WO2018127128A1 - 一种电极及应用其的有机电致发光器件 - Google Patents

一种电极及应用其的有机电致发光器件 Download PDF

Info

Publication number
WO2018127128A1
WO2018127128A1 PCT/CN2018/071554 CN2018071554W WO2018127128A1 WO 2018127128 A1 WO2018127128 A1 WO 2018127128A1 CN 2018071554 W CN2018071554 W CN 2018071554W WO 2018127128 A1 WO2018127128 A1 WO 2018127128A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive layer
layer
earth metal
thickness
Prior art date
Application number
PCT/CN2018/071554
Other languages
English (en)
French (fr)
Inventor
李维维
闵超
罗志忠
刘嵩
敖伟
Original Assignee
昆山工研院新型平板显示技术中心有限公司
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山工研院新型平板显示技术中心有限公司, 昆山国显光电有限公司 filed Critical 昆山工研院新型平板显示技术中心有限公司
Priority to JP2018564978A priority Critical patent/JP6775723B2/ja
Priority to US16/307,070 priority patent/US10957872B2/en
Priority to KR1020187032528A priority patent/KR102216379B1/ko
Priority to EP18736429.4A priority patent/EP3447817B1/en
Publication of WO2018127128A1 publication Critical patent/WO2018127128A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/826Multilayers, e.g. opaque multilayers

Definitions

  • the present invention relates to the field of organic electroluminescence, and in particular to an electrode and an organic electroluminescent device using the same.
  • An organic light emitting diode (English name: Organic Light-Emitting Diode, OLED for short) is an active light emitting device.
  • the thin film transistor liquid crystal display (English name Liquid Crystal Display, referred to as LCD)
  • the plasma display panel (English full name Plasma Display Panel, PDP for short)
  • the organic light emitting display device using the organic light emitting diode has high contrast
  • the advantages of wide viewing angle, low power consumption, and thinner volume are expected to become the next generation of mainstream flat panel display technology, and it is one of the most popular technologies in flat panel display technology.
  • the OLED device mainly includes a stacked anode, an organic light emitting layer, and a cathode.
  • the OLED cathode should use a metal material with a work function as low as possible, because the injection of electrons is more difficult than the injection of holes, and the size of the metal work function seriously affects the luminous efficiency and service life of the OLED device.
  • the lower the metal work function the easier the electron injection and the higher the luminous efficiency.
  • the lower the work function the lower the organic/metal interface barrier, the less Joule heat generated during operation, and the device lifetime. A big increase.
  • single-layer metal cathodes with low work function such as Mg, Ca, etc.
  • a low work function metal and a corrosion resistant metal alloy are generally selected as the cathode. Avoid this problem.
  • a single metal cathode film is evaporated, a large number of defects are formed, resulting in deterioration of oxidation resistance.
  • the alloy cathode is vapor-deposited, a small amount of chemically active metal preferentially diffuses into the defect, making the entire cathode layer stable.
  • an electrode excellent in performance and an organic light-emitting device using the same are provided.
  • An electrode according to the present invention includes a first conductive layer, a second conductive layer and a third conductive layer which are laminated, and the second conductive layer is at least one of an alkaline earth metal, an alkaline earth metal alloy and an alkaline earth metal compound.
  • the formed single-layer or multi-layer composite structure, the first conductive layer and the second conductive layer have a light transmittance of not less than 40%, and the third conductive layer has a work function of less than 3 eV.
  • the third conductive layer is a single layer or a multilayer composite structure formed by at least one of a rare earth metal, a rare earth metal alloy, and a rare earth metal compound.
  • the rare earth metal is a lanthanide metal.
  • the lanthanide metal is lanthanum and/or cerium.
  • the second conductive layer is a single layer or a multilayer composite structure formed by at least one of an alkaline earth metal, an alkaline earth metal alloy, and an alkaline earth metal compound.
  • the first conductive layer is a silver layer.
  • the first conductive layer has a thickness of 5 nm to 20 nm.
  • the second conductive layer has a thickness of 0.5 nm to 10 nm.
  • the second conductive layer has a thickness of 0.5 nm to 2 nm.
  • the third conductive layer has a thickness of 0.5 nm to 10 nm.
  • An organic electroluminescent device includes a first electrode, an organic light emitting layer and a second electrode which are stacked, the second electrode is the electrode, and the third conductive layer is close to the organic The illuminating layer is set.
  • An embodiment of the present invention provides an electrode including a first conductive layer, a second conductive layer, and a third conductive layer, wherein the first conductive layer and the second conductive layer have a light transmittance of not less than 40%.
  • the work function of the three conductive layers is less than 3 eV.
  • Each of the conductive layers in the electrode can compensate for defects in the film layer, making the electrode performance more stable.
  • the work function of the third conductive layer is less than 3 eV, which can effectively reduce the organic/metal interface barrier to guide electron injection and improve the luminous efficiency of the device.
  • the first conductive layer and the second conductive layer have a light transmittance of not less than 40%, so that the electrode has good light transmittance and can be used as a light-transmitting electrode.
  • An embodiment of the present invention provides an electrode, and the third conductive layer is a combination of one or more of a rare earth metal layer, a rare earth metal alloy layer, and a rare earth metal compound layer.
  • the rare earth metal not only has a lower work function, but also can effectively reduce the electron injection energy barrier, thereby reducing the driving voltage of the device; and has a lower light absorption rate, which has less influence on the light extraction efficiency of the device.
  • the embodiment of the present invention provides an electrode, and the second conductive layer can effectively prevent the third conductive layer from forming a solid solution with the material of the first conductive layer, thereby ensuring the stability of the electrode, thereby effectively improving the stability of the device to which the device is applied. Sex and service life.
  • the thickness of the second conductive layer is 0.5 nm to 10 nm, and the light transmittance is good, so that the electrode has good light transmittance and can be used as a light transmitting electrode.
  • FIG. 1 is a schematic view showing the structure of an electrode according to Embodiment 1 of the present invention.
  • Example 2 is a comparison diagram of light transmittances of Example 1, Example 3, and Comparative Example 2 of the present invention
  • Figure 3 is a graph showing the reflectance of Example 1, Example 3 and Comparative Example 2 of the present invention.
  • This embodiment provides an electrode, as shown in FIG. 1, including a first conductive layer 1 and a second conductive layer 2 which are stacked.
  • the first conductive layer 1 is an Ag layer having a thickness of 16 nm;
  • the second conductive layer 2 is a Mg layer having a thickness of 1 nm;
  • the third conductive layer 3 is a Yb layer having a thickness of 1 nm.
  • the first electrode is a stacked Ag layer and an ITO layer
  • the hole injection layer is a layer of HATCN (2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaaza);
  • the hole transporting layer is a layer of NPB (N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine);
  • the luminescent layer is a doped layer of Ir(piq) 3 (tris(1-phenylisoquinoline-C 2 ,N) ruthenium (III)) and CBP (N'-biscarbazolylbiphenyl);
  • the hole blocking layer is a TPBi (1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene) layer;
  • the second electrode is the electrode
  • the light coupling layer is an ITO (Indium Tin Oxide) layer.
  • the structure of the organic electroluminescent device is not limited thereto, and the object of the present invention can be achieved by applying the electrode of the present invention, and is within the scope of the present invention.
  • This embodiment provides an electrode having the same structure as that of Embodiment 1, except that the third conductive layer is a Yb 2 O 3 layer having a thickness of 1 nm.
  • This embodiment further provides an organic electroluminescent device having the same structure as that of Embodiment 1, except that the second electrode is the electrode described in the embodiment: Ag/ITO (20 nm) / HATCN (20 nm) / NPB (40 nm) / mCBP: 3 wt% Ir(piq) 3 (30 nm) / TPBi (50 nm) / Yb 2 O 3 (1 nm) / Mg (1 nm) / Ag (16 nm) / ITO (20 nm).
  • This embodiment provides an electrode having the same structure as that of Embodiment 1, except that the second conductive layer is a Mg, Ag alloy layer having a thickness of 2 nm and the first conductive layer has a thickness of 5 nm.
  • This embodiment also provides an organic electroluminescent device having the same structure as that of Embodiment 1, except that the second electrode is the electrode described in the embodiment.
  • This embodiment provides an electrode having the same structure as that of Embodiment 1, except that the third conductive layer is an Sm and Ca alloy layer, and the Sm has a mass content of 50% and a thickness of 0.5 nm.
  • This embodiment also provides an organic electroluminescent device having the same structure as that of Embodiment 1, except that the second electrode is the electrode described in the embodiment.
  • This embodiment provides an electrode having the same structure as Embodiment 1, except that the third conductive layer YbN layer; the second conductive layer is a MgCO 3 layer having a thickness of 1 nm.
  • This embodiment also provides an organic electroluminescent device having the same structure as that of Embodiment 1, except that the second electrode is the electrode described in the embodiment.
  • This embodiment provides an electrode having the same structure as Embodiment 1, except that the first conductive layer has a thickness of 20 nm and the second conductive layer has a thickness of 0.5 nm.
  • This embodiment also provides an organic electroluminescent device having the same structure as that of Embodiment 1, except that the second electrode is the electrode described in the embodiment.
  • This embodiment provides an electrode having the same structure as Embodiment 1, except that the thickness of the second conductive layer is 10 nm, and the thickness of the third conductive layer is 10 nm.
  • This embodiment also provides an organic electroluminescent device having the same structure as that of Embodiment 1, except that the second electrode is the electrode described in the embodiment.
  • This comparative example provides an electrode having the same structure as that of Embodiment 1, except that the second conductive layer is not included.
  • the present comparative example also provides an organic electroluminescent device having the same structure as in Example 1, except that the second electrode is the electrode of the present comparative example.
  • the present comparative example provides an electrode having the same structure as that of Embodiment 1, except that the third conductive layer is not included, and the second conductive layer is a Mg, Ag alloy layer having a thickness of 2 nm.
  • This embodiment also provides an organic electroluminescent device having the same structure as that of Embodiment 1, except that the second electrode is the electrode of the comparative example.
  • the present comparative example provides an electrode having the same structure as in Embodiment 1, except that the third conductive layer is an Ag layer.
  • This embodiment also provides an organic electroluminescent device having the same structure as that of Embodiment 1, except that the second electrode is the electrode of the comparative example.
  • This comparative example provides an electrode having the same structure as in Embodiment 1, except that the thickness of the second conductive layer is 20 nm.
  • This embodiment also provides an organic electroluminescent device having the same structure as that of Embodiment 1, except that the second electrode is the electrode of the comparative example.
  • Light transmittance and reflectance tests were performed on the electrodes provided in the above examples and comparative examples. As shown in FIG. 2, in the visible light range, the transmittances of the electrodes provided in Example 1 and Example 3 are all above 30%, and even up to 60%; and the electrodes provided in Comparative Example 2 are transparent. The light rate is less than 30%. As shown in FIGS. 2 and 3, the light transmittances of the light of Examples 1 and 3 exceeded 40% by comparing the light transmittance and reflectance of the different cathode structures of Example 1, Example 3, and Comparative Example 2. The transmittance of the comparative example 2 is 25% higher, which can effectively improve the light-emitting characteristics of the OLED device. The reflectance of the light of Example 1 and Example 3 was 42% higher than that of Comparative Example 2, and the improvement of the light transmittance and the reflectance can effectively improve the light extraction efficiency and improve the luminous efficiency of the device.
  • organic thin films may change from the original amorphous film to the crystalline film, and the film change between them will cause the device to decline.
  • the device was annealed at different temperatures for 1 hour, respectively, and the T 97 (brightness decay from 10000 nit to 97% lifetime) of the unannealed (25 ° C) device is shown in Table 1.
  • Table 1 data shows that when the electrode of the present invention is applied to an organic electroluminescent device, the device lifetime is much higher than that of the device in the comparative example, and the device stability is better under high temperature conditions.
  • Dynamic life test (50% alternating checkerboard evaluation), that is, in a specific working environment, the display is lit in a cross checkerboard format, every 10S change, the device lifetime is evaluated by testing the brightness decay, and the brightness is attenuated to 50% of the initial brightness.
  • the brightness test was measured using a spectrometer Spectrascan PR655, which was divided into two types: normal temperature (25 ° C) and high temperature (85 ° C) dynamic life test.
  • the electrode of the present invention when the electrode of the present invention is applied to an organic electroluminescent device, the luminous efficiency and lifetime of the device can be remarkably improved, and the driving voltage can be lowered.
  • the color coordinate (CIE) data it can be seen from the color coordinate (CIE) data that the electrode has a lower absorbance and has no effect on the luminescent color of the device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

一种电极及应用其的有机电致发光器件。所述的一种电极,包括层叠设置的第一导电层(1)、第二导电层(2)和第三导电层(3),所述第二导电层(2)为碱土金属、碱土金属合金、碱土金属化合物中的至少一种形成的单层或多层复合结构,第三导电层(3)的功函数小于3eV。电极中的各导电层能够相互弥补膜层中的缺陷,使得电极性能更加稳定。同时,第三导电层(3)的功函数小于3eV,能够有效降低有机/金属界面势垒引导电子注入,提高器件的发光效率。另外,所述电极具有较好的透光性,可以作为透光电极使用。

Description

一种电极及应用其的有机电致发光器件 技术领域
本发明涉及有机电致发光领域,具体涉及一种电极及应用其的有机电致发光器件。
背景技术
有机发光二极管(英文全称为Organic Light-Emitting Diode,简称为OLED)是主动发光器件。相比现有平板显示技术中薄膜晶体管液晶显示器(英文全称Liquid Crystal Display,简称LCD)、等离子体显示面板(英文全称Plasma Display Panel,简称PDP),使用有机发光二极管的有机发光显示装置具有高对比度、广视角、低功耗、体积更薄等优点,有望成为下一代主流平板显示技术,是目前平板显示技术中受到关注最多的技术之一。
OLED器件主要包括层叠设置的阳极、有机发光层和阴极。为提高电子的注入效率,OLED阴极应该选用功函数尽可能低的金属材料,因为电子的注入比空穴的注入难度大,金属功函数的大小严重的影响着OLED器件的发光效率和使用寿命,金属功函数越低,电子注入就越容易,发光效率就越高;此外,功函数越低,有机/金属界面势垒越低,工作中产生的焦耳热就会越少,器件寿命就会有较大的提高。
然而,低功函数的单层金属阴极,如Mg、Ca等,在空气中很容易被氧化,致使器件不稳定、使用寿命缩短,因此一般选择低功函数金属和抗腐蚀金属的合金做阴极来避免这一问题。在蒸发单一金属阴极薄膜时,会形成大量的缺陷,造成耐氧化性变差;而蒸镀合金阴极时,少量化学性质相对活泼的金属会优先扩散到缺陷中,使整个阴极层变得稳定。
因此,开发具有优异性能的阴极结构是促进OLED产业技术发展的关键技术之一。
发明内容
为此,提供一种性能优异的电极及应用其的有机发光器件。
本发明采用的技术方案如下:
本发明所述的一种电极,包括层叠设置的第一导电层、第二导电层和第三导电层,所述第二导电层为碱土金属、碱土金属合金、碱土金属化合物中的至少一种形成的单层或多层复合结构,所述第一导电层和所述第二导电层的透光率均不小于40%,所述第三导电层的功函数小于3eV。
可选地,所述第三导电层为稀土金属、稀土金属合金、稀土金属化合物中的至少一种形成的单层或多层复合结构。
可选地,所述稀土金属为镧系金属。
可选地,所述镧系金属金属为镱和/或钐。
可选地,所述第二导电层为碱土金属、碱土金属合金、碱土金属化合物中的至少一种形成的单层或多层复合结构。
可选地,所述第一导电层为银层。
可选地,所述第一导电层厚度为5nm~20nm。
可选地,所述第二导电层厚度为0.5nm~10nm。
可选地,所述第二导电层厚度为0.5nm~2nm。
可选地,所述第三导电层厚度为0.5nm~10nm。
本发明所述的一种有机电致发光器件,包括层叠设置的第一电极、有机发光层和第二电极,所述第二电极为所述的电极,所述第三导电层靠近所述有机发光层设置。
本发明的上述技术方案相比现有技术具有以下优点:
1、本发明实施例提供一种电极,包括层叠设置的第一导电层、第二导电层和第三导电层,第一导电层和第二导电层的透光率均不小于40%,第三导电层的功函数小于3eV。电极中的各导电层能够相互弥补膜层中的缺陷, 使得电极性能更加稳定。同时,第三导电层的功函数小于3eV,能够有效降低有机/金属界面势垒引导电子注入,提高器件的发光效率。另外,第一导电层和第二导电层的透光率均不小于40%,使得所述电极具有较好的透光性,可以作为透光电极使用。
2、本发明实施例提供一种电极,第三导电层为稀土金属层、稀土金属合金层、稀土金属化合物层中的一种或者多种的组合。其中,稀土金属不但具有较低的逸出功,能够有效降低电子注入能障,进而降低器件的驱动电压;而且具有较低的吸光率,对器件的出光效率影响较小。
3、本发明实施例提供一种电极,第二导电层能够有效阻止第三导电层与第一导电层的材料产生固溶,能够保证电极的稳定性,从而有效提高了应用其的器件的稳定性和使用寿命。同时,第二导电层厚度为0.5nm~10nm,透光性能好,使得所述电极具有较好的透光性,可以作为透光电极使用。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是本发明实施例1所述的电极结构示意图;
图2是本发明实施例1、实施例3和对比例2的透光率对比图;
图3是本发明实施例1、实施例3和对比例2的反射率对比图;
图中附图标记表示为:1-第一导电层、2-第二导电层、3-第三导电层。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作进一步地详细描述。
本发明可以以许多不同的形式实施,而不应该被理解为限于在此阐述的实施例。相反,提供这些实施例,使得本公开将是彻底和完整的,并且将把本发明的构思充分传达给本领域技术人员,本发明将仅由权利要求来限定。在附图中,为了清晰起见,会夸大层和区域的尺寸和相对尺寸。
实施例1
本实施例提供一种电极,如图1所示,包括层叠设置的第一导电层1和第二导电层2。第一导电层1为Ag层,厚度为16nm;第二导电层2为Mg层,厚度为1nm;第三导电层3为Yb层,厚度为1nm。
本实施例还提供一种有机电致发光器件:
Ag/ITO(20nm)/HATCN(20nm)/NPB(40nm)/mCBP:3wt%Ir(piq) 3(30nm)/TPBi(50nm)/Yb(1nm)/Mg(1nm)/Ag(16nm)/ITO(20nm)。
其中,第一电极为叠置的Ag层和ITO层;
空穴注入层为HATCN(2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂)层;
空穴传输层为NPB(N,N’-二(1-萘基)-N,N’-二苯基-1,1’-联苯-4,4’-二胺)层;
发光层为Ir(piq) 3(三(1-苯基异喹啉-C2,N)合铱(III))与CBP(N′-二咔唑基联苯)的掺杂层;
空穴阻挡层为TPBi(1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯)层;
第二电极为所述电极;
光耦合层为ITO(铟锡氧化物)层。
作为本发明的可变换实施例,所述有机电致发光器件的结构并不限于此,只要应用本发明所述的电极,均可实现本发明的目的,属于本发明的保护范围。
实施例2
本实施例提供一种电极,结构同实施例1,不同的是:第三导电层为Yb 2O 3层,厚度为1nm。
本实施例还提供一种有机电致发光器件,结构同实施例1,不同的是,第二电极为本实施例所述的电极:Ag/ITO(20nm)/HATCN(20nm)/NPB(40nm)/mCBP:3wt%Ir(piq) 3(30nm)/TPBi(50nm)/Yb 2O 3(1nm)/Mg(1nm)/Ag(16nm)/ ITO(20nm)。
实施例3
本实施例提供一种电极,结构同实施例1,不同的是:第二导电层为Mg、Ag合金层,厚度为2nm,第一导电层厚度为5nm。
本实施例还提供一种有机电致发光器件,结构同实施例1,不同的是,第二电极为本实施例所述的电极。
实施例4
本实施例提供一种电极,结构同实施例1,不同的是:第三导电层为Sm、Ca合金层,Sm的质量含量为50%,厚度为0.5nm。
本实施例还提供一种有机电致发光器件,结构同实施例1,不同的是,第二电极为本实施例所述的电极。
实施例5
本实施例提供一种电极,结构同实施例1,不同的是:第三导电层YbN层;第二导电层为MgCO 3层,厚度为1nm。
本实施例还提供一种有机电致发光器件,结构同实施例1,不同的是,第二电极为本实施例所述的电极。
实施例6
本实施例提供一种电极,结构同实施例1,不同的是:第一导电层厚度为20nm;第二导电层厚度为0.5nm。
本实施例还提供一种有机电致发光器件,结构同实施例1,不同的是,第二电极为本实施例所述的电极。
实施例7
本实施例提供一种电极,结构同实施例1,不同的是:第二导电层厚度为10nm;第三导电层厚度为10nm。
本实施例还提供一种有机电致发光器件,结构同实施例1,不同的是, 第二电极为本实施例所述的电极。
对比例1
本对比例提供一种电极,结构同实施例1,不同的是:不包括第二导电层。
本对比例还提供一种有机电致发光器件,结构同实施例1,不同的是,第二电极为本对比例所述的电极。
对比例2
本对比例提供一种电极,结构同实施例1,不同的是:不包括第三导电层,第二导电层为Mg、Ag合金层,厚度为2nm。
本实施例还提供一种有机电致发光器件,结构同实施例1,不同的是,第二电极为本对比例所述的电极。
对比例3
本对比例提供一种电极,结构同实施例1,不同的是:第三导电层为Ag层。
本实施例还提供一种有机电致发光器件,结构同实施例1,不同的是,第二电极为本对比例所述的电极。
对比例4
本对比例提供一种电极,结构同实施例1,不同的是:第二导电层厚度为20nm。
本实施例还提供一种有机电致发光器件,结构同实施例1,不同的是,第二电极为本对比例所述的电极。
测试例1
对上述实施例和对比例中所提供的电极进行透光率、反射率测试。如图2所示,在可见光范围内,实施例1和实施例3中所提供的电极的透光率均在30%以上,甚至能达到60%;而对比例2中所提供的电极的透光率均不 到30%。如图2和图3所示,通过对比实施例1、实施例3和对比例2的不同阴极结构的透光率和反射率,实施例1和实施例3的光的透光率超过40%,比对比例2的透光率高25%,可以有效提升OLED器件的出光特性。实施例1和实施例3的光的反射率比对比例2高42%,透光率和反射率的提高可以有效的提高出光效率,提高器件的发光效率。
测试例2
有机电致发光器件在长时间的工作条件下,有机薄膜有可能从原来的非结晶性薄膜转变成结晶性薄膜,这之间的薄膜变化将导致器件的衰退。
因此,将器件在不同温度下分别退火1小时,与未退火(25℃)的器件的T 97(亮度从10000nit衰减至97%的寿命)测试结果如表1所示。
表1不同器件的T 97测试结果表
Figure PCTCN2018071554-appb-000001
Figure PCTCN2018071554-appb-000002
上述表1数据表明,本发明所述的电极应用于有机电致发光器件时,器件寿命远高于对比例中的器件寿命,在高温条件下器件稳定性更好。
测试例3
动态寿命实验(50%alternating checkerboard评估),即在特定工作环境下,显示屏以交叉棋盘格式点亮,每10S变换一次,通过测试亮度衰减来评估器件寿命,亮度衰减到起始亮度的50%时,停止实验,亮度测试使用光度计spectrascan PR655测量,分为常温(25℃)和高温(85℃)动态寿命实验两种。
表2不同器件在常温(25℃)下的动态寿命实验结果表
Figure PCTCN2018071554-appb-000003
Figure PCTCN2018071554-appb-000004
由表2数据可知,本发明所述的电极在有机电致发光器件中应用时,能够显著提高器件的发光效率和寿命,降低驱动电压。同时,从色坐标(CIE)数据可以看出,所述电极具有较低吸光率,对器件的发光颜色无影响。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (10)

  1. 一种电极,其特征在于,包括层叠设置的第一导电层、第二导电层和第三导电层,所述第二导电层为碱土金属、碱土金属合金、碱土金属化合物中的至少一种形成的单层或多层复合结构,所述第三导电层的功函数小于3eV。
  2. 根据权利要求1所述的电极,其特征在于,所述第三导电层为稀土金属、稀土金属合金、稀土金属化合物中的至少一种形成的单层或多层复合结构。
  3. 根据权利要求2所述的电极,其特征在于,所述稀土金属为镧系金属。
  4. 根据权利要求3所述的电极,其特征在于,所述镧系金属为镱和/或钐。
  5. 根据权利要求1所述的电极,其特征在于,所述第一导电层为银层。
  6. 根据权利要求1-5任一项所述的电极,其特征在于,所述第一导电层厚度为5nm~20nm。
  7. 根据权利要求6所述的电极,其特征在于,所述第二导电层厚度为0.5nm~10nm。
  8. 根据权利要求7所述的电极,其特征在于,所述第二导电层厚度为0.5nm~2nm。
  9. 根据权利要求8所述的电极,其特征在于,所述第三导电层厚度为0.5nm~10nm。
  10. 一种有机电致发光器件,包括层叠设置的第一电极、有机发光层和第二电极,其特征在于,所述第二电极为权利要求1-9任一项所述的电极,所述第三导电层靠近所述有机发光层设置。
PCT/CN2018/071554 2017-01-05 2018-01-05 一种电极及应用其的有机电致发光器件 WO2018127128A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018564978A JP6775723B2 (ja) 2017-01-05 2018-01-05 電極及びそれを用いた有機エレクトロルミネッセンスデバイス
US16/307,070 US10957872B2 (en) 2017-01-05 2018-01-05 Electrode and organic electroluminescent device using same
KR1020187032528A KR102216379B1 (ko) 2017-01-05 2018-01-05 전극 및 그 전극을 응용한 유기 전계 발광 소자
EP18736429.4A EP3447817B1 (en) 2017-01-05 2018-01-05 Electrode and organic electroluminescent device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710007519.6A CN108281562B (zh) 2017-01-05 2017-01-05 一种电极及应用其的有机电致发光器件
CN201710007519.6 2017-01-05

Publications (1)

Publication Number Publication Date
WO2018127128A1 true WO2018127128A1 (zh) 2018-07-12

Family

ID=62789287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071554 WO2018127128A1 (zh) 2017-01-05 2018-01-05 一种电极及应用其的有机电致发光器件

Country Status (7)

Country Link
US (1) US10957872B2 (zh)
EP (1) EP3447817B1 (zh)
JP (1) JP6775723B2 (zh)
KR (1) KR102216379B1 (zh)
CN (1) CN108281562B (zh)
TW (1) TWI664085B (zh)
WO (1) WO2018127128A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659450A (zh) * 2019-01-11 2019-04-19 京东方科技集团股份有限公司 一种量子点发光器件的制备方法及量子点发光器件
WO2021202950A2 (en) * 2020-04-02 2021-10-07 Drexel University Mxene transparent conducting layers for digital display and method thereof
CN111740022A (zh) * 2020-06-30 2020-10-02 合肥维信诺科技有限公司 显示面板及显示装置
KR102392914B1 (ko) * 2020-08-24 2022-04-29 고려대학교 산학협력단 유기발광소자용 전극 및 그 전극을 포함하는 유기발광소자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1076368A2 (en) * 1999-08-11 2001-02-14 Eastman Kodak Company A surface-emitting organic light-emitting diode
CN1722339A (zh) * 2004-06-22 2006-01-18 通用电气公司 用于有机电子装置的金属化合物-金属多层电极
CN102468448A (zh) * 2010-11-09 2012-05-23 三星移动显示器株式会社 有机发光装置和用于有机发光装置的阴极

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0925709B1 (en) * 1996-09-04 2003-08-13 Cambridge Display Technology Limited Organic light-emitting devices with improved cathode
GB9903251D0 (en) * 1999-02-12 1999-04-07 Cambridge Display Tech Ltd Opto-electric devices
JP4857498B2 (ja) * 2001-08-23 2012-01-18 ソニー株式会社 表示素子
US6794061B2 (en) * 2002-01-31 2004-09-21 Eastman Kodak Company Organic electroluminescent device having an adhesion-promoting layer for use with a magnesium cathode
US7015639B2 (en) 2002-10-22 2006-03-21 Osram Opto Semiconductors Gmbh Electroluminescent devices and method of making transparent cathodes
CN1825662A (zh) * 2006-02-09 2006-08-30 友达光电股份有限公司 有机电激发光装置
WO2009084590A1 (ja) 2007-12-28 2009-07-09 Sumitomo Chemical Company, Limited 高分子発光素子、製造方法及び高分子発光ディスプレイ装置
JP2009245787A (ja) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
CN101339976B (zh) 2008-08-07 2010-09-08 清华大学 一种有机电致发光器件
KR101156429B1 (ko) * 2009-06-01 2012-06-18 삼성모바일디스플레이주식회사 유기 발광 소자
CN104124368A (zh) * 2013-04-24 2014-10-29 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
CN104700922A (zh) * 2013-12-10 2015-06-10 海洋王照明科技股份有限公司 多层透明导电薄膜及其制备方法与电致发光器件
KR102126382B1 (ko) * 2014-02-19 2020-06-25 삼성디스플레이 주식회사 유기 발광 표시 장치
KR101620092B1 (ko) * 2014-11-06 2016-05-13 삼성디스플레이 주식회사 유기 발광 소자 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1076368A2 (en) * 1999-08-11 2001-02-14 Eastman Kodak Company A surface-emitting organic light-emitting diode
CN1722339A (zh) * 2004-06-22 2006-01-18 通用电气公司 用于有机电子装置的金属化合物-金属多层电极
CN102468448A (zh) * 2010-11-09 2012-05-23 三星移动显示器株式会社 有机发光装置和用于有机发光装置的阴极

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3447817A4 *

Also Published As

Publication number Publication date
US20190148666A1 (en) 2019-05-16
JP6775723B2 (ja) 2020-10-28
CN108281562B (zh) 2020-06-19
KR102216379B1 (ko) 2021-02-18
CN108281562A (zh) 2018-07-13
TWI664085B (zh) 2019-07-01
JP2019525385A (ja) 2019-09-05
TW201825281A (zh) 2018-07-16
KR20180128062A (ko) 2018-11-30
EP3447817A4 (en) 2019-08-21
EP3447817A1 (en) 2019-02-27
EP3447817B1 (en) 2023-07-19
US10957872B2 (en) 2021-03-23

Similar Documents

Publication Publication Date Title
US10418577B2 (en) White organic light emitting device
WO2018127128A1 (zh) 一种电极及应用其的有机电致发光器件
US7772762B2 (en) White light organic electroluminescent element
TWI577238B (zh) 有機發光二極體及包含其之顯示裝置
CN104167496B (zh) 倒置式顶发射器件及其制备方法
KR100844788B1 (ko) 유기발광소자의 제조방법 및 이에 의하여 제조된유기발광소자
CN109428005B (zh) 有机电致发光器件
JP4872805B2 (ja) 有機エレクトロルミネッセンス素子
CN104466025A (zh) 一种反射电极及其制备方法和应用
CN110112325B (zh) 透明阴极结构、有机发光二极管、阵列基板和显示装置
CN108281564B (zh) 一种电极及应用其的有机电致发光器件
TWI220101B (en) Organic electroluminescence device and fabricating method thereof
WO2018127127A1 (zh) 一种电极及应用其的有机电致发光器件
JP2007265637A (ja) 有機エレクトロルミネッセンス素子
CN108281561B (zh) 一种电极及应用其的有机电致发光器件
WO2021073154A1 (zh) 一种有机发光器件和显示面板
WO2022056792A1 (zh) 有机发光二极管和制备有机发光二极管的方法、显示装置及照明装置
WO2023039964A1 (zh) 一种显示面板和车载显示装置
JP4824776B2 (ja) 有機発光素子の製造方法およびこれによって製造された有機発光素子
JP2005310470A (ja) 有機el素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187032528

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018736429

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018736429

Country of ref document: EP

Effective date: 20181123

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18736429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564978

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE