WO2023039964A1 - 一种显示面板和车载显示装置 - Google Patents

一种显示面板和车载显示装置 Download PDF

Info

Publication number
WO2023039964A1
WO2023039964A1 PCT/CN2021/123152 CN2021123152W WO2023039964A1 WO 2023039964 A1 WO2023039964 A1 WO 2023039964A1 CN 2021123152 W CN2021123152 W CN 2021123152W WO 2023039964 A1 WO2023039964 A1 WO 2023039964A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
display panel
thickness
refractive index
Prior art date
Application number
PCT/CN2021/123152
Other languages
English (en)
French (fr)
Inventor
张玉春
仲树栋
Original Assignee
北京载诚科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京载诚科技有限公司 filed Critical 北京载诚科技有限公司
Priority to EP21946276.9A priority Critical patent/EP4174838B1/en
Priority to US18/151,830 priority patent/US20230165043A1/en
Publication of WO2023039964A1 publication Critical patent/WO2023039964A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/22Display screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/826Multilayers, e.g. opaque multilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present application relates to the display field, in particular to a display panel.
  • the present application also relates to an on-vehicle display device comprising such a display panel.
  • OLED Organic Light Emitting Diode
  • OLED display panels are self-illuminating, and OLED display panels usually include cathodes, electron transport layers, light-emitting layers (or OLED light-emitting devices), hole transport layers, anodes and other layers.
  • cathodes electron transport layers
  • light-emitting layers or OLED light-emitting devices
  • hole transport layers anodes and other layers.
  • a first aspect of the present invention provides a display panel.
  • the display panel includes: a first electrode layer; a light emitting layer group, which is arranged on the first electrode layer; a light extraction layer arranged on the light emitting layer group, and the light extraction layer is located in the light of the display panel. and used as a second electrode layer, and an encapsulation layer disposed on the light extraction layer.
  • the refractive index of the light extraction layer is smaller than the refractive index of the encapsulation layer to achieve anti-reflection of the light emitted by the light emitting layer group.
  • the refractive index of the light extraction layer is between 1.15-1.35, the refractive index of the encapsulation layer is between 1.4-1.8, and the thickness of the light extraction layer is between 50nm-200nm, so The thickness of the encapsulation layer is 23 ⁇ m-1 mm.
  • the light extraction layer includes: a first conductive layer in contact with the light-emitting layer group, a first protective layer in contact with the first conductive layer, a first protective layer in contact with the first protective layer Two conductive layers, a second protective layer in contact with the second conductive layer, and a light exit layer in contact with the second protective layer, the first conductive layer has a first refractive index n1 and a first thickness d1, The first protective layer has a second refractive index n2 and a second thickness d2, the second conductive layer has a third refractive index n3 and a third thickness d3, and the second protective layer has a fourth refractive index n4 and a second thickness d2.
  • the light exit layer has a fifth refractive index n5 and a fifth thickness d5, wherein, n1 is between 1.8-2.1, d1 is between 20nm-80nm; n2 is between 0.1-5, and d2 is between 0.5nm- Between 10nm; n3 between 0.1-1.5, d3 between 5nm-50nm; n4 between 1.3-2.1, d4 between 0.5nm-10nm; n5 between 1.8-2.4, d5 between 20nm-80nm between.
  • the first conductive layer includes conductive metal oxide
  • the first protective layer includes one of metal, conductive metal oxide, and conductive metal nitride
  • the layer includes conductive material and metal oxide and/or metal nitride
  • the second protective layer includes one of non-metal oxide, metal nitride and metal oxide
  • the main body of the light exit layer includes non-metal One of oxides, nitrides, sulfides, fluorides and carbides.
  • the material of the first conductive layer is selected from one of In 2 O 3 , SnO 2 , ZnO, ITO, TZO, AZO, ITiO, IZTO and FTO; the material of the first protective layer One selected from Ti, Ni, Cr, Al, NiCr, TiN, ZnO, TiO 2 , SnO 2 , SiO 2 , Nb 2 O 5 , Ta 2 O 5 , Si 3 N 4 ; the second conductive layer
  • the conductive material is selected from one of Ag, Cu, Al, Mo, Ag alloy, Cu alloy, Al alloy and Mo alloy, and also contains the oxide and/or nitride of the conductive material of the second conductive layer.
  • the material of the second protective layer is selected from one of TiN, ZnO, TiO 2 , SnO 2 , SiO 2 , Si 3 N 4 , AZO, IZO and YZO; the main body of the light emitting layer The material is selected from TiO 2 , SnO 2 , ZnO, Nb 2 O 5 , Ta 2 O 5 , Si 3 N 4 , ZnS, SiO 2 , Al 2 O 3 , MgF, MgS, SiC, AZO, GZO, TiN and YZO kind of.
  • the first electrode layer is a cathode with light reflection function
  • the second electrode layer is an anode
  • the light-emitting layer group includes an electron transport layer in contact with the cathode, and an electron transport layer in contact with the anode.
  • the reflective layer includes a metal layer in contact with the light emitting layer group, and a metal alloy layer in contact with the metal layer.
  • the material of the metal layer is one of Ag, Al, Mo, Cu and In; the metal alloy layer is an alloy of the material of the metal layer.
  • the first electrode layer is an anode
  • the second electrode layer is a cathode
  • the light-emitting layer group includes an electron transport layer in contact with the cathode, and a hole transport layer in contact with the anode , and an excitation layer between the electron transport layer and the hole transport layer.
  • the electron transport layer is TPBi with a thickness of 75nm; the excitation layer is Ir(ppy)2acac doped CBP with a thickness of 20nm; the hole transport layer is TAPC with a thickness of 40nm.
  • An in-vehicle display device includes the display panel according to the above.
  • the beneficial effects of the present application are as follows:
  • the light extraction layer and the encapsulation layer form an anti-reflection layer, which helps the light emitted by the light-emitting layer group to be emitted as much as possible, improving the The brightness of the display panel.
  • Fig. 1 schematically shows a display panel according to an embodiment of the present application.
  • FIG. 2 schematically shows the optical path of the display panel shown in FIG. 1 .
  • Fig. 3 schematically shows the structure of the light extraction layer.
  • Fig. 4 schematically shows the structure of the reflective layer.
  • Fig. 5 schematically shows a vehicle display device according to the present application.
  • FIG. 6 schematically shows the structure of a comparative example of a display panel.
  • Fig. 7 schematically shows a display panel according to another embodiment of the present application.
  • FIG. 1 is a schematic diagram of a display panel 1 according to an embodiment of the present application.
  • the display panel 1 uses a self-luminous organic luminescent material (such as OLED) as a light source, and is suitable for a vehicle display device, such as a dashboard of a car.
  • FIG. 5 schematically shows an in-vehicle display device 2 using such a display panel 1 .
  • the display panel 1 may be of a top emission type (ie, light is emitted through a cathode) or a bottom emission type (ie, light is emitted through an anode).
  • the bottom emission type display panel 1 will be described in detail below.
  • the display panel 1 includes: a first electrode layer 400; a light emitting layer group 300 disposed on the first electrode layer 400; a light extraction layer 200 disposed on the light emitting layer group 300; a light extraction layer 200 disposed on the light extraction layer 200 encapsulation layer 100 on it.
  • the light extraction layer 200 is in the light emission direction of the display panel 1 (arrow A shown in FIG. 1 ) and serves as a second electrode layer.
  • the refractive index of the light extraction layer 200 is smaller than the refractive index of the encapsulation layer 100 to achieve anti-reflection of the light emitted by the light emitting layer group 300 .
  • the light-emitting layer group 300 of the display panel 1 will have current flow and emit light.
  • the refractive index of the light extraction layer 200 is lower than that of the encapsulation layer 100, so that in fact both the light extraction layer 200 and the encapsulation layer 100 form an anti-reflection layer, which further helps the light emitted by the light emitting layer group 300 to be as large as possible. emitted, thereby further improving the brightness (or quantum luminous efficiency) of the display panel 1 .
  • the first electrode layer 400 is a cathode with light reflective properties.
  • the light extraction layer 200 is an anode. As shown in FIG. 2 , a part 311 of the light emitted by the light-emitting layer group 300 is emitted through the light extraction layer 200 and the encapsulation layer 100, and another part of the light 312 is reflected by the first electrode layer 400 and then passes through the light-emitting layer group 300, and the light is extracted.
