WO2018124593A1 - 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents

이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2018124593A1
WO2018124593A1 PCT/KR2017/015046 KR2017015046W WO2018124593A1 WO 2018124593 A1 WO2018124593 A1 WO 2018124593A1 KR 2017015046 W KR2017015046 W KR 2017015046W WO 2018124593 A1 WO2018124593 A1 WO 2018124593A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
lithium
electrode active
transition metal
Prior art date
Application number
PCT/KR2017/015046
Other languages
English (en)
French (fr)
Inventor
김지혜
박병천
백소라
유태구
정왕모
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170174131A external-priority patent/KR102133916B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780048071.0A priority Critical patent/CN109562957B/zh
Priority to US16/316,554 priority patent/US11299401B2/en
Priority to EP17886981.4A priority patent/EP3473600B1/en
Priority to JP2019501925A priority patent/JP6771804B2/ja
Publication of WO2018124593A1 publication Critical patent/WO2018124593A1/ko
Priority to US17/689,217 priority patent/US20220185691A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a secondary battery, a manufacturing method thereof, and a lithium secondary battery including the same.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
  • Lithium transition metal composite oxide is used as a positive electrode active material of a lithium secondary battery, and among these, lithium cobalt composite metal oxide of LiCoO 2 having a high operating voltage and excellent capacity characteristics is mainly used.
  • LiCoO 2 is very poor in thermal properties due to destabilization of crystal structure due to de-lithium and is expensive, there is a limit to using LiCoO 2 as a power source in fields such as electric vehicles.
  • lithium manganese composite metal oxides such as LiMnO 2 or LiMn 2 O 4
  • lithium iron phosphate compounds such as LiFePO 4
  • lithium nickel composite metal oxides such as LiNiO 2
  • research and development of lithium nickel composite metal oxides having a high reversible capacity of about 200 mAh / g, which is easy to implement a large-capacity battery have been actively studied.
  • LiNiO 2 has a poor thermal stability compared to LiCoO 2, and when an internal short circuit occurs due to pressure from the outside in a charged state, the positive electrode active material itself decomposes, causing a battery to rupture and ignite.
  • NiCobalt manganese-based lithium composite metal oxide in which a part of Ni is substituted with Mn and Co hereinafter, simply referred to as 'NCM-based lithium oxide'.
  • 'NCM-based lithium oxide' nickel cobalt manganese-based lithium composite metal oxide in which a part of Ni is substituted with Mn and Co
  • the present invention is to solve the above problems, high concentration nickel positive electrode active material that can simultaneously realize structural stability, excellent capacity characteristics and high temperature stability with a small amount of lithium by-products, a method of manufacturing the same, and a secondary battery positive electrode comprising the same And to provide a lithium secondary battery.
  • the present invention comprises the steps of preparing a lithium transition metal oxide containing nickel (Ni), cobalt (Co), at least one selected from the group consisting of manganese (Mn) and aluminum (Al); Washing the lithium transition metal oxide to remove lithium impurities present on the surface of the lithium transition metal oxide; And a high temperature heat treatment of the lithium transition metal oxide after washing with water, wherein the high temperature heat treatment includes: an elevated temperature section for heating and heating the temperature, a holding section for maintaining the elevated temperature, and cooling the temperature; It includes a section, the temperature rising section provides a method for producing a positive electrode active material for secondary batteries 20 to 30% of the total high temperature heat treatment time.
  • the present invention includes a lithium transition metal oxide containing nickel (Ni), cobalt (Co), at least one selected from the group consisting of manganese (Mn) and aluminum (Al), the lithium transition metal
  • the oxide is a positive electrode active material for secondary batteries having a nickel (Ni) content of at least 80 mol% of all transition metal elements, and a cation mixing ratio of Ni cations in the lithium layer in the lithium transition metal oxide structure is 1.1% or less. to provide.
  • the present invention provides a cathode and a lithium secondary battery including the cathode active material.
  • a positive electrode active material can be manufactured.
  • unlike the conventional high-concentration nickel positive electrode active material not only is structurally stable, but also may exhibit a secondary battery having excellent capacity characteristics and small resistance increase rate even when repeated charging.
  • FIG. 1 is a graph showing heat flow with respect to the temperature of a cathode active material according to Examples and Comparative Examples.
  • FIG. 2 is a graph showing capacity retention rates for charge and discharge cycles of battery cells manufactured using positive electrode active materials according to Examples and Comparative Examples.
  • FIG 3 is a graph illustrating a resistance increase rate with respect to a charge / discharge cycle of a battery cell manufactured using a cathode active material according to Examples and Comparative Examples.
  • the present invention reduces the residual amount of lithium by-products by washing the lithium transition metal oxide containing high concentration of nickel with high temperature and washing it at a specific condition, thereby reducing the residual amount of lithium by-products and recrystallization of the crystal structure in which lithium is released and destroyed.
  • This improved high concentration nickel-based cathode active material can be prepared.
  • the present invention comprises the steps of preparing a lithium transition metal oxide containing nickel (Ni), cobalt (Co), and at least one selected from the group consisting of manganese (Mn) and aluminum (Al); Washing the lithium transition metal oxide to remove lithium impurities present on the surface of the lithium transition metal oxide; And a high temperature heat treatment of the lithium transition metal oxide after washing with water, wherein the high temperature heat treatment includes: an elevated temperature section for heating and heating the temperature, a holding section for maintaining the elevated temperature, and cooling the temperature; It includes a section, the temperature rising section provides a method for producing a positive electrode active material for secondary batteries 20 to 30% of the total high temperature heat treatment time.
  • a lithium transition metal oxide including nickel (Ni) and cobalt (Co) and including at least one selected from the group consisting of manganese (Mn) and aluminum (Al) is prepared.
  • the lithium transition metal oxide may be represented by the following formula (1).
  • M 1 is at least one selected from the group consisting of Mn and Al
  • M 2 and M 3 are each independently Ba, Ca, Zr, Ti, Mg, Ta, Nb, W and Mo At least one selected from the group consisting of: 1.0 ⁇ a ⁇ 1.5, 0 ⁇ x1 ⁇ 0.2, 0 ⁇ y1 ⁇ 0.2, 0 ⁇ z1 ⁇ 0.1, 0 ⁇ q1 ⁇ 0.1, 0 ⁇ x1 + y1 + z1 ⁇ 0.2 to be.
  • Li may be included in an amount corresponding to a, that is, 1.0 ⁇ a ⁇ 1.5. If a is less than 1.0, the capacity may be lowered. If a is more than 1.5, the particles may be sintered in the firing process, and the production of the positive electrode active material may be difficult. Considering the remarkable effect of improving the capacity characteristics of the positive electrode active material according to the control of the Li content and the balance of the sintering property during manufacturing of the active material, the Li may be more preferably included in a content of 1.0 ⁇ a ⁇ 1.15.
  • Ni may be included in an amount corresponding to 1-x1-y1-z1, that is, 0.8 ⁇ 1-x1-y1-z1 ⁇ 1. More preferably Ni may be included as 0.8 ⁇ 1-x1-y1-z1 ⁇ 0.9.
  • the Ni content in the lithium transition metal oxide of Formula 1 is 0.8 or more, the amount of Ni sufficient to contribute to charging and discharging may be secured, thereby achieving high capacity. If the content of Ni is less than 0.8, there may be a limit to the implementation of high capacity.In the composition of more than 0.9, part of the Li site may be replaced by Ni to obtain sufficient amount of Li to contribute to charge and discharge. There is a risk of deterioration.
  • Co may be included in an amount corresponding to x1, that is, 0 ⁇ x1 ⁇ 0.2.
  • content of Co in the lithium transition metal oxide of Formula 1 exceeds 0.2, efficiency of capacity improvement may be deteriorated compared to an increase in cost.
  • Co may be included in a content of 0.05 ⁇ x ⁇ 0.2 more specifically.
  • M 1 may be Mn or Al, or Mn and Al, and these metal elements may improve the stability of the active material and, as a result, improve the stability of the battery.
  • M 1 may be included in an amount corresponding to y1, that is, 0 ⁇ y1 ⁇ 0.2.
  • y1 in the lithium composite transition metal oxide of Formula 1 exceeds 0.2, there is a concern that the output characteristics and capacity characteristics of the battery may be lowered, and M 1 may be included in an amount of 0.05 ⁇ y1 ⁇ 0.2.
  • M 2 may be a doping element included in the crystal structure of the lithium composite transition metal oxide, and M 2 may be included in an amount corresponding to z 1, that is, 0 ⁇ z 1 ⁇ 0.1. have.
  • the metal element of M 3 may not be included in the lithium composite transition metal oxide structure, and when the precursor and the lithium source are mixed and calcined, the M 3 source may be mixed together and calcined.
  • a lithium composite transition metal oxide doped on the surface of the M 3 lithium composite transition metal oxide may be prepared by separately adding an M 3 source and firing.
  • the M 3 may be included in an amount corresponding to q1, that is, in an amount of 0 ⁇ q1 ⁇ 0.1, so as not to degrade the characteristics of the positive electrode active material.
  • the lithium transition metal oxide used in the present invention may be an NCM-based lithium composite transition metal oxide including nickel (Ni), cobalt (Co) and manganese (Mn), or nickel (Ni), cobalt (Co) and It may be an NCA-based lithium composite transition metal oxide including aluminum (Al).
  • the positive electrode active material may be a four-component lithium composite transition metal oxide including essentially four components of nickel (Ni), cobalt (Co), manganese (Mn), and aluminum (Al).
  • the lithium transition metal oxide used in the present invention may be a high-nickel-based lithium transition metal oxide having a molar ratio of nickel of 0.8 or more in the total molar ratio of the transition metal in the lithium transition metal oxide.
  • the lithium transition metal oxide of Chemical Formula 1 is not limited thereto, but may be, for example, a mixture of a precursor represented by Chemical Formula 2 and a lithium-containing raw material, and then fired at 700 to 900 ° C. . More preferably, it can bake in oxygen atmosphere at the said baking temperature.
  • M 1 is at least one selected from the group consisting of Mn and Al
  • the preferred composition of Ni, Co, M 1 and M 2 may be the same as the range of the composition of the lithium transition metal oxide described above.
  • the lithium-containing raw material material may be lithium-containing carbonate (e.g., lithium carbonate), hydrate (e.g., lithium hydroxide I hydrate (LiOH, H 2 O), etc.), hydroxide (e.g., lithium hydroxide, etc.), nitrate (Eg, lithium nitrate (LiNO 3 ), etc.), chlorides (eg, lithium chloride (LiCl), and the like), and the like, and one of these may be used alone or a mixture of two or more thereof may be used.
  • Lithium carbonate may be used.
  • the lithium transition metal oxide prepared as described above is washed with water to remove lithium by-products remaining in the lithium transition metal oxide.
  • the lithium transition metal oxide containing a high concentration of nickel such as the lithium transition metal oxide of the present invention
  • the structural unstable compared to the lithium transition metal oxide having a low nickel content and unreacted lithium hydroxide or lithium carbonate in the manufacturing process More lithium by-products are produced.
  • the amount of lithium by-products after synthesis is about 0.5 to 0.6 wt%, whereas in the case of a lithium composite metal oxide having a nickel content of 80 mol% or more, lithium after synthesis
  • the amount of by-products appears as high as 1% by weight.
  • the washing step may be performed, for example, by adding a lithium transition metal oxide to pure water and stirring.
  • the washing with water may be performed using 50 to 100 parts by weight of pure water with respect to 100 parts by weight of lithium transition metal oxide.
  • the amount of pure water is less than 50 parts by weight based on 100 parts by weight of the lithium transition metal oxide during washing, insufficient cleaning may be insufficient, and if the amount of pure water exceeds 100 parts by weight, lithium in the crystal structure may be insufficient.
  • the amount of dissolved water may increase, particularly in the case of a lithium transition metal oxide having a high nickel content of at least 80 mol%, the amount of lithium dissolved in the crystal structure is significantly reduced when the pure water content is too large. Increasingly, a sudden decrease in the capacity and life of the battery may occur.
  • the washing temperature may be 30 °C or less, preferably -10 °C to 30 °C, the washing time may be about 10 minutes to 1 hour.
  • the water washing temperature and the water washing time satisfy the above range, lithium by-products can be effectively removed.
  • the washed lithium transition metal oxide is subjected to high temperature heat treatment.
  • the step of the high temperature heat treatment, the temperature increase and the heat treatment section for heat treatment includes a maintenance section for heat treatment while maintaining the elevated temperature and a cooling section for cooling the temperature.
  • the temperature increase section is preferably 20 to 30% of the total high temperature heat treatment time.
  • the high temperature heat treatment step is to improve the structural stability and thermal stability by further removing lithium by-products, and recrystallization of the metal elements in the positive electrode active material through high temperature heat treatment.
  • the lithium transition metal oxide containing high concentration of nickel washing with water is performed to remove residual lithium by-products.
  • the present invention is a high-temperature heat treatment of the washed transition metal oxide under the above conditions, thereby recrystallizing the metal elements of the lithium transition metal oxide to fill the vacancy of lithium, and improved surface stability.
  • the elevated temperature range is less than 20% of the total high temperature heat treatment time, the remaining moisture may not be sufficiently removed after the washing process, and thus, battery performance may be deteriorated, such as a decrease in electrical conductivity. If the temperature exceeds 30%, the crystallization may not be effectively performed.
  • the cation mixing ratio of the Ni cation may increase.
  • the holding section may be 40 to 50% of the total high temperature heat treatment time.
  • the cooling section may be 20 to 30% of the total high temperature heat treatment time.
  • the total time of the high temperature heat treatment is preferably within 10 hours, specifically, the total high temperature heat treatment time may be 6 hours to 10 hours.
  • the temperature increase rate of the temperature increase section may be 2 to 7 °C / min, more preferably 3 to 6 °C / min.
  • the heat treatment temperature of the organic section may be 600 ° C or more, more preferably 600 to 900 ° C.
  • the cooling section may be cooled in a natural cooling manner.
  • the thermal stability improvement effect is excellent. According to the researches of the present inventors, it was found that there is little effect of improving the thermal stability when the heat treatment temperature of the holding section is less than 600 °C.
  • the high temperature heat treatment may be performed in an oxygen atmosphere, specifically, an oxygen partial pressure of 80% or more, more preferably 80 to 99%, even more preferably 90 to 95%.
  • an oxygen partial pressure of 80% or more, more preferably 80 to 99%, even more preferably 90 to 95%.
  • the effect of removing lithium by-products is remarkably decreased when the heat treatment is performed in the air.
  • the heat treatment is performed at 600 ° C. or higher, the amount of lithium by-products is increased rather than before heat treatment.
  • the high temperature heat-treated lithium transition metal oxide is H 3 BO 3 , B 2 O 3 And it may be mixed with at least one selected from the group consisting of Al 2 O 3 and heat treatment to form a coating layer on the surface of the lithium transition metal oxide.
  • the heat treatment may be performed at a temperature of 200 to 500 °C.
  • the cathode active material for a secondary battery of the present invention manufactured by the above method includes nickel (Ni) and cobalt (Co), and includes at least one or more selected from the group consisting of manganese (Mn) and aluminum (Al).
  • the lithium transition metal oxide has a nickel (Ni) content of 80 mol% or more in all transition metal elements, and a cation mixing ratio of Ni cations in the lithium layer in the lithium transition metal oxide structure is 1.1% or less.
  • the lithium transition metal oxide may be represented by the following Chemical Formula 1.
  • M 1 is at least one selected from the group consisting of Mn and Al
  • M 2 and M 3 are each independently Ba, Ca, Zr, Ti, Mg, Ta, Nb, W and Mo At least one selected from the group consisting of: 1.0 ⁇ a ⁇ 1.5, 0 ⁇ x1 ⁇ 0.2, 0 ⁇ y1 ⁇ 0.2, 0 ⁇ z1 ⁇ 0.1, 0 ⁇ q1 ⁇ 0.1, 0 ⁇ x1 + y1 + z1 ⁇ 0.2 to be.
  • Specific specifications of the lithium transition metal oxide represented by Chemical Formula 1 are the same as those described in the manufacturing method, and thus, detailed description thereof will be omitted.
  • the present invention in order to produce a positive electrode active material having excellent electrochemical characteristics such as discharge capacity and lifespan, after washing the lithium transition metal oxide containing a high concentration of nickel, and then heat treatment under high temperature in an oxygen atmosphere of the lithium transition metal oxide
  • the layered structure was well developed and the amount of cation mixing of Ni cations in the lithium layer was 1.1% or less. More preferably, the amount of cation mixing may be 1.0% or less.
  • the amount of cation mixing in which the Ni cation is incorporated in the lithium layer satisfies the above range, the capacity characteristics of the lithium transition metal oxide may be excellent, but the high temperature stability and the life characteristics may be effectively improved.
  • the cathode active material according to the present invention as described above is manufactured through a process of high temperature heat treatment in an oxygen atmosphere after washing with water, the residual amount of lithium by-products can be significantly reduced.
  • the content of lithium by-product present in the positive electrode active material may be more than 0.3% to 1% by weight, more preferably more than 0.3% to 0.6% by weight, more preferably more than 0.35% to 0.5% by weight It may be less than or equal to%.
  • the cathode active material according to the present invention satisfies the amount of residual lithium by-products within the above range, thereby effectively forming a coating layer by reaction between the lithium by-products and the coating source, thereby effectively suppressing gas generation and swelling during charging and discharging.
  • Lithium by-products can lead to capacity and lifetime inferiority and gas evolution.
  • the cathode active material according to the present invention may have a crystal density of 4.76 g / cm 3 or more. More preferably 4.765 g / cm 3 or more.
  • Conventional high-concentration nickel-containing positive electrode active material has a significant decrease in structure stability and high temperature stability after washing with water, but the positive electrode active material according to the present invention has a crystal density due to recrystallization of metal elements by high temperature heat treatment in an oxygen atmosphere after washing with water. Can increase to 4.76 g / cm 3 or more. Through this, the calorific value is significantly reduced, and the high temperature life characteristics and the high temperature resistance increase rate can be significantly improved.
  • the cathode active material according to the present invention may have a BET specific surface area of 0.5 m 2 / g or less.
  • Conventional high-concentration nickel-containing positive electrode active material while the lithium in the surface crystal structure withdraws through the water, the specific surface area is significantly increased and the structural stability and high temperature stability is deteriorated, but the positive electrode active material according to the present invention is a high temperature heat treatment in an oxygen atmosphere after water washing
  • the specific surface area may be reduced to 0.5 m 2 / g or less, more preferably 0.35 m 2 / g or less due to recrystallization of the metal elements. Through this, the calorific value is significantly reduced, and the high temperature life characteristics and the high temperature resistance increase rate can be significantly improved.
  • the positive electrode active material according to the present invention when measured the heat flow (Heat Flow) by differential scanning calorimetry (DSC), the maximum temperature in the temperature range of 220 °C to 250 °C, preferably 225 °C to 245 °C A peak may appear and the maximum value of the heat flow may be 200 mW or less (based on a sample of 15 mg). If the high temperature heat treatment is not performed after washing with water or if the heat treatment temperature and atmosphere do not satisfy the conditions of the present invention even after high temperature heat treatment, the maximum peak appears at a lower temperature, that is, less than 220 ° C., and a high heat flow value exceeding 200 mW (sample 15 mg standard).
  • the maximum peak appears in the low temperature range and the cathode active material having a high maximum heat flow amount is used, when the temperature inside the battery increases due to overcharging or the like, an explosion may occur while the heat flow rate increases rapidly.
  • the positive electrode active material of the present invention since the positive electrode active material of the present invention has a relatively high temperature range in which the maximum peak appears and a small maximum amount of heat flow, the explosion risk is small even when the internal temperature of the battery increases due to overcharge or the like.
  • the cathode active material according to the present invention may include the lithium transition metal oxide in a layered structural phase and a spinel-like structural phase.
  • the spinel-like structure phase may be formed by a phase transition from the layered structure phase.
  • the phase transition may occur by high temperature heat treatment.
  • a cathode including the cathode active material is provided.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer positioned on at least one surface of the positive electrode current collector and including the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • carbon, nickel, titanium on the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with silver, silver or the like can be used.
  • the positive electrode current collector may have a thickness of about 3 to 500 ⁇ m, and may form fine irregularities on the surface of the current collector to increase the adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the cathode active material layer may include a conductive material and a binder together with the cathode active material described above.
  • the positive electrode active material may be included in the weight of 80 to 99% by weight, more specifically 85 to 98% by weight relative to the total weight of the positive electrode active material layer. When included in the above content range may exhibit excellent capacity characteristics.
  • the conductive material is used to impart conductivity to the electrode.
  • the conductive material may be used without particular limitation as long as it has electronic conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used.
  • the conductive material may be included in an amount of 1 to 30 wt% based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between the positive electrode active material particles and the adhesion between the positive electrode active material and the current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC).
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material described above.
  • the positive electrode active material and optionally, a composition for forming a positive electrode active material layer prepared by dissolving or dispersing a binder and a conductive material in a solvent may be applied onto a positive electrode current collector, followed by drying and rolling.
  • the type and content of the cathode active material, the binder, and the conductive material are as described above.
  • the solvent may be a solvent generally used in the art, and may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone or acetone. Water, and the like, one of these alone or a mixture of two or more thereof may be used.
  • the amount of the solvent is sufficient to dissolve or disperse the positive electrode active material, the conductive material, and the binder in consideration of the coating thickness of the slurry and the production yield, and to have a viscosity that can exhibit excellent thickness uniformity during application for the production of the positive electrode. Do.
  • the positive electrode may be prepared by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating the film obtained by peeling from the support onto a positive electrode current collector.
  • an electrochemical device including the anode is provided.
  • the electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above.
  • the lithium secondary battery may further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used.
  • the negative electrode current collector may have a thickness of 3 ⁇ m to 500 ⁇ m, and similarly to the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to enhance the bonding force of the negative electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the negative electrode active material layer optionally includes a binder and a conductive material together with the negative electrode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
  • a composite including the metallic compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch High-temperature calcined carbon such as derived cokes is typical.
  • the binder and the conductive material may be the same as described above in the positive electrode.
  • the negative electrode active material layer is, for example, coated with a negative electrode active material, and optionally a composition for forming a negative electrode active material layer prepared by dissolving or dispersing a binder and a conductive material in a solvent and dried, or for forming the negative electrode active material layer
  • the composition may be prepared by casting the composition on a separate support, and then laminating the film obtained by peeling from the support onto a negative electrode current collector.
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular for ion transfer of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • a porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone or ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles, such as R-CN (R is a C2-C20 linear, branched or cyclic hydrocarbon group, which may include
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate
  • portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful for electric vehicle fields such as hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • Lithium transition metal oxide is Li (Ni 0. 86 Co 0 . 1 Mn 0. 02 Al 0. 02) O 2 300 g of pure water was added to 240 mL of water, stirred for 30 minutes, and washed for 20 minutes. The filtered lithium transition metal oxide was dried at 130 ° C. in a vacuum oven, followed by sieving.
  • the washed lithium transition metal oxide was subjected to high temperature heat treatment in an oxygen atmosphere with an oxygen partial pressure of 95%.
  • the temperature was raised to 700 ° C. at 5 ° C./min for 2 hours and 15 minutes, and heat-treated at 700 ° C. for 3 hours and 40 minutes, and then heated at a high temperature for 2 hours and 30 minutes.
  • Example 1 The positive electrode active material was prepared in the same manner as the above.
  • the high temperature heat treatment was carried out in the same manner as in Example 1 except that the temperature was raised to 200 °C for 45 minutes, the heat treatment at 200 °C for 10 hours, the cooling process for 60 minutes to prepare a positive electrode active material.
  • the cathode active material was prepared in the same manner as in Example 1 except that the mixture was heated to 300 ° C. for 70 minutes, heat-treated at 300 ° C. for 3 hours and 40 minutes, and cooled at 90 ° C. for 90 minutes. It was.
  • the high temperature heat treatment was carried out in the same manner as in Example 1 except that the temperature was raised to 400 °C for 80 minutes, the heat treatment for 4 hours at 400 °C, and the high temperature heat treatment for 2 hours to prepare a cathode active material.
  • a high temperature heat treatment was carried out in the same manner as in Example 1 except that the temperature was elevated to 500 ° C. for 90 minutes, heat treated at 500 ° C. for 4 hours, and cooled for 2 hours and 20 minutes to prepare a cathode active material. It was.
  • the high temperature heat treatment was carried out in the same manner as in Example 1 except that the temperature was raised to 700 °C for 3 hours, the heat treatment for 10 hours at 700 °C, and the high temperature heat treatment for 3 hours to prepare a cathode active material.
  • a positive electrode active material was prepared in the same manner as in Example 1 except that the high temperature heat treatment was performed in an air atmosphere instead of an oxygen atmosphere.
  • Example 1 The cathode active materials prepared in Example 1 and Comparative Example 1 were analyzed by XRD using Bruker AXS D4 Endeavor XRD, and the crystal size, crystal density, and Ni cations in the lithium layer were analyzed.
  • the results of cation mixing are shown in Table 1.
  • the BET surface area was measured using BELSORP-mini, the results are shown in Table 1.
  • Example 1 subjected to high temperature heat treatment according to the present invention, the amount of cation mixture was decreased, the crystal density was increased, and the BET specific surface area was reduced compared to Comparative Example 1, which was not subjected to high temperature heat treatment. .
  • the positive electrode active materials of Examples 1 and 2 have a maximum heat flow value of less than 200 mW, whereas the positive active materials of Comparative Examples 1 to 7 have a maximum heat flow value of more than 400 mW, and particularly, in the case of Comparative Example 1, 600 mW. It can be confirmed that the excess. This shows that the positive electrode active materials of Examples 1 and 2 have excellent high temperature stability compared to the positive electrode active materials of Comparative Examples 1 to 7.
  • Each positive electrode active material, carbon black conductive material, and PVdF binder prepared in Examples and Comparative Examples were mixed in an N-methylpyrrolidone solvent in a ratio of 95: 2.5: 2.5 by weight in a positive electrode mixture (viscosity: 5000 mPa ⁇ s ) was applied to one surface of an aluminum current collector, dried at 130 ° C., and then rolled to prepare a positive electrode.
  • a negative electrode active material a natural graphite, a carbon black conductive material, and a PVdF binder were mixed in an N-methylpyrrolidone solvent in a ratio of 85: 10: 5 in a weight ratio to prepare a composition for forming a negative electrode active material layer, and a copper current collector It was applied to one side of to prepare a negative electrode.
  • An electrode assembly was manufactured between the positive electrode and the negative electrode prepared as described above through a separator of porous polyethylene, the electrode assembly was placed in a case, and an electrolyte solution was injected into the case to prepare a lithium secondary battery.
  • the measurement results are shown in FIGS. 2 and 3. 2 is a graph showing a capacity retention rate, and FIG. 3 is a graph showing a resistance increase rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 전이금속 산화물을 포함하며, 상기 리튬 전이금속 산화물은 전체 전이금속 원소 중 니켈(Ni)의 함량이 80몰% 이상이고, 상기 리튬 전이금속 산화물 구조 내의 리튬 층에서의 Ni 양이온의 양이온 혼합(cation mixing) 비율이 1.1% 이하인 이차전지용 양극 활물질에 관한 것이다.

Description

이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
관련출원과의 상호인용
본 출원은 2016년 12월 28일자 한국 특허 출원 제10-2016-0181022호 및 2017년 12월 18일자 한국 특허 출원 제10-2017-0174131호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 전이금속 복합 산화물이 이용되고 있으며, 이 중에서도 작용전압이 높고 용량 특성이 우수한 LiCoO2의 리튬 코발트 복합금속 산화물이 주로 사용되고 있다. 그러나, LiCoO2는 탈 리튬에 따른 결정 구조의 불안정화로 열적 특성이 매우 열악하고, 또 고가이기 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에는 한계가 있다.
LiCoO2를 대체하기 위한 재료로서, 리튬 망간 복합금속 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4 등) 또는 리튬 니켈 복합금속 산화물(LiNiO2 등) 등이 개발되었다. 이 중에서도 약 200 mAh/g의 높은 가역 용량을 가져 대용량의 전지 구현이 용이한 리튬 니켈 복합금속 산화물에 대한 연구 및 개발이 보다 활발히 연구되고 있다. 그러나, LiNiO2는 LiCoO2와 비교하여 열안정성이 나쁘고, 충전 상태에서 외부로부터의 압력 등에 의해 내부 단락이 생기면 양극 활물질 그 자체가 분해되어 전지의 파열 및 발화를 초래하는 문제가 있다.
이에 따라, LiNiO2의 우수한 가역 용량은 유지하면서도 낮은 열 안정성을 개선하기 위한 방법으로서, Ni의 일부를 Mn과 Co으로 치환한 니켈코발트망간계 리튬 복합금속 산화물(이하 간단히 'NCM계 리튬 산화물'이라 함)이 개발되었다. 그러나, 종래의 현재까지 개발된 NCM계 리튬 산화물은 용량 특성이 충분하지 않아 적용에 한계가 있었다.
이와 같은 문제점을 개선하기 위해, 최근에는 NCM계 리튬 산화물에서 Ni의 함량을 증가시키려는 연구가 이루어지고 있다. 그러나, 니켈 함량이 높은 고농도 니켈 양극 활물질의 경우, 활물질의 구조적 안정성과 화학적 안정성이 떨어져 열 안정성이 급격히 저하된다는 문제점이 있다. 또한, 활물질 내의 니켈 함량이 높아짐에 따라 양극 활물질 표면에 LiOH, Li2CO3 형태로 존재하는 리튬 부산물의 잔류량이 높아져 이로 인한 가스 발생 및 스웰링(swelling) 현상이 발생하여 전지의 수명 및 안정성이 저하되는 문제점도 발생한다.
따라서, 고용량화에 부합하면서도 리튬 부산물의 잔류량이 적고, 고온 안정성이 우수한 고농도 니켈(Ni-rich) 양극 활물질의 개발이 요구되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 리튬 부산물의 잔류량이 적으면서도 구조적 안정, 우수한 용량 특성 및 고온 안정성을 동시에 구현할 수 있는 고농도 니켈 양극 활물질, 그 제조 방법과, 이를 포함하는 이차 전지용 양극 및 리튬 이차 전지를 제공하고자 한다.
본 발명은 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 전이금속 산화물을 준비하는 단계; 상기 리튬 전이금속 산화물을 수세하여 리튬 전이금속 산화물의 표면에 존재하는 리튬 불순물을 제거하는 단계; 및 상기 수세 후의 리튬 전이금속 산화물을 고온 열처리하는 단계;를 포함하며, 상기 고온 열처리하는 단계는, 온도를 승온시키며 열처리하는 승온 구간, 승온된 온도를 유지하며 열처리하는 유지 구간 및 온도를 냉각시키는 냉각 구간을 포함하며, 상기 승온 구간은 전체 고온 열처리 시간에 대하여 20 내지 30%인 이차전지용 양극 활물질의 제조방법을 제공한다.
또한, 본 발명은 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 전이금속 산화물을 포함하며, 상기 리튬 전이금속 산화물은 전체 전이금속 원소 중 니켈(Ni)의 함량이 80몰% 이상이고, 상기 리튬 전이금속 산화물 구조 내의 리튬 층에서의 Ni 양이온의 양이온 혼합(cation mixing) 비율이 1.1% 이하인 이차전지용 양극 활물질을 제공한다.
또한, 본 발명은 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지를 제공한다.
본 발명에 따르면, 수세 후에 특정 조건으로 고온 열처리를 수행함으로써, 리튬 부산물의 잔류량이 감소하면서도, 결정 구조 내의 리튬이 빠져나가 파괴된 결정 구조의 재결정화가 발생하면서 구조 안정성이 향상되어 우수한 고온 안정성을 갖는 양극 활물질을 제조할 수 있다. 또한, 종래의 고농도 니켈 양극 활물질과 달리 구조적으로 안정할 뿐 아니라, 반복 충전 시에도 용량 특성이 우수하고, 저항 증가율이 작은 이차 전지를 구현할 수 있다.
도 1은 실시예 및 비교예에 따른 양극 활물질의 온도에 대한 열류량(Heat Flow)을 보여주는 그래프이다.
도 2는 실시예 및 비교예에 따른 양극 활물질을 이용하여 제조된 전지 셀의 충방전 사이클에 대한 용량 유지율을 도시한 그래프이다.
도 3은 실시예 및 비교예에 따른 양극 활물질을 이용하여 제조된 전지 셀의 충방전 사이클에 대한 저항 증가율을 도시한 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 고농도의 니켈을 함유하는 리튬 전이금속 산화물을 수세한 후 특정 조건으로 고온 열처리함으로써, 리튬 부산물의 잔류량을 감소시키고, 결정 구조 내의 리튬이 빠져나가 파괴된 결정 구조의 재결정화가 발생하면서 구조 안정성이 향상된 고농도 니켈계 양극 활물질을 제조할 수 있도록 하였다.
구체적으로, 본 발명은 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 전이금속 산화물을 준비하는 단계; 상기 리튬 전이금속 산화물을 수세하여 리튬 전이금속 산화물의 표면에 존재하는 리튬 불순물을 제거하는 단계; 및 상기 수세 후의 리튬 전이금속 산화물을 고온 열처리하는 단계;를 포함하며, 상기 고온 열처리하는 단계는, 온도를 승온시키며 열처리하는 승온 구간, 승온된 온도를 유지하며 열처리하는 유지 구간 및 온도를 냉각시키는 냉각 구간을 포함하며, 상기 승온 구간은 전체 고온 열처리 시간에 대하여 20 내지 30%인 이차전지용 양극 활물질의 제조방법을 제공한다.
먼저, 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 전이금속 산화물을 준비한다.
구체적으로, 상기 리튬 전이금속 산화물은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
LiaNi1-x1-y1-z1Cox1M1 y1M2 z1M3 q1O2
상기 화학식 1에서, M1은 Mn 및 Al으로 이루어지는 군으로부터 선택되는 적어도 1종 이상이며, M2 및 M3는 각각 독립적으로 Ba, Ca, Zr, Ti, Mg, Ta, Nb, W 및 Mo으로 이루어지는 군으로부터 선택되는 적어도 1종 이상이고, 1.0≤a≤1.5, 0<x1≤0.2, 0<y1≤0.2, 0≤z1≤0.1, 0≤q1≤0.1, 0<x1+y1+z1≤0.2이다.
상기 화학식 1의 리튬 전이금속 산화물에 있어서, Li은 a에 해당하는 함량, 즉 1.0≤a≤1.5로 포함될 수 있다. a가 1.0 미만이면 용량이 저하될 우려가 있고, 1.5를 초과하면 소성 공정에서 입자가 소결되어 버려, 양극 활물질 제조가 어려울 수 있다. Li 함량 제어에 따른 양극 활물질의 용량 특성 개선 효과의 현저함 및 활물질 제조시의 소결성이 발란스를 고려할 때, 상기 Li는 보다 바람직하게는 1.0≤a≤1.15의 함량으로 포함될 수 있다.
또, 상기 화학식 1의 리튬 전이금속 산화물에 있어서, Ni은 1-x1-y1-z1에 해당하는 함량, 즉 0.8≤1-x1-y1-z1<1로 포함될 수 있다. 보다 바람직하게는 Ni은 0.8≤1-x1-y1-z1<0.9로 포함될 수 있다. 상기 화학식 1의 리튬 전이금속 산화물 내 Ni의 함량이 0.8 이상의 조성이 되면 충방전에 기여하기에 충분한 Ni량이 확보되어 고용량화를 도모할 수 있다. Ni의 함량이 0.8 미만일 경우 고용량 구현에 한계가 있을 수 있으며, 0.9을 초과하는 조성에서는 Li 사이트의 일부가 Ni에 의해 치환되어 충방전에 기여하기에 충분한 Li량을 확보할 수 없어 충방전 용량이 저하할 우려가 있다.
또, 상기 화학식 1의 리튬 전이금속 산화물에 있어서, Co는 x1에 해당하는 함량, 즉 0<x1≤0.2으로 포함될 수 있다. 상기 화학식 1의 리튬 전이금속 산화물 내 Co의 함량이 0.2를 초과할 경우 비용 증가에 비해 용량 특성 개선의 효율이 떨어질 수 있다. Co 포함에 따른 용량 특성 개선 효과의 현저함을 고려할 때, 상기 Co는 보다 구체적으로 0.05≤x≤0.2의 함량으로 포함될 수 있다.
또, 화학식 1의 리튬 전이금속 산화물에 있어서, M1은 Mn 또는 Al이거나, Mn 및 Al일 수 있고, 이러한 금속 원소는 활물질의 안정성을 향상시키고, 결과로서 전지의 안정성을 개선시킬 수 있다. 수명 특성 개선 효과를 고려할 때, 상기 M1은 y1에 해당하는 함량, 즉 0<y1≤0.2의 함량으로 포함될 수 있다. 상기 화학식 1의 리튬 복합 전이금속 산화물 내 y1가 0.2를 초과하면 오히려 전지의 출력 특성 및 용량 특성이 저하될 우려가 있으며, 상기 M1은 보다 구체적으로 0.05≤y1≤0.2의 함량으로 포함될 수 있다.
또, 화학식 1의 리튬 전이금속 산화물에 있어서, M2는 리튬 복합 전이금속 산화물의 결정 구조 내 포함된 도핑원소일 수 있으며, M2는 z1에 해당하는 함량, 즉 0≤z1≤0.1로 포함될 수 있다.
또, 화학식 1의 리튬 전이금속 산화물에 있어서, M3의 금속 원소는 리튬 복합 전이금속 산화물 구조 내에 포함되지 않을 수 있고, 전구체와 리튬 소스를 혼합하고 소성할 때 M3 소스를 함께 혼합하여 소성하거나, 리튬 복합 전이금속 산화물을 형성한 후 별도로 M3 소스를 투입하고 소성하는 방법을 통해 상기 M3가 리튬 복합 전이금속 산화물의 표면에 도핑된 리튬 복합 전이금속 산화물을 제조할 수 있다. 상기 M3는 q1에 해당하는 함량, 즉 0≤q1≤0.1의 범위 내에서 양극 활물질의 특성을 저하하지 않는 함량으로 포함될 수 있다.
본 발명에서 사용되는 상기 리튬 전이금속 산화물은 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 NCM계 리튬 복합 전이금속 산화물일 수 있고, 또는 니켈(Ni), 코발트(Co) 및 알루미늄(Al)을 포함하는 NCA계 리튬 복합 전이금속 산화물일 수 있다. 또한, 상기 양극 활물질은 니켈(Ni), 코발트(Co), 망간(Mn) 및 알루미늄(Al)의 4성분을 필수로 포함하는 4성분계 리튬 복합 전이금속 산화물일 수 있다.
또한, 본 발명에서 사용되는 리튬 전이금속 산화물은 상기 리튬 전이금속 산화물에서 전이금속 전체 몰비율 중 니켈의 몰비율이 0.8 이상인 고농도 니켈(high-nickel)계 리튬 전이금속 산화물일 수 있다.
상기 화학식 1의 리튬 전이금속 산화물은, 이로써 한정되는 것은 아니나, 예를 들면, 하기 화학식 2로 표시되는 전구체 및 리튬 함유 원료 물질을 혼합하고, 700 내지 900℃에서 소성하는 방법으로 제조된 것일 수 있다. 보다 바람직하게는 상기 소성 온도로 산소 분위기 하에서 소성할 수 있다.
[화학식 2]
Ni1-x2-y2-z2Cox2M1 y2M2 z2(OH)2
상기 화학식 2에서, M1은 Mn 및 Al으로 이루어지는 군으로부터 선택되는 적어도 1종 이상이며, M2는 Ba, Ca, Zr, Ti, Mg, Ta, Nb, W 및 Mo으로 이루어지는 군으로부터 선택되는 적어도 1종 이상이고, 0<x2≤0.2, 0≤y2≤0.2, 0≤z2≤0.1, 0<x2+y2+z2≤0.2이다.
상기 화학식 2의 양극 활물질 전구체에 있어서, Ni, Co, M1 및 M2의 바람직한 조성은 앞에서 설명한 리튬 전이금속 산화물의 조성의 범위와 동일할 수 있다.
상기 리튬 함유 원료 물질 물질은 리튬 함유 탄산염(예를 들어, 탄산리튬 등), 수화물(예를 들어 수산화리튬 I수화물(LiOH·H2O) 등), 수산화물(예를 들어 수산화리튬 등), 질산염(예를 들어, 질산리튬(LiNO3) 등), 염화물(예를 들어, 염화리튬(LiCl) 등) 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있고, 보다 바람직하게는 탄산리튬을 사용할 수 있다.
다음으로, 상기와 같이 준비된 리튬 전이금속 산화물을 수세하여 리튬 전이금속 산화물에 잔류하는 리튬 부산물을 제거한다.
본 발명의 상기 리튬 전이금속 산화물과 같이 니켈을 고 농도로 함유하는 리튬 전이금속 산화물의 경우, 니켈 함량이 적은 리튬 전이금속 산화물에 비해 구조적으로 불안정하기 때문에 제조 공정에서 미반응 수산화리튬이나 탄산리튬과 같은 리튬 부산물이 더 많이 발생한다. 구체적으로는 니켈 함량이 80몰% 미만인 리튬 복합 금속 산화물의 경우, 합성 후 리튬 부산물의 양이 0.5~0.6중량% 정도인데 반해, 니켈 함량이 80몰% 이상인 리튬 복합 금속 산화물의 경우, 합성 후 리튬 부산물의 양이 1중량% 정도로 높게 나타난다. 한편, 양극 활물질에 리튬 부산물이 다량 존재할 경우, 리튬 부산물과 전해액이 반응하여 가스 발생 및 스웰링 현상이 발생하게 되고, 이로 인해 고온 안정성이 현저하게 저하되게 된다. 따라서, 고농도 니켈을 포함하는 리튬 전이금속 산화물로부터 리튬 부산물을 제거하기 위한 수세 공정이 필수적으로 요구된다.
상기 수세 단계는, 예를 들면, 순수에 리튬 전이금속 산화물을 투입하고, 교반시키는 방법으로 수행될 수 있다.
이때, 상기 수세는 리튬 전이금속 산화물 100 중량부에 대하여 순수 50 내지 100 중량부를 사용하여 수행할 수 있다.
상기 수세 진행 시 순수의 함량이 리튬 전이금속 산화물 100 중량부에 대하여 50 중량부 미만일 경우 세정이 불충분하여 리튬 부산물의 제거가 미흡할 수 있으며, 순수의 함량이 100 중량부를 초과할 경우 결정 구조 내의 리튬이 수세수로 용해되는 양이 증가할 수 있으며 특히, 니켈의 함량이 80mol% 이상인 고농도 니켈의 리튬 전이금속 산화물의 경우 순수의 함량이 너무 클 경우 결정 구조 내의 리튬이 수세수로 용해되는 양이 현저히 증가하여 전지의 용량 및 수명의 급격한 저하가 발행할 수 있다.
또한, 상기 수세 온도는 30℃ 이하, 바람직하게는 -10℃ 내지 30℃일 수 있으며, 수세 시간은 10분 내지 1시간 정도일 수 있다. 수세 온도 및 수세 시간이 상기 범위를 만족할 때, 리튬 부산물이 효과적으로 제거될 수 있다.
다음으로, 수세된 리튬 전이금속 산화물을 고온 열처리한다.
이때, 상기 고온 열처리하는 단계는, 온도를 승온시키며 열처리하는 승온 구간, 승온된 온도를 유지하며 열처리하는 유지 구간 및 온도를 냉각시키는 냉각 구간을 포함한다. 상기 승온 구간은 전체 고온 열처리 시간에 대하여 20 내지 30%이 바람직하다.
상기 고온 열처리 단계는 리튬 부산물을 추가로 제거하고, 고온 열처리를 통해 양극 활물질 내의 금속 원소들을 재결정화함으로써 구조 안정성 및 열 안정성을 향상시키기 위한 것이다. 상기 고농도의 니켈을 함유하는 리튬 전이금속 산화물의 경우 잔류하는 리튬 부산물을 제거하기 위해 수세를 진행하게 되는데, 수세 시 리튬 부산물 뿐 아니라 결정 구조 내의 리튬이 같이 빠져나가 결정화도가 떨어지게 되고 안정성이 저하된다. 이에, 본 발명은 수세된 전이금속 산화물을 상기와 같은 조건으로 고온 열처리함으로써, 리튬 전이금속 산화물의 금속 원소들을 재결정화하여 리튬의 빈 자리를 채우고, 표면 안정성을 향상시켰다.
상기 승온 구간이 전체 고온 열처리 시간의 20% 미만인 경우 수세 공정 후 잔존하는 수분 제거가 충분히 이뤄지지 않아 전기 전도성 저하 등 전지 성능 저하가 일어날 수 있으며, 30%를 초과하는 경우 재결정화가 효과적으로 이뤄지지 않아 리튬 층에서의 Ni 양이온의 양이온 혼합(cation mixing) 비율이 증가할 수 있다.
상기 유지 구간은 전체 고온 열처리 시간에 대하여 40 내지 50%일 수 있다. 상기 냉각 구간은 전체 고온 열처리 시간에 대하여 20 내지 30%일 수 있다. 상기 승온 구간, 유지 구간 및 냉각 구간의 비율을 상기 범위 내로 만족시킴으로써 잔존 수분을 제거하고, 잔류 리튬 부산물을 추가로 제거하며, 효과적으로 재결정화시켜 안정성을 현저히 향상시킬 수 있다.
상기 고온 열처리하는 전체 시간은 10시간 이내가 바람직하며, 구체적으로, 전체 고온 열처리 시간은 6시간 내지 10시간일 수 있다.
상기 승온 구간의 승온 속도는 2 내지 7℃/min일 수 있으며, 더욱 바람직하게는 3 내지 6℃/min일 수 있다. 상기 유기 구간의 열처리 온도는 600℃ 이상일 수 있으며, 더욱 바람직하게는 600 내지 900℃일 수 있다. 상기 냉각 구간은 자연 냉각시키는 방식으로 냉각할 수 있다.
상기 고온 열처리 단계의 각 구간의 시간 및 열처리 온도가 상기 범위를 만족할 때, 열 안정성 개선 효과가 우수하게 나타난다. 본 발명자들의 연구에 따르면, 유지 구간의 열처리 온도가 600℃ 미만인 경우에는 열 안정성 개선 효과가 거의 없는 것으로 나타났다.
한편, 상기 고온 열처리는 산소 분위기, 구체적으로, 산소 분압이 80% 이상, 보다 바람직하게는 80 내지 99%, 더욱 바람직하게는 90 내지 95%인 분위기에서 수행될 수 있다. 본 발명과 같이 산소 분위기에서 열처리가 수행될 경우, 리튬 부산물이 효과적으로 제거되고, 재결정화가 효과적으로 일어날 수 있다. 본 발명자들의 연구에 따르면 대기 하에서 열처리를 수행할 경우 리튬 부산물 제거 효과가 현저하게 떨어지며, 특히, 대기 하에서 600℃ 이상으로 열처리를 수행할 경우, 리튬 부산물의 양이 열처리 전보다 오히려 증가하는 것으로 나타났다.
상기 고온 열처리된 리튬 전이금속 산화물은 H3BO3, B2O3 및 Al2O3로 이루어진 군에서 선택된 적어도 하나 이상과 혼합한 후, 열처리하여 리튬 전이금속 산화물의 표면에 코팅층을 형성할 수 있다. 이때, 상기 열처리는 200 내지 500℃의 온도로 수행될 수 있다. 상기 코팅 열처리를 더 수행함으로써 결정성을 향상시키고, 양극 활물질의 안정성을 더욱 개선할 수 있다.
다음으로, 본 발명에 따른 이차전지용 양극 활물질에 대해 설명한다.
상기와 같은 방법으로 제조된 본 발명의 이차전지용 양극 활물질은 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하며, 상기 리튬 전이금속 산화물은 전체 전이금속 원소 중 니켈(Ni)의 함량이 80몰% 이상이고, 상기 리튬 전이금속 산화물 구조 내의 리튬 층에서의 Ni 양이온의 양이온 혼합(cation mixing) 비율이 1.1% 이하이다.
상기 리튬 전이금속 산화물은 하기 화학식 1로 표시될 수 있다.
[화학식 1]
LiaNi1-x1-y1-z1Cox1M1 y1M2 z1M3 q1O2
상기 화학식 1에서, M1은 Mn 및 Al으로 이루어지는 군으로부터 선택되는 적어도 1종 이상이며, M2 및 M3는 각각 독립적으로 Ba, Ca, Zr, Ti, Mg, Ta, Nb, W 및 Mo으로 이루어지는 군으로부터 선택되는 적어도 1종 이상이고, 1.0≤a≤1.5, 0<x1≤0.2, 0<y1≤0.2, 0≤z1≤0.1, 0≤q1≤0.1, 0<x1+y1+z1≤0.2이다. 상기 화학식 1로 표시되는 리튬 전이금속 산화물의 구체적인 사양은 상기 제조방법에서 설명한 것과 동일하므로, 구체적인 설명은 생략한다.
종래의 고농도의 니켈을 함유하는 리튬 전이금속 산화물의 경우, 잔류하는 리튬 부산물을 제거하기 위해 수세를 진행하게 되면, 수세 시 리튬 부산물 뿐 아니라 결정 구조 내의 리튬이 같이 빠져나가 결정화도가 떨어지게 되고, Ni 양이온이 리튬 층에 혼입하게 되는 양이온 혼합(cation mixing) 양이 증가하게 되었다. 이는 전기화학 특성의 퇴화로 나타나게 된다.
따라서, 본 발명은 방전용량 및 수명특성 등의 전기화학 특성이 우수한 양극 활물질을 제조하기 위해서, 고농도의 니켈을 함유하는 리튬 전이금속 산화물을 수세한 후, 산소 분위기하에서 고온 열처리함으로써 리튬 전이금속 산화물의 층상 구조가 잘 발달될 수 있게 하였으며, 리튬 층에서의 Ni 양이온의 양이온 혼합의 양이 1.1% 이하가 되도록 하였다. 보다 바람직하게는 양이온 혼합(cation mixing) 양이 1.0% 이하일 수 있다. Ni 양이온이 리튬 층에 혼입하게 되는 양이온 혼합(cation mixing) 양이 상기 범위를 만족할 때, 리튬 전이금속 산화물의 용량 특성이 우수하면서도 고온 안정성 및 수명특성을 효과적으로 개선할 수 있다.
또한, 상기와 같은 본 발명에 따른 양극 활물질은 수세 후에 산소 분위기에서 고온 열처리하는 공정을 거쳐 제조되어, 리튬 부산물 잔류량이 현저하게 감소될 수 있다. 바람직하게는 양극 활물질에 존재하는 리튬 부산물의 함량이 0.3중량% 초과 내지 1중량% 이하일 수 있으며, 보다 바람직하게는 0.3중량% 초과 내지 0.6중량% 이하, 더욱 바람직하게는 0.35중량% 초과 내지 0.5중량% 이하일 수 있다. 이와 같이 본 발명에 따른 양극 활물질이 상기 범위 내의 리튬 부산물 잔류량을 만족함으로써 리튬 부산물과 코팅 소스와의 반응으로 코팅층을 효과적으로 형성할 수 있으며, 이로 인해 충방전 시 가스 발생 및 스웰링 현상을 효과적으로 억제할 수 있다. 상기 리튬 부산물 잔류량이 0.3중량% 이하일 경우 코팅 소스와 반응하여 코팅층을 형성할 리튬 부산물이 부족하여 코팅층의 형성이 어려워지고, 코팅 소스가 저항체로 작용할 우려가 있으며, 1중량%를 초과할 경우 과량의 리튬 부산물로 인해 용량 및 수명 열위 및 가스 발생 현상이 나타날 수 있다.
또한, 본 발명에 따른 양극 활물질은 결정 밀도(crystal density)는 4.76 g/cm3 이상일 수 있다. 보다 바람직하게는 4.765 g/cm3 이상일 수 있다. 종래의 고농도 니켈 함유 양극 활물질은 수세를 거치면서 결정 밀도가 현저히 감소하여 구조 안정성 및 고온 안정성이 떨어졌으나, 본 발명에 따른 양극 활물질은 수세 후에 산소 분위기에서 고온 열처리함으로써 금속 원소들의 재결정화로 인해 결정 밀도가 4.76 g/cm3 이상으로 증가할 수 있다. 이를 통해 발열량이 현저히 감소되고, 고온 수명특성 및 고온 저항 증가율을 현저히 개선할 수 있다.
또한, 본 발명에 따른 양극 활물질은 BET 비표면적이 0.5m2/g 이하일 수 있다. 종래의 고농도 니켈 함유 양극 활물질은 수세를 거치면서 표면 결정 구조 내의 리튬이 함께 빠져나가 비표면적이 현저히 증가하여 구조 안정성 및 고온 안정성이 떨어졌으나, 본 발명에 따른 양극 활물질은 수세 후에 산소 분위기에서 고온 열처리함으로써 금속 원소들의 재결정화로 인해 비표면적이 0.5m2/g 이하로 감소될 수 있고, 보다 바람직하게는 0.35m2/g 이하일 수 있다. 이를 통해 발열량이 현저히 감소되고, 고온 수명특성 및 고온 저항 증가율을 현저히 개선할 수 있다.
또한, 본 발명에 따른 양극 활물질은 시차주사열량측정법(DSC)에 의해 열류량(Heat Flow)을 측정하였을 때, 220℃ 내지 250℃의 온도 범위, 바람직하게는 225℃ 내지 245℃의 온도 범위에서 최대 피크가 나타나고, 상기 열류량(Heat Flow)의 최대값이 200mW 이하(시료 15mg 기준)로 나타날 수 있다. 수세 후 고온 열처리를 하지 않거나, 고온 열처리를 하더라도 열처리 온도 및 분위기가 본 발명의 조건을 만족하지 못할 경우, 더 낮은 온도, 즉 220℃ 미만에서 최대 피크가 나타나며, 200mW를 초과하는 높은 열류량 값(시료 15mg 기준)이 나타난다. 이와 같이 낮은 온도 범위에서 최대 피크가 나타나고, 열류량 최대값이 높은 양극 활물질을 사용할 경우, 과충전 등으로 전지 내부의 온도가 상승하면 열류량이 급격하게 증가하면서 폭발이 발생할 수 있다. 이에 비해 본 발명의 양극 활물질은 최대 피크가 나타나는 온도 범위가 상대적으로 높고, 열류량 최대값이 작기 때문에, 과충전 등에 의해 전지 내부 온도가 상승하는 경우에도 폭발 위험성이 작다.
또한, 본 발명에 따른 양극 활물질은 상기 리튬 전이금속 산화물이 층상 구조 상(layered structural phase) 및 스피넬-유사 구조 상(spinel-like structural phase)를 포함할 수 있다. 상기 스피넬-유사 구조 상은 층상 구조 상으로부터 상전이(phase transition)에 의하여 형성되는 것일 수 있다. 상기 상전이(phase transition)은 고온 열처리에 의해 발생할 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기한 양극 활물질을 포함하는 양극을 제공한다.
구체적으로, 상기 양극은 양극 집전체, 및 상기 양극 집전체의 적어도 일면에 위치하며, 상기한 양극 활물질을 포함하는 양극 활물질층을 포함한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질층은 앞서 설명한 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때 상기 양극 활물질은 양극 활물질층 총 중량에 대하여 80 내지 99중량%, 보다 구체적으로는 85 내지 98중량%의 중량으로 포함될 수 있다. 상기한 함량범위로 포함될 때 우수한 용량 특성을 나타낼 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 양극 활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질층 총 중량에 대하여 1 내지 30중량%로 포함될 수 있다.
상기 양극은 상기한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 선택적으로, 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 양극 활물질층 형성용 조성물을 양극집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또한, 다른 방법으로, 상기 양극은 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일례에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또한, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
상기 음극 활물질층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 활물질층 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또한, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치 (pouch)형 또는 코인 (coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
리튬 전이금속 산화물 Li(Ni0 . 86Co0 . 1Mn0 . 02Al0 . 02)O2 300g을 순수 240mL에 넣고 30분 동안 교반하여 수세하고, 20분간 필터링을 수행하였다. 필터링된 리튬 전이금속 산화물을 진공 오븐에서 130℃로 건조시킨 후 체거름(seiving)을 진행하였다.
그런 다음, 상기 수세된 리튬 전이금속 산화물을 산소 분압 95%의 산소 분위기 하에서 고온 열처리하였다. 이때, 700℃까지 5℃/min으로 2시간 15분 동안 승온시켰으며, 700℃에서 3시간 40분 동안 열처리하고, 2시간 30분 동안 냉각시키는 과정으로 고온 열처리하였다.
다음으로, 상기 고온 열처리된 리튬 전이금속 산화물에 H3BO3를 B함량 기준 1.0wt%를 혼합한 후, 300℃로 건조 대기 분위기 하에서 5시간 동안 코팅 열처리하여 양극 활물질을 제조하였다.
실시예 2
고온 열처리 시 600℃까지 4℃/min로 2시간 20분 동안 승온시켰으며, 600℃에서 3시간 40분 동안 열처리하고, 2시간 30분 동안 냉각시키는 과정으로 고온 열처리한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예 1
고온 열처리를 하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예 2
고온 열처리 시 200℃까지 45분 동안 승온시켰으며, 200℃에서 10시간 동안 열처리하고, 60분 동안 냉각시키는 과정으로 고온 열처리한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예 3
고온 열처리 시 300℃까지 70분 동안 승온시켰으며, 300℃에서 3시간 40분 동안 열처리하고, 90분 동안 냉각시키는 과정으로 고온 열처리한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예 4
고온 열처리 시 400℃까지 80분 동안 승온시켰으며, 400℃에서 4시간 동안 열처리하고, 2시간 동안 냉각시키는 과정으로 고온 열처리한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예 5
고온 열처리 시 500℃까지 90분 동안 승온시켰으며, 500℃에서 4시간 동안 열처리하고, 2시간 20분 동안 냉각시키는 과정으로 고온 열처리한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예 6
고온 열처리 시 700℃까지 3시간 동안 승온시켰으며, 700℃에서 10시간 동안 열처리하고, 3시간 동안 냉각시키는 과정으로 고온 열처리한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
비교예 7
고온 열처리 시 산소 분위기를 대신하여 대기(air) 분위기에서 열처리한 것을 제외하고는 실시예 1과 동일하게 실시하여 양극 활물질을 제조하였다.
[실험예 1: 공정별 XRD 분석]
실시예 1 및 비교예 1에서 제조된 양극 활물질을 Bruker AXS D4 Endeavor XRD을 이용하여 XRD 분석을 하였으며, 그 분석에 따른 결정 사이즈(crystallite), 결정 밀도(crystal density), 리튬 층에서의 Ni 양이온의 양이온 혼합(cation mixing)의 결과를 표 1에 나타내었다. 또한, BELSORP-mini를 이용하여 BET 표면적을 측정하였으며, 그 결과를 표 1에 나타내었다.
공정 양이온 혼합(%) 결정밀도(g/cm3) 결정 사이즈(nm) BET 표면적(m2/g)
실시예 1 수세 전 1.0 4.773 181 0.27
수세 1.4 4.757 182 1.51
고온 열처리 1.1 4.768 173 0.33
코팅 열처리 1.0 4.768 154 0.32
비교예 1 수세-코팅 열처리 1.4 4.722 159 0.68
상기 표 1를 참조하면, 본 발명에 따라 고온 열처리한 실시예 1의 경우 고온 열처리하지 않은 비교예 1에 비하여 양이온 혼합 양이 감소하고, 결정밀도가 증가하였으며, BET 비표면적이 감소됨을 알 수 있다.
[실험예 2: 리튬 부산물 잔류량 평가]
실시예 및 비교예에 의해 제조된 양극 활물질 10g을 물 100mL에 분산시킨 후 0.1M의 HCl로 적정하면서 pH 값의 변화를 측정하여 pH 적정 곡선(pH titration Curve)을 얻었다. 상기 pH 적정 곡선을 이용하여 각 양극 활물질 내의 LiOH 잔류량과 Li2CO3 잔류량을 계산하였으며, 이들을 합한 값을 전체 리튬 부산물 잔류량으로 평가하여 하기 표 2에 나타내었다.
LiOH 잔류량(wt%) Li2CO3 잔류량(wt%) 전체 리튬 부산물 잔류량(wt%)
실시예 1 0.234 0.070 0.304
실시예 2 0.278 0.171 0.449
비교예 1 0.356 0.200 0.556
비교예 2 0.211 0.334 0.545
비교예 3 0.246 0.272 0.518
비교예 4 0.328 0.305 0.633
비교예 5 0.360 0.236 0.596
비교예 6 0.305 0.214 0.519
비교예 7 0.779 0.605 1.384
상기 표 2를 참조하면, 고온 열처리를 하지 않은 비교예 1이나, 본 발명의 고온 열처리 조건을 만족하지 않는 비교예 2 내지 6에 비하여 실시예 1 및 2의 경우 잔류 리튬 부산물의 함량이 현저히 감소하였으며, 대기 분위기 하에서 열처리한 비교예 7의 경우 잔류 리튬 부산물의 함량이 고온 열처리 하지 않은 비교예 1에 비해서도 더 증가한 것을 확인할 수 있다.
[실험예 3: 열류량 평가]
시차주사열량측정기(SETARAM社 SENSYS Evo)를 이용하여 실시예 및 비교예의 양극 활물질의 온도에 따른 열류량(Heat Flow)을 측정하였다. 4.25V 충전된 전극 15mg을 채취하여 전해액 20㎕를 첨가한 후 분당 10℃의 승온 속도로 400℃까지 측정을 진행하였다.
측정 결과는 도 1에 도시하였다.
도 1을 참조하면, 실시예 1 및 2의 양극 활물질은 열류량 최대 값이 200mW 미만인데 반해, 비교예 1 내지 7의 양극 활물질은 열류량 최대 값이 400mW을 초과하고, 특히 비교예 1의 경우 600mW을 초과함을 확인할 수 있다. 이는 실시예 1 및 2의 양극 활물질이 비교예 1 내지 7의 양극 활물질에 비해 우수한 고온 안정성을 가짐을 보여주는 것이다.
[실험예 4: 전지 성능 평가]
실시예 및 비교예에 의해 제조된 각각의 양극 활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 95:2.5:2.5의 비율로 혼합하여 양극 합재(점도: 5000mPa·s)을 제조하고, 이를 알루미늄 집전체의 일면에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
또, 음극 활물질로서 천연흑연, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 85:10:5의 비율로 혼합하여 음극활물질층 형성용 조성물을 제조하고, 이를 구리 집전체의 일면에 도포하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
상기와 같이 제조된 리튬 이차 전지를 45℃에서 충전 종지 전압 4.25V, 방전 종지 전압 2.5V, 0.3C/0.3C 조건으로 30사이클 충방전을 실시하면서 용량 유지율(Capacity Retention[%]) 및 저항 증가율(DCIR[%])을 측정하였다. 측정 결과는 도 2 및 도 3에 나타내었다. 도 2는 용량 유지율을 나타낸 그래프이고, 도 3은 저항 증가율을 나타낸 그래프이다.
도 2 및 도 3을 통해, 실시예 1 및 2의 양극 활물질을 적용한 이차 전지의 경우, 비교예 1 내지 7의 양극 활물질을 적용한 이차 전지에 비하여 30회 충방전 시에 용량 감소율 및 저항 증가율이 현저하게 낮아 고온 수명 특성 및 저항 특성이 개선되었음을 확인할 수 있다.

Claims (20)

  1. 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 전이금속 산화물을 준비하는 단계;
    상기 리튬 전이금속 산화물을 수세하여 리튬 전이금속 산화물의 표면에 존재하는 리튬 불순물을 제거하는 단계; 및
    상기 수세 후의 리튬 전이금속 산화물을 고온 열처리하는 단계;를 포함하며,
    상기 고온 열처리하는 단계는, 온도를 승온시키며 열처리하는 승온 구간, 승온된 온도를 유지하며 열처리하는 유지 구간 및 온도를 냉각시키는 냉각 구간을 포함하며, 상기 승온 구간은 전체 고온 열처리 시간에 대하여 20 내지 30%인 이차전지용 양극 활물질의 제조방법.
  2. 제1항에 있어서,
    상기 유지 구간은 전체 고온 열처리 시간에 대하여 40 내지 50%인 이차전지용 양극 활물질의 제조방법.
  3. 제1항에 있어서,
    상기 냉각 구간은 전체 고온 열처리 시간에 대하여 20 내지 30%인 이차전지용 양극 활물질의 제조방법.
  4. 제1항에 있어서,
    상기 전체 고온 열처리 시간은 6 내지 10시간인 이차전지용 양극 활물질의 제조방법.
  5. 제1항에 있어서,
    상기 유지 구간의 열처리 온도는 600 내지 900℃인 이차전지용 양극 활물질의 제조방법.
  6. 제1항에 있어서,
    상기 승온 구간의 승온 속도는 2 내지 7℃/min인 이차전지용 양극 활물질의 제조방법.
  7. 제1항에 있어서,
    상기 냉각 구간은 자연 냉각시키는 이차전지용 양극 활물질의 제조방법.
  8. 제1항에 있어서,
    상기 고온 열처리는 산소 분압이 80% 이상인 산소 분위기 하에서 수행하는 이차전지용 양극 활물질의 제조방법.
  9. 제1항에 있어서,
    상기 수세는 상기 리튬 전이금속 산화물 100 중량부에 대하여 순수 50 내지 100 중량부를 사용하여 수행하는 이차전지용 양극 활물질의 제조방법.
  10. 제1항에 있어서,
    상기 수세는 -10 내지 30℃의 온도에서 수행하는 이차전지용 양극 활물질의 제조방법.
  11. 제1항에 있어서,
    상기 리튬 전이금속 산화물은 하기 화학식 1로 표시되는 이차전지용 양극 활물질의 제조방법.
    [화학식 1]
    LiaNi1 -x1-y1- z1Cox1M1 y1M2 z1M3 q1O2
    (상기 화학식 1에서,
    M1은 Mn 및 Al으로 이루어지는 군으로부터 선택되는 적어도 1종 이상이며,
    M2 M3는 각각 독립적으로 Ba, Ca, Zr, Ti, Mg, Ta, Nb, W 및 Mo으로 이루어지는 군으로부터 선택되는 적어도 1종 이상이고,
    1.0≤a≤1.5, 0<x1≤0.2, 0<y1≤0.2, 0≤z1≤0.1, 0≤q1≤0.1, 0<x1+y1+z1≤0.2이다.)
  12. 제1항에 있어서,
    상기 리튬 전이금속 산화물을 준비하는 단계는,
    하기 화학식 2로 표시되는 전구체 및 리튬 함유 원료 물질을 혼합하고, 700 내지 900℃에서 소성하는 방법으로 수행되는 것인 이차전지용 양극 활물질의 제조방법.
    [화학식 2]
    Ni1 -x2-y2- z2Cox2M1 y2M2 z2(OH)2
    (상기 화학식 2에서,
    M1은 Mn 및 Al으로 이루어지는 군으로부터 선택되는 적어도 1종 이상이며,
    M2는 Ba, Ca, Zr, Ti, Mg, Ta, Nb, W 및 Mo으로 이루어지는 군으로부터 선택되는 적어도 1종 이상이고,
    0<x2≤0.2, 0≤y2≤0.2, 0≤z2≤0.1, 0<x2+y2+z2≤0.2이다.)
  13. 제1항에 있어서,
    상기 고온 열처리된 리튬 전이금속 산화물과 H3BO3, B2O3 및 Al2O3로 이루어진 군에서 선택된 적어도 하나 이상을 혼합한 후, 200 내지 500℃ 온도에서 열처리하여 리튬 전이금속 산화물의 표면에 코팅층을 형성하는 단계;
    를 더 포함하는 이차전지용 양극 활물질의 제조방법.
  14. 니켈(Ni), 코발트(Co)를 포함하고, 망간(Mn) 및 알루미늄(Al)으로 이루어진 군에서 선택된 적어도 하나 이상을 포함하는 리튬 전이금속 산화물을 포함하며,
    상기 리튬 전이금속 산화물은 전체 전이금속 원소 중 니켈(Ni)의 함량이 80몰% 이상이고,
    상기 리튬 전이금속 산화물 구조 내의 리튬 층에서의 Ni 양이온의 양이온 혼합(cation mixing) 비율이 1.1% 이하인 이차전지용 양극 활물질.
  15. 제14항에 있어서,
    상기 양극 활물질에 존재하는 리튬 부산물의 함량이 0.3중량% 초과 내지 1중량% 이하인 이차전지용 양극 활물질.
  16. 제14항에 있어서,
    상기 리튬 전이금속 산화물은 층상 구조 상(layered structural phase) 및 스피넬-유사 구조 상(spinel-like structural phase)를 포함하는 이차전지용 양극 활물질.
  17. 제14항에 있어서,
    상기 양극 활물질의 결정 밀도(crystal density)는 4.76 g/cm3 이상인 이차전지용 양극 활물질.
  18. 제14항에 있어서,
    상기 양극 활물질의 BET 비표면적이 0.5m2/g 이하인 이차전지용 양극 활물질.
  19. 제14항 내지 제18항 중 어느 한 항의 이차전지용 양극 활물질을 포함하는 이차전지용 양극.
  20. 제19항의 이차전지용 양극을 포함하는 리튬 이차전지.
PCT/KR2017/015046 2016-12-28 2017-12-19 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지 WO2018124593A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780048071.0A CN109562957B (zh) 2016-12-28 2017-12-19 二次电池用正极活性材料、其制造方法以及包括其的锂二次电池
US16/316,554 US11299401B2 (en) 2016-12-28 2017-12-19 Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery including same
EP17886981.4A EP3473600B1 (en) 2016-12-28 2017-12-19 Method for manufacturing a positive electrode active material for a secondary battery
JP2019501925A JP6771804B2 (ja) 2016-12-28 2017-12-19 二次電池用正極活物質、その製造方法、及びそれを含むリチウム二次電池
US17/689,217 US20220185691A1 (en) 2016-12-28 2022-03-08 Positive Electrode Active Material For Secondary Battery, Manufacturing Method Thereof, And Secondary Battery Including Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160181022 2016-12-28
KR10-2016-0181022 2016-12-28
KR1020170174131A KR102133916B1 (ko) 2016-12-28 2017-12-18 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR10-2017-0174131 2017-12-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/316,554 A-371-Of-International US11299401B2 (en) 2016-12-28 2017-12-19 Positive electrode active material for secondary battery, manufacturing method thereof, and secondary battery including same
US17/689,217 Division US20220185691A1 (en) 2016-12-28 2022-03-08 Positive Electrode Active Material For Secondary Battery, Manufacturing Method Thereof, And Secondary Battery Including Same

Publications (1)

Publication Number Publication Date
WO2018124593A1 true WO2018124593A1 (ko) 2018-07-05

Family

ID=62709657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015046 WO2018124593A1 (ko) 2016-12-28 2017-12-19 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2018124593A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020208963A1 (ja) * 2019-04-12 2020-10-15 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
CN113711389A (zh) * 2019-05-13 2021-11-26 株式会社Lg化学 二次电池用正极活性材料、其制备方法以及包含所述正极活性材料的锂二次电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022995A (ja) * 2010-07-16 2012-02-02 Tdk Corp 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
KR20130102718A (ko) * 2012-03-08 2013-09-23 비나텍주식회사 층상 구조의 양극 활물질 제조 방법과 이 제조 방법에 의해 제조된 양극 활물질 및 이를 포함하는 하이브리드 커패시터
KR20160046292A (ko) * 2014-10-20 2016-04-28 히타치 긴조쿠 가부시키가이샤 리튬 이온 이차전지용 양극 활물질, 그 제조 방법 및 리튬 이온 이차전지
KR20160086228A (ko) * 2015-01-09 2016-07-19 주식회사 에코프로비엠 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022995A (ja) * 2010-07-16 2012-02-02 Tdk Corp 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
KR20130102718A (ko) * 2012-03-08 2013-09-23 비나텍주식회사 층상 구조의 양극 활물질 제조 방법과 이 제조 방법에 의해 제조된 양극 활물질 및 이를 포함하는 하이브리드 커패시터
KR20160046292A (ko) * 2014-10-20 2016-04-28 히타치 긴조쿠 가부시키가이샤 리튬 이온 이차전지용 양극 활물질, 그 제조 방법 및 리튬 이온 이차전지
KR20160086228A (ko) * 2015-01-09 2016-07-19 주식회사 에코프로비엠 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK, KANG-JOON ET AL.: "A High-capacity Li[Ni0.8Co0.06Mn0.14]O2 Positive Electrode with a Dual Concentration Gradient for Next -generation Lithium-ion Batteries", JOURNAL OF MATERIALS CHEMISTRY A, vol. 3, 21 September 2015 (2015-09-21), pages 22183 - 22190, XP055427733 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020208963A1 (ja) * 2019-04-12 2020-10-15 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
JP2020172422A (ja) * 2019-04-12 2020-10-22 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
CN113711389A (zh) * 2019-05-13 2021-11-26 株式会社Lg化学 二次电池用正极活性材料、其制备方法以及包含所述正极活性材料的锂二次电池

Similar Documents

Publication Publication Date Title
WO2020106024A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2019235885A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019147017A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019164313A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019050282A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2019168301A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019083221A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020116858A1 (ko) 이차전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 이차전지용 양극
WO2019212321A1 (ko) 양극 활물질의 세정 방법, 이를 포함하는 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2017095081A1 (ko) 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
WO2021015511A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 상기 제조 방법에 의해 제조된 양극 활물질
WO2021066576A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2021101281A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조 방법에 의해 제조된 양극 활물질
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2021096265A1 (ko) 리튬 이차전지용 양극 활물질 및 상기 양극 활물질의 제조 방법
WO2022039576A1 (ko) 양극 활물질의 제조방법
WO2020004988A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021154035A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2021112606A1 (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501925

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017886981

Country of ref document: EP

Effective date: 20190115

NENP Non-entry into the national phase

Ref country code: DE