WO2018123779A1 - 複合管 - Google Patents

複合管 Download PDF

Info

Publication number
WO2018123779A1
WO2018123779A1 PCT/JP2017/045833 JP2017045833W WO2018123779A1 WO 2018123779 A1 WO2018123779 A1 WO 2018123779A1 JP 2017045833 W JP2017045833 W JP 2017045833W WO 2018123779 A1 WO2018123779 A1 WO 2018123779A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
layer
axial direction
composite pipe
tube
Prior art date
Application number
PCT/JP2017/045833
Other languages
English (en)
French (fr)
Inventor
浩平 三觜
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2018559107A priority Critical patent/JP7063821B2/ja
Priority to EP17887630.6A priority patent/EP3575657A4/en
Priority to CN201780080577.XA priority patent/CN110114602A/zh
Publication of WO2018123779A1 publication Critical patent/WO2018123779A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0462Tubings, i.e. having a closed section
    • H02G3/0468Corrugated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/11Hoses, i.e. flexible pipes made of rubber or flexible plastics with corrugated wall

Definitions

  • This disclosure relates to a composite tube having a multilayer structure.
  • Patent Document 1 discloses a corrugated pipe into which a wiring or piping material is inserted, and at least an inner surface side is formed of a polyolefin-based synthetic resin or a vinyl chloride resin mixed with a fluororesin. -Corrugated pipes for piping materials are disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2015-48909
  • a composite pipe having an internal pipe body and a bellows-like coating layer covering the outer periphery of the pipe body is known.
  • tube which has a tubular body and a coating layer it can also be considered as the structure which has arrange
  • the coating layer covering the tubular body is required to be easily stretchable (turnable) that can easily expand and contract in the axial direction of the tubular body.
  • the present disclosure provides a composite tube having a coating layer having high stretchability in an aspect including a tubular tube body and a coating layer that is tubular and covers the outer periphery of the tube body.
  • the task is to do.
  • a tubular tubular body, an annular crest that is tubular and covers the outer periphery of the tubular body and is convex outward in the radial direction, and an annular trough that is concave in the radial outer side are the tube. It is alternately formed in the axial direction of the body, has a bellows shape, can be shortened in the axial direction while being guided by the outer periphery of the tube, contains polyethylene as a main component, and has a density of 915 kg / m 3 or more and 940 kg / m A composite tube having a coating layer of 3 or less.
  • a composite tube having a coating layer having high stretchability in an aspect including a tubular tube body and a coating layer that is tubular and covers the outer periphery of the tube body.
  • FIG. 4 is a view showing a state in which a covering layer and an intermediate layer are shortened and deformed in the longitudinal section of FIG. 3.
  • the composite tube according to the present embodiment includes a tubular tube and a coating layer that is tubular and covers the outer periphery of the tube.
  • the covering layer is formed in a bellows shape in which an annular crest that protrudes radially outward and an annular trough that is concave outward in the radial direction are alternately formed in the axial direction of the tubular body. It can be shortened in the axial direction while being guided by the outer periphery.
  • the coating layer comprises a polyethylene as a main component, density of 915 kg / m 3 or more 940 kg / m 3 or less.
  • the coating layer covering the tubular body is required to be easily stretchable (turnable) that can be easily stretched in the axial direction of the tubular body.
  • the density of the coating layer is 940 kg / m 3 or less.
  • the coating layer has a density has a suitable strength that is 915 kg / m 3 or more, a high protection of the outer circumferential surface of the composite pipe is achieved.
  • the density of the coating layer is more preferably at most 918 kg / m 3 or more 935 kg / m 3, more preferably not more than 920 kg / m 3 or more 930 kg / m 3.
  • the density of the coating layer can be measured by a method defined in “Method A (submersion method)” of JIS-K7112 (1999).
  • the method for controlling the density of the coating layer to the above range is not particularly limited.
  • the molecular structure of polyethylene contained as a main component in the coating layer is adjusted (that is, the molecule of the monomer used as the raw material of polyethylene).
  • a method of adjusting the molecular weight of polyethylene and the like is not particularly limited.
  • melt flow rate (MFR) of the coating layer is 0.25 or more and 0.8 or less.
  • the MFR of the coating layer is more preferably 0.30 or more and 0.6 or less, and further preferably 0.35 or more and 0.5 or less.
  • a composite tube having a tube body and a bellows-like coating layer covering the tube body may be manufactured by applying a resin composition melt for forming a coating layer on the outer periphery of the tube body, and then applying the melt. It is performed by solidifying while forming a bellows shape.
  • a resin composition melt for forming a coating layer on the outer periphery of the tube body and then applying the melt. It is performed by solidifying while forming a bellows shape.
  • a composite tube having an intermediate layer between the tube and the covering layer for example, in a state where a sheet serving as an intermediate layer is wound around the outer periphery of the tube, and further on the outer periphery of the intermediate layer It is performed by applying a melt of a resin composition for forming a coating layer and solidifying the melt while forming a bellows.
  • melt of the resin composition for forming the coating layer in a bellows shape two pairs of molds having a semicircular arc-shaped inner surface and the inner surface having a bellows shape are used.
  • a method of forming an accordion shape by bringing the outer peripheral surface into close contact with each other and solidifying the outer peripheral surface is conceivable.
  • the melt of the resin composition is required to have high fluidity from the viewpoint of easy application.
  • the melt may not flow completely into the inner surface of the mold, and the melt may flow to the contact portion between the two pairs of molds that should not normally enter the melt. In that case, a burr
  • the MFR of the coating layer is 0.8 or less
  • the fluidity when the resin composition for forming the coating layer is melted is adjusted to an appropriate range. Flowing into the contact portion of the mold is suppressed, and burrs on the radially outer side of the coating layer are easily suppressed. For this reason, the burr is prevented from becoming an obstacle to the operation of shortening the coating layer to expose the end of the tube body and shifting, and is excellent in stretchability (turning property). Further, the step of removing burrs generated on the outer side in the radial direction of the coating layer is omitted, and the production of the composite pipe is suppressed from becoming complicated.
  • the MFR of the coating layer is 0.25 or more, the ease of application when applying the melt of the resin composition for forming the coating layer on the outer periphery of the tubular body or the outer periphery of the intermediate layer is facilitated. can get. Furthermore, if a porous resin layer is applied as the intermediate layer, the resin of the coating layer can easily enter the porous structure of the porous resin layer, and the degree of adhesion between the intermediate layer and the valley of the coating layer described later Can be increased.
  • the MFR of the coating layer is a value measured under the conditions of a temperature of 190 ° C. and a load of 2.16 kg according to the method defined in JIS K7210-1 (2014).
  • the unit of MFR is “g / 10 minutes”, but the description of this unit is omitted in this specification.
  • the method for controlling the MFR of the coating layer to the above range is not particularly limited.
  • the molecular structure of polyethylene contained as a main component in the coating layer is adjusted (that is, the molecule of the monomer that is a raw material of polyethylene).
  • a method of adjusting the molecular weight of polyethylene and the like is not particularly limited.
  • a composite pipe 10 according to this embodiment shown in FIG. 1 includes a pipe body 12 and a coating layer 20 that covers the outer periphery of the pipe body, and an intermediate layer 14 is provided between the pipe body 12 and the coating layer 20.
  • symbol S represents the axis
  • the tube body 12 is tubular.
  • the tubular body is made of a resin material containing a resin, for example.
  • a resin material for example, polyolefin such as polybutene, polyethylene, cross-linked polyethylene, and polypropylene, vinyl chloride, and the like are used, and the resin may be used alone or in combination of two or more.
  • polybutene is preferably used, and preferably includes polybutene as a main component.
  • the resin material constituting the tubular body may include 85% by mass or more.
  • the resin material which comprises a tubular body may be the material which consists only of resin, but you may contain another additive.
  • the covering layer 20 is tubular and covers the outer periphery of the tube body 12 and the intermediate layer 14.
  • the intermediate layer 14 is disposed between the tube body 12 and the covering layer 20.
  • the density of the coating layer is 915 kg / m 3 or more 940 kg / m 3 or less.
  • the covering layer preferably has a melt flow rate (MFR) of 0.25 or more and 0.8 or less.
  • the coating layer is made of a resin material containing a resin and contains polyethylene as a main component.
  • the resin material constituting the coating layer preferably contains 80% by mass or more of polyethylene, more preferably 90% by mass or more.
  • the polyethylene may have a crosslinked structure in the molecular structure.
  • a resin other than polyethylene may be used in combination.
  • polybutene, polyolefin such as polypropylene, vinyl chloride, etc. are used, and only one type is used or two or more types are used. Also good.
  • the resin material which comprises a coating layer may be the material which consists only of resin, you may contain another additive.
  • the coating layer 20 has a bellows shape, and an annular peak portion 22 that protrudes radially outward, and an annular valley portion 24 that has a concave radially outer side,
  • the tubular body 12 is formed alternately and continuously in the axial direction S.
  • the mountain portion 22 is disposed outside the valley portion 24 in the radial direction R.
  • the outermost wall 22A is the outermost wall portion of the accordion-like shape of the coating layer 20 and the inner wall 24A is the innermost portion in the radial direction
  • the outer wall 22A and the inner wall 24A in the radial direction With the intermediate portion M as a boundary, the radially outer side is a mountain portion 22 and the radially inner side is a valley portion 24.
  • the mountain portion 22 has an outer wall 22A extending in the axial direction S and a side wall 22B extending along the radial direction R from both ends of the outer wall 22A.
  • An outer bent portion 22C is formed between the outer side wall 22A and the side wall 22B.
  • the trough portion 24 has an inner wall 24A extending in the axial direction S and a side wall 24B extending in the radial direction R from both ends of the inner wall 24A.
  • An inner bent portion 24C is formed between the inner side wall 24A and the side wall 24B.
  • a concave mountain space 23 is formed on the radially inner side of the mountain portion 22 of the coating layer 20.
  • middle layer 14 mentioned later is inserted in the mountain space 23.
  • the length L1 of the peak portion 22 in the axial direction S is set longer than the length L2 of the valley portion 24 in the axial direction S.
  • the comparison between the length L1 and the length L2 is performed by comparing the averages of the respective lengths.
  • the average value of each of the length L1 and the length L2 is an average value of values obtained by measuring 10 arbitrary locations.
  • the length L1 is preferably 1.2 times or longer than the length L2 in order to secure the ease of deformation of the outer wall 22A during shortening deformation described later.
  • the length L1 is 5 times or less of the length L2.
  • the thickness of the coating layer 20 is preferably 0.1 mm or more at the thinnest portion and 0.4 mm or less at the thickest portion in order to shorten the coating layer 20.
  • the thickness H1 of the outer side wall 22A is preferably thinner than the thickness H2 of the inner side wall 24A.
  • the comparison between the thickness H1 and the thickness H2 is performed by comparing the average of the thicknesses.
  • the average value of each of the thickness H1 and the thickness H2 is an average value of values obtained by measuring 10 arbitrary locations.
  • the thickness H1 is preferably equal to or less than 0.9 times the thickness H2 in order to ensure ease of deformation of the outer wall 22A during shortening deformation described later.
  • Radius difference ⁇ R between the outer surfaces of the ridges 22 and the valleys 24 represents the difference between the average of the radii of the outer surfaces of the ridges 22 and the average of the radii of the outer surfaces of the valleys 24; It is preferable that the radial distance from the outer surface of the valley portion 24 is 800% or less of the average thickness of the coating layer 20. If the radius difference ⁇ R is large, even if the portion along the axial direction S of the peak portion 22 is not deformed, the trough portion 24 does not bulge outward in the radial direction when shortening, and the adjacent peak portions 22 do not approach each other. It is difficult to become a distorted deformation state.
  • the length in the axial direction S of the peak portion 22 is set to the axis of the valley portion 24 in order to suppress the above-described deformation state. It is effective to make it longer than the length in the direction. It is more effective when the radius difference ⁇ R is 600% or less of the average thickness of the coating layer 20.
  • the average value of the radius of each outer surface of the peak part 22 and the trough part 24 be an average value of the value obtained by measuring ten arbitrary places, respectively.
  • the average thickness of the coating layer 20 was obtained by measuring the thickness of the outer wall 22A, the thickness of the inner wall 24A, and the thickness of the intermediate portion M (boundary) between the outer wall 22A and the inner wall 24A at 10 locations. The average value.
  • the diameter of the coating layer 20 (the average value of the diameters of the outer surfaces of the peaks 22) is not particularly limited, but can be in the range of, for example, 12.85 mm or more and 34.25 mm or less.
  • the average value of the diameter of the outer surface of the peak part 22 be an average value of the value obtained by measuring ten arbitrary places.
  • the composite tube 10 of the present embodiment may have a structure in which the intermediate layer 14 is disposed between the tube body 12 and the coating layer 20.
  • the intermediate layer 14 is preferably made of, for example, a resin material containing a resin and further has a porous structure.
  • a resin material containing a resin As the resin in the resin material constituting the intermediate layer, polyurethane, polystyrene, polyethylene, polypropylene, ethylene propylene diene rubber, a mixture of these resins, and the like can be used, and among them, polyurethane is more preferable.
  • a layer containing polyurethane as a main component is preferred.
  • the constituent component of the intermediate layer preferably contains 80% by mass or more, more preferably 90% by mass or more.
  • middle layer may be a material which consists only of resin, but you may contain another additive.
  • the abundance ratio of pores in the intermediate layer is preferably 25/25 mm or more and 45/25 mm or less.
  • the abundance ratio of the holes can be measured by the method described in Appendix 1 of JIS-K6400-1 (2012).
  • the intermediate layer 14 is disposed between the tubular body 12 and the covering layer 20.
  • the intermediate layer 14 is preferably sandwiched between the inner wall 24A of the valley 24 of the coating layer 20 and the tube body 12, and is further sandwiched while being compressed between the inner wall 24A and the tube body 12. It is preferable that the compression clamping part 14A is formed.
  • the inner peripheral surface of the intermediate layer 14 is preferably flat, and preferably covers the outer periphery of the tubular body 12 while being in full contact with the outer periphery of the tubular body 12.
  • “entire contact” means that all parts do not have to be in close contact with each other, but substantially the entire surface is in contact. Therefore, for example, when the intermediate layer 14 is formed by winding a sheet-shaped porous resin sheet, the seam portion is partly separated or wrinkled between the tube body 12 and the coating layer 20. Includes a case where the part is partially separated.
  • the intermediate layer can have a sheet shape, for example.
  • the intermediate layer 14 is formed, for example, by winding a sheet-like porous resin sheet formed in a strip shape so as to have a width substantially equal to the outer peripheral length of the tube body 12 around the tube body 12, It can produce by supplying the resin composition which becomes and to shape
  • the thickness of the intermediate layer 14 is a natural state (a state where a force such as compression or tension is not applied, a temperature of 23 ° C. and a relative humidity of 45%), and the outer periphery of the tube body 12 and the radially inner surface of the inner wall 24A. It is preferable that the difference is greater than the difference.
  • the intermediate layer 14 is thinner than the natural thickness due to compression.
  • a convex portion 14B is formed between adjacent compression sandwiching portions 14A of the intermediate layer 14.
  • the convex portion 14 ⁇ / b> B has a larger diameter than the compression sandwiching portion 14 ⁇ / b> A and protrudes into the mountain space 23.
  • the top part (most radial direction outer side part) of the convex part 14B and 22 A of outer side walls are spaced apart.
  • the compression sandwiching portions 14A and the convex portions 14B are alternately and continuously formed in the axial direction S, and the outer peripheral surface of the intermediate layer 14 is wavy. It has become.
  • the thickness of the intermediate layer 14 in a natural state is in a range of 1.5 mm or more and 4.0 mm or less from the viewpoint of easy formation of the compression holding portion 14A compressed by the inner wall 24A and the tube body 12.
  • middle layer 14 be the average value of the value obtained by taking out the intermediate
  • the length in the axial direction S in the natural state in which the intermediate layer 14 is extracted from between the tube body 12 and the coating layer 20 is preferably 90% or more and 100% or less of the length in the axial direction S of the coating layer 20. This is because when the intermediate layer 14 is held in an extended state between the tube body 12 and the covering layer 20, relative movement between the intermediate layer 14 and the covering layer 20 is likely to occur when the covering layer 20 is shortened and deformed. This is because the intermediate layer 14 may not be shortened and the outer peripheral end of the tubular body 12 may not be exposed. In order to suppress relative movement between the intermediate layer 14 and the covering layer 20, the length in the axial direction S of the intermediate layer 14 in a natural state is 90% to 100% of the axial length of the covering layer 20. Is preferred.
  • the length L1 in the axial direction S is preferably longer than L2, and the thickness H1 is preferably thinner than H2. Accordingly, the outer wall 22A is more easily deformed than the inner wall 24A, and deforms so as to bulge outward in the radial direction as shown in FIG. Subsequently, as illustrated in FIG. 7, the outer bent portion 22 ⁇ / b> C of the peak portion 22 and the inner bent portion 24 ⁇ / b> C of the valley portion 24 are deformed so that the adjacent peak portions 22 approach each other. In this way, as shown in FIG. 5, the coating layer 20 at one end is more easily moved in the direction in which the tube body 12 is exposed.
  • the outer wall 22A is deformed so as to bulge, so that even if the bending angle and thickness of the covering layer 20 have some variation, the trough portion 24 is radially outward. It is possible to suppress the bulging out and the deformation state that is distorted without the adjacent peak portions 22 being close to each other. Thereby, the fall of the external appearance of the shortened coating layer 20 can be suppressed.
  • the density of the coating layer 20 is 940 kg / m 3 or less. Therefore, high stretchability (turnability) is obtained for the covering layer 20, and the covering layer 20 can be easily shortened in the axial direction S even when the end of the tubular body 12 is to be exposed.
  • the intermediate layer 14 is compressed by the inner wall 24A and the tubular body 12, the compression clamping portion 14A is in close contact with the covering layer 20, and the convex portion 14B is engaged between the side walls 24B of the adjacent valley portions 24. It becomes easier to shorten together with the coating layer 20. Thereby, as shown in FIG. 8, the edge part of the tubular body 12 can be exposed.
  • the thickness H1 of the outer wall 22A is made thinner than the thickness H2 of the inner wall 24A, but the thickness H1 may be the same as the thickness H2.
  • the outer wall 22A has a substantially straight shape along the axial direction S, but may have an arc shape bulging outward in the radial direction. Further, the inner wall 24A may have an arc shape that bulges inward in the radial direction.
  • the intermediate layer 14 is preferably in full contact with the outer peripheral surface of the tube body 12.
  • the tube 12, the intermediate layer 14, and the coating layer 20 are relatively moved to expose the end of the tube 12, and then the frictional force between the outer periphery of the tube 12 and the inner periphery of the intermediate layer 14.
  • the intermediate layer 14 and the covering layer 20 can be easily held at the shortened positions.
  • the intermediate layer 14 is compressed by the inner wall 24A and the tubular body 12, whereby the compression clamping portion 14A is in close contact with the coating layer 20, and the convex portion 14B is adjacent to the adjacent valley portion 24. Engage between the side walls 24B. Therefore, the intermediate layer 14 can easily follow the movement of the covering layer 20, and the intermediate layer 14 is prevented from being left on the outer periphery of the tubular body 12, and can be easily shortened together with the covering layer 20.
  • another layer 13 may be provided between the intermediate layer 14 and the tube body 12.
  • a low friction sheet that improves slippage between the intermediate layer 14 and the tube body 12 is provided, and the end portion of the tube body 12 is exposed by shortening the covering layer 20, the intermediate layer 14 and the above-described layer
  • the other layer 13 may follow the coating layer 20 and be easily deformed.
  • the intermediate layer 14 may not be provided.
  • a composite tube including only the tube body 12 and the coating layer 20 may be used.
  • a manufacturing apparatus 30 shown in FIG. 4 can be used for manufacturing the composite tube 10.
  • the manufacturing apparatus 30 includes an extruder 32, a die 34, a corrugating mold 36, a cooling tank 38, and a take-up device 39.
  • the right side of FIG. 4 is the upstream side, and the pipe body 12 is manufactured while moving from the right side to the left side.
  • this moving direction is referred to as a manufacturing direction Y.
  • the die 34, the corrugating mold 36, the cooling tank 38, and the take-up device 39 are arranged in this order with respect to the manufacturing direction Y, and the extruder 32 is arranged above the die 34.
  • upstream of the die 34 is a sheet-like member in which a tubular body 12 wound in a coil shape and a sheet (for example, a porous resin sheet) serving as an intermediate layer 14 are wound in a roll shape.
  • 14S is arranged.
  • the coiled tubular body 12 and the roll-shaped sheet-like member 14 ⁇ / b> S are continuously pulled out by being pulled in the manufacturing direction Y by the pulling device 39.
  • a sheet-like member 14S is wound around the entire outer periphery of the tubular body 12 drawn out continuously before the die 34. Note that the sheet-like member 14 ⁇ / b> S is inserted in the die 34 in a slack state before the die 34 in order not to apply a tensile force.
  • a resin material (melt of the resin composition for forming the coating layer 20) melted from the die 34 is extruded and applied in a cylindrical shape, A resin layer 20A is formed.
  • the resin material can easily enter the pores (bubbles) of the porous resin sheet, and the adhesion between the sheet-like member 14S and the resin layer 20A is improved. To do.
  • a corrugating process (formed in a bellows shape) is performed by a corrugating mold 36 disposed on the downstream side of the die 34.
  • the corrugating dies 36 are, for example, two pairs of dies, each of which has a semicircular inner surface, and an annular cavity 36 ⁇ / b> A is formed at a portion corresponding to the peak portion 22 of the coating layer 20 on the inner periphery thereof. Is formed, and an annular inner protrusion 36B is formed at a portion corresponding to the valley 24, and has a bellows shape.
  • Each cavity 36A is formed with a vent hole 36C having one end communicating with the cavity 36A and passing through the corrugating mold 36. In the cavity 36A, air is sucked from the outside of the corrugating mold 36 through the air hole 36C.
  • the two pairs of corrugating dies 36 approach the resin layer 20A from two directions to contact the inner surfaces thereof, and press the resin layer 20A by the inner protrusions 36B while pressing the resin layer 20A.
  • the outer periphery is covered and moved in the manufacturing direction Y together with the tubular body 12.
  • air is sucked from the outside of the corrugating mold 36, and the inside of the cavity 36A is set to a negative pressure.
  • the resin layer 20 ⁇ / b> A moves outward in the radial direction, and the bellows-like coating layer 20 along the corrugated mold 36 is formed.
  • the MFR of the coating layer 20 is preferably 0.8 or less.
  • the fluidity of the melt of the resin composition for forming the coating layer 20 is adjusted to an appropriate range and flows between the contact portions where the two pairs of corrugated molds 36 are in contact with each other. Is suppressed, and burrs on the radially outer side of the coating layer 20 are suppressed.
  • the sheet-like member 14S enters the cavity 36A in the mountain space 23 corresponding to the mountain portion 22 of the coating layer 20, and the convex portion 14B is formed.
  • a portion corresponding to the inner wall 24A of the valley portion 24 of the coating layer 20 is maintained in adhesion with the coating layer 20 and is compressed between the tubular body 12 and the inner wall 24A to form a compression sandwiching portion 14A. .
  • the coating layer 20 is cooled in the cooling bath 38. In this way, the composite tube 10 is manufactured.
  • a tubular tube body, an annular peak portion that is tubular and covers the outer periphery of the tube body, and protrudes radially outward, and the radially outer side is concave.
  • the annular valleys are alternately formed in the axial direction of the tubular body to have a bellows shape, can be shortened in the axial direction while being guided by the outer periphery of the tubular body, and include polyethylene as a main component.
  • composite pipe density has a coating layer is not more than 915 kg / m 3 or more 940 kg / m 3, is provided.
  • a melt flow rate (MFR) of the coating layer is 0.25 or more and 0.5 or less.
  • MFR melt flow rate
  • a length of the peak portion in the axial direction is longer than a length of the trough portion in the axial direction.
  • the length of the peak portion in the axial direction is 1.2 times or more the length of the valley portion in the axial direction.
  • the composite pipe according to any one of the first to fourth aspects in which the thickness of the peak portion of the coating layer is smaller than the thickness of the valley portion.
  • the ⁇ 6> According to the sixth aspect of the present disclosure, any one of the first to fifth aspects, wherein the thickness of the coating layer is 0.1 mm or more at the thinnest portion and 0.4 mm or less at the thickest portion.
  • a composite tube according to the above aspect is provided.
  • the first to sixth radii between the ridges and the valleys on the outer surface are 800% or less of the average thickness of the coating layer.
  • a composite tube according to any one of the above aspects is provided.
  • a composite pipe according to any one of the first to seventh aspects which includes an intermediate layer disposed between the pipe body and the covering layer. Is done.
  • the intermediate layer has a sheet shape and is in full contact with the outer surface of the tubular body.
  • the intermediate layer includes a compression clamping portion that is sandwiched while being compressed between the valley portion and the tubular body, a radially inner side of the peak portion, and the There is provided a composite pipe according to the eighth or ninth aspect, having a convex portion protruding into a mountain space between the pipe body.
  • Example 1 (Production of composite tube) A manufacturing apparatus having the configuration shown in FIG. 4 was prepared. A polybutene tube wound up in a coil shape was attached as a tubular body 12, and a urethane foam sheet A produced by a method described later was attached as a sheet-like member 14S. The take-up device 39 was operated to continuously draw out the coiled polybutene tube and the roll-shaped urethane foam sheet A, and the urethane foam sheet A was wound around the entire circumference of the polybutene tube. The urethane foam sheet A was inserted in the die 34 in a state where it was slack before the die 34.
  • a molten resin material (low density polyethylene (LDPE), density 920 kg / m 3 , MFR 0.35) was extruded from the die 34 in a cylindrical shape on the outer periphery of the urethane foam sheet A to form a resin layer.
  • LDPE low density polyethylene
  • the corrugated mold 36 is a pair of molds having the same inner surface shape, and both have a semicircular arc-shaped inner surface.
  • An annular cavity 36A is formed at a portion corresponding to the peak portion of the coating layer to be formed on the inner periphery, and an annular inner protrusion 36B is formed at a portion corresponding to the valley portion, and has a bellows shape.
  • Each cavity 36A is formed with a vent hole 36C having one end communicating with the cavity 36A and passing through the corrugating mold 36.
  • the resin layer 20A is pressed by the inner protrusion 36B, the resin layer 20A is moved in the manufacturing direction Y together with the polybutene tube, and suction is performed from the outside of the corrugating mold 36, thereby making the inside of the cavity 36A negative pressure. . In this way, a bellows-like coating layer was formed along the corrugation mold 36. Subsequently, it cooled in the cooling tank 38 and the composite pipe
  • the length L1 in the axial direction S of the peak portion 22 of the coating layer was 2.1 mm, and the length L2 in the axial direction S of the valley portion 24 was 1.5 mm.
  • the thickness of the coating layer was 0.2 mm at the thinnest part and 0.5 mm at the thickest part.
  • the radius difference ⁇ R between the outer surfaces of the peak portion 22 and the valley portion 24 was 88.9%.
  • the distance between the inner surface of the valley portion 24 of the coating layer and the outer surface of the polybutene tube (tube body), that is, the difference between the outer periphery of the tube body and the radially inner surface of the inner wall 24A of the coating layer (compression clamping portion clearance) is 1 0.5 mm.
  • the diameter of the coating layer (average value of the diameters of the outer surfaces of the peaks 22) was 23.5 mm.
  • Urethane foam sheet A (intermediate layer) was in full contact with the outer surface of the tube.
  • urethane foam sheet A Polyisocyanate and polyol as raw materials are mixed and reacted with a catalyst, a foaming agent and a foam stabilizer, and cut to a desired thickness with a cutting machine, and the thickness (average thickness in the natural state) is 2.5 mm. A urethane foam sheet A was prepared.
  • Example 2 A composite tube was obtained in the same manner as in Example 1 except that the resin material used for forming the coating layer was changed to polyethylene (density 920 kg / m 3 , MFR 1.2).
  • Example 3 A composite tube was obtained in the same manner as in Example 1 except that the resin material used for forming the coating layer was changed to polyethylene (density 922 kg / m 3 , MFR 0.5).
  • Example 1 A composite tube was obtained in the same manner as in Example 1 except that the resin material used for forming the coating layer was changed to polyethylene (density 957 kg / m 3 , MFR 0.3).
  • Example 2 A composite tube was obtained in the same manner as in Example 1 except that the resin material used for forming the coating layer was changed to polyethylene (density 959 kg / m 3 , MFR 0.27).
  • Example 2 where the MFR of the coating layer exceeded 0.8, the occurrence of burrs was confirmed, whereas in Examples 1 and 3 where the MFR was 0.8 or less, the occurrence of burrs was not confirmed.
  • the resin material used was changed so that the MFR value of the coating layer was different and the test was performed in the same manner as described above, burrs were generated when the MFR of the coating layer was on the upper side of 0.8. On the other hand, it was confirmed that no burr was generated when the ratio was 0.8 or less.
  • Example 4 High density polyethylene (HDPE) (density 967 kg / m 3 ) and low density polyethylene (LDPE) (density 920 kg / m 3 ) were prepared.
  • Example 1 except that the resin material used for forming the coating layer was changed to a mixed material in which the high density polyethylene (HDPE) and the low density polyethylene (LDPE) were mixed at a mass ratio shown in Table 2 below. Obtained a composite tube in the same manner as in Example 1.
  • the density of the coating layer of each obtained composite pipe was a value shown in Table 2 below.
  • FIG. 10 is a graph plotting the relationship between the “density” of the coating layer and the “pushing force” at 20% expansion / contraction of the coating layer in Examples 4 to 7 and Comparative Examples 4 to 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

管状の管体と、管状とされて管体の外周を覆い、径方向外側へ凸となる環状の山部と、径方向外側が凹となる環状の谷部とが、管体の軸方向に交互に形成されて蛇腹状とされ、管体の外周にガイドされつつ軸方向に短縮可能であり、ポリエチレンを主成分として含み、密度が915kg/m以上940kg/m以下である被覆層と、を有する複合管。

Description

複合管
 本開示は、複層構造の複合管に関する。
 従来から、配管を保護するために、配管を覆う種々の管が提案されている。例えば、特許文献1には、内部に配線又は配管材が挿通される波付管であって、少なくとも内面側が、フッ素樹脂を混入した、ポリオレフィン系合成樹脂または塩化ビニル樹脂により成形されてなる、配線・配管材用の波付管が開示されている。
 [特許文献1] 特開2015-48909号公報
 特許文献1に開示されるように、内部の管体と、この管体の外周を覆う蛇腹状の被覆層と、を有する複合管が知られている。また、管体と被覆層とを有する複合管において、さらに緩衝性を高める観点で管体と被覆層との間に緩衝層としての中間層を配置した構成とすることも考えられる。なお、こうした複合管では、内部の管体の端部に継手などを接続するときに、被覆層をずらしたりして管体端部を露出させることが求められる。
 そのため、管体を覆う被覆層には、管体の軸方向に容易に伸縮することができる、伸縮容易性(めくり性)が要求されている。
 本開示は、係る事実を考慮し、管状の管体と、管状とされて管体の外周を覆う被覆層と、を有する態様において、高い伸縮容易性を備えた被覆層を有する複合管を提供することを課題とする。
 前記課題は、以下の本開示により解決される。
<1> 管状の管体と、管状とされて前記管体の外周を覆い、径方向外側へ凸となる環状の山部と、径方向外側が凹となる環状の谷部とが、前記管体の軸方向に交互に形成されて蛇腹状とされ、前記管体の外周にガイドされつつ前記軸方向に短縮可能であり、ポリエチレンを主成分として含み、密度が915kg/m以上940kg/m以下である被覆層と、を有する複合管である。
 本開示によれば、管状の管体と、管状とされて管体の外周を覆う被覆層と、を有する態様において、高い伸縮容易性を備えた被覆層を有する複合管を提供することができる。
本開示の実施形態に係る複合管を示す斜視図である。 本開示の実施形態に係る複合管を示す縦断面図である。 本開示の実施形態に係る複合管の縦断面一部拡大図である。 本開示の複合管の製造工程を示す図である。 本開示の実施形態に係る複合管の管体の端部が露出された状態を示す縦断面図である。 図3の縦断面部分において、被覆層及び中間層が短縮変形される過程を示す図である。 図3の縦断面部分において、被覆層及び中間層が短縮変形された状態を示す図である。 本開示の実施形態に係る複合管の管体の端部が露出された状態を示す斜視図である。 本開示の他の実施形態に係る複合管を示す斜視図である。 実施例4~7及び比較例4~5での被覆層の密度と被覆層の伸縮20%時の押し込み力との関係をプロットしたグラフである。
 以下、本開示に係る複合管の一例である実施形態について、図面を適宜参照しながら詳細に説明する。各図面において同一の符号を用いて示される構成要素は、同一の構成要素であることを意味する。なお、以下に説明する実施形態において重複する説明及び符号については、省略する場合がある。
 なお、本明細書において、「主成分」とは、特に断りがない限り、混合物中における質量基準の含有量が最も多い成分をいう。
<複合管>
 本実施形態に係る複合管は、管状の管体と、管状とされて管体の外周を覆う被覆層と、を有する。
 被覆層は、径方向外側へ凸となる環状の山部と、径方向外側が凹となる環状の谷部とが、管体の軸方向に交互に形成されて蛇腹状とされ、管体の外周にガイドされつつ軸方向に短縮可能とされる。
 そして、被覆層は、ポリエチレンを主成分として含み、密度が915kg/m以上940kg/m以下である。
 ・密度
 複合管では、内部の管体の端部に継手などを接続するときに、被覆層の端部を短縮させてずらし、管体端部を露出させることが求められる。そのため、管体を覆う被覆層には、管体の軸方向に容易に伸縮することができる、伸縮容易性(めくり性)が要求される。
 これに対し本実施形態では、被覆層の密度が940kg/m以下である。
 これにより、被覆層が適度な柔軟性を有し、管体の端部を露出させようとする際に被覆層を容易に短縮して捲ることができ、管体の端部の露出を容易に行うことができる。
 一方、被覆層は、密度が915kg/m以上であることで適度な強度を有し、複合管の外周表面における高い保護性が達成される。
 なお、被覆層の密度は、918kg/m以上935kg/m以下であることがより好ましく、920kg/m以上930kg/m以下であることがさらに好ましい。
 ここで、被覆層の密度は、JIS-K7112(1999年)の「A法(水中置換法)」に規定の方法により測定することができる。
 被覆層の密度を上記の範囲に制御する方法としては、特に限定されるものではないが、例えば被覆層に主成分として含まれるポリエチレンの分子構造を調整する(つまりポリエチレンの原料となるモノマーの分子構造や、それらの架橋構造を調整する)方法、ポリエチレンの分子量を調整する方法等が挙げられる。
 ・Melt flow rate(MFR)
 本実施形態に係る複合管では、被覆層のMelt flow rate(MFR)が0.25以上0.8以下であることが好ましい。
 なお、被覆層のMFRは、0.30以上0.6以下であることがより好ましく、0.35以上0.5以下であることがさらに好ましい。
 管体と、管体を覆う蛇腹状の被覆層と、を有する複合管の作製は、例えば、管体の外周上に被覆層形成用の樹脂組成物の溶融物を塗布し、この溶融物を蛇腹状に形成しつつ固化させることで行われる。また、管体と被覆層との間に中間層を有する複合管を作製する場合には、例えば、管体の外周上に中間層となるシートを巻き付けた状態で、さらに中間層の外周上に被覆層形成用の樹脂組成物の溶融物を塗布し、この溶融物を蛇腹状に形成しつつ固化させることで行われる。このとき、被覆層形成用の樹脂組成物の溶融物を蛇腹状に形成するため、半円弧状の内面を有しかつこの内面が蛇腹の形状を有する二対の金型を、前記溶融物の外周面に対して二方向から接近させて接触させ、固化させることで蛇腹状に形成する方法が考えられる。
 なお、この樹脂組成物の溶融物には、塗布の容易性の観点から高い流動性が求められる。ただしその一方で、金型の内面内に溶融物が収まり切らずに、本来溶融物が進入しないはずである二対の金型の接触部にまで、溶融物が流れ込んでしまうことがある。その場合、固化された被覆層の外側にバリが生じることがある。
 これに対し、被覆層のMFRが0.8以下であることで、被覆層形成用の樹脂組成物を溶融させた際の流動性が適度な範囲に調整され、この溶融物が二対の金型の接触部に流れ込むことが抑制され、被覆層の径方向外側におけるバリが抑制される易くなる。そのため、管体端部を露出させる為に被覆層を短縮させてずらそうとする動作に対し、バリが障害となることが抑制され、伸縮容易性(めくり性)により優れる。また、被覆層の径方向外側に発生したバリを除去する工程が省略され、複合管の製造が煩雑となることが抑制される。
 また、被覆層のMFRが0.25以上であることで、管体の外周上や中間層の外周上等に被覆層形成用の樹脂組成物の溶融物を塗布する際における塗布の容易性が得られる。さらに、中間層として多孔質樹脂層を適用する場合であれば、この多孔質樹脂層の多孔質構造に被覆層の樹脂が入り込みやすくなり、後述する中間層と被覆層の谷部との接着度を高めることができる。
 ここで、被覆層のMFRは、JIS K7210-1(2014年)に規定する方法に従って、温度190℃、荷重2.16kgの条件で測定した値である。
 なお、MFRの単位は「g/10分」であるが、本明細書中ではこの単位の記載を省略する。
 被覆層のMFRを上記の範囲に制御する方法としては、特に限定されるものではないが、例えば被覆層に主成分として含まれるポリエチレンの分子構造を調整する(つまりポリエチレンの原料となるモノマーの分子構造や、それらの架橋構造を調整する)方法、ポリエチレンの分子量を調整する方法等が挙げられる。
 次いで、本開示の複合管を実施するための形態を、一例を挙げ図面に基づき説明する。
 図1に示される本実施形態に係る複合管10は、管体12と、管体の外周を覆う被覆層20と、を備え、さらに管体12と被覆層20との間に中間層14が配置されている。なお、符号Sは管体12の軸、及びその軸方向を表す。
 (管体)
 管体12は、管状とされる。
 管体は、例えば樹脂を含む樹脂材料からなる。樹脂材料における樹脂には、例えばポリブテン、ポリエチレン、架橋ポリエチレン、及びポリプロピレン等のポリオレフィン、塩化ビニル等が用いられ、樹脂は1種のみを用いても2種以上を併用してもよい。中でも、ポリブテンが好適に用いられ、ポリブテンを主成分として含むことが好ましく、例えば管体を構成する樹脂材料中において85質量%以上含む態様とすることができる。
 また、管体を構成する樹脂材料は樹脂のみからなる材料であってもよいが、他の添加剤を含有してもよい。
 (被覆層)
 被覆層20は、管状とされ、管体12及び中間層14の外周を覆っている。中間層14は、管体12と被覆層20の間に配置されている。
 被覆層の密度は915kg/m以上940kg/m以下である。また、被覆層はMelt flow rate(MFR)が0.25以上0.8以下であることが好ましい。
 被覆層は、樹脂を含む樹脂材料からなり、ポリエチレンを主成分として含む。例えば被覆層を構成する樹脂材料中において、ポリエチレンを80質量%以上含むことが好ましく、90質量%以上含むことがより好ましい。
 ポリエチレンは、分子構造に架橋構造を有するものであってもよい。
 被覆層を構成する樹脂材料には、ポリエチレン以外の樹脂を併用してもよく、例えばポリブテン、及びポリプロピレン等のポリオレフィン、塩化ビニル等が用いられ、1種のみを用いても2種以上を用いてもよい。
 なお、被覆層を構成する樹脂材料は樹脂のみからなる材料であってもよいが、他の添加剤を含有してもよい。
 図2にも示されるように、被覆層20は、蛇腹状とされており、径方向外側へ凸となる環状の山部22と、径方向外側が凹となる環状の谷部24とが、管体12の軸方向Sに交互に連続して形成されている。山部22は、谷部24よりも径方向Rの外側に配置されている。図3に示されるように、被覆層20の蛇腹状の最も径方向外側の部分を外側壁22A、最も径方向内側の部分を内側壁24Aとすると、径方向における外側壁22Aと内側壁24Aの中間部Mを境界として、径方向外側を山部22とし、径方向内側を谷部24とする。
 山部22は、軸方向Sに延びる外側壁22Aと、外側壁22Aの両端から径方向Rに沿って延びる側壁22Bを有している。外側壁22Aと側壁22Bの間には、外屈曲部22Cが形成されている。谷部24は、軸方向Sに延びる内側壁24Aと、内側壁24Aの両端から径方向Rに延びる側壁24Bを有している。内側壁24Aと側壁24Bの間には、内屈曲部24Cが形成されている。
 被覆層20の山部22の径方向内側には、径方向内側に凹の山空間23が形成されている。なお、山空間23には、後述する中間層14の凸部14Bが挿入されていることが好ましい。
 また、山部22の軸方向Sの長さL1は、谷部24の軸方向Sの長さL2よりも長く設定されていることが好ましい。なお、ここでの長さL1と長さL2との対比は、それぞれの長さの平均を対比することで行う。長さL1及び長さL2のそれぞれの平均値は、それぞれ任意の箇所を10箇所測定して得られた値の平均値とする。
 長さL1は、後述する短縮変形時の外側壁22Aの変形しやすさを確保するため、長さL2の1.2倍以上であることが好ましい。また、長さL1は、長さL2の5倍以下であることが好ましい。長さL1を長さL2の5倍以下にすることにより、複合官10の可撓性を保つことができる。また、長さL1が長すぎると、複合管10を敷設する際に、地面との接触面積が大きくなって施工しにくくなるためである。
 被覆層20の厚みは、被覆層20を短縮させるために、最も薄い部分で0.1mm以上、最も厚い部分で0.4mm以下であることが好ましい。
 外側壁22Aの厚みH1は、内側壁24Aの厚みH2よりも薄くなっていることが好ましい。なお、ここでの厚みH1と厚みH2との対比は、それぞれの厚みの平均を対比することで行う。厚みH1及び厚みH2のそれぞれの平均値は、それぞれ任意の箇所を10箇所測定して得られた値の平均値とする。
 厚みH1は、後述する短縮変形時の外側壁22Aの変形しやすさを確保するため、厚みH2の0.9倍以下であることが好ましい。
 山部22と谷部24の外表面での半径差ΔR(山部22の外表面の半径の平均と谷部24の外表面の半径の平均との差を表し、山部22の外表面と谷部24の外表面との径方向距離の指標となる)は、被覆層20の厚みの平均の800%以下であることが好ましい。半径差ΔRが大きければ、山部22の軸方向Sに沿った部分が変形しなくても、短縮のときに谷部24が径方向外側へ膨出したり、隣り合う山部22同士が近づかないで歪んだ変形状態となったりしにくい。半径差ΔRが、被覆層20の厚みの平均の800%以下となる場合に、上記の変形状態となることを抑制するために、山部22の軸方向Sの長さを谷部24の軸方向の長さよりも長くすることが、効果的である。なお、半径差ΔRが、被覆層20の厚みの平均の600%以下である場合に、より効果的である。なお、山部22及び谷部24のそれぞれの外表面の半径の平均値は、それぞれ任意の箇所を10箇所測定して得られた値の平均値とする。また、被覆層20の厚みの平均は、外側壁22Aの厚み、内側壁24Aの厚み、及び外側壁22Aと内側壁24Aの中間部M(境界)の厚みをそれぞれ10箇所測定して得られた値の平均値とする。
 被覆層20の径(山部22の外表面の直径の平均値)は、特に限定されるものではないが、例えば12.85mm以上34.25mm以下の範囲とすることができる。なお、山部22の外表面の直径の平均値は、任意の箇所を10箇所測定して得られた値の平均値とする。
 (中間層)
 本実施形態の複合管10は、管体12と被覆層20との間に中間層14が配置された構造であってもよい。
 中間層14は、例えば樹脂を含む樹脂材料からなり、さらに多孔質構造を有することが好ましい。中間層を構成する樹脂材料における樹脂には、ポリウレタン、ポリスチレン、ポリエチレン、ポリプロピレン、エチレンプロピレンジエンゴム、及びこれらの樹脂の混合物等を用いることができ、中でもポリウレタンがより好ましい。ポリウレタンを主成分として含む層であることが好ましく、例えば、中間層の構成成分中においてポリウレタンを80質量%以上含むことが好ましく、90質量%以上含むことがより好ましい。なお、中間層を構成する樹脂材料は樹脂のみからなる材料であってもよいが、他の添加剤を含有してもよい。
 中間層における孔の存在比率(例えば発泡体の場合であれば発泡率)は、25個/25mm以上45個/25mm以下であることが好ましい。なお、上記孔の存在比率は、JIS-K6400-1(2012年)の付属書1に記載の方法により測定することができる。
 中間層14は、管体12と被覆層20との間に配置されている。中間層14は、被覆層20の谷部24の内側壁24Aと管体12との間に挟持されていることが好ましく、さらに内側壁24Aと管体12との間に圧縮されつつ挟持されて圧縮挟持部14Aが形成されていることが好ましい。
 中間層14の内周面は平坦状とされていることが好ましく、さらに管体12の外周に全面的に接触しつつ、管体12の外周を覆っていることが好ましい。なお、ここでの「全面的に接触」とは、全ての部分がぴったりと密着している必要はなく、実質的に全面が接触していることを意味する。したがって、例えば中間層14がシート形状の多孔質樹脂シートを巻き付けて形成されている場合、その継ぎ目部分が一部離間していたり、管体12と被覆層20との間でシワになった部分が一部離間していたりする場合を含んでいる。
 中間層は、例えばその形状をシート状とすることができる。中間層14は、例えば、管体12の外周長と略等しい長さの幅を有するように帯状に形成されたシート状の多孔質樹脂シートを管体12の周囲に巻き付けながら、被覆層20となる樹脂組成物をその外周に供給して成形することにより、作製することができる。
 中間層14の厚さは、自然状態(圧縮や引っ張りなどの力が作用していない、温度23℃、相対湿度45%の状態)で、管体12の外周と内側壁24Aの径方向内側面との差以上となっており、さらに前記差よりも厚くなっていることが好ましい。
 圧縮挟持部14Aでは、圧縮により、中間層14は、自然状態の厚みより薄くなっている。中間層14の隣り合う圧縮挟持部14A同士の間には、凸部14Bが形成されている。凸部14Bは、圧縮挟持部14Aよりも大径とされ、山空間23内へ突出している。なお、山空間23内において、凸部14Bの頂部(最も径方向外側部分)と外側壁22Aとは離間していることが好ましい。中間層14が内側壁24Aと管体12とで圧縮されている場合、圧縮挟持部14Aと凸部14Bとが軸方向Sに交互に連続して形成され、中間層14の外周面が波状となっている。
 なお、中間層14の自然状態での厚さは、内側壁24Aと管体12とで圧縮された圧縮挟持部14Aの形成のし易さの観点から、1.5mm以上4.0mm以下の範囲が好ましく、2.0mm以上3.0mm以下がより好ましい。なお、中間層14の自然状態での厚さは、複合管10から中間層14を取り出して、任意の箇所10箇所を測定して得られた値の平均値とする。
