WO2018129772A1 - 一种处理含硒酸根废水的方法 - Google Patents

一种处理含硒酸根废水的方法 Download PDF

Info

Publication number
WO2018129772A1
WO2018129772A1 PCT/CN2017/073012 CN2017073012W WO2018129772A1 WO 2018129772 A1 WO2018129772 A1 WO 2018129772A1 CN 2017073012 W CN2017073012 W CN 2017073012W WO 2018129772 A1 WO2018129772 A1 WO 2018129772A1
Authority
WO
WIPO (PCT)
Prior art keywords
selenate
adsorbent
containing wastewater
hours
treating
Prior art date
Application number
PCT/CN2017/073012
Other languages
English (en)
French (fr)
Inventor
肖成梁
王殳凹
朱琳
Original Assignee
苏州大学张家港工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院 filed Critical 苏州大学张家港工业技术研究院
Publication of WO2018129772A1 publication Critical patent/WO2018129772A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/106Selenium compounds

Definitions

  • the present invention belongs to the field of wastewater treatment, and in particular relates to a method for treating wastewater containing selenate.
  • Selenium is a trace element essential for humans.
  • a trace amount of selenium has the function of preventing cancer and protecting the liver.
  • the continuous intake of high-selenium food, water, etc. will cause selenium to accumulate in the body and cause selenium poisoning, causing gastrointestinal dysfunction, causing mutagenic effects and on cells.
  • the damage of genetic material inside may even cause cancer of cells, so the selenium content in water should be strictly controlled.
  • the World Health Organization stipulates that the selenium content does not exceed 40 g/L, while the EU and US standards do not exceed 10 g/L and 50 g/L, respectively.
  • China's drinking water standards stipulate that the selenium content does not exceed 10 g / L.
  • Selenium-containing wastewater treatment methods are various, generally can be divided into physical methods, chemical methods and other methods, mainly including co-precipitation method, ion exchange method / adsorption method, modified filter material filtration method, wetland selenium removal and biological methods, etc. method.
  • the ion exchange method/adsorption method is widely used in waste water treatment mainly because it is simple in operation and low in cost, and is suitable for treating waste water of lower concentration pollutants.
  • Inorganic oxides are among the most studied types of adsorbents, such as activated alumina, silica, titania, iron oxide, hydrated ferric hydroxide, magnetite, goethite, trimanganese tetraoxide, and iron-manganese. Oxide, etc.
  • the oxide has a higher zero point of charge, the surface is positively charged in a relatively wide pH range, and selenate can be effectively adsorbed by electrostatic action, but under peracid conditions, the metal oxide is unstable and easily dissolved. Under alkaline conditions, the surface is negatively charged, which is not conducive to adsorption. In addition, the surface active sites of inorganic oxides are relatively limited, and the adsorption capacity is low, making it difficult to achieve industrial applications.
  • An object of the present invention is to provide a method for treating selenate-containing wastewater, which is based on a rare earth element adsorbent ⁇ 2 (03 ⁇ 4 5 0.1.58 2 0, the adsorbent material is a two-dimensional layered material, layer The plate is positively charged, and the layer contains free chloride ions, which can effectively remove selenate, especially with good cycle application effect.
  • a method for treating selenate-containing wastewater comprising the steps of: adjusting pH of selenate-containing wastewater to be 7 or more; and then following 1.5 to 2.5 g/L
  • the solid-liquid ratio is put into the selenate-containing wastewater, and the mixture is stirred for 10 to 15 hours; finally, the adsorbent is removed to complete the treatment of the selenate-containing wastewater; the adsorbent is Y 2 (OH) 5 C1 1.5H 2 0 .
  • the NaOH solution adjusts the pH of the system to above 7; for alkaline selenate wastewater, it can be directly treated.
  • the alkaline wastewater environment facilitates the exchange of chloride ions between the adsorbent layer and the selenate of the wastewater to improve the treatment effect.
  • the solid-liquid ratio of the adsorbent to the selenate-containing wastewater is preferably 2 g/L, which can achieve a better removal effect.
  • the stirring between the crucibles is preferably 12 hours, and the excessive stirring between the crucibles may damage the adsorption of the selenate by the adsorbent, which is not conducive to water treatment; the present invention preferably stirs 12 hours, with reasonable
  • the solid-liquid ratio, the removal rate of selenate in selenate wastewater is as high as 99.9%, and unexpected technical effects have been achieved.
  • the agitation rate is preferably 120 r/min. A too slow agitation rate is not conducive to the removal kinetics. Too fast agitation is easy to break up the adsorbent and is not conducive to separation and recycling.
  • the temperature is preferably controlled at room temperature, and the suitable temperature is not only advantageous for adsorption but also facilitates handling.
  • the adsorbent is removed by filtration to obtain the treated water body; the adsorbent with selenate can be regenerated, for example, washed with 5 M NaCl solution, dried, and reused.
  • Y 2 (OH) 5 C1 1.5H 2 0 is used as an adsorbent for treating selenate-containing wastewater, and the removal rate of selenate is as high as 99. 9 ⁇ 3 ⁇ 4, so the present invention further discloses ⁇ 2 . (OH) 5 C1 1.5H 2 0 as an adsorbent for the treatment of wastewater containing selenate.
  • the solid-liquid ratio of the adsorbent to the selenate-containing wastewater is preferably 2 g/L, and the treated crucible is preferably 12 hours, and the temperature is preferably room temperature.
  • An advantage of the present invention is that, in the method for treating selenate-containing wastewater of the present invention, the first use of Y 2 (OH) 5 CM.5H 2 0 as an adsorbent is a two-dimensional layered layer.
  • the material, the laminate is positively charged, and the free chloride ions between the laminates can be exchanged with the selenate in the wastewater to effectively treat the selenate-containing wastewater.
  • Y 2(OH) 5 C1 1.5H 2 0 was first applied to the removal of selenate contaminants, and the treatment effect was much higher than that of the conventional inorganic oxide adsorbent, even higher than the adsorption capacity of the double metal hydroxide adsorbent.
  • the method of the present invention is also very effective for the treatment of low-concentration selenate-containing wastewater, and maintains a high removal rate even under the interference of a high concentration of coexisting anions, and an unexpected technical effect is obtained.
  • the technical solution of the present invention is not affected by carbon dioxide and carbonate, and has a large adsorption capacity, which solves the problem that the prior art is easily affected by carbon dioxide in air and carbonate in an aqueous solution, and the adsorption capacity is limited. problem.
  • FIG. 2 is a diagram showing the effect of recycling of an adsorbent in the method of the present invention.
  • the pH of the NaOH solution was adjusted to 7, and stirred at room temperature for 12 hours (120 rpm).
  • the concentration of selenate in the filtrate was determined to be 1.21.
  • the removal rate of selenate in the water sample was 98.8%.
  • the pH of the NaOH solution was adjusted to 7, and stirred at room temperature for 12 hours (120 rpm).
  • the concentration of selenate in the filtrate was determined to be 1.22.
  • the removal rate of the selenate in the water sample was 99.9%.
  • the pH of the NaOH solution was adjusted to 8, and stirred at room temperature for 12 hours (120 rpm).
  • the concentration of selenate in the filtrate was determined to be 1.22.
  • the removal rate of the selenate in the water sample was 99.9%.
  • the pH of the NaOH solution was adjusted to 9, and stirred at room temperature for 12 hours (120 rpm).
  • the concentration of selenate in the filtrate was determined to be 1.22.
  • the removal rate of the selenate in the water sample was 99.9%.
  • the pH of the NaOH solution was adjusted to 7, and stirred at room temperature for 12 hours (120 rpm).
  • the concentration of selenate in the filtrate was determined to be 5.57.
  • the removal rate of selenate in the sample was 99.9%.
  • Embodiment 6 [0031] Weigh the adsorbent Y 2 (OH) 5 C1 1.5H 2 0 20 mg, add 10 mL of water sample with a selenate concentration of 1 mg / L with sodium selenate, the same contains 20 mg / L NaCl, the pH was adjusted to 7 with 1.0 M NaOH solution, stirred at room temperature for 12 hours (120 rpm), filtered, and the concentration of selenate in the filtrate was determined to be 0.85 g/L. Calculate the selenate in the water sample by the adsorbent. The removal rate was 99.2%.
  • the pH of the NaOH solution was adjusted to 7, and stirred at room temperature for 12 hours (120 rpm).
  • the concentration of selenate in the filtrate was determined to be 3.73.
  • the removal rate of the selenate in the water sample was 96.3%.
  • the concentration of selenate in the medium is 0.04 mg / L, 0.003 mg / L, 0.09 mg / L, 2.14 mg / L 36.6 mg / L, 81.5 mg / L and 143.0 mg / L
  • Figure 1 is the isotherm adsorption line of selenate Fig. Calculate the saturated adsorption capacity of the adsorbent for selenate in the water sample to be 125 mg/g.
  • [0040] 2 Second adsorption and regeneration.
  • the adsorbent was added to a selenate concentration of 10 mg/L at a solid/liquid ratio of 2 g/L.
  • the pH was adjusted to 8 with 1.0 M NaOH solution, and stirred at room temperature for 12 hours (120 rpm), and the concentration of selenate in the filtrate was determined to be 6
  • the removal rate of the selenate in the water sample by the adsorbent was calculated to be 99.94%.
  • the adsorbent was filtered, then washed 3 times with 5 M sodium chloride solution, 3 times with deionized water, and dried at 50 ° C for the third adsorption; [0041] 3) Third adsorption.
  • the adsorbent was added to a water sample having a selenate concentration of 10 mg/L at a solid-liquid ratio of 2 g/L.
  • the pH was adjusted to 7 with a 1.0 M NaOH solution, and stirred at room temperature for 12 hours (120 rpm) to determine the filtrate.
  • the concentration of selenate in the middle is 12
  • the removal rate of selenate in the water sample was calculated to be 99.88%.
  • the filter cake was washed 3 times with 5M sodium chloride solution, washed 3 times with deionized water, dried at 50 ° C, and used for the fourth adsorption;
  • the adsorbent was added to a water sample having a selenate concentration of 10 mg/L at a solid-liquid ratio of 2 g/L.
  • the pH was adjusted to 7 with a 1.0 M NaOH solution, and stirred at room temperature for 12 hours (120 rpm) to determine the filtrate.
  • the concentration of selenate in the water was 13 g/L.
  • the removal rate of selenate in the water sample was calculated to be 99.87%.
  • FIG. 2 is a diagram showing the effect of recycling the adsorbent in the method of the present invention. It can be seen that, with the treatment method of the present invention, not only the selenate removal rate is high, but also the sorbent circulation effect is good.
  • the pH of the NaOH solution was adjusted to 7, and the mixture was stirred at room temperature for 12 hours (120 rpm), and the removal rate of the selenate in the water sample was calculated to be 98. 8 ⁇ 3 ⁇ 4.
  • the pH of the NaOH solution was adjusted to 7, stirred at room temperature for 10 hours (120 rpm), filtered, and the adsorbent was calculated.
  • the removal rate of selenate in the water sample was 99.1%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一种处理含硒酸根废水的方法,首先调节含硒酸根废水的pH值为7以上;然后按照1.5~2.5g/L的固液比向含硒酸根废水中投入吸附剂,搅拌10~15小时;最后去除吸附剂,完成含硒酸根废水的处理;所述吸附剂为Y 2(OH) 5Cl·1.5H 2O。还公开了Y 2(OH) 5Cl·1.5H 2O在水处理中的应用以及Y 2(OH) 5Cl·1.5H 2O作为吸附剂在处理含硒酸根废水中的应用。该吸附剂材料是二维层状材料,层板带正电,层板间含有游离的氯离子,可有效地去除硒酸根,硒酸根废水中硒酸根的去除率高达99.9%,具有良好的循环应用效果。

Description

发明名称:一种处理含硒酸根废水的方法
技术领域
[0001] 本发明属于废水处理领域, 具体涉及一种处理含硒酸根废水的方法。
背景技术
[0002] 硒是人类所必需的微量元素。 微量的硒具有防癌及保护肝脏的作用, 但人体持 续摄入高硒食物、 水等, 将导致硒在体内蓄积而引起硒中毒, 引发胃肠功能紊 舌 L, 产生致突变作用及对细胞内遗传物质的损伤作用, 甚至会引起细胞癌变, 所以应严格控制水体中的硒含量。 对于饮用水, 世界健康组织规定硒含量不超 过 40 g/L, 而欧盟和美国的标准分别为不超过 10 g/L和 50 g/L。 我国饮用水标 准规定硒含量不超过 10 g/L。 随着工农业生产的发展, 水体遭受硒污染越来越 严重, 水体超标的现象吋有发生。 此外, 在核电站发电过程中铀裂变会产生长 寿命核素硒 -79, 其半衰期为 4.8x10 5年, 具有长期潜在的放射性危害。 为降低水 体中硒污染含量, 提高水资源的有效利用, 减小对人体健康的安全风险, 非常 有必要幵发有效的硒污染处理方法。 含硒废水的处理方法种类较多, 一般可分 为物理方法、 化学方法及其他方法, 主要包括共沉淀法、 离子交换法 /吸附法、 改性滤料过滤法、 湿地除硒和生物法等方法。 离子交换法 /吸附法广泛应用于废 水处理中, 主要是因为其操作简单, 成本较低, 适合处理较低浓度污染物的废 水。 无机氧化物是其中研究较多的一类吸附剂, 比如活性氧化铝、 二氧化硅、 二氧化钛、 氧化铁、 水合氢氧化铁、 磁铁矿、 针铁矿、 四氧化三锰、 以及铁-锰 氧化物等。
技术问题
[0003] 由于氧化物的电荷零点较高, 在比较宽的 pH范围内表面均带正电, 可通过静电 作用有效地吸附硒酸根, 但在过酸条件下, 金属氧化物不稳定, 易溶解; 在碱 性条件下, 表面带负电荷, 不利于吸附。 另外, 无机氧化物表面活性位点比较 有限, 吸附容量偏低, 较难实现工业应用。
问题的解决方案 技术解决方案
[0004] 本发明的目的是提供一种处理含硒酸根废水的方法, 本发明基于稀土元素的吸 附剂¥ 2(0¾ 50.1.58 20, 该吸附剂材料是二维层状材料, 层板带正电, 层板间 含有游离的氯离子, 可有效地去除硒酸根, 尤其是具有良好的循环应用效果。
[0005] 为达到上述发明目的, 本发明采用如下技术方案: 一种处理含硒酸根废水的方 法, 包括以下步骤: 调节含硒酸根废水的 pH值为 7以上; 然后按照 1.5〜2.5 g/L的 固液比向含硒酸根废水中投入吸附剂, 搅拌 10〜15小吋; 最后去除吸附剂, 完 成含硒酸根废水的处理; 所述吸附剂为 Y 2(OH) 5C1 1.5H 20。
[0006] 上述技术方案中, 对于酸性含硒酸根废水, 可以采用 1 M
NaOH溶液将体系的 pH调整到 7以上; 对于碱性含硒酸根废水, 可直接处理。 碱 性废水环境利于吸附剂层间氯离子与废水硒酸根发生交换, 提高处理效果。
[0007] 上述技术方案中, 吸附剂与含硒酸根废水的固液比优选为 2 g/L, 可以达到较好 的去除效果。
[0008] 上述技术方案中, 搅拌吋间优选为 12小吋, 过长的搅拌吋间可能破坏吸附剂吸 附硒酸根的效果, 反而不利于水处理; 本发明优选搅拌 12小吋, 配合合理的固 液比, 硒酸根废水中硒酸根的去除率高达 99.9%, 取得了意想不到的技术效果。 搅拌速率优选在 120 r/min, 太慢的搅拌速率不利于去除动力学, 太快的搅拌容易 将吸附剂打碎不利于分离回收利用。 温度优选控制在室温, 合适的温度不仅利 于吸附, 而且利于操作方便。
[0009] 上述技术方案中, 采用过滤的方式去除吸附剂, 从而得到处理后的水体; 带有 硒酸根的吸附剂可以再生, 比如利用 5 M NaCl溶液洗涤, 干燥, 重复利用。
[0010] 本发明首次将 Y 2(OH) 5C1 1.5H 20作为吸附剂用于处理含硒酸根废水, 硒酸根 的去除率高达 99.9<¾, 因此本发明进一步公幵了 γ 2(OH) 5C1 1.5H 20作为吸附剂在 处理含硒酸根废水中的应用。
[0011] 上述技术方案中, 吸附剂与含硒酸根废水的固液比优选为 2 g/L, 处理吋间优选 为 12小吋, 温度优选为室温。
[0012] 上述技术方案中, 将 YC1 3.6H 20、 NaOH、 NaCl溶解在水中; 然后经过 100分钟 升温至 150°C, 保温 12小吋, 然后经过 24小吋降到室温, 干燥得到¥ 2(0¾ 5 C1 1.5H 20。
发明的有益效果
有益效果
[0013] 本发明的优点是毋庸置疑的, 本发明公幵的处理含硒酸根废水的方法中, 首次 利用 Y 2(OH) 5CM.5H 20作为吸附剂, 是一类二维层状材料, 层板带正电, 层板 间游离的氯离子可与废水中硒酸根发生交换, 从而有效地处理含硒酸根废水。 Y 2(OH) 5C1 1.5H 20首次应用在硒酸根污染物的去除, 处理效果远高于传统的无机 氧化物吸附剂, 甚至比双金属氢氧化物吸附剂的吸附容量都要高, 且容易再生 , 可重复利用, 节省成本。 另外, 本发明的方法对于低浓度含硒酸根废水的处 理也非常有效, 即便在高浓度共存阴离子的干扰下依然保持较高的去除率, 取 得了意想不到的技术效果。
[0014] 而且本发明的技术方案不受二氧化碳以及碳酸根的影响, 并具有大的吸附容量 , 解决了现有技术容易受空气中的二氧化碳及水溶液中的碳酸根影响, 且吸附 容量较有限的问题。
对附图的简要说明
附图说明
[0015] 图 1为本发明方法中, 硒酸根的等温吸附线图;
[0016] 图 2为本发明方法中, 吸附剂的循环使用效果图。
本发明的实施方式
[0017] 下面结合具体实施例来进一步阐述本发明。 应理解, 这些实施例仅用于说明本 发明而不用于限制本发明的范围。 此外应理解, 在阅读了本发明讲授的内容之 后, 本领域技术人员可以对本发明作各种改动或修改, 这些等价形式同样落于 本申请所附权利要求书所限定的范围。
[0018] 合成例
[0019] 称取1.5 3丫。1 3'68 20、 0.32 g NaOH和 0.32g NaCl溶解在 15 mL去离子水中, 并 转移到 20 mL的特氟龙水热釜中。 然后放入烘箱中, 经过 100分钟升温到 150 °C, 保温 12小吋, 之后经过 24小吋降到室温。 用去离子水洗涤, 过滤, 50°C烘箱干燥 12小吋, 得到 Y 2(OH) 5C1 1.5H 20吸附剂。
[0020] 实施例一
[0021] 称取吸附剂 Y 2(OH) 5C1 1.5H 20 20 mg, 加入 10 mL用硒酸钠配置的硒酸根浓度 为 0.1 mg/L的水样中, 用 1.0 M
NaOH溶液将 pH调整为 7, 于室温搅拌 12小吋 (120rpm) , 过滤, 测得滤液中硒 酸根的浓度为 1.21 计算该吸附剂对水样中硒酸根的去除率为 98.8%。
[0022] 实施例二
[0023] 称取吸附剂 Y 2(OH) 5C1 1.5H 20 20 mg, 加入 10 mL用硒酸钠配置的硒酸根浓度 为 1 mg/L的水样中, 用 1.0 M
NaOH溶液将 pH调整为 7, 于室温搅拌 12小吋 (120rpm) , 过滤, 测得滤液中硒 酸根的浓度为 1.22 计算该吸附剂对水样中硒酸根的去除率为 99.9%。
[0024] 实施例三
[0025] 称取吸附剂 Y 2(OH) 5C1 1.5H 20 20 mg, 加入 10 mL用硒酸钠配置的硒酸根浓度 为 1 mg/L的水样中, 用 1.0 M
NaOH溶液将 pH调整为 8, 于室温搅拌 12小吋 (120rpm) , 过滤, 测得滤液中硒 酸根的浓度为 1.22 计算该吸附剂对水样中硒酸根的去除率为 99.9%。
[0026] 实施例四
[0027] 称取吸附剂 Y 2(OH) 5C1 1.5H 20 20 mg, 加入 10 mL用硒酸钠配置的硒酸根浓度 为 1 mg/L的水样中, 用 1.0 M
NaOH溶液将 pH调整为 9, 于室温搅拌 12小吋 (120rpm) , 过滤, 测得滤液中硒 酸根的浓度为 1.22 计算该吸附剂对水样中硒酸根的去除率为 99.9%。
[0028] 实施例五
[0029] 称取吸附剂 Y 2(OH) 5C1 1.5H 20 20 mg, 加入 10 mL用硒酸钠配置的硒酸根浓度 为 10 mg/L的水样中, 用 1.0 M
NaOH溶液将 pH调整为 7, 于室温搅拌 12小吋 (120rpm) , 过滤, 测得滤液中硒 酸根的浓度为 5.57 计算该吸附剂对水样中硒酸根的去除率为 99.9%。
[0030] 实施例六 [0031] 称取吸附剂 Y 2(OH) 5C1 1.5H 20 20 mg, 加入 10 mL用硒酸钠配置的硒酸根浓度 为 1 mg/L的水样中, 同吋含有 20 mg/L NaCl, 用 1.0 M NaOH溶液将 pH调整为 7, 于室温搅拌 12小吋 (120rpm) , 过滤, 测得滤液中硒酸根的浓度为 0.85 g/L, 计算该吸附剂对水样中硒酸根的去除率为 99.2%。
[0032] 实施例七
[0033] 称取吸附剂 Y 2(OH) 5C1 1.5H 20 20 mg, 加入 10 mL用硒酸钠配置的硒酸根浓度 为 1 mg/L的水样中, 同吋含有 20 mg/L NaNO 3, 用 1.0 M NaOH溶液将 pH调整为 7 , 于室温搅拌 12小吋 (120rpm) , 过滤, 测得滤液中硒酸根的浓度为 2.02 g/L , 计算该吸附剂对水样中硒酸根的去除率为 98.0%。
[0034] 实施例八
[0035] 称取吸附剂 Y 2(OH) 5C1 1.5H 20 20 mg, 加入 10 mL用硒酸钠配置的硒酸根浓度 为 1 mg/L的水样中, 同吋含有 20 mg/L Na 2SO 4, 用 1.0 M
NaOH溶液将 pH调整为 7, 于室温搅拌 12小吋 (120rpm) , 过滤, 测得滤液中硒 酸根的浓度为 3.73 计算该吸附剂对水样中硒酸根的去除率为 96.3%。
[0036] 实施例九
[0037] 称取吸附剂 Y 2(OH) 5C1 1.5H 20 20 mg, 加入 10 mL用硒酸钠配置的硒酸根浓度 分别为 10 mg/L、 50 mg/L 100 mg/L . 200 mg/L、 250 mg/L . 300 mg/L和 350 mg/L的水样中, 用 1.0 M NaOH溶液将 pH调整为 7, 于室温搅拌 12小吋 (120rpm ) , 过滤, 分别测得滤液中硒酸根的浓度为 0.04 mg/L、 0.003 mg/L、 0.09 mg/L 、 2.14 mg/L 36.6 mg/L、 81.5 mg/L和 143.0 mg/L, 附图 1为硒酸根的等温吸附线 图, 计算该吸附剂对水样中硒酸根的饱和吸附容量为 125 mg/g。
[0038] 实施例十
[0039] 1) 第一次吸附和再生。 称取吸附剂丫2(0¾ 14.58 20 60 1^, 加入 30 mL用硒 酸钠配置的硒酸根浓度为 10 mg/L的水样中, 用 1.0 M NaOH溶液将 pH调整为 7, 于室温搅拌 12小吋 (120rpm) , 测得滤液中硒酸根的浓度为 4 g/L, 计算该吸附 剂对水样中硒酸根的去除率为 99.96%。 将吸附剂过滤, 然后用 5M氯化钠溶液洗 涤 3次, 用去离子水洗涤 3次, 50°C干燥, 用于第二次吸附;
[0040] 2) 第二次吸附和再生。 以 2 g/L的固液比将吸附剂加入硒酸根浓度为 10 mg/L的 水样中, 用 1.0 M NaOH溶液将 pH调整为 8, 于室温搅拌 12小吋 (120rpm) , 测 得滤液中硒酸根的浓度为 6
计算该吸附剂对水样中硒酸根的去除率为 99.94%。 将吸附剂过滤, 然后 用 5M氯化钠溶液洗涤 3次, 用去离子水洗涤 3次, 50°C干燥, 用于第三次吸附; [0041] 3) 第三次吸附。 以 2 g/L的固液比将吸附剂加入硒酸根浓度为 10 mg/L的水样中 , 用 1.0 M NaOH溶液将 pH调整为 7, 于室温搅拌 12小吋 (120rpm) , 测得滤液 中硒酸根的浓度为 12
Figure imgf000008_0001
计算该吸附剂对水样中硒酸根的去除率为 99.88%。 滤饼用 5M氯化钠溶液洗涤 3次, 用去离子水洗涤 3次, 50°C干燥, 用于第四次吸 附;
[0042] 4) 第四次吸附。 以 2 g/L的固液比将吸附剂加入硒酸根浓度为 10 mg/L的水样中 , 用 1.0 M NaOH溶液将 pH调整为 7, 于室温搅拌 12小吋 (120rpm) , 测得滤液 中硒酸根的浓度为 13 g/L, 计算该吸附剂对水样中硒酸根的去除率为 99.87%。
[0043] 附图 2为本发明方法中, 吸附剂的循环使用效果图, 可以看出, 采用本发明的 处理方法, 不仅每次硒酸根去除率都很高, 而且吸附剂循环效果好。
[0044] 实施例十一
[0045] 称取吸附剂 Y 2(OH) 5C1 1.5H 20 15 mg, 加入 10 mL用硒酸钠配置的硒酸根浓度 为 0.1 mg/L的水样中, 用 1.0 M
NaOH溶液将 pH调整为 7, 于室温搅拌 12小吋 (120rpm) , 过滤, 计算该吸附剂 对水样中硒酸根的去除率为 98.8<¾。
[0046] 实施例十二
[0047] 称取吸附剂 Y 2(OH) 5C1 1.5H 20 25 mg, 加入 10 mL用硒酸钠配置的硒酸根浓度 为 1 mg/L的水样中, 用 1.0 M
NaOH溶液将 pH调整为 7, 于室温搅拌 12小吋 (l lOrpm) , 过滤, 计算该吸附剂 对水样中硒酸根的去除率为 98.9<¾。
[0048] 实施例十三
[0049] 称取吸附剂 Y 2(OH) 5C1 1.5H 20 20 mg, 加入 10 mL用硒酸钠配置的硒酸根浓度 为 0.1 mg/L的水样中, 用 1.0 M
NaOH溶液将 pH调整为 7, 于室温搅拌 10小吋 (120rpm) , 过滤, 计算该吸附剂 对水样中硒酸根的去除率为 99.1 %。
[0050] 实施例十四
[0051] 称取吸附剂 Y 2(OH) 5C1 1.5H 20 20 mg, 加入 10 mL用硒酸钠配置的硒酸根浓度 为 10mg/L的水样中, 于室温搅拌 15小吋 (140rpm) , 过滤, 计算该吸附剂对水 样中硒酸根的去除率为 99.1%。
[0052] 实施例十五
[0053] 称取吸附剂 Y 2(OH) 5C1 1.5H 20 20 mg, 加入 10 mL用硒酸钾配置的硒酸根浓度 为 10mg/L的水样中, 于室温搅拌 12小吋 (120rpm) , 过滤, 计算该吸附剂对水 样中硒酸根的去除率为 99.8%。

Claims

权利要求书
[权利要求 1] 一种处理含硒酸根废水的方法, 包括以下步骤: 调节含硒酸根废水的 pH值为 7以上; 然后按照 1.5〜2.5 g/L的固液比向含硒酸根废水中投入 吸附剂, 搅拌 10〜15小吋; 最后去除吸附剂, 完成含硒酸根废水的处 理; 所述吸附剂为 Y 2(OH) 5C14.5H 20。
[权利要求 2] 根据权利要求 1所述处理含硒酸根废水的方法, 其特征在于: 采用 Na
OH溶液调节含硒酸根废水的 pH值为 7以上。
[权利要求 3] 根据权利要求 1所述处理含硒酸根废水的方法, 其特征在于: 吸附剂 与含硒酸根废水的固液比为 2 g/L。
[权利要求 4] 根据权利要求 1所述处理含硒酸根废水的方法, 其特征在于: 搅拌吋 间为 12小吋; 搅拌温度为室温。
[权利要求 5] 根据权利要求 1所述处理含硒酸根废水的方法, 其特征在于: 搅拌速 度为 120rpm。
[权利要求 6] 根据权利要求 1所述处理含硒酸根废水的方法, 其特征在于: 采用过 滤的方式去除吸附剂。
[权利要求 7] 根据权利要求 1所述处理含硒酸根废水的方法, 其特征在于: 将 YC1 3 •6H 20、 NaOH、 NaCl溶解在水中; 然后经过 100分钟升温至 150°C, 保温 12小吋, 然后经过 24小吋降到室温, 干燥得到¥ 2(0¾ 504.511 2 0。
[权利要求 8] Y 2(OH) 5C1 1.5H 20在水处理中的应用。
[权利要求 9] Y 2(OH) 5C1 1.5H 20作为吸附剂在处理含硒酸根废水中的应用。
[权利要求 10] 根据权利要求 9所述的应用, 其特征在于: 吸附剂与含硒酸根废水的 固液比为 2 g/L; 处理吋间为 12小吋; 处理温度为室温。
PCT/CN2017/073012 2017-01-10 2017-02-06 一种处理含硒酸根废水的方法 WO2018129772A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710016481.9A CN106673111B (zh) 2017-01-10 2017-01-10 一种处理含硒酸根废水的方法
CN201710016481.9 2017-01-10

Publications (1)

Publication Number Publication Date
WO2018129772A1 true WO2018129772A1 (zh) 2018-07-19

Family

ID=58849429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073012 WO2018129772A1 (zh) 2017-01-10 2017-02-06 一种处理含硒酸根废水的方法

Country Status (2)

Country Link
CN (1) CN106673111B (zh)
WO (1) WO2018129772A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111057857A (zh) * 2019-12-31 2020-04-24 安徽工业大学 一种铜冶炼多元混合废酸中微量硒的高效沉淀剂及其沉淀微量硒并协同回收二氧化硫的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283168A (ja) * 2006-04-13 2007-11-01 Nippon Sheet Glass Co Ltd 吸着剤及びその製造方法
JP2007326077A (ja) * 2006-06-09 2007-12-20 Nippon Sheet Glass Co Ltd セレン含有水の処理方法
WO2009028192A1 (ja) * 2007-08-29 2009-03-05 Toda Kogyo Corporation 吸着剤
CN101643289A (zh) * 2009-08-28 2010-02-10 南京大学 一种水体中微量硒的深度去除方法
JP2013078711A (ja) * 2011-10-03 2013-05-02 Taiheiyo Cement Corp 排水からのセレン除去方法
CN103230776A (zh) * 2013-04-26 2013-08-07 北京师范大学 一种层状氢氧化物复合材料及其制备方法
JP2013150963A (ja) * 2012-01-26 2013-08-08 Taiheiyo Cement Corp 塩素バイパスダスト水洗排水からのセレン除去方法
JP2013244450A (ja) * 2012-05-25 2013-12-09 Taiheiyo Cement Corp 硫黄分及びセレンを含有する排水の処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1222467C (zh) * 2003-10-23 2005-10-12 浙江大学 一种制备双金属氧化物和水滑石的方法
CN100455346C (zh) * 2004-06-04 2009-01-28 天津大学 用于深度净化植物提取物中痕量砷的吸附剂及其制备方法
CN102923754A (zh) * 2011-08-11 2013-02-13 同济大学 含有稀土元素的层状双羟基复合金属氧化物及制法和应用
GB201122163D0 (en) * 2011-12-22 2012-02-01 Scg Chemicals Co Ltd Modification of layered double hydroxides
CN104722264A (zh) * 2015-03-07 2015-06-24 湖南农业大学 掺镧水滑石同时去除废水中砷氟的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007283168A (ja) * 2006-04-13 2007-11-01 Nippon Sheet Glass Co Ltd 吸着剤及びその製造方法
JP2007326077A (ja) * 2006-06-09 2007-12-20 Nippon Sheet Glass Co Ltd セレン含有水の処理方法
WO2009028192A1 (ja) * 2007-08-29 2009-03-05 Toda Kogyo Corporation 吸着剤
CN101643289A (zh) * 2009-08-28 2010-02-10 南京大学 一种水体中微量硒的深度去除方法
JP2013078711A (ja) * 2011-10-03 2013-05-02 Taiheiyo Cement Corp 排水からのセレン除去方法
JP2013150963A (ja) * 2012-01-26 2013-08-08 Taiheiyo Cement Corp 塩素バイパスダスト水洗排水からのセレン除去方法
JP2013244450A (ja) * 2012-05-25 2013-12-09 Taiheiyo Cement Corp 硫黄分及びセレンを含有する排水の処理方法
CN103230776A (zh) * 2013-04-26 2013-08-07 北京师范大学 一种层状氢氧化物复合材料及其制备方法

Also Published As

Publication number Publication date
CN106673111B (zh) 2020-09-08
CN106673111A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN105381780B (zh) 一种吸附‑超导磁分离除砷锑的磁性吸附剂及其制备方法
CN105084591B (zh) 一种氟化工高含氟废水处理工艺
CN103212364B (zh) 一种铁锰复合氧化物及其制备方法和水体除砷的应用
Ji et al. Sorption enhancement of nickel (II) from wastewater by ZIF-8 modified with poly (sodium 4-styrenesulfonate): Mechanism and kinetic study
CN103151088A (zh) 一种处理核电废水中放射性元素铁、钴、锰和银的复合絮凝剂及处理方法
CN103464091A (zh) 一种改性膨润土负载纳米铁材料及其制备方法
CN101348297B (zh) 一种含重金属离子废水的处理方法
CN103127899B (zh) 一种除砷吸附剂-铁铜复合氧化物及其制备方法
CN109289762B (zh) 一种锰活化不定型铁基吸附剂的制备方法
WO2016192311A1 (zh) 一种基于刻蚀模板法制备的中空铁锰复合物材料及其应用
CN107262037A (zh) 一种海泡石羟基氧化铁活性炭复合吸附剂的制备与应用
CN103578593A (zh) 一种利用石墨烯负载纳米零价铁复合材料去除放射性钴的方法
CN101920190B (zh) 一种沸石改性方法及在水除砷中的用途
Shan et al. Magnetite/hydrated cerium (III) carbonate for efficient phosphate elimination from aqueous solutions and the mechanistic investigation
CN103506065A (zh) 一种壳-核结构磁性重金属吸附剂及其制备方法
CN109107524B (zh) 一种赤泥吸附剂及其制备方法和应用
CN112169748A (zh) 一种吸附剂及其制备方法和应用
CN110205502A (zh) 一种使用含铝吸附剂去除锂云母矿中性浸出液中氟的方法
CN102941060B (zh) 用于处理含铅废水的氧化锰硅藻土复合吸附剂及制备方法
CN104645932B (zh) 一种铁锰氧化物复合改性沸石及其制备方法与应用
CN113908799B (zh) 一种磁性普鲁士蓝纳米粘土的制备方法和应用
CN102728300A (zh) 一种掺杂二氧化锰的复合磁纳米吸附剂及其制备方法、应用
CN103578594B (zh) 一种使用纳米Fe3O4-CeO2材料去除放射性核素的方法
JP6832551B2 (ja) セシウム吸着材及びそれを用いた環境処理方法
WO2018129772A1 (zh) 一种处理含硒酸根废水的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891821

Country of ref document: EP

Kind code of ref document: A1