WO2018129836A1 - 一种集流体,其极片和电池及应用 - Google Patents

一种集流体,其极片和电池及应用 Download PDF

Info

Publication number
WO2018129836A1
WO2018129836A1 PCT/CN2017/081904 CN2017081904W WO2018129836A1 WO 2018129836 A1 WO2018129836 A1 WO 2018129836A1 CN 2017081904 W CN2017081904 W CN 2017081904W WO 2018129836 A1 WO2018129836 A1 WO 2018129836A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current collector
conductive layer
present application
layer
Prior art date
Application number
PCT/CN2017/081904
Other languages
English (en)
French (fr)
Inventor
梁成都
黄华锋
黄起森
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP17803765.1A priority Critical patent/EP3367485A4/en
Priority to US15/827,214 priority patent/US11539050B2/en
Publication of WO2018129836A1 publication Critical patent/WO2018129836A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of batteries, and in particular to a current collector, a pole piece and a battery and application.
  • Lithium-ion batteries are widely used in electric vehicles and consumer electronics due to their high energy density, high output power, long cycle life and low environmental pollution.
  • lithium-ion batteries are prone to fire and explosion when subjected to abnormal conditions such as crushing, bumping or puncture, causing serious damage. Therefore, the safety of lithium-ion batteries greatly limits the application and popularity of lithium-ion batteries.
  • the battery temperature will rise; in the prior art, a technical solution of adding a low-melting alloy to the material of the metal current collector is adopted, with the battery temperature Rising, the low melting point alloy in the current collector melts, thereby causing a pole piece path, thereby cutting off the current, thereby improving the safety of the battery; or using a current collector having a multilayer structure in which the resin layer is laminated on both sides with a metal layer As the temperature of the battery rises, when the melting point of the material of the resin layer is reached, the resin layer of the current collector is melted to break the pole piece, thereby cutting off the current, thereby improving the safety of the battery.
  • the primary object of the present application is to propose a current collector.
  • a second object of the present application is to propose a pole piece using the current collector of the present application.
  • a third object of the present application is to propose a battery using the pole piece of the present application.
  • a fourth invention of the present application aims to propose the application of the current collector.
  • the present application relates to a current collector comprising an insulating layer for carrying the conductive layer, a conductive layer for carrying an electrode active material layer, and the conductive layer being located at the insulating layer On at least one surface, the normal temperature sheet resistance R S of the conductive layer satisfies: 0.016 ⁇ / ⁇ ⁇ R S ⁇ 420 ⁇ / ⁇ .
  • the normal temperature sheet resistance R S of the conductive layer satisfies: 0.032 ⁇ / ⁇ ⁇ R S ⁇ 21 ⁇ / ⁇ ;
  • the conductive layer has a thickness of D2, and D2 satisfies: 1 nm ⁇ D2 ⁇ 1 ⁇ m;
  • the thickness of the insulating layer is D1, and D1 satisfies: 1 ⁇ m ⁇ D1 ⁇ 50 ⁇ m;
  • the material of the conductive layer is selected from at least one of a metal conductive material and a carbon-based conductive material;
  • the metal conductive material is at least one selected from the group consisting of aluminum, copper, nickel, titanium, silver, nickel copper alloy, and aluminum zirconium alloy;
  • the carbon-based conductive material is selected from the group consisting of graphite, acetylene black, graphene, and carbon nanotubes. At least one type;
  • the material of the insulating layer is selected from at least one of an organic polymer insulating material, an inorganic insulating material, and a composite material;
  • the organic polymer insulating material is selected from the group consisting of polyamide, polyethylene terephthalate, polyimide, polyethylene, polypropylene, polystyrene, polyvinyl chloride, acrylonitrile-butadiene-benzene Ethylene copolymer, polybutylene terephthalate, polyparaphenylene terephthalamide, polypropylene, polyoxymethylene, epoxy resin, phenolic resin, polytetrafluoroethylene, polyvinylidene fluoride, silicone rubber At least one of polycarbonates;
  • the inorganic insulating material is at least one selected from the group consisting of alumina, silicon carbide, and silicon dioxide;
  • the composite material is at least one selected from the group consisting of epoxy resin glass fiber reinforced composite materials and polyester resin glass fiber reinforced composite materials.
  • a hole is disposed in the conductive layer, or a through hole penetrating the insulating layer and the conductive layer is disposed in the current collector.
  • the conductive layer is formed on the insulating layer by at least one of mechanical rolling, bonding, vapor deposition, and electroless plating.
  • the vapor deposition method is selected from the group consisting of physical vapor deposition
  • the physical vapor deposition method is preferably at least one of an evaporation method and a sputtering method.
  • the evaporation method is preferably at least one of a vacuum evaporation method, a thermal evaporation method, and an electron beam evaporation method.
  • the sputtering method is preferably a magnetron sputtering method.
  • the present application is also directed to a pole piece comprising the current collector of any of the above paragraphs of the present application and an electrode active material layer formed on the surface of the current collector.
  • the present application also relates to a battery comprising a positive electrode tab, a separator and a negative electrode tab, the positive pole tab and/or the negative pole tab being the pole piece of the present application.
  • r represents the internal resistance of the battery
  • Cap represents the capacity of the battery
  • the relationship between r and Cap satisfies: 40 Ah ⁇ m ⁇ ⁇ r ⁇ Cap ⁇ 2000 Ah ⁇ m ⁇ .
  • the present application also relates to the use of the current collector in a battery that only forms a point break to protect itself when preparing an abnormal condition that is caused by a short circuit.
  • the present application also relates to the use of the current collector as a current collector for a battery that only forms a point break when an abnormal condition that causes a short circuit is caused.
  • the abnormal condition that causes the short circuit is a nailing.
  • the present application proposes a current collector comprising a supporting layer having a supporting effect and a conductive layer having a conducting and collecting action, and the normal temperature sheet resistance R S of the conductive layer satisfies: 0.016 ⁇ / ⁇ ⁇ R S ⁇ 420 ⁇ / ⁇ .
  • the current collector can greatly improve the short-circuit resistance when a short circuit occurs under abnormal conditions of the battery, so that the short-circuit current is greatly reduced, thereby greatly reducing the heat generation of the short-circuit, greatly improving the safety performance of the battery, and additionally, because the heat generation is small,
  • the heat generated at the site where the internal short circuit occurs can be completely absorbed by the battery, and the temperature rise caused to the battery is also small, so that the influence of the short circuit damage on the battery can be limited to the "point" range, and only the "point break” is formed, and Does not affect the normal operation of the battery in a short time.
  • the battery having the current collector can be damaged by multiple internal short-circuits at the same time or continuously, and no accident such as fire or explosion occurs, and both can work normally in a short time.
  • FIG. 1 is a schematic structural view of a cathode current collector according to a specific embodiment of the present application.
  • FIG. 2 is a schematic structural view of a cathode current collector according to still another embodiment of the present application.
  • FIG. 3 is a schematic structural view of a negative electrode current collector according to a specific embodiment of the present application.
  • FIG. 4 is a schematic structural view of a negative current collector according to still another embodiment of the present application.
  • FIG. 5 is a schematic structural view of a positive electrode tab of a specific embodiment of the present application.
  • FIG. 6 is a schematic structural view of a positive electrode tab according to still another embodiment of the present application.
  • FIG. 7 is a schematic structural view of a negative electrode tab of a specific embodiment of the present application.
  • FIG. 8 is a schematic structural view of a negative electrode tab according to still another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a nailing test of the present application.
  • Figure 11 is a voltage change curve of a lithium ion battery 1 # and a lithium ion battery 4 # after a nail penetration test;
  • the present application relates to a current collector, and its structural schematic diagram is as shown in FIGS. 1 to 4, and includes an insulating layer and a conductive layer.
  • the insulating layer is used to carry the conductive layer to support and protect the conductive layer;
  • the conductive layer is used to carry the electrode active material layer for providing electrons to the electrode active material layer, that is, to play the role of conduction and current collecting;
  • the layer is on at least one surface of the insulating layer.
  • An insulating layer may be disposed on opposite surfaces of the insulating layer, and a schematic structural view thereof is shown in FIG. 1 and FIG. 3; a conductive layer may also be disposed on one side of only the insulating layer, and the structural schematic diagram is as shown in FIG. 2 and Figure 4 shows.
  • the normal temperature sheet resistance R S of the conductive layer satisfies:
  • the sheet resistance is measured in ohms/square ( ⁇ / ⁇ ), and can be applied to a two-dimensional system in which an electric conductor is considered as a two-dimensional entity, which is equivalent to the concept of resistivity used in a three-dimensional system.