 中間層14を管体12と被覆層20の間から抜き出した自然状態における軸方向Sの長さは、被覆層20の軸方向Sの長さの90%以上100%以下であることが好ましい。これは、中間層14が管体12と被覆層20の間において伸張状態で保持されていると、被覆層20を短縮変形させる際に、中間層14と被覆層20との相対移動が生じやすくなり、中間層14が短縮されずに管体12の外周端部を露出できないことが生じうるからである。中間層14と被覆層20との相対移動を抑制するため、自然状態における中間層14の軸方向Sの長さは、被覆層20の軸方向の長さの90%以上100%以下とすることが好ましい。
 次に、本実施形態の複合管10の作用について説明する。
 本実施形態に係る複合管10と継手とを接続する際には、図2に示す状態の被覆層20に対し、被覆層20を軸方向Sに短縮させて管体12を露出させる方向の力を作用させる。これにより、図5に示されるように、一端部の被覆層20は、管体12が露出される方向へ移動する。
 なお、山部22の外側壁22Aと谷部24の内側壁24Aにおいて、軸方向Sの長さL1はL2よりも長く、厚みH1はH2よりも薄いことが好ましい。これにより、外側壁22Aは内側壁24Aよりも変形しやすく、図6に示されるように、径方向外側へ膨出するように変形する。続いて、図7に示されるように、隣り合う山部22同士が近づくように、山部22の外屈曲部22Cと谷部24の内屈曲部24Cが変形する。このようにして、図5に示されるように、一端部の被覆層20は、管体12が露出される方向へより移動し易くなる。このように、被覆層20を短縮させる際に、外側壁22Aが膨出するように変形するため、被覆層20の屈曲角度や厚みに多少のバラツキがあっても、谷部24が径方向外側へ膨出したり、隣り合う山部22同士が近づかないで歪んだ変形状態となったりすることを抑制できる。これにより、短縮させた被覆層20の外観の低下を抑制することができる。
 ここで、本実施形態では、被覆層20の密度が940kg/m以下である。そのため、被覆層20について高い伸縮容易性(めくり性)が得られ、管体12の端部を露出させようとする際にも被覆層20を軸方向Sに容易に短縮させることができる。
 また、中間層14は内側壁24Aと管体12とで圧縮されており、圧縮挟持部14Aが被覆層20に密着され、凸部14Bが隣り合う谷部24の側壁24Bの間に係合し、被覆層20と共により短縮し易くなる。これにより、図8に示すように、管体12の端部を露出させることができる。
 なお、本実施形態では、外側壁22Aの厚みH1を内側壁24Aの厚みH2よりも薄くしたが、厚みH1は厚みH2と同じであってもよい。
 また、本実施形態では、外側壁22Aを軸方向Sに沿った略直線状としたが、径方向外側へ膨出する弧状としてもよい。さらに、内側壁24Aについて、径方向内側へ膨出する弧状としてもよい。
 また、本実施形態では、中間層14は、管体12の外周面と全面的に接触していることが好ましい。これにより、管体12と中間層14及び被覆層20とを相対移動させて管体12の端部を露出させた後、管体12の外周と中間層14の内周との間の摩擦力により、中間層14及び被覆層20を、短縮された位置に容易に保持することができる。
 また、本実施形態では、中間層14が内側壁24Aと管体12とで圧縮されており、これにより、圧縮挟持部14Aが被覆層20に密着され、凸部14Bが隣り合う谷部24の側壁24Bの間に係合する。したがって、中間層14は被覆層20の動きにより追従しやすくなり、中間層14が管体12の外周に置き去りになることが抑制され、容易に被覆層20と共に短縮させることができる。
 また、本実施形態では、図9に示すように、中間層14と管体12との間に、他の層13を設けてもよい。例えば中間層14と管体12との間の滑りを良くする低摩擦シートを設け、被覆層20を短縮変形させて管体12の端部を露出させようとする際に、中間層14及び上記他の層13が被覆層20に追従して変形し易い構成としてもよい。
 また、本実施形態では中間層14を有しない態様としてもよく、例えば管体12と被覆層20のみからなる複合管としてもよい。
 (製造方法)
 次に、本実施形態の複合管10の製造方法について説明する。なお、ここでは管体12と中間層14と被覆層20とを有する複合管10を例に挙げて、その製造方法を説明する。
 複合管10の製造には、例えば、図4に示す製造装置30を用いることができる。製造装置30は、押出機32、ダイ34、波付け金型36、冷却槽38、及び引取装置39を有している。製造装置30による複合管10の製造の流れは、図4の右側が上流側となっており、右側から左側へ向かって管体12が移動しつつ製造される。以下、この移動方向を製造方向Yとする。ダイ34、波付け金型36、冷却槽38、及び引取装置39は、製造方向Yに対してこの順に配置されており、押出機32は、ダイ34の上方に配置されている。
 ダイ34の上流には、不図示であるが、コイル状に巻き取られた管体12、及び、中間層14となるシート(例えば多孔質樹脂シート)がロール状に巻き取られたシート状部材14Sが配置されている。コイル状の管体12及びロール状のシート状部材14Sは、引取装置39により製造方向Yに引っ張られることによって、連続的に引き出される。連続的に引き出された管体12の外周面には、ダイ34の手前で、シート状部材14Sが全周にわたって巻きつけられる。なお、シート状部材14Sは、引張力を作用させないために、ダイ34の手前では、弛みをもった状態とされ、ダイ34へ挿入される。
 管体12の外周に巻き付けられたシート状部材14Sの外周には、ダイ34から溶融された樹脂材(被覆層20形成用の樹脂組成物の溶融物)が円筒状に押し出されて塗布され、樹脂層20Aが形成される。ここで使用する樹脂組成物のMFRを0.25以上とすることにより、樹脂材が多孔質樹脂シートの孔(気泡)に入り込みやすくなり、シート状部材14Sと樹脂層20Aとの接着性が向上する。
 管体12、シート状部材14S、及び樹脂層20Aで構成される管状押出体21が形成された後、ダイ34の下流側に配置された波付け金型36で波付け工程(蛇腹状に形成する工程)が行われる。波付け金型36は例えば二対の金型であり、いずれの金型も半円弧状の内面を有し、この内周には被覆層20の山部22に対応する部分に環状のキャビティ36Aが形成され、谷部24に対応する部分に環状の内側突起36Bが形成されており、蛇腹の形状を有している。各キャビティ36Aには、一端がキャビティ36Aと連通し波付け金型36を貫通した通気孔36Cが形成されている。キャビティ36A内は、通気孔36Cを介して、波付け金型36の外側から吸気が行われる。
 ダイ34の下流側で、二対の波付け金型36は樹脂層20Aに対して二方向から接近してその内面を接触させ、内側突起36Bにより樹脂層20Aを押圧しつつ管状押出体21の外周を覆い、管体12と共に製造方向Yへ移動する。このとき、波付け金型36の外側から吸気を行い、キャビティ36A内を負圧にする。これにより、樹脂層20Aが径方向外側へ移動し、波付け金型36に沿った蛇腹状の被覆層20が形成される。
 ここで、本実施形態では、被覆層20のMFRが0.8以下であることが好ましい。MFRが上記範囲であることで、被覆層20形成用の樹脂組成物の溶融物の流動性が適度な範囲に調整され、二対の波付け金型36同士が接触する接触部の間に流れ込むことが抑制され、被覆層20の径方向外側におけるバリが抑制される。
 また、このときシート状部材14Sは、被覆層20の山部22に対応する山空間23でキャビティ36A内へ入り込み、凸部14Bが形成される。被覆層20の谷部24の内側壁24Aに対応する部分は、被覆層20との接着が維持されると共に管体12と内側壁24Aとの間で圧縮され、圧縮挟持部14Aが形成される。
 波付け金型36で波付け工程が行われた後、被覆層20は、冷却槽38で冷却される。このようにして、複合管10が製造される。
 上記の通り、本開示によれば以下の複合管が提供される。
<1> 本開示の第1の観点によれば、管状の管体と、管状とされて前記管体の外周を覆い、径方向外側へ凸となる環状の山部と、径方向外側が凹となる環状の谷部とが、前記管体の軸方向に交互に形成されて蛇腹状とされ、前記管体の外周にガイドされつつ前記軸方向に短縮可能であり、ポリエチレンを主成分として含み、密度が915kg/m以上940kg/m以下である被覆層と、を有する複合管が提供される。
<2> 本開示の第2の観点によれば、前記被覆層のMelt flow rate(MFR)が0.25以上0.5以下である、第1の観点による複合管が提供される。
<3> 本開示の第3の観点によれば、前記山部の前記軸方向の長さが、前記谷部の前記軸方向の長さよりも長い、第1又は第2の観点による複合管が提供される。
<4> 本開示の第4の観点によれば、前記山部の前記軸方向の長さは、前記谷部の前記軸方向の長さの1.2倍以上である、第1~第3のいずれか1の観点による複合管が提供される。
<5> 本開示の第5の観点によれば、前記被覆層の前記山部の厚みは前記谷部の厚みよりも薄い、第1~第4のいずれか1の観点による複合管が提供される。
<6> 本開示の第6の観点によれば、前記被覆層の厚みは、最も薄い部分で0.1mm以上、最も厚い部分で0.4mm以下である、第1~第5のいずれか1の観点による複合管が提供される。
<7> 本開示の第7の観点によれば、前記山部と前記谷部との外表面での半径差は、前記被覆層の厚みの平均の800%以下である、第1~第6のいずれか1の観点による複合管が提供される。
<8> 本開示の第8の観点によれば、前記管体と前記被覆層との間に配置された中間層を備えた、第1~第7のいずれか1の観点による複合管が提供される。
<9> 本開示の第9の観点によれば、前記中間層がシート状であり、前記管体の外表面と全面的に接触する、第8の観点による複合管が提供される。
<10> 本開示の第10の観点によれば、前記中間層は、前記谷部と前記管体との間に圧縮されつつ挟持された圧縮挟持部と、前記山部の径方向内側と前記管体との間の山空間内に突出された凸部と、を有する、第8又は第9の観点による複合管が提供される。
 以下、実施例によって更に本開示を具体的に説明する。但し、本開示は下記実施例に制限されるものではない。
[実施例1]
 (複合管の作製)
 図4に示す構成の製造装置を準備した。コイル状に巻き取られたポリブテン管を管体12として装着し、後述の方法で作製したウレタンフォームシートAをシート状部材14Sとして装着した。引取装置39を作動させて、コイル状のポリブテン管及びロール状のウレタンフォームシートAを連続的に引き出し、ポリブテン管の外周面にウレタンフォームシートAを全周にわたって巻きつけた。なお、ウレタンフォームシートAは、ダイ34の手前で弛みをもった状態とし、ダイ34へ挿入した。
 次いで、ウレタンフォームシートAの外周に、溶融された樹脂材(低密度ポリエチレン(LDPE)、密度920kg/m、MFR0.35)をダイ34から円筒状に押し出して塗布し、樹脂層を形成した。
 次いで、ダイ34の下流側に配置された二対の波付け金型36を、樹脂層に対して二方向から接近させて内面を接触させた。なお、波付け金型36は内面の形状が同形状の二対の金型で、いずれも半円弧状の内面を有する。この内周には形成する被覆層の山部に対応する部分に環状のキャビティ36Aが形成され、谷部に対応する部分に環状の内側突起36Bが形成されており、蛇腹の形状を有している。各キャビティ36Aには、一端がキャビティ36Aと連通し波付け金型36を貫通した通気孔36Cが形成されている。内側突起36Bにより樹脂層20Aを押圧しつつ、この樹脂層20Aをポリブテン管と共に製造方向Yへ移動し、かつ波付け金型36の外側から吸気を行うことで、キャビティ36A内を負圧にした。こうして、波付け金型36に沿った蛇腹状の被覆層を形成した。
 次いで、冷却槽38で冷却して、複合管を得た。
 得られた複合管において、被覆層の山部22の軸方向Sの長さL1は2.1mm、谷部24の軸方向Sの長さL2は1.5mmであった。
 被覆層の厚みは、最も薄い部分で0.2mm、最も厚い部分で0.5mmであった。
 山部22と谷部24の外表面での半径差ΔRは、88.9%であった。
 被覆層の谷部24の内面とポリブテン管(管体)の外面との距離、つまり管体の外周と被覆層の内側壁24Aの径方向内側面との差(圧縮挟持部クリアランス)は、1.5mmであった。
 被覆層の径(山部22の外表面の直径の平均値)は、23.5mmであった。
 ウレタンフォームシートA(中間層)は管体の外表面と全面的に接触していた。
 (ウレタンフォームシートAの作製)
 原料としてのポリイソシアネート及びポリオールを、触媒、発泡剤、整泡剤と共に混合し反応させ、裁断機で所望の厚さに裁断して、厚さ(自然状態での平均厚さ)が2.5mmであるウレタンフォームシートAを作製した。
[実施例2]
 被覆層の形成に用いた樹脂材を、ポリエチレン(密度920kg/m、MFR1.2)に変更したこと以外は、実施例1と同様にして複合管を得た。
[実施例3]
 被覆層の形成に用いた樹脂材を、ポリエチレン(密度922kg/m、MFR0.5)に変更したこと以外は、実施例1と同様にして複合管を得た。
[比較例1]
 被覆層の形成に用いた樹脂材を、ポリエチレン(密度957kg/m、MFR0.3)に変更したこと以外は、実施例1と同様にして複合管を得た。
[比較例2]
 被覆層の形成に用いた樹脂材を、ポリエチレン(密度959kg/m、MFR0.27)に変更したこと以外は、実施例1と同様にして複合管を得た。
[比較例3]
 被覆層の形成に用いた樹脂材を、ポリエチレン(密度956kg/m、MFR0.14)に変更したこと以外は、実施例1と同様にして複合管を得た。
<評価試験>
 -被覆層の伸縮容易性(めくり性)の評価-
 複合管の軸方向の一端側を被覆層の外側から手で掴み、複合管の他端側を平面に押し付けながら、被覆層を管体の軸方向に短縮させて内側の管体を露出させる試験を行い、被覆層を短縮させることが容易に行えるか否かについて、評価した。
 比較例1を基準として、この基準より容易に(つまりより弱い力で)短縮させられた場合を「良好」と評価した。一方、比較例1と同程度の力が必要であった場合、及びより強い力が必要であった場合を「不良」と評価した。
 結果を下記表1に示す。
 -バリの発生-
 複合管の作製の際、被覆層形成用の樹脂材が二対の波付け金型同士が接触する接触部の間に進入して、被覆層の径方向外側にバリが生じたか否かを、目視で確認した。結果を下記表1に示す。
  有り:バリが確認された。
  なし:バリが一切確認されなかった。
Figure JPOXMLDOC01-appb-T000001
 被覆層の密度が940kg/mを超える比較例1~3では被覆層を軸方向へ短縮することが容易でなかったのに対し、被覆層の密度が940kg/m以下の実施例1~3では被覆層を容易に短縮することができた。
 なお、被覆層の密度の値が異なるよう、用いる樹脂材を変更して上記同様に試験を実施したところ、被覆層の密度が940kg/mを境にして上側である場合には被覆層の短縮が難しく、一方940kg/m以下である場合には被覆層を容易に短縮することができることが確認された。
 また、被覆層のMFRが0.8を超える実施例2ではバリの発生が確認されたのに対し、0.8以下の実施例1及び3ではバリの発生が確認されなかった。
 なお、被覆層のMFRの値が異なるよう、用いる樹脂材を変更して上記同様に試験を実施したところ、被覆層のMFRが0.8を境にして上側である場合にはバリが発生し、一方0.8以下である場合にはバリが発生しないことが確認された。
[実施例4~7、比較例4~5]
 高密度ポリエチレン(HDPE)(密度967kg/m)、及び低密度ポリエチレン(LDPE)(密度920kg/m)を準備した。
 実施例1において、被覆層の形成に用いた樹脂材を、上記高密度ポリエチレン(HDPE)と上記低密度ポリエチレン(LDPE)とを下記表2に示す質量比で混合した混合材に変更したこと以外は、実施例1と同様にして複合管を得た。なお、得られた各複合管の被覆層の密度は、下記表2に示す値であった。
<評価試験>
 -被覆層の伸縮20%時の押し込み力の評価-
 複合管の軸方向の一端側の被覆層を管体の軸方向に20%短縮させ、つまり軸方向長さ500mmの被覆層を400mmまで短縮させて、内側の管体を露出させる試験を行った。そして、被覆層を20%短縮させるために必要な押し込み力(N)を測定した。
 結果を下記表2に示す。また、実施例4~7及び比較例4~5における被覆層の「密度」と被覆層の伸縮20%時の「押し込み力」との関係をプロットしたグラフを、図10に示す。
Figure JPOXMLDOC01-appb-T000002
 被覆層の密度が940kg/mを超える比較例4~5では、複合管の被覆層を20%短縮させる為の押し込み力が大きく、被覆層を軸方向へ短縮することが容易でなかった。一方で、被覆層の密度が940kg/m以下の実施例4~7では、複合管の被覆層を20%短縮させる為の押し込み力が低減されており、被覆層を容易に短縮することができた。
 なお、日本出願2016-251954の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
10 複合管、 12 管体、 14 中間層、 14A 圧縮挟持部、 14B 凸部、 14S シート状部材、 20 被覆層、 22 山部、22A 外側壁、 23 山空間、 24 谷部、 24A 内側壁、 S 軸方向

Claims (10)

  1.  管状の管体と、
     管状とされて前記管体の外周を覆い、径方向外側へ凸となる環状の山部と、径方向外側が凹となる環状の谷部とが、前記管体の軸方向に交互に形成されて蛇腹状とされ、前記管体の外周にガイドされつつ前記軸方向に短縮可能であり、ポリエチレンを主成分として含み、密度が915kg/m以上940kg/m以下である被覆層と、
     を有する複合管。
  2.  前記被覆層のMelt flow rate(MFR)が0.25以上0.8以下である請求項1に記載の複合管。
  3.  前記山部の前記軸方向の長さが、前記谷部の前記軸方向の長さよりも長い請求項1又は請求項2に記載の複合管。
  4.  前記山部の前記軸方向の長さは、前記谷部の前記軸方向の長さの1.2倍以上である請求項1~請求項3のいずれか1項に記載の複合管。
  5.  前記被覆層の前記山部の厚みは前記谷部の厚みよりも薄い請求項1~請求項4のいずれか1項に記載の複合管。
  6.  前記被覆層の厚みは、最も薄い部分で0.1mm以上、最も厚い部分で0.4mm以下である請求項1~請求項5のいずれか1項に記載の複合管。
  7.  前記山部と前記谷部との外表面での半径差は、前記被覆層の厚みの平均の800%以下である請求項1~請求項6のいずれか1項に記載の複合管。
  8.  前記管体と前記被覆層との間に配置された中間層を備えた請求項1~請求項7のいずれか1項に記載の複合管。
  9.  前記中間層がシート状であり、前記管体の外表面と全面的に接触する請求項8に記載の複合管。
  10.  前記中間層は、前記谷部と前記管体との間に圧縮されつつ挟持された圧縮挟持部と、前記山部の径方向内側と前記管体との間の山空間内に突出された凸部と、を有する請求項8又は請求項9に記載の複合管。
PCT/JP2017/045833 2016-12-26 2017-12-20 複合管 WO2018123779A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018559107A JP7063821B2 (ja) 2016-12-26 2017-12-20 複合管
EP17887630.6A EP3575657A4 (en) 2016-12-26 2017-12-20 CONNECTING TUBE
CN201780080577.XA CN110114602A (zh) 2016-12-26 2017-12-20 复合管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016251954 2016-12-26
JP2016-251954 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018123779A1 true WO2018123779A1 (ja) 2018-07-05

Family

ID=62710499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045833 WO2018123779A1 (ja) 2016-12-26 2017-12-20 複合管

Country Status (5)

Country Link
EP (1) EP3575657A4 (ja)
JP (1) JP7063821B2 (ja)
CN (1) CN110114602A (ja)
TW (1) TW201829164A (ja)
WO (1) WO2018123779A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162059A (zh) * 2020-09-10 2022-03-11 住友电装株式会社 护线套
JP7474585B2 (ja) 2019-11-26 2024-04-25 日鉄建材株式会社 繰出し式排水パイプ、地盤排水構造、及び繰出し式排水パイプの貫入方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4128654A1 (de) * 1991-08-29 1993-03-04 Wolfgang Mayer Mehrschichtiges leitungsrohr aus kunststoff und vorrichtung zu dessen herstellung
JPH11503217A (ja) * 1995-04-03 1999-03-23 ウポノール・ベー・ブイ 波形管の製造方法及びこの方法により製造された波形管
JP2002106759A (ja) * 2000-09-28 2002-04-10 Piolax Inc コルゲートチューブ
JP2004044780A (ja) * 2002-05-24 2004-02-12 Furukawa Electric Co Ltd:The 波付けさや管、給水・給湯用配管材及び給水・給湯用配管材の施工方法
WO2004039574A2 (en) * 2002-10-31 2004-05-13 Plastiflex Belgium Tubular body having isolation layer of foamed plastic and method for producing same
JP2004322583A (ja) * 2003-04-28 2004-11-18 Sanyo Kasei:Kk コルゲート管の製造方法およびこの製造方法により製造されたコルゲート管
JP2007139043A (ja) * 2005-11-17 2007-06-07 Aron Kasei Co Ltd コルゲート二重管
JP2015048909A (ja) 2013-09-02 2015-03-16 未来工業株式会社 配線・配管材用の波付管
JP2015199511A (ja) * 2014-04-07 2015-11-12 株式会社クレハ 喰い切り支持部を備える合成樹脂製ブロー成形多層容器
JP2016188305A (ja) * 2015-03-30 2016-11-04 三井・デュポンポリケミカル株式会社 ヒートシール用組成物及び積層体
WO2017213007A1 (ja) * 2016-06-09 2017-12-14 株式会社ブリヂストン 複合管

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257790A (ja) * 1988-08-18 1990-02-27 Toyo Densen Kk 断熱管及びその製造方法
GB2311114B (en) * 1996-03-15 1999-04-28 T & N Technology Ltd Convoluted flexible protective sleeves
JP4557388B2 (ja) * 2000-07-18 2010-10-06 因幡電機産業株式会社 保護管付き流体輸送管の製造方法
JP3168436U (ja) * 2011-04-01 2011-06-09 株式会社極美全掃 高圧ホース
US9297491B2 (en) * 2012-02-08 2016-03-29 Federal-Mogul Powertrain, Inc. Thermally resistant convoluted sleeve and method of construction thereof
JP2013231490A (ja) * 2012-05-01 2013-11-14 Bridgestone Corp 複合管、及び複合管の製造方法
JP5775541B2 (ja) * 2013-03-08 2015-09-09 株式会社ブリヂストン 複合管
CN110114603B (zh) * 2016-12-26 2021-01-05 株式会社普利司通 复合管及复合管的制造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4128654A1 (de) * 1991-08-29 1993-03-04 Wolfgang Mayer Mehrschichtiges leitungsrohr aus kunststoff und vorrichtung zu dessen herstellung
JPH11503217A (ja) * 1995-04-03 1999-03-23 ウポノール・ベー・ブイ 波形管の製造方法及びこの方法により製造された波形管
JP2002106759A (ja) * 2000-09-28 2002-04-10 Piolax Inc コルゲートチューブ
JP2004044780A (ja) * 2002-05-24 2004-02-12 Furukawa Electric Co Ltd:The 波付けさや管、給水・給湯用配管材及び給水・給湯用配管材の施工方法
WO2004039574A2 (en) * 2002-10-31 2004-05-13 Plastiflex Belgium Tubular body having isolation layer of foamed plastic and method for producing same
JP2004322583A (ja) * 2003-04-28 2004-11-18 Sanyo Kasei:Kk コルゲート管の製造方法およびこの製造方法により製造されたコルゲート管
JP2007139043A (ja) * 2005-11-17 2007-06-07 Aron Kasei Co Ltd コルゲート二重管
JP2015048909A (ja) 2013-09-02 2015-03-16 未来工業株式会社 配線・配管材用の波付管
JP2015199511A (ja) * 2014-04-07 2015-11-12 株式会社クレハ 喰い切り支持部を備える合成樹脂製ブロー成形多層容器
JP2016188305A (ja) * 2015-03-30 2016-11-04 三井・デュポンポリケミカル株式会社 ヒートシール用組成物及び積層体
WO2017213007A1 (ja) * 2016-06-09 2017-12-14 株式会社ブリヂストン 複合管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3575657A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474585B2 (ja) 2019-11-26 2024-04-25 日鉄建材株式会社 繰出し式排水パイプ、地盤排水構造、及び繰出し式排水パイプの貫入方法
CN114162059A (zh) * 2020-09-10 2022-03-11 住友电装株式会社 护线套
CN114162059B (zh) * 2020-09-10 2024-03-05 住友电装株式会社 护线套

Also Published As

Publication number Publication date
TW201829164A (zh) 2018-08-16
JP7063821B2 (ja) 2022-05-09
CN110114602A (zh) 2019-08-09
EP3575657A4 (en) 2020-03-11
JPWO2018123779A1 (ja) 2019-11-07
EP3575657A1 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
JP7197356B2 (ja) 複合管
WO2018123886A1 (ja) 複合管及び複合管の製造方法
JP2017219150A (ja) 複合管
JP2013231490A (ja) 複合管、及び複合管の製造方法
WO2018123780A1 (ja) 複合管
WO2018123779A1 (ja) 複合管
JP2017219149A (ja) 複合管
WO2018123781A1 (ja) 複合管
JP2009014061A (ja) 合成樹脂製継手用管とその製造方法
JP6965140B2 (ja) 複合管
JP2020094637A (ja) 複合管、及び複合管の製造方法
JP2019215060A (ja) 複合管
JP2019105327A (ja) 複合管
JP7006217B2 (ja) 複合管
JP7425578B2 (ja) 複合管
JP2023142260A (ja) 複合管
JP2008224011A (ja) 端部拡径ホース及びその製造方法
JP2019105321A (ja) 複合管及び複合管の製造方法
JP2019215059A (ja) 複合管
JP2020190257A (ja) 複合管
TW202103911A (zh) 複合管及複合管之製造方法
JP2008224012A (ja) 端部拡径ホース及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559107

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017887630

Country of ref document: EP