WO2018126795A1 - 以二异氰酸酯为核的低黏度端羟基树脂及其制备方法与应用 - Google Patents

以二异氰酸酯为核的低黏度端羟基树脂及其制备方法与应用 Download PDF

Info

Publication number
WO2018126795A1
WO2018126795A1 PCT/CN2017/110893 CN2017110893W WO2018126795A1 WO 2018126795 A1 WO2018126795 A1 WO 2018126795A1 CN 2017110893 W CN2017110893 W CN 2017110893W WO 2018126795 A1 WO2018126795 A1 WO 2018126795A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
diisocyanate
polyol
hydroxyl
viscosity
Prior art date
Application number
PCT/CN2017/110893
Other languages
English (en)
French (fr)
Inventor
瞿金清
黄山
朱延安
陈荣华
Original Assignee
华南理工大学
嘉宝莉化工集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学, 嘉宝莉化工集团股份有限公司 filed Critical 华南理工大学
Priority to US16/475,393 priority Critical patent/US11319400B2/en
Publication of WO2018126795A1 publication Critical patent/WO2018126795A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3215Polyhydroxy compounds containing aromatic groups or benzoquinone groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8022Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
    • C08G18/8029Masked aromatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers

Definitions

  • the invention relates to a hydroxy resin, in particular to a low viscosity terminal hydroxyl resin with diisocyanate as a core, in particular to a small molecular polyol modified by a unit epoxy compound and a diisocyanate core molecule to prepare a low viscosity.
  • the coating film of two-component polyurethane coating is widely used in aircraft, automobiles, ships, bridges, industrial products, etc. due to its excellent low temperature flexibility, excellent wear resistance, chemical resistance, high gloss and other physical properties. Indoor and outdoor furniture and other fields.
  • the hydroxy resin used in the two-component polyurethane coating generally includes a polyester resin, an alkyd resin, a hydroxy acrylate resin, etc., and when the resin has a high solid content, the viscosity is too large, and a large amount of organic solvent is added during the construction to prepare a double group.
  • Polyurethane coatings have high VOC content and cannot meet the national requirements for new coating VOC content.
  • Chinese invention patent applications CN105733379A, CN104672366A respectively disclose two kinds of high-solid low-viscosity acrylic resin and a preparation method thereof, and the viscosity of the hydroxy acrylic resin prepared by the above two techniques at 70% solid content is between 3000 and 6000 cp, and is prepared by the invention.
  • the two-component polyurethane coating has better coating performance, but because of the high viscosity of its hydroxy resin, the VOC content of the two-component polyurethane coating prepared by it is still high.
  • Chinese invention patents CN102911349B, CN104262599B disclose the use of caprolactone, fatty acid and monoglycidyl ether to modify the hyperbranched hydroxy polyester and obtain a hydroxy resin for two-component polyurethane with excellent coating properties, but the above techniques are all benzene.
  • the water-based agent is used to promote the esterification reaction, and the polyester product has a benzene residue.
  • the above technique uses a heavy metal catalyst to catalyze the reaction of the terminal hydroxyl group with caprolactone, and the heavy metal catalyst is difficult to be completely removed and shortened.
  • the activation period of the prepared two-component polyurethane coating at the same time, the heavy metal catalyst has great harm to water, soil environment and human health, and the hydroxyl polyester prepared by the method disclosed by the invention is difficult to be applied to toys, food containers, etc. Higher environmentally friendly coatings.
  • One of the objects of the present invention is to provide a low-viscosity hydroxyl group resin prepared by using a small molecular polyol, a unit epoxy compound, or a diisocyanate compound as a raw material, and the hydroxyl value of the hydroxyl terminated resin at 80% solid mass content 140 to 300 mg KOH / g, the viscosity at 25 ° C of 80% solid mass content is 300 ⁇ 3000 cp.
  • the second object of the present invention is to provide a synthesis method for preparing a terminal hydroxyl resin by reacting a small molecule polyol, a unit epoxy compound, or a diisocyanate compound, which has a simple synthesis process and is environmentally friendly, does not use a heavy metal catalyst, and does not use a benzene system.
  • the aromatic hydroxyl-based solvent has the characteristics of low viscosity and high solid content.
  • the third object of the present invention is to provide an application of the low viscosity terminal hydroxyl resin in a two-component solvent-based polyurethane coating.
  • the polyurethane coating film prepared by using the terminal hydroxyl resin has high gloss, high fullness, high hardness, and protection. Excellent color retention.
  • a method for preparing a low-viscosity hydroxyl resin with diisocyanate as a core comprising the following steps:
  • modified polyol 1 part of small molecule polyol, 0-5 parts of organic solvent is added to the reactor by mole fraction, and Lewis acid catalyst is added to drip at 40-70 ° C for 1 to 5 hours. Add 1 to 3 parts of the unit epoxy compound, continue to react at 40 to 70 ° C for 4 to 8 hours after the completion of the dropwise addition, and terminate the reaction when the epoxy value of the reaction system is detected to be less than 1% of the initial mass content, and add distilled water.
  • the Lewis acid catalyst is quenched, and then the strong basic anion exchange resin is added to stir the acid catalyst for 30 to 60 minutes, and then the strong basic anion exchange resin is removed by filtration, and the distilled water and the organic solvent are distilled off under high vacuum conditions to obtain a unit.
  • Epoxy compound modified polyol Epoxy compound modified polyol.
  • Low-viscosity terminal hydroxyl resin 2 parts of the modified polyol prepared in the step (1) is added to the reactor in a molar ratio, and is added in a percentage by mass of 15% to 30% by mass of the total reactant.
  • 1 to 1.5 parts of a diisocyanate compound is added dropwise to the modified polyol at 50 to 90 ° C for 1 to 3 hours, and the reaction is continued at 50 to 90 ° C for 2 to 6 hours after the completion of the dropwise addition, and the reaction system is to be detected. After the isocyanate is completely reacted, the reaction is terminated, and the temperature is discharged to obtain a terminal hydroxyl resin having a solid mass content of 75% to 90%.
  • the small molecule polyol is ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 2-butyl-2-ethyl-1 , 3-propanediol, neopentyl glycol, diethylene glycol, 2,4-diethyl-1,5-pentanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, three Methylolpropane, glycerol, diglycerin, ditrimethylolpropane, pentaerythritol, dipentaerythritol, xylitol, erythritol, mannitol, sorbitol, maltitol or lactitol; or
  • the small molecule polyol is a polyether polyol, a polyester polyol, a polycaprolactone
  • the polyether polyol, polyester polyol, polycaprolactone polyol, polytetrahydrofuran polyol having an average molecular weight of 200 to 1000 is a difunctional polyethylene glycol 200, polyethylene glycol 400, polyester polyol HS 2272, polycaprolactone polyol 205, polytetrahydrofuran polyol 650, trifunctional polyether polyol N303, polycaprolactone polyol 305, tetrafunctional polyether polyol HK- 4110, one or more of polycaprolactone polyols 410.
  • the unit epoxy compound is butyl glycidyl ether, n-octyl glycidyl ether, isooctyl glycidyl ether, C8-10 alkyl glycidyl ether, decyl glycidyl ether, C10-12 alkane Glycidyl ether, phenyl glycidyl ether, o-tolyl glycidyl ether, p-tert-butylphenyl glycidyl ether, benzyl glycidyl ether, decyl glycidyl ether, epichlorohydrin and glycidyl tert-carboxylate One or more.
  • the diisocyanate compound is toluene diisocyanate, diphenylmethane diisocyanate, benzene dimethylene diisocyanate, tetramethylbenzene dimethylene diisocyanate, methylcyclohexyl diisocyanate, isoflurane Keto diisocyanate, dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, trimethyl hexamethylene diisocyanate.
  • the Lewis acid catalyst is one of boron trifluoride etherate (BF 3 ⁇ Et 2 O), boron trifluoride ethanol (BF 3 ⁇ EtOH), and boron trifluoride tetrahydrofuran (BF 3 ⁇ THF).
  • the Lewis acid catalyst is added in an amount of 2 to 6% by mole of the small molecule polyol.
  • the strongly basic anion exchange resin is a D201 type macroporous strong basic styrene anion exchange resin.
  • the organic solvents described in the step (1) and the step (2) are ethyl acetate, butyl acetate, dioxane, propylene glycol methyl ether acetate, methyl ethyl ketone, methyl isobutyl ketone, and One or more of isoamyl ketone, cyclohexanone, and isophorone.
  • a low-viscosity hydroxyl-terminated resin having diisocyanate as a core obtained by the above preparation method, the hydroxyl value of the terminal hydroxyl resin at 80% solid mass content is 140-300 mgKOH/g, and its 80% solid mass content is 25
  • the viscosity at °C is 300 to 3000 cp.
  • the coating comprises the hydroxyl terminated resin and an isocyanate-containing polyurethane curing agent; the isocyanate-containing polyurethane curing agent and the hydroxyl group
  • the ester has an NCO:OH molar ratio of 0.8 to 1.2:1;
  • the isocyanate-based polyurethane curing agent is toluene diisocyanate trimer, toluene diisocyanate/trimethylolpropane adduct, hexamethylene diisocyanate
  • trimer a diphenylmethane diisocyanate monomer, and a diphenylmethane diisocyanate polymer curing agent.
  • Modified Polyol Using a Lewis acid as a catalyst, a ring-opening reaction of an epoxy group of a hydroxyl group of a small molecule polyol is used to obtain a modified polyol.
  • the invention adopts a Lewis acid catalyst to catalyze the ring-opening reaction between the epoxy functional group and the hydroxyl functional group, and does not use an alkali metal and heavy metal ring-opening catalyst to avoid the influence of the introduction of alkali metal and heavy metal substances on the activation period of the two-component polyurethane coating.
  • the post-treatment process of the modified polyol preparation uses a strong basic anion exchange resin to neutralize the Lewis acid catalyst, and the strong basic anion exchange resin is a solid resin which can be conveniently removed by filtration, thereby avoiding the traditional process of caustic washing, Complex processes such as liquid separation, simple process and environmental protection.
  • the preparation of hydroxyl terminated polyurethanes mostly uses macromolecular glycols such as polyether diols, polycaprolactone diols, polytetrahydrofuran diols having a molecular weight of 1000 or more and/or Polyol, castor oil and the like as chain extenders, the products prepared are mostly difunctional hydroxy functional products, which have a relatively high molecular weight and a low hydroxyl value (average hydroxy functionality as low as about 2) due to their
  • the molecular structure contains more flexible long segments, which can usually only be applied to the adhesive system, and can not be used to prepare coating films with higher hardness requirements.
  • the present technology improves the average hydroxyl functionality (4 or more) and hydroxyl value of the prepared terminal hydroxyl resin by reducing the compounding of the small molecule polyol, and reduces the content of the flexible long chain segment in the terminal hydroxyl resin;
  • the viscosity of the hydroxyl terminated resin is selected to modify the small molecular polyol by the unit glycidyl ether, convert the primary hydroxyl group into a secondary hydroxyl group, weaken the hydrogen bonding between the hydroxyl groups, and introduce a side chain group with a strong spatial shielding effect.
  • the group not only reduces the viscosity of the hydroxyl terminated resin, but also reduces the hardness of the coating film when the terminal hydroxyl resin is used for preparing the two-component polyurethane coating due to the introduction of excessively flexible long chain segments.
  • the present invention has the following advantages and beneficial effects:
  • High solid content, low viscosity compared with the conventional polyester resin and alkyd resin for two-component polyurethane coating on the market, the hydroxyl group resin synthesized by the present invention has a viscosity at 25 ° C at 80% solid mass. 300 ⁇ 3000 cp; is conducive to the preparation of high solid content two-component polyurethane coatings, reducing the VOC content of coating construction, in line with the development trend of the coatings field.
  • the hydroxyl terminated resin prepared by the present invention and the conventional two-component polyurethane coating hydroxy resin such as alkyd resin, polyester resin, hydroxy acrylic resin, polyether polyol, vegetable oil Polyols have good compatibility, and their high solid content and low viscosity characteristics can be used in combination with other hydroxy resins to improve the solid content of construction and reduce VOC emissions.
  • Synthetic process environmental protection The two-step method is used to synthesize the hydroxyl-terminated resin, and the synthetic raw materials are simple and easy to obtain; the reaction process does not use heavy metal catalysts and does not use benzene-based solvents, and the process is simple and environmentally friendly.
  • the viscosity of the hydroxyl terminated resin was measured at 25 ° C using a BROOKFIELD LVT rotary viscometer.
  • plastic epoxy compound epoxy equivalent determination in the determination method to detect the epoxy value of the reaction system
  • plastic polyurethane production of aromatic isocyanate part 4 Measurement method in determination of isocyanate content The isocyanate content of the reaction system was measured.
  • Coating performance in accordance with GB/T 9754-2007, GB/T 6739-2006, GB/T 1730-2007, GB/T 1731-1993, GB/T 20624.2-2006, GB/T 9286-1998 and GB/T 2893.1 -2005 respectively tested the gloss, pencil hardness, pendulum hardness, flexibility, impact resistance, adhesion and chemical resistance of the coating.
  • the pencil is a high-grade drawing pencil produced by Shanghai China Pencil Factory.
  • the instruments used are all in Tianjin. Production of Jingke Material Testing Machine Factory.
  • the VOC content of the coating was tested in accordance with GB/T 23985-2009.
  • the preparation of the hydroxyl terminated resin HTR-1 specifically includes the following steps:
  • Unit epoxy compounds are a class of compounds containing epoxy functional groups, which are commonly used as reactive diluents for epoxy resins to reduce the construction viscosity of two-component epoxy coatings.
  • the epoxy group is a functional group of a ternary oxygen-containing structure, which has a large ring tension and is susceptible to ring-opening reaction with a compound containing an active hydrogen (alcohol, primary/secondary amine, carboxylic acid) to form a compound containing a secondary hydroxyl group;
  • the acid catalyst acts to initiate the ring opening reaction of the hydroxyl group of the small molecule polyol with the epoxy functional group to form a secondary hydroxyl group which is shielded by the long carbon chain to lower the viscosity of the modified polyol.
  • the invention uses a diisocyanate compound as a core molecule, and reacts the isocyanate functional group with the hydroxyl functional group of the modified polyol to control the molar ratio of the modified polyol to the diisocyanate compound to realize the bridging action of the diisocyanate.
  • the hydroxyl functionality of the hydroxy resin is prepared and a low viscosity terminal hydroxyl resin is prepared.
  • the Lewis acid catalyst used in the preparation of the modified polyol is neutralized by a strong basic anion exchange resin, and the strong basic anion exchange resin is a solid resin which can be conveniently removed by filtration and recycled, and the post-treatment process is simple; the modified polyol is modified.
  • the organic solvent used in the preparation process can be continuously used after the simple drying and water removal, distillation and recovery process and can be used as a dilution solvent for the hydroxyl terminated resin; the preparation of the hydroxyl terminated resin does not use a heavy metal catalyst, and the introduction of the heavy metal catalyst can be avoided.
  • the activation period of the terminal hydroxyl resin in the two-component polyurethane coating is shortened, and the whole reaction process is characterized by high efficiency and environmental protection.
  • a hydroxyl group-like resin HTR-1 and a lipid solvent such as ethyl acetate, butyl acetate or propylene glycol methyl ether acetate, and an aromatic hydrocarbon solvent such as toluene or xylene, and acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutylate.
  • a ketone solvent such as a ketone or a methyl isoamyl ketone may be miscible.
  • the hydroxyl group-containing resin HTR-1 is a colorless transparent viscous liquid having a hydroxyl value (80% solid mass content) of 201.3 mgKOH/g and a viscosity (80% solid mass content) of 1200 cp at 25 °C.
  • the two-component polyurethane coating prepared by the hydroxyl terminated resin HTR-1 satisfies the national standard of "GB/T 23997-2009 Solvent-based polyurethane wood coating for interior decoration.”
  • the low-viscosity hydroxyl resin HTR-1 prepared in this example has a lower activation activity than the conventional alkyd resin H100C-80 due to the lower hydroxyl activity of HTR-1.
  • the paint film has high gloss, high hardness, excellent flexibility and adhesion and other mechanical properties;
  • the hydroxyl terminated resin prepared in this embodiment has higher hydroxyl functionality and hydroxyl value, and the prepared paint film has the same
  • the hardness is higher than that of the resin in the comparative example.
  • the traditional linear hydroxy polyester has a small average hydroxyl functionality in its molecular structure.
  • its molecular weight is generally higher, and its viscosity is high at higher solids.
  • a large amount of organic solvent is diluted to reduce the viscosity to meet the construction requirements. These organic solvents are gradually released into the air to pollute the environment during construction and solidification.
  • Comparative Example H100C-80 has a viscosity of up to 55000 cp at 80% solids content, and a VOC content of 570 g/L for the two-component coating.
  • the hydroxyl terminated resin HTR-1 prepared in this example has an 80% solids mass content.
  • the viscosity of the solution is only about 1200 cp, and its theoretical hydroxyl functionality is 4.
  • the VOC content of the two-component polyurethane coating prepared by it is only 380 g/L, which meets the national VOC content standard of new coating products. This embodiment overcomes the coating. The dilemma of high solids content and controlled solvent usage.
  • the preparation of the hydroxyl terminated resin HTR-2 specifically includes the following steps:
  • the reaction was carried out, and 20 mL of distilled water was added to quench the boron trifluoride diethyl ether catalyst, and 60 g of a strong basic anion exchange resin was added thereto to stir the acid catalyst for 30 minutes, and then the strong basic anion ion exchange resin was removed by filtration and distilled under high vacuum. The distilled water and the organic solvent are removed, and the modified polyol is obtained by cooling.
  • a hydroxyl group-like resin HTR-2 and a lipid solvent such as ethyl acetate, butyl acetate or propylene glycol methyl ether acetate, and an aromatic hydrocarbon solvent such as toluene or xylene, and acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutylene.
  • a ketone solvent such as a ketone or a methyl isoamyl ketone may be miscible.
  • the hydroxyl group-containing resin HTR-2 is a colorless transparent viscous liquid having a hydroxyl value (80% solid mass content) of 211.0 mgKOH/g and a viscosity (80% solid mass content) of 1250 cp at 25 °C.
  • the two-component polyurethane coating prepared by the hydroxyl terminated resin HTR-2 satisfies the national standard of "GB/T 23997-2009 Solvent-based polyurethane wood coating for interior decoration and decoration".
  • the preparation of the hydroxyl terminated resin HTR-3 specifically includes the following steps:
  • the reaction was terminated, and 20 mL of distilled water was added to quench the boron trifluoride diethyl ether catalyst, and 60 g of a strong basic anion exchange resin was added thereto to stir the acid catalyst for 30 minutes, and then the strong basic anion ion exchange resin was removed by filtration and decompressed under high vacuum.
  • the distilled water and the organic solvent are removed by distillation, and the modified polyol is obtained by cooling.
  • a hydroxyl group-like resin HTR-3 and a lipid solvent such as ethyl acetate, butyl acetate or propylene glycol methyl ether acetate, and an aromatic hydrocarbon solvent such as toluene or xylene, and acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutylene.
  • a ketone solvent such as a ketone or a methyl isoamyl ketone may be miscible.
  • the hydroxyl group-containing resin HTR-3 is a colorless transparent viscous liquid having a hydroxyl value (80% solid mass content) of 253.9 mgKOH/g and a viscosity (80% solid mass content) of 2000 cp at 25 °C.
  • the two-component polyurethane coating prepared by the hydroxyl terminated resin HTR-3 satisfies the national standard of "GB/T 23997-2009 Solvent-based polyurethane wood coating for interior decoration and decoration".
  • the preparation of the hydroxyl terminated resin HTR-4 specifically includes the following steps:
  • the reaction was terminated at the following time, and 20 mL of distilled water was added to quench the boron trifluoride tetrahydrofuran catalyst, and 60 g of a strong basic anion exchange resin was added thereto to stir the acid catalyst for 30 minutes, and then the strong basic anion ion exchange resin was removed by filtration and under high vacuum.
  • the distilled water and the organic solvent are removed by distillation under reduced pressure, and the modified polyol is obtained by cooling.
  • a hydroxyl group-like resin HTR-4 and a lipid solvent such as ethyl acetate, butyl acetate or propylene glycol methyl ether acetate, and an aromatic hydrocarbon solvent such as toluene or xylene, and acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutylene.
  • Ketone solvents such as ketone and methyl isoamyl ketone Can be miscible.
  • the hydroxyl group-containing resin HTR-4 was a colorless transparent viscous liquid having a hydroxyl value (80% solid mass content) of 196.4 mgKOH/g and a viscosity (80% solid mass content) of 800 cp at 25 °C.
  • the two-component polyurethane coating prepared by the terminal hydroxyl resin HTR-4 satisfies the national standard of "GB/T 23997-2009 Solvent-based polyurethane wood coating for interior decoration.”
  • the preparation of the hydroxyl terminated resin HTR-5 specifically includes the following steps:
  • the reaction was terminated, and 20 mL of distilled water was added to quench the boron trifluoride tetrahydrofuran catalyst, and 60 g of a strong basic anion exchange resin was added thereto to stir the acid catalyst for 30 minutes, and then the strong basic anion ion exchange resin was removed by filtration and reduced under high vacuum conditions. Press distillation to remove distilled water and organic solvent, and cool down Modified polyol.
  • a hydroxyl group-like resin HTR-5 and a lipid solvent such as ethyl acetate, butyl acetate or propylene glycol methyl ether acetate, and an aromatic hydrocarbon solvent such as toluene or xylene, and acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutylene.
  • a ketone solvent such as a ketone or a methyl isoamyl ketone may be miscible.
  • the hydroxyl group-containing resin HTR-5 was a colorless transparent viscous liquid having a hydroxyl value (80% solid mass content) of 272.8 mgKOH/g and a viscosity (80% solid mass content) of 2800 cp at 25 °C.
  • the two-component polyurethane coating prepared by the terminal hydroxyl resin HTR-10 satisfies the national standard of "GB/T 23997-2009 Solvent-based polyurethane wood coating for interior decoration and decoration".
  • the preparation of the hydroxyl terminated resin HTR-6 specifically includes the following steps:
  • the reaction was carried out, and 20 mL of distilled water was added to quench the boron trifluoride tetrahydrofuran catalyst, and 60 g of a strong basic anion exchange resin was added thereto to stir the acid catalyst for 30 minutes, and then the strong basic anion ion exchange resin was removed by filtration and distilled under high vacuum. The distilled water and the organic solvent are removed, and the modified polyol is obtained by cooling.
  • a hydroxyl group-like resin HTR-6 and a lipid solvent such as ethyl acetate, butyl acetate or propylene glycol methyl ether acetate, and an aromatic hydrocarbon solvent such as toluene or xylene, and acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutylene.
  • a ketone solvent such as a ketone or a methyl isoamyl ketone may be miscible.
  • the hydroxyl group-containing resin HTR-6 was a colorless transparent viscous liquid having a hydroxyl value (80% solid mass content) of 240.8 mgKOH/g and a viscosity (80% solid mass content) of 2480 cp at 25 °C.
  • the two-component polyurethane coating prepared by the hydroxyl-terminated resin HTR-6 satisfies the national standard of "GB/T 23997-2009 Solvent-based polyurethane wood coating for interior decoration".
  • the preparation of the hydroxyl terminated resin HTR-7 specifically includes the following steps:
  • the reaction was terminated at the following time, and 20 mL of distilled water was added to quench the boron trifluoride ethanol catalyst, and 60 g of a strong basic anion exchange resin was added thereto to stir the acid catalyst for 30 minutes, and then the strong basic anion ion exchange resin was removed by filtration and under high vacuum.
  • the distilled water and the organic solvent are removed by distillation under reduced pressure, and the modified polyol is obtained by cooling.
  • a hydroxyl group-like resin HTR-7 and a lipid solvent such as ethyl acetate, butyl acetate or propylene glycol methyl ether acetate, and an aromatic hydrocarbon solvent such as toluene or xylene, and acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutylene.
  • a ketone solvent such as a ketone or a methyl isoamyl ketone may be miscible.
  • the hydroxyl group-containing resin HTR-7 is a colorless transparent viscous liquid having a hydroxyl value (80% solid mass content) of 200.3 mgKOH/g and a viscosity (80% solid mass content) of 2800 cp at 25 °C.
  • the two-component polyurethane coating prepared by the terminal hydroxyl resin HTR-7 satisfies the national standard of "GB/T 23997-2009 Solvent-based polyurethane wood coating for interior decoration.”
  • the preparation of the hydroxyl terminated resin HTR-8 specifically includes the following steps:
  • the reaction is terminated, and 20 mL of distilled water is added to quench the boron trifluoride ethanol catalyst, and 60 g of a strong basic anion exchange resin is added thereto to stir the acid catalyst for 30 minutes, and then the strong basic anion ion exchange resin is removed by filtration and is high.
  • the distilled water and the organic solvent were removed by vacuum distillation under vacuum, and the modified polyol was obtained by cooling.
  • a hydroxyl group-like resin HTR-8 and a lipid solvent such as ethyl acetate, butyl acetate or propylene glycol methyl ether acetate, and toluene
  • An aromatic hydrocarbon solvent such as xylene is miscible with a ketone solvent such as acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone or methyl isoamyl ketone.
  • the hydroxyl group-containing resin HTR-8 was a colorless transparent viscous liquid having a hydroxyl value (80% solid mass content) of 194.8 mgKOH/g and a viscosity (80% solid mass content) of 1080 cp at 25 °C.
  • the two-component polyurethane coating prepared by the hydroxyl terminated resin HTR-8 satisfies the national standard of "GB/T 23997-2009 Solvent-based polyurethane wood coating for interior decoration”.
  • the preparation of the hydroxyl terminated resin HTR-9 specifically includes the following steps:
  • the boron trifluoride diethyl ether catalyst was quenched, and 90 g of strong basic anion exchange resin was added thereto to stir the acid catalyst for 30 min, and then the strong basic anion ion exchange resin was removed by filtration and distilled under vacuum to remove distilled water and organic solvent under high vacuum. The temperature is lowered to obtain a modified polyol.
  • a hydroxyl group-like resin HTR-9 and a lipid solvent such as ethyl acetate, butyl acetate or propylene glycol methyl ether acetate, and an aromatic hydrocarbon solvent such as toluene or xylene, and acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutylene.
  • a ketone solvent such as a ketone or a methyl isoamyl ketone may be miscible.
  • the hydroxyl group-containing resin HTR-9 was a colorless transparent viscous liquid having a hydroxyl value (80% solid mass content) of 227.6 mgKOH/g and a viscosity (80% solid mass content) of 660 cp at 25 °C.
  • the two-component polyurethane coating prepared by the terminal hydroxyl resin HTR-9 satisfies the national standard of "GB/T 23997-2009 Solvent-based polyurethane wood coating for interior decoration and decoration".
  • the preparation of the hydroxyl-terminated resin HTR-10 specifically includes the following steps:
  • a hydroxyl group-like resin HTR-10 and a lipid solvent such as ethyl acetate, butyl acetate or propylene glycol methyl ether acetate, and an aromatic hydrocarbon solvent such as toluene or xylene, and acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutylene.
  • a ketone solvent such as a ketone or a methyl isoamyl ketone may be miscible.
  • the hydroxyl group-containing resin HTR-10 is a colorless transparent viscous liquid having a hydroxyl value (80% solid mass content) of 221.2 mgKOH/g and a viscosity (80% solid mass content) of 3000 cp at 25 °C.
  • the two-component polyurethane coating prepared by the terminal hydroxyl resin HTR-10 satisfies the national standard of "GB/T 23997-2009 Solvent-based polyurethane wood coating for interior decoration.”
  • the film properties of the high-solids two-component polyurethane coating prepared by the above 10 examples are summarized in Table 21, which are selected from several low-viscosity and high-solid content isocyanate-based curing agents.
  • the comparative example in 21 is the coating film properties prepared by the same method as the H100C-80 alkyd resin supplied by Carpoly Chemical Group Co., Ltd.
  • the curing agent 1 used in Table 21 is a diphenylmethane diisocyanate-50 (MDI-50) curing agent and a toluene diisocyanate/trimethylolpropane adduct curing agent (L75) according to a mass ratio of 1:1.
  • curing agent 2 is a polymeric diphenylmethane diisocyanate (PM-400) curing agent, the curing agent 2 is 100% solid content, its viscosity at 25 ° C is only about 300 cp, its average functionality of isocyanate groups is about 2.7, its NCO content is 31.1%, it has the characteristics of fast reaction speed and high hardness of paint film;
  • curing agent 3 is XP 2410, the curing agent 3 is 100% solid content, its viscosity at 25 ° C is only about 500 cp, its isocyanate group has an average functionality of about 3.1, and its NCO content is 24.0%.
  • the viscosity of the alkyd resin H100C-80 prepared by the conventional process is as high as about 55000 cp at the same 80% solid content
  • the viscosity of the hydroxyl terminated resin prepared in the embodiment of the present invention is 300 Between 3000 cp, it is shown that the hydroxyl terminated resin prepared in the example has a very obvious performance advantage in viscosity, and is favorable for preparing a high solid content two-component polyurethane coating.
  • the present invention produced a high solids coating having a VOC of between 300 and 380 g/L.
  • the two-component polyurethane coating prepared in the examples has obvious environmental advantages in terms of VOC content, and its comprehensive performance satisfies the GB/T 23997-2009 solvent-based polyurethane wood coating for interior decoration.
  • "National standard. The invention has obvious advantages in reducing the VOC content of the coating while significantly reducing the viscosity of the hydroxyl resin, and overcomes the difficulties that the prior art is difficult to satisfy at the same time and seems contradictory; and the application of the hydroxyl terminated resin prepared by the invention
  • the two-component polyurethane coating has excellent overall performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

一种二异氰酸酯为核的低黏度端羟基树脂及其制备方法与应用。制备时,先以1~3摩尔的单元环氧化合物对1摩尔小分子多元醇进行改性得到改性多元醇,再以2摩尔该改性多元醇与1~3摩尔的二异氰酸酯化合物进行反应得到端羟基树脂。制备的端羟基树脂具有合成工艺简单、固体分含量高和黏度低的优点,其羟值(80%固体质量含量)在140~300mgKOH/g之间,其25℃时黏度(80%固体质量含量)为300~3000cp,能与含异氰酸酯基的聚氨酯固化剂交联,制备的高固体含量双组分聚氨酯涂料其施工黏度下VOC含量低于380g/L,涂膜性能满足溶剂型双组分聚氨酯木器涂料国家标准。

Description

以二异氰酸酯为核的低黏度端羟基树脂及其制备方法与应用 技术领域
本发明涉及一种羟基树脂,特别是涉及以二异氰酸酯为核的低黏度端羟基树脂,具体是涉及一种以单元环氧化合物改性的小分子多元醇与二异氰酸酯核分子进行反应制备低黏度端羟基树脂的方法,以及其在高固体含量双组分聚氨酯涂料中的应用。
技术背景
双组分聚氨酯涂料的涂膜因具有优异的低温柔韧性、优异的耐磨性、耐化学品性、高的光泽度等物理性能而被广泛应用于飞机、汽车、船舶、桥梁、工业制品、室内外家具等多个领域。双组分聚氨酯涂料使用的羟基树脂一般包括聚酯树脂、醇酸树脂、羟基丙烯酸(酯)树脂等,这些树脂固体含量高时黏度过大,施工时须加入大量有机溶剂稀释,制备的双组分聚氨酯涂料其VOC含量较高,不能够满足国家新的涂料VOC含量要求。目前高固体含量、低黏度的含异氰酸酯基聚氨酯固化剂已投入市场应用多年,开发低黏度羟基树脂成为制备高固体含量双组分聚氨酯涂料、降低其施工VOC含量的关键。
中国发明专利申请CN105733379A、CN104672366A分别公开了两种高固低黏丙烯酸树脂及其制备方法,以上述两种技术制备的羟基丙烯酸树脂70%固含量时的黏度为3000到6000cp之间,以其配制的双组分聚氨酯涂料的涂膜性能较好,但由于其羟基树脂的粘度仍然较高,以其制备的双组分聚氨酯涂料施工VOC含量仍然较高。
中国发明专利CN102911349B、CN104262599B公开了利用己内酯、脂肪酸及单缩水甘油醚对超支化羟基聚酯进行改性并得到具有优异涂膜性能的双组分聚氨酯用羟基树脂,但上述技术均以苯系物类带水剂来促进酯化反应进行,其聚酯产物存在苯系物残留;同时上述技术使用重金属类催化剂来催化端羟基与己内酯的反应,该类重金属催化剂难以完全除去会缩短配制的双组分聚氨酯涂料的活化期;同时该重金属催化剂对水体、土壤环境及人体健康具有较大的危害,以该发明所公开方法制备的羟基聚酯难以应用于玩具、食品用容器等具有较高环保标准的涂料领域。
发明内容
本发明的目的之一在于提供一种以小分子多元醇、单元环氧化合物、二异氰酸酯化合物为原料制备的低黏度端羟基树脂,该端羟基树脂80%固体质量含量时的羟值为 140~300mgKOH/g,其80%固体质量含量时25℃的黏度为300~3000cp。
本发明的目的之二在于提供以小分子多元醇、单元环氧化合物、二异氰酸酯化合物进行反应以制备端羟基树脂的合成方法,其合成工艺简单、环保,不使用重金属类催化剂、不使用苯系物等芳烃类溶剂,所制备的端羟基树脂具有黏度低、固含量高的特点。
本发明的目的之三在于提供含有该低黏度端羟基树脂在双组分溶剂型聚氨酯涂料中的应用,应用该端羟基树脂制备的聚氨酯涂膜具有光泽度高、丰满度高、硬度高、保光保色性优异的特点。
本发明的目的通过如下技术方案实现:
一种以二异氰酸酯为核的低黏度端羟基树脂的制备方法,包括如下步骤:
(1)改性多元醇的制备:按摩尔份数计,将1份小分子多元醇、0~5份有机溶剂加入反应器,加入路易斯酸催化剂,于40~70℃时1~5h内滴加1~3份单元环氧化合物,滴加完后于40~70℃时继续反应4~8h,待检测反应体系的环氧值降至初始质量含量的1%以下时结束反应,并加入蒸馏水淬灭路易斯酸催化剂,再加入强碱性阴离子交换树脂搅拌30~60min中和酸催化剂,然后过滤除去强碱性阴离子交换树脂并于高真空条件下减压蒸馏脱除蒸馏水及有机溶剂得到以单元环氧化合物改性的多元醇。
(2)低黏度端羟基树脂:按摩尔份数计,将2份步骤(1)制备的改性多元醇加入反应器,以质量百分比计,加入占总反应物质量含量15%~30%的有机溶剂,于50~90℃时1~3h内将1~1.5份二异氰酸酯化合物滴加至改性多元醇中,滴加完后于50~90℃时继续反应2~6h,待检测反应体系中异氰酸根完全反应后结束反应,降温出料得到固体质量含量为75%~90%的端羟基树脂。
为进一步实现本发明的目的,优选地,所述的小分子多元醇为乙二醇、1,4-丁二醇、1,6-己二醇、2-丁基-2-乙基-1,3-丙二醇、新戊二醇、二甘醇、2,4-二乙基-1,5-戊二醇、1,4-环己二醇、1,4-环己烷二甲醇、三羟甲基丙烷、甘油、二聚甘油、双三羟甲基丙烷、季戊四醇、双季戊四醇、木糖醇、赤藓糖醇、甘露醇、山梨糖醇、麦芽糖醇或乳糖醇;或者是所述的小分子多元醇为平均分子量200到1000之间的聚醚多元醇、聚酯多元醇、聚己内酯多元醇、聚四氢呋喃多元醇。
优选地,所述的平均分子量200到1000之间的聚醚多元醇、聚酯多元醇、聚己内酯多元醇、聚四氢呋喃多元醇为二官能度的聚乙二醇200、聚乙二醇400、聚酯多元醇HS2272、聚己内酯多元醇205、聚四氢呋喃多元醇650、三官能度的聚醚多元醇N303、聚己内酯多元醇305、四官能度的聚醚多元醇HK-4110、聚己内酯多元醇410中的一种或多种。
优选地,所述的单元环氧化合物为丁基缩水甘油醚、正辛基缩水甘油醚、异辛基缩水甘油醚、C8~10烷基缩水甘油醚、癸基缩水甘油醚、C10~12烷基缩水甘油醚、苯基缩水甘油醚、邻甲苯基缩水甘油醚、对叔丁基苯基缩水甘油醚、苄基缩水甘油醚、糠醇缩水甘油醚、环氧氯丙烷和叔碳酸缩水甘油酯中的一种或多种。
优选地,所述的二异氰酸酯化合物为甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、苯二亚甲基二异氰酸酯、四甲基苯二亚甲基二异氰酸酯、甲基环己基二异氰酸酯、异氟尔酮二异氰酸酯、二环己基甲烷二异氰酸酯、六亚甲基二异氰酸酯、三甲基六亚甲基二异氰酸酯。
优选地,所述的路易斯酸催化剂为三氟化硼乙醚(BF3·Et2O)、三氟化硼乙醇(BF3·EtOH)和三氟化硼四氢呋喃(BF3·THF)中的一种或多种;所述的路易斯酸催化剂加入量为小分子多元醇摩尔量的2~6%。
优选地,所述的强碱性阴离子交换树脂为D201型大孔强碱性苯乙烯系阴离子交换树脂。
优选地,步骤(1)和步骤(2)所述的有机溶剂都为乙酸乙酯、乙酸丁酯、二氧六环、丙二醇甲醚乙酸酯、丁酮、甲基异丁基酮、甲基异戊基酮、环己酮和异氟尔酮中的一种或多种。
一种以二异氰酸酯为核的低黏度端羟基树脂:其由上述制备方法制得,该端羟基树脂80%固体质量含量时的羟值为140~300mgKOH/g,其80%固体质量含量时25℃的黏度为300~3000cp。
所述的以二异氰酸酯为核的低黏度端羟基树脂在涂料中的应用:所述的涂料包含该端羟基树脂和含异氰酸酯基聚氨酯固化剂;所述的含异氰酸酯基聚氨酯固化剂与该羟基聚酯的NCO:OH摩尔比为0.8~1.2:1;所述的含异氰酸酯基聚氨酯固化剂为甲苯二异氰酸酯三聚体、甲苯二异氰酸酯/三羟甲基丙烷加成物、六亚甲基二异氰酸酯三聚体、二苯基甲烷二异氰酸酯单体和二苯基甲烷二异氰酸酯聚合物固化剂中的一种或多种。
本发明的技术原理如下:
(1)改性多元醇的制备:以路易斯酸为催化剂,利用小分子多元醇的羟基引发单元环氧化合物的环氧基的开环反应,得到改性多元醇。本发明采用路易斯酸催化剂来催化环氧基官能团与羟基官能团的开环反应,不使用碱金属及重金属类开环催化剂,避免因引入碱金属及重金属类物质而影响双组分聚氨酯涂料的活化期;改性多元醇制备的后处理过程中采用强碱性阴离子交换树脂来中和路易斯酸催化剂,该强碱性阴离子交换树脂为固体树脂可以方便地以过滤方式除去,避免了传统工艺碱洗、分液等复杂过程,工艺简单、环保。
(2)端羟基树脂的制备:以改性多元醇与二异氰酸酯化合物反应,利用二异氰酸酯化合物的异氰酸根与改性多元醇的羟基反应,通过控制投料比例得到端羟基树脂。
(3)通过调控改性多元醇中环氧化合物的种类,可以在改性多元醇中引入不同的侧链结构,同时进一步降低改性多元醇及端羟基树脂的黏度,调控端羟基树脂的性能。通过调控环氧化合物的添加量、改性多元醇中伯仲羟基的比例,利用伯羟基与异氰酸根反应,保留仲,延长配制的双组分聚氨酯涂料的活化期,解决常规高固体含量双组分聚氨酯涂料活化期短的难题。
(4)通过改变二异氰酸酯化合物的种类和添加量,可以在端羟基树脂中引入不同的核分子桥连结构,调控端羟基树脂的黏度及其性能,调控配制的双组分聚氨酯涂料的物理机械性能。
现有技术中(CN105419718A、CN105419714A、CN101838514B)制备端羟基聚氨酯多采用分子量在1000及以上的聚醚二元醇、聚己内酯二元醇、聚四氢呋喃二元醇等大分子二元醇和/或多元醇、以及蓖麻油等作为扩链剂,制备得到的产物多为含二官能度羟基官能团的产物,其分子量较大、其羟值较低(平均羟基官能度低至2左右)、由于其分子结构中含有较多的柔性长链段,通常只能够应用于胶黏剂体系,而不能够用来制备具有较高硬度要求的涂膜。而本技术通过对小分子多元醇的复配,提高了制备的端羟基树脂的平均羟基官能度(4以上)及羟值、减少了端羟基树脂中的柔性长链段含量;同时,为了降低端羟基树脂的黏度,选择以单元缩水甘油醚对小分子多元醇进行改性,将伯羟基转化为仲羟基、削弱了羟基间的氢键作用,并引入具有较强空间屏蔽效应的侧链基团,既降低了端羟基树脂的黏度,又不会因引入过多柔性长链段而降低该端羟基树脂应用于制备双组分聚氨酯涂料时的涂膜硬度。
相对于现有技术,本发明具有如下优点和有益效果:
(1)高固体含量、低黏度:相比市面上传统的双组分聚氨酯涂料用聚酯树脂及醇酸树脂,本发明合成的端羟基树脂在80%固体质量含量时25℃的黏度仅为300~3000cp;有益于制备高固体含量双组分聚氨酯涂料,降低涂料施工VOC含量,符合涂料领域发展趋势。
(2)优异的树脂相容性:本发明制备的端羟基树脂与市面上传统的双组分聚氨酯涂料用羟基树脂,如醇酸树脂、聚酯树脂、羟基丙烯酸树脂、聚醚多元醇、植物油多元醇等具有良好的相容性,利用其高固体含量、低黏度的特点,与其他羟基树脂共混使用可以提高施工固含量,减少VOC的排放。
(3)优异的涂膜性能:通过调控小分子多元醇、单元环氧化合物及二异氰酸酯的种类 及使用量,可以方便地调控端羟基树脂的性能,以本发明制备的端羟基树脂易与聚氨酯固化剂交联固化成膜,涂膜具有光泽度高(>95°)、柔韧性好(<2mm)、抗冲击性优异(50cm)、附着力强(1级)、硬度高(≥F)、耐化学品性优异的特点。
(4)合成工艺环保:采用两步法合成端羟基树脂,合成原料简单、易得;反应过程不使用重金属类催化剂、不使用苯系物类溶剂,工艺简单、环保。
具体实施方式
为更好地理解本发明,下面结合实施例对本发明做进一步的描述,需要说明的是,实施例不构成对本发明保护范围的限定。实施例中涉及的有关性能检测方法如下:
采用美国BROOKFIELD LVT型旋转黏度计在25℃下测定端羟基树脂的黏度。按照国标《GB/T 4612-2008塑料环氧化合物环氧当量的测定》中的测定方法检测反应体系的环氧值;按照国标《GB/T 12009.4-2016塑料聚氨酯生产用芳香族异氰酸酯第4部分:异氰酸根含量的测定》中的测定方法检测反应体系的异氰酸根含量。涂膜性能按照GB/T 9754-2007、GB/T 6739-2006、GB/T 1730-2007、GB/T 1731-1993、GB/T 20624.2-2006、GB/T 9286-1998和GB/T 2893.1-2005分别测试涂层的光泽、铅笔硬度、摆杆硬度、柔韧性、耐冲击性、附着力和耐化学品性,铅笔为上海中国铅笔一厂产的高级绘图铅笔,所用仪器均为天津市精科材料试验机厂生产。涂料VOC含量按照GB/T 23985-2009进行测试。
实施例1
1、原料组成
端羟基树脂HTR-1的制备所使用的原料及配比见表1。
表1
Figure PCTCN2017110893-appb-000001
2、制备
端羟基树脂HTR-1的制备具体包括如下步骤:
(1)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入268.4g三羟甲基丙烷、100g二氧六环、6g三氟化硼乙醚,在40℃、氮气保护下于3h内滴加456.0g苄基缩水甘油醚,滴加完后于40℃时继续反应,待检测反应体系的环氧值降至其初始质量含量的1%以下时结束反应,并加入20mL蒸馏水猝灭三氟化硼乙醚催化剂,再加入60g强 碱性阴离子交换树脂搅拌30min中和酸催化剂,然后过滤除去强碱性阴离子离子交换树脂并于高真空条件下减压蒸馏脱除蒸馏水及有机溶剂,降温得到改性多元醇。
(2)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入724.4g步骤(1)制备的改性多元醇、223.2g甲基异戊基酮,在70℃、氮气保护下于2h内滴加168.2g六亚甲基二异氰酸酯,滴加完后于70℃时继续反应,待检测反应体系中异氰酸根完全反应后结束反应,降温出料得到固体质量含量为80%的端羟基树脂HTR-1。
单元环氧化合物是一类含有环氧基官能团的化合物,利用其低粘度的特点通常用作环氧树脂的活性稀释剂以降低双组分环氧涂料的施工黏度。环氧基是一个三元含氧结构的官能团,其环张力较大,易与含有活性氢的化合物(醇、伯/仲胺、羧酸)发生开环反应生成含有仲羟基的化合物;以路易斯酸催化剂作用来引发小分子多元醇的羟基与环氧基官能团的开环反应可以生成受到长碳链屏蔽作用的仲羟基从而降低改性多元醇的黏度。本发明以二异氰酸酯化合物为核分子,利用其异氰酸根官能团与改性多元醇的羟基官能团反应,通过控制改性多元醇与二异氰酸酯化合物的摩尔比值,实现以二异氰酸酯的桥连作用提高端羟基树脂的羟基官能度并制备得到低粘度的端羟基树脂。采用强碱性阴离子交换树脂中和改性多元醇制备过程中使用的路易斯酸催化剂,该强碱性阴离子交换树脂为固体树脂可以方便地过滤除去并回收利用,后处理工艺简单;改性多元醇制备过程中使用的有机溶剂经过简单的干燥除水、蒸馏回收过程后可以继续使用并可以作为端羟基树脂的稀释溶剂;端羟基树脂的制备过程不使用重金属类催化剂,可以避免因引入重金属类催化剂而缩短该端羟基树酯应用于双组分聚氨酯涂料时的活化期,同时其整个反应过程具有高效、环保的特点。
3、性能测试
端羟基树脂HTR-1与乙酸乙酯、乙酸丁酯、丙二醇甲醚乙酸酯等脂类溶剂,与甲苯、二甲苯等芳烃类溶剂,与丙酮、丁酮、环己酮、甲基异丁基酮、甲基异戊基酮等酮类溶剂可以混溶。端羟基树脂HTR-1为无色透明粘稠液体,其羟值(80%固体质量含量)为201.3mgKOH/g,其25℃时粘度(80%固体质量含量)为1200cp。
4、涂料配制和性能
以质量计,依次称取50g端羟基树脂HTR-1,57.9g异氰酸酯固化剂Desmodur L75,0.55g流平剂BYK370,0.55g消泡剂BYK141,31.1g溶剂丙二醇甲醚乙酸酯加入分散杯中,在600r/min的转速下搅拌分散均匀并静置消泡后,将得到的双组分聚氨酯涂料分别在木板、马口铁片及玻璃板上制备涂膜。涂膜于常温下固化干燥7天后测试性能,其结果见表2。 采用相同的异氰酸酯固化剂Desmodur L75,以市售醇酸树脂H100C-80制备的双组分聚氨酯涂料的漆膜性能也列入表2。
表2
Figure PCTCN2017110893-appb-000002
如表2所示,以端羟基树脂HTR-1制备的双组分聚氨酯涂料满足《GB/T 23997-2009室内装饰装修用溶剂型聚氨酯木器涂料》国家标准。本实施例制备的低粘度端羟基树脂HTR-1其性能与传统的醇酸树脂H100C-80相比,由于HTR-1的羟基活性较低,以其配制的双组分聚氨酯涂料其活化期显著延长,同时漆膜具有高的光泽度、高的硬度、优异的柔韧性和附着力等机械性能;本实施例制备的端羟基树脂具有较高的羟基官能度和羟值,制备的漆膜其硬度高于对比例中的树脂。
传统的线形羟基聚酯其分子结构中平均羟基官能度较小,为了实现较优异的物理机械性能,其分子量一般较高、在较高固含量情况下其黏度很大,配制双组分涂料需要大量有机溶剂稀释降低黏度以满足施工要求,这些有机溶剂在施工及固化成膜过程中逐渐释放到空气中污染环境。对比例H100C-80在80%固体质量含量时其黏度高达55000cp,配制双组分涂料的施工VOC含量为570g/L;本实施例制备的端羟基树脂HTR-1在80%固体质量含量时其溶液黏度仅为1200cp左右、其理论羟基官能度为4,以其配制的双组分聚氨酯涂料的施工VOC含量仅为380g/L,满足国家新的涂料产品VOC含量标准;本实施例克服了涂料高固含量和控制溶剂用量的两难问题。
实施例2
1、原料组成
端羟基树脂HTR-2的制备所使用的原料及配比见表3。
表3
Figure PCTCN2017110893-appb-000003
Figure PCTCN2017110893-appb-000004
2、制备
端羟基树脂HTR-2的制备具体包括如下步骤:
(1)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入134.2g三羟甲基丙烷、92.1g甘油、60g乙酸丁酯、6g三氟化硼乙醚,在60℃、氮气保护下于2h内滴加456.0g苄基缩水甘油醚,滴加完后于60℃时继续反应,待检测反应体系的环氧值降至其初始质量含量的1%以下时结束反应,并加入20mL蒸馏水猝灭三氟化硼乙醚催化剂,再加入60g强碱性阴离子交换树脂搅拌30min中和酸催化剂,然后过滤除去强碱性阴离子离子交换树脂并于高真空条件下减压蒸馏脱除蒸馏水及有机溶剂,降温得到改性多元醇。
(2)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入682.3g步骤(1)制备的改性多元醇、212.6g甲基异戊基酮,在60℃、氮气保护下于2h内滴加168.2g六亚甲基二异氰酸酯,滴加完后于60℃时继续反应,待检测反应体系中异氰酸根完全反应后结束反应,降温出料得到固体质量含量为80%的端羟基树脂HTR-2。
3、性能测试
端羟基树脂HTR-2与乙酸乙酯、乙酸丁酯、丙二醇甲醚乙酸酯等脂类溶剂,与甲苯、二甲苯等芳烃类溶剂,与丙酮、丁酮、环己酮、甲基异丁基酮、甲基异戊基酮等酮类溶剂可以混溶。端羟基树脂HTR-2为无色透明粘稠液体,其羟值(80%固体质量含量)为211.0mgKOH/g,其25℃时粘度(80%固体质量含量)为1250cp。
4、涂料配制和性能
以质量计,依次称取50g端羟基树脂HTR-2,60.8g异氰酸酯固化剂Desmodur L75,0.55g流平剂BYK370,0.55g消泡剂BYK141,31.9g溶剂丙二醇甲醚乙酸酯加入分散杯中,在600r/min的转速下搅拌分散均匀并静置消泡后,将得到的双组分聚氨酯涂料分别在木板、马口铁片及玻璃板上制备涂膜。涂膜于常温下固化干燥7天后测试性能,其结果见表4。
表4
Figure PCTCN2017110893-appb-000005
如表4所示,以端羟基树脂HTR-2制备的双组分聚氨酯涂料满足《GB/T 23997-2009室内装饰装修用溶剂型聚氨酯木器涂料》国家标准。
实施例3
1、原料组成
端羟基树脂HTR-3的制备所使用的原料及配比见表5。
表5
Figure PCTCN2017110893-appb-000006
2、制备
端羟基树脂HTR-3的制备具体包括如下步骤:
(1)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入134.2g三羟甲基丙烷、92.1g甘油、60g二氧六环、6g三氟化硼乙醚,在65℃、氮气保护下于2h内滴加312.6g苯基缩水甘油醚,滴加完后于65℃时继续反应,待检测反应体系的环氧值降至其初始质量含量的1%以下时结束反应,并加入20mL蒸馏水猝灭三氟化硼乙醚催化剂,再加入60g强碱性阴离子交换树脂搅拌30min中和酸催化剂,然后过滤除去强碱性阴离子离子交换树脂并于高真空条件下减压蒸馏脱除蒸馏水及有机溶剂,降温得到改性多元醇。
(2)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入538.9g步骤(1)制备的改性多元醇、176.8g甲基异戊基酮,在80℃、氮气保护下于1.5h内滴加168.2g六亚甲基二异氰酸酯,滴加完后于80℃时继续反应,待检测反应体系中异氰酸根完全反应后结束反应,降温出料得到固体质量含量为80%的端羟基树脂HTR-3。
3、性能测试
端羟基树脂HTR-3与乙酸乙酯、乙酸丁酯、丙二醇甲醚乙酸酯等脂类溶剂,与甲苯、二甲苯等芳烃类溶剂,与丙酮、丁酮、环己酮、甲基异丁基酮、甲基异戊基酮等酮类溶剂可以混溶。端羟基树脂HTR-3为无色透明粘稠液体,其羟值(80%固体质量含量)为253.9mgKOH/g,其25℃时粘度(80%固体质量含量)为2000cp。
4、涂料配制和性能
以质量计,依次称取50g端羟基树脂HTR-3,73.1g异氰酸酯固化剂Desmodur L75,0.60g流平剂BYK370,0.60g消泡剂BYK141,35.0g溶剂丙二醇甲醚乙酸酯加入分散杯中,在600r/min的转速下搅拌分散均匀并静置消泡后,将得到的双组分聚氨酯涂料分别在木板、马口铁片及玻璃板上制备涂膜。涂膜于常温下固化干燥7天后测试性能,其结果见表6。
表6
Figure PCTCN2017110893-appb-000007
如表6所示,以端羟基树脂HTR-3制备的双组分聚氨酯涂料满足《GB/T 23997-2009室内装饰装修用溶剂型聚氨酯木器涂料》国家标准。
实施例4
1、原料组成
端羟基树脂HTR-4的制备所使用的原料及配比见表7。
表7
Figure PCTCN2017110893-appb-000008
2、制备
端羟基树脂HTR-4的制备具体包括如下步骤:
(1)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入250.3g双三羟甲基丙烷、106.1g二甘醇、100g乙酸乙酯、6g三氟化硼四氢呋喃,在50℃、氮气保护下于3h内滴加390.0g辛基缩水甘油醚,滴加完后于50℃时继续反应,待检测反应体系的环氧值降至其初始质量含量的1%以下时结束反应,并加入20mL蒸馏水猝灭三氟化硼四氢呋喃催化剂,再加入60g强碱性阴离子交换树脂搅拌30min中和酸催化剂,然后过滤除去强碱性阴离子离子交换树脂并于高真空条件下减压蒸馏脱除蒸馏水及有机溶剂,降温得到改性多元醇。
(2)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入746.4g步骤(1)制备的改性多元醇、245.2g甲基异戊基酮,在50℃、氮气保护下于3h内滴加168.2g六亚甲基二异氰酸酯,滴加完后于50℃时继续反应,待检测反应体系中异氰酸根完全反应后结束反应,降温出料得到固体质量含量为80%的端羟基树脂HTR-4。
3、性能测试
端羟基树脂HTR-4与乙酸乙酯、乙酸丁酯、丙二醇甲醚乙酸酯等脂类溶剂,与甲苯、二甲苯等芳烃类溶剂,与丙酮、丁酮、环己酮、甲基异丁基酮、甲基异戊基酮等酮类溶剂 可以混溶。端羟基树脂HTR-4为无色透明粘稠液体,其羟值(80%固体质量含量)为196.4mgKOH/g,其25℃时粘度(80%固体质量含量)为800cp。
4、涂料配制和性能
以质量计,依次称取50g端羟基树脂HTR-4,56.6g异氰酸酯固化剂Desmodur L75,0.55g流平剂BYK370,0.55g消泡剂BYK141,30.8g溶剂丙二醇甲醚乙酸酯加入分散杯中,在600r/min的转速下搅拌分散均匀并静置消泡后,将得到的双组分聚氨酯涂料分别在木板、马口铁片及玻璃板上制备涂膜。涂膜于常温下固化干燥7天后测试性能,其结果见表8。
表8
Figure PCTCN2017110893-appb-000009
如表8所示,以端羟基树脂HTR-4制备的双组分聚氨酯涂料满足《GB/T 23997-2009室内装饰装修用溶剂型聚氨酯木器涂料》国家标准。
实施例5
1、原料组成
端羟基树脂HTR-5的制备所使用的原料及配比见表9。
表9
Figure PCTCN2017110893-appb-000010
2、制备
端羟基树脂HTR-5的制备具体包括如下步骤:
(1)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入250.3g双三羟甲基丙烷、92.1g甘油、120g二氧六环、6g三氟化硼四氢呋喃,在60℃、氮气保护下于2h内滴加312.6g苯基缩水甘油醚,滴加完后于60℃时继续反应,待检测反应体系的环氧值降至其初始质量含量的1%以下时结束反应,并加入20mL蒸馏水猝灭三氟化硼四氢呋喃催化剂,再加入60g强碱性阴离子交换树脂搅拌30min中和酸催化剂,然后过滤除去强碱性阴离子离子交换树脂并于高真空条件下减压蒸馏脱除蒸馏水及有机溶剂,降温得到 改性多元醇。
(2)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入655g步骤(1)制备的改性多元醇、205.8g甲基异戊基酮,在60℃、氮气保护下于2h内滴加168.2g六亚甲基二异氰酸酯,滴加完后于60℃时继续反应,待检测反应体系中异氰酸根完全反应后结束反应,降温出料得到固体质量含量为80%的端羟基树脂HTR-5。
3、性能测试
端羟基树脂HTR-5与乙酸乙酯、乙酸丁酯、丙二醇甲醚乙酸酯等脂类溶剂,与甲苯、二甲苯等芳烃类溶剂,与丙酮、丁酮、环己酮、甲基异丁基酮、甲基异戊基酮等酮类溶剂可以混溶。端羟基树脂HTR-5为无色透明粘稠液体,其羟值(80%固体质量含量)为272.8mgKOH/g,其25℃时粘度(80%固体质量含量)为2800cp。
4、涂料配制和性能
以质量计,依次称取50g端羟基树脂HTR-5,78.5g异氰酸酯固化剂Desmodur L75,0.65g流平剂BYK370,0.65g消泡剂BYK141,36.3g溶剂丙二醇甲醚乙酸酯加入分散杯中,在600r/min的转速下搅拌分散均匀并静置消泡后,将得到的双组分聚氨酯涂料分别在木板、马口铁片及玻璃板上制备涂膜。涂膜于常温下固化干燥7天后测试性能,其结果见表10。
表10
Figure PCTCN2017110893-appb-000011
如表10所示,以端羟基树脂HTR-10制备的双组分聚氨酯涂料满足《GB/T 23997-2009室内装饰装修用溶剂型聚氨酯木器涂料》国家标准。
实施例6
1、原料组成
端羟基树脂HTR-6的制备所使用的原料及配比见表11。
表11
Figure PCTCN2017110893-appb-000012
2、制备
端羟基树脂HTR-6的制备具体包括如下步骤:
(1)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入122.1g赤藓糖醇、92.1g甘油、120g二氧六环、6g三氟化硼四氢呋喃,在70℃、氮气保护下于2h内滴加456.0g苄基缩水甘油醚,滴加完后于70℃时继续反应,待检测反应体系的环氧值降至其初始质量含量的1%以下时结束反应,并加入20mL蒸馏水猝灭三氟化硼四氢呋喃催化剂,再加入60g强碱性阴离子交换树脂搅拌30min中和酸催化剂,然后过滤除去强碱性阴离子离子交换树脂并于高真空条件下减压蒸馏脱除蒸馏水及有机溶剂,降温得到改性多元醇。
(2)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入670.2g步骤(1)制备的改性多元醇、233.2g甲基异戊基酮,在80℃、氮气保护下于1.5h内滴加262.4g二环己基甲烷二异氰酸酯,滴加完后于80℃时继续反应,待检测反应体系中异氰酸根完全反应后结束反应,降温出料得到固体质量含量为80%的端羟基树脂HTR-6。
3、性能测试
端羟基树脂HTR-6与乙酸乙酯、乙酸丁酯、丙二醇甲醚乙酸酯等脂类溶剂,与甲苯、二甲苯等芳烃类溶剂,与丙酮、丁酮、环己酮、甲基异丁基酮、甲基异戊基酮等酮类溶剂可以混溶。端羟基树脂HTR-6为无色透明粘稠液体,其羟值(80%固体质量含量)为240.8mgKOH/g,其25℃时粘度(80%固体质量含量)为2480cp。
4、涂料配制和性能
以质量计,依次称取50g端羟基树脂HTR-6,69.3g异氰酸酯固化剂Desmodur L75,0.65g流平剂BYK370,0.65g消泡剂BYK141,34.0g溶剂丙二醇甲醚乙酸酯加入分散杯中,在600r/min的转速下搅拌分散均匀并静置消泡后,将得到的双组分聚氨酯涂料分别在木板、马口铁片及玻璃板上制备涂膜。涂膜于常温下固化干燥7天后测试性能,其结果见表12。
表12
Figure PCTCN2017110893-appb-000013
如表12所示,以端羟基树脂HTR-6制备的双组分聚氨酯涂料满足《GB/T 23997-2009室内装饰装修用溶剂型聚氨酯木器涂料》国家标准。
实施例7
1、原料组成
端羟基树脂HTR-7的制备所使用的原料及配比见表13。
表13
Figure PCTCN2017110893-appb-000014
2、制备
端羟基树脂HTR-7的制备具体包括如下步骤:
(1)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入374.6g聚醚多元醇N303、182.2g山梨糖醇、80g二氧六环、5.6g三氟化硼乙醇,在40℃、氮气保护下于4h内滴加750g叔碳酸缩水甘油酯,滴加完后于70℃时继续反应,待检测反应体系的环氧值降至其初始质量含量的1%以下时结束反应,并加入20mL蒸馏水猝灭三氟化硼乙醇催化剂,再加入60g强碱性阴离子交换树脂搅拌30min中和酸催化剂,然后过滤除去强碱性阴离子离子交换树脂并于高真空条件下减压蒸馏脱除蒸馏水及有机溶剂,降温得到改性多元醇。
(2)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入1306.8g步骤(1)制备的改性多元醇、392.3g甲基异戊基酮,在60℃、氮气保护下于2h内滴加262.4g二环己基甲烷二异氰酸酯,滴加完后于80℃时继续反应,待检测反应体系中异氰酸根完全反应后结束反应,降温出料得到固体质量含量为80%的端羟基树脂HTR-7。
3、性能测试
端羟基树脂HTR-7与乙酸乙酯、乙酸丁酯、丙二醇甲醚乙酸酯等脂类溶剂,与甲苯、二甲苯等芳烃类溶剂,与丙酮、丁酮、环己酮、甲基异丁基酮、甲基异戊基酮等酮类溶剂可以混溶。端羟基树脂HTR-7为无色透明粘稠液体,其羟值(80%固体质量含量)为200.3mgKOH/g,其25℃时粘度(80%固体质量含量)为2800cp。
4、涂料配制和性能
以质量计,依次称取50g端羟基树脂HTR-7,57.7g异氰酸酯固化剂Desmodur L75,0.55g流平剂BYK370,0.55g消泡剂BYK141,33.8g溶剂丙二醇甲醚乙酸酯加入分散杯中,在600r/min的转速下搅拌分散均匀并静置消泡后,将得到的双组分聚氨酯涂料分别在木板、马口铁片及玻璃板上制备涂膜。涂膜于常温下固化干燥7天后测试性能,其结果见表14。
表14
Figure PCTCN2017110893-appb-000015
如表14所示,以端羟基树脂HTR-7制备的双组分聚氨酯涂料满足《GB/T 23997-2009室内装饰装修用溶剂型聚氨酯木器涂料》国家标准。
实施例8
1、原料组成
端羟基树脂HTR-8的制备所使用的原料及配比见表15。
表15
Figure PCTCN2017110893-appb-000016
2、制备
端羟基树脂HTR-8的制备具体包括如下步骤:
(1)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入498.7g聚醚多元醇HK-4110、165.0g二聚甘油、60g二氧六环、5.6g三氟化硼乙醇,在40℃、氮气保护下于5h内滴加456.0g苄基缩水甘油醚,滴加完后于70℃时继续反应,待检测反应体系的环氧值降至其初始质量含量的1%以下时结束反应,并加入20mL蒸馏水猝灭三氟化硼乙醇催化剂,再加入60g强碱性阴离子交换树脂搅拌30min中和酸催化剂,然后过滤除去强碱性阴离子离子交换树脂并于高真空条件下减压蒸馏脱除蒸馏水及有机溶剂,降温得到改性多元醇。
(2)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入1119.7g步骤(1)制备的改性多元醇、345.5g甲基异戊基酮,在90℃、氮气保护下于1.5h内滴加262.4g二环己基甲烷二异氰酸酯,滴加完后于90℃时继续反应,待检测反应体系中异氰酸根完全反应后结束反应,降温出料得到固体质量含量为80%的端羟基树脂HTR-8。
3、性能测试
端羟基树脂HTR-8与乙酸乙酯、乙酸丁酯、丙二醇甲醚乙酸酯等脂类溶剂,与甲苯、 二甲苯等芳烃类溶剂,与丙酮、丁酮、环己酮、甲基异丁基酮、甲基异戊基酮等酮类溶剂可以混溶。端羟基树脂HTR-8为无色透明粘稠液体,其羟值(80%固体质量含量)为194.8mgKOH/g,其25℃时粘度(80%固体质量含量)为1080cp。
4、涂料配制和性能
以质量计,依次称取50g端羟基树脂HTR-8,56.1g异氰酸酯固化剂Desmodur L75,0.55g流平剂BYK370,0.55g消泡剂BYK141,30.7g溶剂丙二醇甲醚乙酸酯加入分散杯中,在600r/min的转速下搅拌分散均匀并静置消泡后,将得到的双组分聚氨酯涂料分别在木板、马口铁片及玻璃板上制备涂膜。涂膜于常温下固化干燥7天后测试性能,其结果见表16。
表16
Figure PCTCN2017110893-appb-000017
如表16所示,以端羟基树脂HTR-8制备的双组分聚氨酯涂料满足《GB/T 23997-2009室内装饰装修用溶剂型聚氨酯木器涂料》国家标准。
实施例9
1、原料组成
端羟基树脂HTR-9的制备所使用的原料及配比见表17。
表17
Figure PCTCN2017110893-appb-000018
2、制备
端羟基树脂HTR-9的制备具体包括如下步骤:
(1)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入330g二聚甘油、40g二氧六环、9g三氟化硼乙醚,在60℃、氮气保护下于4h内滴加684.0g苄基缩水甘油醚,滴加完后于60℃时继续反应,待检测反应体系的环氧值降至其初始质量含量的1%以下时结束反应,并加入30mL蒸馏水猝灭三氟化硼乙醚催化剂,再加入90g强碱性阴离子交换树脂搅拌30min中和酸催化剂,然后过滤除去强碱性阴离子离子交换树脂并于高真空条件下减压蒸馏脱除蒸馏水及有机溶剂,降温得到改性多元醇。
(2)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入1014.0g步骤(1)制备的改性多元醇、295.5g甲基异戊基酮,在60℃、氮气保护下于2h内滴加168.2g六亚甲基二异氰酸酯,滴加完后于60℃时继续反应,待检测反应体系中异氰酸根完全反应后结束反应,降温出料得到固体质量含量为80%的端羟基树脂HTR-9。
3、性能测试
端羟基树脂HTR-9与乙酸乙酯、乙酸丁酯、丙二醇甲醚乙酸酯等脂类溶剂,与甲苯、二甲苯等芳烃类溶剂,与丙酮、丁酮、环己酮、甲基异丁基酮、甲基异戊基酮等酮类溶剂可以混溶。端羟基树脂HTR-9为无色透明粘稠液体,其羟值(80%固体质量含量)为227.6mgKOH/g,其25℃时粘度(80%固体质量含量)为660cp。
4、涂料配制和性能
以质量计,依次称取50g端羟基树脂HTR-9,65.6g异氰酸酯固化剂Desmodur L75,0.60g流平剂BYK370,0.60g消泡剂BYK141,33.1g溶剂丙二醇甲醚乙酸酯加入分散杯中,在600r/min的转速下搅拌分散均匀并静置消泡后,将得到的双组分聚氨酯涂料分别在木板、马口铁片及玻璃板上制备涂膜。涂膜于常温下固化干燥7天后测试性能,其结果见表18。
表18
Figure PCTCN2017110893-appb-000019
如表18所示,以端羟基树脂HTR-9制备的双组分聚氨酯涂料满足《GB/T 23997-2009室内装饰装修用溶剂型聚氨酯木器涂料》国家标准。
实施例10
1、原料组成
端羟基树脂HTR-10的制备所使用的原料及配比见表19。
表19
Figure PCTCN2017110893-appb-000020
2、制备
端羟基树脂HTR-10的制备具体包括如下步骤:
(1)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入122.1g赤藓糖醇、160g二氧六环、12g三氟化硼乙醚,在50℃、氮气保护下于5h内滴加625.2g苯基缩水甘油醚,滴加完后于50℃时继续反应,待检测反应体系的环氧值降至其初始质量含量的1%以下时结束反应,并加入40mL蒸馏水猝灭三氟化硼乙醚催化剂,再加入120g强碱性阴离子交换树脂搅拌60min中和酸催化剂,然后过滤除去强碱性阴离子离子交换树脂并于高真空条件下减压蒸馏脱除蒸馏水及有机溶剂,降温得到改性多元醇。
(2)在装有机械搅拌、温度计、球形冷凝管、氮气通入口的四口烧瓶中,加入747.3g步骤(1)制备的改性多元醇、304.4g甲基异戊基酮,在70℃、氮气保护下于3h内滴加262.4g二环己基甲烷二异氰酸酯,滴加完后于70℃时继续反应,待检测反应体系中异氰酸根完全反应后结束反应,降温出料得到固体质量含量为80%的端羟基树脂HTR-10。
3、性能测试
端羟基树脂HTR-10与乙酸乙酯、乙酸丁酯、丙二醇甲醚乙酸酯等脂类溶剂,与甲苯、二甲苯等芳烃类溶剂,与丙酮、丁酮、环己酮、甲基异丁基酮、甲基异戊基酮等酮类溶剂可以混溶。端羟基树脂HTR-10为无色透明粘稠液体,其羟值(80%固体质量含量)为221.2mgKOH/g,其25℃时粘度(80%固体质量含量)为3000cp。
4、涂料配制和性能
以质量计,依次称取50g端羟基树脂HTR-10,63.7g异氰酸酯固化剂Desmodur L75,0.55g流平剂BYK370,0.55g消泡剂BYK141,32.6g溶剂丙二醇甲醚乙酸酯加入分散杯中,在600r/min的转速下搅拌分散均匀并静置消泡后,将得到的双组分聚氨酯涂料分别在木板、马口铁片及玻璃板上制备涂膜。涂膜于常温下固化干燥7天后测试性能,其结果见表20。
表20
Figure PCTCN2017110893-appb-000021
如表20所示,以端羟基树脂HTR-10制备的双组分聚氨酯涂料满足《GB/T 23997-2009室内装饰装修用溶剂型聚氨酯木器涂料》国家标准。
选用市面上常见的几种低黏度、高固体含量的含异氰酸酯基固化剂,以上述10个实施例制备的高固体含量双组分聚氨酯涂料的涂膜性能汇总情况如表21所示,其中表21中的对比例为由嘉宝莉化工集团股份有限公司提供的H100C-80醇酸树脂按相同方法制备的涂膜性能。其中表21中所用的固化剂1为二苯基甲烷二异氰酸酯-50(MDI-50)固化剂与甲苯二异氰酸酯/三羟甲基丙烷加成物固化剂(L75)按照质量比1:1进行复配,得到固含量 为87.5%、25℃黏度为80cp、NCO含量为23.25%的固化剂复配物;固化剂2为聚合二苯基甲烷二异氰酸酯(PM-400)固化剂,该固化剂2为100%固体含量,其25℃黏度仅为300cp左右,其异氰酸酯基的平均官能度在2.7左右,其NCO含量为31.1%,具有反应速度快,漆膜硬度高的特点;固化剂3为
Figure PCTCN2017110893-appb-000022
XP 2410,该固化剂3为100%固体含量,其25℃黏度仅为500cp左右,其异氰酸酯基的平均官能度在3.1左右,其NCO含量为24.0%,具有漆膜柔韧性、耐候性优异的特点。由上述实施例的测试结果可知,在相同的80%固含量情况下,传统工艺制备的醇酸树脂H100C-80的黏度高达55000cp左右,而本发明实施例制备的端羟基树脂的黏度在300到3000cp之间,表明实施例制备的端羟基树脂在黏度方面具有非常明显的性能优势,有利于制备高固体含量双组分聚氨酯涂料。同时,如表21所示,本发明制得了VOC在300~380g/L之间的高固含涂料。与对比例H100C-80相比,实施例制备的双组分聚氨酯涂料在施工VOC含量方面具有明显的环保优势,同时其综合性能满足《GB/T 23997-2009室内装饰装修用溶剂型聚氨酯木器涂料》国家标准。本发明在显著降低端羟基树脂粘度的同时还在涂料VOC含量方面具有明显的优势,克服了现有技术难以同时满足、看似相互矛盾的两者难题;同时本发明制备的端羟基树脂应用与双组分聚氨酯涂料的综合性能优异。
表21以部分实施例制备的高固含量双组分聚氨酯涂料及涂膜性能
Figure PCTCN2017110893-appb-000023

Claims (10)

  1. 以二异氰酸酯为核的低黏度端羟基树脂的制备方法,其特征在于包括如下步骤:
    (1)改性多元醇的制备:按摩尔份数计,将1份小分子多元醇、0~5份有机溶剂加入反应器,加入路易斯酸催化剂,于40~70℃时1~5h内滴加1~3份单元环氧化合物,滴加完后于40~70℃时继续反应4~8h,待检测反应体系的环氧值降至初始质量含量的1%以下时结束反应,并加入蒸馏水淬灭路易斯酸催化剂,再加入强碱性阴离子交换树脂搅拌30~60min中和酸催化剂,然后过滤除去强碱性阴离子交换树脂并于高真空条件下减压蒸馏脱除蒸馏水及有机溶剂得到以单元环氧化合物改性的多元醇;
    所述的单元环氧化合物为丁基缩水甘油醚、正辛基缩水甘油醚、异辛基缩水甘油醚、C8~10烷基缩水甘油醚、癸基缩水甘油醚、C10~12烷基缩水甘油醚、苯基缩水甘油醚、邻甲苯基缩水甘油醚、对叔丁基苯基缩水甘油醚、苄基缩水甘油醚、糠醇缩水甘油醚、环氧氯丙烷和叔碳酸缩水甘油酯中的一种或多种;
    (2)低黏度端羟基树脂:按摩尔份数计,将2份步骤(1)制备的改性多元醇加入反应器,以质量百分比计,加入占总反应物质量含量15%~30%的有机溶剂,于50~90℃时1~3h内将1~1.5份二异氰酸酯化合物滴加至改性多元醇中,滴加完后于50~90℃时继续反应2~6h,待检测反应体系中异氰酸根完全反应后结束反应,降温出料得到固体质量含量为75%~90%的端羟基树脂。
  2. 根据权利要求1所述的以二异氰酸酯为核的低黏度端羟基树脂的制备方法,其特征在于:所述的小分子多元醇为乙二醇、1,4-丁二醇、1,6-己二醇、2-丁基-2-乙基-1,3-丙二醇、新戊二醇、二甘醇、2,4-二乙基-1,5-戊二醇、1,4-环己二醇、1,4-环己烷二甲醇、三羟甲基丙烷、甘油、二聚甘油、双三羟甲基丙烷、季戊四醇、双季戊四醇、木糖醇、赤藓糖醇、甘露醇、山梨糖醇、麦芽糖醇或乳糖醇。
  3. 根据权利要求1所述的以二异氰酸酯为核的低黏度端羟基树脂的制备方法,其特征在于:所述的小分子多元醇为平均分子量200到1000之间的聚醚多元醇、聚酯多元醇、聚己内酯多元醇或聚四氢呋喃多元醇。
  4. 根据权利要求3所述的以二异氰酸酯为核的低黏度端羟基树脂的制备方法,其特征在于,所述的聚醚多元醇为二官能度的聚乙二醇200、二官能度的聚乙二醇400、三官能度的聚醚多元醇N303和四官能度的聚醚多元醇HK-4110中的一种或多种;
    所述的聚酯多元醇为二官能度的聚酯多元醇HS2272;
    所述的聚己内酯多元醇为二官能度的聚己内酯多元醇205、三官能度的聚己内酯多元醇305和四官能度的聚己内酯多元醇410中的一种或多种;
    所述的聚四氢呋喃多元醇为二官能度的聚四氢呋喃多元醇650。
  5. 根据权利要求1所述的以二异氰酸酯为核的低黏度端羟基树脂的制备方法,其特征在于:所述的路易斯酸催化剂为三氟化硼乙醚、三氟化硼乙醇和三氟化硼四氢呋喃中的一种或多种;所述的路易斯酸催化剂加入量为小分子多元醇摩尔量的2~6%。
  6. 根据权利要求1所述的以二异氰酸酯为核的低黏度端羟基树脂的制备方法,其特征在于:所述的强碱性阴离子交换树脂为D201型大孔强碱性苯乙烯系阴离子交换树脂。
  7. 根据权利要求1所述的以二异氰酸酯为核的低黏度端羟基树脂的制备方法,其特征在于:所述的二异氰酸酯化合物为甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、苯二亚甲基二异氰酸酯、四甲基苯二亚甲基二异氰酸酯、甲基环己基二异氰酸酯、异氟尔酮二异氰酸酯、二环己基甲烷二异氰酸酯、六亚甲基二异氰酸酯和三甲基六亚甲基二异氰酸酯中的一种或多种。
  8. 根据权利要求1所述的以二异氰酸酯为核的低黏度端羟基树脂的制备方法,其特征在于:步骤(1)和步骤(2)所述的有机溶剂都为乙酸乙酯、乙酸丁酯、二氧六环、丙二醇甲醚乙酸酯、丁酮、甲基异丁基酮、甲基异戊基酮、环己酮和异氟尔酮中的一种或多种。
  9. 一种以二异氰酸酯为核的低黏度端羟基树脂,其特征在于:其由权利要求1~7任一项所述制备方法制得,该端羟基树脂80%固体质量含量时的羟值为140~300mgKOH/g,其80%固体质量含量时25℃的黏度为300~3000cp。
  10. 权利要求9所述的以二异氰酸酯为核的低黏度端羟基树脂在涂料中的应用,其特征在于:所述的涂料包含该端羟基树脂和含异氰酸酯基聚氨酯固化剂;所述的含异氰酸酯基聚氨酯固化剂与端羟基树脂的NCO:OH摩尔比为0.8~1.2:1;
    所述的含异氰酸酯基聚氨酯固化剂为甲苯二异氰酸酯三聚体、甲苯二异氰酸酯/三羟甲基丙烷加成物、六亚甲基二异氰酸酯三聚体、二苯基甲烷二异氰酸酯单体和二苯基甲烷二异氰酸酯聚合物固化剂中的一种或多种。
PCT/CN2017/110893 2017-01-03 2017-11-14 以二异氰酸酯为核的低黏度端羟基树脂及其制备方法与应用 WO2018126795A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/475,393 US11319400B2 (en) 2017-01-03 2017-11-14 Low-viscosity hydroxyl-terminated resin with diisocyanate as a core, and preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710000816.8A CN106632946B (zh) 2017-01-03 2017-01-03 以二异氰酸酯为核的低黏度端羟基树脂及其制备方法与应用
CN201710000816.8 2017-01-03

Publications (1)

Publication Number Publication Date
WO2018126795A1 true WO2018126795A1 (zh) 2018-07-12

Family

ID=58838659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110893 WO2018126795A1 (zh) 2017-01-03 2017-11-14 以二异氰酸酯为核的低黏度端羟基树脂及其制备方法与应用

Country Status (3)

Country Link
US (1) US11319400B2 (zh)
CN (1) CN106632946B (zh)
WO (1) WO2018126795A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111675803A (zh) * 2020-07-28 2020-09-18 清远高新华园科技协同创新研究院有限公司 一种含有刚性环状结构的无溶剂羟基树脂及其制备方法
CN113698908A (zh) * 2021-09-06 2021-11-26 合肥工业大学 一种uv减粘胶及其制备方法
CN114369227A (zh) * 2022-01-17 2022-04-19 东来涂料技术(上海)股份有限公司 醇酸改性的超支化聚氨酯/聚脲分散体及制备方法和应用
CN115016228A (zh) * 2022-05-10 2022-09-06 常州大学 一种聚氨酯丙烯酸酯光刻胶及其制备方法
CN116284639A (zh) * 2023-02-09 2023-06-23 上海博盛聚氨酯制品有限公司 一种用于石油管道清管器的聚氨酯弹性体及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106632946B (zh) * 2017-01-03 2019-07-16 华南理工大学 以二异氰酸酯为核的低黏度端羟基树脂及其制备方法与应用
CN107216792B (zh) * 2017-06-29 2020-03-27 周建明 一种丙烯酸聚氨酯涂层及其制备方法和应用
CN107629674A (zh) * 2017-09-29 2018-01-26 安徽嘉明新材料科技有限公司 一种提高帐篷耐用性的tpu复合涂覆物
CN108822785A (zh) * 2018-07-11 2018-11-16 河南理工大学 一种煤与水泥的界面粘结剂及其制备方法
US10787590B2 (en) 2018-12-26 2020-09-29 Industrial Technology Research Institute Polymer and coating material
CN111205759A (zh) * 2020-03-06 2020-05-29 杭州铠鼠新材料科技有限公司 双组分防腐耐磨高弹性材料及其制造方法
CN112064399A (zh) * 2020-08-07 2020-12-11 浙江哲丰新材料有限公司 一种高加填圣经纸的制备方法
CN112266743B (zh) * 2020-10-27 2021-11-12 湖北新蓝天新材料股份有限公司 一种改性硅烷封端剂及其制备方法和应用
CN113603857A (zh) * 2021-07-17 2021-11-05 桂林理工大学 一种松香基荧光聚氨酯的制备方法
CN113604145B (zh) * 2021-08-18 2022-07-05 厦门昕钢防腐工程科技有限公司 一种生物蛋白/纳米阻锈剂/聚氨酯复合涂料及制备方法
CN114316765A (zh) * 2021-11-26 2022-04-12 中昊北方涂料工业研究设计院有限公司 一种风电叶片涂料及其制备方法
CN115093536B (zh) * 2022-06-02 2023-08-18 西安工业大学 聚氨酯树脂及其制备方法和在光固化涂料制备中的应用
CN115353852B (zh) * 2022-09-23 2023-04-14 东莞华工佛塑新材料有限公司 一种led软灯条用耐黄变透明高耐热高韧性聚氨酯封装胶及其制备方法
CN116003736A (zh) * 2023-03-01 2023-04-25 江苏景宏新材料科技有限公司 一种低表面能薄膜砂感油墨用聚氨酯连接料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1894299A (zh) * 2003-12-19 2007-01-10 塞拉斯塔涂料株式会社 无溶剂型聚氨酯系组合物
CN102887987A (zh) * 2011-06-17 2013-01-23 罗门哈斯公司 具有改进粘度曲线的疏水改性的环氧烷氨基甲酸酯聚合物
CN103013421A (zh) * 2012-12-06 2013-04-03 常熟国和新材料有限公司 一种无溶剂聚氨酯复合胶及其制备方法
CN103665313A (zh) * 2012-09-07 2014-03-26 拜耳材料科技(中国)有限公司 聚氨酯代木组合物
CN104592483A (zh) * 2015-01-14 2015-05-06 嘉宝莉化工集团股份有限公司 环保型聚氨酯固化剂及其制备方法和应用
CN106632946A (zh) * 2017-01-03 2017-05-10 华南理工大学 以二异氰酸酯为核的低黏度端羟基树脂及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6402807A (zh) * 1963-04-23 1964-10-26
US7226971B2 (en) * 2000-12-22 2007-06-05 Basf Corporation Polyester resin with carbamate functionality, a method of preparing the resin, and a coating composition utilizing the resin
CN102911349B (zh) * 2012-10-11 2014-05-07 华南理工大学 一种己内酯改性超支化聚酯及其制备方法与应用
CN104262599B (zh) * 2014-08-25 2016-03-02 华南理工大学 一种单缩水甘油醚改性超支化聚酯及其制备方法与应用
CN105968331B (zh) * 2016-05-16 2019-01-18 华南理工大学 一种低粘度杂多臂星形羟基聚酯及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1894299A (zh) * 2003-12-19 2007-01-10 塞拉斯塔涂料株式会社 无溶剂型聚氨酯系组合物
CN102887987A (zh) * 2011-06-17 2013-01-23 罗门哈斯公司 具有改进粘度曲线的疏水改性的环氧烷氨基甲酸酯聚合物
CN103665313A (zh) * 2012-09-07 2014-03-26 拜耳材料科技(中国)有限公司 聚氨酯代木组合物
CN103013421A (zh) * 2012-12-06 2013-04-03 常熟国和新材料有限公司 一种无溶剂聚氨酯复合胶及其制备方法
CN104592483A (zh) * 2015-01-14 2015-05-06 嘉宝莉化工集团股份有限公司 环保型聚氨酯固化剂及其制备方法和应用
CN106632946A (zh) * 2017-01-03 2017-05-10 华南理工大学 以二异氰酸酯为核的低黏度端羟基树脂及其制备方法与应用

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111675803A (zh) * 2020-07-28 2020-09-18 清远高新华园科技协同创新研究院有限公司 一种含有刚性环状结构的无溶剂羟基树脂及其制备方法
CN111675803B (zh) * 2020-07-28 2023-01-17 清远高新华园科技协同创新研究院有限公司 一种含有刚性环状结构的无溶剂羟基树脂及其制备方法
CN113698908A (zh) * 2021-09-06 2021-11-26 合肥工业大学 一种uv减粘胶及其制备方法
CN114369227A (zh) * 2022-01-17 2022-04-19 东来涂料技术(上海)股份有限公司 醇酸改性的超支化聚氨酯/聚脲分散体及制备方法和应用
CN114369227B (zh) * 2022-01-17 2023-11-10 东来涂料技术(上海)股份有限公司 醇酸改性的超支化聚氨酯/聚脲分散体及制备方法和应用
CN115016228A (zh) * 2022-05-10 2022-09-06 常州大学 一种聚氨酯丙烯酸酯光刻胶及其制备方法
CN115016228B (zh) * 2022-05-10 2024-03-15 常州大学 一种聚氨酯丙烯酸酯光刻胶及其制备方法
CN116284639A (zh) * 2023-02-09 2023-06-23 上海博盛聚氨酯制品有限公司 一种用于石油管道清管器的聚氨酯弹性体及其制备方法
CN116284639B (zh) * 2023-02-09 2024-05-17 上海博盛聚氨酯制品有限公司 一种用于石油管道清管器的聚氨酯弹性体及其制备方法

Also Published As

Publication number Publication date
US11319400B2 (en) 2022-05-03
US20190322792A1 (en) 2019-10-24
CN106632946B (zh) 2019-07-16
CN106632946A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2018126795A1 (zh) 以二异氰酸酯为核的低黏度端羟基树脂及其制备方法与应用
TWI413660B (zh) 來自可再生油之低揮發性之塗料、密封劑及黏合劑
CN106905504B (zh) 水性紫外光固化聚氨酯树脂及其制备方法和应用
KR102499148B1 (ko) 이소시아네이트 프리폴리머, 이를 사용하여 제조된 폴리우레탄, 및 그 폴리우레탄을 포함하는 접착제
JP2020041082A (ja) 湿気硬化性接着剤
CN112062934B (zh) 一种阴离子型水性异氰酸酯固化剂及其制备方法与应用
JP2023533978A (ja) アルキレンオキサイド付加ポリオール組成物、それを用いたポリウレタン及びそれを用いたホットメルト接着剤
JP7302029B2 (ja) 無水糖アルコール及び無水糖アルコールポリマーを含むポリオール組成物
JP2023531199A (ja) 親水性アクリル-変性ポリウレタン及びその製造方法、並びにそれから製造される水系塗料組成物及びその製造方法
KR102271145B1 (ko) 이소시아네이트 프리폴리머, 습기 경화형 폴리우레탄 및 이를 포함하는 친환경 접착제 조성물
CN111205431B (zh) 一种聚氨酯树脂及其制备方法和应用
CN104592469A (zh) 阴离子型聚氨酯水分散体、其预聚物单体及制备工艺
CN108586720B (zh) 一种醇酸预聚物及其制备方法和应用
CN107201077B (zh) 一种改良的胶印油墨的制备方法
CN110894275A (zh) 一种环保型聚氨酯扩链剂及其制备方法和应用
KR102351307B1 (ko) 이소시아네이트 프리폴리머, 습기 경화형 폴리우레탄 및 이를 포함하는 친환경 접착제 조성물
KR102434783B1 (ko) 아크릴-변성 폴리우레탄 조성물 및 그 제조 방법, 및 이로부터 제조된 수계 코팅액 조성물 및 그 제조 방법
KR102161123B1 (ko) 방향족 에테르계 에폭시 화합물로 가교된 무수당 알코올-기반 조성물 및 이에 알킬렌 옥사이드를 부가하여 제조되는 폴리올 조성물
US3332896A (en) Oil-modified polyurethanes
CN111004152A (zh) 一种环保型聚氨酯扩链剂及其制备方法和应用
KR101867552B1 (ko) 천연 식물성 오일 유래 폴리올을 이용한 수분산성 프리폴리머와 폴리우레탄 도막의 제조방법
TW200413426A (en) Solvent-free moisture-curable hot melt urethane resin composition
CN109824881B (zh) 一种多元环碳酸酯树脂及其常压下快速制备方法与应用
CN114479742B (zh) 一种鞋用生物基高结晶性水性聚氨酯胶粘剂及制备工艺
CN109467671B (zh) 水性聚异氰酸酯固化剂的制备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 17889904

Country of ref document: EP

Kind code of ref document: A1