WO2018124156A1 - 容量制御弁 - Google Patents

容量制御弁 Download PDF

Info

Publication number
WO2018124156A1
WO2018124156A1 PCT/JP2017/046838 JP2017046838W WO2018124156A1 WO 2018124156 A1 WO2018124156 A1 WO 2018124156A1 JP 2017046838 W JP2017046838 W JP 2017046838W WO 2018124156 A1 WO2018124156 A1 WO 2018124156A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
chamber
pressure
valve body
discharge
Prior art date
Application number
PCT/JP2017/046838
Other languages
English (en)
French (fr)
Inventor
康平 福留
大千 栗原
啓吾 白藤
英樹 東堂園
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to JP2018559562A priority Critical patent/JP7007299B2/ja
Priority to KR1020197019143A priority patent/KR102173480B1/ko
Priority to EP17889148.7A priority patent/EP3564528B1/en
Priority to CN201780078652.9A priority patent/CN110114573B/zh
Priority to US16/471,215 priority patent/US11085431B2/en
Publication of WO2018124156A1 publication Critical patent/WO2018124156A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • F16K11/044Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with movable valve members positioned between valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1845Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/185Discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1854External parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure

Definitions

  • the present invention relates to a capacity control valve that variably controls the capacity or pressure of a working fluid, and more particularly to a capacity control valve that controls the discharge amount of a variable capacity compressor used in an air conditioning system of an automobile or the like in accordance with the pressure.
  • a variable capacity compressor used in an air conditioning system of an automobile or the like is a rotating shaft that is driven to rotate by the rotational force of an engine, a swash plate that is variably connected to the rotating shaft, and a compression that is connected to the swash plate. For example, by changing the inclination angle of the swash plate, the stroke of the piston is changed to control the fluid discharge amount.
  • the inclination angle of the swash plate is determined by the suction pressure Ps of the suction chamber for sucking fluid, the discharge pressure Pd of the discharge chamber for discharging the fluid pressurized by the piston, using a capacity control valve driven to open and close by electromagnetic force, While using the control pressure Pc of the control chamber in which the swash plate is accommodated, the pressure in the control chamber can be appropriately controlled to change continuously.
  • variable capacity compressor when the variable capacity compressor is stopped and left in a stopped state for a long time, the suction pressure Ps, the discharge pressure Pd, and the control pressure Pc of the variable capacity compressor are set.
  • the control pressure Pc and the suction pressure Ps are much higher than the control pressure Pc and the suction pressure Ps when the variable displacement compressor is continuously driven (hereinafter sometimes simply referred to as “continuous drive”). It becomes very high. Since the discharge amount cannot be appropriately controlled at the control pressure Pc that is much higher than that during continuous driving, it is necessary to discharge the fluid in the control chamber and lower the control pressure Pc. Therefore, there is a capacity control valve that can discharge a fluid from the control chamber of the capacity variable compressor in a short time when the capacity variable compressor is started.
  • the capacity control valve 100 disclosed in Patent Document 1 includes a first valve chamber 120 formed in the middle of discharge-side passages 112a and 112b that connect the discharge chamber and the control chamber, and a suction chamber. And a second valve chamber 130 formed in the middle of the suction side passages 113a and 113b for communicating with the control chamber, and a third valve chamber 140 (positioned between the first valve chamber 120 and the second valve chamber 130). Pressure chamber), a first valve portion 152 that opens and closes the discharge-side passages 112a and 112b in the first valve chamber 120, and a suction-side passage 113a and 113b that opens and closes in the second valve chamber 130.
  • a valve body 150 that integrally has a second valve portion 153 that opens and closes by reciprocating movement thereof, and that communicates the second valve chamber 130 and the third valve chamber 140.
  • the adapter 170 provided at the free end of the pressure-sensitive body 160 in the expansion and contraction direction and having an annular seat surface, and moves integrally with the valve body 150 in the third valve chamber 140 and sits on and off the adapter 170.
  • the third valve portion 154 having an engagement surface that can open and close the suction-side passages 113a and 113b, the solenoid 180 that exerts an electromagnetic driving force on the valve body 150, and the inside of the third valve chamber 140 and the intermediate communication passage 155 communicate with each other. In this way, an auxiliary communication passage 190 formed in the adapter 170 is known.
  • the solenoid 180 of the displacement control valve 100 is energized and the valve body 150 moves when starting the variable displacement compressor, the first valve portion 152 moves in the valve closing direction and the second valve portion 153 moves in the valve opening direction.
  • the auxiliary communication passage 190 and the intermediate communication passage 155 communicate with each other from the third valve chamber 140 to the second valve chamber 130, the suction side passages 113a and 113b are opened.
  • the fluid in the high pressure state of the control chamber of the variable displacement compressor is discharged to the suction chamber through the auxiliary communication passage 190 and the intermediate communication passage 155.
  • the pressure sensitive body 160 is contracted by the control pressure Pc and the third valve portion 154 is detached from the adapter 170 and opened, the flow path to the intermediate communication path 155 is expanded. Can be discharged from the control chamber into the suction chamber, and the control pressure Pc can be reduced more quickly. Thereafter, when the control pressure Pc decreases to the pressure at the time of continuous driving, the pressure sensitive body 160 is elastically restored and extended, and the adapter 170 is seated on the third valve portion 154 and is closed.
  • Patent No. 5167121 page 12, Fig. 2
  • the adapter 170 and the third valve portion 154 are members that repeatedly contact and separate from each other, and the auxiliary communication path 190 is formed in the annular side wall portion of the adapter 170.
  • the degree of freedom of the diameter is low, and the strength of the adapter 170 is impaired by forming the auxiliary communication path 190.
  • the present invention has been made by paying attention to such problems, and can quickly reduce the pressure in the control chamber to the pressure at the time of continuous driving when starting the variable displacement compressor while maintaining high strength.
  • An object is to provide a displacement control valve.
  • the capacity control valve of the present invention is: A first valve chamber formed in the middle of a discharge-side passage that connects a discharge chamber that discharges fluid and a control chamber that controls the discharge amount of fluid, a suction chamber that connects the suction chamber that sucks fluid and the control chamber
  • a valve body comprising: a second valve chamber formed in the middle of the side passage; and a pressure chamber formed at a position sandwiching the first valve chamber together with the second valve chamber;
  • a first valve portion that opens and closes the discharge-side passage in the first valve chamber and a second valve portion that opens and closes the suction-side passage in the second valve chamber, and has a reciprocating motion
  • a capacity control valve comprising a solenoid that exerts an electromagnetic driving force in a direction to close the first valve portion with respect to the valve body,
  • the valve main body is provided with at least a part of a first communication path having one end communicating with the pressure chamber and the other end facing the second valve chamber
  • the valve body is a rigid body, the degree of freedom in forming at least part of the first communication path is high, and even if at least part of the first communication path is formed in the valve body.
  • the valve body can maintain high strength. Due to this first communication path, when the variable displacement compressor is started, a fluid having a higher pressure than the pressure during continuous driving in the control chamber flows into the second valve chamber via the first communication path, and the suction chamber To be discharged. For these reasons, it is possible to quickly reduce the pressure in the control chamber to the pressure during continuous driving while maintaining high strength.
  • the first communication path has a hole extending in the axial direction of the valve body. According to this feature, since the valve body is a rigid body, the structural strength is high even if the hole is formed in the axial direction.
  • the valve body includes a hollow second communication passage that connects the second valve chamber and the pressure chamber in the axial direction,
  • the pressure chamber is provided at the free end of the pressure sensitive body that exerts an urging force in the direction of opening the first valve portion by its extension and contracts as the surrounding pressure increases, and the expansion and contraction direction of the pressure sensitive body.
  • an adapter having an annular seating surface
  • the valve body includes a third valve portion that integrally moves in the pressure chamber and includes the second communication path, The third valve portion has an annular engagement surface that opens and closes the suction side passage by being seated on and removed from the seat surface of the adapter.
  • the second communication passage communicates with the pressure chamber by contraction of the pressure sensitive body as the pressure in the pressure chamber increases, so that the second communication passage does not interfere with the flow of the first communication passage.
  • the pressure can be finely adjusted.
  • the solenoid includes a coil that generates a magnetic field when energized, and a fixed iron core that closes one end of the valve body, A seat surface on which the second valve portion is seated at an end portion of the fixed core that closes one end of the valve body, and a through hole that is formed to penetrate the radial direction and form a part of the first communication passage. It is characterized by having. According to this feature, since the fixed iron core is a rigid body, the structural strength is high even if a through hole forming a part of the first communication path is formed in the radial direction, so that the second valve portion can be seated stably. Can be made.
  • the capacity control valve according to the embodiment will be described with reference to FIGS.
  • the left and right sides as viewed from the front side of FIG. 2 will be described as the left and right sides of the capacity control valve.
  • the variable capacity compressor M includes a discharge chamber 2, a suction chamber 3, a control chamber 4, and a plurality of cylinders 4 a, and a discharge that allows the discharge chamber 2 and the control chamber 4 to communicate with each other.
  • a communication passage 5 serving as a side passage
  • a communication passage 6 serving as a suction side passage for communicating the suction chamber 3 and the control chamber 4
  • a communication passage 7 serving both as a discharge side passage and as a suction side passage. It has a defining casing 1.
  • the casing 1 incorporates the capacity control valve V of the present invention.
  • variable capacity compressor M the discharge chamber 2 and the suction chamber 3 are connected to an external refrigeration / cooling circuit.
  • the refrigeration / cooling circuit referred to here is a condenser (condenser) C, an expansion valve EV, and an evaporator (evaporator) E arranged in order, and constitutes the main part of the air conditioning system. ing.
  • variable capacity compressor M is provided with a communication passage 9 that directly communicates the control chamber 4 and the suction chamber 3, and the communication passage 9 balances the pressures of the suction chamber 3 and the control chamber 4.
  • a fixed orifice 9a is provided.
  • the variable capacity compressor M is a driven pulley 8 connected to a V-belt (not shown) outside the casing 1, and is rotatable freely protruding from the inside of the control chamber 4 to the outside of the casing 1 and fixed to the driven pulley 8.
  • the inclination angle of the swash plate 8b is variable according to the control pressure Pc. This is because a force is constantly applied to the swash plate 8b by the spring 8f and the hinge mechanism 8e, but the stroke width of the plurality of pistons 8c changes due to the control pressure Pc. This is because the tilt angle of 8b is limited. Therefore, the higher the control pressure Pc, the smaller the inclination angle of the swash plate 8b.
  • the hinge mechanism 8e restricts the swash plate 8b so that the swash plate 8b is substantially perpendicular to the rotation shaft 8a ( In a state slightly inclined from the vertical).
  • the inclination angle of the swash plate 8b increases as the control pressure Pc is lower.
  • the hinge mechanism 8e restricts the angle, and the angle at that time becomes the maximum inclination angle.
  • the stroke amount of the piston 8c is minimized, the pressure applied to the fluid by the cylinder 4a and the piston 8c is minimized, and the cooling capacity of the air conditioning system is minimized.
  • the stroke width of the piston 8c is maximized, the pressure applied to the fluid by the cylinder 4a and the piston 8c is maximized, and the cooling capacity of the air conditioning system is maximized.
  • variable displacement compressor M adjusts the discharge amount by adjusting the electromagnetic pressure of the displacement control valve V by, for example, duty control and adjusting the control pressure Pc in the control chamber 4. Specifically, the current supplied to the coil 87 of the capacity control valve V is adjusted, the opening degree of the first valve portion 52 and the second valve portion 53 described later is adjusted, and the current flows into the control chamber 4 or is controlled. The control pressure Pc is adjusted by adjusting the fluid flowing out of the chamber 4. With this adjustment, the variable displacement compressor M changes the stroke amount of the plurality of pistons 8c.
  • the capacity control valve V includes a valve body 10 made of a metal material or a resin material, a valve body 50 that is reciprocally disposed in the valve body 10, and the valve body 50 in one direction.
  • a pressure-sensitive body 60 that biases in the (left direction), a solenoid 80 that is connected to the valve body 10 and applies an electromagnetic driving force to the valve body 50, and the like are provided.
  • sectional views of the capacity control valve V shown in FIGS. 2 to 5 are shown by sections cut by two planes orthogonal to each other at the axis.
  • the solenoid 80 includes a casing 81 connected to the valve body 10, a sleeve 82 closed at one end, a cylindrical fixed iron core 83 disposed inside the casing 81 and the sleeve 82, and reciprocation inside the fixed iron core 83.
  • a drive rod 84 whose tip is connected to the valve body 50, a movable iron core 85 fixed to the other end of the drive rod 84, and a movable iron core 85 in a direction to open the first valve portion 52.
  • An urging coil spring 86 and an exciting coil 87 wound around a bobbin on the outside of the sleeve 82 are provided.
  • the fixed iron core 83 is formed of a rigid body that is a magnetic material such as iron or silicon steel.
  • One end of the fixed iron core 83 is formed with an annular flange portion 83d extending outward in the radial direction.
  • the flange portion 83d is inserted into an opening 11 of the valve body 10 described later, and has a large diameter surface of the flange portion 83d.
  • 83 g is fixed in a state of being in close contact with the inner peripheral surface 11 a of the opening 11.
  • the flange portion 83d is formed with a recess 83e that is recessed toward the movable core 85 side.
  • a small-diameter surface 83b that is formed substantially parallel to the axial direction and has a smaller diameter than the large-diameter surface 83g, and from the small-diameter surface 83b on the movable core 85 side of the small-diameter surface 83b.
  • a vertical surface 83f formed substantially perpendicular to the outer diameter direction is formed, and the outer diameter side of the vertical surface 83f is continuous with the large diameter surface 83g.
  • a through-hole 83a that penetrates in the radial direction is formed in the flange portion 83d from the small-diameter surface 83b to the recess 83e.
  • the valve body 10 is formed in a substantially cylindrical shape, and has an opening 11 having a concave shape in cross-section in which a solenoid 80 is assembled and fixed at one end, and an opening into which a partition adjusting member 16 described later is press-fitted at the other end.
  • a small-diameter guide surface 15 that slidably contacts a valve body 50 described later is formed on the inner periphery of the portion 17.
  • the partition adjusting member 16 constitutes a part of the valve body 10 and defines a third valve chamber 40 to be described later, and will be described later by adjusting the position where the partition adjusting member 16 is press-fitted into the opening 17.
  • the sensitivity of the pressure sensitive body 60 can be adjusted.
  • the valve body 10 includes communication passages 12a, 12b, and 14a that function as discharge-side passages, and a communication passage 13a that functions as a suction-side passage together with a first communication passage 90 and a second communication passage 55 of the valve body 50, which will be described later.
  • a third valve chamber 40 pressure chamber formed as described above. That is, the communication passage 14a and the third valve chamber 40 are formed so as to serve as both a discharge side passage and a suction side passage.
  • the communication passage 13b is specifically formed by the valve body 10 and the flange portion 83d and the recessed portion 83e of the fixed iron core 83.
  • valve body 10 is formed with a first communication passage 90 that allows the second valve chamber 30 and the third valve chamber 40 to communicate with each other.
  • the first communication passage 90 is formed by assembling and fixing the through hole 90a passing through the valve body 10 in the axial direction, the through hole 83a passing through the fixed iron core 83 in the radial direction, and the fixed iron core 83 to the valve body 10.
  • the connected space 91 is configured.
  • the communication passages 12a and 13a are formed in two equal parts in the circumferential direction of the valve body 10, and the through holes 90a are formed at positions shifted by 90 degrees in the circumferential direction of the valve body 10 from the communication passages 12a and 13a.
  • the shape of the valve body 10 is configured to be small.
  • the through-hole 90a does not interfere with the communication passages 12a and 13a, the through-hole 90a does not need to be formed at a position shifted by 90 degrees in the circumferential direction of the valve body 10, and a plurality of through-holes 90a are formed. It may be.
  • connection space 91 is an annular space formed by assembling and fixing the flange portion 83d of the fixed iron core 83 to the opening portion 11 formed in a substantially concave shape in a cross-sectional view of the valve body 10.
  • the inner peripheral surface 11a of the portion 11 and the small diameter surface 83b and the vertical surface 83f of the flange portion 83d are defined and formed.
  • connection space 91 is annular, the through hole 90a is connected to the connection space 91 and the first communication path 90 can be formed by positioning and fixing the fixed iron core 83 to the valve body 10.
  • the valve body 50 is formed of a main valve body 56 and a sub valve body 57, and a first valve portion 52 provided on one end side of the main valve body 56 and a second valve provided on the other end side of the main valve body 56.
  • the third valve portion 54 provided in the sub valve body 57 connected to the main valve body 56 by retrofitting is provided on the opposite side of the second valve portion 53 with the first valve portion 52 interposed therebetween.
  • the sub-valve element 57 is connected to the main valve element 56 and thus moves integrally with the main valve element 56.
  • valve body 50 is formed in a substantially cylindrical shape including a second communication passage 55 that penetrates from the second valve portion 53 to the third valve portion 54 in the axial direction and functions as a suction side passage.
  • a valve part engages with a seat surface (valve seat), and comprises a valve.
  • valve body 50 closes the discharge side passage by the first valve portion 52 being seated on the first seat surface 12c formed at the edge of the communication passage 12b of the first valve chamber 20, and the second valve portion 53 is seated on the second seat surface 83c formed at the end of the fixed iron core 83 in the second valve chamber 30, whereby the suction side passage can be closed.
  • the main valve body 56 is formed with a diameter smaller than that of the second valve portion 53 in the direction of the solenoid 80 from the second valve portion 53 and is inserted into the recess 83e, and is positioned in the direction of the solenoid 80 from the neck portion 56b and larger than the neck portion 56b.
  • the head 56 a has a diameter, and the head 56 a is inserted into the recessed portion 83 e of the fixed iron core 83.
  • a driving rod 84 is fixed to the head 56a at the center in the radial direction of the head 56a.
  • the neck portion 56b of the main valve body 56 has through holes 56c radially formed in the circumferential direction and is arranged in four equal parts in the circumferential direction, and communicates with each through hole 56c, the second valve chamber 30, and the second communication passage 55. Yes.
  • the sub-valve element 57 is formed in a substantially cylindrical shape, and includes a third valve portion 54 formed in a divergent shape on the pressure-sensitive body 60 side.
  • the third valve portion 54 is inserted through the communication passage 12b,
  • An annular engagement surface 54c is provided on the outer peripheral edge thereof to face an adapter 70 described later.
  • the pressure-sensitive body 60 includes a bellows 61, an adapter 70, and the like. One end of the bellows 61 is fixed to the partition adjusting member 16, and the other end (free end) holds the adapter 70.
  • the adapter 70 is formed in a substantially upward U-shape in cross-sectional view, with an annular third seating surface 70c seated and removed facing the engagement surface 54c of the third valve portion 54 at the tip.
  • the pressure sensitive body 60 is disposed in the third valve chamber 40 and urges the first valve portion 52 to open by its expansion (expansion), and also increases the pressure in the third valve chamber 40.
  • the third seat surface 70c of the adapter 70 operates so as to be separated from the engagement surface 54c of the third valve portion 54.
  • the capacity control valve V is energized (hereinafter also referred to as “energized state”).
  • energized state A mode in which the state is switched to a state where power is not supplied (hereinafter may be referred to as a “non-energized state”) and the state where power is not supplied will be described in detail.
  • the valve body 50 is pressed toward the solenoid 80 by the pressure-sensitive body 60, so that the second valve portion 53 is the second of the fixed iron core 83. Sitting on the seat surface 83c, the communication passages 13a and 13b, which are suction side passages, are closed. On the other hand, the first valve portion 52 is separated from the first seat surface 12c formed at the edge of the communication passage 12b, and communication passages 12a, 12b and 14a (illustrated by dotted arrows in FIG. 3) which are discharge side passages. Opened.
  • the fluid in the discharge chamber 2 is discharged by opening the communication passages 12a, 12b, and 14a that are discharge side passages by the capacity control valve V. It flows into the control chamber 4 from the chamber 2 via the capacity control valve V. This is because the discharge pressure Pd is higher than the control pressure Pc, and the discharge pressure Pd and the control pressure Pc are in equilibrium.
  • control pressure Pc is higher than the control pressure Pc before the non-energized state due to the discharge pressure Pd flowing into the control chamber 4, the control pressure Pc is higher than the suction pressure Ps. In other words, Ps ⁇ Pc ⁇ Pd. Therefore, the fluid in the control chamber 4 flows into the suction chamber 3 via the communication path 9 and the fixed orifice 9a. The inflow of these fluids is performed until the discharge pressure Pd, the suction pressure Ps, and the control pressure Pc are balanced.
  • the capacity control valve V that has been left for a long time has the second valve chamber 30 cut off by the second valve portion 53 and the second seat surface 83c, but the solenoid 80 side of the cut off second valve chamber 30 is Since the second valve chamber 30 and the third valve chamber 40 are communicated with each other by the first communication passage 90, and the inside of the cut-off second valve chamber 30 on the communication passage 13a side is also communicated with the suction chamber 3, The pressure in the two-valve chamber 30 is also balanced by the discharge pressure Pd, the suction pressure Ps, and the control pressure Pc. Further, the second communication passage 55 is also connected to the solenoid 80 side of the second valve chamber 30, so that the pressure is similarly equalized.
  • the fluid is, for example, a fluid for a refrigerant such as carbon dioxide and is in a gaseous state in the control chamber 4 during normal operation, but the fluid may be liquefied when left for a long time.
  • variable displacement compressor M When the variable displacement compressor M is started in a state where the discharge pressure Pd, the suction pressure Ps, and the control pressure Pc are equal, the control pressure Pc at this time is much higher than the control pressure Pc during continuous driving. Therefore, the stroke of the piston 8c is minimized, and the swash plate 8b is substantially perpendicular to the rotating shaft 8a.
  • the variable capacity compressor M starts energizing the capacity control valve V in accordance with its activation.
  • the capacity control valve V is configured such that the first valve portion 52 is seated on the first seat surface 12c formed at the edge of the communication passage 12b and the communication passage 12a, which is the discharge side passage, 12b and 14a are closed.
  • the second valve portion 53 is separated from the second seat surface 83c of the fixed iron core 83, and the communication passages 13a and 13b, which are suction side passages, are opened.
  • the capacity control valve V opens the communication passages 13a and 13b, which are suction side passages, so that the communication passage 14a, the third valve chamber 40, and the first communication passage 90 (through-hole 90a) are sequentially arranged from the control chamber 4.
  • the connecting space 91 and the through hole 83a), the second valve chamber 30 and the through hole 56c, the communication path 13b, and the flow path to the communication path 13a (shown by solid line arrows in FIGS. 4 and 5) are formed.
  • the discharge pressure Pd increases by the amount of fluid that has flowed in.
  • the fluid in the control chamber 4 flows from the communication passage 14 a of the capacity control valve V, and flows from the third valve chamber 40 to the second valve chamber 30 via the first communication passage 90. Then, it passes through the communication passages 13 b and 13 a in this order, and flows into the suction chamber 3.
  • the valve seat 70c When the pressure in the third valve chamber 40 is low when the valve is left unattended, the valve seat 70c does not move away from the engagement surface 54c. Even when the three-valve portion 54 is in the closed state, the first communication passage 90 is in communication, so that the liquefied fluid can be discharged.
  • the second communication passage 55 is opened, so that the communication passage 14a, the third valve chamber 40 and the second communication passage 55, the second valve chamber 30 and the through hole 56c, in order from the control chamber 4, Since the communication path 13b and the flow path to the communication path 13a (illustrated by a one-dot broken line arrow in FIG. 5) are formed, the suction-side path that connects the second valve chamber 30 and the third valve chamber 40 is the first communication path.
  • the passage 90 and the second communication passage 55 become two, and the cross-sectional area of the suction side passage increases. That is, the fluid in the control chamber 4 is more easily moved to the suction chamber 3 than when only the first communication passage 90 is provided. Therefore, since the discharge of the fluid in the control chamber 4 is promoted, the control pressure Pc is rapidly lowered, and the fluid is moved until the control pressure Pc reaches an equilibrium state with the suction pressure Ps.
  • the pressure in the third valve chamber 40 decreases as the control pressure Pc decreases.
  • the adapter 70 presses the adapter 70 toward the third valve portion 54, and as shown in FIG.
  • the third seating surface 70c of the adapter 70 is seated on the engaging surface 54c of the portion 54, and the communication between the second communication passage 55 and the third valve chamber 40 is closed.
  • the capacity control valve V in the present embodiment has a high degree of freedom when forming at least a part of the first communication path 90 because the valve body 10 is a rigid body, and the first communication path Even if at least a part of 90 is formed on the valve body 10, the valve body 10 can maintain high strength. Since the first communication passage 90 having one end communicating with the third valve chamber 40 and the other end facing the second valve chamber 30 is provided, the variable displacement compressor M is started via the first communication passage 90 when the variable displacement compressor M is started. Thus, the fluid in a state higher than the pressure during continuous driving in the control chamber 4 flows into the second valve chamber 30 and is discharged into the suction chamber 3. For these reasons, the capacity control valve V can quickly reduce the pressure in the control chamber 4 to the pressure during continuous driving while maintaining high strength.
  • the first communication passage 90 is formed not in the adapter 70 and / or the subvalve element 57 but in the valve main body 10 and the fixed iron core 83, the degree of freedom of the diameter at the time of formation is high, and the structure High strength. Further, the valve main body 10 and the fixed iron core 83 are fixed members, do not operate, and have high structural strength, so that there is little risk of damage.
  • the capacity control valve V forms a valve in the adapter 70 and the sub-valve element 57 so that they are in contact with each other. Since it is a thing, there exists a possibility of damaging and a through-hole with a large diameter could not be provided.
  • the first communication passage 90 is formed not only in the valve body 10 but also in a radial direction at an end portion of the fixed iron core 83 that closes one end of the valve body 10, and the fixed iron core 83 is made of iron or silicon. It is formed from a rigid body that is a magnetic material such as steel. Therefore, the fixed iron core 83 has a high structural strength even if the first communication passage 90 is formed in the radial direction, so that the second valve portion 53 can be seated stably.
  • the first communication passage 90 communicates with the second valve chamber 30, and the second communication passage 55 communicates with the second valve chamber 30. Therefore, as the control pressure Pc increases, the pressure in the second communication passage 55 also increases. Thereby, since the pressure in the contraction direction of the pressure sensitive body 60 is increased from the second communication path 55 to the adapter 70, the pressure sensitive body 60 is easily contracted.
  • the present invention is not limited thereto, and the lube main body 10 and the fixed It may be formed separately from the iron core 83.
  • a part of the first communication path 90 has been described as an embodiment formed at the end of the fixed iron core 83 that closes one end of the valve body 10.
  • the present invention is not limited to this, and the first communication path 90 is connected to the valve body 10.
  • the valve body 10 may be formed with an axial hole and a radial hole communicating with the axial hole.
  • the first communication passage 90 may be formed in a separate member different from the valve body 10 and the fixed iron core 83.
  • the 1st communicating path 90 is the through-hole 90a
  • a plurality of 83a may be formed as long as the structural strength of the valve body 10 or the fixed iron core 83 allows, and the number of the through holes 90a and 83a may be different, and the size of the diameter may be different. May be different, and the shape of the through hole may not be substantially circular when viewed in cross section.
  • the communication passages 12a and 13a have been described as being formed in the valve body 10 in a two-dimensional arrangement. However, the present invention is not limited to this, and only one communication passage 12a and 13a is formed on the same side of the valve body 10 respectively. Alternatively, a plurality of elements may be formed in the circumferential direction of the valve body 10 as long as structural strength permits.
  • the valve body 50 has been described as an aspect including the second communication passage 55, but is not limited thereto, and may be solid.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

容量可変型圧縮機の起動時に制御室内の圧力を迅速に連続駆動時の圧力に低下させることができる容量制御弁を提供する。 吐出側通路の途中に形成された第1弁室20と、吸入側通路の途中に形成された第2弁室30と、第1弁室20を第2弁室30と共に挟む位置に形成された第3弁室40と、を備えるバルブ本体10と、第1弁室20にて吐出側通路を開閉する第1弁部52と、第2弁室30にて吸入側通路を開閉する第2弁部53と、を一体的に有し、その往復動によりお互いに逆向きの開閉動作を行う弁体50と、弁体50に対して第1弁部52を閉弁させる方向に電磁駆動力を及ぼすソレノイド80を備える容量制御弁Vであって、バルブ本体10には、その一端が第3弁室40に連通しその他端が第2弁室30に臨む第1連通路90を構成する貫通孔90aが設けられている。

Description

容量制御弁
 本発明は、作動流体の容量又は圧力を可変制御する容量制御弁に関し、特に、自動車等の空調システムに用いられる容量可変型圧縮機等の吐出量を圧力に応じて制御する容量制御弁に関する。
 自動車等の空調システムに用いられる容量可変型圧縮機は、エンジンの回転力により回転駆動される回転軸、回転軸に対して傾斜角度を可変に連結された斜板、斜板に連結された圧縮用のピストン等を備え、斜板の傾斜角度を変化させることにより、ピストンのストロークを変化させて流体の吐出量を制御するものである。この斜板の傾斜角度は、電磁力により開閉駆動される容量制御弁を用いて、流体を吸入する吸入室の吸入圧力Ps、ピストンにより加圧された流体を吐出する吐出室の吐出圧力Pd、斜板を収容した制御室の制御圧力Pcを利用しつつ、制御室内の圧力を適宜制御することで連続的に変化させ得るようになっている。
 ところで、このような容量可変型圧縮機においては、容量可変型圧縮機が停止した後、長時間停止状態に放置されると、容量可変型圧縮機の吸入圧力Ps、吐出圧力Pd及び制御圧力Pcが均圧となり、制御圧力Pc及び吸入圧力Psは容量可変型圧縮機の連続駆動時(以下、単に「連続駆動時」と表記することもある)における制御圧力Pc及び吸入圧力Psよりも遙かに高い状態となる。連続駆動時よりもはるかに高い状態にある制御圧力Pcでは吐出量を適切に制御できないため、制御室内の流体を排出し制御圧力Pcを低下させる必要がある。このことから、容量可変型圧縮機の起動時に、容量可変型圧縮機の制御室内から流体を短時間で排出することが可能な容量制御弁がある。
 特許文献1に示される容量制御弁100は、図6に示されるように、吐出室と制御室とを連通させる吐出側通路112a,112bの途中に形成された第1弁室120と、吸入室と制御室とを連通させる吸入側通路113a,113bの途中に形成された第2弁室130と、第1弁室120を第2弁室130と共に挟む位置に形成された第3弁室140(圧力室)と、を備えるバルブ本体110と、第1弁室120にて吐出側通路112a,112bを開閉する第1弁部152と、第2弁室130にて吸入側通路113a,113bを開閉する第2弁部153と、を一体的に有し、その往復動によりお互いに逆向きの開閉動作を行う弁体150と、第2弁室130と第3弁室140とを連通させる弁体150内に形成された中間連通路155(第2連通路)と、第3弁室140内に配置されてその伸長により第1弁部152を開弁させる方向に付勢力を及ぼすと共に周囲の圧力増加に伴って収縮する感圧体160と、感圧体160の伸縮方向の自由端に設けられて環状の座面を有するアダプタ170と、第3弁室140にて弁体150と一体的に移動すると共にアダプタ170との着座及び離脱により吸入側通路113a,113bを開閉し得る係合面を有する第3弁部154と、弁体150に電磁駆動力を及ぼすソレノイド180と、第3弁室140内と中間連通路155とを連通するようにアダプタ170に形成された補助連通路190と、が備えられたものが知られている。
 容量可変型圧縮機の起動時に、容量制御弁100のソレノイド180に通電され弁体150が移動すると、第1弁部152が閉弁方向に移動すると同時に第2弁部153が開弁方向に移動することで、補助連通路190及び中間連通路155によって第3弁室140から第2弁室130にかけて連通されるため、吸入側通路113a,113bが開放された状態となる。これにより、容量可変型圧縮機の制御室の高圧状態にある流体が補助連通路190と中間連通路155を通って吸入室に排出される。また、制御圧力Pcにより感圧体160が収縮され、第3弁部154をアダプタ170から離脱させて開弁した状態であれば、中間連通路155への流路が拡張されているため、流体を制御室内から吸入室内へ排出させてより速やかに制御圧力Pcを低下させることが可能となる。その後、制御圧力Pcが連続駆動時の圧力に低下すると、感圧体160は弾性復帰して伸長し、アダプタ170は第3弁部154と着座して閉弁するようになっている。
特許第5167121号(第12頁、第2図)
 しかしながら、特許文献1にあっては、アダプタ170及び第3弁部154は、互いに接離を繰り返し行う部材であり、アダプタ170の環状の側壁部分に補助連通路190を形成していることから、補助連通路190を形成するにあたって径の大きさの自由度が低く、補助連通路190を形成することでアダプタ170の強度が損なわれていた。
 本発明は、このような問題点に着目してなされたもので、高い強度を保持しつつ容量可変型圧縮機の起動時に制御室内の圧力を迅速に連続駆動時の圧力に低下させることができる容量制御弁を提供することを目的とする。
 前記課題を解決するために、本発明の容量制御弁は、
 流体を吐出する吐出室と流体の吐出量を制御する制御室とを連通させる吐出側通路の途中に形成された第1弁室と、流体を吸入する吸入室と前記制御室とを連通させる吸入側通路の途中に形成された第2弁室と、前記第1弁室を前記第2弁室と共に挟む位置に形成された圧力室と、を備えるバルブ本体と、
 前記第1弁室にて前記吐出側通路を開閉する第1弁部と、前記第2弁室にて前記吸入側通路を開閉する第2弁部と、を一体的に有し、その往復動によりお互いに逆向きの開閉動作を行う弁体と、
 前記弁体に対して前記第1弁部を閉弁させる方向に電磁駆動力を及ぼすソレノイドを備える容量制御弁であって、
 前記バルブ本体には、その一端が前記圧力室に連通しその他端が前記第2弁室に臨む第1連通路の少なくとも一部が設けられていることを特徴としている。
 この特徴によれば、バルブ本体は剛体であることから、第1連通路の少なくとも一部を形成する際の自由度が高く、かつ第1連通路の少なくとも一部がバルブ本体に形成されてもバルブ本体は高い強度を保持することができる。この第1連通路により、容量可変型圧縮機の起動時に、第1連通路を介して、制御室内における連続駆動時の圧力よりも高圧状態にある流体が第2弁室内に流入し、吸入室に排出される。これらのことから、高い強度を保持しつつ迅速に制御室内の圧力を連続駆動時の圧力に低下させることができる。
 前記第1連通路は、前記バルブ本体の軸方向に延びる孔を有することを特徴としている。
 この特徴によれば、バルブ本体は剛体であるため、軸方向に孔を形成しても構造強度が高い。
 前記弁体は、前記第2弁室と前記圧力室とを軸方向に連通させる中空の第2連通路を備え、
 前記圧力室は、その伸長により前記第1弁部を開弁させる方向に付勢力を及ぼすと共に周囲の圧力増加に伴って収縮する感圧体と、前記感圧体の伸縮方向の自由端に設けられて環状の座面を有するアダプタと、を備え、
 前記弁体は、前記圧力室にて一体的に移動し前記第2連通路を備える第3弁部を備えており、
 前記第3弁部は、前記アダプタの座面との着座及び離脱により前記吸入側通路を開閉する環状の係合面を有することを特徴としている。
 この特徴によれば、圧力室の圧力増加に伴って感圧体が収縮することで第2連通路が圧力室と連通するため、第1連通路の流れと干渉し合うことなく第2連通路を介して第2弁室に流入させることができるとともに、細やかな圧力調整を行うことができる。
 前記ソレノイドは、通電により磁場を発生するコイルと、前記バルブ本体の一端を閉塞する固定鉄心と、を備え、
 前記固定鉄心の前記バルブ本体の一端を閉塞する端部には、前記第2弁部が着座する座面と、径方向に貫通して形成され前記第1連通路の一部をなす貫通孔と、を備えていることを特徴としている。
 この特徴によれば、固定鉄心は剛体であるため、第1連通路の一部をなす貫通孔が径方向に形成されていても構造強度が高いことから、第2弁部を安定して着座させることができる。
本発明に係る容量制御弁を備えた斜板式容量可変型圧縮機を示す概略構成図である。 本発明の実施形態に係るコイルに通電がなされ第2弁部が開放された容量制御弁の全体を示す断面図である。 コイルに通電がなされず第1弁部が開放された容量制御弁のバルブ本体の拡大図である。 コイルに通電がなされ第2弁部が開放された容量制御弁のバルブ本体の拡大図である。 コイルに通電がなされ第2弁部及び第3弁部が開放された容量制御弁のバルブ本体の拡大図である。 従来技術1のコイルに通電がなされ第2弁部が開放された容量制御弁の全体を示す断面図である。
 本発明に係る容量制御弁を実施するための形態を実施例に基づいて以下に説明する。
 実施例に係る容量制御弁につき、図1から図5を参照して説明する。以下、図2の正面側から見て左右側を容量制御弁の左右側として説明する。
 容量可変型圧縮機Mは、図1に示すように、吐出室2と、吸入室3と、制御室4と、複数のシリンダ4aとを備え、吐出室2と制御室4とを連通させる吐出側通路としての連通路5と、吸入室3と制御室4とを連通させる吸入側通路としての連通路6と、吐出側通路としての役割及び吸入側通路としての役割を兼ねる連通路7とを画定するケーシング1を有している。このケーシング1には、本発明の容量制御弁Vが組み込まれている。
 また、容量可変型圧縮機Mは、吐出室2及び吸入室3が外部の冷凍・冷却回路に接続されている。尚、ここでいう冷凍・冷却回路とは、コンデンサ(凝縮器)C、膨張弁EV、エバポレータ(蒸発器)Eが順次に配列して設けられたものであり、空調システムの主要部を構成している。
 また、容量可変型圧縮機Mは、制御室4と吸入室3とを直接連通する連通路9が設けられており、連通路9には吸入室3と制御室4との圧力を平衡調整させるための固定オリフィス9aが設けられている。
 また、容量可変型圧縮機Mは、ケーシング1の外部にて図示しないVベルトに接続される被動プーリ8と、制御室4内からケーシング1の外部に突出し被動プーリ8に固定される回動自在な回転軸8aと、ヒンジ機構8eにより偏心状態で回転軸8aに連結された斜板8bと、各々のシリンダ4a内において往復動自在に嵌合された複数のピストン8cと、斜板8bと各々のピストン8cを連結する複数の連結部材8dと、回転軸8aに挿通されるスプリング8fとを備えている。
 斜板8bは、制御圧力Pcに応じて傾斜角度が可変となっている。これは、斜板8bにはスプリング8fとヒンジ機構8eにより常時力が作用しているが、制御圧力Pcにより複数のピストン8cのストローク幅が変化するため、複数のピストン8cのストローク幅に斜板8bの傾斜角度が制限されることによる。そのため、制御圧力Pcが高圧であるほど斜板8bの傾斜角度は小さくなるが、一定以上の圧力となると、ヒンジ機構8eによって制限がなされ、斜板8bが回転軸8aに対して略垂直状態(垂直よりわずかに傾斜した状態)となる。尚、制御圧力Pcが低圧であるほど斜板8bの傾斜角度は大きくなるが、一定以下の圧力となると、ヒンジ機構8eによって制限がなされ、その時の角度が最大傾斜角度となる。
 尚、斜板8bが回転軸8aに対して略垂直である時、ピストン8cのストローク量が最小となり、シリンダ4aとピストン8cによる流体に対する加圧が最小となり、空調システムの冷却能力は最小となり、斜板8bが最大傾斜角度である時、ピストン8cのストローク幅が最大となり、シリンダ4aとピストン8cによる流体に対する加圧が最大となり、空調システムの冷却能力は最大となる。
 また、容量可変型圧縮機Mは、容量制御弁Vの電磁力を例えばデューティ制御により調整して、制御室4内の制御圧力Pcを調整することで、吐出量を調整している。具体的には、容量制御弁Vのコイル87に通電する電流を調整し、後述する第1弁部52及び第2弁部53の開度調整を行い、制御室4内に流入する、または制御室4から流出する流体を調整することで制御圧力Pcを調整している。この調整により、容量可変型圧縮機Mは、複数のピストン8cのストローク量を変化させている。
 容量制御弁Vは、図2に示すように、金属材料または樹脂材料により形成されたバルブ本体10と、バルブ本体10内に往復動自在に配置された弁体50と、弁体50を一方向(左方向)に付勢する感圧体60と、バルブ本体10に接続されて弁体50に電磁駆動力を及ぼすソレノイド80等を備えている。
 尚、以下説明の便宜上、図2~5に示される容量制御弁Vの断面図は、軸心で直交する2つの平面により切断した断面により示している。
 ソレノイド80は、バルブ本体10に連結されるケーシング81と、一端部が閉じたスリーブ82と、ケーシング81及びスリーブ82の内側に配置された円筒状の固定鉄心83と、固定鉄心83の内側において往復動自在にかつその先端が弁体50に連結される駆動ロッド84と、駆動ロッド84の他端側に固着された可動鉄心85と、第1弁部52を開弁させる方向に可動鉄心85を付勢するコイルスプリング86と、スリーブ82の外側にボビンを介して巻回された励磁用のコイル87等を備えている。
 固定鉄心83は、鉄やケイ素鋼等の磁性材料である剛体から形成されている。固定鉄心83の一端は、径方向外側に延びる環状のフランジ部83dが形成されており、このフランジ部83dは、後述するバルブ本体10の開口部11に挿嵌され、フランジ部83dの大径面83gは開口部11の内周面11aに緊密に当接された状態で固定されている。また、フランジ部83dには可動鉄心85側に窪む凹部83eが形成されている。フランジ部83dの軸方向一端側かつ径方向外側には、軸方向に略平行に形成され大径面83gよりも小径の小径面83bと、小径面83bの可動鉄心85側にて小径面83bから外径方向に略垂直に形成された垂直面83fが形成されており、垂直面83fの外径側は大径面83gに連なっている。さらに、フランジ部83dには、小径面83bから凹部83eにかけて、径方向に貫通する貫通孔83aが形成されている。
バルブ本体10は、略円筒形状に形成されており、一端にはソレノイド80が組み付け固定される断面視凹字状の開口部11と、他端には後述する仕切調整部材16が圧入される開口部17と、その内周には後述する弁体50を摺動可能に当接する小径のガイド面15と、が形成されている。
 仕切調整部材16は、バルブ本体10の一部を構成すると共に後述する第3弁室40を画定しており、仕切調整部材16が開口部17に圧入される位置を調整することで、後述する感圧体60の感度を調整することができる。
 また、バルブ本体10は、吐出側通路として機能する連通路12a,12b,14aと、後述する第1連通路90及び弁体50の第2連通路55と共に吸入側通路として機能する連通路13a,13b,14aと、吐出側通路の途中に形成された第1弁室20と、吸入側通路の途中に形成された第2弁室30と、第1弁室20を第2弁室30と共に挟むように形成された第3弁室40(圧力室)とを備えている。すなわち、連通路14a及び第3弁室40は、吐出側通路及び吸入側通路の一部を兼ねるように形成されている。尚、連通路13bは、詳しくはバルブ本体10と固定鉄心83のフランジ部83d及び凹部83eにより形成されている。
 また、バルブ本体10には、第2弁室30と第3弁室40とを連通する第1連通路90が形成されている。第1連通路90は、バルブ本体10を軸方向に貫通する貫通孔90aと、固定鉄心83を径方向に貫通する貫通孔83aと、バルブ本体10に固定鉄心83が組み付け固定することにより形成された連結空間91により構成されている。
 また、連通路12a,13aがバルブ本体10の周方向に2等配に形成され、貫通孔90aは連通路12a,13aとはバルブ本体10の周方向において90度ずれた位置に形成されていることで、バルブ本体10の形状が小さく構成されている。尚、貫通孔90aは、連通路12a,13aに干渉しない位置であれば、連通路12a,13aとはバルブ本体10の周方向において90度ずれた位置に形成されていなくともよく、複数形成されていてもよい。
 連結空間91は、バルブ本体10の断面視略凹字状に形成された開口部11に、固定鉄心83のフランジ部83dを組み付け固定することで形成された環状の空間であり、詳しくは、開口部11の内周面11aと、フランジ部83dの小径面83b及び垂直面83fとにより画成され形成されている。
 これら貫通孔90a,83a及び連結空間91は、貫通孔90a,83aがそれぞれ連結空間91に連通している。尚、連結空間91が環状であることから、バルブ本体10に固定鉄心83を位置決め固定することで、貫通孔90aは連結空間91に連結され、第1連通路90を形成することができる。
 弁体50は、主弁体56と、副弁体57から形成されており、主弁体56の一端側に備わる第1弁部52と、主弁体56の他端側に備わる第2弁部53と、第1弁部52を挟んで第2弁部53の反対側に後付けにより主弁体56に連結された副弁体57に備わる第3弁部54等を備えている。尚、副弁体57は、主弁体56に連結されているため、主弁体56と一体的に移動する。
 また、弁体50は、その軸線方向において第2弁部53から第3弁部54まで貫通し吸入側通路として機能する第2連通路55を備える略円筒状に形成されている。尚、弁部は、座面(弁座)と係合して弁を構成するものである。
 また、弁体50は、第1弁部52が第1弁室20の連通路12bの縁部に形成された第1座面12cに着座することで吐出側通路を閉鎖し、第2弁部53が第2弁室30において、固定鉄心83の端部に形成された第2座面83cに着座することで、吸入側通路を閉鎖することができる。
 主弁体56は、第2弁部53からソレノイド80方向において第2弁部53より小径に形成され凹部83eに挿通される首部56bと、首部56bよりソレノイド80方向に位置し首部56bよりも大径の頭部56aを有しており、頭部56aは、固定鉄心83の凹部83e内に挿入されている。また、頭部56aには駆動ロッド84が頭部56aの径方向の中心に固定されている。
 また、主弁体56は、バルブ本体10のガイド面15に案内にされながら往復動するため、正確な動作を繰り返し行うことができる。
 また、主弁体56の首部56bは、径方向に貫通孔56cが周方向において4等配に形成されており、各貫通孔56c、第2弁室30及び第2連通路55と連通している。
 副弁体57は、略円筒状に形成されており、感圧体60側に末広がり状に形成された第3弁部54を備え、第3弁部54は、連通路12bを挿通すると共に、その外周縁において後述するアダプタ70と対向する環状の係合面54cを備えている。
 感圧体60は、ベローズ61と、アダプタ70等を備えており、ベローズ61は、その一端が仕切調整部材16に固定され、その他端(自由端)にアダプタ70を保持している。このアダプタ70は、先端に第3弁部54の係合面54cと対向して着座及び離脱する環状の第3座面70cを備える、断面視略上向きコ字状に形成されている。
 感圧体60は、第3弁室40内に配置されて、その伸長(膨張)により第1弁部52を開弁させる方向に付勢すると共に、第3弁室40内における圧力の上昇に伴って収縮することでアダプタ70の第3座面70cが第3弁部54の係合面54cより離間するように作動する。
 これまで、容量制御弁Vの構成について説明してきたが、これより図1~4を用いて、容量制御弁Vが通電されている状態(以降、「通電状態」と表記することもある)から通電されていない状態(以降、「非通電状態」と表記することもある)に切り替えられ、さらに非通電状態が継続される場合の態様について詳しく説明する。
 容量制御弁Vは、非通電時、図3に示されるように、弁体50は感圧体60によりソレノイド80方向へと押圧されることで、第2弁部53が固定鉄心83の第2座面83cに着座し、吸入側通路である連通路13a,13bが閉鎖される。一方、第1弁部52は連通路12bの縁部に形成された第1座面12cより離間し、吐出側通路である連通路12a,12b,14a(図3において点線の矢印で図示)が開放される。
 通電されていたソレノイド80のコイル87が非通電となった時には、吐出室2内の流体は、容量制御弁Vにより吐出側通路である連通路12a,12b,14aが開放されることで、吐出室2から容量制御弁Vを経由して制御室4に流入していく。これは、吐出圧力Pdが制御圧力Pcより高い圧力であり、吐出圧力Pdと制御圧力Pcが平衡となるためにおこるものである。
 制御圧力Pcは、制御室4に吐出圧力Pdが流入することで非通電状態前の制御圧力Pcよりも高い圧力となっているため、吸入圧力Psよりも高い圧力となっており、関係式で表すとPs<Pc≦Pdとなっている。そのため、制御室4内の流体は、連通路9及び固定オリフィス9aを経由して吸入室3に流入していく。これら流体の流入は、吐出圧力Pdと吸入圧力Psと制御圧力Pcが平衡するまで行われる。故に、長時間放置されると、吐出圧力Pdと吸入圧力Psと制御圧力Pcが平衡し均圧(Ps=Pc=Pd)となり、吸入圧力Psと制御圧力Pcは、連続駆動時における圧力よりもはるかに高い状態となっている。
 尚、長時間放置された容量制御弁Vは、第2弁室30が第2弁部53と第2座面83cによって寸断されているが、寸断された第2弁室30のソレノイド80側は第2弁室30と第3弁室40とが第1連通路90によって連通され、かつ、寸断された第2弁室30の連通路13a側内も吸入室3に連通されているため、第2弁室30の圧力も吐出圧力Pdと吸入圧力Psと制御圧力Pcと平衡し均圧となっている。また、第2連通路55についても、第2弁室30のソレノイド80側に連通されているため、同様に均圧となっている。これらのことから、容量制御弁V内部は、吐出圧力Pdと吸入圧力Psと制御圧力Pcと平衡し均圧となっている。尚、流体は例えば二酸化炭素等の冷媒用の流体であり、通常運転時において制御室4内においてはガス状であるが、長時間放置されることで流体が液化することがある。
 ついで、容量可変型圧縮機Mを起動させた際の、制御室4から流体が排出されるまでの態様について図1~5を用いて詳しく説明する。
 容量可変型圧縮機Mは、吐出圧力Pdと吸入圧力Psと制御圧力Pcが均圧である状態で起動させると、このときの制御圧力Pcが連続駆動時の制御圧力Pcよりもはるかに高い圧力を有しているため、ピストン8cのストロークが最小となり、斜板8bが回転軸8aに対して略垂直となっている。また、容量可変型圧縮機Mは、自身の起動に合わせて容量制御弁Vに通電を開始する。
 容量制御弁Vは、図3に示される非通電状態にあるとき、ソレノイド80のコイル87に通電されることで励磁され磁力が発生する。この磁力が感圧体60及びソレノイド80のコイルスプリング86の押圧力を上回ると、図2,4に示されるように、磁力を受けた固定鉄心83に可動鉄心85が吸着され、可動鉄心85に一端が連結された駆動ロッド84が従動し、駆動ロッド84の他端に連結された弁体50が感圧体60方向へと移動する。
 これにより、容量制御弁Vは、図4に示されるように、第1弁部52が連通路12bの縁部に形成された第1座面12cに着座し吐出側通路である連通路12a,12b,14aが閉鎖される。一方、弁体50が感圧体60方向へと摺動することで、第2弁部53が固定鉄心83の第2座面83cより離間し吸入側通路である連通路13a,13bが開放される。
 また、容量制御弁Vは、吸入側通路である連通路13a,13bが開放されることで、制御室4から順に、連通路14a、第3弁室40、第1連通路90(貫通孔90a・連結空間91・貫通孔83a)、第2弁室30及び貫通孔56c、連通路13b、連通路13aまでの流路(図4、図5において実線の矢印で図示)が形成されている。
 吸入圧力Psは、シリンダ4aにてピストン8cにより流体が圧縮され、吐出室2へと圧縮された流体が流入することから、均圧状態であったときよりも起動直後の圧力が低下している。一方、吐出室2は、流入してきた流体の分だけ吐出圧力Pdが上昇する。
 このようにして、容量可変型圧縮機Mの起動前まで均圧であった吐出圧力Pdと吸入圧力Psと制御圧力Pcとの間で圧力の差が発生する。要約すると、容量可変型圧縮機Mの起動直後においては、関係式がPs<Pc≦Pdとなる。これにより、制御室4内の流体は、容量制御弁Vを介して吸入室3への流入を開始する。
 制御室4内の流体は、図4に示されるように、容量制御弁Vの連通路14aから流入し、第3弁室40から第1連通路90を経由して第2弁室30に流入し、連通路13b,13aの順に通過し、吸入室3に流入していく。
 また、制御室4内の流体は長時間放置されることで液化することがある。また、上述の通り長時間放置されると、吐出圧力Pdと吸入圧力Psと制御圧力Pcが平衡し均圧(Ps=Pc=Pd)となるため、第3弁室40内の圧力が上昇することで、図5に示されるように、ベローズ61が収縮し、第3弁部54の係合面54cからアダプタ70の座面70cが離間すると、第2連通路55が第2弁室30から第3弁室40を連通した状態となる。この状態で容量可変型圧縮機Mが起動されることで、第2連通路55を介して液化した流体の排出が可能となっている。尚、放置されている際の第3弁室40内の圧力が低い場合には弁座70cは係合面54cから離間しないものの、容量制御弁Vは、容量可変型圧縮機Mの起動後に第3弁部54が閉弁状態であっても、第1連通路90が連通した状態であるため、液化した流体の排出が可能となっている。
 容量制御弁Vは、第2連通路55が開放されることで、制御室4から順に、連通路14a、第3弁室40及び第2連通路55、第2弁室30及び貫通孔56c、連通路13b、連通路13aまでの流路(図5において一点破線の矢印で図示)が形成されるため、第2弁室30と第3弁室40とを連通する吸入側通路が第1連通路90と第2連通路55との2本となり、吸入側通路の断面積が増加する。すなわち、第1連通路90のみであった時よりも制御室4内の流体が吸入室3に移動しやすい状態となる。故に、制御室4内の流体の排出が促進されるため、制御圧力Pcの下降が速やかに行われ、制御圧力Pcが吸入圧力Psと平衡状態となるまで流体の移動が行われる。
 容量制御弁Vは、制御圧力Pcが下降することで、第3弁室40内の圧力も下降していく。アダプタ70は、第3弁室40内の圧力がベローズ61の付勢力を下回ると、ベローズ61がアダプタ70を第3弁部54に向かって押圧し、図4に示されるように、第3弁部54の係合面54cにアダプタ70の第3座面70cが着座し、第2連通路55と第3弁室40との連通が閉鎖される。
 以上説明してきたように、本実施例における容量制御弁Vは、バルブ本体10は剛体であることから、第1連通路90の少なくとも一部を形成する際の自由度が高く、第1連通路90の少なくとも一部がバルブ本体10に形成されてもバルブ本体10は高い強度を保持することができる。その一端が第3弁室40に連通しその他端が第2弁室30に臨む第1連通路90を備えていることにより、容量可変型圧縮機Mの起動時に、第1連通路90を介して、制御室4内における連続駆動時の圧力よりも高圧状態にある流体が第2弁室30内に流入し、吸入室3に排出される。これらのことから、容量制御弁Vは、高い強度を保持したまま速やかに制御室4内の圧力を連続駆動時の圧力に低下させることができる。
 また、第1連通路90は、アダプタ70又は/及び副弁体57ではなく、バルブ本体10及び固定鉄心83に形成されているため、形成の際の径の大きさの自由度が高く、構造強度が高い。また、バルブ本体10及び固定鉄心83は、固定された部材であって動作することがなく、構造強度も高いことからも、破損の虞が少ない。
 一方、特許文献1のように、アダプタ70又は/及び副弁体57に貫通孔が設けてあった場合、容量制御弁Vがアダプタ70と副弁体57は弁を構成し、互いに接離しあうものであるため、破損する虞があり、径の大きな貫通孔を設けることができなかった。
 また、特許文献1では、制御圧力Pcが感圧体160を収縮させ、中間連通路155への流路が拡張されたとき、制御室の流体は第3弁部154とアダプタ170が離間した間と補助連通路190との近接した2か所から中間連通路155内に流入する。そして、それぞれの流れは中間連通路155内で合流するが、2つの流れの方向が異なっているため、合流の際にエネルギ損失が生じており、制御圧力Pcを迅速に低下させることの妨げとなっていた。これに対して本実施例では、第1連通路90及び第2連通路55は、共に開放された状態であるとき、共に独立した流路であることから互いに干渉し合うことがなく、すなわち、第1連通路90と第2連通路55とのそれぞれの流れが、第1連通路90内、または第2連通路55内で合流することがないため、エネルギ損失が生ぜず、制御圧力Pcを迅速に低下させ、迅速に流体を第2弁室30に流入させることができる。
 また、第1連通路90は、バルブ本体10だけでなく、一部がバルブ本体10の一端を閉塞する固定鉄心83の端部において径方向に形成されており、固定鉄心83は、鉄やケイ素鋼等の磁性材料である剛体から形成されている。故に、固定鉄心83は、第1連通路90が径方向に形成されていても構造強度が高いことから、第2弁部53を安定して着座させることができる。
 また、容量制御弁Vは、通電されていないときであっても、第1連通路90が第2弁室30に連通しており、第2弁室30に第2連通路55が連通されているため、制御圧力Pcの上昇に応じて、第2連通路55内の圧力も上昇する。これにより、第2連通路55からアダプタ70に対して、感圧体60の収縮方向への圧力が高まった状態となるため、感圧体60が収縮しやすい状態となっている。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 第2弁部53が着座する第2座面83cは、バルブ本体10の一端を閉塞する固定鉄心83の端部に形成されている態様として説明したが、これに限らず、ルブ本体10及び固定鉄心83と異なる別体に形成されていてもよい。
 第1連通路90の一部は、バルブ本体10の一端を閉塞する固定鉄心83の端部に形成されている態様として説明したが、これに限らず、第1連通路90はバルブ本体10にのみ形成されていてもよく、例えばバルブ本体10に軸方向の孔と該軸方向の孔に連通する径方向の孔が穿設される態様としてもよい。また、第1連通路90はバルブ本体10及び固定鉄心83とは異なる別部材に形成されていてもよい。
 また、第1連通路90は、連結空間91に連通する貫通孔90a,83aがそれぞれ一つである態様のように説明をしたが、これに限らず、第1連通路90は貫通孔90a,83aが共に、バルブ本体10又は固定鉄心83の構造強度が許す限り複数形成されていてもよく、また、それぞれの貫通孔90a,83aが形成される数は異なっていてもよく、径の大きさが異なっていてもよく、貫通孔の形状は断面視略円状でなくともよい。
 また、連通路12a,13aは、バルブ本体10に2等配に形成されている態様のように説明をしたが、これに限らず、バルブ本体10の同じ側にそれぞれ一つだけ形成されていてもよく、バルブ本体10の周方向に構造強度が許す限り複数形成されていてもよい。
 弁体50は、第2連通路55を備える態様として説明をしたが、これに限らず、中実であってもよい。
2        吐出室
3        吸入室
4        制御室
10       バルブ本体
12a,12b  連通路(吐出側通路)
12c      座面
13a,13b  連通路(吸入側通路)
14a      連通路(吐出側通路及び吸入側通路)
20       第1弁室
30       第2弁室
40       第3弁室(圧力室)
50       弁体
52       第1弁部
53       第2弁部
54       第3弁部
54c      係合面
55       第2連通路
60       感圧体
70       アダプタ
70c      座面
80       ソレノイド
83       固定鉄心
83a      貫通孔(第1連通路)
83c      座面
87       コイル
90       第1連通路
90a      貫通孔(第1連通路)
91       連結空間(第1連通路)
Pc       制御圧力
Pd       吐出圧力
Ps       吸入圧力
V        容量制御弁

Claims (4)

  1.  流体を吐出する吐出室と流体の吐出量を制御する制御室とを連通させる吐出側通路の途中に形成された第1弁室と、流体を吸入する吸入室と前記制御室とを連通させる吸入側通路の途中に形成された第2弁室と、前記第1弁室を前記第2弁室と共に挟む位置に形成された圧力室と、を備えるバルブ本体と、
     前記第1弁室にて前記吐出側通路を開閉する第1弁部と、前記第2弁室にて前記吸入側通路を開閉する第2弁部と、を一体的に有し、その往復動によりお互いに逆向きの開閉動作を行う弁体と、
     前記弁体に対して前記第1弁部を閉弁させる方向に電磁駆動力を及ぼすソレノイドを備える容量制御弁であって、
     前記バルブ本体には、その一端が前記圧力室に連通しその他端が前記第2弁室に臨む第1連通路の少なくとも一部が設けられていることを特徴とする容量制御弁。
  2.  前記第1連通路は、前記バルブ本体の軸方向に延びる孔を有することを特徴とする請求項1に記載の容量制御弁。
  3.  前記弁体は、前記第2弁室と前記圧力室とを軸方向に連通させる中空の第2連通路を備え、
     前記圧力室は、その伸長により前記第1弁部を開弁させる方向に付勢力を及ぼすと共に周囲の圧力増加に伴って収縮する感圧体と、前記感圧体の伸縮方向の自由端に設けられて環状の座面を有するアダプタと、を備え、
     前記弁体は、前記圧力室にて一体的に移動し前記第2連通路を備える第3弁部を備えており、
     前記第3弁部は、前記アダプタの座面との着座及び離脱により前記吸入側通路を開閉する環状の係合面を有することを特徴とする請求項1または2に記載の容量制御弁。
  4.  前記ソレノイドは、通電により磁場を発生するコイルと、前記バルブ本体の一端を閉塞する固定鉄心と、を備え、
     前記固定鉄心の前記バルブ本体の一端を閉塞する端部には、前記第2弁部が着座する座面と、径方向に貫通して形成され前記第1連通路の一部をなす貫通孔と、を備えていることを特徴とする請求項1ないし3のいずれかに記載の容量制御弁。
PCT/JP2017/046838 2016-12-28 2017-12-27 容量制御弁 WO2018124156A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018559562A JP7007299B2 (ja) 2016-12-28 2017-12-27 容量制御弁
KR1020197019143A KR102173480B1 (ko) 2016-12-28 2017-12-27 용량 제어 밸브
EP17889148.7A EP3564528B1 (en) 2016-12-28 2017-12-27 Capacity control valve
CN201780078652.9A CN110114573B (zh) 2016-12-28 2017-12-27 容量控制阀
US16/471,215 US11085431B2 (en) 2016-12-28 2017-12-27 Displacement control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016255383 2016-12-28
JP2016-255383 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018124156A1 true WO2018124156A1 (ja) 2018-07-05

Family

ID=62707612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046838 WO2018124156A1 (ja) 2016-12-28 2017-12-27 容量制御弁

Country Status (6)

Country Link
US (1) US11085431B2 (ja)
EP (1) EP3564528B1 (ja)
JP (1) JP7007299B2 (ja)
KR (1) KR102173480B1 (ja)
CN (1) CN110114573B (ja)
WO (1) WO2018124156A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112955684A (zh) * 2018-11-07 2021-06-11 伊格尔工业股份有限公司 容量控制阀
WO2022030314A1 (ja) * 2020-08-04 2022-02-10 イーグル工業株式会社
CN114080502A (zh) * 2019-07-24 2022-02-22 三电汽车部件株式会社 可变容量压缩机的控制阀

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11994120B2 (en) 2018-07-12 2024-05-28 Eagle Industry Co., Ltd. Capacity control valve
US11555489B2 (en) 2018-07-12 2023-01-17 Eagle Industry Co., Ltd. Capacity control valve
EP3822482B1 (en) 2018-07-12 2023-08-16 Eagle Industry Co., Ltd. Capacity control valve
WO2020013169A1 (ja) 2018-07-13 2020-01-16 イーグル工業株式会社 容量制御弁
EP3835576B1 (en) 2018-08-08 2024-03-27 Eagle Industry Co., Ltd. Capacity control valve
CN112534136A (zh) 2018-08-08 2021-03-19 伊格尔工业股份有限公司 容量控制阀
EP3892856B1 (en) 2018-12-04 2024-03-27 Eagle Industry Co., Ltd. Capacity control valve
JP7391486B2 (ja) 2019-03-01 2023-12-05 イーグル工業株式会社 容量制御弁
KR20210136128A (ko) 2019-04-03 2021-11-16 이구루코교 가부시기가이샤 용량 제어 밸브
JP7438643B2 (ja) 2019-04-03 2024-02-27 イーグル工業株式会社 容量制御弁

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267039A (ja) * 2001-03-07 2002-09-18 Saginomiya Seisakusho Inc 電磁制御弁
JP2003301772A (ja) * 2002-04-09 2003-10-24 Sanden Corp 可変容量圧縮機
WO2007119380A1 (ja) * 2006-03-15 2007-10-25 Eagle Industry Co., Ltd. 容量制御弁
JP2009079533A (ja) * 2007-09-26 2009-04-16 Sanden Corp 可変容量圧縮機のための容量制御システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165055A (ja) 1999-12-09 2001-06-19 Toyota Autom Loom Works Ltd 制御弁及び容量可変型圧縮機
EP1478148A1 (de) 2003-05-15 2004-11-17 Siemens Aktiengesellschaft Drahtloses Mehrträgerkommunikationsverfahren mit dynamischer Aufteilung der Frequenzbreite und Anzahl der Subbänder
JP2006022768A (ja) 2004-07-09 2006-01-26 Sanden Corp 可変容量斜板式圧縮機の吐出容量制御機構
KR101175201B1 (ko) * 2005-02-24 2012-08-20 이구루코교 가부시기가이샤 용량제어밸브
JP4516892B2 (ja) 2005-06-08 2010-08-04 イーグル工業株式会社 容量可変型圧縮機の容量制御弁
CN104685211B (zh) * 2013-01-31 2016-12-28 伊格尔工业股份有限公司 容量控制阀

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267039A (ja) * 2001-03-07 2002-09-18 Saginomiya Seisakusho Inc 電磁制御弁
JP2003301772A (ja) * 2002-04-09 2003-10-24 Sanden Corp 可変容量圧縮機
WO2007119380A1 (ja) * 2006-03-15 2007-10-25 Eagle Industry Co., Ltd. 容量制御弁
JP5167121B2 (ja) 2006-03-15 2013-03-21 イーグル工業株式会社 容量制御弁
JP2009079533A (ja) * 2007-09-26 2009-04-16 Sanden Corp 可変容量圧縮機のための容量制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3564528A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112955684A (zh) * 2018-11-07 2021-06-11 伊格尔工业股份有限公司 容量控制阀
CN112955684B (zh) * 2018-11-07 2023-05-16 伊格尔工业股份有限公司 容量控制阀
CN114080502A (zh) * 2019-07-24 2022-02-22 三电汽车部件株式会社 可变容量压缩机的控制阀
CN114080502B (zh) * 2019-07-24 2023-09-26 三电有限公司 可变容量压缩机的控制阀
WO2022030314A1 (ja) * 2020-08-04 2022-02-10 イーグル工業株式会社

Also Published As

Publication number Publication date
US11085431B2 (en) 2021-08-10
EP3564528A1 (en) 2019-11-06
KR20190088543A (ko) 2019-07-26
US20200088178A1 (en) 2020-03-19
CN110114573B (zh) 2021-06-29
CN110114573A (zh) 2019-08-09
JP7007299B2 (ja) 2022-01-24
EP3564528B1 (en) 2022-08-03
JPWO2018124156A1 (ja) 2019-10-31
EP3564528A4 (en) 2020-06-17
KR102173480B1 (ko) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2018124156A1 (ja) 容量制御弁
US11156301B2 (en) Capacity control valve
JP5557901B2 (ja) 容量制御弁
JP4700048B2 (ja) 容量制御弁
JP7068320B2 (ja) 電磁弁
WO2019131482A1 (ja) 容量制御弁
JPWO2012077439A1 (ja) 容量制御弁
US11242940B2 (en) Capacity control valve
JP7162995B2 (ja) 容量制御弁
JP2009299516A (ja) 可変容量圧縮機
JP7220962B2 (ja) 容量制御弁
JP2005351207A (ja) 可変容量圧縮機用制御弁
WO2019159999A1 (ja) 容量制御弁
JP7438643B2 (ja) 容量制御弁
JP7220963B2 (ja) 容量制御弁
JP6953102B2 (ja) 容量制御弁
JP2016169697A (ja) 可変容量型斜板式圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197019143

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017889148

Country of ref document: EP

Effective date: 20190729