  • the layer 200 and the encapsulation layer 100 are emitted out of the display panel 1 , which helps the light emitted by the light-emitting layer group 300 to be emitted as much as possible, thereby further improving the brightness of the display panel 1 .
  • the refractive index of the light extraction layer 200 is between 1.15-1.35, and the refractive index of the encapsulation layer 100 is between 1.4-1.8; correspondingly, the thickness of the light extraction layer 200 is between 50nm-200nm, and the encapsulation The thickness of layer 100 is between 23 ⁇ m and 1 mm.
  • the inventors have found that setting the light extraction layer 200 and the encapsulation layer 100 within this parameter range can make the light emitted by the light-emitting layer group 300 emit more effectively, and even the quantum luminous efficiency of the display panel 1 reaches more than 70%, which is far from The quantum luminous efficiency is higher than that of the OLED display panel in the prior art.
  • the light extraction layer 200 further includes: a first conductive layer 201 in contact with the light-emitting layer group 300 , a first protective layer 202 in contact with the first conductive layer 201 , a second protective layer in contact with the first protective layer 202 The conductive layer 203 , the second protective layer 204 in contact with the second conductive layer 203 , and the light emitting layer 205 in contact with the second protective layer 204 .
  • the first conductive layer 201, the first protective layer 202, the second conductive layer 203, the second protective layer 204, and the light emitting layer 205 are stacked, and the first conductive layer 201 is in electrical contact with the light emitting layer group 300, and the light emitting layer 205 In contact with the encapsulation layer 100 .
  • the first conductive layer 201 has a first refractive index n1 and a first thickness d1
  • the first protective layer 202 has a second refractive index n2 and a second thickness d2
  • the second conductive layer 203 has a third refractive index n3 and a third thickness d3
  • the second protective layer 204 has a fourth refractive index n4 and a fourth thickness d4
  • the light emitting layer 205 has a fifth refractive index n5 and a fifth thickness d5.
  • n1 is between 1.8-2.1, d1 is between 20nm-80nm; n2 is between 0.1-5, d2 is between 0.5nm-10nm; n3 is between 0.1-1.5, d3 is between 5nm-50nm; n4 is between 1.3 Between -2.1, d4 is between 0.5nm-10nm; n5 is between 1.8-2.4, and d5 is between 20nm-80nm.
  • the refractive index of the light extraction layer 200 can be adjusted conveniently between 1.2-1.25 while keeping the thickness of the light extraction layer 200 between 90nm and 110nm. In this way, the light extraction layer 200 can cooperate with more types of encapsulation layers 100 and keep the quantum luminous efficiency of the display panel 1 higher.
  • the number of sub-layers of the light extraction layer 200 may be more or less (even one layer), as long as the thickness and refractive index can meet the requirements, which will not be repeated here.
  • the first conductive layer 201 includes a conductive metal oxide, for example, the material of the first conductive layer 201 is selected from one of In 2 O 3 , SnO 2 , ZnO, ITO, TZO, AZO, ITiO, IZTO and FTO.
  • Sn 2 O doping weight percentage is greater than 0 and less than or equal to 50%; in IZO, ZnO doping weight percentage is greater than 0 and less than or equal to 50%; in AZO, Al 2 O 3 doping weight percentage Greater than 0 and less than or equal to 50%; in ITiO, TiO 2 doping weight percentage is greater than 0 and less than or equal to 10%; in IZTO, TiO 2 doping weight percentage is greater than 0 and less than or equal to 10%, ZnO doping The weight percentage is greater than 0 and less than or equal to 40%, and in FTO, the F doping weight percentage is greater than 0 and less than or equal to 10%.
  • the first protective layer 202 includes one of metal, conductive metal oxide and conductive metal nitride.
  • the metal can be one of Ti, Ni, Cr, Al and NiCr;
  • the metal oxide can be one of ZnO, TiO 2 , SnO 2 , SiO 2 , Nb 2 O 5 , Ta 2 O 5 ;
  • the metal The nitride may be one of TiN and Si 3 N 4 .
  • the inventors found that the selection of these materials for the first protective layer 202 can not only achieve the required refractive index, but also have good oxygen resistance, which can prevent oxygen molecules from penetrating into the second conductive layer 203, thereby ensuring that the second conductive layer 203 Has good electrical conductivity.
  • metal oxides or metal nitrides also have better conductivity due to the quantum tunneling effect, which enables the light extraction layer 200 to be used as an electrode.
  • the second conductive layer 203 includes conductive materials and inevitable metal oxide and/or metal nitride inclusions.
  • the conductive material is selected from one of Ag, Cu, Al, Mo, Ag alloy, Cu alloy, Al alloy and Mo alloy.
  • the weight ratio of Ag is greater than 50%, and the remaining 50% can be metals such as Zn, Cu, In, Pt, Pd, Au, Nb, Nd, B, Bi, Ni, etc.
  • the weight ratio of Cu is greater than 50%, and the remaining 50% can be Zn, Ag, In, Pt, Pd, Au, Nb, Nd, B, Bi, Ni and other metal elements; in In the Mo alloy layer, the weight ratio of Mo is greater than 80%, and the remaining 20% can be Zn, Cu, In, Pt, Pd, Au, Nb, Nd, B, Bi, Ni and other metal elements; in the Al alloy layer , the weight ratio of Al is greater than 80%, and the remaining 20% can be Zn, Cu, In, Pt, Pd, Au, Nb, Nd, B, Bi, Ni, and other metal elements.
  • Metal oxide and/or metal nitride inclusions are formed by oxidizing and nitriding metals or alloys with a small amount of oxygen and nitrogen introduced during the metal target coating process. These metals or alloys have good electrical conductivity, and even if they contain a small amount of metal oxide and/or nitride inclusions, the electrical conductivity of the second conductive layer 203 will not be weakened as a whole. In addition, these metal oxides and metal nitrides also improve the light transmittance of the second conductive layer 203 , which helps to improve the brightness of the display panel 1 .
  • the second protection layer 204 includes one of non-metal oxides, metal nitrides and metal oxides.
  • non-metal oxides, metal nitrides, and metal oxides can be TiN, ZnO, TiO 2 , SnO 2 , SiO 2 , Si 3 N 4 .
  • the second protective layer 204 formed by these compounds has good weather resistance and good water resistance, which improves the protection effect on the second conductive layer 203 . Due to the small thickness of the second protective layer 204, non-metal oxides, metal nitrides and metal oxides also have better conductivity due to the quantum tunneling effect, which makes the second protective layer 204 have better conductivity , the light extraction layer 200 can also be used as an electrode.
  • the light emitting layer 205 includes one of non-metallic oxides, nitrides, sulfides, fluorides, and carbides.
  • the material of the light exit layer 205 is selected from TiO 2 , SnO 2 , ZnO, Nb 2 O 5 , Ta 2 O 5 , Si 3 N 4 , ZnS, SiO 2 , Al 2 O 3 , MgF, MgS, SiC, AZO One of , GZO, TiN and YZO. These materials have a higher refractive index, which helps to meet the refractive index requirements of the light extraction layer 200 . In addition, due to the quantum tunneling effect, these compounds also have appropriate conductivity, which can reduce the resistance of the light emitting layer 205 (and the light emitting layer 200 ), and help the light emitting layer group 300 to have a good luminous effect.
  • the first electrode layer 400 of the display panel 1 includes a metal layer 401 and a metal alloy layer 402 in contact with the metal layer 401 .
  • the metal layer 401 is in electrical contact with the light-emitting layer group 300 . In this way, the entire first electrode layer 400 has good conductivity and is suitable for use as an electrode.
  • the metal layer 401 of the first electrode layer 400 is one of Ag, Al, Mo, Cu and In.
  • the metal alloy layer 402 is one of Ag alloy, Al alloy and Mo alloy; its thickness can be 5-300nm.
  • the weight proportion of Ag is greater than 50%, and the rest can be Ti, Li, Yb, Ir, Mg, Zn, Cu, Al, In, Pt, Pd, Au, Nb, Nd, B, Bi and Ni. a kind of doping.
  • Mo alloys the weight ratio of Mo is greater than 80%, and the rest can be Ti, Li, Yb, Ir, Mg, Zn, Cu, Al, In, Pt, Pd, Au, Nb, Nd, B, Bi, Ni kind of.
  • the weight ratio of Al is greater than 80%, and the rest can be Ti, Li, Yb, Ir, Mg, Zn, Cu, Al, In, Pt, Pd, Au, Nb, Nd, B, Bi and Ni. kind of.
  • the thickness of the metal alloy layer 402 may be 5-300 nm. The inventors found that making these metals or alloys into 5-300nm thin films can make the surface very smooth, thereby greatly improving the reflective performance of the first electrode layer and further improving the brightness of the display panel 1 .
  • the metal alloy layer 402 has good oxidation resistance, which helps to protect the layers inside it from oxidation.
  • the cost of the metal alloy layer 402 is lower, which helps to reduce the cost of the display panel 1 .
