WO2018126781A1 - 一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法 - Google Patents

一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法 Download PDF

Info

Publication number
WO2018126781A1
WO2018126781A1 PCT/CN2017/109734 CN2017109734W WO2018126781A1 WO 2018126781 A1 WO2018126781 A1 WO 2018126781A1 CN 2017109734 W CN2017109734 W CN 2017109734W WO 2018126781 A1 WO2018126781 A1 WO 2018126781A1
Authority
WO
WIPO (PCT)
Prior art keywords
frosting
powder
glare
weight ratio
fluoride
Prior art date
Application number
PCT/CN2017/109734
Other languages
English (en)
French (fr)
Inventor
刘存海
周雪松
李运涛
李嘉桥
杜滕
韩振斌
Original Assignee
江苏欧帝电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏欧帝电子科技有限公司 filed Critical 江苏欧帝电子科技有限公司
Publication of WO2018126781A1 publication Critical patent/WO2018126781A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching

Definitions

  • Embodiments of the present invention relate to the field of glass frosting in the field of chemical processing, and in particular to a colored glass ultrafine crystal anti-glare frosting liquid and a method thereof.
  • inorganic glass materials have a long history. Because of its excellent light transmittance, plasticity and high gloss, inorganic glass materials are widely used in construction, aerospace, navigation, electronic display, photoelectric display, optical lens, photography, Industries such as lighting show its high permeability. With the rapid development of glass manufacturing and processing industry, the finishing and production of inorganic glass materials has become an important field of research. In the wide application system of inorganic glass, a large amount of light pollution is generated at the same time. Especially the light pollution caused by the glare of the light source. This glare pollution can cause symptoms such as blindness, cell aging, hardening of the arteries, and hair loss. Therefore, anti-glare research on glass manufacturing and processing industry has become a hot topic in global research.
  • the research methods of anti-glare frosting of inorganic glass mainly include: 1 physical method: physical sand blasting method, laser frosting method, mechanical sanding method, etc.; 2 chemical method: the chemical method developed rapidly in recent years mainly includes hydrofluoric acid- A sulfamic acid method, a hydrofluoric acid-sulfonium salt method, a hydrofluoric acid-calcium salt method, and the like.
  • the main disadvantage of the above method 1 is that the frosted particles are not uniform in size, poor in wear resistance, and low in stress resistance.
  • the main drawback of the above method 2 is that the application of a large amount of hydrofluoric acid causes severe restrictions on the unsafeness and environmental friendliness of its production.
  • the present invention proposes a colored glass super Microcrystalline anti-glare frosting liquid and its frosting method. It is an environmentally-friendly micro-fluorine-catalyzed recycling ultra-fine crystal anti-glare frosting technology.
  • the anti-glare effect of the frosted inorganic glass is superior to the traditional method, and the roughness Ra and the gloss Gs are controllable. , product Quality is uniform and consistent.
  • a colored glass ultra-fine crystal anti-glare frosting liquid comprising:
  • a powder is prepared from sodium fluoride, potassium fluoride, ammonium sulfate, potassium sulfate in a weight ratio of 7.0-8.2:3.5-4.5:1.8-2.2:0.8-1.3;
  • the B powder is prepared from calcium fluoride and barium sulfate in a weight ratio of 4.7-5.2:5.8-6.3;
  • the mass ratio of the A powder, the B powder and the water is: 75:11:1000;
  • the frosting solution has a pH of 3.
  • the pH of the frosting solution is adjusted with sulfuric acid.
  • the mass fraction of the dispersant is from 0.40% to 0.70%.
  • the A powder is composed of sodium fluoride, potassium fluoride, ammonium sulfate and potassium sulfate in a weight ratio of 8:4:2:1;
  • the B powder is composed of calcium fluoride and barium sulfate. Formulated in a weight ratio of 5:6.
  • the mass fraction of the dispersant is: 0.55%.
  • a method for preparing the above-mentioned colored glass ultrafine crystal anti-glare frosting liquid for performing colored glass ultrafine crystal anti-glare frosting characterized in that:
  • Step one taking sodium fluoride, potassium fluoride, ammonium sulfate, potassium sulfate to form A powder;
  • Step two taking calcium fluoride and barium sulfate into B powder
  • the inorganic glass is subjected to frosting at 25 ° C to 30 ° C.
  • a dispersing agent is added to the third step of the colored glass ultrafine crystal anti-glare frosting method.
  • a colored glass ultrafine crystal anti-glare frosting liquid and a frosting method thereof the reaction instantaneously generates trace hydrofluoric acid to surface-catalyze the glass, avoiding the use of a large amount of hydrofluoric acid, and significantly improving the frosting Safety of glass;
  • a colored glass ultra-fine crystal anti-glare frosting liquid and a frosting method thereof according to the invention the ultra-fine crystal anti-glare frosting technology for the colored glass is to use the trace fluorine generated by the reaction to react on the primary glass base surface , thereby producing liquid phase ultrafine crystal solid phase particles, which are arranged neatly on the solid phase primary glass base under the same conditions of microenvironment, and filter the ultraviolet light which is easy to generate glare and the short wave light of the visible light source. Light effect. The longer-wavelength light of the visible light source is diffracted, and each ultra-fine crystal particle is converted into a new light source, thereby converting the strong light into a uniform soft light, and realizing the ultra-fine crystal anti-glare target of the inorganic glass.
  • the roughness index and gloss index of frosted surface are high precision, high stress resistance, not easy to scratch, good fastness and durability far beyond traditional frosting Method with controllability of roughness Ra and gloss Gs index and uniformity, repeatability, reproducibility and consistency of product quality;
  • 1 to 8 are each a 500-fold biological microscope picture of the test case of the present invention.
  • a powder Take sodium fluoride, potassium fluoride, ammonium sulfate, potassium sulfate to form A powder in a weight ratio of 8.0:6.0:4.0:1.0, and calcium fluoride and barium sulfate to form B powder in a weight ratio of 5.0:5.0.
  • the pretreated glass sample is placed in the frosting liquid, and the seed is rotated at a magnet speed of 120 r/min at 25 ° C for 2.0 min, and then washed with pure water and dried to measure the roughness Ra and the gloss Gs.
  • the microscope picture is shown in Figure 1.
  • Pretreatment steps glass sample - chromic acid washing liquid wash - ultra pure water washing - drying - paste protective film.
  • the pretreated glass sample is placed in the frosting liquid, and the seed is rotated at a magnet speed of 120 r/min at 25 ° C for 2.0 min, and then washed with pure water and dried to measure the roughness Ra and the gloss Gs.
  • the microscope picture is shown in Figure 2.
  • the pretreated glass sample is placed in the frosting liquid, and after being magnetized at a magnetic speed of 120 r/min at 25 ° C, the frosting is taken out 2.5 minutes later, and the pure water is washed and dried to measure the roughness Ra and the gloss Gs.
  • the microscope picture is shown in Figure 3.
  • the pretreated glass sample is placed in the frosting liquid, and after being magnetized at a magnetic speed of 120 r/min at 25 ° C, the frosting is taken out 2.5 minutes later, and the pure water is washed and dried to measure the roughness Ra and the gloss Gs.
  • the microscope picture is shown in Figure 4.
  • the pretreated glass sample is placed in the frosting liquid, and the frosting is performed for 2.5 min under the condition of a magnet speed of 120 r/min at 25 ° C.
  • the pure water is washed and dried, and the roughness Ra and the gloss Gs are measured, and a microscope picture is taken. As shown in Figure 5.
  • sodium tetraborate sodium hydrogen sulfate: phosphoric acid is formulated into a dispersing agent at a weight ratio of 80:15:5, and sodium fluoride, potassium fluoride, ammonium sulfate and potassium sulfate are prepared in a weight ratio of 8.2:4.5:2.2:1.3.
  • Powder, calcium fluoride and barium sulfate were formulated into B powder in a weight ratio of 5.2:6.3.
  • a powder, B powder and ultrapure water are formulated into a solution in a weight ratio of 75:11:1000, and then a dispersing agent is added to prepare a mixed solution having a dispersing agent mass fraction of 0.40%.
  • the frosting was carried out for 2.5 min under the condition of a magnet speed of 120 r/min at 25 ° C, and the pure water was washed and dried. Its roughness Ra and gloss Gs, the microscope picture is shown in Figure 6.
  • a powder, B powder and ultrapure water are formulated into a solution in a weight ratio of 75:11:1000, and then a dispersing agent is added to prepare a mixed solution having a dispersing agent mass fraction of 0.70%, and the pH is adjusted to 3.0 with sulfuric acid to form a frosted sand. liquid.
  • the pretreated glass sample is placed in the frosting liquid, and the frosting is performed for 2.5 min under the condition of a magnet speed of 120 r/min at 25 ° C.
  • the pure water is washed and dried, and the roughness Ra and the gloss Gs are measured, and a microscope picture is taken. As shown in Figure 8.
  • a powder, B powder and ultrapure water are formulated into a solution in a weight ratio of 75:11:1000, and then a dispersing agent is added to prepare a mixed solution having a dispersing agent mass fraction of 0.55%, and the pH is adjusted to 3.0 by using sulfuric acid to form a frosted sand. liquid.
  • the pretreated glass sample is placed in the frosting liquid, and the frosting is performed for 2.5 min under the condition of a magnet speed of 120 r/min at 25 ° C.
  • the pure water is washed and dried, and the roughness Ra and the gloss Gs are measured, and a microscope picture is taken. As shown in Figure 8.
  • sodium tetraborate sodium hydrogen sulfate: phosphoric acid is formulated into a dispersing agent at a weight ratio of 80:15:5, and sodium fluoride, potassium fluoride, ammonium sulfate and potassium sulfate are prepared in a weight ratio of 8.2:4.5:2.2:1.3.
  • Powder, calcium fluoride and barium sulfate were formulated into B powder in a weight ratio of 5.2:6.3.
  • a powder, B powder and ultrapure water are formulated into a solution in a weight ratio of 75:11:1000, and then a dispersing agent is added to prepare a mixed solution having a dispersing agent mass fraction of 0.40%.
  • a powder, B powder and ultrapure water are formulated into a solution in a weight ratio of 75:11:1000, and then a dispersing agent is added to prepare a mixed solution having a dispersing agent mass fraction of 0.70%, and the pH is adjusted to 3.0 with sulfuric acid to form a frosted sand. liquid.
  • the pretreated glass sample is placed in the frosting liquid, and the frosting is performed for 2.5 minutes under the condition of a magnet speed of 120 r/min at 30 ° C.
  • the pure water is washed and dried, and the roughness Ra and the gloss Gs are measured, and a microscope picture is taken. As shown in Figure 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法。蒙砂方法包括:取氟化钠、氟化钾、硫酸铵、硫酸钾按7.0‑8.2:3.5‑4.5:1.8‑2.2:0.8‑1.3重量比配成A粉,氟化钙和硫酸钡按4.7‑5.2:5.8‑6.3重量比配成B粉,将A粉与B粉按75.0:11.0重量比加入超纯水中配成溶液,加入分散剂,用硫酸调节pH=3.0配成蒙砂液,将玻璃进行蒙砂。蒙砂后的无机玻璃的具有良好的防眩光效果,其粗糙度Ra和光泽度Gs的大小具有可控性,产品质量具有均一性和一致性。

Description

一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法 技术领域
本发明的实施例涉及化学加工领域的玻璃蒙砂技术领域,尤其涉及一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法。
背景技术
无机玻璃材料的应用有悠久的历史,由于无机玻璃材料具有良好的透光性、可塑性和高光泽度等优良性能被广泛应用于建筑、航天、航海、电子显示、光电显示、光学透镜、摄影、灯饰等行业,充分显示其高透性。随着玻璃制造业和加工业的快速发展,对无机玻璃材料的精加工及其产化已是研究的重要领域。在无机玻璃广泛的应用体系中,同时产生了大量光污染。特别是光源眩光产生的光污染。这种眩光污染,可导致人体视觉失明、细胞老化、血管硬化、毛发脱落等症状。因此对玻璃制造业和加工业的防眩光研究已是全球性研究的热点。目前对无机玻璃的防眩光蒙砂研究方法主要有:①物理方法:物理喷砂法、激光蒙砂法、机械磨砂法等;②化学法:近年来快速发展的化学法主要有氢氟酸-氨基磺酸法、氢氟酸-钡盐法、氢氟酸-钙盐法等。上述方法①主要缺陷是:蒙砂粒子大小不均一、耐磨性耐久性差、抗应力强度小。上述方法②主要缺陷是:应用大量的氢氟酸导致其生产的不安全性和不环保性而受到严重的限制。
近年来,高精密度和高准确度的无机玻璃蒙砂技术已广泛应用于手机面板、液晶电视、精密仪器,航天航海的仪表、仪器的制作、教育教学黑板的智能化构建、LED面光灯的研制等多种高端产品。
从环境科学的观点出发,保持高端防眩光技术的可持续发展,必须寻求一种环保的、效果良好、产品质量稳定的超微晶防眩光技术。随着科学技术的不断发展,防止光污染,保障人类健康的防眩光技术将不断提高,必将开发出未来的多功能化,智能化,高质量的高科技产品。
发明内容
1.发明要解决的技术问题
针对传统蒙砂技术蒙砂粒子大小不均一、耐磨性耐久性差、抗应力强度小,原料采用氢氟酸导致生产的不安全性和不环保性的技术问题,本发明提出一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法。它是一种环保的微氟催化循环利用的超微晶防眩光蒙砂技术,蒙砂后的无机玻璃的防眩光效果比传统方法优越,其粗糙度Ra和光泽度Gs的大小具有可控性,产品 质量具有均一性和一致性。
2.技术方案
为解决上述问题,本发明提供的技术方案为:
一种有色玻璃超微晶防眩光蒙砂液,包括:
A粉,所述A粉由氟化钠、氟化钾、硫酸铵、硫酸钾按7.0-8.2:3.5-4.5:1.8-2.2:0.8-1.3重量比配成;
B粉,所述B粉由氟化钙和硫酸钡按4.7-5.2:5.8-6.3重量比配成;
水;
所述A粉、B粉、水的质量比为:75:11:1000;
所述蒙砂液pH为3。
优选地,所述蒙砂液pH用硫酸调节。
优选地,所述蒙砂液还包括分散剂,所述分散剂的组分为四硼酸钠:硫酸氢钠:磷酸=80.0:15.0:5.0重量比混合构成。
优选地,所述分散剂的质量分数为:0.40%-0.70%。
优选地,所述A粉由氟化钠、氟化钾、硫酸铵、硫酸钾按8:4:2:1重量比配成;所述B粉,所述B粉由氟化钙和硫酸钡按5:6重量比配成。
优选地,所述分散剂的质量分数为:0.55%。
一种制备上述有色玻璃超微晶防眩光蒙砂液进行有色玻璃超微晶防眩光蒙砂的方法,其特征在于:
步骤一,取氟化钠、氟化钾、硫酸铵、硫酸钾配成A粉;
步骤二,取氟化钙和硫酸钡配成B粉;
步骤三,将A粉与B粉加入超纯水中配成溶液,用硫酸调节pH=3.0配成蒙砂液;
步骤四,在25℃~30℃的条件下,将无机玻璃进行蒙砂。
优选地,所述有色玻璃超微晶防眩光蒙砂方法的步骤三中加入分散剂。
3.有益效果
采用本发明提供的技术方案,与现有技术相比,具有如下有益效果:
(1)本发明的一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法,反应瞬时产生微量氢氟酸对玻璃进行表层催化反应,避免使用大量氢氟酸,显著提高了蒙砂玻璃的安全性;
(2)本发明的一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法,使用的蒙砂液在化学反应过程中,采用对过程中产生的反应产物CaF2和Na2SiF6进行沉淀、沉降过滤,分离出沉淀物和上清液。对反应固体产物分离后可得化工产品CaF2和Na2SiF6;对上清液补加反应物原 料后仍可复配为蒙砂液进行蒙砂,使废液循环利用,废水过零排放,使药品循环利用,使废水达零排放,实现了蒙砂玻璃生产的环保性;
(3)本发明的一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法,对有色玻璃进行超微晶防眩光蒙砂技术是利用反应产生的微量氟在原生玻璃基面上反应,从而产生液相超微晶固相微粒,这些微粒在微环境性质相同的条件下,整齐的排列在固相原生玻璃基面,对易产生眩光的紫外光以及可见光源的短波光起到滤光作用。对可见光源的较长波长光起到衍射作用,使每个超微晶微粒转化成新的光源,从而使强光转化为均一化的柔光,实现无机玻璃的超微晶防眩光目标。经超微晶防眩光技术蒙砂的无机玻璃,蒙砂面的粗糙度指数和光泽度指数的精密度高,耐应力强度大,不易划伤,坚牢度良好,耐久性远超出传统蒙砂方法,具有粗糙度Ra和光泽度Gs指数的可控性和产品质量的均匀性、重复性、再现性和一致性;
(4)本发明的一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法,符合可持续发展的理念,量产化良率高。(其良率指数按其
Figure PCTCN2017109734-appb-000001
Gs=20.8-25.2;Ra的RSD≦0.0310,Gs的RSD≦0.0320。)
附图说明
图1至图8均为本发明试验案例的500倍生物显微镜图片。
具体实施方式
为进一步了解本发明的内容,结合附图及实施例对本发明作详细描述。
对样品的品质分析(粗糙度Ra,用CQ-60G粗糙度测定仪测定粗糙度指数;光泽度Gs:用SJ-210光泽度测定仪测定光泽度指数;精密度,采用7点粗糙度和7点光泽度测定指数计算其粗糙度的精密度RSD和光泽度的精密度RSD,试验选用的玻璃样片其化学组成和规格完全相同。表面超微晶结构和均一性用M3702-Digital-7A,10A生物数码显微镜观察。)
对比例1
取氟化钠、氟化钾、硫酸铵、硫酸钾按8.0:6.0:4.0:1.0重量比配成A粉,氟化钙和硫酸钡按5.0:5.0重量比配成B粉。将A粉、B粉和超纯水按75:10:1000的重量比配成溶液,用硫酸调节pH=3.0配成蒙砂液。将经过预处理的玻璃样片放入蒙砂液中,在25℃磁子转速120r/min条件下,蒙砂2.0min后取出,纯水清洗后烘干,测其粗糙度Ra和光泽度Gs,拍摄显微镜图片如图1。
预处理步骤:玻璃样片—铬酸洗液洗涤—超纯水洗涤—烘干—贴保护膜。
如图1,发现蒙砂玻璃样片表面不均匀,超微晶晶粒大小差距过大。
Figure PCTCN2017109734-appb-000002
Figure PCTCN2017109734-appb-000003
粗糙度指数和光泽度指数的精密度均过大,充分说明蒙砂玻璃表面的不均匀性。
对比例2:
①取氟化钠、氟化钾、硫酸铵、硫酸钾按8.0:5.0:3.0:1.0重量比配成A粉,氟化钙和硫酸钡按6.0:5.0重量比配成B粉。将A粉、B粉和超纯水按75:11:1000的重量比配成溶液,用硫酸调节pH=3.0配成蒙砂液。将经过预处理的玻璃样片放入蒙砂液中,在25℃磁子转速120r/min条件下,蒙砂2.0min后取出,纯水清洗后烘干,测其粗糙度Ra和光泽度Gs,拍摄显微镜图片如图2。
Figure PCTCN2017109734-appb-000004
②取氟化钠、氟化钾、硫酸铵、硫酸钾按重量比8.0:4.0:3.0:1.0配成A粉,氟化钙和硫酸钡按6.0:5.0重量比配成B粉。将A粉、B粉和超纯水按75:11:1000的重量比配成溶液,用硫酸调节pH=3.0配成蒙砂液。将经过预处理的玻璃样片放入蒙砂液中,在25℃磁子转速120r/min条件下,蒙砂2.5min后取出,纯水清洗后烘干,测其粗糙度Ra和光泽度Gs,拍摄显微镜图片如图3。
Figure PCTCN2017109734-appb-000005
Figure PCTCN2017109734-appb-000006
比较图2和图3发现实施例1中②的配比效果较优(图3)。从①和②Ra精密度和Gs精密度分析,亦是对比例1中②的蒙砂效果较优。
对比例3:
①取氟化钠、氟化钾、硫酸铵、硫酸钾按8.0:3.0:3.0:1.0重量比配成A粉,氟化钙和硫酸钡按6.0:5.0重量比配成B粉。将A粉、B粉和超纯水按75:11:1000的重量比配成溶液,用硫酸调节pH=3.0配成蒙砂液。将经过预处理的玻璃样片放入蒙砂液中,在25℃磁子转速120r/min条件下,蒙砂2.5min后取出,纯水清洗后烘干,测其粗糙度Ra和光泽度Gs,拍摄显微镜图片如图4。
Figure PCTCN2017109734-appb-000007
②取氟化钠、氟化钾、硫酸铵、硫酸钾按8.0:4.0:3.0:1.0重量比配成A粉,氟化钙和硫酸钡按5.0:6.0重量比配成B粉。将A粉、B粉和超纯水按75:11:1000的重量比配成溶液,用硫酸调节pH=3.0配成蒙砂液。将经过预处理的玻璃样片放入蒙砂液中,在25℃磁子转速120r/min条件下蒙砂2.5min,纯水清洗后烘干,测其粗糙度Ra和光泽度Gs,拍摄显微镜图片如图5。
Figure PCTCN2017109734-appb-000008
Figure PCTCN2017109734-appb-000009
比较图4和图5发现对比例3中②的配比效果较优(图5),从对比例3中①和②Ra精密度和Gs精密度分析。对比例3中②的均较小,表明Ra和Gs的离散度较低,均一性高,故其蒙砂效果更优。
实施例1:
①取四硼酸钠:硫酸氢钠:磷酸按80:15:5重量比配成分散剂,取氟化钠、氟化钾、硫酸铵、硫酸钾按8.2:4.5:2.2:1.3重量比配成A粉,氟化钙和硫酸钡按5.2:6.3重量比配成B粉。将A粉、B粉和超纯水按75:11:1000的重量比配成溶液,再加入分散剂,配成分散剂质量分数为0.40%的混合溶液。用硫酸调节pH=3.0配成蒙砂液,将经过预处理的玻璃样片放入蒙砂液中,在25℃磁子转速120r/min条件下蒙砂2.5min,纯水清洗后烘干,测其粗糙度Ra和光泽度Gs,拍摄显微镜图片如图6。
Figure PCTCN2017109734-appb-000010
②取四硼酸钠:硫酸氢钠:磷酸按80:15:5重量比配成分散剂,取氟化钠、氟化钾、硫酸铵、硫酸钾按7.0:3.5:1.8:0.8重量比配成A粉,氟化钙和硫酸钡按4.7:5.8重量比配成B粉。将A粉、B粉和超纯水按75:11:1000的重量比配成溶液,再加入分散剂,配成分散剂质量分数为0.70%的混合溶液,用硫酸调节pH=3.0配成蒙砂液。将经过预处理的玻璃样片放入蒙砂液中,在25℃磁子转速120r/min条件下蒙砂2.5min,纯水清洗后烘干,测其粗糙度Ra和光泽度Gs,拍摄显微镜图片如图8。
Figure PCTCN2017109734-appb-000011
Figure PCTCN2017109734-appb-000012
③取四硼酸钠:硫酸氢钠:磷酸按80:15:5重量比配成分散剂,取氟化钠、氟化钾、硫酸铵、硫酸钾按8.0:4.0:2.0:1.0重量比配成A粉氟化钙和硫酸钡按5.0:6.0重量比配成B粉。将A粉、B粉和超纯水按75:11:1000的重量比配成溶液,再加入分散剂,配成分散剂质量分数为0.55%的混合溶液,用硫酸调节pH=3.0配成蒙砂液。将经过预处理的玻璃样片放入蒙砂液中,在25℃磁子转速120r/min条件下蒙砂2.5min,纯水清洗后烘干,测其粗糙度Ra和光泽度Gs,拍摄显微镜图片如图8。
Figure PCTCN2017109734-appb-000013
比较图6、图7和图8,首先,发现实施例1中③的配比效果最优(图8),从实施例1中①、②和③Ra精密度和Gs精密度分析。从实施例1中③的均极小,表明Ra和Gs的离散度极低,其蒙砂基面的均一性极高,蒙砂效果极优。从图8可以看出,其超微晶粒度分布极为均匀,其产品质量的一致性极优;其次,在实施例1中①、②和③的蒙砂玻璃产品质量均在精密度所要求的范围内,实施例1中①、②和③均可满足蒙砂要求。
实施例2:
①取四硼酸钠:硫酸氢钠:磷酸按80:15:5重量比配成分散剂,取氟化钠、氟化钾、硫酸铵、硫酸钾按8.2:4.5:2.2:1.3重量比配成A粉,氟化钙和硫酸钡按5.2:6.3重量比配成B粉。将A粉、B粉和超纯水按75:11:1000的重量比配成溶液,再加入分散剂,配成分散剂质量分数为0.40%的混合溶液。用硫酸调节pH=3.0配成蒙砂液,将经过预处理的玻璃样片放入蒙砂液中,在28℃磁子转速120r/min条件下蒙砂2.5min,纯水清洗后烘干,测其粗糙度Ra和光泽度Gs,拍摄显微镜图片如图9。
Figure PCTCN2017109734-appb-000014
Figure PCTCN2017109734-appb-000015
②取四硼酸钠:硫酸氢钠:磷酸按80:15:5重量比配成分散剂,取氟化钠、氟化钾、硫酸铵、硫酸钾按7.0:3.5:1.8:0.8重量比配成A粉,氟化钙和硫酸钡按4.7:5.8重量比配成B粉。将A粉、B粉和超纯水按75:11:1000的重量比配成溶液,再加入分散剂,配成分散剂质量分数为0.70%的混合溶液,用硫酸调节pH=3.0配成蒙砂液。将经过预处理的玻璃样片放入蒙砂液中,在30℃磁子转速120r/min条件下蒙砂2.5min,纯水清洗后烘干,测其粗糙度Ra和光泽度Gs,拍摄显微镜图片如图10。
Figure PCTCN2017109734-appb-000016
比较图9和图10,其蒙砂效果良好。从实施例2中①和②Ra精密度和Gs精密度分析均较高。表明在温度变化不太大的25℃~30℃范围内均可进行蒙砂。
以上示意性的对本发明及其实施方式进行了描述,该描述没有限制性,附图中所示的也只是本发明的实施方式之一,实际的结构并不局限于此。所以,如果本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本发明的保护范围。

Claims (8)

  1. 一种有色玻璃超微晶防眩光蒙砂液,其特征在于,包括:
    A粉,所述A粉由氟化钠、氟化钾、硫酸铵、硫酸钾按7.0-8.2:3.5-4.5:1.8-2.2:0.8-1.3重量比配成;
    B粉,所述B粉由氟化钙和硫酸钡按4.7-5.2:5.8-6.3重量比配成;
    水;
    所述A粉、B粉、水的质量比为:75:11:1000;
    所述蒙砂液pH为3.0。
  2. 根据权利要求1所述的有色玻璃超微晶防眩光蒙砂液,其特征在于,所述蒙砂液pH用硫酸调节。
  3. 根据权利要求2所述的有色玻璃超微晶防眩光蒙砂液,其特征在于,所述蒙砂液还包括分散剂,所述分散剂的组分为四硼酸钠:硫酸氢钠:磷酸=80:15:5重量比混合构成。
  4. 根据权利要求3所述的有色玻璃超微晶防眩光蒙砂液,其特征在于,所述分散剂的质量分数为:0.40%-0.70%。
  5. 根据权利要求4所述的有色玻璃超微晶防眩光蒙砂液,其特征在于,
    所述A粉由氟化钠、氟化钾、硫酸铵、硫酸钾按8:4:2:1重量比配成;
    所述B粉,所述B粉由氟化钙和硫酸钡按5:6重量比配成。
  6. 根据权利要求5所述的有色玻璃超微晶防眩光蒙砂液,其特征在于,所述分散剂在蒙砂液中的质量分数为:0.55%。
  7. 一种利用如权利要求1-6任意一项所述的有色玻璃超微晶防眩光蒙砂液进行有色玻璃超微晶防眩光蒙砂方法,其特征在于:
    步骤一,取氟化钠、氟化钾、硫酸铵、硫酸钾配成所述A粉;
    步骤二,取氟化钙和硫酸钡配成所述B粉;
    步骤三,将所述A粉与所述B粉加入超纯水中配成溶液,用硫酸调节pH=3.0配成蒙砂液;
    步骤四,在25℃~30℃的条件下,将无机玻璃进行蒙砂。
  8. 根据权利要求7所述的有色玻璃超微晶防眩光蒙砂方法,其特征在于:所述步骤三中加入所述分散剂。
PCT/CN2017/109734 2017-01-03 2017-11-07 一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法 WO2018126781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710000541.8A CN106746702B (zh) 2017-01-03 2017-01-03 一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法
CN201710000541.8 2017-01-03

Publications (1)

Publication Number Publication Date
WO2018126781A1 true WO2018126781A1 (zh) 2018-07-12

Family

ID=58952839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109734 WO2018126781A1 (zh) 2017-01-03 2017-11-07 一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法

Country Status (2)

Country Link
CN (1) CN106746702B (zh)
WO (1) WO2018126781A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908799A (zh) * 2020-07-30 2020-11-10 杭州玺匠文化创意股份有限公司 一种消光玻璃的制作方法
CN113135669A (zh) * 2021-04-23 2021-07-20 中铝郑州有色金属研究院有限公司 一种玻璃蒙砂液及其制备方法和铝电解含炭废料的应用
CN114615838A (zh) * 2020-12-09 2022-06-10 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备
CN114751651A (zh) * 2022-06-07 2022-07-15 广东山之风环保科技有限公司 一种ag效果的玻璃蒙砂液及其制备与应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106746702B (zh) * 2017-01-03 2019-06-11 江苏欧帝电子科技有限公司 一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法
CN109354404A (zh) * 2018-12-10 2019-02-19 江苏孚日玻璃科技有限公司 一种蒙砂乳液瓶及其生产工艺
CN110204212A (zh) * 2019-05-31 2019-09-06 东莞市银泰玻璃有限公司 一种蒙砂玻璃的加工方法
CN110467354B (zh) * 2019-08-27 2021-10-01 Oppo广东移动通信有限公司 蒙砂玻璃及其制备方法、玻璃后盖和电子设备
CN113754301B (zh) * 2021-10-22 2023-07-11 广州阿美新材料有限公司 一种制备电子书屏幕ag效果玻璃的蒙砂液及制备与应用
CN114213028A (zh) * 2021-12-17 2022-03-22 江苏孚日玻璃科技有限公司 一种蒙砂液的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531463A (zh) * 2009-04-01 2009-09-16 上海多林化工科技有限公司 水性玻璃蒙砂粉化学组合物及其制备方法
CN101913772A (zh) * 2010-09-02 2010-12-15 上海多林化工科技有限公司 一步法制作低反射玻璃的方法
CN103538408A (zh) * 2013-10-18 2014-01-29 广东星弛光电科技有限公司 一种玻璃的蒙砂腐蚀印刷工艺
CN106746702A (zh) * 2017-01-03 2017-05-31 江苏欧帝电子科技有限公司 一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215097B (zh) * 2008-01-03 2010-09-15 东华大学 防眩玻璃制品刻蚀液配方及蚀刻工艺
US8771532B2 (en) * 2009-03-31 2014-07-08 Corning Incorporated Glass having anti-glare surface and method of making
CN102887647B (zh) * 2012-10-11 2015-10-14 郑州恒昊玻璃技术有限公司 用高硼硅、高铝硅玻璃生产防眩光玻璃的工艺
CN105036561A (zh) * 2015-05-13 2015-11-11 湖北鸿创科技有限公司 用于蒙砂玻璃生产线上的蒙砂液
CN104829140B (zh) * 2015-05-26 2017-10-03 浙江星星科技股份有限公司 一种电子产品玻璃显示屏的防眩光加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101531463A (zh) * 2009-04-01 2009-09-16 上海多林化工科技有限公司 水性玻璃蒙砂粉化学组合物及其制备方法
CN101913772A (zh) * 2010-09-02 2010-12-15 上海多林化工科技有限公司 一步法制作低反射玻璃的方法
CN103538408A (zh) * 2013-10-18 2014-01-29 广东星弛光电科技有限公司 一种玻璃的蒙砂腐蚀印刷工艺
CN106746702A (zh) * 2017-01-03 2017-05-31 江苏欧帝电子科技有限公司 一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908799A (zh) * 2020-07-30 2020-11-10 杭州玺匠文化创意股份有限公司 一种消光玻璃的制作方法
CN114615838A (zh) * 2020-12-09 2022-06-10 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备
CN114615838B (zh) * 2020-12-09 2023-03-21 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备
CN113135669A (zh) * 2021-04-23 2021-07-20 中铝郑州有色金属研究院有限公司 一种玻璃蒙砂液及其制备方法和铝电解含炭废料的应用
CN114751651A (zh) * 2022-06-07 2022-07-15 广东山之风环保科技有限公司 一种ag效果的玻璃蒙砂液及其制备与应用
CN114751651B (zh) * 2022-06-07 2023-09-22 广东山之风环保科技有限公司 一种ag效果的玻璃蒙砂液及其制备与应用

Also Published As

Publication number Publication date
CN106746702A (zh) 2017-05-31
CN106746702B (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
WO2018126781A1 (zh) 一种有色玻璃超微晶防眩光蒙砂液及其蒙砂方法
CN102166779B (zh) 应用光纤平行排列法制备水泥基透光材料的方法
TW201427917A (zh) 玻璃陶瓷;相關之可成形及/或顏色可調、可結晶之玻璃;及相關製程
Manevich et al. Diatomite—siliceous material for the glass industry
Ge et al. One-step preparation of polystyrene colloidal crystal films with structural colors and high hydrophobicity
CN107200582B (zh) 一种以天然萤石矿物为原料制备多晶透明陶瓷的方法
Rountree Recent progress to understand stress corrosion cracking in sodium borosilicate glasses: linking the chemical composition to structural, physical and fracture properties
CN103804600A (zh) 一种基于离子印迹技术的光子晶体薄膜的制备方法
CN109790627A (zh) 蓝宝石薄膜涂布基材
Lv et al. Plasmonic nanoantennae fabricated by focused Ion beam milling
CN109312447A (zh) 蓝宝石薄膜涂覆之基板
Marey Mahmoud Microanalysis of blue pigments from the Ptolemaic temple of Hathor (Thebes), Upper Egypt: a case study
Li et al. New perspective on Jun glaze corrosion: study on the corrosion of light greenish blue and reddish purple glazes from Juntai Kiln, Yuzhou, Henan, China
Li et al. Effect of substituting Li2O with ZnO on the crystallization and properties of Li2O–Al2O3–SiO2 transparent glass ceramics
Wang et al. Elastic transition thresholds in Ge–As (Sb)–Se glasses
Liu et al. Effects of erosion form and admixture on cement mortar performances exposed to sulfate environment
Lv et al. One-Part Plastic Formable inorganic coating obtain from alkali-activated slag/starch (cms) hybrid composites
Carrigan Visible quality aluminum and nickel superpolish polishing technology enabling new missions
Kurihara et al. Fabrication of nano-structure anti-reflective lens using platinum nanoparticles in injection moulding
Yanagishita et al. Preparation of moth-eye structures on curved surfaces by nanoimprinting using anodic porous alumina molds
CN106800374A (zh) 一种玻璃加工用ag防眩液及其应用
Liu et al. Shape optimization of a moth-eye structure for omnidirectional and broadband antireflection
CN113135669A (zh) 一种玻璃蒙砂液及其制备方法和铝电解含炭废料的应用
Yin et al. General strategy toward laser single-step generation of multiscale anti-reflection structures by marangoni effect
Song et al. Mechanism of femtosecond laser inducing inverted microstructures by employing different types of objective lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889597

Country of ref document: EP

Kind code of ref document: A1