  • ⁇ / ⁇ the concept of thin film resistor
  • represents the resistivity
  • A represents the cross-sectional area
  • L represents the length.
  • the cross-sectional area can be broken down into a width W and a film thickness t, that is, the resistance can be written as:
  • R S is a thin film resistor.
  • L W
  • the measured resistance R is the sheet resistance R S of the diaphragm
  • R S is independent of the magnitude of L or W
  • R S is the resistance value per square, so R S
  • the unit can be expressed as ohms per square ( ⁇ / ⁇ ).
  • the room temperature sheet resistance of the present application refers to a resistance value measured by a four-probe method on a conductive layer under normal temperature conditions.
  • the internal resistance of the battery usually includes the internal resistance of the battery and the internal resistance of the battery.
  • the active material resistance, current collector resistance, interface resistance, electrolyte composition, etc. all have a significant impact on the internal resistance of the battery.
  • the short-circuit current can be greatly reduced in the case of an internal short circuit of the battery, thereby greatly reducing the short-circuit heat generation and greatly improving the safety performance of the battery.
  • the short-circuit heat generation can be controlled to a range in which the battery can be completely absorbed, so that the heat generated at the site where the internal short-circuit occurs can be completely absorbed by the battery, and the temperature rise caused to the battery is also small, so that the short circuit can be short-circuited.
  • the impact of damage on the battery is limited to the "point" range, forming only a "point break” without affecting the normal operation of the battery in a short period of time.
  • the normal temperature sheet resistance R S of the conductive layer satisfies no more than 420 ⁇ / ⁇ .
  • the upper limit of the room temperature sheet resistance R S may be 420 ⁇ / ⁇ , 400 ⁇ / ⁇ , 350 ⁇ / ⁇ , 300 ⁇ / ⁇ , 250 ⁇ / ⁇ , 200 ⁇ / ⁇ , 150 ⁇ / ⁇ , 100 ⁇ / ⁇ , 80 ⁇ / ⁇ , 60 ⁇ / ⁇ , 40 ⁇ / ⁇ , 25 ⁇ / ⁇ , 20 ⁇ / ⁇ , 18 ⁇ / ⁇ , 16 ⁇ / ⁇ , 14 ⁇ / ⁇ , 12 ⁇ / ⁇ , 10 ⁇ / ⁇ , 8 ⁇ / ⁇ , 6 ⁇ / ⁇ , 4 ⁇ / ⁇ , 2 ⁇ / ⁇ , 1.8 ⁇ / ⁇
  • the lower limit of the room temperature film resistor R S can be 0.016 ⁇ / ⁇ , 0.032 ⁇ / ⁇ , 0.048 ⁇ / ⁇ , 0.064 ⁇ / ⁇ , 0.08 ⁇ / ⁇ , 0.09 ⁇ / ⁇ , 0.1 ⁇ / ⁇ , 0.2 ⁇ / ⁇ , 0.4 ⁇ / ⁇ , 0.6 ⁇ / ⁇ ,
  • the normal temperature sheet resistance of the conductive layer satisfies: 0.032 ⁇ / ⁇ ⁇ R S ⁇ 21 ⁇ / ⁇ , more preferably 0.080 ⁇ / ⁇ ⁇ R S ⁇ 8.4 ⁇ / ⁇ .
  • the thickness D2 of the conductive layer satisfies: 1 nm ⁇ D2 ⁇ 1 ⁇ m.
  • the upper limit of the thickness D2 of the conductive layer may be 1 ⁇ m, 900 nm, 800 nm, 700 nm, 600 nm, 500 nm, 450 nm, 400 nm, 350 nm, 300, 250 nm, 200 nm, 150 nm, 120 nm, 100 nm, 80 nm, 60 nm, and a conductive layer.
  • the lower limit of the thickness D2 may be 1 nm, 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, 55 nm; the range of the thickness D2 of the conductive layer may be any value of the upper limit or the lower limit.
  • the thickness D2 of the conductive layer satisfies: 20 nm ⁇ D2 ⁇ 500 nm, more preferably 50 nm ⁇ D2 ⁇ 200 nm.
  • the conductive layer is too thin, it is beneficial to increase the normal temperature film resistance R S of the current collector, but it is easy to break during the pole piece processing process; if the conductive layer is too thick, it will affect the weight energy density of the battery. And it is not conducive to increasing the normal temperature sheet resistance Rs of the conductive layer.
  • the thickness of the insulating layer is D1, and D1 satisfies 1 ⁇ m ⁇ D1 ⁇ 50 ⁇ m.
  • the upper limit of the thickness D1 of the conductive layer may be 50 ⁇ m, 45 ⁇ m, 40 ⁇ m, 35 ⁇ m, 30 ⁇ m, 25 ⁇ m, 20 ⁇ m, 15 ⁇ m, 12 ⁇ m, 10 ⁇ m, 8 ⁇ m, of the conductive layer.
  • the lower limit of the thickness D1 may be 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m; the range of the thickness D1 of the conductive layer may be any value of the upper limit or the lower limit.
  • D1 satisfies: 2 ⁇ m ⁇ D1 ⁇ 30 ⁇ m; more preferably, 5 ⁇ m ⁇ D1 ⁇ 20 ⁇ m.
  • the insulating layer mainly serves to support and protect the conductive layer. If the insulating layer is too thin, it is easy to break during the pole piece processing or the like; if it is too thick, the volume energy density of the battery using the current collector is lowered.
  • the material of the conductive layer is selected from at least one of a metal conductive material and a carbon-based conductive material.
  • the metal conductive material is preferably at least one of aluminum, copper, nickel, titanium, silver, nickel copper alloy, and aluminum zirconium alloy; and the carbon-based conductive material is preferably at least one of graphite, acetylene black, graphene, and carbon nanotube. .
  • the material of the insulating layer is selected from one of an organic polymer insulating material, an inorganic insulating material, and a composite material. Further preferably, the composite material is composed of an organic polymer insulating material and an inorganic insulating material.
  • the organic polymer insulating material is selected from the group consisting of polyamide (Polyamide, PA for short), polyethylene terephthalate (PET), and polyimide (Polyimide, PI for short).
  • Polyethylene PE
  • Polypropylene PP
  • Polystyrene PS
  • Polyvinyl chloride PVC
  • Acrylonitrile Butadiene-Styrene Acrylonitrile butadiene styrene copolymers abbreviated as ABS
  • polybutylene terephthalat PBT
  • poly-p-phenylene terephthamide PPA
  • epoxy resin epoxy resin
  • PPE polyphenylene ether
  • POM polyformaldehyde
  • Phenol-formaldehyde resin polytetrafluoroethylene (PTFE)
  • silicone rubber At least one of (Silicone rubber), polyvinylidene fluoride (PVDF), and polycarbonate (Polycarbonate, PC for short).
  • the inorganic insulating material is preferably at least one of alumina (Al 2 O 3 ), silicon carbide (SiC), and silicon dioxide (SiO 2 );
  • the composite is preferably at least one of an epoxy resin glass fiber reinforced composite material and a polyester resin glass fiber reinforced composite material.
  • the current collector of the present application can improve the weight energy density of the battery while improving the safety performance of the battery. Moreover, since the insulating layer can perform good bearing and protection for the conductive layer located on the surface thereof, it is difficult to generate the pole piece fracture phenomenon which is common in the conventional current collector.
  • the conductive layer may be formed on the insulating layer by at least one of mechanical rolling, bonding, vapor deposition, and electroless plating, preferably by vapor deposition.
  • Physical Vapor Deposition PVD
  • physical vapor deposition method is preferably at least one of evaporation method and sputtering method
  • evaporation method is preferably vacuum evaporation method, thermal evaporation method (Thermal Evaporation Deposition), At least one of an electron beam evaporation method (EBEM), which is preferably magnetron sputtering.
  • PVD Physical Vapor Deposition
  • physical vapor deposition method is preferably at least one of evaporation method and sputtering method
  • evaporation method is preferably vacuum evaporation method, thermal evaporation method (Thermal Evaporation Deposition),
  • EBEM electron beam evaporation method
  • the structure of the current collector can be further improved, for example, a hole can be provided in the conductive layer. 10 ⁇ m ⁇ hole diameter ⁇ 100 ⁇ m, the area of the hole occupies 5% to 50% of the total area of the conductive layer; or a through hole penetrating the insulating layer and the conductive layer in the current collector, 10 ⁇ m ⁇ diameter of the through hole ⁇ 100 ⁇ m, the current collector may have a porosity of 5% to 50%.
  • a hole may be formed in the conductive layer by electroless plating, and a through hole penetrating the insulating layer and the conductive layer may be formed in the current collector by mechanical punching.
  • the application also relates to a pole piece comprising the current collector of the present application and an electrode active material layer formed on the surface of the current collector.
  • the pole piece is the positive electrode tab 1
  • the positive electrode current collector 10 of the present application and the positive electrode active material layer 11 formed on the surface of the positive electrode current collector 10 are included, wherein the positive electrode current collector 10 includes the positive electrode insulating layer 101 and the positive electrode conductive layer 102.
  • the schematic diagram of the positive current collector structure is shown in FIG. 1 and FIG. 2
  • the schematic diagram of the positive pole piece structure is shown in FIG. 5 and FIG. 6 .
  • the anode current collector 20 of the present application and the anode active material layer 21 formed on the surface of the anode current collector 20 are included, wherein the anode current collector 20 includes the anode insulating layer 201 and the anode conductive layer 202.
  • the schematic diagram of the structure of the anode current collector is shown in FIG. 3 and FIG. 4, and the structure diagram of the anode pole piece is shown in FIG. 7 and FIG.
  • the current collector is coated on both sides with the active material, and the prepared pole piece is directly applied to the battery as shown in FIG. 5 and FIG. in.
  • the current collector is coated with the active material on one side, and the prepared pole piece is as shown in FIG. 6 and FIG. in.
  • the application also relates to a battery comprising a positive electrode tab, a separator and a negative pole piece.
  • the positive electrode tab and/or the negative electrode tab are the above-described pole pieces of the present application.
  • the battery of the present application may be of a wound type or a laminated type.
  • the battery of the present application may be one of a lithium ion secondary battery, a lithium primary battery, a sodium ion battery, and a magnesium ion battery. But it is not limited to this.
  • the positive electrode tab of the battery of the present application employs the above-described pole piece of the present application.
  • the aluminum content in the conventional cathode current collector is high, when a short circuit occurs under abnormal conditions of the battery, the heat generated at the short-circuit point can cause a violent aluminothermic reaction, thereby generating a large amount of heat and causing an explosion of the battery, etc., so when the battery
  • the positive pole piece of the present application adopts the pole piece of the present application, since the amount of aluminum in the positive electrode current collector is only the thickness of the nanometer order, the amount of aluminum in the positive electrode current collector is greatly reduced, so that the aluminothermic reaction can be avoided, thereby significantly improving Battery safety performance.
  • FIG. 9 is a schematic diagram of a nailing experiment of the present application. For the sake of simplicity, only a layer of positive pole piece 1, a layer of separator 3 and a layer of negative pole piece 2 of the nail 4 penetrating the battery are shown. It should be noted that the actual nailing test is the penetration of the nail 4
  • the entire battery generally includes a plurality of positive electrode tabs 1, a multilayer separator 3, and a multilayer negative electrode tab 2.
  • the present application has found through a large number of experiments that the larger the capacity of the battery, the smaller the internal resistance of the battery, the worse the safety performance of the battery, that is, the battery capacity (Cap) is inversely related to the internal resistance (r) of the battery:
  • r is the internal resistance of the battery
  • Cap is the capacity of the battery
  • A is the coefficient
  • the battery capacity Cap is the theoretical capacity of the battery and is usually the theoretical capacity of the positive pole piece of the battery.
  • r can be obtained by internal resistance test.
  • the battery of the present application since the battery has the same internal resistance when the battery capacity is the same, it can have a large A value.
  • the battery of the present application when the coefficient A satisfies 40 Ah ⁇ m ⁇ ⁇ A ⁇ 2000 Ah ⁇ m ⁇ , the battery can have both good electrochemical performance and good safety performance.
  • the coefficient A satisfies 40 Ah ⁇ m ⁇ ⁇ A ⁇ 1000 Ah ⁇ m ⁇ ; more preferably, the coefficient A satisfies 60 Ah ⁇ m ⁇ ⁇ A ⁇ 600 Ah ⁇ m ⁇ .
  • the present application also relates to the use of the current collector in a battery that only forms a point break to protect itself when preparing an abnormal condition that is caused by a short circuit.
  • the battery when the battery can limit the influence of short-circuit damage on the battery to the "point" range, it does not affect the normal use of the battery in a short time, and is called "point break".
  • the present application also relates to the use of the current collector as a current collector of a battery which only forms a point break when an abnormal condition causing a short circuit is caused.
  • the abnormal condition causing the short circuit includes impact, extrusion, foreign matter penetration, etc., since the short circuit is caused by the electrical connection of the positive and negative electrodes by the material having certain conductivity, in the present application, These abnormal conditions are collectively referred to as nailing.
  • the abnormality of the battery is simulated by a nailing experiment.
  • a certain thickness of the insulating layer is selected, and a conductive layer of a certain thickness is formed on the surface by vacuum evaporation, mechanical rolling or bonding, and the normal temperature sheet resistance of the conductive layer is measured.
  • the forming conditions of the vacuum evaporation method are as follows: the surface-cleaning insulating layer is placed in a vacuum plating chamber, and the high-purity wire in the metal evaporation chamber is melted and evaporated at a high temperature of 1600 ° C to 2000 ° C, and the evaporated metal is evaporated. After passing through a cooling system in the vacuum plating chamber, it is finally deposited on the surface of the insulating layer to form a conductive layer.
  • the forming conditions of the mechanical rolling method are as follows: the foil of the conductive layer material is placed on the machine In the roll, it is rolled to a predetermined thickness by applying a pressure of 20t to 40t, and then placed on the surface of the surface-cleaned insulating layer, and finally placed in a mechanical roll by applying 30t to 50t. The pressure makes the two close together.
  • the bonding method is formed under the following conditions: a foil of a conductive layer material is placed in a mechanical roll, which is rolled to a predetermined thickness by applying a pressure of 20 t to 40 t; and then subjected to a surface cleaning treatment of the insulating layer. The surface is coated with a mixed solution of PVDF and NMP; finally, the above-mentioned predetermined thickness of the conductive layer is bonded to the surface of the insulating layer, and dried at 100 ° C.
  • the test environment is: normal temperature 23 ⁇ 2 ° C, relative humidity ⁇ 65%.
  • the material to be tested is surface cleaned, then placed horizontally on the test bench, the four probes are lowered, the probe is in good contact with the surface of the material to be tested, and then the current range of the calibration material of the automatic test mode is adjusted.
  • the film square resistance measurement was performed under the current range, and 8 to 10 data points of the same sample were collected as data measurement accuracy and error analysis.
  • the positive electrode slurry or the negative electrode slurry is coated on the surface of the current collector by a conventional battery coating process, and dried at 100 ° C to obtain a positive electrode tab or a negative electrode tab.
  • the current collector is an Al foil having a thickness of 12 ⁇ m
  • the electrode active material layer is a layer of a ternary (NCM) material having a certain thickness.
  • the current collector is a Cu foil having a thickness of 8 ⁇ m
  • the electrode active material layer is a graphite material layer having a certain thickness.
  • the positive electrode tab (compact density: 3.4 g/cm 3 ), the PP/PE/PP separator, and the negative electrode tab (compact density: 1.6 g/cm 3 ) are wound into a bare battery by a conventional battery manufacturing process.
  • the core was then placed in a battery case, and an electrolyte solution (EC:EMC volume ratio of 3:7 and LiPF 6 of 1 mol/L) was injected, followed by sealing and chemical conversion, and finally a lithium ion battery was obtained.
  • a lithium ion battery 14 # and a lithium ion battery 15 # having a further improved capacity are prepared.
  • the cycle life test is performed on the lithium ion battery.
  • the specific test methods are as follows:
  • Lithium-ion battery 1 # and lithium-ion battery 4 # are charged and discharged at 25 ° C and 45 ° C respectively, that is, first charged to 4.2 V with a current of 1 C, and then discharged to 2.8 V with a current of 1 C, recording The discharge capacity of the first week; then the battery was subjected to a 1C/1C charge and discharge cycle for 1000 weeks, the battery discharge capacity at the 1000th week was recorded, and the discharge capacity at the 1000th week was divided by the discharge capacity of the first week to obtain the 1000th week. Capacity retention rate.
  • Test of battery temperature use a multi-channel thermometer to attach the temperature sensing line to the geometric center of the needled surface and the back side of the battery to be nailed. After the nail is completed, perform the battery temperature tracking for five minutes. Test and then record the temperature of the battery at five minutes.
  • N/A means that a steel needle penetrates into the battery and thermal runaway occurs and is destroyed.
  • the current collector of the embodiment of the present application can greatly improve the safety performance of the lithium ion battery. From the results in Table 5 and FIG. 10 and FIG. 11 , the lithium ion batteries 1 # , 6 # , 11 # of the current collector of the embodiment of the present application are not used, and at the moment of nailing, the battery temperature suddenly rises by several hundred degrees. The voltage suddenly drops to zero, which means that at the moment of nailing, the battery is internally short-circuited, generating a lot of heat, the battery instantaneously loses control and destruction, and cannot continue to work; and because the first steel needle penetrates the battery The battery has been out of control and destroyed, so it is impossible to carry out six nail penetration tests on such batteries.
  • the data in Table 6 indicates that the lithium ion battery 6 # and the lithium ion battery 11 # of the current collector of the embodiment of the present application were not used, and the coefficient A was small.
  • the coefficient A of the lithium ion batteries 4 # , 5 # , 14 # ⁇ 15 # using the current collector of the embodiment of the present application is larger. Therefore, it is confirmed that the larger the coefficient A is, the smaller the temperature rise occurs when the battery is internally short-circuited under abnormal conditions, and the safety performance of the battery is better.
  • the current collector of the embodiment of the present application can greatly reduce the heat generation of the short-circuit, thereby improving the safety performance of the battery; in addition, the influence of the short-circuit damage on the battery can be limited to the “point” range. Only the "point break" is formed without affecting the normal operation of the battery in a short time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请涉及电池领域,具体地讲,涉及一种集流体,其极片和电池及应用。本申请的集流体包括绝缘层和导电层,绝缘层用于承载导电层,导电层用于承载电极活性材料层,导电层的常温薄膜电阻RS满足:0.016Ω/□≤RS≤420Ω/□。本申请的集流体可大大提高电池异常情况下发生短路时的短路电阻,使短路电流大幅度减小,极大地降低短路产热量,发生内短路的位点处产生的热量可以被电池完全吸收,从而可以将短路损坏对电池的影响局限于"点"范围,仅形成"点断路",不影响电池在短时间内的正常工作。

Description

一种集流体,其极片和电池及应用 技术领域
本申请涉及电池领域,具体地讲,涉及一种集流体,其极片和电池及应用。
背景技术
锂离子电池由于具备能量密度大、输出功率高、循环寿命长和环境污染小等优点而被广泛应用于电动汽车以及消费类电子产品中。然而锂离子电池在受到挤压、碰撞或穿刺等异常情况时很容易发生着火、爆炸,从而引起严重危害。因此锂离子电池的安全问题很大程度地限制了锂离子电池的应用和普及。
大量实验结果表明,电池内短路是造成锂离子电池安全隐患的根本所在。为了避免发生电池内短路,研究者们试图改进隔膜结构、电池机械结构等。其中有些研究是从改善集流体的设计方面来提升锂离子电池的安全性能。
当由于发生碰撞、挤压、穿刺等异常情况而导致电池发生内短路时,电池温度会上升;已有技术中有采用在金属集流体的材料中加入低熔点合金的技术方案,随着电池温度的上升,该集流体中的低熔点合金发生熔融,从而造成极片断路,由此切断电流,从而改善了电池的安全性;或采用具有树脂层两面复合有金属层的多层结构的集流体,随着电池温度的上升,当达到树脂层的材料的熔点时,该集流体的树脂层熔融而使极片破损,由此切断电流,从而改善电池的安全问题。
然而已有技术中的这些方法都无法有效地阻止锂离子电池内短路的发生,而且也无法保证在异常情况发生后电池还可以继续工作。在上述这些改进方法中,电池发生内短路后,电池温度依然会急剧升高,当电池温度骤升时,若安全构件不能快速响应的话,则依然会发生不同程度的危险;而且在上述这些改进方法中,在安全构件响应后,虽然电池的安全隐患得 以解决,然而电池却无法继续工作。
因此,有必要提供一种能在碰撞、挤压、穿刺等异常情况发生后,有效地防止电池由于内短路的发生而引起的着火、爆炸等事故且不影响电池正常工作的集流体和电池设计。
发明内容
本申请的首要发明目的在于提出一种集流体。
本申请的第二发明目的在于提出采用本申请集流体的极片。
本申请的第三发明目的在于提出采用本申请极片的电池。
本申请的第四发明目的在于提出该集流体的应用。
为了完成本申请的目的,采用的技术方案为:
本申请涉及一种集流体,包括绝缘层和导电层,所述绝缘层用于承载所述导电层;所述导电层用于承载电极活性材料层,且所述导电层位于所述绝缘层的至少一个表面上,所述导电层的常温薄膜电阻RS满足:0.016Ω/□≤RS≤420Ω/□。
优选的,所述导电层的常温薄膜电阻RS满足:0.032Ω/□≤RS≤21Ω/□;
优选的,0.080Ω/□≤RS≤8.4Ω/□。
优选的,所述导电层的厚度为D2,D2满足:1nm≤D2≤1μm;
优选的,20nm≤D2≤500nm;
优选的,50nm≤D2≤200nm。
优选的,所述绝缘层的厚度为D1,D1满足:1μm≤D1≤50μm;
优选的,2μm≤D1≤30μm;
优选的,5μm≤D1≤20μm。
优选的,所述导电层的材料选自金属导电材料、碳基导电材料中的至少一种;
优选的,所述金属导电材料选自铝、铜、镍、钛、银、镍铜合金、铝锆合金中的至少一种;
优选的,所述碳基导电材料选自石墨、乙炔黑、石墨烯、碳纳米管中 的至少一种;
优选的,所述绝缘层的材料选自有机聚合物绝缘材料、无机绝缘材料、复合材料中的至少一种;
优选的,所述有机聚合物绝缘材料选自聚酰胺、聚对苯二甲酸酯、聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、丙烯腈-丁二烯-苯乙烯共聚物、聚对苯二甲酸丁二醇酯、聚对苯二甲酰对苯二胺、聚丙乙烯、聚甲醛、环氧树脂、酚醛树脂、聚四氟乙烯、聚偏氟乙烯、硅橡胶、聚碳酸酯中的至少一种;
优选的,所述无机绝缘材料选自氧化铝、碳化硅、二氧化硅中的至少一种;
优选的,所述复合材料选自环氧树脂玻璃纤维增强复合材料、聚酯树脂玻璃纤维增强复合材料中的至少一种。
优选的,所述导电层内设置有孔,或所述集流体内设置有贯穿所述绝缘层和所述导电层的通孔。
优选的,所述导电层通过机械辊轧、粘结、气相沉积法、化学镀中的至少一种形成于所述绝缘层上。
优选的,所述气相沉积法选自物理气相沉积法;
所述物理气相沉积法优选蒸发法、溅射法中的至少一种,
所述蒸发法优选真空蒸镀法、热蒸发法、电子束蒸发法中的至少一种,
所述溅射法优选磁控溅射法。
本申请还涉及一种极片,包括本申请上述任一段落所述的集流体和形成于所述集流体表面的电极活性材料层。
本申请还涉及一种电池,包括正极极片、隔膜和负极极片,所述正极极片和/或负极极片为本申请的极片。
优选的,r表示所述电池的内阻,Cap表示所述电池的容量,r与Cap的关系满足:40Ah·mΩ≤r×Cap≤2000Ah·mΩ。
本申请还涉及该集流体在制备受到引发短路的异常情况时仅形成点断路以自身保护的电池中的应用。
本申请还涉及该集流体作为受到引发短路的异常情况时仅形成点断路的电池的集流体的用途。
优选的,所述引发短路的异常情况为穿钉。
本申请的技术方案至少具有以下有益的效果:
本申请提出一种集流体,该集流体包括具有支撑作用的绝缘层和具有导电和集流作用的导电层,导电层的常温薄膜电阻RS满足:0.016Ω/□≤RS≤420Ω/□。该集流体可大大提高电池异常情况下发生短路时的短路电阻,使短路电流大幅度减小,因此可极大地降低短路产热量,极大地改善电池的安全性能;另外由于产热量小,因此在发生内短路的位点处产生的热量可以被电池完全吸收,对电池造成的温升也很小,从而可以将短路损坏对电池的影响局限于“点”范围,仅形成“点断路”,而不影响电池在短时间内的正常工作。
并且,具有该集流体的电池可以同时或连续受到多次内短路损坏,均不会发生着火、爆炸等事故,且均可以在短时间内正常工作。
附图说明
图1为本申请某一具体实施方式的正极集流体的结构示意图;
图2为本申请又一具体实施方式的正极集流体的结构示意图;
图3为本申请某一具体实施方式的负极集流体的结构示意图;
图4为本申请又一具体实施方式的负极集流体的结构示意图;
图5为本申请某一具体实施方式的正极极片的结构示意图;
图6为本申请又一具体实施方式的正极极片的结构示意图;
图7为本申请某一具体实施方式的负极极片的结构示意图;
图8为本申请又一具体实施方式的负极极片的结构示意图;
图9为本申请一次穿钉实验示意图;
图10为锂离子电池1#和锂离子电池4#在一次穿钉实验后的温度变化曲线;
图11为锂离子电池1#和锂离子电池4#在一次穿钉实验后的电压变化曲线;
其中:
1-正极极片;
10-正极集流体;
101-正极绝缘层;
102-正极导电层;
11-正极活性材料层;
2-负极极片;
20-负极集流体;
201-负极绝缘层;
202-负极导电层;
21-负极活性材料层;
3-隔膜;
4-钉子。
具体实施方式
下面结合具体实施例,进一步阐述本申请。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。
本申请涉及一种集流体,其结构示意图如图1~图4所示,包括绝缘层和导电层。绝缘层用于承载导电层,对导电层起到支撑和保护的作用;导电层用于承载电极活性材料层,用于为电极活性材料层提供电子,即起到导电和集流的作用;导电层位于绝缘层的至少一个表面上。可在绝缘层的相对的两个表面上均设置有绝缘层,其结构示意图如图1和图3所示;也可在仅绝缘层的一面上设置有导电层,其结构示意图如图2和图4所示。
在集流体中,导电层的常温薄膜电阻RS满足:
0.016Ω/□≤RS≤420Ω/□;常温为20℃。
其中,薄膜电阻用欧姆/平方(Ω/□)来计量,可被应用于将导电体考虑为一个二维实体的二维系统,其与三维系统下所用的电阻率的概念对等。当使用到薄膜电阻这一概念的时候,电流理论上假设为沿着薄膜的平面流动。
对于常规三维导体,电阻的计算公式为:
Figure PCTCN2017081904-appb-000001
其中,ρ代表电阻率,A代表截面面积,L代表长度。截面面积可被分解为宽度W和薄膜厚度t,即,电阻可被记为:
Figure PCTCN2017081904-appb-000002
其中,RS即为薄膜电阻。当膜片为正方形形状,L=W,所测得的电阻R即为膜片的薄膜电阻RS,而且RS与L或W的大小无关,RS是单位正方形的电阻值,因此RS的单位可以表示为欧姆每平方(Ω/□)。
本申请的常温薄膜电阻是指在常温条件下对导电层采用四探针法测量得到的电阻值。
在现有的锂离子电池中,当在异常情况下发生电池内短路时,瞬间产生大电流,并伴随着大量的短路产热,这些热量通常还会引发正极铝箔集流体处的铝热反应,进而使电池发生着火、爆炸等。
而在本申请中,通过提高集流体的常温薄膜电阻RS来解决上述技术问题。
电池的内阻通常包括电池欧姆内阻和电池极化内阻,其中活性物质电阻、集流体电阻、界面电阻、电解液组成等均会对电池内阻产生较明显的影响。
在异常情况下发生短路时,由于发生内短路,电池的内阻会大大降低。因此增大集流体的电阻,可增大电池短路后的内阻,由此改善电池的安全性能。在本申请中,当电池可将短路损坏对电池的影响局限于“点”范围,即可将短路损坏对电池的影响局限于损坏点位处,且由于集流体的高电阻使得短路电流大幅度减小,短路产热使电池的温升不明显,不影响电池在短时间内正常使用的特点,称为“点断路”。
当导电层的常温薄膜电阻RS不小于0.016Ω/□时,可以使电池在发生内短路的情况下,短路电流大幅减小,因此可极大地降低短路产热量,极大地改善电池的安全性能;此外,还可将短路产热量控制在电池可以完全吸收的范围,因此在发生内短路的位点处产生的热量可以被电池完全吸收,对电池造成的温升也很小,从而可以将短路损坏对电池的影响局限于“点”范围,仅形成“点断路”,而不影响电池在短时间内的正常工作。
然而,当导电层的常温薄膜电阻RS太大时,会影响导电层的导电和 集流的作用,电子无法在集流体、电极活性材料层以及两者的界面之间进行有效地传导,即会增大导电层表面的电极活性材料层的极化,影响电池的电化学性能。因此导电层的常温薄膜电阻RS满足不大于420Ω/□。
在本申请中,常温薄膜电阻RS的上限可为420Ω/□、400Ω/□、350Ω/□、300Ω/□、250Ω/□、200Ω/□、150Ω/□、100Ω/□、80Ω/□、60Ω/□、40Ω/□、25Ω/□、20Ω/□、18Ω/□、16Ω/□、14Ω/□、12Ω/□、10Ω/□、8Ω/□、6Ω/□、4Ω/□、2Ω/□、1.8Ω/□,常温薄膜电阻RS的下限可为0.016Ω/□、0.032Ω/□、0.048Ω/□、0.064Ω/□、0.08Ω/□、0.09Ω/□、0.1Ω/□、0.2Ω/□、0.4Ω/□、0.6Ω/□、0.8Ω/□、1Ω/□、1.2Ω/□、1.4Ω/□、1.6Ω/□;常温薄膜电阻RS的范围可由上限或下限的任意数值组成。
作为本申请集流体的一种改进,导电层的常温薄膜电阻满足:0.032Ω/□≤RS≤21Ω/□,更优选地0.080Ω/□≤RS≤8.4Ω/□。
作为本申请集流体的一种改进,导电层的厚度D2满足:1nm≤D2≤1μm。
在本申请中,导电层的厚度D2的上限可为1μm、900nm、800nm、700nm、600nm、500nm、450nm、400nm、350nm、300、250nm、200nm、150nm、120nm、100nm、80nm、60nm,导电层的厚度D2的下限可为1nm、5nm、10nm、15nm、20nm、25nm、30nm、35nm、40nm、45nm、50nm、55nm;导电层的厚度D2的范围可由上限或下限的任意数值组成。
作为本申请集流体的一种改进,导电层的厚度D2满足:20nm≤D2≤500nm,更优选地50nm≤D2≤200nm。
若导电层太薄的话,虽然有益于增大集流体的常温薄膜电阻RS,然而却易在极片加工工艺等过程中发生破损;若导电层太厚的话,则会影响电池的重量能量密度,且会不利于增大导电层的常温薄膜电阻Rs。
作为本申请集流体的一种改进,绝缘层的厚度为D1,D1满足1μm≤D1≤50μm。
在本申请中,导电层的厚度D1的上限可为50μm、45μm、40μm、35μm、30μm、25μm、20μm、15μm、12μm、10μm、8μm,导电层的 厚度D1的下限可为1μm、1.5μm、2μm、3μm、4μm、5μm、6μm、7μm;导电层的厚度D1的范围可由上限或下限的任意数值组成。
作为本申请集流体的一种改进,D1满足:2μm≤D1≤30μm;更优选地,5μm≤D1≤20μm。
绝缘层主要起到支撑和保护导电层的作用。若绝缘层太薄的话,很容易在极片加工工艺等过程中发生断裂;太厚的话,则会降低使用该集流体的电池的体积能量密度。
作为本申请集流体的一种改进,导电层的材料选自金属导电材料、碳基导电材料中的至少一种。
其中,金属导电材料优选铝、铜、镍、钛、银、镍铜合金、铝锆合金中的至少一种;碳基导电材料优选石墨、乙炔黑、石墨烯、碳纳米管中的至少一种。
作为本申请集流体的一种改进,绝缘层的材料选自有机聚合物绝缘材料、无机绝缘材料、复合材料中的一种。进一步优选的,复合材料由有机聚合物绝缘材料和无机绝缘材料组成。
作为本申请集流体的一种改进,有机聚合物绝缘材料选自聚酰胺(Polyamide,简称PA)、聚对苯二甲酸酯(Polyethylene terephthalate,简称PET)、聚酰亚胺(Polyimide,简称PI)、聚乙烯(Polyethylene,简称PE)、聚丙烯(Polypropylene,简称PP)、聚苯乙烯(Polystyrene,简称PS)、聚氯乙烯(Polyvinyl chloride,简称PVC)、丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile butadiene styrene copolymers,简称ABS)、聚对苯二甲酸丁二醇酯(Polybutylene terephthalat,简称PBT)、聚对苯二甲酰对苯二胺(Poly-p-phenylene terephthamide,简称PPA)、环氧树脂(epoxy resin)、聚丙乙烯(polyphenylene ether,简称PPE)、聚甲醛(Polyformaldehyde,简称POM)、酚醛树脂(Phenol-formaldehyde resin)、聚四氟乙烯(Polytetrafluoroethylene,简称PTFE)、硅橡胶(Silicone rubber)、聚偏氟乙烯(Polyvinylidenefluoride,简称PVDF)、聚碳酸酯(Polycarbonate,简称PC)中的至少一种。
无机绝缘材料优选氧化铝(Al2O3)、碳化硅(SiC)、二氧化硅(SiO2)中的至少一种;
复合物优选环氧树脂玻璃纤维增强复合材料、聚酯树脂玻璃纤维增强复合材料中的至少一种。
由于绝缘层的密度通常较金属小,因此本申请集流体,在提升电池安全性能的同时,还可以提升电池的重量能量密度。并且由于绝缘层可以对位于其表面的导电层起到良好的承载和保护作用,因而不易产生传统集流体中常见的极片断裂现象。
作为本申请集流体的一种改进,导电层可通过机械辊轧、粘结、气相沉积法(vapor deposition)、化学镀(Electroless plating)中的至少一种形成于绝缘层上,气相沉积法优选物理气相沉积法(Physical Vapor Deposition,PVD);物理气相沉积法优选蒸发法、溅射法中的至少一种;蒸发法优选真空蒸镀法(vacuum evaporating)、热蒸发法(Thermal Evaporation Deposition)、电子束蒸发法(electron beam evaporation method,EBEM)中的至少一种,溅射法优选磁控溅射法(Magnetron sputtering)。
作为本申请集流体的一种改进,为了有利于电解液渗透入电极活性材料层中,减小电池的极化,可对集流体的结构做进一步的改进,例如,可在导电层内设置孔,10μm≤孔的直径≤100μm,孔的面积占导电层的总面积的比例可为5%~50%;或者在集流体内设置贯穿绝缘层和导电层的通孔,10μm≤通孔的直径≤100μm,集流体的孔隙率可为5%~50%。具体的,例如可采用化学镀的方法在导电层中形成孔,可以采用机械打孔法在集流体中形成贯穿绝缘层和导电层的通孔。
本申请还涉及一种极片,包括本申请的集流体和形成于集流体表面的电极活性材料层。
当极片为正极极片1时,包括本申请的正极集流体10和形成于正极集流体10表面的正极活性材料层11,其中正极集流体10包括正极绝缘层101和正极导电层102。其中,正极集流体结构示意图如图1和图2所示,正极极片结构示意图如图5和图6所示。
当极片为负极极片2时,包括本申请的负极集流体20和形成于负极集流体20表面的负极活性材料层21,其中负极集流体20包括负极绝缘层201和负极导电层202。其中,负极集流体结构示意图如图3和图4所示,负极极片结构示意图如图7和图8所示。
其中,如图1和图3所示,当绝缘层的双面设置有导电层,集流体双面涂覆活性物质,制备得到的极片如图5和图7所示,可直接应用于电池中。
如图2和图4所示,当绝缘层的单面设置有导电层时,集流体单面涂覆活性物质,制备得到的极片如图6和图8所示,可折叠后应用于电池中。
本申请还涉及一种电池,包括正极极片、隔膜和负极极片。
正极极片和/或负极极片为上述本申请的极片。本申请的电池可为卷绕式,也可为叠片式。本申请的电池可以为锂离子二次电池、锂一次电池、钠离子电池、镁离子电池中的一种。但并不局限于此。
优选地,本申请的电池的正极极片采用上述本申请的极片。因为常规正极集流体中的铝含量高,在电池异常情况下发生短路时,短路点处产生的热量可以引发剧烈的铝热反应,从而产生大量的热并引起电池发生爆炸等事故,所以当电池的正极极片采用本申请的极片时,由于正极集流体中铝的量仅为纳米级的厚度,因此大大减少了正极集流体中铝的量,因此可以避免产生铝热反应,从而显著改善电池的安全性能。
在本申请中采用穿钉实验来模拟电池的异常情况,并观察穿钉后电池的变化。图9为本申请一次穿钉实验示意图。为了简单起见,图中仅仅示出了钉子4穿透电池的一层正极极片1、一层隔膜3和一层负极极片2,需要说明的是,实际的穿钉实验是钉子4穿透整个电池,通常包括多层正极极片1、多层隔膜3和多层负极极片2。
此外,本申请通过大量的实验发现,电池的容量越大,则电池的内阻越小,则电池的安全性能就越差,即电池容量(Cap)与电池内阻(r)呈反比关系:
r=A/Cap
式中r表示电池的内阻,Cap表示电池的容量,A为系数。
电池容量Cap为电池的理论容量,通常为电池正极极片的理论容量。
r可以通过内阻仪测试得到。
对于由常规正极极片和常规负极极片组成的常规锂离子电池来说,由于在异常情况下发生内短路时,基本所有的常规锂离子电池均会发生不同程度的冒烟、起火、爆炸等。
而对于本申请的电池来说,由于在电池容量相同的情况下,具有比较大的电池内阻,因此可以具有较大的A值。
对于本申请的电池来说,当系数A满足40Ah·mΩ≤A≤2000Ah·mΩ时,电池可以兼具良好的电化学性能和良好的安全性能。
当A值太大时,电池由于内阻过大,电化学性能会劣化,因此没有实用性。
当A值太小时,电池发生内短路时温升过高,电池安全性能降低。
进一步优选的,系数A满足40Ah·mΩ≤A≤1000Ah·mΩ;更优选的,系数A满足60Ah·mΩ≤A≤600Ah·mΩ。
本申请还涉及该集流体在制备受到引发短路的异常情况时仅形成点断路以自身保护的电池中的应用。在本申请中,当电池可将短路损坏对电池的影响局限于“点”范围,不影响电池在短时间内正常使用的特点,称为“点断路”。
另一方面,本申请还涉及该集流体作为受到引发短路的异常情况时仅形成点断路的电池的集流体的用途。
优选的,引发短路的异常情况包括撞击、挤压、异物刺入等,由于在这些损伤过程中引发短路的均由具备一定导电性的材料将正负极电连接而引发,因此在本申请中将这些异常情况统称为穿钉。并在本申请具体实施方式中通过穿钉实验来模拟电池的异常情况。
实施例
1、集流体的制备:
选取一定厚度的绝缘层,在其表面通过真空蒸镀、机械辊轧或粘结的方式形成一定厚度的导电层,并对导电层的常温薄膜电阻进行测定。
其中,
(1)真空蒸镀方式的形成条件如下:将经过表面清洁处理的绝缘层置于真空镀室内,以1600℃至2000℃的高温将金属蒸发室内的高纯金属丝熔化蒸发,蒸发后的金属经过真空镀室内的冷却系统,最后沉积于绝缘层的表面,形成导电层。
(2)机械辊轧方式的形成条件如下:将导电层材料的箔片置于机械 辊中,通过施加20t至40t的压力将其碾压为预定的厚度,然后将其置于经过表面清洁处理的绝缘层的表面,最后将两者置于机械辊中,通过施加30t至50t的压力使两者紧密结合。
(3)粘结方式的形成条件如下:将导电层材料的箔片置于机械辊中,通过施加20t至40t的压力将其碾压为预定的厚度;然后在经过表面清洁处理的绝缘层的表面涂布PVDF与NMP的混合溶液;最后将上述预定厚度的导电层粘结于绝缘层的表面,并于100℃下烘干。
(4)常温薄膜电阻测定方法为:
使用RTS-9型双电测四探针测试仪,测试环境为:常温23±2℃,相对湿度≤65%。测试时,将待测材料进行表面清洁,然后水平置于测试台上,将四探针放下,使探针与待测材料表面有良好接触,然后调节自动测试模式标定材料的电流量程,在合适的电流量程下进行薄膜方阻测量,并采集相同样品的8至10个数据点作为数据测量准确性和误差分析。
本申请实施例的集流体及其极片具体参数如表1所示,对比例集流体及其极片具体参数如表2所示。
2、极片的制备:
通过常规的电池涂布工艺,在集流体的表面涂布正极浆料或负极浆料,100℃干燥后得到正极极片或负极极片。
常规正极极片:集流体是厚度为12μm的Al箔片,电极活性材料层是一定厚度的三元(NCM)材料层。
常规负极极片:集流体是厚度为8μm的Cu箔片,电极活性材料层是一定厚度的石墨材料层。
本申请实施例的集流体及其极片具体参数如表1所示,对比例集流体及其极片具体参数如表2所示。
3、电池的制备:
通过常规的电池制作工艺,将正极极片(压实密度:3.4g/cm3)、PP/PE/PP隔膜和负极极片(压实密度:1.6g/cm3)一起卷绕成裸电芯,然后置入电池壳体中,注入电解液(EC:EMC体积比为3:7,LiPF6为1mol/L),随之进行密封、化成等工序,最终得到锂离子电池。
本申请的实施例制作的锂离子电池以及对比例锂离子电池的具体组 成如表3所示。
表1
Figure PCTCN2017081904-appb-000003
表2
Figure PCTCN2017081904-appb-000004
表3
Figure PCTCN2017081904-appb-000005
Figure PCTCN2017081904-appb-000006
其中,通过进一步增加电芯的卷绕层数,制备容量得到进一步提高的锂离子电池14#和锂离子电池15#
实验例:
1、电池测试方法:
对锂离子电池进行循环寿命测试,具体测试方法如下:
将锂离子电池1#与锂离子电池4#分别于25℃和45℃两种温度下进行充放电,即先以1C的电流充电至4.2V,然后再以1C的电流放电至2.8V,记录下第一周的放电容量;然后使电池进行1C/1C充放电循环1000周,记录第1000周的电池放电容量,将第1000周的放电容量除以第一周的放电容量,得到第1000周的容量保有率。
实验结果如表4所示。
2、电池内阻的测试
使用内阻仪(型号为HIOKI-BT3562)进行测试,测试环境为:常温23±2℃。测试前,将内阻仪正负极两端短接校准电阻为零;测试时,将待测锂离子电池进行正负极极耳清洁,然后将内阻仪正负极测试端分别连接到锂离子电池的正负极极耳,进行测试并记录。并根据公式r=A/Cap计算系数A。
3、一次穿钉实验和六次连续穿钉实验的实验方法和测试方法:
(1)一次穿钉实验:电池满充后,固定,在常温下将直径为8mm的钢针,以25mm/s的速度贯穿电池,将钢针保留于电池中,穿钉完毕,然后观察和测试。
(2)六次穿钉实验:电池满充后,固定,在常温下将六根直径为8mm 的钢针,以25mm/s的速度先后迅速地贯穿电池,将钢针保留于电池中,穿钉完毕,然后进行观察和测试。
(3)电池温度的测试:使用多路测温仪,分别于待穿钉的电池的针刺面和背面的几何中心附上感温线,待穿钉完毕后,进行五分钟的电池温度跟踪测试,然后记录下五分钟时的电池的温度。
(4)电池电压的测试:将待穿钉的电池的正极和负极连接至内阻仪的测量端,待穿钉完毕后,进行五分钟的电池电压跟踪测试,然后记录下五分钟时的电池的电压。
记录的电池的温度和电压的数据如表5所示。
表4
Figure PCTCN2017081904-appb-000007
表5
Figure PCTCN2017081904-appb-000008
Figure PCTCN2017081904-appb-000009
注:“N/A”表示一根钢针贯穿入电池瞬间发生热失控和毁坏。
表6
Figure PCTCN2017081904-appb-000010
其中,锂离子电池1#和锂离子电池4#的电池温度随时间的变化曲线如图10所示,电压随时间的变化曲线如图11所示。
根据表4中的结果来看,与采用常规的正极极片和常规的负极极片的锂离子电池1#相比,采用本申请实施例集流体的锂离子电池4#的循环寿命良好,与常规的电池的循环性能相当。这说明本申请实施例的集流体并不会对制得的极片和电池有任何明显的不利影响。
此外,本申请实施例的集流体可以大大改善锂离子电池的安全性能。从表5以及图10和图11中的结果来看,未采用本申请实施例的集流体的锂离子电池1#、6#、11#,在穿钉的瞬间,电池温度骤升几百度,电压骤降至零,这说明在穿钉的瞬间,电池发生内短路,产生大量的热,电池瞬间发生热失控和毁坏,无法继续工作;而且由于在第一根钢针穿入电池之后的瞬间,电池就发生了热失控和毁坏,因此无法对这类电池进行六根钢针连续穿钉实验。
而采用了本申请实施例集流体的锂离子电池2#~5#、7#~10#、12#和13#,无论对其进行一次穿钉实验还是六次连续穿钉实验,电池温升基本都可以被控制在10℃左右或10℃以下,电压基本保持稳定,电芯可以正常 工作。
表6中的数据表明,未采用本申请实施例的集流体的锂离子电池6#和锂离子电池11#,系数A较小。而采用了本申请实施例集流体的锂离子电池4#、5#、14#~15#的系数A越大。从而证实了系数A越大,则电池在异常情况下发生内短路时,温升越小,则电池的安全性能越好。
可见,在电池发生内短路的情况下,本申请实施例的集流体可极大地降低短路产热量,从而改善电池的安全性能;此外,还可将短路损坏对电池的影响局限于“点”范围,仅形成“点断路”,而不影响电池在短时间内的正常工作。
本申请虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

Claims (15)

  1. 一种集流体,包括绝缘层和导电层,
    所述绝缘层用于承载所述导电层;
    所述导电层用于承载电极活性材料层,且所述导电层位于所述绝缘层的至少一个表面上,
    其特征在于,所述导电层的常温薄膜电阻RS满足:0.016Ω/□≤RS≤420Ω/□。
  2. 根据权利要求1所述的集流体,其特征在于,所述导电层的常温薄膜电阻RS满足:0.032Ω/□≤RS≤21Ω/□,优选0.080Ω/□≤RS≤8.4Ω/□。
  3. 根据权利要求1所述的集流体,其特征在于,所述导电层的厚度为D2,D2满足:1nm≤D2≤1μm,优选20nm≤D2≤500nm,更优选50nm≤D2≤200nm。
  4. 根据权利要求1所述的集流体,其特征在于,所述绝缘层的厚度为D1,D1满足:1μm≤D1≤50μm,优选2μm≤D1≤30μm,更优选5μm≤D1≤20μm。
  5. 根据权利要求1所述的集流体,其特征在于,所述导电层的材料选自金属导电材料、碳基导电材料中的至少一种;所述金属导电材料优选铝、铜、镍、钛、银、镍铜合金、铝锆合金中的至少一种,所述碳基导电材料优选石墨、乙炔黑、石墨烯、碳纳米管中的至少一种。
  6. 根据权利要求1所述的集流体,其特征在于,所述绝缘层的材料选自有机聚合物绝缘材料、无机绝缘材料、复合材料中的至少一种;
    所述有机聚合物绝缘材料优选聚酰胺、聚对苯二甲酸酯、聚酰亚胺、聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、丙烯腈-丁二烯-苯乙烯共聚物、聚对苯二甲酸丁二醇酯、聚对苯二甲酰对苯二胺、聚丙乙烯、聚甲醛、环氧树脂、酚醛树脂、聚四氟乙烯、聚偏氟乙烯、硅橡胶、聚碳酸酯中的至少一种;
    所述无机绝缘材料优选氧化铝、碳化硅、二氧化硅中的至少一种;
    所述复合材料优选环氧树脂玻璃纤维增强复合材料、聚酯树脂玻璃纤 维增强复合材料中的至少一种。
  7. 根据权利要求1所述的集流体,其特征在于,所述导电层内设置有孔,或所述集流体内设置有贯穿所述绝缘层和所述导电层的通孔。
  8. 根据权利要求1~6中任一权利要求所述的集流体,其特征在于,所述导电层通过机械辊轧、粘结、气相沉积法、化学镀中的至少一种形成于所述绝缘层上。
  9. 根据权利要求8所述的集流体,其特征在于,所述气相沉积法优选物理气相沉积法;
    所述物理气相沉积法优选蒸发法、溅射法中的至少一种,
    所述蒸发法优选真空蒸镀法、热蒸发法、电子束蒸发法中的至少一种,
    所述溅射法优选磁控溅射法。
  10. 根据权利要求1~9中任一权利要求所述的集流体在制备受到引发短路的异常情况时仅形成点断路以自身保护的电池中的应用。
  11. 根据权利要求1~9中任一权利要求所述的集流体作为受到引发短路的异常情况时仅形成点断路的电池的集流体的用途。
  12. 根据权利要求10所述的应用或权利要求11所述的用途,其特征在于,所述引发短路的异常情况为穿钉。
  13. 一种极片,其特征在于,包括权利要求1~9中任一权利要求所述的集流体和形成于所述集流体表面的电极活性材料层。
  14. 一种电池,包括正极极片、隔膜和负极极片,其特征在于,所述正极极片和/或负极极片为权利要求13中所述的极片。
  15. 根据权利要求14所述的电池,其特征在于,r表示所述电池的内阻,Cap表示所述电池的容量,r与Cap的关系满足:
    40Ah·mΩ≤r×Cap≤2000Ah·mΩ。
PCT/CN2017/081904 2017-01-12 2017-04-25 一种集流体,其极片和电池及应用 WO2018129836A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17803765.1A EP3367485A4 (en) 2017-01-12 2017-04-25 Current collector, pole plate and battery thereof, and application
US15/827,214 US11539050B2 (en) 2017-01-12 2017-11-30 Current collector, electrode plate and battery containing the same, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710022284.8A CN108281662B (zh) 2017-01-12 2017-01-12 一种集流体,其极片和电池及应用
CN201710022284.8 2017-01-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/827,214 Continuation US11539050B2 (en) 2017-01-12 2017-11-30 Current collector, electrode plate and battery containing the same, and application thereof

Publications (1)

Publication Number Publication Date
WO2018129836A1 true WO2018129836A1 (zh) 2018-07-19

Family

ID=62801055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081904 WO2018129836A1 (zh) 2017-01-12 2017-04-25 一种集流体,其极片和电池及应用

Country Status (4)

Country Link
EP (1) EP3367485A4 (zh)
JP (1) JP6431571B2 (zh)
CN (1) CN108281662B (zh)
WO (1) WO2018129836A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335826A (zh) * 2021-12-20 2022-04-12 惠州市广麟材耀科技有限公司 一种热收缩铝塑膜
US20220166031A1 (en) * 2020-11-24 2022-05-26 GM Global Technology Operations LLC Solid-state bipolar battery having thick electrodes
CN117878335A (zh) * 2024-03-12 2024-04-12 清华大学 复合集流体及其制备方法、电极极片、电池和用电装置

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117613398A (zh) * 2017-09-09 2024-02-27 索特利亚电池创新集团公司 具有内部熔断器的锂储能装置
CN109873163B (zh) 2017-12-05 2021-07-06 宁德时代新能源科技股份有限公司 一种集流体,其极片和电池及应用
CN109873166B (zh) 2017-12-05 2021-06-29 宁德时代新能源科技股份有限公司 一种集流体,其极片和电化学装置
CN109088045B (zh) * 2018-07-18 2021-03-30 惠州亿纬锂能股份有限公司 高能量密度锂离子电池的制备方法
CN109088071B (zh) * 2018-08-17 2020-07-28 深圳新源柔性科技有限公司 一种复合层及其应用
CN110660998B (zh) * 2018-09-17 2020-12-04 宁德时代新能源科技股份有限公司 集流体、电极极片及电化学装置
CN110660999A (zh) 2018-09-30 2020-01-07 宁德时代新能源科技股份有限公司 一种集流体,极片和电化学装置
CN110661000B (zh) * 2018-09-30 2020-11-27 宁德时代新能源科技股份有限公司 一种集流体,极片和电化学装置
CN109346333A (zh) * 2018-10-25 2019-02-15 桂林理工大学 一种碳/玻璃纤维织物超级电容器电极的制备方法
CN110661003B (zh) * 2018-12-29 2021-06-29 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN110660963B (zh) * 2018-12-29 2021-04-27 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN110660996B (zh) * 2018-12-29 2021-06-29 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN110676460B (zh) * 2018-12-29 2022-01-18 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN110660957B (zh) * 2018-12-29 2020-12-04 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN110661002B (zh) * 2018-12-29 2021-06-29 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN110661001B (zh) * 2018-12-29 2020-12-01 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN111477876A (zh) * 2019-01-24 2020-07-31 东丽先端材料研究开发(中国)有限公司 一种多层薄膜、集流体、极片和电池
CN109817987A (zh) * 2019-03-14 2019-05-28 清华大学 一种复合弹性-柔性锂离子电池电极材料及其制备方法
CN109888296B (zh) * 2019-03-19 2020-11-10 合肥国轩高科动力能源有限公司 一种锂离子电池正极涂碳集流体的制备方法
CN110943222B (zh) * 2019-04-15 2021-01-12 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN110943223B (zh) * 2019-04-15 2021-12-24 宁德时代新能源科技股份有限公司 一种正极极片和电化学装置
CN110943200B (zh) * 2019-04-15 2021-03-09 宁德时代新能源科技股份有限公司 一种电极极片和电化学装置
CN110943201B (zh) * 2019-04-15 2021-02-26 宁德时代新能源科技股份有限公司 一种正极极片和电化学装置
CN112133925B (zh) * 2019-04-26 2021-10-26 宁德时代新能源科技股份有限公司 电池、电动汽车及消费类电子产品
CN110943226B (zh) * 2019-04-28 2020-11-17 宁德时代新能源科技股份有限公司 正极集流体、正极极片及电化学装置
CN110943225B (zh) * 2019-04-28 2020-11-24 宁德时代新能源科技股份有限公司 正极集流体、正极极片及电化学装置
CN112349910B (zh) * 2019-04-28 2022-03-08 宁德时代新能源科技股份有限公司 负极集流体、负极极片、电化学装置、电动汽车及消费类电子产品
CN110085869B (zh) * 2019-04-30 2021-03-30 柔电(武汉)科技有限公司 导电集流体及其制备方法、电池极片及锂电池
CN110943228B (zh) * 2019-05-31 2021-06-08 宁德时代新能源科技股份有限公司 负极集流体、负极极片及电化学装置
CN110943227B (zh) * 2019-05-31 2021-03-09 宁德时代新能源科技股份有限公司 复合集流体、电极极片及电化学装置
CN111180736B (zh) * 2019-05-31 2021-06-08 宁德时代新能源科技股份有限公司 正极集流体、正极极片及电化学装置
CN112186197B (zh) * 2019-07-01 2024-06-18 宁德时代新能源科技股份有限公司 正极集流体、正极极片及电化学装置
CN112186196B (zh) 2019-07-01 2023-10-27 宁德时代新能源科技股份有限公司 正极集流体、正极极片及电化学装置
CN112242527A (zh) * 2019-07-16 2021-01-19 上海其鸿新材料科技有限公司 一种多层结构锂电池集流体及其制备方法以及锂电池
WO2021108119A1 (en) * 2019-11-27 2021-06-03 Soteria Battery Innovation Group Inc. Battery connections and metalized film components in energy storage devices having internal fuses
GB2590393A (en) * 2019-12-16 2021-06-30 Dyson Technology Ltd Component
CN111463436B (zh) * 2020-04-20 2021-11-02 华鼎国联四川动力电池有限公司 一种锂离子电池集流体及其制备方法
KR20220116385A (ko) 2020-06-02 2022-08-23 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 전극 조립체 및 관련 배터리, 장치, 제조 방법 및 제조 장치
WO2021243584A1 (zh) * 2020-06-02 2021-12-09 宁德时代新能源科技股份有限公司 电极组件及其相关电池、装置、制造方法和制造装置
CN111987320B (zh) * 2020-09-15 2022-04-01 天目湖先进储能技术研究院有限公司 一种具有三维网络立体结构的集流体及其制备方法和应用
CN112038576A (zh) * 2020-09-28 2020-12-04 合肥国轩高科动力能源有限公司 一种电极及其制造方法,以及包含该电极的锂离子电池
CN113611872A (zh) * 2020-11-14 2021-11-05 宁德时代新能源科技股份有限公司 电极极片、含有该电极极片的二次电池、电池模块、电池包及用电装置
CN112542569B (zh) * 2020-12-04 2022-11-08 宁德新能源科技有限公司 一种电极组件及包含其的电化学装置、电子装置
CN113066958B (zh) * 2021-03-22 2022-09-27 珠海冠宇电池股份有限公司 一种集流体及其应用
CN113258077A (zh) * 2021-06-25 2021-08-13 珠海冠宇电池股份有限公司 一种正极集流体和锂离子电池
EP4148844A4 (en) * 2021-07-14 2024-01-17 Contemporary Amperex Technology Co., Limited ELECTRODE ARRANGEMENT, PROCESSING METHOD AND APPARATUS, BATTERY CELL, BATTERY AND ELECTRONIC DEVICE
CN114156601A (zh) * 2021-11-26 2022-03-08 蜂巢能源科技有限公司 一种改善电池热蔓延性能的复合膜、其制备方法和用途
CN114188545B (zh) * 2021-12-07 2024-08-06 珠海冠宇电池股份有限公司 一种集流体和电池及电子设备
CN114300688B (zh) * 2021-12-28 2024-01-16 上海恩捷新材料科技有限公司 一种包含磁性集流体的电池及其制备方法
EP4391119A1 (en) * 2022-02-28 2024-06-26 Contemporary Amperex Technology Co., Limited Current collector, electrode plate, battery cell, battery, device, manufacturing method, and apparatus
CN114792807B (zh) * 2022-04-20 2023-10-27 江阴纳力新材料科技有限公司 正极富锂复合集流体及其制备方法
CN115020711B (zh) * 2022-07-06 2024-01-26 蜂巢能源科技股份有限公司 一种提高锂离子电池安全性的集流体及其制备方法和应用
CN115188926A (zh) * 2022-07-07 2022-10-14 扬州纳力新材料科技有限公司 复合箔材及其制备方法、复合集流体、电极极片和应用
WO2024011529A1 (zh) * 2022-07-14 2024-01-18 扬州纳力新材料科技有限公司 复合集流体及其制备方法和应用
CN115986128A (zh) * 2023-02-07 2023-04-18 扬州纳力新材料科技有限公司 一种高安全复合集流体、非水性二次电池及该集流体的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1969412A (zh) * 2004-04-12 2007-05-23 松下电器产业株式会社 包含金属氧化物的衬底及其制造方法
CN103966907A (zh) * 2014-04-02 2014-08-06 上海大学 一种基于纳米纤维素的柔性导电纸及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205746A (ja) * 1992-01-24 1993-08-13 Matsushita Electric Ind Co Ltd 電極用集電体とその製造法、及びそれを用いた水素吸蔵電極とニッケル−水素蓄電池
JPH09120818A (ja) * 1995-10-26 1997-05-06 Sony Corp 非水電解液二次電池
JPH09120842A (ja) * 1995-10-26 1997-05-06 Sony Corp リチウムイオン二次電池
JPH1167221A (ja) * 1997-08-22 1999-03-09 Fujitsu Ltd リチウム電池及び、それに使用する集電体
JPH1186868A (ja) * 1997-09-05 1999-03-30 Sony Corp 二次電池およびその製造方法
JP2003282064A (ja) * 2002-03-20 2003-10-03 Toyo Kohan Co Ltd 複合集電体
JP2005019312A (ja) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd 非水電解質二次電池用電極および非水電解質二次電池
CN101071860A (zh) * 2007-06-08 2007-11-14 大连理工大学 一种柔性集流体
JP2011243311A (ja) * 2010-05-14 2011-12-01 Mitsubishi Shindoh Co Ltd リチウムイオン電池用集電体
JP5690529B2 (ja) * 2010-08-25 2015-03-25 シャープ株式会社 非水系二次電池用の集電体及び電極、並びに非水系二次電池
JP5690575B2 (ja) * 2010-12-16 2015-03-25 シャープ株式会社 非水系二次電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1969412A (zh) * 2004-04-12 2007-05-23 松下电器产业株式会社 包含金属氧化物的衬底及其制造方法
CN103966907A (zh) * 2014-04-02 2014-08-06 上海大学 一种基于纳米纤维素的柔性导电纸及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3367485A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220166031A1 (en) * 2020-11-24 2022-05-26 GM Global Technology Operations LLC Solid-state bipolar battery having thick electrodes
CN114335826A (zh) * 2021-12-20 2022-04-12 惠州市广麟材耀科技有限公司 一种热收缩铝塑膜
CN114335826B (zh) * 2021-12-20 2024-05-10 惠州市广麟材耀科技有限公司 一种热收缩铝塑膜
CN117878335A (zh) * 2024-03-12 2024-04-12 清华大学 复合集流体及其制备方法、电极极片、电池和用电装置
CN117878335B (zh) * 2024-03-12 2024-06-04 清华大学 复合集流体及其制备方法、电极极片、电池和用电装置

Also Published As

Publication number Publication date
JP6431571B2 (ja) 2018-11-28
JP2018113242A (ja) 2018-07-19
CN108281662B (zh) 2020-05-05
EP3367485A4 (en) 2018-09-12
EP3367485A1 (en) 2018-08-29
CN108281662A (zh) 2018-07-13

Similar Documents

Publication Publication Date Title
WO2018129836A1 (zh) 一种集流体,其极片和电池及应用
US11539050B2 (en) Current collector, electrode plate and battery containing the same, and application thereof
JP6858735B2 (ja) 集電体、その極シート、電池及びその応用
US10714757B2 (en) Current collector, electrode plate including the same and battery
CN109873160B (zh) 一种集流体,其极片和电池
CN110247055B (zh) 一种集流体,其极片和电化学装置
US10658673B2 (en) Battery
EP3629407B1 (en) Current collector, electrode plate including the same and electrochemical device
CN110247057A (zh) 一种集流体,其极片和电化学装置
CN110931800B (zh) 一种电池
US10749184B2 (en) Battery

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE