WO2018129843A1 - 一种低实现复杂度的artm cpm解调及同步方法 - Google Patents

一种低实现复杂度的artm cpm解调及同步方法 Download PDF

Info

Publication number
WO2018129843A1
WO2018129843A1 PCT/CN2017/084038 CN2017084038W WO2018129843A1 WO 2018129843 A1 WO2018129843 A1 WO 2018129843A1 CN 2017084038 W CN2017084038 W CN 2017084038W WO 2018129843 A1 WO2018129843 A1 WO 2018129843A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
demodulation
symbol period
branch
phase
Prior art date
Application number
PCT/CN2017/084038
Other languages
English (en)
French (fr)
Inventor
常洪雨
丁兴文
谌明
Original Assignee
北京遥测技术研究所
航天长征火箭技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京遥测技术研究所, 航天长征火箭技术有限公司 filed Critical 北京遥测技术研究所
Priority to EP17891620.1A priority Critical patent/EP3570510B1/en
Publication of WO2018129843A1 publication Critical patent/WO2018129843A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • H04L27/2271Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses only the demodulated signals
    • H04L27/2272Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses only the demodulated signals using phase locked loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3818Demodulator circuits; Receiver circuits using coherent demodulation, i.e. using one or more nominally phase synchronous carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • H04L2027/0028Correction of carrier offset at passband only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0053Closed loops
    • H04L2027/0055Closed loops single phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0063Elements of loops
    • H04L2027/0067Phase error detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0083Signalling arrangements
    • H04L2027/0085Signalling arrangements with no special signals for synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2003Modulator circuits; Transmitter circuits for continuous phase modulation
    • H04L27/2007Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained
    • H04L27/201Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained in which the allowed phase changes vary with time, e.g. multi-h modulation

Definitions

  • the invention relates to a low implementation complexity ARTM CPM demodulation and synchronization method, and belongs to the technical field of digital signal processing.
  • ARTM CPM is a quaternary communication, which uses a dual modulation index and is cyclically used in accordance with the symbol rate.
  • a raised cosine pulse with a pulse length of 3 times the symbol period is used as a frequency pulse and is a partial response system.
  • ARTM CPM The specific modulation parameters of ARTM CPM are as follows:
  • the modulation index is ⁇ 4/16, 5/16 ⁇ , which varies cyclically at the symbol rate
  • the symbolic hexadecimal number is 4, and the corresponding four symbols are respectively -3, -1, 1, 3;
  • the frequency pulse is a raised cosine pulse with an associated length of three.
  • the raised cosine pulse function g (t) expression is as follows:
  • the ARTM CPM modulation system is significantly superior to the current PCM-FM telemetry system in terms of frequency band utilization, and its bandwidth efficiency is about three times that of the PCM-FM system. Therefore, the system has broad application prospects in the future launch vehicle and missile range telemetry systems.
  • the advantage of the ARTM CPM system in terms of band utilization is at the expense of high demodulation complexity and synchronization difficulties.
  • Optimal error can be obtained by using an optimal demodulator based on the maximum likelihood sequence detection algorithm. performance.
  • This demodulator is based on a state grid diagram and is implemented with a Viterbi decoder.
  • the implementation complexity is mainly determined by the number of matched filters and the number of decoder states.
  • the ARTM CPM optimal demodulator requires 64 complex matching filters. And 512 states, which are difficult to implement for current hardware levels.
  • the performance of the synchronization algorithm determines the communication quality of the ARTM CPM system to a large extent.
  • ARTM CPM demodulation was conducted on the assumption that synchronization was established, that is, the carrier phase and symbol timing were accurately known, and the channel was additive white Gaussian noise.
  • ARTM CPM coherent demodulation requires high carrier synchronization, and even non-coherent demodulation requires accurate symbol timing.
  • the literature "Multi-exponential continuous phase modulation timing phase joint estimation” uses the maximum likelihood algorithm to perform joint timing phase estimation in the Walsh signal space, and its estimated timing deviation is small, which is only suitable for synchronization tracking phase synchronization. .
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a low implementation complexity ARTM CPM demodulation and synchronization method, which requires only 16 complex matched filters and the number of states corresponding to each symbol period.
  • ARTM CPM demodulation and synchronization method which requires only 16 complex matched filters and the number of states corresponding to each symbol period.
  • the demodulation complexity can be greatly reduced and the demodulation performance loss can be minimized.
  • a low implementation complexity ARTM CPM demodulation and synchronization method comprising the following steps:
  • each matched filter bank includes P sub-matching filters
  • the matched filtering result vector including P matching filtering results is output, that is, the E-branch matching filtering result vector U(m) and the I-branch matching filtering result are obtained.
  • timing error e ⁇ (m) and carrier phase error Performing loop filtering, and adjusting the code NCO and the carrier NCO by using the filtering result respectively;
  • step (2) the filter coefficients of each of the two matched filter banks are calculated as follows:
  • ⁇ p,1 (n) is the filter coefficient of the p-th sub-matching filter in the first matched filter bank
  • ⁇ p,2 (n) is the p-th sub-match in the second matched filter bank
  • q (t) is the set phase pulse function
  • T is the set symbol period
  • ⁇ k 2(k -1)-(M-1)
  • ⁇ l 2(l-1)-(M-1)
  • k 1, 2, ..., M
  • l 1, 2, ..., M
  • h 1 and h 2 is the set first modulation index and the
  • step (2) the sub-matching filter performs matched filtering processing on the baseband signal, and the corresponding filtering calculation formula is as follows:
  • u(m) is the matched filtering result obtained by the matched filtering process of the baseband signal by the sub-matching filter
  • f(n) is the baseband signal to be filtered
  • ⁇ (n) is the filter coefficient of the sub-matching filter
  • phase compensation processing is as follows:
  • v(m) is the phase compensation output result
  • u(m) is the one-way matched filtering result to be subjected to phase compensation processing
  • ⁇ (m) is the oblique phase difference corresponding to the mth symbol period
  • ⁇ (m) is The modulation index corresponding to the symbol period is recursively updated.
  • h'm -1 is the m-1th symbol
  • step (4) The above-mentioned low implementation complexity ARTM CPM demodulation and synchronization method, in step (4), The I branch phase compensation output vector V'(m) is subjected to Viterbi demodulation processing, and the specific demodulation processing is as follows:
  • step (4b) calculating the branch metrics calculated according to step (4a), and calculating M path metrics for each state of the mth symbol period;
  • step (4a) the branch metric calculation formula is as follows:
  • h' m is the modulation index corresponding to the mth symbol period;
  • h 1 and h 2 are respectively set first modulation indices Second modulation index;
  • the path metric is calculated as follows:
  • the correspondence of ' is as follows:
  • h' m is the modulation index corresponding to the mth symbol period;
  • h 1 and h 2 are respectively set first modulation indices Second modulation index;
  • step (4c) the specific determination methods of the surviving path and the surviving path metric are as follows:
  • the maximum value is selected among the M path metrics corresponding to the state as the surviving path metric of the state S w ',k ' which is:
  • the i-th path metric corresponding to the state S w ',k' of the mth symbol period, i 1, 2, . . . , M, and the surviving path metric
  • the m-th symbol period surviving state is determined as follows: all states corresponding to the m-th symbol period In the middle, the state corresponding to the maximum value of the survivor path metric is selected as the surviving state of the mth symbol period.
  • step (4d) determine the demodulation traceback length D 1 and synchronous demodulation Backtracking length D 2 ; where D 1 and D 2 are proportional to the data decision accuracy and demodulation delay.
  • timing error e ⁇ (m) and carrier phase error The formula is as follows:
  • step (6) the timing error e ⁇ (m) is code-loop filtered, and the obtained phase adjustment amount is output to the code NCO, and the code NCO is based on The phase adjustment amount adjusts the phase of the symbol sync pulse signal.
  • step (6) the carrier phase error
  • the carrier loop filtering is performed, and the phase adjustment amount is output to the carrier NCO after filtering, and the carrier NCO adjusts the carrier local oscillator frequency output by the carrier NCO according to the phase adjustment amount.
  • the invention has the following advantages:
  • the three branches of the present invention share a matched filter bank, and the matched filter bank has only 16 complex matched filters, and the number of states per symbol period in the present invention is 64, which is the most conventional
  • the optimal demodulator has 64 complex matched filters and 512 states, and the method of the invention can greatly reduce the demodulation complexity and can ensure the minimum loss of demodulation performance;
  • the invention adopts three branch signals for joint timing and synchronization calculation, which can improve timing precision and effectively improve system stability.
  • FIG. 1 is a block diagram of an implementation of a low implementation complexity ARTM CPM demodulation and synchronization method according to the present invention
  • FIG. 2 is a flow chart showing the Viterbi demodulation process in the present invention.
  • ARTM CPM is a timing synchronization tracking curve of ARTM CPM in an embodiment of the present invention.
  • the specific implementation steps of the low implementation complexity ARTM CPM demodulation and synchronization method of the present invention are as follows:
  • the received signal r(n) is delayed by T s and 2T s respectively to obtain a first-order delayed signal r'(n) and a second-order delayed signal r''(n), and then in E, I, and L.
  • R(n), r'(n), r"(n) are processed correspondingly in each branch.
  • n is a discrete time variable and r(n) is a sampled quantized digital signal with a sampling period of T s .
  • the carrier local oscillator frequency in the above three branch mixing processing is controlled by the carrier NCO.
  • the specific mixing filtering process is as follows: First, the corresponding local carrier signal is generated according to the carrier local oscillator frequency provided by the carrier NCO, and then the local carrier is used. The signal is multiplied by r(n), r'(n), r"(n), respectively, and the mixed signal is output. Then, the mixed signal of each branch is filtered by a low-pass filter to obtain f. (n), f'(n), f"(n). Among them, the low-pass filter settings in each branch are the same.
  • the carrier NCO has an initial carrier local oscillator frequency value, and then the carrier NCO is adjusted according to the subsequent carrier phase synchronization processing result, thereby implementing carrier phase synchronization.
  • the present invention alternately uses two matched filter banks to perform matched filtering processing on the E-branch baseband signal f(n), the I-branch baseband signal f'(n), and the L-branch baseband signal f"(n), respectively.
  • Each matched filter bank includes P sub-matching filters, and the P sub-matching filters perform matched filtering processing on the baseband signals of each branch, and output a matched filtering result vector containing P matched filtering results.
  • the calculation formulas of the filter coefficients of each sub-matching filter in the two matched filter banks are as follows:
  • ⁇ p,1 (n) is the filter coefficient of the p-th sub-matching filter in the first matched filter bank
  • ⁇ p, 2 (n) is the filter coefficient of the p-th sub-matching filter in the second matched filter bank
  • q(t) is the set phase pulse function
  • g(t) is a pulse shaping function
  • L is the associated length.
  • the value of the variable m is counted according to the symbol period of the time.
  • the P sub-matching filters of one of the filter banks are selected to match the baseband signals of each branch. Filter processing, output P matching filter results.
  • each sub-matching filter performs matching filtering processing on the baseband signal, and the corresponding filtering calculation formula is as follows:
  • u(m) is the matched filtering result obtained by the matched filtering process of the baseband signal by the sub-matching filter
  • f(n) is the baseband signal to be filtered
  • ⁇ (n) is the filter coefficient of the sub-matching filter
  • phase compensation processing results of the matched filtering results of the three branches are performed by using the following phase compensation processing formula:
  • v(m) is the phase compensation output result
  • u(m) is the one-way matched filtering result to be subjected to phase compensation processing
  • ⁇ (m) is the oblique phase difference corresponding to the mth symbol period
  • ⁇ (m) is Symbol period pair
  • ⁇ (m-1) is the tilt phase difference corresponding to the m-1th symbol period, and the initial tilt phase difference is 0;
  • v p (m) u p (m)e -j ⁇ (m) ;
  • the I-branch phase compensation output vector V'(m) is subjected to Viterbi demodulation processing to obtain demodulated data and a synchronous demodulation state.
  • the steps of the Viterbi demodulation of the present invention include branch metric calculation, path metric update, determining a survivor path, and obtaining a demodulation result.
  • the specific steps are as follows:
  • the branch metric calculation is performed according to the I branch phase compensation output vector V'(m), that is, in the mth symbol period, for the W ⁇ M states, the branches of the M branches entering each state are calculated.
  • the metric, the specific branch metric is calculated as follows:
  • M;w i k i and w′ is as follows:
  • h' m is the modulation index corresponding to the mth symbol period
  • the M path metrics for calculating each state of the mth symbol period are updated, and the calculation formula of the path metric is as follows:
  • the survivor path for each state of the mth symbol period is determined, as well as the survivor path metric, and the survivor path for each state and the survivor path metric are retained.
  • the specific methods for determining the survivor path and the survivor path metric are as follows:
  • the maximum value is selected among the M path metrics corresponding to the state as the surviving path metric of the state S w ',k ' which is:
  • the i-th path metric corresponding to the state S w ',k' of the mth symbol period, i 1, 2, . . . , M, and the surviving path metric
  • steps (4.1), (4.2), and (4.3) are repeatedly executed every one symbol period until m ⁇ D 1 or m ⁇ D 2 , and demodulation backtracking and synchronous demodulation backtracking operations are required.
  • D 1 is the set demodulation traceback length
  • D 2 is the set synchronous demodulation traceback length
  • D 2 ⁇ D 1 is generally set.
  • the synchronous demodulation backtracking is performed.
  • the specific backtracking process is as follows: the surviving state of the mth symbol period is the backtracking starting point, and the surviving path corresponding to the state of each symbol period reserved in step (4.3) is sequentially forwarded. Backtrack D 2 symbols, back to the state of the mD 2 symbol periods The state As a synchronous demodulation state; finally, timing and phase synchronization errors are calculated based on the synchronous demodulation state and the surviving path of the state.
  • demodulation backtracking is also needed.
  • the demodulation backtracking length D 1 and the synchronous demodulation backtracking length D 2 are determined ; wherein, D 1 and D 2 and the data decision are accurate
  • the rate is proportional to the demodulation delay, that is, the smaller the backtracking length, the lower the data decision accuracy, and the larger the backtracking length, the higher the data decision accuracy, but the demodulation delay is larger;
  • the timing error e ⁇ is calculated using the synchronous demodulation states obtained by V(m), V'(m), V"(m), Viterbi demodulation, and the surviving path of the synchronous demodulation state. (m) and carrier phase error
  • the specific calculation formula is as follows:
  • the timing error e ⁇ (m) and the carrier phase error are respectively Loop filtering is performed, and the code NCO and the carrier NCO are adjusted by using the filtering result.
  • the timing error e ⁇ (m) is code-loop filtered, and the obtained phase adjustment amount is output to the code NCO, and the code NCO adjusts the phase of the symbol synchronization pulse signal according to the phase adjustment amount, under the control of the symbol synchronization pulse signal, The matching filter processing of the next symbol period is performed, and after multiple loop processing, symbol timing synchronization is implemented.
  • Carrier phase error Carrier loop filtering is performed, and the phase adjustment amount is output to the carrier NCO after filtering, and the carrier NCO adjusts the phase of the carrier signal according to the phase adjustment amount, and the adjusted carrier signal is mixed with the next sampled value of the received signal, and is processed in multiple cycles. After that, carrier phase synchronization is achieved.
  • the demodulation error performance curve obtained by the low-complexity ARTM CPM demodulation and synchronization method of the present invention is shown in Fig. 3, and the timing synchronization tracking curve is shown in Fig. 4.
  • the normalized timing synchronization error shown in the ordinate of FIG. 4 is normalized by the coded NCO at the specified time synchronization error.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

一种低实现复杂度的ARTM CPM解调及同步方法,该方法首先对接收信号进行两级延迟,得到三个支路信号;然后分别对这三个支路信号进行混频、低通滤波、匹配滤波和相位补偿处理,再对I支路信号进行维特比解调处理,然后利用解调处理结果计算定时误差和载波相位误差,最后利用定时误差和载波相位误差的滤波结果对码NCO和载波NCO进行调整,实现符号定时同步和载波相位同步。本发明方法相比现有的最优解调器,误码性能损失较小,且解调所需的匹配滤波器个数和状态数大幅减少,可以大大降低解调复杂度,并能够有效提升系统稳定性。

Description

一种低实现复杂度的ARTM CPM解调及同步方法
本申请要求于2017年1月13日提交中国专利局、申请号为201710024925.3、发明名称为“一种低实现复杂度的ARTM CPM解调及同步方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种低实现复杂度的ARTM CPM解调及同步方法,属于数字信号处理技术领域。
背景技术
2004年,美国军方ARTM将Multi-h CPM调制体制写入到IRIG-106遥测标准中并将其命名为ARTM CPM。IRIG-106遥测标准中规定了ARTM CPM是四元通信,采用双调制指数,按照符号速率依次循环变换使用。采用脉冲长度为3倍符号周期的升余弦脉冲作为频率脉冲,是部分响应系统。
ARTM CPM的具体调制参数如下:
调制指数为{4/16,5/16},按符号速率循环变化;
符号进制数为4,对应的4种符号取值分别为-3、-1、1、3;
频率脉冲为升余弦脉冲,关联长度为3。升余弦脉冲函数g(t)表达式如下:
Figure PCTCN2017084038-appb-000001
通过选取上述调制参数,ARTM CPM调制体制在频带利用率方面明显优于目前通用的PCM-FM遥测体制,其带宽效率约为PCM-FM体制的3倍。因此,该体制在未来运载火箭、导弹靶场遥测系统中具有广阔的应用前景。
ARTM CPM体制在频带利用率方面的优势是以解调复杂度高、同步困难为代价的。采用基于最大似然序列检测算法的最优解调器,可以获得最优的误码 性能。这种解调器基于状态网格图,并用维特比译码器实现,实现复杂度主要由匹配滤波器个数和译码器状态数决定,ARTM CPM最优解调器需要64个复数匹配滤波器和512个状态,针对当前的硬件水平,难以实现。
同步算法性能的优劣在很大程度上决定了ARTM CPM系统的通信质量。早期对ARTM CPM解调的研究都是在假定同步已经建立,即精确地知道载波相位和符号定时,信道为加性高斯白噪声的前提下进行的。在实际应用中,ARTM CPM相干解调对载波同步的要求较高,即使采用非相干解调也需要进行精确的符号定时。针对ARTM CPM同步,文献《多指数连续相位调制定时相位联合估计》采用最大似然算法在沃尔什信号空间进行联合定时相位估计,其可估计的定时偏差较小,只适用于同步跟踪阶段同步。
发明内容
本发明的目的在于克服现有技术的不足,提供了一种低实现复杂度的ARTM CPM解调及同步方法,该解调方法仅需要16个复数匹配滤波器且每个符号周期对应的状态数为64,相对于最优解调器64个复数匹配滤波器和512个状态,可以大大降低解调复杂度,且能确保解调性能损失最小。
本发明的上述目的通过以下方案实现:
一种低实现复杂度的ARTM CPM解调及同步方法,包括以下步骤:
(1)、对接收信号r(n)分别延迟Ts后、2Ts后得到一级延迟信号r′(n)和二级延迟信号r″(n);然后分别对r(n)、r′(n)、r″(n)进行混频和低通滤波,得到E支路基带信号f(n)、I支路基带信号f′(n)、L支路基带信号f″(n);其中,Ts为设定的采样周期,混频处理中的载波本振频率由载波NCO控制;
(2)、交替使用两个匹配滤波器组对f(n)、f′(n)、f″(n)分别进行匹配滤波,其中:每个匹配滤波器组包括P个子匹配滤波器,所述P个子匹配滤波器对每路基带信号进行匹配滤波处理后,输出包含P个匹配滤波结果的匹配滤波结果矢量,即得到E支路匹配滤波结果矢量U(m)、I支路匹配滤波结果矢量U′(m)、L支路匹配滤波结果矢量U″(m);m为符号周期计数变量,根据码NCO 输出的符号同步脉冲信号进行加1操作,且m的初值为0;P=M2,M为设定的符号进制数;
(3)、对U(m)、U′(m)、U″(m)分别进行相位补偿处理,得到E支路相位补偿输出矢量V(m)、I支路相位补偿输出矢量V′(m)、L支路相位补偿输出矢量V″(m);
(4)、对I支路相位补偿输出矢量V′(m)进行维特比解调处理,得到解调数据和同步解调状态;
(5)、利用V(m)、V′(m)、V″(m)和同步解调状态,计算定时误差eτ(m)和载波相位误差
Figure PCTCN2017084038-appb-000002
(6)、分别对定时误差eτ(m)和载波相位误差
Figure PCTCN2017084038-appb-000003
进行环路滤波,并利用所述滤波结果分别对码NCO和载波NCO进行调整;
(7)、重复步骤(1)~(6),实现信号的解调及同步处理。
上述的低实现复杂度的ARTM CPM解调及同步方法,在步骤(2)中,两个匹配滤波器组中各子匹配滤波器的滤波系数计算公式如下:
Figure PCTCN2017084038-appb-000004
Figure PCTCN2017084038-appb-000005
其中:ξp,1(n)为第一个匹配滤波器组中的第p个子匹配滤波器的滤波系数,ξp,2(n)为第二个匹配滤波器组中的第p个子匹配滤波器的滤波系数,p=(k-1)×M+l;q(t)为设定的相位脉冲函数,q(nTs-mT)为t=nTs-mT时q(t)的采样值,q(nTs-(m-1)T)为t=nTs-(m-1)T时q(t)的采样值,T为设定的符号周期;γk=2(k-1)-(M-1),γl=2(l-1)-(M-1),k=1、2、…、M,l=1、2、…、M;h1和h2分别为设定的第一调制指数、第二调制指数,floor代表向下取整函数。
上述的低实现复杂度的ARTM CPM解调及同步方法,在步骤(2)中,两个匹配滤波器组进行交替使用,具体交替方法如下:当mod(m,2)=0时,三个支路采用第一个匹配滤波器组进行匹配滤波;当mod(m,2)=1时,三个支路采用第二个匹配滤波器组进行匹配滤波。
上述的低实现复杂度的ARTM CPM解调及同步方法,在步骤(2)中,子匹配滤波器对基带信号进行匹配滤波处理,对应的滤波计算公式如下:
Figure PCTCN2017084038-appb-000006
其中:u(m)为基带信号经子匹配滤波器进行匹配滤波处理后得到的匹配滤波结果;f(n)为待滤波的基带信号,ξ(n)为子匹配滤波器的滤波系数;T为设定的符号周期,floor代表向下取整函数。
上述的低实现复杂度的ARTM CPM解调及同步方法,在步骤(3)中,相位补偿处理的公式如下:
v(m)=u(m)e-jδ(m)
其中:v(m)为相位补偿输出结果;u(m)为待进行相位补偿处理的一路匹配滤波结果;δ(m)为第m个符号周期对应的倾斜相位差,且δ(m)根据符号周期对应的调制指数进行递推更新。
上述的低实现复杂度的ARTM CPM解调及同步方法,在相位补偿处理中,倾斜相位差δ(m)的递推更新公式如下:
δ(m)=δ(m-1)+3πh′m-1
其中:δ(m-1)为第m-1个符号周期对应的倾斜相位差,且所述倾斜相位差的初始值δ(0)=0;h′m-1为第m-1个符号周期对应的调制指数:当mod(m-1,2)=0时,h′m-1=h1;当mod(m-1,2)=1时,h′m-1=h2;h1和h2分别为设定的第一调制指数、第二调制指数。
上述的低实现复杂度的ARTM CPM解调及同步方法,在步骤(4)中,对 I支路相位补偿输出矢量V′(m)进行维特比解调处理,具体解调处理过程如下:
(4a)、根据V′(m)计算分支度量,即:在第m个符号周期,计算进入每个状态的M个分支的分支度量;
(4b)、根据步骤(4a)计算得到的分支度量,计算第m个符号周期每个状态的M个路径度量;
(4c)、确定第m个符号周期每个状态的幸存路径,以及幸存路径度量,并保留每个状态的幸存路径以及幸存路径度量;
(4d)、当m≥D1或m≥D2时,确定第m个符号周期的幸存状态,并以所述幸存状态为回溯起点,按照步骤(4c)保留的幸存路径进行状态回溯,其中:在m≥D1时,向前回溯D1个符号,得到解调数据;在m≥D2时,向前回溯D2个符号,得到同步解调状态;D1为设定的解调回溯长度,D2为设定的同步解调回溯长度。
上述的低实现复杂度的ARTM CPM解调及同步方法,在步骤(4a)中,分支度量计算的公式如下:
Figure PCTCN2017084038-appb-000007
其中:
Figure PCTCN2017084038-appb-000008
为进入第m个符号周期状态Sw′,k′的第i个分支的分支度量,且所述第i个分支对应于第m-1个符号周期状态
Figure PCTCN2017084038-appb-000009
即第m-1个符号周期状态
Figure PCTCN2017084038-appb-000010
经由所述第i个分支进入第m个符号周期状态Sw′,k′;w′=1、2、…、W,k′=1、2、…、M,i=1、2、…、M,W为设定的简化相位状态个数;
Figure PCTCN2017084038-appb-000011
为I支路相位补偿输出矢量V′(m)中的第pi个相位补偿处理结果,且pi=(ki-1)×M+k′;wi、ki与w′的对应关系如下:
w′=mod((wi-1)+(ki-1)×hm′×W,W)+1;
其中:wi∈{1,2,3,...,W},ki∈{1,2,3,...,M};h′m为第m个符号周期对应的调制指数;当mod(m,2)=0时,h′m=h1;当mod(m,2)=1时,h′m=h2;h1和h2分别 为设定的第一调制指数、第二调制指数;
上述的低实现复杂度的ARTM CPM解调及同步方法,在步骤(4b)中,路径度量的计算公式如下:
Figure PCTCN2017084038-appb-000012
其中:
Figure PCTCN2017084038-appb-000013
为进入第m个符号周期状态Sw′,k′的第i个分支的对应的路径度量;
Figure PCTCN2017084038-appb-000014
为所述第i个分支的分支度量,且所述第i个分支对应于第m-1个符号周期状态
Figure PCTCN2017084038-appb-000015
即第m-1个符号周期状态
Figure PCTCN2017084038-appb-000016
经由所述第i个分支进入第m个符号周期状态Sw′,k′
Figure PCTCN2017084038-appb-000017
为所述第m-1个符号周期状态
Figure PCTCN2017084038-appb-000018
的幸存路径度量,且初始值
Figure PCTCN2017084038-appb-000019
w′=1、2、…、W,k′=1、2、…、M,i=1、2、…、M,W为设定的简化相位状态个数;wi、ki与w′的对应关系如下:
w′=mod((wi-1)+(ki-1)×hm′×W,W)+1;
其中:wi∈{1,2,3,...,W},ki∈{1,2,3,...,M};h′m为第m个符号周期对应的调制指数;当mod(m,2)=0时,h′m=h1;当mod(m,2)=1时,h′m=h2;h1和h2分别为设定的第一调制指数、第二调制指数;
上述的低实现复杂度的ARTM CPM解调及同步方法,在步骤(4c)中,幸存路径及幸存路径度量的具体确定方法如下:
对于第m个符号周期的状态Sw′,k′,在所述状态对应的M个路径度量中选取最大值作为状态Sw′,k′的幸存路径度量
Figure PCTCN2017084038-appb-000020
即:
Figure PCTCN2017084038-appb-000021
Figure PCTCN2017084038-appb-000022
为第m个符号周期的状态Sw′,k′对应的第i个路径度量,i=1、2、…、M,且将所述幸存路径度量
Figure PCTCN2017084038-appb-000023
对应的路径作为第m个符号周期的状态Sw′,k′的幸存路径;w′=1、2、…、W,k′=1、2、…、M,W为设定的简化相位状态个数。
上述的低实现复杂度的ARTM CPM解调及同步方法,在步骤(4d)中,第m个符号周期幸存状态的确定方法如下:在第m个符号周期对应的所有状态 中,选取幸存路径度量最大值对应的状态作为第m个符号周期的幸存状态。
上述的低实现复杂度的ARTM CPM解调及同步方法,在步骤(4d)中,在m≥D1时,向前回溯D1个符号,得到解调数据,具体实现过程如下:
以第m个符号周期的幸存状态为回溯起点,按照步骤(4c)保留的各个符号周期对应状态的幸存路径,依次向前回溯D1个符号,回溯到第m-D1个符号周期的状态
Figure PCTCN2017084038-appb-000024
将所述状态
Figure PCTCN2017084038-appb-000025
作为解调状态,并根据所述解调状态确定解调数据,即解调数据为α(m-D1)=kjt′-1;其中,w′jt∈{1,2,3,...,W},k′jt∈{1,2,3,...,M},W为设定的简化相位状态个数。
上述的低实现复杂度的ARTM CPM解调及同步方法,在m≥D2时,向前回溯D2个符号,得到同步解调状态,具体实现过程如下:
以第m个符号周期的幸存状态为回溯起点,按照步骤(4c)保留的各个符号周期对应状态的幸存路径,依次向前回溯D2个符号,回溯到第m-D2个符号周期的状态
Figure PCTCN2017084038-appb-000026
将所述状态
Figure PCTCN2017084038-appb-000027
作为同步解调状态;其中,w′tb∈{1,2,3,...,W},k′tb∈{1,2,3,...,M},W为设定的简化相位状态个数。
上述的低实现复杂度的ARTM CPM解调及同步方法,在步骤(4d)中,根据设定的数据判决准确率和解调延时的指标要求,确定解调回溯长度D1和同步解调回溯长度D2;其中,D1和D2与数据判决准确率和解调延时成正比。
上述的低实现复杂度的ARTM CPM解调及同步方法,在步骤(5)中,定时误差eτ(m)和载波相位误差
Figure PCTCN2017084038-appb-000028
的计算公式如下:
Figure PCTCN2017084038-appb-000029
Figure PCTCN2017084038-appb-000030
其中:如果同步解调状态为
Figure PCTCN2017084038-appb-000031
且状态
Figure PCTCN2017084038-appb-000032
的幸存路径对应前一个符号周期的状态
Figure PCTCN2017084038-appb-000033
则wo=wtb,po=(ktb-1)×M+k′tb
Figure PCTCN2017084038-appb-000034
为V(m)中的第po 个相位补偿输出结果,
Figure PCTCN2017084038-appb-000035
为V′(m)中的第po个相位补偿输出结果,
Figure PCTCN2017084038-appb-000036
为V″(m)中的第po个相位补偿输出结果;Re代表取实部函数,Im代表取虚部函数;其中,其中,w′tb∈{1,2,3,...,W},k′tb∈{1,2,3,...,M},wtb∈{1,2,3,...,W},ktb∈{1,2,3,...,M},W为设定的简化相位状态个数。
上述的低实现复杂度的ARTM CPM解调及同步方法,在步骤(6)中,对定时误差eτ(m)进行码环路滤波,得到的相位调整量输出给码NCO,码NCO根据所述相位调整量对符号同步脉冲信号相位进行调整。
上述的低实现复杂度的ARTM CPM解调及同步方法,在步骤(6)中,对载波相位误差
Figure PCTCN2017084038-appb-000037
进行载波环路滤波,滤波后输出相位调整量给载波NCO,载波NCO根据所述相位调整量对载波NCO输出的载波本振频率进行调整。
本发明与现有技术相比,具有以下优点:
(1)本发明的三个支路共用匹配滤波器组,该匹配滤波器组仅有16个复数匹配滤波器,而且本发明中每个符号周期的状态个数为64,相对于传统的最优解调器64个复数匹配滤波器和512个状态,本发明方法可以大大降低解调复杂度,且能确保解调性能损失最小;
(2)本发明采用三个支路信号联合进行定时、同步计算,可以提高定时精度,并能够有效提升系统稳定性。
附图说明
图1为本发明的低实现复杂度的ARTM CPM解调及同步方法实现框图;
图2为本发明中维特比解调处理的流程框图;
图3为本发明实施例中ARTM CPM解调误码性能曲线;
图4为本发明实施例中ARTM CPM定时同步跟踪曲线。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述。
为了便于对本发明进行详细说明,此处首先对后续出现的一些变量进行如下说明:Ts为设定的采样周期;T为设定的符号周期;h1和h2分别为设定的第 一调制指数、第二调制指数,在ARTM CPM中,两个调制指数的取值为4/16、5/16,在本发明中可以设定h1=4/16、h2=5/16,或设定h1=5/16、h2=4/16;floor代表向下取整函数,例如floor(x)代表对变量x进行向下取整运算;max代表求最大值函数,例如
Figure PCTCN2017084038-appb-000038
代表对序列xi求取最大值,i为序列的标号,如果i=1~M,M为正整数,则
Figure PCTCN2017084038-appb-000039
代表在x1、x2、…、xM中求取最大值。
如图1所示,本发明的低实现复杂度的ARTM CPM解调及同步方法的具体实现步骤如下:
(一)、三支路信号处理
在本发明中,首先对接收信号r(n)分别延迟Ts、2Ts后得到一级延迟信号r′(n)和二级延迟信号r″(n),然后在E、I、L三个支路中对r(n)、r′(n)、r″(n)进行相应处理。其中,n为离散时间变量,r(n)为采样量化后的数字信号,其采样周期为Ts
(1)、混频和低通滤波
对信号r(n)进行混频和低通滤波处理,得到E支路基带信号f(n);对一级延迟信号r′(n)进行混频和低通滤波处理,得到I支路基带信号f′(n);对二级延迟信号r″(n)进行混频和低通滤波处理,得到L支路基带信号f″(n)。
上述三个支路混频处理中的载波本振频率由均由载波NCO控制,具体混频滤波处理过程如下:首先根据载波NCO提供的载波本振频率生成相应的本地载波信号,然后该本地载波信号分别与r(n)、r′(n)、r″(n)相乘,输出混频后信号。之后,再利用低通滤波器对各支路的混频后信号进行滤波,得到f(n)、f′(n)、f″(n)。其中,每个支路中的低通滤波器设置均相同。
在具体工程实现中,载波NCO具有初始的载波本振频率值,之后根据后续载波相位同步处理结果对该载波NCO进行调整,从而实现载波相位同步。
(2)、匹配滤波
本发明交替使用两个匹配滤波器组对E支路基带信号f(n)、I支路基带信 号f′(n)和L支路基带信号f″(n)分别进行匹配滤波处理。其中,每个匹配滤波器组包括P个子匹配滤波器,这P个子匹配滤波器对每个支路的基带信号进行匹配滤波处理后,输出包含P个匹配滤波结果的匹配滤波结果矢量。P=M2,M为设定的符号进制数,对于ARTM CPM调制信号,其调制参数中设定符号进制数为4,即M=4,进而有P=16。因此,本发明进行ARTM CPM解调及同步处理过程中,采用了16个匹配滤波器实现匹配滤波。
(2.1)匹配滤波组定义
在本发明中,交替使用两个匹配滤波器组进行匹配滤波,具体交替方法如下:当mod(m,2)=0时,三个支路采用第一个匹配滤波器组进行匹配滤波;当mod(m,2)=1时,三个支路采用第二个匹配滤波器组进行匹配滤波。其中,两个匹配滤波器组中各子匹配滤波器的滤波系数计算公式如下:
Figure PCTCN2017084038-appb-000040
Figure PCTCN2017084038-appb-000041
其中:
m为符号周期计数变量,该变量的初值为0,并根据码NCO输出的符号同步脉冲信号进行加1操作,即当符号同步脉冲信号出现时,执行m=m+1操作;
p=(k-1)×M+l,k=1、2、…、M,l=1、2、…、M;
ξp,1(n)为第一个匹配滤波器组中的第p个子匹配滤波器的滤波系数;
ξp,2(n)为第二个匹配滤波器组中的第p个子匹配滤波器的滤波系数;
γk和γl为设定的M进制符号,k、l为符号取值序号,其中:γk=2(k-1)-(M-1),γl=2(l-1)-(M-1),k=1、2、…、M,l=1、2、…、M;在ARTM CPM中,符号进制数M=4,于是γ1=-3、γ2=-1、γ3=1、γ4=3;
q(t)为设定的相位脉冲函数,q(nTs-mT)为t=nTs-mT时q(t)的采样值, q(nTs-(m-1)T)为t=nTs-(m-1)T时q(t)的采样值;其中,相位脉冲函数q(t)的表达式如下:
Figure PCTCN2017084038-appb-000042
其中:g(t)为脉冲成型函数,
Figure PCTCN2017084038-appb-000043
L为关联长度。在ARTM CPM中,关联长度L=3。
(2.2)匹配滤波计算
在每个离散时刻n,根据该时刻的符号周期计数变量m的取值,在两个滤波器组中,选择其中一个滤波器组的P个子匹配滤波器对每个支路的基带信号进行匹配滤波处理,输出P个匹配滤波结果。
其中,各子匹配滤波器对基带信号进行匹配滤波处理,对应的滤波计算公式如下:
Figure PCTCN2017084038-appb-000044
其中:u(m)为基带信号经子匹配滤波器进行匹配滤波处理后得到的匹配滤波结果;f(n)为待滤波的基带信号,ξ(n)为子匹配滤波器的滤波系数。
根据上述的匹配滤波计算公式,可以确定:
E支路基带信号f(n)经匹配滤波处理后,得到E支路匹配滤波结果矢量U(m),且U(m)=[u1(m) u2(m) … up(m) … uP(m)];I支路基带信号f′(n)经匹配滤波处理后,得到I支路匹配滤波结果矢量U′(m),且U′(m)=[u′1(m) u′2(m) … u′p(m) … u′P(m)];L支路基带信号f″(n)经匹配滤波处理后,得到L支路匹配滤波结果矢量U″(m),且U″(m)=[u″1(m) u″2(m) … u″p(m) … u″P(m)]。
当mod(m,2)=0时,选择第一个匹配滤波器组进行匹配滤波时,则:
Figure PCTCN2017084038-appb-000045
Figure PCTCN2017084038-appb-000046
Figure PCTCN2017084038-appb-000047
当mod(m,2)=1时,选择第二个匹配滤波器组进行匹配滤波,则:
Figure PCTCN2017084038-appb-000048
Figure PCTCN2017084038-appb-000049
Figure PCTCN2017084038-appb-000050
其中,p=1、2、…、P。
(3)、相位补偿
在该步骤中,利用以下的相位补偿处理公式对三个支路的匹配滤波结果进行相位补偿处理:
v(m)=u(m)e-jδ(m)
其中:v(m)为相位补偿输出结果;u(m)为待进行相位补偿处理的一路匹配滤波结果;δ(m)为第m个符号周期对应的倾斜相位差,且δ(m)根据符号周期对 应的调制指数进行递推更新,具体递推更新公式如下:
δ(m)=δ(m-1)+3πh′m-1
其中:δ(m-1)为第m-1个符号周期对应的倾斜相位差,且所述倾斜相位差的初始为0;h′m-1为第m-1个符号周期对应的调制指数:当mod(m-1,2)=0时,h′m-1=h1;当mod(m-1,2)=1时,h′m-1=h2;h1和h2分别为设定的第一调制指数、第二调制指数。
根据上述的相位补偿方法,对U(m)进行相位补偿得到E支路相位补偿输出矢量V(m),且V(m)=[v1(m) v2(m) … vp(m) … vP(m)];对U′(m)进行相位补偿得到I支路相位补偿输出矢量V′(m),且V′(m)=[v′1(m) v′2(m) … v′p(m) … v′P(m)];对U″(m)进行相位补偿得到L支路相位补偿输出矢量V″(m),且V″(m)=[v″1(m) v″2(m) … v″p(m) … v″P(m)];其中:
vp(m)=up(m)e-jδ(m)
v′p(m)=u′p(m)e-jδ(m)
v″p(m)=u″p(m)e-jδ(m)
其中,p=1、2、…、P。
(4)维特比解调
在该步骤中,对I支路相位补偿输出矢量V′(m)进行维特比解调处理,得到解调数据和同步解调状态。
如图2所示,本发明的维特比解调的步骤包括分支度量计算、路径度量更新、确定幸存路径、获得解调结果。具体步骤说明如下:
(4.1)分支度量计算
在该步骤中,根据I支路相位补偿输出矢量V′(m)进行分支度量计算,即:在第m个符号周期,针对W×M个状态,计算进入每个状态的M个分支的分支度量,具体的分支度量计算公式如下:
Figure PCTCN2017084038-appb-000051
其中:
Figure PCTCN2017084038-appb-000052
为进入第m个符号周期状态Sw′,k′的第i个分支的分支度量,且所述第i个分支对应于第m-1个符号周期状态
Figure PCTCN2017084038-appb-000053
即第m-1个符号周期状态
Figure PCTCN2017084038-appb-000054
经由所述第i个分支进入第m个符号周期状态Sw′,k′;w′=1、2、…、W,k′=1、2、…、M,i=1、2、…、M;wi、ki与w′的对应关系如下:
w′=mod((wi-1)+(ki-1)×hm′×W,W)+1;
其中,wi∈{1,2,3,...,W},ki∈{1,2,3,...,M};h′m为第m个符号周期对应的调制指数,当mod(m,2)=0时,h′m=h1;当mod(m,2)=1时,h′m=h2
Figure PCTCN2017084038-appb-000055
为I支路相位补偿输出矢量V′(m)中的第pi个相位补偿处理结果,且pi=(ki-1)×M+k′。
W为设定的简化相位状态个数,本发明在具体实施中,W=16。
以下举例说明两个相邻符号周期的状态转移关系:
对于第m个符号周期状态S15,2,即w′=15,k′=2,共有M=4个分支进入该状态,这四个分支对应于第m-1个符号周期的4个状态,其中:
以下举例说明中均设定h1=4/16、h2=5/16;
如果mod(m,2)=0,则满足方程
Figure PCTCN2017084038-appb-000056
的四组解分别为:w1=3,k1=4;w2=7,k2=3;w3=11,k3=2;w4=15,k4=1;即进入第m个符号周期状态S15,2的四个分支依次是第m-1个符号周期的状态S3,4、S7,3、S11,2、S15,1
如果mod(m,2)=1,则满足方程
Figure PCTCN2017084038-appb-000057
的四组解分别为:w1=5,k1=3;w2=10,k2=2;w3=15,k3=1;w4=16,k4=4;即进入第m个符号周期状态S15,2的四个分支依次是第m-1个符号周期的状态 S5,3、S10,2、S15,1、S16,4
(4.2)路径度量更新
在该步骤中,根据(4.1)计算得到的分支度量,更新计算第m个符号周期每个状态的的M个路径度量,该路径度量的计算公式如下:
Figure PCTCN2017084038-appb-000058
其中:
Figure PCTCN2017084038-appb-000059
为进入第m个符号周期状态Sw′,k′的第i个分支的对应的路径度量;
Figure PCTCN2017084038-appb-000060
为所述第i个分支的分支度量,且所述第i个分支对应于第m-1个符号周期状态
Figure PCTCN2017084038-appb-000061
Figure PCTCN2017084038-appb-000062
为所述第m-1个符号周期状态
Figure PCTCN2017084038-appb-000063
的幸存路径度量,且初始值
Figure PCTCN2017084038-appb-000064
w′=1、2、…、W,k′=1、2、…、M,i=1、2、…、M;wi、ki与w′的对应关系如下:
w′=mod((wi-1)+(ki-1)×hm′×W,W)+1;
其中:wi∈{1,2,3,...,W},ki∈{1,2,3,...,M};h′m为第m个符号周期对应的调制指数,当mod(m,2)=0时,h′m=h1;当mod(m,2)=1时,h′m=h2
(4.3)确定幸存路径和幸存路径度量
在该步骤中,确定第m个符号周期每个状态的幸存路径,以及幸存路径度量,并保留每个状态的幸存路径以及幸存路径度量。幸存路径及幸存路径度量的具体确定方法如下:
对于第m个符号周期的状态Sw′,k′,在该状态对应的M个路径度量中选取最大值作为状态Sw′,k′的幸存路径度量
Figure PCTCN2017084038-appb-000065
即:
Figure PCTCN2017084038-appb-000066
Figure PCTCN2017084038-appb-000067
为第m个符号周期的状态Sw′,k′对应的第i个路径度量,i=1、2、…、M,且将所述幸存路径度量
Figure PCTCN2017084038-appb-000068
对应的路径作为第m个符号周期的状态Sw′,k′的幸存路径;w′=1、2、…、W,k′=1、2、…、M。
(4.4)获得解调结果
在该步骤中,每经过一个符号周期,重复执行步骤(4.1)、(4.2)、(4.3), 直至m≥D1或m≥D2,则需要进行解调回溯和同步解调回溯操作。其中,D1为设定的解调回溯长度,D2为设定的同步解调回溯长度,且一般设定D2<D1
首先,确定第m个符号周期的幸存状态,具体确定方法如下:在第m个符号周期对应的状态Sw′,k′(w′=1、2、…、W,k′=1、2、…、M)中,选取幸存路径度量最大值对应的状态作为第m个符号周期的幸存状态。然后,以第m个符号周期的幸存状态为回溯起点,分别进行解调回溯和同步解调回溯,其中:
如果m≥D2,则进行同步解调回溯,具体回溯过程如下:以第m个符号周期的幸存状态为回溯起点,按照步骤(4.3)保留的各个符号周期对应状态的幸存路径,依次向前回溯D2个符号,回溯到第m-D2个符号周期的状态
Figure PCTCN2017084038-appb-000069
将所述状态
Figure PCTCN2017084038-appb-000070
作为同步解调状态;最后根据所述同步解调状态以及所述状态的幸存路径,计算定时、相位同步误差。
如果m≥D1,则还需进行解调回溯,具体回溯过程如下:以第m个符号周期的幸存状态为回溯起点,按照步骤(4.3)保留的各个符号周期对应状态的幸存路径,依次向前回溯D1个符号,回溯到第m-D1个符号周期的状态
Figure PCTCN2017084038-appb-000071
将所述状态
Figure PCTCN2017084038-appb-000072
作为解调状态,并根据所述解调状态确定解调数据,即解调数据为α(m-D1)=kjt′-1。
在上述回溯处理中,根据设定的数据判决准确率和解调延时的指标要求,确定解调回溯长度D1和同步解调回溯长度D2;其中,D1和D2与数据判决准确率和解调延时成正比,即:回溯长度越小,数据判决准确率越低,而回溯长度越大,数据判决准确率越高,但解调延时较大;通过折中考虑,本发明在具体实施中一般设定D1=10、D2=1。
(5)、定时及相位误差计算
在该步骤中,利用V(m)、V′(m)、V″(m)、维特比解调得到的同步解调状态,以及所述同步解调状态的幸存路径,计算定时误差eτ(m)和载波相位误差
Figure PCTCN2017084038-appb-000073
具体计算公式如下:
Figure PCTCN2017084038-appb-000074
Figure PCTCN2017084038-appb-000075
其中:如果同步解调状态为
Figure PCTCN2017084038-appb-000076
该状态的幸存路径对应的前一个符号周期的同步解调状态为
Figure PCTCN2017084038-appb-000077
则wo=wtb,po=(ktb-1)×M+k′tb
Figure PCTCN2017084038-appb-000078
为V(m)中的第po个相位补偿输出结果,
Figure PCTCN2017084038-appb-000079
为V′(m)中的第po个相位补偿输出结果,
Figure PCTCN2017084038-appb-000080
为V″(m)中的第po个相位补偿输出结果;Re代表取实部函数,Im代表取虚部函数。
(6)码NCO和载波NCO更新
在该步骤中,分别对定时误差eτ(m)和载波相位误差
Figure PCTCN2017084038-appb-000081
进行环路滤波,并利用所述滤波结果对码NCO和载波NCO进行调整。
其中,对定时误差eτ(m)进行码环路滤波,得到的相位调整量输出给码NCO,码NCO根据该相位调整量对符号同步脉冲信号相位进行调整,在符号同步脉冲信号控制下,进行下一个符号周期的匹配滤波处理,多次循环处理后,实现符号定时同步。
其中,对载波相位误差
Figure PCTCN2017084038-appb-000082
进行载波环路滤波,滤波后输出相位调整量给载波NCO,载波NCO根据相位调整量对载波信号相位进行调整,调整后的载波信号与接收信号下一个采样值进行混频处理,多次循环处理后,实现载波相位同步。
重复步骤(1)~(6),即可实现信号的解调及同步。
实施例:
在本实施例中,设定信号的符号率R=10Mbit/s,采样频率fs=100MHz,即对应的采样周期Ts=1/fs=10ns,符号周期T=1/R=100ns;并设定载波标称频率fc=70MHz,码NCO和载波NCO的量化位数Q=32。利用本发明的低实 现复杂度的ARTM CPM解调及同步方法进行处理,得到的解调误码性能曲线如图3所示,且定时同步跟踪曲线如图4所示。其中,图4纵坐标所示归一化定时同步误差是指定时同步误差对码NCO进行了归一化。
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (17)

  1. 一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于包括以下步骤:
    (1)、对接收信号r(n)分别延迟Ts后、2Ts后得到一级延迟信号r′(n)和二级延迟信号r″(n);然后分别对r(n)、r′(n)、r″(n)进行混频和低通滤波,得到E支路基带信号f(n)、I支路基带信号f′(n)、L支路基带信号f″(n);其中,Ts为设定的采样周期,混频处理中的载波本振频率由载波NCO控制;
    (2)、交替使用两个匹配滤波器组对f(n)、f′(n)、f″(n)分别进行匹配滤波,其中:每个匹配滤波器组包括P个子匹配滤波器,所述P个子匹配滤波器对每路基带信号进行匹配滤波处理后,输出包含P个匹配滤波结果的匹配滤波结果矢量,即得到E支路匹配滤波结果矢量U(m)、I支路匹配滤波结果矢量U′(m)、L支路匹配滤波结果矢量U″(m);m为符号周期计数变量,根据码NCO输出的符号同步脉冲信号进行加1操作,且m的初值为0;P=M2,M为设定的符号进制数;
    (3)、对U(m)、U′(m)、U″(m)分别进行相位补偿处理,得到E支路相位补偿输出矢量V(m)、I支路相位补偿输出矢量V′(m)、L支路相位补偿输出矢量V″(m);
    (4)、对I支路相位补偿输出矢量V′(m)进行维特比解调处理,得到解调数据和同步解调状态;
    (5)、利用V(m)、V′(m)、V″(m)和同步解调状态,计算定时误差eτ(m)和载波相位误差
    Figure PCTCN2017084038-appb-100001
    (6)、分别对定时误差eτ(m)和载波相位误差
    Figure PCTCN2017084038-appb-100002
    进行环路滤波,并利用所述滤波结果分别对码NCO和载波NCO进行调整;
    (7)、重复步骤(1)~(6),实现信号的解调及同步处理。
  2. 根据权利要求1所述的一种低实现复杂度的ARTM CPM解调及同步方 法,其特征在于:在步骤(2)中,两个匹配滤波器组中各子匹配滤波器的滤波系数计算公式如下:
    Figure PCTCN2017084038-appb-100003
    Figure PCTCN2017084038-appb-100004
    其中:ξp,1(n)为第一个匹配滤波器组中的第p个子匹配滤波器的滤波系数,ξp,2(n)为第二个匹配滤波器组中的第p个子匹配滤波器的滤波系数,p=(k-1)×M+l;q(t)为设定的相位脉冲函数,q(nTs-mT)为t=nTs-mT时q(t)的采样值,q(nTs-(m-1)T)为t=nTs-(m-1)T时q(t)的采样值,T为设定的符号周期;γk=2(k-1)-(M-1),γl=2(l-1)-(M-1),k=1、2、…、M,l=1、2、…、M;h1和h2分别为设定的第一调制指数、第二调制指数,floor代表向下取整函数。
  3. 根据权利要求1或2所述的一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于:在步骤(2)中,两个匹配滤波器组进行交替使用,具体交替方法如下:当mod(m,2)=0时,三个支路采用第一个匹配滤波器组进行匹配滤波;当mod(m,2)=1时,三个支路采用第二个匹配滤波器组进行匹配滤波。
  4. 根据权利要求1或2所述的一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于:在步骤(2)中,子匹配滤波器对基带信号进行匹配滤波处理,对应的滤波计算公式如下:
    Figure PCTCN2017084038-appb-100005
    其中:u(m)为基带信号经子匹配滤波器进行匹配滤波处理后得到的匹配滤波结果;f(n)为待滤波的基带信号,ξ(n)为子匹配滤波器的滤波系数;T为设定的符号周期,floor代表向下取整函数。
  5. 根据权利要求1或2所述的一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于:在步骤(3)中,相位补偿处理的公式如下:
    v(m)=u(m)e-jδ(m)
    其中:v(m)为相位补偿输出结果;u(m)为待进行相位补偿处理的一路匹配滤波结果;δ(m)为第m个符号周期对应的倾斜相位差,且δ(m)根据符号周期对应的调制指数进行递推更新。
  6. 根据权利要求5所述的一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于:在相位补偿处理中,倾斜相位差δ(m)的递推更新公式如下:
    δ(m)=δ(m-1)+3πh′m-1
    其中:δ(m-1)为第m-1个符号周期对应的倾斜相位差,且所述倾斜相位差的初始值δ(0)=0;h′m-1为第m-1个符号周期对应的调制指数:当mod(m-1,2)=0时,h′m-1=h1;当mod(m-1,2)=1时,h′m-1=h2;h1和h2分别为设定的第一调制指数、第二调制指数。
  7. 根据权利要求1或2所述的一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于:在步骤(4)中,对I支路相位补偿输出矢量V′(m)进行维特比解调处理,具体解调处理过程如下:
    (4a)、根据V′(m)计算分支度量,即:在第m个符号周期,计算进入每个状态的M个分支的分支度量;
    (4b)、根据步骤(4a)计算得到的分支度量,计算第m个符号周期每个状态的M个路径度量;
    (4c)、确定第m个符号周期每个状态的幸存路径,以及幸存路径度量,并保留每个状态的幸存路径以及幸存路径度量;
    (4d)、当m≥D1或m≥D2时,确定第m个符号周期的幸存状态,并以所述幸存状态为回溯起点,按照步骤(4c)保留的幸存路径进行状态回溯,其中:在m≥D1时,向前回溯D1个符号,得到解调数据;在m≥D2时,向前回溯D2个符号,得到同步解调状态;D1为设定的解调回溯长度,D2为设定的同步解调回 溯长度。
  8. 根据权利要求7所述的一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于:在步骤(4a)中,分支度量计算的公式如下:
    Figure PCTCN2017084038-appb-100006
    其中:
    Figure PCTCN2017084038-appb-100007
    为进入第m个符号周期状态Sw′,k′的第i个分支的分支度量,且所述第i个分支对应于第m-1个符号周期状态
    Figure PCTCN2017084038-appb-100008
    即第m-1个符号周期状态
    Figure PCTCN2017084038-appb-100009
    经由所述第i个分支进入第m个符号周期状态Sw′,k′;w′=1、2、…、W,k′=1、2、…、M,i=1、2、…、M,W为设定的简化相位状态个数;
    Figure PCTCN2017084038-appb-100010
    为I支路相位补偿输出矢量V′(m)中的第pi个相位补偿处理结果,且pi=(ki-1)×M+k′;wi、ki与w′的对应关系如下:
    w′=mod((wi-1)+(ki-1)×hm′×W,W)+1;
    其中:wi∈{1,2,3,...,W},ki∈{1,2,3,...,M};h′m为第m个符号周期对应的调制指数;当mod(m,2)=0时,h′m=h1;当mod(m,2)=1时,h′m=h2;h1和h2分别为设定的第一调制指数、第二调制指数;
  9. 根据权利要求7所述的一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于:在步骤(4b)中,路径度量的计算公式如下:
    Figure PCTCN2017084038-appb-100011
    其中:
    Figure PCTCN2017084038-appb-100012
    为进入第m个符号周期状态Sw′,k′的第i个分支的对应的路径度量;
    Figure PCTCN2017084038-appb-100013
    为所述第i个分支的分支度量,且所述第i个分支对应于第m-1个符号周期状态
    Figure PCTCN2017084038-appb-100014
    即第m-1个符号周期状态
    Figure PCTCN2017084038-appb-100015
    经由所述第i个分支进入第m个符号周期状态Sw′,k′
    Figure PCTCN2017084038-appb-100016
    为所述第m-1个符号周期状态
    Figure PCTCN2017084038-appb-100017
    的幸存路径度量,且初始值
    Figure PCTCN2017084038-appb-100018
    w′=1、2、…、W,k′=1、2、…、M,i=1、2、…、M,W为设定的简化相位状态个数;wi、ki与w′的对应关系如下:
    w′=mod((wi-1)+(ki-1)×hm′×W,W)+1;
    其中:wi∈{1,2,3,...,W},ki∈{1,2,3,...,M};h′m为第m个符号周期对应的调制指数;当mod(m,2)=0时,h′m=h1;当mod(m,2)=1时,h′m=h2;h1和h2分别为设定的第一调制指数、第二调制指数;
  10. 根据权利要求7所述的一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于:在步骤(4c)中,幸存路径及幸存路径度量的具体确定方法如下:
    对于第m个符号周期的状态Sw′,k′,在所述状态对应的M个路径度量中选取最大值作为状态Sw′,k′的幸存路径度量
    Figure PCTCN2017084038-appb-100019
    即:
    Figure PCTCN2017084038-appb-100020
    Figure PCTCN2017084038-appb-100021
    为第m个符号周期的状态Sw′,k′对应的第i个路径度量,i=1、2、…、M,且将所述幸存路径度量
    Figure PCTCN2017084038-appb-100022
    对应的路径作为第m个符号周期的状态Sw′,k′的幸存路径;w′=1、2、…、W,k′=1、2、…、M,W为设定的简化相位状态个数。
  11. 根据权利要求7所述的一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于:在步骤(4d)中,第m个符号周期幸存状态的确定方法如下:在第m个符号周期对应的所有状态中,选取幸存路径度量最大值对应的状态作为第m个符号周期的幸存状态。
  12. 根据权利要求7所述的一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于:在步骤(4d)中,在m≥D1时,向前回溯D1个符号,得到解调数据,具体实现过程如下:
    以第m个符号周期的幸存状态为回溯起点,按照步骤(4c)保留的各个符号周期对应状态的幸存路径,依次向前回溯D1个符号,回溯到第m-D1个符号周期的状态
    Figure PCTCN2017084038-appb-100023
    将所述状态
    Figure PCTCN2017084038-appb-100024
    作为解调状态,并根据所述解调状态确定解调数据,即解调数据为α(m-D1)=kjt′-1;其中,w′jt∈{1,2,3,...,W}, k′jt∈{1,2,3,...,M},W为设定的简化相位状态个数。
  13. 根据权利要求7所述的一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于:在m≥D2时,向前回溯D2个符号,得到同步解调状态,具体实现过程如下:
    以第m个符号周期的幸存状态为回溯起点,按照步骤(4c)保留的各个符号周期对应状态的幸存路径,依次向前回溯D2个符号,回溯到第m-D2个符号周期的状态
    Figure PCTCN2017084038-appb-100025
    将所述状态
    Figure PCTCN2017084038-appb-100026
    作为同步解调状态;其中,w′tb∈{1,2,3,...,W},k′tb∈{1,2,3,...,M},W为设定的简化相位状态个数。
  14. 根据权利要求7所述的一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于:在步骤(4d)中,根据设定的数据判决准确率和解调延时的指标要求,确定解调回溯长度D1和同步解调回溯长度D2;其中,D1和D2与数据判决准确率和解调延时成正比。
  15. 根据权利要求1或2所述的一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于:在步骤(5)中,定时误差eτ(m)和载波相位误差
    Figure PCTCN2017084038-appb-100027
    的计算公式如下:
    Figure PCTCN2017084038-appb-100028
    Figure PCTCN2017084038-appb-100029
    其中:如果同步解调状态为
    Figure PCTCN2017084038-appb-100030
    且状态
    Figure PCTCN2017084038-appb-100031
    的幸存路径对应前一个符号周期的状态
    Figure PCTCN2017084038-appb-100032
    则wo=wtb,po=(ktb-1)×M+k′tb
    Figure PCTCN2017084038-appb-100033
    为V(m)中的第po个相位补偿输出结果,
    Figure PCTCN2017084038-appb-100034
    为V′(m)中的第po个相位补偿输出结果,
    Figure PCTCN2017084038-appb-100035
    为V″(m)中的第po个相位补偿输出结果;Re代表取实部函数,Im代表取虚部函数;其中,其中,w′tb∈{1,2,3,...,W},k′tb∈{1,2,3,...,M},wtb∈{1,2,3,...,W},ktb∈{1,2,3,...,M},W为设定的简化相位状态个数。
  16. 根据权利要求1或2所述的一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于:在步骤(6)中,对定时误差eτ(m)进行码环路滤波,得到的相位调整量输出给码NCO,码NCO根据所述相位调整量对符号同步脉冲信号相位进行调整。
  17. 根据权利要求1或2所述的一种低实现复杂度的ARTM CPM解调及同步方法,其特征在于:在步骤(6)中,对载波相位误差
    Figure PCTCN2017084038-appb-100036
    进行载波环路滤波,滤波后输出相位调整量给载波NCO,载波NCO根据所述相位调整量对载波NCO输出的载波本振频率进行调整。
PCT/CN2017/084038 2017-01-13 2017-05-12 一种低实现复杂度的artm cpm解调及同步方法 WO2018129843A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17891620.1A EP3570510B1 (en) 2017-01-13 2017-05-12 Artm cpm demodulation and synchronization method with low implementation complexity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710024925.3A CN106921605B (zh) 2017-01-13 2017-01-13 一种低实现复杂度的artm cpm解调及同步方法
CN201710024925.3 2017-01-13

Publications (1)

Publication Number Publication Date
WO2018129843A1 true WO2018129843A1 (zh) 2018-07-19

Family

ID=59454039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084038 WO2018129843A1 (zh) 2017-01-13 2017-05-12 一种低实现复杂度的artm cpm解调及同步方法

Country Status (3)

Country Link
EP (1) EP3570510B1 (zh)
CN (1) CN106921605B (zh)
WO (1) WO2018129843A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114765527A (zh) * 2021-01-14 2022-07-19 华东师范大学 一种gfsk信号维特比解调的联合同步方法
CN115834313A (zh) * 2022-12-26 2023-03-21 成都秀为科技发展有限公司 一种基于帧结构的gpu并行计算qpsk相干解调方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107426130A (zh) * 2017-07-24 2017-12-01 哈尔滨理工大学 可见光通信的符号定时同步方法
CN108768604B (zh) * 2018-05-08 2020-05-05 北京航空航天大学 一种用于pcm/fm多符号检测的低复杂度位同步方法
CN109039573B (zh) * 2018-08-14 2022-03-29 成都烨软科技有限公司 一种基于cpm信号多符号检测的方法
CN111106925B (zh) * 2019-12-17 2022-06-24 北京航空航天大学杭州创新研究院 一种降低稳态误差的定时同步方法
CN113973038A (zh) * 2020-07-24 2022-01-25 晶晨半导体(上海)股份有限公司 编码信号解调方法、装置、设备以及计算机可读存储介质
CN114363134B (zh) * 2021-12-31 2023-10-27 北京升哲科技有限公司 一种信号解调方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030099313A1 (en) * 2001-11-08 2003-05-29 Yunxin Li Filter bank and receiver for processing continuous phase modulated signals
CN1710898A (zh) * 2005-06-29 2005-12-21 西安电子科技大学 连续相位信号的调制及解调方法
CN102624662A (zh) * 2012-04-13 2012-08-01 南京航空航天大学 一种适用于dmr数字集群通信系统的非相干检测技术

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8238478B2 (en) * 2004-10-15 2012-08-07 Quasonix, Llc Multi-symbol noncoherent CPM detector having a trellis structure and a lock detector therefore
CN101547174B (zh) * 2009-04-30 2011-09-21 中国电子科技集团公司第五十四研究所 Sc-fde系统的相位与符号同步、信道估计和频域均衡方法
US8301332B2 (en) * 2010-09-28 2012-10-30 Ge Aviation Systems Llc Method and system for fleet operations data management
CN104579451B (zh) * 2013-10-25 2018-09-14 北京米波通信技术有限公司 一种铱星通信信号接收装置
CN105635014B (zh) * 2015-12-25 2018-12-21 北京遥测技术研究所 基于查表法的cpm调制数字化实现方法及数字化cpm调制模块
CN105763498B (zh) * 2016-04-08 2019-01-22 南京理工大学 一种星载ais全数字接收方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030099313A1 (en) * 2001-11-08 2003-05-29 Yunxin Li Filter bank and receiver for processing continuous phase modulated signals
CN1710898A (zh) * 2005-06-29 2005-12-21 西安电子科技大学 连续相位信号的调制及解调方法
CN102624662A (zh) * 2012-04-13 2012-08-01 南京航空航天大学 一种适用于dmr数字集群通信系统的非相干检测技术

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3570510A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114765527A (zh) * 2021-01-14 2022-07-19 华东师范大学 一种gfsk信号维特比解调的联合同步方法
CN114765527B (zh) * 2021-01-14 2023-09-19 华东师范大学 一种gfsk信号维特比解调的联合同步方法
CN115834313A (zh) * 2022-12-26 2023-03-21 成都秀为科技发展有限公司 一种基于帧结构的gpu并行计算qpsk相干解调方法
CN115834313B (zh) * 2022-12-26 2024-04-26 成都秀为科技发展有限公司 一种基于帧结构的gpu并行计算qpsk相干解调方法

Also Published As

Publication number Publication date
CN106921605B (zh) 2019-10-22
EP3570510B1 (en) 2022-09-07
EP3570510A4 (en) 2020-11-11
EP3570510A1 (en) 2019-11-20
CN106921605A (zh) 2017-07-04

Similar Documents

Publication Publication Date Title
WO2018129843A1 (zh) 一种低实现复杂度的artm cpm解调及同步方法
CN107769841B (zh) 高动态极低信噪比下卫星通信Turbo码迭代解调方法
US5862192A (en) Methods and apparatus for equalization and decoding of digital communications channels using antenna diversity
US5774504A (en) Equalization and decoding for digital communication channel
JP6491894B2 (ja) シンボルタイミング同期用回路
WO2016148158A1 (en) Method and receiver for decoding optical signal
US6768780B1 (en) Non-data aided maximum likelihood based feedforward timing synchronization method
CN108449303B (zh) 基于解调软输出的msk载波同步与解调系统及方法
CN105763500A (zh) 一种连续相位调制信号的频偏、时延和相偏的联合同步方法
CN111600823B (zh) 一种并行oqpsk偏移四相相移键控解调器
CN113132285A (zh) 一种数字解调系统及方法
CN106603217B (zh) 一种无线综测仪蓝牙信号的采样频偏抑制方法
CN115242587B (zh) 一种低信噪比环境下基于数据辅助的载波频偏估计方法
CN101404633B (zh) 基于块传输的单载波系统的载波跟踪方法
WO2019206331A9 (zh) 一种基于混沌成型和混沌匹配滤波器的无线通信方法
CN107342960A (zh) 一种适合幅度相移键控的非数据辅助频偏估计方法
CN111800364A (zh) 基于波形匹配的编码cpm信号频偏估计和校正方法
TW201123790A (en) System for selecting sample phase based on channel capacity
CN113115430A (zh) 一种高速突发数字解调系统
CN110808772B (zh) 用于近月空间通信的接收机的基带信号处理方法及装置
CN114465691A (zh) 一种低复杂度的恒包络相位调制信号采样偏差估计和补偿方法及系统
CN109818894A (zh) 多径信道下gmsk信号检测方法及检测装置
CN112073351B (zh) 一种针对mpsk系统的新型载波频偏估计方法
Purushothaman et al. Synchronization of TDMA bursts with short preamble for satellite receiver
CN114401174B (zh) 一种基于soqpsk和psp的联合相位跟踪检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017891620

Country of ref document: EP

Effective date: 20190813