  • the first electrode layer 400 is a cathode
  • the second electrode layer 200 is an anode
  • the light emitting layer group 300 includes an electron transport layer 301 in contact with the cathode 400, a hole transport layer 302 in contact with the anode 200, and
  • the excitation layer 303 is located between the electron transport layer 301 and the hole transport layer 302 .
  • the material of the electron transport layer 301 is TPBi with a thickness of 75nm
  • the hole transport layer 302 is TAPC with a thickness of 40nm
  • the material of the excitation layer 303 is Ir(ppy)2acac doped CBP with a thickness of 20nm.
  • the inventors found that by using the above materials, the interface resistance between the electron transport layer 301 and the first electrode layer 400 is small, the interface resistance between the hole transport layer 302 and the first conductive layer 201 is small, and the excitation layer The interface resistance between 303 and the electron transport layer 301 and the hole transport layer 302 is also small, which helps to improve the current efficiency, thereby further improving the brightness of the display panel 1 .
  • a substrate 500 is also provided on the outside of the first electrode layer 400 .
  • the substrate 500 protects other layers of the display panel 1 , and its material can be the same as that of the encapsulation layer 100 , which will not be repeated here.
  • FIG. 7 schematically shows a display panel 1 with a top emission structure.
  • the display panel 1 includes: a substrate 500, an anode 400 formed on the substrate 500; a light emitting layer group 300 arranged on the anode 400; a light extraction layer 200 arranged on the light emitting layer group 300; The encapsulation layer 100 on the light extraction layer 200 .
  • the light extraction layer 200 is in the light emission direction of the display panel 1 (arrow B shown in FIG. 7 ) and serves as a cathode.
  • the light extraction layer 200 is the same as the light extraction layer of the above-mentioned bottom-emission display panel, and its refractive index is smaller than that of the encapsulation layer 100 to realize the anti-reflection of the light emitted by the light-emitting layer group 300 and improve the performance of the display panel 1. brightness.
  • the encapsulation layer 100 is CPI with a thickness of 23 ⁇ m and a refractive index of 1.65.
  • the first conductive layer 201 is AZO with a thickness of 40 nm and a refractive index of 2.0; the first protective layer 202 is SnO 2 with a thickness of 2 nm and a refractive index of 1.9; the second conductive layer 203 is Ag and A mixture of AgO with a thickness of 12nm and a refractive index of 0.4; the second protective layer 204 is SnO 2 with a thickness of 2nm and a refractive index of 1.9; the light exit layer 205 is AZO with a thickness of 40nm and a refractive index of 2.0.
  • the material of the electron transport layer 301 is TPBi with a thickness of 75nm; the hole transport layer 302 is TAPC with a thickness of 40nm; the material of the excitation layer 303 is Ir(ppy)acac-doped CBP with a thickness of 20nm.
  • the metal layer 401 is Ag; the metal alloy layer 402 is AgMg alloy.
  • Example 1 The optical parameters of Example 1 are shown in Table 1.
  • the encapsulation layer 100 is COP with a thickness of 50 ⁇ m and a refractive index of 1.62.
  • the first conductive layer 201 is IZTO with a thickness of 45 nm and a refractive index of 2.0; the first protective layer 202 is Cr with a thickness of 1 nm and a refractive index of 2.7; the second conductive layer 203 is AgTi and AgTiN a mixture of 15 nm in thickness and 0.5 in refractive index; the second protective layer 204 is ZnO with 5 nm in thickness and 1.9 in refractive index; the light emitting layer 205 is SnO 2 in 50 nm in thickness and 1.9 in refractive index.
  • the material of the electron transport layer 301 is TPBi with a thickness of 75nm; the hole transport layer 302 is TAPC with a thickness of 40nm; the material of the excitation layer 303 is Ir(ppy)acac-doped CBP with a thickness of 20nm.
  • the metal layer 401 is Ag; the metal alloy layer 402 is AgTi alloy.
  • Example 2 The optical parameters of Example 2 are shown in Table 1.
  • the encapsulation layer 100 is PET with a thickness of 100 ⁇ m and a refractive index of 1.55.
  • the first conductive layer 201 is FTO with a thickness of 40nm and a refractive index of 2.0; the first protective layer 202 is Ti with a thickness of 2nm and a refractive index of 1.9; the second conductive layer 203 is made of Al and AlO A mixture of x with a thickness of 35nm and a refractive index of 0.9; the second protective layer 204 is SnO 2 with a thickness of 10nm and a refractive index of 1.9; the light exit layer 205 is Nb 2 O 5 with a thickness of 48nm and a refractive index of 2.4.
  • the material of the electron transport layer 301 is TPBi with a thickness of 75nm; the hole transport layer 302 is TAPC with a thickness of 40nm; the material of the excitation layer 303 is Ir(ppy)acac-doped CBP with a thickness of 20nm.
  • the metal layer 401 is Ag; the metal alloy layer 402 is AgIn alloy.
  • Example 3 The optical parameters of Example 3 are shown in Table 1.
  • the encapsulation layer 100 is PC with a thickness of 75 ⁇ m and a refractive index of 1.58.
  • the first conductive layer 201 is TZO with a thickness of 55nm and a refractive index of 1.85; the first protective layer 202 is A1 with a thickness of 0.5nm and a refractive index of 0.9; the second conductive layer 203 is Cu and A mixture of CuN x with a thickness of 18nm and a refractive index of 0.5; the second protective layer 204 is ZnO with a thickness of 10nm and a refractive index of 2.0; the light emitting layer 205 is TiO 2 with a thickness of 30nm and a refractive index of 2.2.
  • the material of the electron transport layer 301 is TPBi with a thickness of 75nm; the hole transport layer 302 is TAPC with a thickness of 40nm; the material of the excitation layer 303 is Ir(ppy)acac-doped CBP with a thickness of 20nm.
  • the metal layer 401 is Ag; the metal alloy layer 402 is AgPdPt alloy.
  • Example 4 The optical parameters of Example 4 are shown in Table 1.
  • the encapsulation layer 100 is glass with a thickness of 0.5 mm and a refractive index of 1.52.
  • the first conductive layer 201 is ITO with a thickness of 55 nm and a refractive index of 2.0; the first protective layer 202 is Si 3 N 4 with a thickness of 2 nm and a refractive index of 2.1; the second conductive layer 203 is A mixture of AgZn and AgZnO x with a thickness of 13nm and a refractive index of 0.4; the second protective layer 204 is ZnO with a thickness of 8nm and a refractive index of 2.0; the light exit layer 205 is Ta 2 O 5 with a thickness of 35nm and a refractive index of 2.2.
  • the material of the electron transport layer 301 is TPBi with a thickness of 75nm; the hole transport layer 302 is TAPC with a thickness of 40nm; the material of the excitation layer 303 is Ir(ppy)acac-doped CBP with a thickness of 20nm.
  • the metal layer 401 is Ag; the metal alloy layer 402 is AgYb alloy.
  • Example 5 The optical parameters of Example 5 are shown in Table 1.
  • the encapsulation layer 100 is glass with a thickness of 0.33 mm and a refractive index of 1.52.
  • the first conductive layer 201 is AZO with a thickness of 42 nm and a refractive index of 2.0; the first protective layer 202 is Si 3 N 4 with a thickness of 2 nm and a refractive index of 2.1; the second conductive layer 203 is The mixture of AgIn and AgInOx has a thickness of 15nm and a refractive index of 0.4; the second protective layer 204 is ZnO with a thickness of 5nm and a refractive index of 2.0; the light exit layer 205 is TiN with a thickness of 47nm and a refractive index of 1.9.
  • the material of the electron transport layer 301 is TPBi with a thickness of 75nm; the hole transport layer 302 is TAPC with a thickness of 40nm; the material of the excitation layer 303 is Ir(ppy)acac-doped CBP with a thickness of 20nm.
  • Example 6 The optical parameters of Example 6 are shown in Table 1.
  • the comparative example is a bottom-emission display panel 6 manufactured using the prior art.
  • the packaging layer 610 is PET with a thickness of 50 ⁇ m and a refractive index of 1.55.
  • the material is ITO with a thickness of 150 nm and a refractive index of 2.0.
  • the material of the electron transport layer 631 is TPBi with a thickness of 75nm; the hole transport layer 632 is TAPC with a thickness of 40nm; the material of the excitation layer 633 is Ir(ppy)2acac-doped CBP with a thickness of 20nm.
  • the metal alloy is AgMg.
  • the quantum luminous efficiencies of the display panels according to Examples 1-6 of the present application are relatively high, all above 70%, while the quantum luminous efficiencies of the display panels in the prior art are about 60%, which shows that The brightness of the display panel according to the present application is higher.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板(1)和车载显示装置(2),显示面板(1)包括第一电极层(400);发光层组(300),其设置在第一电极层(400)上;设置在发光层组(300)上的光取出层(200),光取出层(200)处于显示面板(1)的光射出方向并且用作第二电极层,以及设置在光取出层(200)上的封装层(100)。光取出层(200)的折射率小于封装层(100)的折射率而实现发光层组(300)发出的光的增透。在这种显示面板(1)中,光取出层(200)和封装层(100)组成了增透层,这样有助于发光层组(300)发出的光尽可能地射出,提高了显示面板(1)的亮度。

Description

一种显示面板和车载显示装置 技术领域
本申请涉及显示领域,特别是涉及一种显示面板。本申请还涉及包括这种显示面板的车载显示装置。
背景技术
OLED(有机发光二极管)由于其良好的显示效果和低功耗而通常作用柔性显示装置中。与LED显示面板使用背光照亮不同,OLED显示面板为自发光,OLED显示面板通常包括阴极、电子传输层、发光层(或OLED发光器件)、空穴传输层、阳极等层。为了提高OLED显示面板的亮度,需要尽可能地将OLED发光器件发出的光从OLED显示面板的层组中取出。
发明内容
为解决上述问题,本发明的第一方面提出了一种显示面板。该显示面板包括:第一电极层;发光层组,其设置在所述第一电极层上;设置在所述发光层组上的光取出层,所述光取出层处于所述显示面板的光射出方向并且用作第二电极层,以及设置在所述光取出层上的封装层。所述光取出层的折射率小于所述封装层的折射率而实现所述发光层组发出的光的增透。
在一个实施例中,所述光取出层的折射率在1.15-1.35之间,所述封装层的折射率在1.4-1.8之间,所述光取出层的厚度在50nm-200nm之间,所述封装层的厚度在23μm-1mm。
在一个实施例中,所述光取出层包括:与所述发光层组接触的第一导电层,与所述第一导电层接触的第一保护层,与所述第一保护层接触的第二导电层,与所述第二导电层接触的第二保护层,以及与所述第二保护层接触的光出射层,所述第一导电层具有第一折射率n1和第一厚度d1,所述第一保护层具有 第二折射率n2和第二厚度d2,所述第二导电层具有第三折射率n3和第三厚度d3,所述第二保护层具有第四折射率n4和第四厚度d4,所述光出射层具有第五折射率n5和第五厚度d5,其中,n1在1.8-2.1之间,d1在20nm-80nm;n2在0.1-5之间,d2在0.5nm-10nm之间;n3在0.1-1.5之间,d3在5nm-50nm之间;n4在1.3-2.1之间,d4在0.5nm-10nm之间;n5在1.8-2.4之间,d5在20nm-80nm之间。
在一个实施例中,所述第一导电层包括导电金属氧化物,所述第一保护层包括金属、能导电的金属氧化物和能导电的金属氮化物中的一种;所述第二导电层包括导电材料以及金属氧化物和/或金属氮化物;所述第二保护层包括非金属氧化物、金属氮化物和金属氧化物中的一种;所述光出射层的主体包括非金属的氧化物、氮化物、硫化物、氟化物和碳化物中的一种。
在一个实施例中,所述第一导电层的材料选自In 2O 3、SnO 2、ZnO、ITO、TZO、AZO、ITiO、IZTO和FTO中的一种;所述第一保护层的材料选自Ti、Ni、Cr、Al、NiCr、TiN、ZnO、TiO 2、SnO 2、SiO 2、Nb 2O 5、Ta 2O 5、Si 3N 4中的一种;所述第二导电层的导电材料选自Ag、Cu、Al、Mo、Ag合金、Cu合金、Al合金和Mo合金中的一种,还含有由所述第二导电层的导电材料的氧化物和/或氮化物形成的夹杂物;所述第二保护层的材料选自TiN、ZnO、TiO 2、SnO 2、SiO 2、Si 3N 4、AZO、IZO和YZO中的一种;所述光出射层的主体的材料选自TiO 2、SnO 2、ZnO、Nb 2O 5、Ta 2O 5、Si 3N 4、ZnS,SiO 2、Al 2O 3、MgF,MgS、SiC、AZO、GZO、TiN和YZO中的一种。
在一个实施例中,所述第一电极层为具有光反射作用的阴极,所述第二电极层为阳极,所述发光层组包括与所述阴极接触的电子传输层,与所述阳极接触的空穴传输层,以及处于所述电子传输层和所述空穴传输层之间的激发层;所述发光层组发出的光的一部分穿过所述光取出层和所述封装层而射出,另一部分光被所述第一电极层反射后穿过所述发光层组、光取出层和封装层而射出。
在一个实施例中,所述反射层包括与所述发光层组接触的金属层,和与所述金属层接触的金属合金层。
在一个实施例中,所述金属层的材料为Ag、Al、Mo、Cu和In中的一种;所述金属合金层为所述金属层的材料的合金。
在一个实施例中,所述第一电极层为阳极,所述第二电极层为阴极,所述发光层组包括与所述阴极接触的电子传输层,与所述阳极接触的空穴传输层,以及处于所述电子传输层和所述空穴传输层之间的激发层。
在一个实施例中,所述电子传输层为TPBi,厚度为75nm;所述激发层为Ir(ppy)2acac掺杂的CBP,厚度为20nm;所述空穴传输层为TAPC,厚度为40nm。
根据本申请的第二方面的车载显示装置包括根据上述所述的显示面板。
与现有技术相比,本申请的有益效果如下:在这种显示面板中,光取出层和封装层组成了增透层,这样有助于发光层组发出的光尽可能地射出,提高了显示面板的亮度。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示意性地显示了根据本申请的一个实施例的显示面板。
图2示意性地显示了图1所示的显示面板的光路。
图3示意性地显示了光取出层的结构。
图4示意性地显示了反射层的结构。
图5示意性地显示了根据本申请的车载显示装置。
图6示意性地显示了显示面板的一个对比例的结构。
图7示意性地显示了根据本申请的另一个实施例的显示面板。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请的一个实施例的显示面板1的示意图。显示面板1使用了自发光的有机发光材料(例如OLED)作为光源,适用于车载显示装置,例如汽车的仪表盘等。图5示意性地显示了使用这种显示面板1的车载显示装置2。
显示面板1可以为顶发光类型(即光穿过阴极而射出)或底发光类型(即,光穿过阳极而射出)。
下面以底发光类型的显示面板1来详细描述。
如图1所示,显示面板1包括:第一电极层400;设置在第一电极层400上的发光层组300;设置在发光层组300上的光取出层200;设置在光取出层200上的封装层100。光取出层200处于显示面板1的光射出方向(如图1中所示的箭头A)并且用作第二电极层。光取出层200的折射率小于封装层100的折射率而实现发光层组300发出的光的增透。
这样,在将光取出层200和第一电极层400接通电源后,显示面板1的发光层组300会有电流流过而发光。光取出层200的折射率低于封装层100的折射率,这样实际上光取出层200和封装层100两者组成了增透层,这进一步有助于发光层组300发出的光尽可能地射出,从而进一步提高显示面板1的亮度(或量子发光效率)。
在一个实施例中,第一电极层400为具有光反射性能的阴极。光取出层200则为阳极。如图2所示,发光层组300发出的光的一部分311穿过光取出层200和封装层100而射出,另一部分光312被第一电极层400反射后穿过发光层组300、光取出层200和封装层100而射出显示面板1,这有助于发光层组300 发出的光尽可能地射出,从而进一步提高显示面板1的亮度。
在一个实施例中,光取出层200的折射率在1.15-1.35之间,封装层100的折射率在1.4-1.8之间;相应地,光取出层200的厚度在50nm-200nm之间,封装层100的厚度在23μm-1mm。发明人发现,将光取出层200和封装层100设置在此参数范围内,能够更有效地使发光层组300发出的光射出,甚至显示面板1的量子发光效率达到70%以上,这远远高于现有技术中的OLED显示面板的量子发光效率。
在一个实施例中,光取出层200还包括:与发光层组300接触的第一导电层201,与第一导电层201接触的第一保护层202,与第一保护层202接触的第二导电层203,与第二导电层203接触的第二保护层204,以及与第二保护层204接触的光出射层205。即,第一导电层201、第一保护层202、第二导电层203、第二保护层204和光出射层205层叠设置,并且第一导电层201与发光层组300电接触,光出射层205与封装层100接触。
第一导电层201具有第一折射率n1和第一厚度d1,第一保护层202具有第二折射率n2和第二厚度d2,第二导电层203具有第三折射率n3和第三厚度d3,第二保护层204具有第四折射率n4和第四厚度d4,光出射层205具有第五折射率n5和第五厚度d5。n1在1.8-2.1之间,d1在20nm-80nm;n2在0.1-5之间,d2在0.5nm-10nm之间;n3在0.1-1.5之间,d3在5nm-50nm之间;n4在1.3-2.1之间,d4在0.5nm-10nm之间;n5在1.8-2.4之间,d5在20nm-80nm之间。发明人发现,通过将光取出层200构造为这些子层,可方便地将光取出层200的折射率在1.2-1.25之间调整,同时保持光取出层200的厚度在90nm到110nm之间。这样,光取出层200能与更多种类的封装层100相配合并且保持显示面板1的量子发光效率较高。
应理解的是,光取出层200的子层的数量可以更多或更少(甚至,可以为一层),只要其厚度和折射率能满足要求即可,这里不再赘述。
第一导电层201包括导电金属氧化物,例如第一导电层201的材料选自 In 2O 3、SnO 2、ZnO、ITO、TZO、AZO、ITiO、IZTO和FTO中的一种。在ITO中,Sn 2O掺杂重量百分比大于0且小于或等于50%;在IZO中,ZnO掺杂重量百分比大于0且小于或等于50%;在AZO中,Al 2O 3掺杂重量百分比大于0且小于或等于50%;在ITiO中,TiO 2掺杂重量百分比大于0且小于或等于10%;在IZTO中,TiO 2掺杂重量百分比大于0且小于或等于10%,ZnO掺杂重量百分比大于0且小于或等于40%,在FTO中,F掺杂重量百分比大于0且小于或等于10%。发明人发现,使用上述材料时,不但能够实现所要求的折射率,而且具有良好的导电性,降低电阻,有助于发光层组300具有良好的发光效果。
第一保护层202包括金属、能导电的金属氧化物和能导电的金属氮化物中的一种。例如,金属可以为Ti、Ni、Cr、Al和NiCr中的一种;金属氧化物可以为ZnO、TiO 2、SnO 2、SiO 2、Nb 2O 5、Ta 2O 5中的一种;金属氮化物可以为TiN、Si 3N 4中的一种。发明人发现,第一保护层202选用这些材料不但可以实现所要求的折射率,而且具有良好的抗氧性能,这可以防止氧分子渗透到第二导电层203处,从而保证第二导电层203具有良好地导电性。此外,由于第一保护层202的厚度较小,金属氧化物或金属氮化物由于量子隧穿效应也具有较好的导电性,这使得光取出层200能够用作电极。
第二导电层203包括导电材料以及不可避免的金属氧化物和/或金属氮化物夹杂。例如,导电材料选自Ag、Cu、Al、Mo、Ag合金、Cu合金、Al合金和Mo合金中的一种。在一个具体的实施例中,在Ag合金层中,Ag的重量比例大于50%,其余50%可以为Zn、Cu、In、Pt、Pd、Au、Nb、Nd、B、Bi、Ni等金属元素一种;在Cu合金中,Cu的重量比例大于50%,其余50%可以为Zn、Ag、In、Pt、Pd、Au、Nb、Nd、B、Bi、Ni等金属元素一种;在Mo合金层中,Mo的重量比例大于80%,其余20%可以为Zn、Cu、In、Pt、Pd、Au、Nb、Nd、B、Bi、Ni等金属元素一种;在Al合金层中,Al的重量比例大于80%,其余20%可以为Zn、Cu、In、Pt、Pd、Au、Nb、Nd、B、Bi、Ni、等金属元素一种。金属氧化物和/或金属氮化物夹杂则由在金属靶材镀膜过程 中,通入的少量氧气、氮气使金属或合金氧化、氮化而形成。这些金属或合金具有良好的导电性,即使含有少量的金属氧化物和/或氮化物夹杂,也并不从整体上弱化第二导电层203的导电性。另外,这些金属氧化物、金属氮化物也改善了第二导电层203的光透过性,这有助于提高显示面板1的亮度。
第二保护层204包括非金属氧化物、金属氮化物和金属氧化物中的一种。例如,非金属氧化物、金属氮化物、金属氧化物可以为TiN、ZnO、TiO 2、SnO 2、SiO 2、Si 3N 4。这些化合物形成的第二保护层204具有良好的耐候性,而且防水性很好,提高了对第二导电层203的保护作用。由于第二保护层204的厚度较小,因此非金属氧化物、金属氮化物和金属氧化物由于量子隧穿效应也具有较好的导电性,这使得第二保护层204具有较好的导电性,光取出层200也就能够用作电极。
光出射层205包括非金属的氧化物、氮化物、硫化物、氟化物、碳化物中的一种。例如,光出射层205的材料选自TiO 2、SnO 2、ZnO、Nb 2O 5、Ta 2O 5、Si 3N 4、ZnS,SiO 2、Al 2O 3、MgF,MgS、SiC、AZO、GZO、TiN和YZO中的一种。这些材料的折射率较高,有助于达到光取出层200的折射率要求。另外,由于量子隧穿效应,这些化合物也具有适当的导电性,这可以降低光出射层205(以及光取出层200)的电阻,有助于发光层组300具有良好的发光效果。
还如图4所示,显示面板1的第一电极层400包括金属层401和与金属层401接触的金属合金层402。金属层401与发光层组300电接触。这样,整个第一电极层400都具有良好的导电性,适于用作电极。
在一个实施例中,第一电极层400的金属层401为Ag、Al、Mo、Cu和In中的一种。金属合金层402为Ag合金、Al合金和Mo合金中的一种;其厚度可以为5~300nm。在Ag合金中,Ag的重量比例大于50%,其余可以为Ti、Li、Yb、Ir、Mg、Zn、Cu、Al、In、Pt、Pd、Au、Nb、Nd、B、Bi和Ni中的一种掺杂。在Mo合金中,Mo的重量比例大于80%,其余可以为Ti、Li、Yb、Ir、Mg、Zn、Cu、Al、In、Pt、Pd、Au、Nb、Nd、B、Bi、Ni中的一种。在 Al合金中,Al的重量比例大于80%,其余可以为Ti、Li、Yb、Ir、Mg、Zn、Cu、Al、In、Pt、Pd、Au、Nb、Nd、B、Bi和Ni中的一种。金属合金层402的厚度可以为5~300nm。发明人发现,将这些金属或合金制造成5~300nm薄膜,可使其表面非常光滑,从而极大地提高第一电极层的反光性能,进一步提高显示面板1的亮度。另外,金属合金层402具有良好的抗氧化性,有助于保护处于其内侧的各层防止氧化。而且,相比于金属层401,金属合金层402的成本更低,这有助于降低显示面板1的成本。
还如图1所示,第一电极层400为阴极,第二电极层200为阳极,发光层组300包括与阴极400接触的电子传输层301,与阳极200接触的空穴传输层302,以及处于电子传输层301和空穴传输层302之间的激发层303。在一个具体的实施例中,电子传输层301的材料为TPBi,厚度为75nm;空穴传输层302为TAPC,厚度为40nm;激发层303的材料为Ir(ppy)2acac掺杂的CBP,厚度为20nm。发明人发现,通过使用上述材料,电子传输层301与第一电极层400之间的界面电阻较小,空穴传输层302与第一导电层201的之间的界面电阻较小,并且激发层303与电子传输层301和空穴传输层302之间的界面电阻也较小,这有助提高电流效率,从而进一步提高显示面板1的亮度。
应理解的是,在第一电极层400的外侧,还设置有基材500。基材500对显示面板1的其他层起到保护作用,其材料可与封装层100相同,不再赘述。
图7示意性地显示了顶发光结构的显示面板1。如图7所示,显示面板1包括:基材500,形成在基材500上的阳极400;设置在阳极400上的发光层组300;设置在发光层组300上的光取出层200;设置在光取出层200上的封装层100。光取出层200处于显示面板1的光射出方向(如图7中所示的箭头B)并且用作阴极。光取出层200与上文所述的底发光的显示面板的光取出层相同,并且其折射率小于封装层100的折射率而实现发光层组300发出的光的增透,提高显示面板1的亮度。
实施例1
在底发光的显示面板1中,封装层100为CPI,厚度为23μm,折射率为1.65。
在光取出层200中,第一导电层201为AZO,厚度为40nm,折射率为2.0;第一保护层202为SnO 2,厚度为2nm,折射率为1.9;第二导电层203为Ag和AgO的混合物,厚度为12nm,折射率为0.4;第二保护层204为SnO 2,厚度为2nm,折射率为1.9;光出射层205为AZO,厚度为40nm,折射率为2.0。
在发光层组300中,电子传输层301的材料为TPBi,厚度为75nm;空穴传输层302为TAPC,厚度为40nm;激发层303的材料为Ir(ppy)2acac掺杂的CBP,厚度为20nm。
在第一电极层400中,金属层401为Ag;金属合金层402为AgMg合金。
实施例1的光学参数如表1所示。
实施例2
在底发光的显示面板1中,封装层100为COP,厚度为50μm,折射率为1.62。
在光取出层200中,第一导电层201为IZTO,厚度为45nm,折射率为2.0;第一保护层202为Cr,厚度为1nm,折射率为2.7;第二导电层203为AgTi和AgTiN的混合物,厚度为15nm,折射率为0.5;第二保护层204为ZnO,厚度为5nm,折射率为1.9;光出射层205为SnO 2,厚度为50nm,折射率为1.9。
在发光层组300中,电子传输层301的材料为TPBi,厚度为75nm;空穴传输层302为TAPC,厚度为40nm;激发层303的材料为Ir(ppy)2acac掺杂的CBP,厚度为20nm。
在第一电极层400中,金属层401为Ag;金属合金层402为AgTi合金。
实施例2的光学参数如表1所示。
实施例3
在底发光的显示面板1中,封装层100为PET,厚度为100μm,折射率为1.55。
在光取出层200中,第一导电层201为FTO,厚度为40nm,折射率为2.0;第一保护层202为Ti,厚度为2nm,折射率为1.9;第二导电层203为Al和AlO x的混合物,厚度为35nm,折射率为0.9;第二保护层204为SnO 2,厚度为10nm,折射率为1.9;光出射层205为Nb 2O 5,厚度为48nm,折射率为2.4。
在发光层组300中,电子传输层301的材料为TPBi,厚度为75nm;空穴传输层302为TAPC,厚度为40nm;激发层303的材料为Ir(ppy)2acac掺杂的CBP,厚度为20nm。
在第一电极层400中,金属层401为Ag;金属合金层402为AgIn合金。
实施例3的光学参数如表1所示。
实施例4
在底发光的显示面板1中,封装层100为PC,厚度为75μm,折射率为1.58。
在光取出层200中,第一导电层201为TZO,厚度为55nm,折射率为1.85;第一保护层202为A1,厚度为0.5nm,折射率为0.9;第二导电层203为Cu和CuN x的混合物,厚度为18nm,折射率为0.5;第二保护层204为ZnO,厚度为10nm,折射率为2.0;光出射层205为TiO 2,厚度为30nm,折射率为2.2。
在发光层组300中,电子传输层301的材料为TPBi,厚度为75nm;空穴传输层302为TAPC,厚度为40nm;激发层303的材料为Ir(ppy)2acac掺杂的CBP,厚度为20nm。
在第一电极层400中,金属层401为Ag;金属合金层402为AgPdPt合金。
实施例4的光学参数如表1所示。
实施例5
在底发光的显示面板1中,封装层100为玻璃,厚度为0.5mm,折射率为1.52。
在光取出层200中,第一导电层201为ITO,厚度为55nm,折射率为2.0;第一保护层202为Si 3N 4,厚度为2nm,折射率为2.1;第二导电层203为AgZn与AgZnO x的混合物,厚度为13nm,折射率为0.4;第二保护层204为ZnO,厚度为8nm,折射率为2.0;光出射层205为Ta 2O 5,厚度为35nm,折射率为2.2。
在发光层组300中,电子传输层301的材料为TPBi,厚度为75nm;空穴传输层302为TAPC,厚度为40nm;激发层303的材料为Ir(ppy)2acac掺杂的CBP,厚度为20nm。
在第一电极层400中,金属层401为Ag;金属合金层402为AgYb合金。
实施例5的光学参数如表1所示。
实施例6
在顶发光的显示面板1中,封装层100为玻璃,厚度为0.33mm,折射率为1.52。
在光取出层200中,第一导电层201为AZO,厚度为42nm,折射率为2.0;第一保护层202为Si 3N 4,厚度为2nm,折射率为2.1;第二导电层203为AgIn与AgInO x的混合物,厚度为15nm,折射率为0.4;第二保护层204为ZnO,厚度为5nm,折射率为2.0;光出射层205为TiN,厚度为47nm,折射率为1.9。
在发光层组300中,电子传输层301的材料为TPBi,厚度为75nm;空穴传输层302为TAPC,厚度为40nm;激发层303的材料为Ir(ppy)2acac掺杂的CBP,厚度为20nm。
实施例6的光学参数如表1所示。
对比例
对比例是使用现有技术制造的底发光的显示面板6。在显示面板6中,封装层610为PET,厚度为50μm,折射率为1.55。
在阳极层620中,材料为ITO,厚度为150nm,折射率为2.0。
在发光层组630中,电子传输层631的材料为TPBi,厚度为75nm;空穴传输层632为TAPC,厚度为40nm;激发层633的材料为Ir(ppy)2acac掺杂的CBP,厚度为20nm。
在阴极层640中,金属合金为AgMg。
对比例的光学参数如表1所示。
表1
Figure PCTCN2021123152-appb-000001
如表1所示,根据本申请的实施例1-6的显示面板的量子发光效率较高,均在70%以上,而现有技术中的显示面板的量子发光效率正在60%左右,这说明根据本申请的显示面板的亮度更高。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (11)

  1. 一种显示面板,其特征在于,包括:
    第一电极层;
    发光层组,其设置在所述第一电极层上;
    设置在所述发光层组上的光取出层,所述光取出层处于所述显示面板的光射出方向并且用作第二电极层,以及
    设置在所述光取出层上的封装层;
    其中,所述光取出层的折射率小于所述封装层的折射率而实现所述发光层组发出的光的增透。
  2. 根据权利要求1所述的显示面板,其特征在于,所述光取出层的折射率在1.15-1.35之间,所述封装层的折射率在1.4-1.8之间,
    所述光取出层的厚度在50nm-200nm之间,所述封装层的厚度在23μm-1mm。
  3. 根据权利要求2所述的显示面板,其特征在于,所述光取出层包括:
    与所述发光层组接触的第一导电层,
    与所述第一导电层接触的第一保护层,
    与所述第一保护层接触的第二导电层,
    与所述第二导电层接触的第二保护层,以及
    与所述第二保护层接触的光出射层,
    所述第一导电层具有第一折射率n1和第一厚度d1,所述第一保护层具有第二折射率n2和第二厚度d2,所述第二导电层具有第三折射率n3和第三厚度d3,所述第二保护层具有第四折射率n4和第四厚度d4,所述光出射层具有第五折射率n5和第五厚度d5,
    其中,n1在1.8-2.1之间,d1在20nm-80nm;n2在0.1-5之间,d2在0.5nm-10nm之间;n3在0.1-1.5之间,d3在5nm-50nm之间;n4在1.3-2.1之 间,d4在0.5nm-10nm之间;n5在1.8-2.4之间,d5在20nm-80nm之间。
  4. 根据权利要求3所述的显示面板,其特征在于,
    所述第一导电层包括导电金属氧化物,
    所述第一保护层包括金属、能导电的金属氧化物和能导电的金属氮化物中的一种;
    所述第二导电层包括导电材料以及金属氧化物和/或金属氮化物;
    所述第二保护层包括非金属氧化物、金属氮化物和金属氧化物中的一种;
    所述光出射层包括非金属的氧化物、氮化物、硫化物、氟化物和碳化物中的一种。
  5. 根据权利要求4所述的显示面板,其特征在于,所述第一导电层的材料选自In 2O 3、SnO 2、ZnO、ITO、TZO、AZO、ITiO、IZTO和FTO中的一种;
    所述第一保护层的材料选自Ti、Ni、Cr、Al、NiCr、TiN、ZnO、TiO 2、SnO 2、SiO 2、Nb 2O 5、Ta 2O 5和Si 3N 4中的一种;
    所述第二导电层的导电材料选自Ag、Cu、Al、Mo、Ag合金、Cu合金、Al合金和Mo合金中的一种,还含有由所述第二导电层的导电材料的氧化物和/或氮化物形成的夹杂物;
    所述第二保护层的材料选自TiN、ZnO、TiO 2、SnO 2、SiO 2、Si 3N 4、AZO、IZO和YZO中的一种;
    所述光出射层的材料选自TiO 2、SnO 2、ZnO、Nb 2O 5、Ta 2O 5、Si 3N 4、ZnS,SiO 2、Al 2O 3、MgF,MgS、SiC、AZO、GZO、TiN和YZO中的一种。
  6. 根据权利要求5所述的显示面板,其特征在于,所述第一电极层为具有光反射作用的阴极,所述第二电极层为阳极,所述发光层组包括与所述阴极接触的电子传输层,与所述阳极接触的空穴传输层,以及处于所述电子传输层和所述空穴传输层之间的激发层,
    所述发光层组发出的光的一部分穿过所述光取出层和所述封装层而射出,另一部分光被所述第一电极层反射后穿过所述发光层组、光取出层和封装层而 射出。
  7. 根据权利要求6所述的显示面板,其特征在于,所述第一电极层包括与所述发光层组接触的金属层,和与所述金属层接触的金属合金层。
  8. 根据权利要求7所述的显示面板,其特征在于,所述金属层的材料为Ag、Al、Mo、Cu和In中的一种;
    所述金属合金层为所述金属层的材料的合金。
  9. 根据权利要求5所述的显示面板,其特征在于,所述第一电极层为阳极,所述第二电极层为阴极,所述发光层组包括与所述阴极接触的电子传输层,与所述阳极接触的空穴传输层,以及处于所述电子传输层和所述空穴传输层之间的激发层。
  10. 根据权利要求6或9所述的显示面板,其特征在于,所述电子传输层为TPBi,厚度为75nm;
    所述激发层为Ir(ppy)2acac掺杂的CBP,厚度为20nm;
    所述空穴传输层为TAPC,厚度为40nm。
  11. 一种车载显示装置,其特征在于,所述车载显示装置包括根据上述权利要求1到10中任一项所述的显示面板。
PCT/CN2021/123152 2021-09-16 2021-10-12 一种显示面板和车载显示装置 WO2023039964A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21946276.9A EP4174838B1 (en) 2021-09-16 2021-10-12 Display panel and vehicle-mounted display apparatus
US18/151,830 US20230165043A1 (en) 2021-09-16 2023-01-09 Display panel and on-board display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111096404.1A CN113809267B (zh) 2021-09-16 2021-09-16 一种显示面板和车载显示装置
CN202111096404.1 2021-09-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/151,830 Continuation US20230165043A1 (en) 2021-09-16 2023-01-09 Display panel and on-board display apparatus

Publications (1)

Publication Number Publication Date
WO2023039964A1 true WO2023039964A1 (zh) 2023-03-23

Family

ID=78895924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123152 WO2023039964A1 (zh) 2021-09-16 2021-10-12 一种显示面板和车载显示装置

Country Status (4)

Country Link
US (1) US20230165043A1 (zh)
EP (1) EP4174838B1 (zh)
CN (1) CN113809267B (zh)
WO (1) WO2023039964A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101133504A (zh) * 2005-03-24 2008-02-27 京瓷株式会社 发光元件、具备该发光元件的发光装置及其制造方法
US20080258609A1 (en) * 2006-10-24 2008-10-23 Canon Kabushiki Kaisha Organic light-emitting device and method for producing the same
US20170012238A1 (en) * 2015-07-07 2017-01-12 Samsung Display Co., Ltd. Organic light emitting diode, manufacturing method thereof, and organic light emitting display device having organic light emitting diode
CN106684263A (zh) * 2015-11-10 2017-05-17 上海和辉光电有限公司 一种oled像素单元的制备方法及oled显示面板
CN108206199A (zh) * 2016-12-16 2018-06-26 乐金显示有限公司 有机发光显示装置
CN108630822A (zh) * 2017-03-24 2018-10-09 京东方科技集团股份有限公司 一种顶发射oled器件的组件和顶发射oled器件
CN111554715A (zh) * 2020-05-13 2020-08-18 京东方科技集团股份有限公司 显示面板及其制作方法
CN113013203A (zh) * 2021-02-09 2021-06-22 武汉天马微电子有限公司 显示面板及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547599B2 (ja) * 2003-10-15 2010-09-22 奇美電子股▲ふん▼有限公司 画像表示装置
JP2010069675A (ja) * 2008-09-17 2010-04-02 Toppan Printing Co Ltd 機能性フィルム、その製造方法、積層体および電子デバイス
EP3087622B1 (en) * 2013-12-26 2020-09-30 Vitro Flat Glass LLC Light extracting electrode and organic light emitting diode with light extracting electrode
TW202101757A (zh) * 2019-05-31 2021-01-01 日商索尼半導體解決方案公司 顯示裝置及電子機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101133504A (zh) * 2005-03-24 2008-02-27 京瓷株式会社 发光元件、具备该发光元件的发光装置及其制造方法
US20080258609A1 (en) * 2006-10-24 2008-10-23 Canon Kabushiki Kaisha Organic light-emitting device and method for producing the same
US20170012238A1 (en) * 2015-07-07 2017-01-12 Samsung Display Co., Ltd. Organic light emitting diode, manufacturing method thereof, and organic light emitting display device having organic light emitting diode
CN106684263A (zh) * 2015-11-10 2017-05-17 上海和辉光电有限公司 一种oled像素单元的制备方法及oled显示面板
CN108206199A (zh) * 2016-12-16 2018-06-26 乐金显示有限公司 有机发光显示装置
CN108630822A (zh) * 2017-03-24 2018-10-09 京东方科技集团股份有限公司 一种顶发射oled器件的组件和顶发射oled器件
CN111554715A (zh) * 2020-05-13 2020-08-18 京东方科技集团股份有限公司 显示面板及其制作方法
CN113013203A (zh) * 2021-02-09 2021-06-22 武汉天马微电子有限公司 显示面板及显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4174838A4 *

Also Published As

Publication number Publication date
CN113809267B (zh) 2022-08-05
EP4174838A1 (en) 2023-05-03
US20230165043A1 (en) 2023-05-25
EP4174838B1 (en) 2024-05-01
EP4174838A4 (en) 2024-01-17
EP4174838C0 (en) 2024-05-01
CN113809267A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
US7432648B2 (en) Microcavity electroluminescent display with partially reflective electrodes
KR101952899B1 (ko) 유기 발광 표시 장치 및 시야각특성을 개선한 상부 발광 oled 장치
US20060082285A1 (en) Top emitting organic light emitting device
JP2005129496A (ja) 有機発光素子
KR20180025060A (ko) 유기발광소자 및 이를 구비한 유기발광 표시장치
JP2008218415A (ja) 有機電界発光表示装置及びその製造方法
TWI575725B (zh) 包含金屬氧化物的陽極及具有該陽極之有機發光裝置
WO2018127128A1 (zh) 一种电极及应用其的有机电致发光器件
JP4254668B2 (ja) 有機電界発光素子および表示装置
JP2001267083A (ja) 発光素子及びその用途
JP2003068470A (ja) 表示素子
WO2023039964A1 (zh) 一种显示面板和车载显示装置
JP2007059195A (ja) 上面発光型有機電界発光素子
TW200529702A (en) Organic electroluminescence device, conductive laminate and display
KR100528916B1 (ko) 배면발광형 전계발광소자
WO2019033794A1 (zh) 有机电致发光装置及其电极
JP2007265637A (ja) 有機エレクトロルミネッセンス素子
JP6918874B2 (ja) 発光素子及びこれを適用した透明表示装置
JPH11339969A (ja) 有機el素子
CN109509843B (zh) 发光元件及其透明电极
JP4857498B2 (ja) 表示素子
JP4038809B2 (ja) 発光素子及びその用途
JP2005259469A (ja) 有機エレクトロルミネッセンス表示装置
JP4478445B2 (ja) 有機el素子
CN111211239B (zh) 复合阴极结构及有机电致发光器件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021946276

Country of ref document: EP

Effective date: 20221230

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE