WO2018123963A1 - レドックスフロー電池システム及びその運転方法 - Google Patents

レドックスフロー電池システム及びその運転方法 Download PDF

Info

Publication number
WO2018123963A1
WO2018123963A1 PCT/JP2017/046417 JP2017046417W WO2018123963A1 WO 2018123963 A1 WO2018123963 A1 WO 2018123963A1 JP 2017046417 W JP2017046417 W JP 2017046417W WO 2018123963 A1 WO2018123963 A1 WO 2018123963A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium
particle size
battery system
flow battery
redox flow
Prior art date
Application number
PCT/JP2017/046417
Other languages
English (en)
French (fr)
Inventor
ティンティン シュウ
みゆき 冨田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US16/474,826 priority Critical patent/US20190348700A1/en
Priority to EP17887917.7A priority patent/EP3565049A4/en
Priority to CN201780080062.XA priority patent/CN110114922A/zh
Priority to JP2018517648A priority patent/JP6353180B1/ja
Publication of WO2018123963A1 publication Critical patent/WO2018123963A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery system that performs charging / discharging by circulating an electrolyte containing vanadium as an active material in a battery cell, and an operation method thereof.
  • a redox flow battery supplies and circulates a positive electrode electrolyte and a negative electrode electrolyte to battery cells each having a positive electrode, a negative electrode, and a diaphragm interposed between both electrodes, and a power converter (for example, an AC / DC converter) ) To charge and discharge.
  • a power converter for example, an AC / DC converter
  • an aqueous solution containing a metal ion (active material) whose valence changes by oxidation / reduction is usually used.
  • a vanadium redox flow battery using vanadium (V) as an active material for a positive electrode and a negative electrode is well known.
  • Patent Document 1 discloses that a vanadium compound that is an active material includes a fine dispersoid having a diameter of 100 ⁇ m or less as an active material, and the total concentration of vanadium in the active material is higher than 2.5 mol / L. Vanadium electrolytes are disclosed.
  • the vanadium compound in the electrolyte gradually precipitates in the battery cell or in the electrolyte as a precipitate, and in some cases, the crystal growth causes a lump.
  • the precipitate is formed.
  • the fluidity of the electrolytic solution cannot be maintained, for example, the deposit is clogged in the battery cell, and the energy density and the battery capacity are reduced.
  • the crystal growth of the precipitate has progressed, and the ratio of the active material that is difficult to react with the electrode has increased in a relatively short period of time, resulting in a significant decrease in energy density and battery capacity.
  • a vanadium compound which is an active material, contains a fine dispersoid having a diameter of 100 ⁇ m or less as an active material, thereby realizing a high concentration vanadium electrolytic solution.
  • further improvements are required in terms of suppressing a decrease in energy density and a decrease in battery capacity due to crystal growth of precipitates.
  • the present invention provides a redox flow battery system and an operation method thereof capable of stably obtaining a high energy density and battery capacity based on the concentration even when a high concentration vanadium electrolyte is used. With the goal.
  • the present inventors suppress a decrease in energy density and battery capacity by disposing a particle size adjusting means for adjusting the particle size of the vanadium compound dispersed in a particulate form in the path for circulating the electrolyte.
  • a particle size adjusting means for adjusting the particle size of the vanadium compound dispersed in a particulate form in the path for circulating the electrolyte.
  • the present invention is a redox flow battery system in which an electrolytic solution containing vanadium as an active material is circulated in a battery cell to perform charge and discharge, and the electrolytic solution includes a dissolved vanadium compound and vanadium dispersed in the form of particles.
  • the total vanadium concentration of both vanadium compounds is 1.7 mol / L or more, and the particle size of the vanadium compound dispersed in the particulate form is reduced in the circulation path through which the electrolyte circulates. It is a redox flow battery system provided with an adjustment means.
  • the particle size adjusting means adjusts the cumulative 90% particle size (D90) of the volume-based particle size distribution of the vanadium compound dispersed in the particle shape to 5 ⁇ m or less. It is a redox flow battery system of description.
  • the circulation path includes an electrolytic solution tank that stores the electrolytic solution, an outward piping that sends the electrolytic solution from the tank to the battery cell, and the electrolytic solution that is fed from the battery cell to the electrolytic cell.
  • the present invention provides the electrolyte according to any one of (1) to (3), wherein the total vanadium concentration of both the vanadium compounds is 2.5 mol / L or more and 4.0 mol / L or less. It is a redox flow battery system of description.
  • the present invention is the redox flow battery system according to any one of (1) to (4), wherein the particle size adjusting means is a homogenizer.
  • the cathode electrolyte includes one or both of tetravalent and pentavalent vanadium compounds, and the anode electrolyte includes one or both of bivalent and trivalent.
  • the redox flow battery system according to any one of (1) to (5), comprising a vanadium compound.
  • the present invention is a method for operating a redox flow battery system in which an electrolytic solution containing vanadium as an active material is circulated in a battery cell to perform charging and discharging, and the electrolytic solution is in the form of particles with dissolved vanadium compound.
  • a redox flow comprising a particle size adjusting step of reducing the particle size of the vanadium compound dispersed in a particulate form, the total vanadium concentration of both the vanadium compounds being 1.7 mol / L or more. This is an operation method of the battery system.
  • the present invention adjusts the cumulative 90% particle size (D90) of the volume-based particle size distribution of the vanadium compound dispersed in the particle shape to 5 ⁇ m or less. It is an operating method of the described redox flow battery system.
  • a redox flow battery system and a method for operating the redox flow battery system that can stably obtain high energy density and battery capacity based on the concentration are provided. can do.
  • FIG. 1 is a configuration diagram illustrating an example of a configuration of a redox flow battery system according to the present embodiment.
  • the redox flow battery system 1 according to the present embodiment is used in a form called a battery cell stack in which a battery cell 2 is a minimum unit, which is a single unit or a plurality of layers, and vanadium is used as an active material for the battery cell 2.
  • Charging / discharging is performed by circulating the electrolyte solution.
  • the redox flow battery system 1 is charged with power from an AC power source 4 such as a power plant via an AC / DC converter 3, and the charged power is supplied to a load power source 5 via the AC / DC converter 3. To discharge.
  • an AC power source 4 such as a power plant via an AC / DC converter 3
  • the charged power is supplied to a load power source 5 via the AC / DC converter 3.
  • the redox flow battery system 1 includes a positive electrode cell 11 incorporating a positive electrode 10, a negative electrode cell 21 incorporating a negative electrode 20, and being interposed between both electrodes 10, 20, separating both cells, and predetermined ions
  • the battery cell 2 which has the diaphragm 30 which permeate
  • the redox flow battery system 1 includes a positive electrode electrolyte tank 12 that stores a positive electrode electrolyte that is circulated and supplied to the positive electrode cell 11, a positive electrode outward piping 13 that sends the positive electrode electrolyte from the positive electrode electrolyte tank 12 to the positive electrode cell 11, And a positive electrode return pipe 14 for returning the positive electrode electrolyte from the positive electrode cell 11 to the positive electrode electrolyte tank 12.
  • a pump 15 for circulating the positive electrode electrolyte and a particle size adjusting means 16 to be described later are disposed in the positive electrode outward piping 13.
  • the redox flow battery system 1 includes a negative electrode electrolyte tank 22 that stores a negative electrode electrolyte that is circulated and supplied to the negative electrode cell 21, and a negative electrode outward piping 23 that sends the negative electrode electrolyte from the negative electrode electrolyte tank 22 to the negative electrode cell 21. And a negative electrode return pipe 24 for returning the negative electrode electrolyte from the negative electrode cell 21 to the negative electrode electrolyte tank 22.
  • a pump 25 for circulating the negative electrode electrolyte and a particle size adjusting means 26 to be described later are disposed in the negative electrode outward piping 23.
  • the electrolyte in the positive electrode electrolyte tank 12 is sent to the battery cell 2 through the positive electrode outward piping 13 and the particle size adjusting means 16 by starting the pump 15.
  • the positive electrode electrolyte sent to the battery cell 2 is discharged from the lower side of the battery cell 2 through the inside, is returned to the positive electrode electrolyte tank 12 through the positive electrode return pipe 14, and circulates in the direction of arrow A in the figure.
  • the electrolytic solution in the negative electrode electrolytic solution tank 22 is sent to the battery cell 2 through the negative electrode outward piping 23 and the particle size adjusting means 26 by starting the pump 25.
  • the electrolytic solution sent to the battery cell 2 is discharged upward from the lower side of the battery cell 2, returned to the negative electrode electrolytic solution tank 22 through the negative electrode return pipe 24, and circulates in the direction of arrow B in the figure.
  • the charge / discharge reaction in the battery cell 2 is as follows. Positive electrode cell charge: V 4+ ⁇ V 5+ + e ⁇ Discharge: V 5+ + e ⁇ ⁇ V 4+ Negative electrode charging: V 3+ + e ⁇ ⁇ V 2+ Discharge: V 2+ ⁇ V 3+ + e ⁇
  • the positive electrode 10 the negative electrode 20, the diaphragm 30, the positive electrode electrolyte, the negative electrode electrolyte, and the particle size adjusting means 16 and 26 will be described in detail.
  • Electrode 10 and the negative electrode 20 known electrodes can be used and are not particularly limited, but only provide a place where a redox reaction occurs when vanadium in the electrolytic solution passes through the battery cell 2. It is preferable that it does not react by itself, has a structure and a form excellent in electrolyte permeability, has a surface area as large as possible, and has a low electrical resistance. Further, from the viewpoint of activation of the oxidation-reduction reaction, it is preferable to have excellent affinity with the electrolyte solution (aqueous solution), and from the viewpoint of preventing the decomposition of water as a side reaction, the hydrogen overvoltage and oxygen overvoltage are large. Is preferred. Examples thereof include a carbon material such as carbon felt or a graphitized material thereof, a mesh-like titanium or zirconium substrate subjected to noble metal plating, or a carbon-coated material.
  • diaphragm A known diaphragm can be used as the diaphragm 30 and is not particularly limited.
  • an ion exchange membrane made of an organic polymer is preferable, and both a cation exchange membrane and an anion exchange membrane can be used.
  • a cation exchange membrane obtained by sulfonating a styrene-divinylbenzene copolymer a cation exchange membrane obtained by introducing a sulfonic acid group into a copolymer of tetrafluoroethylene and perfluorosulfonylsulfonylethoxyvinyl ether, Examples thereof include a cation exchange membrane made of a copolymer of tetrafluoroethylene and a perfluorovinyl ether having a carboxyl group in the side chain, and a cation exchange membrane in which a sulfonic acid group is introduced into an aromatic polysulfone copolymer.
  • anion exchange membranes examples include anion exchange membranes in which a styrene-divinylbenzene copolymer is aminated by introducing a chloromethyl group, an anion exchange membrane in which a vinylpyridine-divinylbenzene copolymer is quaternary pyrididiumated, and an aromatic polysulfone copolymer.
  • An anion exchange membrane in which a chloromethyl group is introduced into the polymer and aminated is used.
  • the positive electrode electrolyte contains one or both of a tetravalent and pentavalent vanadium compound dissolved therein, and one or both of a tetravalent and pentavalent vanadium compound dispersed in a particulate form.
  • the total concentration of vanadium of these vanadium compounds (hereinafter sometimes simply referred to as “vanadium concentration”) is 1.7 mol / L or more, preferably 2.5 mol / L or more and 4.0 mol / L. L or less.
  • vanadium concentration is 1.7 mol / L or more, a high battery capacity and energy density can be realized. If the vanadium concentration exceeds 4.0 mol / L, the precipitation of the vanadium compound becomes excessive, or the particle size of the particulate vanadium compound becomes excessive, and the above-described charge / discharge reaction tends not to proceed sufficiently.
  • the vanadium concentration is obtained from the results obtained by ICP emission spectroscopy. Specifically, sulfuric acid or water is added to the electrolytic solution to completely dissolve the particulate vanadium compound, appropriately diluted, and the vanadium ion concentration of the diluted solution is measured by ICP emission spectroscopy. From the dilution factor, the vanadium concentration of the electrolyte is calculated. This vanadium concentration measuring method is also applied to the negative electrode electrolyte described later.
  • the sulfuric acid concentration of the positive electrode electrolyte is preferably 0.5 mol / L or more and 6 mol / L or less, more preferably 1 mol / L or more and 3 mol / L or less.
  • vanadium pentoxide V 2 O 5
  • V 2 O 5 vanadium pentoxide
  • the positive electrode electrolyte may contain conventionally known oxo acids such as nitric acid, protective colloid agents, complexing agents and the like in order to prevent precipitation.
  • the negative electrode electrolyte includes one or both of dissolved bivalent and trivalent vanadium compounds and one or both of bivalent and trivalent vanadium compounds dispersed in the form of particles, and the vanadium concentration of these vanadium compounds. Is 1.7 mol / L or more, preferably 2.5 mol / L or more and 4.0 mol / L or less. When the vanadium concentration is 1.7 mol / L or more, a high battery capacity and energy density can be realized.
  • the vanadium concentration (mol / L) of the positive electrode electrolyte and the negative electrode electrolyte described above is the concentration (mol / L) of vanadium atoms in the electrolyte.
  • a vanadium electrolytic solution is prepared by dissolving a vanadium oxide sulfate salt in an aqueous sulfuric acid solution to prepare a tetravalent vanadium ion solution, and electrolyzing the vanadium ion solution to obtain vanadium ion solutions having different valences.
  • a vanadium electrolytic solution is prepared by dissolving a vanadium oxide sulfate salt in an aqueous sulfuric acid solution to prepare a tetravalent vanadium ion solution, and electrolyzing the vanadium ion solution to obtain vanadium ion solutions having different valences.
  • the positive electrode electrolyte by oxidation of tetravalent vanadium ions (VO 2+), adjusting the solution containing a positive electrode active material pentavalent vanadium ions (VO 2 +).
  • a solution containing divalent vanadium ions (V 2+ ) as a negative electrode active material is prepared by a reduction reaction of
  • the sulfuric acid concentration of the negative electrode electrolyte is preferably 0.5 mol / L or more and 6 mol / L or less, more preferably 1 mol / L or more and 3 mol / L or less. If the sulfuric acid concentration of the negative electrode electrolyte is excessive, vanadium sulfate (V 2 (SO 4 ) 3 ), which is a trivalent vanadium compound, tends to precipitate on the negative electrode cell 21 side.
  • the negative electrode electrolyte may contain conventionally known additives such as an oxo acid such as nitric acid, a protective colloid agent, and a complexing agent in order to prevent precipitation.
  • the redox flow battery system 1 is a part of the positive electrode outward piping 13 and the negative electrode outward piping 23 (hereinafter, simply referred to as “outward piping 13, 23”) constituting the electrolyte circulation path.
  • particle size adjusting means 16 and 26 for adjusting the particle size of the particulate vanadium compound are arranged.
  • the particle size adjusting means 16 and 26 preferably adjust the cumulative 90% particle size (D90) of the volume-based particle size distribution of the particulate vanadium compound to 5 ⁇ m or less, and to 1 ⁇ m or less. It is more preferable.
  • the cumulative distribution diameter (D90) refers to the particle diameter of the particulate vanadium compound at which the integrated distribution in the particle size distribution measurement by the laser diffraction method converges to 90%.
  • the vanadium compound having a larger particle size due to crystal growth in the precipitation process is also removed before being supplied to the battery cell 2.
  • the diameter is small, and the cumulative 90% particle size (D90) of the volume-based particle size distribution is preferably adjusted to 5 ⁇ m or less.
  • the particle size adjusting means 16 and 26 are not particularly limited as long as the particle size of the particulate vanadium compound can be adjusted to a small value. -A crusher is mentioned.
  • the particle size adjusting means 16 and 26 are positive return piping that constitutes an electrolyte circulation path.
  • 14 may be disposed in the negative electrode return pipe 24 (hereinafter, simply referred to as “return pipe 14, 24”), or may be disposed in both the forward pipes 13 and 23 and the return pipes 14 and 24.
  • the particle size adjusting means 16 and 26 are preferably arranged in the forward piping 13 and 23 from the viewpoint of suppressing supply of the particulate vanadium compound having a large particle size into the battery cell 2.
  • the particle size adjustment means 16 and 26 may be disposed in the positive electrode electrolyte tank 12 and the negative electrode electrolyte tank 22.
  • the operating method of the redox flow battery system which concerns on this embodiment is an operating method of the redox flow battery system which charges / discharges by circulating the electrolyte solution which contains vanadium as an active material to the battery cell mentioned above. And the particle size adjustment process which makes the particle size of the vanadium compound disperse
  • the particle size adjustment step it is preferable to adjust the cumulative distribution diameter (D90) of the vanadium compound dispersed in the form of particles to 5 ⁇ m or less.
  • the vanadium compound having a larger particle size due to crystal growth during the precipitation process also has a smaller particle size before being supplied to the battery cell 2, preferably a volume-based particle size distribution.
  • the cumulative 90% particle size (D90) is adjusted to 5 ⁇ m or less.
  • positive electrode 10 and negative electrode 20 are carbon felt (area 250 cm 2 ), diaphragm 30 is an ion exchange membrane, and positive electrolyte is a tetravalent vanadium concentration of 3.0 mol / L, which is 1.7 mol / L.
  • the homogenizer which is the particle size adjustment means 16 and 26 is arrange
  • the battery was charged at a current density of 1000 A / m 2 while circulating and supplying the negative electrode electrolyte at a rate of 200 mL / min. When the voltage reached 1.6 V, the charging was stopped, and then discharging was performed at 1000 A / m 2. When the voltage reached 1.0 V, the discharging was terminated. This charge and discharge was repeated 1000 cycles.
  • the vanadium compound in the electrolytic solution is adjusted to have a volume-based particle size distribution cumulative 90% particle size (D90) of 5 ⁇ m or less by the particle size adjusting means 16 and 26 (homogenizer).
  • Example 2 Charge / discharge was repeated in the same manner as in Example 1 except that the vanadium concentrations of the positive electrode electrolyte and the negative electrode electrolyte were 2.8 mol / L.
  • Example 3 Charge / discharge was repeated in the same manner as in Example 1 except that the vanadium concentrations of the positive electrode electrolyte and the negative electrode electrolyte were 4.0 mol / L.
  • Example 4 Charge / discharge was repeated in the same manner as in Example 2 except that the particle diameter adjusting means 16 and 26 (homogenizers) were arranged in the outgoing pipes 13 and 23 and the return pipes 14 and 24, respectively.
  • Example 1 The redox flow battery system having the same configuration as in Example 1 was used except that the particle size adjusting means was not disposed, and charging / discharging was repeated in the same manner as in Example 1.
  • Example 1 in which the vanadium concentration of the electrolytic solution is 1.7 mol / L and the particle size adjusting means 16 and 26 are arranged in the outgoing pipes 13 and 23, the decrease in energy density after 1000 cycles with respect to the first cycle is 5 The decrease in battery capacity was about 5%. On the other hand, in Comparative Example 1 in which the particle size adjusting means is not arranged, the decrease in energy density was about 12% and the decrease in battery capacity was about 12%.
  • Example 2 in which the vanadium concentration of the electrolytic solution is 2.8 mol / L and the particle size adjusting means 16 and 26 are arranged in the outgoing pipes 13 and 23, the decrease in energy density after 1000 cycles with respect to the first cycle is 15 The decrease in battery capacity was about 15%.
  • Comparative Example 2 in which the particle size adjusting means is not arranged, the energy density is reduced by about 31% and the battery capacity is reduced by about 31%.
  • Example 3 in which the vanadium concentration of the electrolytic solution is 4.0 mol / L and the particle size adjusting means 16 and 26 are arranged in the outgoing pipes 13 and 23, the decrease in energy density after 1000 cycles with respect to the first cycle is 29.
  • the decrease in battery capacity was about 29%.
  • Comparative Example 3 in which the particle size adjusting means is not disposed, the decrease in energy density was about 54% and the decrease in battery capacity was about 54%.
  • Example 4 in which the vanadium concentration of the electrolytic solution is 2.8 mol / L and the particle size adjusting means 16 and 26 are arranged in the outgoing pipes 13 and 23 and the return pipes 14 and 24, 1000 cycles with respect to the first cycle.
  • the subsequent decrease in energy density was about 11%
  • the decrease in battery capacity was about 11%.
  • Example 2 in which the particle size adjusting means 16 and 26 are arranged only in the forward piping 13 and 23, it was confirmed that the decrease in energy density and battery capacity can be suppressed.
  • the surface of the electrodes 10 and 20 and the diaphragm 30 of the battery cells 2 of Examples 1 to 4 in which the particle size adjusting means 16 and 26 are arranged hardly changed, whereas the particle size adjusting means
  • the higher the vanadium ion concentration in the electrolyte solution, the stronger the vanadium compound precipitates adhere to the surfaces of the electrodes 10 and 20 and the diaphragm 30 of the battery cells 2 of Comparative Examples 1 to 3 in which no is disposed. was confirmed.
  • the battery cells 2 of Comparative Examples 1 to 3 it is considered that the charged vanadium compound does not advance due to the fixed vanadium compound, and the energy density and the battery capacity are reduced.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

高濃度のバナジウム電解液を用いた場合であっても、その濃度に基づく高いエネルギー密度や電池容量を安定して得ることができる、レドックスフロー電池システム等を提供する。本発明は、電池セル2にバナジウムを活物質として含む電解液を循環させて充放電を行うレドックスフロー電池システム1であって、電解液は、溶解したバナジウム化合物と粒子状に分散したバナジウム化合物とを含み、両バナジウム化合物のバナジウム濃度の合計が1.7mol/L以上であり、電解液が循環する循環経路に、粒子状に分散したバナジウム化合物の粒径を小さく調整する粒径調整手段16、26を備える。

Description

レドックスフロー電池システム及びその運転方法
 本発明は、電池セルにバナジウムを活物質として含む電解液を循環させて充放電を行うレドックスフロー電池システム及びその運転方法に関する。
 電力貯蔵用の電池として、種々の電池の開発が進められているが、電解液流通型の電池、いわゆるレドックスフロー電池がある。レドックスフロー電池は、正極と負極と両電極の間に介在される隔膜とを有する電池セルに、正極電解液及び負極電解液をそれぞれ供給循環し、電力変換器(例えば、交流/直流変換器等)を介して充放電を行う。電解液には、通常酸化還元により価数が変化する金属イオン(活物質)を含有する水溶液が使用されている。例えば、正極及び負極の活物質にバナジウム(V)を用いたバナジウム系レドックスフロー電池がよく知られている。
 一般に、レドックスフロー電池では、電解液中の活物質の量が多いほど、エネルギー密度が増し、電池容量が高まる。例えば、特許文献1には、活物質であるバナジウム化合物を、直径が100μm以下の微小な分散質を活物質として含み、活物質のバナジウム濃度の合計が2.5mol/L超である、高濃度のバナジウム電解液が開示されている。
特許第5860527号公報
 しかしながら、高濃度のバナジウム電解液を使用して繰り返し充放電を行った場合、電解液中のバナジウム化合物が析出物として徐々に電池セル内や電解液中に析出し、場合によっては結晶成長によって塊状の析出物を形成する。そのため、析出物が電池セル内で詰まる等、電解液の流動性が維持できなくなり、エネルギー密度や電池容量が低下するという問題があった。また、析出物の結晶成長が進み、電極反応の困難な活物質の割合が比較的短期間で増加して、エネルギー密度や電池容量が大きく低下してしまうという問題があった。
 特許文献1においては、活物質であるバナジウム化合物を、直径が100μm以下の微小な分散質を活物質として含むことにより、高濃度のバナジウム電解液が実現されている。しかしながら、析出物の結晶成長によるエネルギー密度の低下や電池容量の低下を抑制する点では、さらなる改良が求められている。
 本発明は、高濃度のバナジウム電解液を用いた場合であっても、その濃度に基づく高いエネルギー密度や電池容量を安定して得ることができる、レドックスフロー電池システム及びその運転方法を提供することを目的とする。
 本発明者らは、電解液を循環する経路中に、粒子状に分散したバナジウム化合物の粒径を小さく調整する粒径調整手段を配置することにより、エネルギー密度や電池容量が低下するのを抑制することができることを見出し、本発明を完成するに至った。より具体的には、本発明は、以下のものを提供する。
 (1)本発明は、電池セルにバナジウムを活物質として含む電解液を循環させて充放電を行うレドックスフロー電池システムであって、前記電解液は、溶解したバナジウム化合物と粒子状に分散したバナジウム化合物とを含み、前記両バナジウム化合物のバナジウム濃度の合計が1.7mol/L以上であり、前記電解液が循環する循環経路に、前記粒子状に分散したバナジウム化合物の粒径を小さくする粒径調整手段を備える、レドックスフロー電池システムである。
 (2)また、本発明は、前記粒径調整手段は、前記粒子状に分散したバナジウム化合物の体積基準の粒度分布の累積90%粒径(D90)を5μm以下に調整する、(1)に記載のレドックスフロー電池システムである。
 (3)また、本発明は、前記循環経路は、前記電解液を貯蔵する電解液タンクと、前記電解液をタンクから前記電池セルに送る往路配管と、前記電解液を前記電池セルから前記電解液タンクに戻す復路配管とを有し、前記粒径調整手段は、前記往路配管、前記復路配管、及び電解液タンクの少なくともいずれかに配置される、(1)又は(2)に記載のレドックスフロー電池システムである。
 (4)また、本発明は、前記電解液は、前記両バナジウム化合物のバナジウム濃度の合計が2.5mol/L以上4.0mol/L以下である、(1)~(3)のいずれかに記載のレドックスフロー電池システムである。
 (5)また、本発明は、前記粒径調整手段は、ホモジナイザーである、(1)~(4)のいずれかに記載のレドックスフロー電池システムである。
 (6)また、本発明は、前記電解液のうち、正極電解液は4価及び5価の一方又はその両方のバナジウム化合物を含み、負極電解液は2価及び3価の一方又はその両方のバナジウム化合物を含む、(1)~(5)のいずれかに記載のレドックスフロー電池システムである。
 (7)本発明は、電池セルにバナジウムを活物質として含む電解液を循環させて充放電を行うレドックスフロー電池システムの運転方法であって、前記電解液は、溶解したバナジウム化合物と粒子状に分散したバナジウム化合物とを含み、前記両バナジウム化合物のバナジウム濃度の合計が1.7mol/L以上であり、前記粒子状に分散したバナジウム化合物の粒径を小さくする粒径調整工程を含む、 レドックスフロー電池システムの運転方法である。
 (8)また、本発明は、前記粒径調整工程では、前記粒子状に分散したバナジウム化合物の体積基準の粒度分布の累積90%粒径(D90)を5μm以下に調整する、(7)に記載のレドックスフロー電池システムの運転方法である。
 本発明によれば、高濃度のバナジウム電解液を用いた場合であっても、その濃度に基づく高いエネルギー密度や電池容量を安定して得ることができる、レドックスフロー電池システム及びその運転方法を提供することができる。
本実施形態に係るレドックスフロー電池システムの構成を示す構成図である。
 以下、本発明の具体的な実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
<レドックスフロー電池システム>
 図1は、本実施形態に係るレドックスフロー電池システムの構成の一例を示す構成図である。本実施形態に係るレドックスフロー電池システム1は、電池セル2を最小単位として、これを単独、又は複数枚積層した電池セルスタックと称される形態で使用され、電池セル2にバナジウムを活物質として含む電解液を循環させて充放電を行う。例えば、このレドックスフロー電池システム1は、交流/直流変換器3を介して発電所等の交流電源4からの電力を充電し、充電した電力を、交流/直流変換器3を介して負荷電源5に放電する。
 レドックスフロー電池システム1は、正極電極10を内蔵する正極セル11と、負極電極20を内蔵する負極セル21と、両電極10、20の間に介在されて両セルを分離するとともに、所定のイオンを透過する隔膜30とを有する電池セル2を主構成とする。
 そして、レドックスフロー電池システム1は、正極セル11に循環供給する正極電解液を貯蔵する正極電解液タンク12と、正極電解液を正極電解液タンク12から正極セル11に送る正極往路配管13と、正極電解液を正極セル11から正極電解液タンク12に戻す正極復路配管14とを備える。正極往路配管13には、正極電解液を循環させるためのポンプ15と、後述する粒径調整手段16が配置される。
 同様に、このレドックスフロー電池システム1は、負極セル21に循環供給する負極電解液を貯蔵する負極電解液タンク22と、負極電解液を負極電解液タンク22から負極セル21に送る負極往路配管23と、負極電解液を負極セル21から負極電解液タンク22に戻す負極復路配管24とを備える。負極往路配管23には、負極電解液を循環させるためのポンプ25と、後述する粒径調整手段26が配置される。
 上記構成のレドックスフロー電池システム1において、正極電解液タンク12内の電解液は、ポンプ15を起動することにより、正極往路配管13を通して粒径調整手段16を介して電池セル2に送られる。電池セル2に送られた正極電解液は、電池セル2の下方から内部を通って上方に排出され、正極復路配管14を通して正極電解液タンク12に戻されて、図中矢印A方向に循環する。同様に、負極電解液タンク22内の電解液は、ポンプ25を起動することにより、負極往路配管23を通して粒径調整手段26を介して電池セル2に送られる。電池セル2に送られた電解液は、電池セル2の下方から内部を通って上方に排出され、負極復路配管24を通して負極電解液タンク22に戻されて、図中矢印B方向に循環する。
 これにより、電池セル2内で充放電反応が行われ、電力の取出し又は貯蔵が可能となる。電池セル2における充放電反応は、次の通りである。
  正極セル
   充電:V4+→V5++e
   放電:V5++e→V4+
  負極セル
   充電:V3++e→V2+
   放電:V2+→V3++e
 以下、正極電極10、負極電極20、隔膜30、正極電解液、負極電解液、粒径調整手段16、26についてそれぞれ詳細に説明する。
 (正極電極・負極電極)
 正極電極10及び負極電極20としては、公知の電極を用いることができ、特に限定されないが、電解液中のバナジウムが電池セル2内を通過する際に酸化還元反応を生じる場を提供するのみで自ら反応せず、電解液の通過性に優れた構造、形態を有しており、極力表面積が広く、電気抵抗が低いことが好ましい。さらに、酸化還元反応活性化の観点からは、電解液(水溶液)との親和性に優れていることが好ましく、さらに副反応となる水の分解を生じさせない観点から、水素過電圧、酸素過電圧が大きい方が好ましい。例えば、カーボンフェルトのようなカーボン材又はそれを黒鉛化したものや、メッシュ状のチタニウム又はジルコニウムの基板に貴金属めっきを施したもの又はカーボンコートしたものが挙げられる。
 (隔膜)
 隔膜30としては、公知の隔膜を用いることができ、特に限定されないが、例えば有機高分子からなるイオン交換膜が好ましく、カチオン交換膜及びアニオン交換膜のいずれも用いることができる。
 カチオン交換膜としては、スチレン-ジビニルベンゼン共重合体をスルホン化して得られるカチオン交換膜、テトラフルオロエチレンとパーフルオロ・スルホニル・エトキシビニルエーテルとの共重合体にスルホン酸基を導入したカチオン交換膜、テトラフルオロエチレンとカルボキシル基を側鎖に持つパーフルオロビニルエーテルとの共重合体からなるカチオン交換膜、芳香族ポリスルホン共重合体にスルホン酸基を導入したカチオン交換膜等が挙げられる。
 アニオン交換膜としては、スチレン-ジビニルベンゼン共重合体にクロロメチル基を導入してアミノ化したアニオン交換膜、ビニルピリジン-ジビニルベンゼン共重合体を4級ピリジジウム化したアニオン交換膜、芳香族ポリスルホン共重合体にクロロメチル基を導入してアミノ化したアニオン交換膜等が挙げられる。
(正極電解液)
 正極電解液は、溶解した4価及び5価の一方又はその両方のバナジウム化合物と、粒子状に分散した4価及び5価の一方又はその両方のバナジウム化合物とを含む。正極電解液は、これらバナジウム化合物のバナジウムの濃度の合計(以下、単に「バナジウム濃度」という場合がある)、が1.7mol/L以上であり、好ましくは2.5mol/L以上4.0mol/L以下である。バナジウム濃度が1.7mol/L以上であることにより、高い電池容量やエネルギー密度を実現することができる。バナジウム濃度が4.0mol/L超になると、バナジウム化合物の析出が過多となり、又は粒子状のバナジウム化合物の粒径が過大となり、上述した充放電反応が十分に進まなくなる傾向があるため好ましくない。
 なお、バナジウム濃度は、ICP発光分光法で得た結果から求める。具体的には、電解液に硫酸又は水を加え、粒子状のバナジウム化合物を完全に溶解させ、適宜希釈し、ICP発光分光法で希釈後の溶液のバナジウムイオン濃度を測定する。希釈倍率から、電解液のバナジウム濃度を計算する。このバナジウム濃度の測定方法は、後述する負極電解液にも適用される。
 正極電解液の硫酸濃度は、好ましくは0.5mol/L以上6mol/L以下、より好ましくは1mol/L以上3mol/L以下である。正電解液の硫酸濃度が過小であると、正極セル11側では、5価のバナジウム化合物である五酸化バナジウム(V)が析出しやすくなる。
 なお、正極電解液には、析出物の析出を防止するために、従来公知の硝酸等のオキソ酸や保護コロイド剤、錯化剤等の添加物を含んでもよい。
(負極電解液)
 負極電解液は、溶解した2価及び3価の一方又はその両方のバナジウム化合物と、粒子状に分散した2価及び3価の一方又はその両方のバナジウム化合物とを含み、これらバナジウム化合物のバナジウム濃度の合計が1.7mol/L以上であり、好ましくは2.5mol/L以上4.0mol/L以下である。バナジウム濃度が1.7mol/L以上であることにより、高い電池容量やエネルギー密度を実現することができる。バナジウム濃度が4.0mol/L超になると、バナジウム化合物の析出が過多となり、又は粒子状のバナジウム化合物の粒径が過大となり、上述した充放電反応が十分に進まなくなる傾向があるため好ましくない。なお、上述した正極電解液及び負極電解液のバナジウムの濃度(mol/L)は、電解液中のバナジウム原子の濃度(mol/L)である。
 一般に、バナジウム電解液は、硫酸水溶液に酸化硫酸バナジウム塩を溶解して4価のバナジウムイオン溶液を調整し、そのバナジウムイオン溶液を電解して価数の異なるバナジウムイオン溶液を得ている。例えば、正極電解液では、4価のバナジウムイオン(VO2+)の酸化反応により、正極活物質である5価のバナジウムイオン(VO )を含む溶液を調整する。負極電解液では、3価のバナジウムイオン(V3+)の還元反応により負極活物質である2価のバナジウムイオン(V2+)を含む溶液を調整する。
 負極電解液の硫酸濃度は、好ましくは0.5mol/L以上6mol/L以下、より好ましくは1mol/L以上3mol/L以下である。負極電解液の硫酸濃度が過大であると、3価のバナジウム化合物である、負極セル21側では硫酸バナジウム(V(SO)が析出しやすくなる。
 なお、負極電解液には、析出物の析出を防止するために、従来公知の硝酸等のオキソ酸や保護コロイド剤、錯化剤等の添加物を含んでもよい。
 (粒径調整手段)
 上述したように、本実施形態で使用される電解液のバナジウム濃度は、1.7mol/L以上と高いため、バナジウム化合物の析出が過多となり、粒子状のバナジウム化合物の粒径が過大となりやすい。そこで、本実施形態に係るレドックスフロー電池システム1は、電解液循環経路を構成する正極往路配管13及び負極往路配管23(以下、単に「往路配管13、23」という場合がある。)の一部に、粒子状のバナジウム化合物の粒径を小さくする調整する粒径調整手段16、26を配置する。
 具体的には、この粒径調整手段16、26は、粒子状のバナジウム化合物の体積基準の粒度分布の累積90%粒径(D90)を5μm以下に調整することが好ましく、1μm以下に調整することがより好ましい。ここで、累積分布径(D90)とは、粒子状のバナジウム化合物を、レーザー回折法による粒度分布測定における積算分布が90%に収束する粒子径のことをいう。
 このように、往路配管13、23に粒径調整手段16、26を配置することにより、析出過程での結晶成長により粒径が大きくなったバナジウム化合物も、電池セル2に供給される前に粒径が小さく、好ましくは体積基準の粒度分布の累積90%粒径(D90)が5μm以下に調整される。その結果、上述した電極反応(充放電反応)に寄与し続けることが可能となり、その濃度に基づく高いエネルギー密度や電池容量を安定して得ることができる。
 粒径調整手段16、26としては、粒子状のバナジウム化合物の粒径を小さく調整することができれば、特に限定されないが、例えば撹拌式ホモジナイザー、超音波ホモジナイザー、高圧ホモジナイザー等のホモジナイザーやビーズミル等の分散・粉砕器が挙げられる。
 なお、図1に示す例では、粒径調整手段16、26を往路配管13、23に配置する例について示したが、粒径調整手段16、26は、電解液循環経路を構成する正極復路配管14、負極復路配管24(以下、単に「復路配管14、24」という場合がある。)に配置してもよく、往路配管13、23と復路配管14、24の両方に配置してもよい。粒径調整手段16、26は、粒径の大きくなった粒子状のバナジウム化合物が電池セル2内に供給されるのを抑制する点からは、往路配管13、23に配置されるのが好ましい。また、粒径調整手段16、26は、粒子状のバナジウム化合物の粒径をより好ましく調整する点からは、往路配管13、23と復路配管14、24の両方に配置することが好ましい。また、粒径調整手段16、26は、正極電解液タンク12、負極電解液タンク22に配置されてもよい。
<レドックスフロー電池システムの運転方法>
 本実施形態に係るレドックスフロー電池システムの運転方法は、上述した、電池セルにバナジウムを活物質として含む電解液を循環させて充放電を行うレドックスフロー電池システムの運転方法である。そして、粒子状に分散したバナジウム化合物の粒径を小さくする粒径調整工程を含む。
 具体的には、粒径調整工程では、粒子状に分散したバナジウム化合物の累積分布径(D90)を5μm以下に調整することが好ましい。
 このような粒径調整工程を含むことにより、析出過程での結晶成長により粒径が大きくなったバナジウム化合物も、電池セル2に供給される前に粒径が小さく、好ましくは体積基準の粒度分布の累積90%粒径(D90)が5μm以下に調整される。その結果、上述した電極反応(充放電反応)に寄与し続けることが可能となり、その濃度に基づく高いエネルギー密度や電池容量を安定して得ることができる。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 [実施例1]
 電池セル2として、正極電極10および負極電極20にカーボンフェルト(面積250cm)、隔膜30にイオン交換膜、正極電解液に4価のバナジウム濃度が1.7mol/Lである3.0mol/L-HSO水溶液250mL、負極電解液にバナジウム濃度が1.7mol/Lである3.0mol/L-HSO水溶液250mLを用いた実験用単セルを用意した。そして、この電池セル2を用いたレドックスフロー電池システム1において、往路配管13、23に、粒径調整手段16、26であるホモジナイザーを配置し、正極セル11及び負極セル21に、それぞれ正極電解液及び負極電解液を200mL/分の量で循環供給しながら、電流密度1000A/mで充電を行った。電圧が1.6Vになったところで充電をやめ、続いて1000A/mで放電を行い、電圧が1.0Vになったところで放電終了とした。この充電と放電を1000サイクル繰り返した。なお、粒径調整手段16、26(ホモジナイザー)により、電解液中のバナジウム化合物は、体積基準の粒度分布の累積90%粒径(D90))が5μm以下に調整されている。
 [実施例2]
 正極電解液と負極電解液のバナジウム濃度を2.8mol/Lとした以外は、実施例1と同様に、充放電を繰り返した。
 [実施例3]
 正極電解液と負極電解液のバナジウム濃度を4.0mol/Lとした以外は、実施例1と同様に、充放電を繰り返した。
 [実施例4]
 往路配管13、23、及び復路配管14、24に、それぞれ粒径調整手段16、26(ホモジナイザー)を配置した以外は、実施例2と同様に、充放電を繰り返した。
 [比較例1]
 粒径調整手段を配置しない以外は、実施例1と同様な構成を有するレドックスフロー電池システムを用い、実施例1と同様に充放電を繰り返した。
 [比較例2]
 粒径調整手段を配置しない以外は、実施例2と同様な構成を有するレドックスフロー電池システムを用い、実施例2と同様に充放電を繰り返した。
 [比較例3]
 粒径調整手段を配置しない以外は、実施例3と同様な構成を有するレドックスフロー電池システムを用い、実施例3と同様に充放電を繰り返した。
 [結果・考察]
 実施例1~4及び比較例1~3の電池セル2において、1サイクル目のエネルギー密度及び電池容量と、1000サイクル後のエネルギー密度及び電池容量とを比較した。
 なお、エネルギー密度(Wh/m)は、放電平均電圧(V)×放電時間(h)×電流値(A)÷電解液体積(m)から算出した。電池容量(A・h)は、放電電流(A)×放電時間(h)から算出した。
 電解液のバナジウム濃度が1.7mol/Lであり、粒径調整手段16、26が往路配管13、23に配置された実施例1では、1サイクル目に対する1000サイクル後のエネルギー密度の低下が5%程度、電池容量の低下が5%程度であった。これに対し、粒径調整手段が配置されていない比較例1では、エネルギー密度の低下が12%程度、電池容量の低下が12%程度であった。
 電解液のバナジウム濃度が2.8mol/Lであり、粒径調整手段16、26が往路配管13、23に配置された実施例2では、1サイクル目に対する1000サイクル後のエネルギー密度の低下が15%程度、電池容量の低下が15%程度であった。これに対し、粒径調整手段が配置されていない比較例2では、エネルギー密度の低下が31%程度、電池容量の低下が31%程度であった。
 電解液のバナジウム濃度が4.0mol/Lであり、粒径調整手段16、26が往路配管13、23に配置された実施例3では、1サイクル目に対する1000サイクル後のエネルギー密度の低下が29%程度、電池容量の低下が29%程度であった。これに対し、粒径調整手段が配置されていない比較例3では、エネルギー密度の低下が54%程度、電池容量の低下が54%程度であった。
 また、電解液のバナジウム濃度が2.8mol/Lであり、粒径調整手段16、26が往路配管13、23及び復路配管14、24に配置された実施例4では、1サイクル目に対する1000サイクル後のエネルギー密度の低下が11%程度、電池容量の低下が11%程度であった。粒径調整手段16、26が往路配管13、23のみに配置された実施例2に比べ、さらに、エネルギー密度及び電池容量の低下が抑制できることが確認された。
 また、粒径調整手段16、26が配置された実施例1~4の電池セル2の電極10、20や隔膜30の表面には、ほとんど変化が見られなかったのに対し、粒径調整手段が配置されていない比較例1~3の電池セル2の電極10、20や隔膜30の表面には、電解液中のバナジウムイオン濃度が高くなるほど、バナジウム化合物の析出物が強く固着していることが確認された。比較例1~3の電池セル2では、この固着したバナジウム化合物によって、充放電反応が進まなくなり、エネルギー密度及び電池容量が低下したものと考えられる。
 1 レドックスフロー電池
 2 電池セル
 3 交流/直流変換器
 4 交流電源
 5 負荷電源
 10 正極電極
 11 正極セル
 12 正極電解液タンク
 13 正極往路配管
 14 正極復路配管
 15 ポンプ
 16 粒径調整手段
 20 負極電極
 21 負極セル
 22 負極電解液タンク
 23 負極往路配管
 24 負極復路配管
 25 ポンプ
 26 粒径調整手段
 30 隔膜

Claims (8)

  1.  電池セルにバナジウムを活物質として含む電解液を循環させて充放電を行うレドックスフロー電池システムであって、
     前記電解液は、溶解したバナジウム化合物と粒子状に分散したバナジウム化合物とを含み、前記両バナジウム化合物のバナジウム濃度の合計が1.7mol/L以上であり、
     前記電解液が循環する循環経路に、前記粒子状に分散したバナジウム化合物の粒径を小さく調整する粒径調整手段を備える、レドックスフロー電池システム。
  2.  前記粒径調整手段は、前記粒子状に分散したバナジウム化合物の体積基準の粒度分布の累積90%粒径(D90)を5μm以下に調整する、請求項1に記載のレドックスフロー電池システム。
  3.  前記循環経路は、前記電解液を貯蔵する電解液タンクと、前記電解液を前記電解液タンクから前記電池セルに送る往路配管と、前記電解液を前記電池セルから前記電解液タンクに戻す復路配管とを有し、
     前記粒径調整手段は、前記往路配管及び前記復路配管の一方又はその両方に配置される、請求項1又は2に記載のレドックスフロー電池システム。
  4.  前記電解液は、前記両バナジウム化合物のバナジウム濃度の合計が2.5mol/L以上4.0mol/L以下である、請求項1~3のいずれか一項に記載のレドックスフロー電池システム。
  5.  前記粒径調整手段は、ホモジナイザーである、請求項1~4のいずれか一項に記載のレドックスフロー電池システム。
  6.  前記電解液のうち、正極電解液は4価及び5価の一方又はその両方のバナジウム化合物を含み、負極電解液は2価及び3価の一方又はその両方のバナジウム化合物を含む、請求項1~5のいずれか一項に記載のレドックスフロー電池システム。
  7.  電池セルにバナジウムを活物質として含む電解液を循環させて充放電を行うレドックスフロー電池システムの運転方法であって、
     前記電解液は、溶解したバナジウム化合物と粒子状に分散したバナジウム化合物とを含み、前記両バナジウム化合物のバナジウム濃度の合計が1.7mol/L以上であり、
     前記粒子状に分散したバナジウム化合物の粒径を小さくする粒径調整工程を含む、レドックスフロー電池システムの運転方法。
  8.  前記粒径調整工程では、前記粒子状に分散したバナジウム化合物の体積基準の粒度分布の累積90%粒径(D90)を5μm以下に調整する、請求項7に記載のレドックスフロー電池システムの運転方法。
PCT/JP2017/046417 2016-12-28 2017-12-25 レドックスフロー電池システム及びその運転方法 WO2018123963A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/474,826 US20190348700A1 (en) 2016-12-28 2017-12-25 Redox-flow battery system and method of operating redox-flow battery system
EP17887917.7A EP3565049A4 (en) 2016-12-28 2017-12-25 REDOX FLOW BATTERY SYSTEM AND OPERATING PROCEDURES FOR IT
CN201780080062.XA CN110114922A (zh) 2016-12-28 2017-12-25 氧化还原液流电池系统及其运行方法
JP2018517648A JP6353180B1 (ja) 2016-12-28 2017-12-25 レドックスフロー電池システム及びその運転方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016256158 2016-12-28
JP2016-256158 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123963A1 true WO2018123963A1 (ja) 2018-07-05

Family

ID=62709446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046417 WO2018123963A1 (ja) 2016-12-28 2017-12-25 レドックスフロー電池システム及びその運転方法

Country Status (5)

Country Link
US (1) US20190348700A1 (ja)
EP (1) EP3565049A4 (ja)
JP (2) JP6353180B1 (ja)
CN (1) CN110114922A (ja)
WO (1) WO2018123963A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004403A1 (ja) * 2018-06-26 2020-01-02 昭和電工株式会社 レドックスフロー電池システム及びその運転方法並びにレドックスフロー電池用電解液配管
WO2021108244A1 (en) * 2019-11-27 2021-06-03 University Of Kansas Flow battery systems and methods of using the same
KR102647426B1 (ko) * 2022-08-24 2024-03-14 한국지질자원연구원 바나듐 레독스 흐름 배터리의 전해액을 제조하는 방법 및 이로부터 제조된 바나듐 레독스 흐름 배터리의 전해액

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193621A (ja) * 2000-12-26 2002-07-10 Nippon Chem Ind Co Ltd 変性バナジウム化合物、その製造方法、レドックスフロー型電池用電解液組成物及びレドックスフロー型電池用電解液の製造方法
WO2010143634A1 (ja) * 2009-06-09 2010-12-16 シャープ株式会社 レドックスフロー電池
JP2015195230A (ja) * 2008-06-12 2015-11-05 マサチューセッツ インスティテュート オブ テクノロジー 高エネルギー密度レドックスフロー装置
JP5860527B1 (ja) 2014-12-25 2016-02-16 株式会社ギャラキシー バナジウム活物質液及びバナジウムレドックス電池
JP2016162524A (ja) * 2015-02-27 2016-09-05 祐吉 濱村 電解液の製造方法、電解液及び電解液の製造装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897544B2 (ja) * 2001-06-07 2007-03-28 住友電気工業株式会社 レドックスフロー電池用電解液およびレドックスフロー電池
CN102306815A (zh) * 2011-08-24 2012-01-04 中国东方电气集团有限公司 液流电池系统
CN105474446B (zh) * 2013-08-07 2018-07-03 住友电气工业株式会社 氧化还原液流电池
CN103456977B (zh) * 2013-08-28 2016-06-08 广东电网公司电力科学研究院 提高全钒液流电池运行效率的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193621A (ja) * 2000-12-26 2002-07-10 Nippon Chem Ind Co Ltd 変性バナジウム化合物、その製造方法、レドックスフロー型電池用電解液組成物及びレドックスフロー型電池用電解液の製造方法
JP2015195230A (ja) * 2008-06-12 2015-11-05 マサチューセッツ インスティテュート オブ テクノロジー 高エネルギー密度レドックスフロー装置
WO2010143634A1 (ja) * 2009-06-09 2010-12-16 シャープ株式会社 レドックスフロー電池
JP5860527B1 (ja) 2014-12-25 2016-02-16 株式会社ギャラキシー バナジウム活物質液及びバナジウムレドックス電池
JP2016162524A (ja) * 2015-02-27 2016-09-05 祐吉 濱村 電解液の製造方法、電解液及び電解液の製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3565049A4 *

Also Published As

Publication number Publication date
EP3565049A1 (en) 2019-11-06
EP3565049A4 (en) 2020-09-09
CN110114922A (zh) 2019-08-09
US20190348700A1 (en) 2019-11-14
JP2018170283A (ja) 2018-11-01
JP6353180B1 (ja) 2018-07-04
JPWO2018123963A1 (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
AU2019203950B2 (en) Method and system to maintain electrolyte stability for all-iron redox flow batteries
WO2018123962A1 (ja) レドックスフロー電池システム及びレドックスフロー電池の運転方法
JP5281210B1 (ja) 高濃度バナジウム電解液、その製造方法及びその製造装置
JP5363691B2 (ja) バナジウム電解液、その製造方法及びその製造装置
JP6353180B1 (ja) レドックスフロー電池システム及びその運転方法
TWI716373B (zh) 氧化還原液流電池
JP5422083B2 (ja) ノンフローレドックス電池
JPWO2011111254A1 (ja) レドックスフロー電池
JP6547002B2 (ja) 液体電解液の処理方法
JPH0864223A (ja) バナジウム系レドックスフロー型電池の電解液
JP2019537200A (ja) 電解質溶液の電気化学的精製、並びに、関連するシステムおよび方法
JP5864682B2 (ja) ペースト状バナジウム電解質の製造方法及びバナジウムレドックス電池の製造方法
JP6434192B2 (ja) レドックスフロー電池
JP2020087712A (ja) レドックスフロー電池用触媒担持負極電極の製造方法
WO2020036107A1 (ja) レドックスフロー電池用電解液、レドックスフロー電池およびその運転方法
WO2014021203A1 (ja) バナジウム電解液の製造方法
WO2020004403A1 (ja) レドックスフロー電池システム及びその運転方法並びにレドックスフロー電池用電解液配管
JP2020522842A (ja) レドックスフロー電池およびレドックスフロー電池を作動するための方法
TWI754595B (zh) 釩電解液的製造方法
WO2019124300A1 (ja) 電解液およびレドックスフロー電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517648

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017887917

Country of ref document: EP

Effective date: 20190729