sidewall of the laser or the superluminescent LED and the etched mesa. See Figure 12.
  • S11 spin-coating a photoresist, performing photolithography, and then depositing a thick thick electrode of about 100 nm of Ti/about 300 nm thick by magnetron sputtering, and peeling off with acetone to prepare a thickened electrode. See Figure 13.
  • Embodiment 3 The manufacturing process of an AlGaN-based deep ultraviolet laser or super luminescent diode of the embodiment includes:
  • a deep ultraviolet laser or a super luminescent diode structure is grown on a sapphire substrate by a metal organic chemical vapor deposition (MOCVD) apparatus, specifically comprising: an n-Al 0.45 Ga 0.5 N contact layer having a thickness of about 1000 nm; and 100 pairs of n-Al 0.65 Ga 0.35 N/Al 0.45 Ga 0.55 N superlattice structure in which each layer is about 2.3 nm thick, as an n-type optical confinement layer; n-Al 0.45 Ga 0.55 N n side waveguide layer having a thickness of about 75 nm; 3 pairs of Al 0.35 Ga 0.65 N/Al 0.45 Ga 0.55 N multiple quantum well, in which each layer of Al 0.35 Ga 0.65 N quantum well is about 3 nm thick, each layer of Al 0.45 Ga 0.55 N barrier is about 10 nm thick; unintentionally doped Al is about 60 nm thick 0.45 Ga 0.55 N p side waveguide layer; p-Al 0.65 Ga 0. 0.
  • S4 flip-chip bonding the laser or super-emitting diode epitaxial wafer on the AlN ceramic substrate, the bonding metal Ni/Au of the laser or super-radiation LED is facing downward, and bonding with the metal Ti/Au on the AlN ceramic substrate together.
  • n-AlGaN ohmic contact layer Ti having a thickness of about 50 nm, Al having a thickness of about 100 nm, and Ti having a thickness of about 50 nm and Au having a thickness of about 100 nm are sequentially deposited to form an n-type ohmic contact.
  • S11 spin-coating a photoresist, performing photolithography, and then depositing an Au thick electrode having a thickness of about 100 nm and a thickness of about 400 nm by electron beam evaporation, and peeling off with acetone to prepare a thickened electrode. See Figure 13.
  • Embodiment 4 A fabrication process of a GaN-based green laser or a super luminescent diode of the present embodiment includes:
  • a green light laser or a superluminescent light emitting diode structure is grown on a SiC substrate by a metal organic chemical vapor deposition (MOCVD) apparatus, specifically comprising: an n-GaN contact layer having a thickness of about 500 nm; and a high Si doped n-GaN of 500 nm.
  • MOCVD metal organic chemical vapor deposition
  • a layer as an n-type optical confinement layer; an n-In 0.05 Ga 0.95 N n side waveguide layer having a thickness of about 110 nm; and a pair of In 0.3 Ga 0.7 N/GaN multiple quantum wells, wherein each layer of In 0.3 Ga 0.7 N quantum well is about 2.5 nm, each layer of GaN barrier is about 12 nm thick; unintentionally doped In 0.05 Ga 0.95 N p side waveguide layer with a thickness of about 90 nm; p-Al 0.2 Ga 0.8 N electron blocking layer with a thickness of about 15 nm; p of about 20 nm thick - GaN contact layer. See Figure 8.
  • the SiC substrate is removed by wet etching in combination with a KOH solution by thinning, grinding, etc., and then a part of the n-GaN contact layer is etched by ion beam etching (IBE) to leave about 20 nm to form an n-type.
  • IBE ion beam etching
  • n-GaN ohmic contact layer Ti having a thickness of about 80 nm, Pt having a thickness of about 50 nm, and Au having a thickness of about 100 nm are sequentially deposited to form an n-type ohmic contact.
  • AlN is deposited by an atomic layer deposition apparatus to a thickness of about 150 nm as an insulating dielectric film to protect sidewalls of the laser or superluminescent diode and the etched mesa. See Figure 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

一种氮化物半导体发光器件及其制作方法。所述氮化物半导体发光器件包括外延结构,所述外延结构具有第一面和与第一面相背对的第二面,所述第一面为(000Ϊ)氮面并位于所述外延结构的n型侧,所述第二面位于所述外延结构的p型侧,所述外延结构的n型侧与n型电极(113)电性接触,p型侧与p型电极(110)电性接触,并且所述第一面形成有脊型波导结构。该氮化物半导体发光器件,特别是III-V族氮化物半导体激光器或超辐射发光二极管具有电阻低、内损耗低、阈值电流小、热阻小、稳定性和可靠性好等优点,同时其制备工艺简单易实施。(000Ϊ)

Description

氮化物半导体发光器件及其制作方法 技术领域
本申请涉及一种半导体光电器件及其制备方法,特别涉及一种具有脊形波导结构的氮化物半导体发光器件,如III-V族氮化物半导体激光器、超辐射发光二极管及其制备方法,属于半导体光电技术领域。
背景技术
III-V族氮化物半导体被称为第三代半导体材料,具有禁带宽度大、化学稳定性好、抗辐照性强等优点;其禁带宽度涵盖从深紫外、整个可见光、到近红外范围,可用于制作半导体发光器件,如发光二极管、激光器和超辐射发光二极管等。其中,基于III-V族氮化物半导体的激光器、超辐射发光二极管具有制作简单、体积小、重量轻、寿命长和效率高等优点,未来有望在激光显示、激光照明和激光存储等领域得到广泛应用。
氮化物半导体光电器件通常为p-n结结构。对于III-V族氮化物半导体,通常采用二茂镁(CP2Mg)作为p型掺杂剂,由于Mg受主在氮化物中的电离能较高(GaN:170meV,AlN:470meV),通常不到10%的Mg受主发生电离,使得p型氮化物半导体中的空穴浓度较低。同时由于p型氮化物半导体中的Mg受主掺杂浓度较高,且空穴有效质量较大,空穴的迁移率较低,导致p型氮化物半导体的电阻较大。而且,为使III-V族氮化物半导体激光器、超辐射发光二极管等有较好的光场限制,一般需要将p型氮化物半导体的厚度控制于500nm以上,这使得器件的串联电阻很大,导致激光器工作时约30%以上的电压降在激光器的串联电阻上。激光器工作时的热功率较高,结温大幅上升,严重影响了激光器的性能和寿命。在紫外激光器中,p型AlGaN光学限制层中的Al组分更高,Mg受主的电离能更大,p型AlGaN光学限制层中空穴浓度更低,激光器的串联电阻更大,热功率更大,结温更高;与此同时,空穴浓度低,造成电子空穴注入不对称,影响了激光器的注入效率,上述这些因素都影响紫外激光器的阈值电流密度、寿命等。
此外,氮化物半导体激光器或超辐射发光二极管通常采用AlGaN作为光学限制层。传统激光器或超辐射发光二极管中,AlGaN光学限制层与波导层的折射率差较小(约为5%),导致激光器或超辐射发光二极管的光学限制因子较小(约为2.5%),远小于传统III-V族GaAs或InP基半导 体激光器或超辐射发光二极管(8%)。因此,氮化物半导体激光器或超辐射发光二极管激射所需的发光材料增益更高,阈值电流更大。
受激光器或超辐射发光二极管中p型层电阻大和激光器量子阱限制因子小等因素影响,目前氮化物半导体激光器或超辐射发光二极管的电光转换效率仍然小于40%,其余的电功率都转换成了热功率。而传统的激光器或超辐射发光二极管均采用正装的方式封装,热量需通过约3μm厚的激光器或超辐射发光二极管结构和约100μm厚的衬底传导到热沉中,激光器或超辐射发光二极管中热量的传导路径很长,且由于衬底热导率较低,因此激光器或超辐射发光二极管的热阻很大。而激光器或超辐射发光二极管的热功率较大,因此器件的结温较高,严重影响了器件的性能和寿命。
另外,相对于GaAs或InP基材料,(0001)镓面III-V族氮化物半导体材料的化学稳定性好,耐酸碱,不易腐蚀等特点。对于III-V族氮化物脊型激光器或超辐射发光二极管而言,脊型需通过干法刻蚀形成,之后采用倒装或正装的方式来封装器件,例如可参阅CN103701037A、CN103001119A等文献。
此类工艺存在如下缺陷:其一,电流是通过器件脊型中的p型层注入,注入区的面积较小,器件电阻较大,而且p型层较厚,器件的串联电阻大,易引起结温升高,影响器件的性能和寿命。其二,氮化物半导体中不同材料的折射率相差较小,器件的光场限制较弱,所需的阈值材料增益较大,阈值电流较高。其三,若采用正装封装,则器件内部的热源离热沉的距离较远,且衬底的热导率较低,导致器件热阻较大;而对于倒装封装的器件,虽然热源离热沉的距离近,但保护器件脊型外其它区域的SiO2等绝缘介质膜的热导率非常低,热量只能通过脊型向热沉传导,导致器件的散热面积小,热阻大;而且倒装封装时发光腔面离焊料很近,很容易被沾污、产生短路漏电而引起器件性能的退化。其四,干法刻蚀不仅会导致侧壁粗糙,引起光散射等等。干法刻蚀还会引入表面态、损伤和缺陷,这些表面态、损伤和缺陷不仅会成为非辐射复合中心,影响激光器或超辐射发光二极管的效率;还会成为漏电通道,影响器件的可靠性和稳定性。
发明内容
本申请的主要目的在于提供一种氮化物半导体发光器件及其制作方法,以克服现有技术的不足。
为实现前述发明目的,本申请采用的技术方案包括:
本申请实施例提供了一种氮化物半导体发光器件,其包括外延结构,所述外延结构具有第一面和与第一面相背对的第二面,所述第一面为
Figure PCTCN2017116518-appb-000001
氮面并位于所述外延结构的n型侧,所述第二面位于所述外延结构的p型侧,所述外延结构的n型侧与n型电极电性接触,p型侧与p型电极电性接触,并且所述第一面形成有脊型波导结构。
进一步的,所述外延结构包括依次设置的n型接触层、n侧波导层、有源区、p侧波导层和p型接触层,所述n型电极与n型接触层电性接触,所述p型电极与p型接触层电性接触。
在一些较佳实施方案中,所述p型电极与p型接触层整面接触。
更进一步的,所述n型电极与n型接触层之间形成欧姆接触,所述p型电极与p型接触层之间形成欧姆接触。
在一些较佳实施方案中,所述p型电极还与支撑片连接。
更进一步的,所述p型电极通过键合层与所述支撑片连接。优选的,所述键合层包括金属键合层或非金属键合层。
在一些较佳实施方案中,所述p型电极与支撑片之间设置有光场限制层。
更进一步的,所述光场限制层设于p型电极与键合层之间。
优选的,所述光场限制层包括至少一低折射率材料。
本申请实施例还提供了一种氮化物半导体发光器件的制作方法,其包括:
于衬底上生长形成氮化物半导体发光器件的外延结构,所述外延结构具有与衬底结合的第一
面和与第一面相背对的第二面,所述第一面为
Figure PCTCN2017116518-appb-000002
氮面并位于所述外延结构的n型侧,所述第二面位于所述外延结构的p型侧;
于所述外延结构的第二面设置p型电极,并使所述p型电极与所述外延结构的p型侧形成欧姆接触;
去除所述衬底,再于所述外延结构的第一面设置n型电极,并使所述n型电极与所述外延结构的n型侧形成欧姆接触;
对所述外延结构的第一面进行刻蚀或腐蚀,形成脊型波导结构。
进一步的,所述制作方法包括:于所述外延结构的第一面上设置刻蚀掩模,之后采用干法刻蚀或湿法腐蚀工艺对所述外延结构的第一面进行刻蚀或腐蚀,形成脊型波导结构。
在一些较佳实施方案中,所述制作方法包括:采用湿法腐蚀工艺对所述外延结构的第一面进行腐蚀而形成脊型波导结构。
在一些较佳实施方案中,所述制作方法还包括:利用键合材料将p型电极与支撑片键合。
更进一步的,所述键合材料包括金属键合材料或非金属键合材料。
在一些较佳实施方案中,所述制作方法还包括:在所述p型电极上形成光场限制层,之后利用键合材料将光场限制层与支撑片键合。
优选的,所述光场限制层包括至少一低折射率材料。
在一些实施方案中,所述制作方法包括:在衬底上依次生长n型接触层、n型光学限制层、n侧波导层、有源区、p侧波导层、电子阻挡层和p型接触层,形成所述外延结构。
在一些实施方案中,所述制作方法还包括:在p型接触层沉积作为p型电极的导电材料,并进行欧姆接触退火,使p型电极与p型接触层形成欧姆接触。优选的,所述p型电极与p型接触层整面接触。
在一些较佳实施方案中,所述制作方法还包括:在完成n型电极的制作后,采用光刻工艺于所述外延结构的第一面上设置刻蚀掩模,之后采用湿法腐蚀工艺对所述外延结构的第一面进行腐蚀,形成脊型波导结构。
在一些实施方案中,所述制作方法还包括:在使n型电极从绝缘膜中露出后,还以干法刻蚀或湿法腐蚀工艺对所述外延结构进行刻蚀或腐蚀,于所述脊型波导结构一侧形成台面结构,并使p型电极分布于台面结构底部,之后在p型电极和n型电极上制作加厚电极。
在一些实施方案中,所述制作方法还包括:在制作完加厚电极后,至少采用解理、干法刻蚀、湿法腐蚀中的任一种方法或两种以上方法的组合制备氮化物半导体发光器件的腔面。
进一步的,前述氮化物半导体发光器件包括氮化物半导体激光器或超辐射发光二极管等,且不限于此。
优选的,所述氮化物半导体发光器件包括III-V族氮化物半导体激光器或超辐射发光二极管。较之现有技术,本申请的氮化物半导体发光器件,特别是III-V族氮化物半导体激光器或超辐射发光二极管具有电阻低、内损耗低、阈值电流小、热阻小、稳定性和可靠性好等优点,可大幅提升器件的性能和寿命,特别是有效提升紫外激光器或超辐射发光二极管等含较厚且高Al组分AlGaN材料的器件的性能和寿命,同时本申请氮化物半导体发光器件的制备工艺简单易实施。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这 些附图获得其他的附图。
图1是本申请一典型实施方案中一种氮化物半导体激光器或超辐射发光二极管(如下简称“器件”)的外延结构示意图。
图2是本申请一典型实施方案中一种形成p型欧姆接触后的器件的结构示意图。
图3是本申请一典型实施方案中一种去除衬底后的器件的结构示意图。
图4是本申请一典型实施方案中一种沉积绝缘介质膜后的器件的结构示意图。
图5是本申请一典型实施方案中一种制作加厚电极后的器件的结构示意图。
图6是本申请一典型实施方案中一种制作平面电极结构后的器件的结构示意图。
图7是本申请一典型实施方案中一种具有垂直结构的器件的结构示意图。
图8是本申请另一典型实施方案中一种氮化物半导体激光器或超辐射发光二极管(如下简称“器件”)的外延结构示意图。
图9是本申请另一典型实施方案中一种形成p型欧姆接触后的器件的结构示意图。
图10是本申请另一典型实施方案中一种沉积光场限制层和键合材料后的器件的结构示意图。
图11是本申请另一典型实施方案中一种去除衬底后的器件的结构示意图。
图12是本申请另一典型实施方案中一种沉积绝缘介质膜后的器件的结构示意图。
图13是本申请另一典型实施方案中一种具有台面结构的器件的结构示意图。
附图标记说明:101—衬底、102—n型接触层、103—n型光学限制层、104—n侧波导层、105—有源区、106—p侧波导层、107—电子阻挡层、108—p型光学限制层、109—p型接触层、110—p型欧姆接触电极、111—键合材料、112—支撑片、113—n型欧姆接触电极、114—光刻胶、115—绝缘介质膜、116—加厚电极、117—支撑片上的电极、201—衬底、202—n型接触层、203—n型光学限制层、204—n侧波导层、205—有源区、206—p侧波导层、207—电子阻挡层、208—p型接触层、209—p型欧姆接触电极、210—低折射率材料1、211—低折射率材料2、212—键合材料、213—键合材料、214—支撑片、215—n型欧姆接触电极、216—光刻胶、217—绝缘介质膜、218—加厚电极。
具体实施方式
本申请实施例的一个方面提供的一种氮化物半导体发光器件包括外延结构,所述外延结构具有第一面和与第一面相背对的第二面,所述第一面为
Figure PCTCN2017116518-appb-000003
氮面并位于所述外延结构的n型侧,所述第二面位于所述外延结构的p型侧,所述外延结构的n型侧与n型电极电性接触,p型侧与p型电极电性接触,并且所述第一面形成有脊型波导结构。
进一步的,所述外延结构包括依次设置的n型接触层、n侧波导层、有源区、p侧波导层和p型接触层,所述n型电极与n型接触层电性接触,所述p型电极与p型接触层电性接触。
更进一步的,所述n型电极与n型接触层之间形成欧姆接触,所述p型电极与p型接触层之间形成欧姆接触。
优选的,所述p型电极与p型接触层整面接触。
进一步的,所述n型接触层与n侧波导层还设置有n型光学限制层。
进一步的,所述p侧波导层与p型接触层之间还设置有p型光学限制层。
进一步的,所述p侧波导层与p型接触层之间还设有电子阻挡层。优选的,所述电子阻挡层设置于p侧波导层和p型光学限制层之间。
进一步的,所述n型接触层是经减薄处理过的,其厚度优选为5~3000nm。
进一步的,所述外延结构的第一面上除脊型波导结构之外的至少部分区域上还覆设有绝缘膜。更进一步的,所述绝缘膜的材质包括SiO2、SiNx(x=0~1)、SiON、Al2O3、AlON、SiAlON、TiO2、Ta2O5、ZrO2和多晶硅中的任意一种或两种以上的组合,且不限于此。
进一步的,所述外延结构的第一面还覆设有加厚电极,所述加厚电极与n型电极电性连接。
进一步的,所述脊型波导结构的脊型宽度优选为0.5~100μm,脊型深度优选为0~2μm,尤其优选为大于0而小于或等于2μm。
在一些实施方案中,所述n型接触层、p型接触层、n型光学限制层、p型光学限制层、p侧波导层和n侧波导层的材质可选自III-V族氮化物,例如可以包括Alx1Iny1Ga(1-x1-y1)N,其中x1和y1均大于或等于0而小于或等于1,且0≤(x1+y1)≤1。
在一些实施方案中,所述有源区的材质可选自III-V族氮化物,例如可以包括Alx2Iny2Ga(1-x2-y2)N或Alx3Iny3Ga(1-x3-y3)N,其中x2、y2、x3和y3均大于或等于0而小于或等于1,且0≤(x2+y2)≤1,0≤(x3+y3)≤1。
在一些实施方案中,所述n型电极、p型电极的材质包括Ni、Ti、Pd、Pt、Au、Al、TiN、ITO和IGZO等中的任意一种或两种以上的组合,且不限于此。
进一步的,所述p型电极还与支撑片连接。
更进一步的,所述支撑片包括硅衬底、铜支撑片、钼铜支撑片、钼支撑片、陶瓷基板中的任意一种,且不限于此。
优选的,所述p型电极通过键合层与所述支撑片连接。所述键合层包括金属键合层或非金属键合层。例如,所述金属键合层包括AuSn、NiSn、AuAu、NiGe中的任意一种或两种以上的组 合,且不限于此。例如,所述非金属键合层包括NaCl、SiO2、CrO2、Al2O3、金刚石中的任意一种或两种以上的组合等。
在一些较佳实施方案中,所述p型电极与支撑片之间设置有光场限制层。
更进一步的,所述光场限制层设于p型电极与键合层之间。
优选的,所述光场限制层包括至少一低折射率材料。其中,所述光场限制层的材质包括SiO2、SiNx、TiO2、ZrO2、AlN、Al2O3、Ta2O5、HfO2、HfSiO4、AlON、多孔GaN、TiN、ITO和IGZO中的任意一种或两种以上的组合,且不限于此。
进一步的,所述氮化物半导体发光器件包括氮化物半导体激光器或超辐射发光二极管。优选的,所述氮化物半导体发光器件包括III-V族氮化物半导体激光器或超辐射发光二极管。
本申请实施例的另一个方面提供的一种氮化物半导体发光器件的制作方法包括:
于衬底上生长形成氮化物半导体发光器件的外延结构,所述外延结构具有与衬底结合的第一面和与第一面相背对的第二面,所述第一面为
Figure PCTCN2017116518-appb-000004
氮面并位于所述外延结构的n型侧,所述第二面位于所述外延结构的p型侧;
于所述外延结构的第二面设置p型电极,并使所述p型电极与所述外延结构的p型侧形成欧姆接触;
去除所述衬底,再于所述外延结构的第一面设置n型电极,并使所述n型电极与所述外延结构的n型侧形成欧姆接触;
对所述外延结构的第一面进行刻蚀或腐蚀,形成脊型波导结构。
进一步的,所述制作方法包括:于所述外延结构的第一面上设置刻蚀掩模,之后采用干法刻蚀或湿法腐蚀工艺对所述外延结构的第一面进行刻蚀或腐蚀,形成脊型波导结构。
在一些较佳实施方案中,所述制作方法包括:采用湿法腐蚀工艺对所述外延结构的第一面进行腐蚀而形成脊型波导结构。
进一步的,所述制作方法包括:采用光刻工艺于所述外延结构的第一面上制作形成所述刻蚀掩模。
进一步的,所述脊型波导结构的脊型宽度优选为0.5~100μm,脊型深度优选为0~2μm,尤其优选为大于0而小于或等于2μm。
在一些较佳实施方案中,所述制作方法还包括:利用键合材料将p型电极与支撑片键合。
进一步的,所述支撑片的材质可如前文所述。
进一步的,所述键合材料包括金属键合材料或非金属键合材料,其材质亦可如前文所述。
在一些较佳实施方案中,所述制作方法还包括:在所述p型电极上形成光场限制层,之后利用键合材料将光场限制层与支撑片键合。
优选的,所述光场限制层包括至少一低折射率材料。进一步的,所述光场限制层的材质也可如前文所述。
在一些实施方案中,所述制作方法包括:在衬底上依次生长n型接触层、n型光学限制层、n侧波导层、有源区、p侧波导层、电子阻挡层和p型接触层,形成所述外延结构。
在一些实施方案中,所述制作方法还包括:于所述电子阻挡层上依次形成p型光学限制层和p型接触层。
在一些实施方案中,所述制作方法还包括:在p型接触层沉积作为p型电极的导电材料,并进行欧姆接触退火,使p型电极与p型接触层形成欧姆接触。优选的,所述p型电极与p型接触层整面接触;
在一些较佳实施方案中,所述制作方法还包括:在去除所述衬底后,还对n型接触层进行减薄处理,之后在n型接触层沉积作为n型电极的导电材料,并进行欧姆接触退火,使n型电极与n型接触层形成欧姆接触。优选的,所述n型接触层的厚度为5~3000nm;
在一些较佳实施方案中,所述制作方法还包括:在完成n型电极的制作后,采用光刻工艺于所述外延结构的第一面上设置刻蚀掩模,之后采用湿法腐蚀工艺对所述外延结构的第一面进行腐蚀,形成脊型波导结构。
进一步的,所述制作方法还包括:在形成脊型波导结构之后,于所述外延结构的第一面上除脊型波导结构之外的至少部分区域上覆设绝缘膜,并使n型电极从绝缘膜中露出。
其中,所述绝缘膜的材质同样可如前文所述。
进一步的,所述制作方法还包括:在n型电极上形成加厚电极;
在一些实施方案中,所述制作方法还包括:在使n型电极从绝缘膜中露出后,还以干法刻蚀或湿法腐蚀工艺对所述外延结构进行刻蚀或腐蚀,于所述脊型波导结构一侧形成台面结构,并使p型电极分布于台面结构底部,之后在p型电极和n型电极上制作加厚电极。
在一些实施方案中,所述制作方法还包括:在制作完加厚电极后,至少采用解理、干法刻蚀、湿法腐蚀中的任一种方法或两种以上方法的组合制备氮化物半导体发光器件的腔面。
进一步的,所述衬底的材质包括GaN、AlN、蓝宝石、SiC、Si中的任意一种或两种以上的组合,且不限于此。
进一步的,所述n型接触层、p型接触层、n型光学限制层、p型光学限制层、p侧波导层、n侧波导层、有源区、n型电极、p型电极的材质同样可如前文所述。
进一步的,所述湿法腐蚀工艺采用的腐蚀试剂包括碱性溶液或酸性溶液。例如,所述碱性溶液包括氢氧化钾(KOH)、氢氧化钠(NaOH)、四甲基氢氧化铵(TMAH)中的任意一种或两种以上的组合;例如,所述酸性溶液包括磷酸(H3PO4)、氢氟酸(HF)中的任意一种或两种的组合;但均不限于此。
请参阅图1-图8所示,在本申请的一典型实施方案中,一种氮化物半导体激光器或超辐射发光二极管(如下简称“器件”)的制备工艺包括:
在衬底上生长外延材料,即器件的外延结构,其包括n型接触层、n型光学限制层、n侧波导层、有源区、p侧波导层、电子阻挡层、p型光学限制层和p型接触层,如图1所示。
清洗前述外延片,在p型接触层上整面沉积p型欧姆接触金属,并进行欧姆接触退火,以形成较好的欧姆接触,如图2所示。
将外延片倒装键合在支撑片上,并使器件的p面欧姆接触电极(即,p型电极)朝下,与支撑片上的材料键合在一起。
采用减薄、研磨、激光剥离、干法刻蚀或湿法腐蚀等方法去除衬底和部分n型接触层,留下较薄的n型接触层,以制作n型欧姆接触电极,如图3所示。
Figure PCTCN2017116518-appb-000005
氮面n型欧姆接触层(即前述的n型接触层)上沉积n型欧姆接触金属(即,n型电极),形成欧姆接触。
Figure PCTCN2017116518-appb-000006
氮面n型欧姆接触电极(即,前述的n型电极)上旋涂光刻胶,进行光刻,随后采用干法刻蚀或湿法腐蚀技术制作器件的脊型(即脊型波导结构)。
沉积绝缘介质膜,以保护器件脊型外的其它区域,阻止电流从这些区域注入,如图4所示。
将脊型上方的绝缘介质膜和光刻胶剥离,露出n型欧姆接触电极。
通过光刻、金属沉积和剥离工艺,在n型欧姆接触电极(即,前述的n型电极)上方形成加厚电极,如图5所示。
通过光刻和湿法腐蚀或干法刻蚀,在脊型一侧形成台面,台面底部为p型欧姆接触电极(即,前述的p型电极),如图6所示;或减薄支撑片,且在支撑片的另一面沉积金属,以形成电学接触,如图7所示。
以及,制作激光器或超辐射发光二极管的腔面,制备方法包括解理、干法刻蚀、湿法腐蚀中的任意一种或两种以上的组合,且不限于此。然后镀膜和裂片,形成器件的管芯。
另请参阅图9-图13所示,在本申请的另一典型实施方案中,一种氮化物半导体激光器或超辐射发光二极管(如下简称“器件”)的制备工艺包括:
在衬底上生长外延材料,即器件的外延结构,包括:n型接触层、n型光学限制层、n侧波导层、有源区、p侧波导层、电子阻挡层和p型接触层;或者,包括:n型接触层、n型光学限制层、n侧波导层、有源区、p侧波导层、电子阻挡层、p型光学限制层和p型接触层,如图8所示。
清洗外延片,在p型接触层上整面沉积透明导电膜(即p型电极),并进行欧姆接触退火,以形成较好的欧姆接触,如图9所示。
在透明导电膜上方周期性交替沉积低折射率材料1和低折射率材料2,随后沉积键合材料,如图10所示。
将外延片倒装键合在支撑片上,器件的键合面朝下,与支撑片上的材料键合在一起。
采用减薄、研磨、激光剥离、干法刻蚀或湿法腐蚀等方法去除衬底和部分n型接触层,留下较薄的n型接触层,以制作n型欧姆接触电极(即n型电极),如图11所示。
Figure PCTCN2017116518-appb-000007
氮面n型欧姆接触层(即前述的n型接触层)上沉积n型欧姆接触金属(即n型电极),形成欧姆接触。
Figure PCTCN2017116518-appb-000008
氮面n型欧姆接触电极(即n型电极)上旋涂光刻胶,进行光刻,随后采用干法刻蚀或湿法腐蚀技术制作器件的脊型(即脊型波导结构)。
沉积绝缘介质膜,以保护器件脊型外的其它区域,阻止电流从这些区域注入,如图12所示。将脊型上方的绝缘介质膜和光刻胶剥离,露出n型欧姆接触电极。
通过光刻和湿法腐蚀或干法刻蚀,在脊型一侧形成台面,台面底部为p型欧姆接触电极。
通过光刻、金属沉积和剥离工艺,在p型欧姆接触电极和n型欧姆接触电极上方制作加厚电极,如图13所示。
以及,制作激光器或超辐射发光二极管的腔面,制备方法包括解理、干法刻蚀、湿法腐蚀中的任意一种或两种以上的组合,且不限于此,然后镀膜、裂片,形成器件的管芯。
藉由前述的技术方案,使得本申请至少具有如下优点:
1、本申请通过在氮化物半导体发光器件的
Figure PCTCN2017116518-appb-000009
氮面制作脊型波导结构,以及在(0001)镓面p型欧姆接触采用整面接触的方式,可最大幅度的扩大p面电流注入区面积,降低器件电阻。进而,通过选用低折射率材料从p侧来限制光场,使得器件中的p型光场限制层可以减薄,甚至省略,器件的串联电阻更小。如此,可以使本申请的器件电阻非常小,进而可以有效提升器件的电光效率,减小热功率,降低器件结温,提升器件性能和可靠性。
2、进一步的,本申请的器件可采用低折射率材料来限制光场,而低折射率材料的厚度和折射率可调,可增加光场限制层与氮化物材料的折射率差,增强激光器中的光场限制,使得本申 请的器件具有高的光学限制因子,可大幅减小激光器或超辐射发光二极管的阈值材料增益,使得器件的阈值电流减小。由于激光器的限制因子增加,光分布在低损耗的量子阱有源区和波导层的部分增加,导致激光器的内损耗减小,因此激光器的阈值电流大幅降低。
3、进一步的,本申请的器件的热源与热沉的距离小,热传导路径短;同时热沉的热导率高,热源产生的热可通过整个p面传导到热沉当中,而且没有SiO2等低热导率介质膜的影响,不易产生短路、腔面污染等问题,因此本申请器件的热阻小,散热好,也有利于提升器件的性能和可靠性。
4、进一步的,本申请是从
Figure PCTCN2017116518-appb-000010
氮面来制作器件的脊型,
Figure PCTCN2017116518-appb-000011
氮面氮化物半导体易腐蚀,可通过湿法腐蚀制作脊型,因此没有干法刻蚀引入的缺陷、损伤和表面态的影响,使得器件的稳定性和可靠性更好。
以下结合若干实施例对本申请的技术方案作进一步的解释说明。
实施例1本实施例的一种GaN基蓝光激光器或超辐射发光二极管的制作工艺包括:
S1:采用金属有机物化学气相沉积(MOCVD)设备在GaN衬底上生长氮化物半导体激光器或超辐射发光二极管结构,其包括:厚度约500nm的n-GaN接触层;100对n-Al0.16GaN/GaN超晶格结构,其中每层厚度约2.5nm,作为n型光学限制层;厚度约100nm的n-In0.03Ga0.97N波导层;3对In0.16Ga0.84N/GaN多量子阱,其中每层In0.16Ga0.84N量子阱厚约2.5nm,每层GaN垒厚约15nm;厚度约80nm的非故意掺杂的In0.03Ga0.97N波导层;厚度约20nm的p-Al0.2Ga0.8N电子阻挡层;150对p-Al0.16GaN/GaN超晶格结构,其中每层厚度约2.5nm,作为p型光学限制层;以及,厚度约30nm的p-GaN接触层。参阅图1所示。
S2:采用丙酮、酒精、盐酸和去离子水等清洗外延片,在p-GaN接触层上依次沉积厚度约5nm的Ni和厚度约50nm的Au,并利用快速退火炉在压缩空气气氛中500℃退火3分钟,以形成较好的欧姆接触,参阅图2所示。
S3:将外延片倒装键合在Si支撑片上,激光器或超辐射发光二极管的p面欧姆接触电极Ni/Au朝下,利用键合技术将其与Si支撑片上的金属Ti/Au键合在一起。其中应保持GaN的m面与Si支撑片的100面对齐。
S4:采用减薄、研磨、抛光等方法,去除GaN衬底,然后采用诱导耦合等离子体(ICP)刻蚀部分n-GaN接触层,使其剩余厚度约50nm,以制作n型欧姆接触电极,参阅图3所示。
S5:在
Figure PCTCN2017116518-appb-000012
氮面n-GaN欧姆接触层上依次沉积厚度约50nm的Ti/厚度约50nm的Pt/厚度约100nm的Au,形成n型欧姆接触。
S6:在
Figure PCTCN2017116518-appb-000013
氮面n型欧姆接触电极上旋涂光刻胶,进行光刻,制作脊型的掩膜图形,随后采用80℃的KOH溶液进行湿法腐蚀,通过控制时间来控制腐蚀深度约为700nm,形成激光器或超辐射发光二极管的脊型。
S7:采用诱导耦合等离子体化学气相沉积设备沉积厚度约200nm的SiN,作为绝缘介质膜,保护激光器或超辐射发光二极管的侧壁和刻蚀后的台面,参阅图4所示。
S8:采用丙酮,将脊型上方的SiN绝缘介质膜和光刻胶剥离,露出n型欧姆接触电极Ti/Pt/Au。
S9:旋涂光刻胶,进行光刻,然后通过磁控溅射沉积厚度约50nm的Ti/厚度约500nm的Au加厚电极,采用丙酮剥离。参阅图5所示。
S10:旋涂光刻胶,进行光刻,然后采用80℃的KOH溶液进行湿法腐蚀,直到腐蚀完台面处的氮化物半导体,露出p型欧姆接触电极。参阅图6所示。或者,也可以减薄支撑片,且在支撑片的另一面沉积金属,以形成电学接触,如图7所示。
S11:将Si支撑片进行减薄,随后沿着GaN材料的a轴将激光器或超辐射发光二极管解理成条,并进行镀膜,最后进行裂片,至此完成激光器或超辐射发光二极管管芯的制作。
实施例2本实施例的一种GaN基近紫外激光器或超辐射发光二极管的制作工艺包括:
S1:采用金属有机物化学气相沉积(MOCVD)设备在Si(111)衬底上生长紫外光激光器或超辐射发光二极管结构,具体包括:厚约500nm的n-GaN接触层;120对n-Al0.2GaN/GaN超晶格结构,其中每层厚度约2.5nm,作为n型光学限制层;厚约80nm的n-Al0.02Ga0.98N n侧波导层;2对In0.03Ga0.97N/Al0.08Ga0.92N多量子阱,其中每层In0.03Ga0.97N量子阱厚约2.5nm,每层Al0.08Ga0.92N垒厚约14nm;厚约60nm的非故意掺杂的Al0.02Ga0.98N p侧波导层;厚约25nm的p-Al0.25Ga0.75N电子阻挡层;30对p-Al0.16GaN/GaN超晶格结构,其中每层厚度厚约2.5nm,作为p型光学限制层;厚约20nm的p-GaN接触层。参阅图8所示。
S2:清洗激光器或超辐射发光二极管外延片,在p-GaN接触层上沉积厚约100nm的ITO透明导电膜,利用快速退火炉在压缩空气气氛中550℃退火3分钟,以形成较好的欧姆接触。参阅图9所示。
S3:在ITO导电膜上方沉积50nm IGZO和100nm ITO,随后在ITO上方依次沉积厚约30nm的Ti/厚约150nm的Au键合金属。参阅图10所示。
S4:将激光器或超辐射发光二极管外延片倒装键合在Si支撑片上,激光器或超辐射发光二极管的键合金属Ti/Au朝下,与Si支撑片上的金属Ti/Au键合在一起,其中注意保持GaN的m面与Si片的100面对齐。
S5:随后可以采用减薄、研磨等方法并结合常温的H3PO4溶液湿法腐蚀Si衬底,然后采用诱导耦合等离子体(ICP)刻蚀部分n-GaN接触层,使其剩余约70nm,以制作n型欧姆接触电极。参阅图11所示。
S6:在
Figure PCTCN2017116518-appb-000014
氮面n-GaN欧姆接触层上依次沉积厚约30nm的Ti/厚约30nm的Pt/厚约50nm的Au,形成n型欧姆接触。
S7:在
Figure PCTCN2017116518-appb-000015
氮面n型欧姆接触电极上旋涂光刻胶,进行光刻,制作脊型的掩膜图形,随后采用70℃的H3PO4溶液进行湿法腐蚀,通过控制时间来控制腐蚀深度约为300nm,形成激光器或超辐射发光二极管的脊型。
S8:采用诱导耦合等离子体化学气相沉积设备沉积厚约150nm的SiO2,作为绝缘介质膜,保护激光器或超辐射发光二极管的侧壁和刻蚀后的台面。参阅图12所示。
S9:采用丙酮,将脊型上方的SiO2绝缘介质膜和光刻胶剥离,露出n型欧姆接触电极Ti/Pt/Au。
S10:旋涂光刻胶,进行光刻,然后采用80℃的KOH溶液进行湿法腐蚀,直到腐蚀完台面处的氮化物半导体,露出p型欧姆接触电极。
S11:旋涂光刻胶,进行光刻,然后通过磁控溅射沉积厚约100nm的Ti/厚约300nm的Au加厚电极,采用丙酮剥离,制作加厚电极。参阅图13所示。
S12:采用诱导耦合等离子体刻蚀技术形成GaN的腔面,并进行TMAH溶液湿法腐蚀去除损伤。
S13:将Si支撑片进行减薄,随后沿着GaN材料的a轴将激光器或超辐射发光二极管划成条,并进行镀膜,最后进行裂片,至此完成激光器或超辐射发光二极管管芯的制作。
实施例3本实施例的一种AlGaN基深紫外激光器或超辐射发光二极管的制作工艺包括:
S1:采用金属有机物化学气相沉积(MOCVD)设备在蓝宝石衬底上生长深紫外激光器或超辐射发光二极管结构,具体包括:厚约1000nm的n-Al0.45Ga0.5N接触层;100对n-Al0.65Ga0.35N/Al0.45Ga0.55N超晶格结构,其中每层厚度厚约2.3nm,作为n型光学限制层;厚约75nm的n-Al0.45Ga0.55N n侧波导层;3对Al0.35Ga0.65N/Al0.45Ga0.55N多量子阱,其中每层Al0.35Ga0.65N量子阱厚约3nm,每层Al0.45Ga0.55N垒厚约10nm;厚约60nm的非故意掺杂的Al0.45Ga0.55N p侧波导层;厚约20nm的p-Al0.65Ga0.35N电子阻挡层;厚约50nm的p-Al0.45Ga0.55N接触层。参阅图8所示。
S2:清洗激光器或超辐射发光二极管外延片,在p-Al0.45Ga0.55N接触层上沉积厚约120nm的IGZO透明导电膜,利用快速退火炉在压缩空气气氛中550℃退火4分钟,以形成较好的欧姆接触。参阅图9所示。
S3:在IGZO透明导电膜上方沉积100nm ITO和80nm IGZO,随后在IGZO上方依次沉积厚约30nm的Ni/厚约120nm的Au键合金属。参阅图10所示。
S4:将激光器或超辐射发光二极管外延片倒装键合在AlN陶瓷基板上,激光器或超辐射发光二极管的键合金属Ni/Au朝下,与AlN陶瓷基板上的金属Ti/Au键合在一起。
S5:随后采用激光剥离技术,将蓝宝石衬底剥离,然后采用诱导耦合等离子体(ICP)刻蚀部分n-Al0.45Ga0.55N接触层,使其剩余约30nm,以制作n型欧姆接触电极。参阅图11所示。
S6:在
Figure PCTCN2017116518-appb-000016
氮面n-AlGaN欧姆接触层上依次沉积厚约50nm的Ti/厚约100nm的Al/厚约50nm的Ti/厚约100nm的Au,形成n型欧姆接触。
S7:在
Figure PCTCN2017116518-appb-000017
氮面n型欧姆接触电极上旋涂光刻胶,进行光刻,制作脊型的掩膜图形,随后采用80℃的KOH溶液进行湿法腐蚀,通过控制时间来控制腐蚀深度约为400nm,制作激光器或超辐射发光二极管的脊型。
S8:采用电子束蒸发设备沉积厚约200nm的Al2O3,作为绝缘介质膜,保护激光器或超辐射发光二极管的侧壁和刻蚀后的台面。参阅图12所示。
S9:采用丙酮,将脊型上方的Al2O3绝缘介质膜和光刻胶剥离,露出n型欧姆接触电极。
S10:旋涂光刻胶,进行光刻,然后采用60℃的KOH溶液进行湿法腐蚀,直到腐蚀完台面处的氮化物半导体,露出p型欧姆接触电极。
S11:旋涂光刻胶,进行光刻,然后通过电子束蒸发沉积厚约100nm的Ti/厚约400nm的Au加厚电极,采用丙酮剥离,制作加厚电极。参阅图13所示。
S12:将AlN陶瓷基板进行减薄,随后沿着AlGaN材料的a轴将激光器或超辐射发光二极管解理成条,并进行镀膜,最后进行裂片,至此完成激光器或超辐射发光二极管管芯的制作。
实施例4本实施例的一种GaN基绿光激光器或超辐射发光二极管的制作工艺包括:
S1:采用金属有机物化学气相沉积(MOCVD)设备在SiC衬底上生长绿光激光器或超辐射发光二极管结构,具体包括:厚约500nm的n-GaN接触层;500nm的高Si掺的n-GaN层,作为n型光学限制层;厚约110nm的n-In0.05Ga0.95N n侧波导层;2对In0.3Ga0.7N/GaN多量子阱,其中每层In0.3Ga0.7N量子阱厚约2.5nm,每层GaN垒厚约12nm;厚约90nm的非故意掺杂的In0.05Ga0.95N p侧波导层;厚约15nm的p-Al0.2Ga0.8N电子阻挡层;厚约20nm的p-GaN接触层。参阅图8所示。S2:清洗激光器或超辐射发光二极管外延片,在p-GaN接触层上沉积厚约100nm的ITO透明导电膜,利用快速退火炉在压缩空气气氛中450℃退火6分钟,以形成较好的欧姆接触。参阅图9所示。
S3:在ITO导电膜上方顺序沉积3对80nm SiO2/58nm TiO2,随后在TiO2上方依次沉积厚约40nm的Ti/厚约130nm的Au键合金属。参阅图10所示。
S4:将激光器或超辐射发光二极管外延片倒装键合在钼支撑片上,激光器或超辐射发光二极管的键合金属Ti/Au朝下,与钼支撑片上的金属Ti/Au键合在一起。
S5:随后采用减薄、研磨等方法并结合KOH溶液湿法腐蚀去除SiC衬底,然后采用离子束刻蚀(IBE)刻蚀部分n-GaN接触层,使其剩余约20nm,以制作n型欧姆接触电极。参阅图11所示。
S6:进行电化学腐蚀,将高Si掺的n-GaN层腐蚀成多孔GaN结构。
S7:在
Figure PCTCN2017116518-appb-000018
氮面n-GaN欧姆接触层上依次沉积厚约80nm的Ti/厚约50nm的Pt/厚约100nm的Au,形成n型欧姆接触。
S8:在
Figure PCTCN2017116518-appb-000019
氮面n型欧姆接触电极上旋涂光刻胶,进行光刻,制作脊型的掩膜图形,随后采用40℃的TMAH溶液进行湿法腐蚀,通过控制时间来控制腐蚀深度约为400nm,形成激光器或超辐射发光二极管的脊型。
S9:采用原子层沉积设备沉积厚约150nm的AlN,作为绝缘介质膜,保护激光器或超辐射发光二极管的侧壁和刻蚀后的台面。参阅图12所示。
S10:采用丙酮,将脊型上方的AlN绝缘介质膜和光刻胶剥离,露出n型欧姆接触电极Ti/Pt/Au。
S11:旋涂光刻胶,进行光刻,然后采用60℃的KOH溶液进行湿法腐蚀,直到腐蚀完台面处的氮化物半导体,露出p型欧姆接触电极ITO。
S12:旋涂光刻胶,进行光刻,然后通过磁控溅射沉积厚约30nm的Ni/厚约400nm的Au加厚电极,采用丙酮剥离,制作加厚电极。参阅图13所示。
S13:采用诱导耦合等离子体刻蚀技术形成激光器或超辐射发光二极管的腔面,并采用TMAH溶液湿法腐蚀去除离子损伤。
S14:将钼支撑片进行减薄,随后沿着GaN材料的a轴将激光器或超辐射发光二极管划成条,并进行镀膜,最后进行裂片,至此完成激光器或超辐射发光二极管管芯的制作。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
应当理解,以上所述仅是本申请的具体实施方式,对于本技术领域的普通技术人员来说,在 不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (62)

  1. 一种氮化物半导体发光器件,其特征在于包括外延结构,所述外延结构具有第一面和与第一面相背对的第二面,所述第一面为
    Figure PCTCN2017116518-appb-100001
    氮面并位于所述外延结构的n型侧,所述第二面位于所述外延结构的p型侧,所述外延结构的n型侧与n型电极电性接触,p型侧与p型电极电性接触,并且所述第一面形成有脊型波导结构。
  2. 根据权利要求1所述的氮化物半导体发光器件,其特征在于:所述外延结构包括依次设置的n型接触层、n侧波导层、有源区、p侧波导层和p型接触层,所述n型电极与n型接触层电性接触,所述p型电极与p型接触层电性接触。
  3. 根据权利要求1或2所述的氮化物半导体发光器件,其特征在于:所述n型电极与n型接触层之间形成欧姆接触,所述p型电极与p型接触层之间形成欧姆接触。
  4. 根据权利要求1或2所述的氮化物半导体发光器件,其特征在于:所述p型电极与p型接触层整面接触。
  5. 根据权利要求2所述的氮化物半导体发光器件,其特征在于:所述n型接触层与n侧波导层之间还设置有n型光学限制层。
  6. 根据权利要求2所述的氮化物半导体发光器件,其特征在于:所述p侧波导层与p型接触层之间还设置有p型光学限制层。
  7. 根据权利要求2或6所述的氮化物半导体发光器件,其特征在于:所述p侧波导层与p型接触层之间还设有电子阻挡层。
  8. 根据权利要求7所述的氮化物半导体发光器件,其特征在于:所述电子阻挡层设置于p侧波导层和p型光学限制层之间。
  9. 根据权利要求1、2或5所述的氮化物半导体发光器件,其特征在于:所述n型接触层的厚度为5~3000nm。
  10. 根据权利要求1或2所述的氮化物半导体发光器件,其特征在于:所述外延结构的第一面上除脊型波导结构之外的至少部分区域上还覆设有绝缘膜。
  11. 根据权利要求10所述的氮化物半导体发光器件,其特征在于:所述绝缘膜的材质包括SiO2、SiNx、SiON、Al2O3、AlON、SiAlON、TiO2、Ta2O5、ZrO2和多晶硅中的任意一种或两种以上的组合。
  12. 根据权利要求1或2所述的氮化物半导体发光器件,其特征在于:所述外延结构的第一面还覆设有加厚电极,所述加厚电极与n型电极电性连接。
  13. 根据权利要求1所述的氮化物半导体发光器件,其特征在于:所述脊型波导结构的脊型宽度为0.5~100μm,脊型深度为0~2μm。
  14. 根据权利要求2所述的氮化物半导体发光器件,其特征在于:所述n型接触层、p型接触层、n型光学限制层、p型光学限制层、p侧波导层和n侧波导层的材质包括Alx1Iny1Ga(1-x1-y1)N,其中x1和y1均大于或等于0而小于或等于1,且0≤(x1+y1)≤1。
  15. 根据权利要求2或14所述的氮化物半导体发光器件,其特征在于:所述有源区的材质包括Alx2Iny2Ga(1-x2-y2)N或Alx3Iny3Ga(1-x3-y3)N,其中x2、y2、x3和y3均大于或等于0而小于或等于1,且0≤(x2+y2)≤1,0≤(x3+y3)≤1。
  16. 根据权利要求1、2或14所述的氮化物半导体发光器件,其特征在于:所述n型电极、p型电极的材质包括Ni、Ti、Pd、Pt、Au、Al、TiN、ITO和IGZO中的任意一种或两种以上的组合。
  17. 根据权利要求1所述的氮化物半导体发光器件,其特征在于:所述p型电极还与支撑片连接。
  18. 根据权利要求17所述的氮化物半导体发光器件,其特征在于:所述p型电极通过键合层与所述支撑片连接。
  19. 根据权利要求17或18所述的氮化物半导体发光器件,其特征在于:所述支撑片包括硅衬底、铜支撑片、钼铜支撑片、钼支撑片、陶瓷基板中的任意一种。
  20. 根据权利要求18所述的氮化物半导体发光器件,其特征在于:所述键合层包括金属键合层或非金属键合层。
  21. 根据权利要求20所述的氮化物半导体发光器件,其特征在于:所述金属键合层包括AuSn、NiSn、AuAu、NiGe中的任意一种或两种以上的组合。
  22. 根据权利要求20所述的氮化物半导体发光器件,其特征在于:所述非金属键合层包括NaCl、SiO2、CrO2、Al2O3、金刚石中的任意一种或两种以上的组合。
  23. 根据权利要求17或18所述的氮化物半导体发光器件,其特征在于:所述p型电极与支撑片之间设置有光场限制层。
  24. 根据权利要求23所述的氮化物半导体发光器件,其特征在于:所述光场限制层设于p型电极与键合层之间。
  25. 根据权利要求23所述的氮化物半导体发光器件,其特征在于:所述光场限制层包括至少一低折射率材料。
  26. 根据权利要求25所述的氮化物半导体发光器件,其特征在于:所述光场限制层的材质包括SiO2、SiNx、TiO2、ZrO2、AlN、Al2O3、Ta2O5、HfO2、HfSiO4、AlON、多孔GaN、TiN、ITO和IGZO中的任意一种或两种以上的组合。
  27. 根据权利要求1所述的氮化物半导体发光器件,其特征在于:所述氮化物半导体发光器件包括氮化物半导体激光器或超辐射发光二极管。
  28. 根据权利要求27所述的氮化物半导体发光器件,其特征在于:所述氮化物半导体发光器件包括III-V族氮化物半导体激光器或超辐射发光二极管。
  29. 一种氮化物半导体发光器件的制作方法,其特征在于包括:
    于衬底上生长形成氮化物半导体发光器件的外延结构,所述外延结构具有与衬底结合的第一面和与第一面相背对的第二面,所述第一面为
    Figure PCTCN2017116518-appb-100002
    氮面并位于所述外延结构的n型侧,所述第二面位于所述外延结构的p型侧;
    于所述外延结构的第二面设置p型电极,并使所述p型电极与所述外延结构的p型侧形成欧姆接触;
    去除所述衬底,再于所述外延结构的第一面设置n型电极,并使所述n型电极与所述外延结构的n型侧形成欧姆接触;
    对所述外延结构的第一面进行刻蚀或腐蚀,形成脊型波导结构。
  30. 根据权利要求29所述的制作方法,其特征在于,所述制作方法包括:于所述外延结构的第一面上设置刻蚀掩模,之后采用干法刻蚀或湿法腐蚀工艺对所述外延结构的第一面进行刻蚀或腐蚀,形成脊型波导结构。
  31. 根据权利要求30所述的制作方法,其特征在于,所述制作方法包括:采用湿法腐蚀工艺对所述外延结构的第一面进行腐蚀而形成脊型波导结构。
  32. 根据权利要求30所述的制作方法,其特征在于,所述制作方法包括:采用光刻工艺于所述外延结构的第一面上制作形成所述刻蚀掩模。
  33. 根据权利要求29、30或31所述的制作方法,其特征在于:所述脊型波导结构的脊型宽度为0.5~100μm,脊型深度为0~2μm。
  34. 根据权利要求29所述的制作方法,其特征在于,所述制作方法还包括:利用键合材料将p型电极与支撑片键合。
  35. 根据权利要求34所述的制作方法,其特征在于,所述支撑片包括硅衬底、铜支撑片、钼铜支撑片、钼支撑片、陶瓷基板中的任意一种。
  36. 根据权利要求34所述的制作方法,其特征在于,所述键合材料包括金属键合材料或非金属键合材料。
  37. 根据权利要求36所述的制作方法,其特征在于,所述金属键合材料包括AuSn、NiSn、AuAu、NiGe中的任意一种或两种以上的组合。
  38. 根据权利要求36所述的制作方法,其特征在于,所述非金属键合层包括NaCl、SiO2、CrO2、Al2O3、金刚石中的任意一种或两种以上的组合。
  39. 根据权利要求34所述的制作方法,其特征在于,所述制作方法还包括:在所述p型电极上形成光场限制层,之后利用键合材料将光场限制层与支撑片键合。
  40. 根据权利要求39所述的制作方法,其特征在于,所述光场限制层包括至少一低折射率材料。
  41. 根据权利要求40所述的制作方法,其特征在于,所述光场限制层的材质包括SiO2、SiNx、TiO2、ZrO2、AlN、Al2O3、Ta2O5、HfO2、HfSiO4、AlON、多孔GaN、TiN、ITO和IGZO中的任意一种或两种以上的组合。
  42. 根据权利要求29所述的制作方法,其特征在于,所述制作方法包括:在衬底上依次生长n型接触层、n型光学限制层、n侧波导层、有源区、p侧波导层、电子阻挡层和p型接触层,形成所述外延结构。
  43. 根据权利要求42所述的制作方法,其特征在于,所述制作方法还包括:于所述电子阻挡层上依次形成p型光学限制层和p型接触层。
  44. 根据权利要求29或42所述的制作方法,其特征在于,所述制作方法还包括:在p型接触层沉积作为p型电极的导电材料,并进行欧姆接触退火,使p型电极与p型接触层形成欧姆接触。
  45. 根据权利要求44所述的制作方法,其特征在于,所述p型电极与p型接触层整面接触;
  46. 根据权利要求29或42所述的制作方法,其特征在于,所述制作方法还包括:在去除所述衬底后,还对n型接触层进行减薄处理,之后在n型接触层上沉积作为n型电极的导电材料,并进行欧姆接触退火,使n型电极与n型接触层形成欧姆接触。
  47. 根据权利要求46所述的制作方法,其特征在于,所述n型接触层的厚度为5~3000nm。
  48. 根据权利要求29所述的制作方法,其特征在于,所述制作方法还包括:在完成n型电极的制作后,采用光刻工艺于所述外延结构的第一面上设置刻蚀掩模,之后采用湿法腐蚀工艺对所述外延结构的第一面进行腐蚀,形成脊型波导结构。
  49. 根据权利要求29或48所述的制作方法,其特征在于,所述制作方法还包括:在形成脊型波导结构之后,于所述外延结构的第一面上除脊型波导结构之外的至少部分区域上覆设绝缘膜,并使n型电极从绝缘膜中露出。
  50. 根据权利要求49所述的制作方法,其特征在于,所述绝缘膜的材质包括SiO2、SiNx、SiON、Al2O3、AlON、SiAlON、TiO2、Ta2O5、ZrO2和多晶硅中的任意一种或两种以上的组合;
  51. 根据权利要求29所述的制作方法,其特征在于,所述制作方法还包括:在n型电极上形成加厚电极。
  52. 根据权利要求29或51所述的制作方法,其特征在于,所述制作方法还包括:在使n型电极从绝缘膜中露出后,还以干法刻蚀或湿法腐蚀工艺对所述外延结构进行刻蚀或腐蚀,于所述脊型波导结构一侧形成台面结构,并使p型电极分布于台面结构底部,之后在p型电极和n型电极上制作加厚电极。
  53. 根据权利要求52所述的制作方法,其特征在于,所述制作方法还包括:在制作完加厚电极后,至少采用解理、干法刻蚀、湿法腐蚀中的任一种方法或两种以上方法的组合制备氮化物半导体发光器件的腔面。
  54. 根据权利要求53所述的制作方法,其特征在于,所述制作方法还包括:在制作完成氮化物半导体发光器件的腔面后,镀膜、裂片,形成氮化物半导体发光器件的管芯。
  55. 根据权利要求29所述的制作方法,其特征在于,所述制作方法还包括:将外延片分开成巴条结构,其中分成巴条的方法包括解理、刻蚀、划片以及抛光中的任意一种或两种以上的组合。
  56. 根据权利要求29所述的制作方法,其特征在于,所述衬底的材质包括GaN、AlN、蓝宝石、SiC、Si中的任意一种或两种以上的组合。
  57. 根据权利要求42所述的制作方法,其特征在于,所述n型接触层、p型接触层、n型光学限制层、p型光学限制层、p侧波导层和n侧波导层的材质包括Alx1Iny1Ga(1-x1-y1)N,其中x1和y1均大于或等于0而小于或等于1,0≤(x1+y1)≤1。
  58. 根据权利要求42所述的制作方法,其特征在于,所述有源区的材质包括Alx2Iny2Ga(1-x2-y2)N或Alx3Iny3Ga(1-x3-y3)N,其中x2、y2、x3和y3均大于或等于0而小于或等于1,且0≤(x2+y2)≤1,0≤(x3+y3)≤1。
  59. 根据权利要求29或42所述的制作方法,其特征在于,所述n型电极、p型电极的材质包括Ni、Ti、Pd、Pt、Au、Al、TiN、ITO和IGZO中的任意一种或两种以上的组合。
  60. 根据权利要求48所述的制作方法,其特征在于,所述湿法腐蚀工艺采用的腐蚀试剂包括碱性溶液或酸性溶液。
  61. 根据权利要求60所述的制作方法,其特征在于,所述碱性溶液包括氢氧化钾(KOH)、氢氧化钠(NaOH)、四甲基氢氧化铵(TMAH)中的任意一种或两种以上的组合。
  62. 根据权利要求60所述的制作方法,其特征在于,所述酸性溶液包括磷酸(H3PO4)、氢氟酸(HF)中的任意一种或两种的组合。
PCT/CN2017/116518 2017-01-12 2017-12-15 氮化物半导体发光器件及其制作方法 WO2018130046A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019538141A JP6829497B2 (ja) 2017-01-12 2017-12-15 窒化物半導体発光素子及びその製造方法
DE112017006795.2T DE112017006795B4 (de) 2017-01-12 2017-12-15 Nitridhalbleiter-Lichtemissionsvorrichtung und Herstellungsverfahren dafür
US16/477,128 US10840419B2 (en) 2017-01-12 2017-12-15 Nitride semiconductor light-emitting device and manufacture method therefore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710022586.5 2017-01-12
CN201710022586.5A CN108305918B (zh) 2017-01-12 2017-01-12 氮化物半导体发光器件及其制作方法

Publications (1)

Publication Number Publication Date
WO2018130046A1 true WO2018130046A1 (zh) 2018-07-19

Family

ID=62839767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116518 WO2018130046A1 (zh) 2017-01-12 2017-12-15 氮化物半导体发光器件及其制作方法

Country Status (5)

Country Link
US (1) US10840419B2 (zh)
JP (1) JP6829497B2 (zh)
CN (1) CN108305918B (zh)
DE (1) DE112017006795B4 (zh)
WO (1) WO2018130046A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768106B (zh) * 2018-07-26 2021-01-26 山东华光光电子股份有限公司 一种激光二极管制备方法
CN109378378B (zh) * 2018-10-23 2024-01-02 南昌大学 一种具有反射电极的垂直结构led芯片及其制备方法
DE102019106546A1 (de) * 2019-03-14 2020-09-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur herstellung von optoelektronischen halbleiterbauteilen und optoelektronisches halbleiterbauteil
CN111785818B (zh) * 2020-07-10 2022-11-01 中国科学院半导体研究所 基于多孔下包层的GaN基波导器件及其制备方法和应用
CN112467518A (zh) * 2020-11-27 2021-03-09 因林光电科技(苏州)有限公司 一种半导体激光器及其制备方法
CN113839304A (zh) * 2021-07-30 2021-12-24 湖北光安伦芯片有限公司 非氧化工艺微米柱阵列大功率vcsel结构及其制备方法
CN113823716B (zh) * 2021-09-17 2023-09-15 厦门士兰明镓化合物半导体有限公司 Led外延结构及其制备方法
CN115763247B (zh) * 2023-02-13 2023-06-06 江苏能华微电子科技发展有限公司 一种准垂直结构GaN肖特基势垒二极管及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132111A (zh) * 2006-08-23 2008-02-27 中国科学院半导体研究所 氮化镓基蓝光激光器的制作方法
CN101202421A (zh) * 2006-11-30 2008-06-18 三洋电机株式会社 氮化物类半导体元件及其制造方法
US20080298411A1 (en) * 2007-05-28 2008-12-04 Sanyo Electric Co., Ltd. Nitride-based semiconductor laser device and method of manufacturing the same
CN101369528A (zh) * 2007-08-06 2009-02-18 三洋电机株式会社 半导体元件的制造方法和半导体元件
US20090052489A1 (en) * 2007-05-30 2009-02-26 Sanyo Electric Co., Ltd. Nitride-based semiconductor laser device and method of manufacturing the same
CN101567417A (zh) * 2008-04-25 2009-10-28 三洋电机株式会社 氮化物类半导体元件和其制造方法
CN102569550A (zh) * 2010-12-07 2012-07-11 罗姆股份有限公司 半导体激光元件

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075008A (ja) * 1996-08-30 1998-03-17 Nichia Chem Ind Ltd 窒化物半導体レーザ素子
JP4260276B2 (ja) * 1998-03-27 2009-04-30 シャープ株式会社 半導体素子及びその製造方法
US6853663B2 (en) * 2000-06-02 2005-02-08 Agilent Technologies, Inc. Efficiency GaN-based light emitting devices
JP4325232B2 (ja) * 2003-03-18 2009-09-02 日亜化学工業株式会社 窒化物半導体素子
JP4830315B2 (ja) * 2004-03-05 2011-12-07 日亜化学工業株式会社 半導体レーザ素子
KR20060131327A (ko) 2005-06-16 2006-12-20 엘지전자 주식회사 발광 다이오드의 제조 방법
JP5285835B2 (ja) 2005-07-13 2013-09-11 株式会社東芝 半導体素子およびその製造方法
JP2007103460A (ja) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd 半導体レーザ素子およびその製造方法
WO2008060531A2 (en) * 2006-11-15 2008-05-22 The Regents Of The University Of California Light emitting diode and laser diode using n-face gan, inn, and ain and their alloys
US20080111144A1 (en) 2006-11-15 2008-05-15 The Regents Of The University Of California LIGHT EMITTING DIODE AND LASER DIODE USING N-FACE GaN, InN, AND AlN AND THEIR ALLOYS
US8021904B2 (en) * 2007-02-01 2011-09-20 Cree, Inc. Ohmic contacts to nitrogen polarity GaN
JP2009123909A (ja) * 2007-11-14 2009-06-04 Mitsubishi Chemicals Corp 発光装置、発光装置の製造方法、サブマウントおよびサブマウントの製造方法
JP5603546B2 (ja) * 2008-10-22 2014-10-08 パナソニック株式会社 半導体発光素子および発光装置
JP2010251712A (ja) 2009-03-26 2010-11-04 Sony Corp バイ・セクション型半導体レーザ素子及びその製造方法、並びに、バイ・セクション型半導体レーザ素子の駆動方法
JP4866935B2 (ja) 2009-04-28 2012-02-01 株式会社沖データ 立方晶炭化ケイ素単結晶薄膜の製造方法及び半導体装置
JP2010272593A (ja) * 2009-05-19 2010-12-02 Hamamatsu Photonics Kk 窒化物半導体発光素子及びその製造方法
US8207547B2 (en) * 2009-06-10 2012-06-26 Brudgelux, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
JP2012028547A (ja) 2010-07-23 2012-02-09 Toshiba Corp 半導体素子およびその製造方法
JP2012124273A (ja) * 2010-12-07 2012-06-28 Rohm Co Ltd 半導体レーザ素子
KR20140007348A (ko) * 2010-12-28 2014-01-17 도와 일렉트로닉스 가부시키가이샤 반도체 장치 및 그 제조 방법
KR101804408B1 (ko) 2011-09-05 2017-12-04 엘지이노텍 주식회사 발광소자
CN103001119B (zh) 2011-09-16 2015-06-24 山东浪潮华光光电子有限公司 一种基于SiC衬底的倒装激光器芯片及其制作方法
US8686398B2 (en) * 2012-03-02 2014-04-01 Kabushiki Kaisha Toshiba Semiconductor light emitting device
KR20140039771A (ko) * 2012-09-25 2014-04-02 삼성전자주식회사 질화물계 발광소자 및 그 제조 방법
CN103701037B (zh) 2013-11-27 2016-03-23 中国科学院半导体研究所 氮化镓激光器腔面的制作方法
WO2016139708A1 (ja) * 2015-03-03 2016-09-09 ソニー株式会社 半導体発光素子および表示装置
TWI607612B (zh) * 2016-11-17 2017-12-01 錼創科技股份有限公司 半導體雷射元件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132111A (zh) * 2006-08-23 2008-02-27 中国科学院半导体研究所 氮化镓基蓝光激光器的制作方法
CN101202421A (zh) * 2006-11-30 2008-06-18 三洋电机株式会社 氮化物类半导体元件及其制造方法
US20080298411A1 (en) * 2007-05-28 2008-12-04 Sanyo Electric Co., Ltd. Nitride-based semiconductor laser device and method of manufacturing the same
US20090052489A1 (en) * 2007-05-30 2009-02-26 Sanyo Electric Co., Ltd. Nitride-based semiconductor laser device and method of manufacturing the same
CN101369528A (zh) * 2007-08-06 2009-02-18 三洋电机株式会社 半导体元件的制造方法和半导体元件
CN101567417A (zh) * 2008-04-25 2009-10-28 三洋电机株式会社 氮化物类半导体元件和其制造方法
CN102569550A (zh) * 2010-12-07 2012-07-11 罗姆股份有限公司 半导体激光元件

Also Published As

Publication number Publication date
US10840419B2 (en) 2020-11-17
JP6829497B2 (ja) 2021-02-10
CN108305918A (zh) 2018-07-20
US20190363228A1 (en) 2019-11-28
DE112017006795T5 (de) 2019-10-02
DE112017006795B4 (de) 2022-02-03
CN108305918B (zh) 2019-07-16
JP2020505762A (ja) 2020-02-20

Similar Documents

Publication Publication Date Title
WO2018130046A1 (zh) 氮化物半导体发光器件及其制作方法
US11348908B2 (en) Contact architectures for tunnel junction devices
US9082934B2 (en) Semiconductor optoelectronic structure with increased light extraction efficiency
JP4860024B2 (ja) InXAlYGaZN発光素子及びその製造方法
US7439091B2 (en) Light-emitting diode and method for manufacturing the same
US11876349B2 (en) Semiconductor device, semiconductor laser, and method of producing a semiconductor device
KR100926319B1 (ko) 광추출 효율이 개선된 발광다이오드 소자 및 이의 제조방법
KR20120092326A (ko) 광 결정 구조를 갖는 비극성 발광 다이오드 및 그것을 제조하는 방법
JP2011124442A (ja) 半導体レーザ装置及びその製造方法
CN107112722A (zh) 光学半导体装置
KR101262226B1 (ko) 반도체 발광 소자의 제조방법
CN107645122A (zh) 脊形半导体激光器及其制作方法
JPH07176826A (ja) 窒化ガリウム系化合物半導体レーザ素子
JP2005191099A (ja) 発光ダイオード装置
CN113471814A (zh) 氮化物半导体垂直腔面发射激光器、其制作方法与应用
JPH08255952A (ja) 半導体発光素子の製法
CN108718030B (zh) 一种低电阻、低热阻的氮化物半导体微腔激光器结构及其制备方法
JP2005505133A (ja) 窒化物−化合物半導体をベースとする半導体デバイスの製造方法
CN113410759A (zh) 一种半导体激光器集成芯片及其制备方法
KR20150089548A (ko) 다공성 GaN층을 포함하는 수직형 발광다이오드 및 이의 제조방법
KR100768402B1 (ko) 반도체 레이저 다이오드의 제조방법
JP2001274095A (ja) 窒化物系半導体素子およびその製造方法
CN116435428A (zh) Iii族氮化物半导体光电器件结构及其制备方法
CN109378708B (zh) 蓝光边发射激光器及其制备方法
KR20060025211A (ko) 사파이어 기판 식각 방법을 이용한 수직형 전극 구조를가지는 레이저 다이오드 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538141

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17891612

Country of ref document: EP

Kind code of ref document: A1