WO2018123726A1 - 高炉炉床部用れんが及びこれを使用した高炉炉床部並びに高炉炉床部用れんがの製造方法 - Google Patents

高炉炉床部用れんが及びこれを使用した高炉炉床部並びに高炉炉床部用れんがの製造方法 Download PDF

Info

Publication number
WO2018123726A1
WO2018123726A1 PCT/JP2017/045512 JP2017045512W WO2018123726A1 WO 2018123726 A1 WO2018123726 A1 WO 2018123726A1 JP 2017045512 W JP2017045512 W JP 2017045512W WO 2018123726 A1 WO2018123726 A1 WO 2018123726A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
brick
blast furnace
aluminum
Prior art date
Application number
PCT/JP2017/045512
Other languages
English (en)
French (fr)
Inventor
三島 昌昭
Original Assignee
黒崎播磨株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黒崎播磨株式会社 filed Critical 黒崎播磨株式会社
Priority to CN201780072887.7A priority Critical patent/CN110023268A/zh
Priority to EP17887063.0A priority patent/EP3564201A4/en
Priority to JP2017567251A priority patent/JP6999426B2/ja
Priority to KR1020197007308A priority patent/KR20190040008A/ko
Publication of WO2018123726A1 publication Critical patent/WO2018123726A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/04Blast furnaces with special refractories
    • C21B7/06Linings for furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • C04B2235/3869Aluminium oxynitrides, e.g. AlON, sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Definitions

  • the present invention relates to a blast furnace hearth brick used in a blast furnace hearth part (referring to a hearth part including a side wall and a furnace bottom below a tuyere in a blast furnace; the same shall apply hereinafter) and a brick used for the same.
  • the present invention relates to a method for manufacturing a blast furnace hearth part and a brick for a blast furnace hearth part.
  • the blast furnace hearth mainly uses carbonaceous bricks with aggregates of graphite or alumina bricks with aggregates of alumina, but these blast furnace furnaces are one of the factors governing the furnace life.
  • the wear of floor bricks can be mentioned.
  • lining material for the blast furnace hearth
  • carbonaceous bricks blocks
  • such cooling from outside the furnace results in a large energy loss.
  • alumina bricks mainly composed of alumina that hardly dissolves into hot metal have been used in recent years.
  • sialon bonded alumina bricks containing ⁇ '-sialon represented by the chemical formula Si 6-Z Al Z O Z N 8-Z in the matrix portion contain almost no carbon, so they have excellent hot metal resistance and are also suitable for use in blast furnaces.
  • Patent Document 1 the matrix portion (bound substrate) (refers to a Z value in the chemical formula Si of ⁇ '- sialon 6-Z Al Z O Z N 8-Z.) Z value of 0.5 to Sialon bonded alumina bricks containing 12 to 45% by weight of 4 ⁇ ′-sialon are disclosed.
  • the sialon bond alumina brick of Patent Document 1 since the Si in ⁇ ′-sialon contained in the matrix portion gradually melts into the hot metal, the wear of the brick proceeds and the hot metal resistance is not sufficient.
  • an aluminum compound bonded brick having an aluminum compound as a connective structure has been developed as a brick not containing Si in the matrix portion.
  • the brick structure is composed of a crystalline phase and an amorphous phase.
  • the crystalline phase is 80 to 98% by mass of corundum, and 1 to 18% by mass of aluminum nitride crystals and / or aluminum oxycarbide crystals.
  • An amorphous phase is 0.5 to 10% by mass
  • an aluminum compound-bonded brick for a blast furnace hearth having an Si content of 3% by mass or less is disclosed.
  • a refractory having a connective structure of aluminum nitride or aluminum oxycarbide (mainly Al 2 OC or Al 4 O 4 C) is excellent in hot metal resistance.
  • Patent Document 2 contains aluminum nitride or aluminum oxycarbide, the moisture during the cutting of the brick, the moisture in the mortar during construction, or during storage There is a problem inferior in hydration resistance that these are easily hydrated by moisture in the air. Moreover, the slag resistance was still insufficient.
  • Example 3 of Patent Document 3 discloses corundum, aluminum nitride, and an aluminum compound bonded brick containing AlON as an aluminum oxynitride. And, as a method for producing this brick, it is disclosed that a molded body of a composition composed of aluminum powder and refractory raw material powder is put into a sealable container and fired in a state in which the container is filled with silicon nitride particles. Yes. At this time, since oxygen derived from the air coexists in the firing atmosphere, aluminum oxynitride is also generated in addition to aluminum nitride. That is, it is disclosed that aluminum oxynitride is simultaneously generated and precipitated in addition to aluminum nitride through a gas phase reaction in accordance with the nitrogen partial pressure and oxygen partial pressure in the firing atmosphere.
  • aluminum oxynitride is generated by oxidation of aluminum nitride as a by-product of aluminum nitride, and aluminum oxynitride is preferentially generated. It is difficult and the amount of production is small.
  • the brick of Example 3 has an X-ray diffraction peak intensity of AlN of 800 versus AlON of 200, and the ratio of AlON is low. For this reason, although the hot metal resistance and the slag resistance have been improved, further improvements are desired.
  • aluminum nitride is easily hydrated, and when its content is high, there is a problem of hydration resistance described above.
  • the problem to be solved by the present invention is to provide a brick for a blast furnace hearth with excellent hydration resistance and improved hot metal resistance and slag resistance, and further to improve the life of the blast furnace hearth. .
  • the present inventor considers that the structure of the matrix part has a great influence on the hot metal resistance and the slag resistance in a brick having an aluminum compound for the blast furnace hearth as a connective structure, and pays attention to the improvement of the matrix part.
  • Various experiments were conducted. As a result, it was found that the oxynitride of aluminum as the matrix structure is much more excellent in slag resistance and hot metal resistance than aluminum nitride and aluminum oxycarbide, and also in hydration resistance.
  • the gist of the present invention is as follows. (1) Corundum is 47 to 92% by mass and aluminum oxynitride is 7 to 50% by mass, and the total amount thereof is 84% by mass or more,
  • the content of carbonaceous raw material is 10% by mass or less (excluding 0)
  • the content of aluminum nitride is 3% by mass or less (including 0)
  • the total amount is 3% by mass or less (including 0)
  • the brick for a blast furnace hearth part containing 7% by mass or more of the aluminum oxynitride in the matrix part.
  • Corundum is 47 to 92% by mass
  • aluminum oxynitride is 7 to 50% by mass
  • the total amount thereof is 94% by mass or more.
  • it contains no carbonaceous raw material
  • the content of aluminum nitride is 3% by mass or less (including 0)
  • the total content of AlN polymorphic sialon, ⁇ ′-sialon, and silicon nitride is 3% by mass or less ( 0)
  • the brick for a blast furnace hearth part containing 7% by mass or more of the aluminum oxynitride in the matrix part.
  • Mass ratio (A / B) of calcined alumina having an average particle diameter of 10 ⁇ m or less and / or an alumina precursor having an average particle diameter of 10 ⁇ m or less to metallic aluminum having a particle diameter of 0.1 mm or less is 0.4 to 7 .6 is a refractory raw material composition containing 6 to 38% by mass of a mixture and 62 to 94% by mass of an alumina raw material excluding calcined alumina.
  • a method for producing a brick for a blast furnace hearth comprising adding a binder to a refractory raw material composition containing 50%, kneading and molding, followed by firing at 1300 to 1600 ° C. in a nitrogen atmosphere.
  • the structure of the blast furnace hearth brick of the present invention (hereinafter also simply referred to as “the brick of the present invention”) includes an aggregate part composed of aggregates, and a matrix part that is a connective structure that connects the aggregates together. Consists of. And as shown in FIG. 1, an aggregate is a particle
  • the matrix portion is mainly composed of only aluminum oxynitride or aluminum oxynitride and corundum
  • the aggregate portion is mainly composed of only corundum or corundum and aluminum oxynitride.
  • AlON / x is Al (8 + X) / 3 O (4-X) N X
  • 2H ⁇ / x is Si (6-X) Al (16 + X) O X N (24-X) .
  • oxynitride of aluminum has higher slag resistance than corundum, slag resistance is increased by being present in the matrix portion where slag is more easily penetrated than the aggregate portion.
  • aluminum oxynitride is contained in the matrix part in an amount of 7% by mass or more. When it is less than 7% by mass, the slag resistance is insufficient. Aluminum oxynitride is not adversely affected even if it is contained in the aggregate part, and can be contained in the aggregate part up to about 15% by mass.
  • the total content of aluminum oxynitride is 7 to 50% by mass. If it is less than 7% by mass, the slag resistance is insufficient, and if it exceeds 50% by mass, the hot metal resistance is insufficient.
  • ⁇ Corundum is mainly contained in the aggregate part because it has excellent hot metal resistance, but a part of the corundum may be contained in the matrix part without any problem.
  • the corundum is less than 47% by mass, the hot metal resistance becomes insufficient, and when it exceeds 92% by mass, the oxynitride of aluminum becomes relatively insufficient, so that the slag resistance becomes insufficient.
  • the total amount of corundum and aluminum oxynitride is 84% by mass or more when containing carbonaceous raw materials such as scaly graphite, calcined anthracite, coke, and pitch, In the case where no carbonaceous raw material is contained in order to improve the hot metal resistance, the content can be 94% by mass or more.
  • the corrosion resistance (slag resistance) required for practical use cannot be obtained.
  • Components other than corundum and aluminum oxynitride include an amorphous phase mainly composed of Al 2 O 3 that cannot be quantitatively measured by X-ray measurement.
  • a small amount of aluminum nitride or AlN polymorphic sialon can be included to assist slag resistance or as a by-product during production.
  • aluminum nitride is effective for increasing the slag resistance, but it is better not to contain it because the hydration resistance decreases. However, if it is 3% by mass or less, the adverse effect of hydration resistance can be minimized.
  • AlN polymorphic sialon, ⁇ ′-sialon, and silicon nitride are preferably not contained because they are easily dissolved in molten iron, but it is acceptable if the total amount is 3 mass% or less.
  • the AlN polymorphic sialon is a Si—Al—O—N solid solution, and in the Ramsdell notation, the 2H ⁇ type, 27R type, 21R type, 12H type, 15R type and 8H type are listed in ascending order of Si content. There are six things.
  • the slag resistance can be improved without causing a decrease in the hot metal resistance.
  • the “part not in contact with the slag” is specifically the part below the tap hole in the blast furnace hearth, and the “part in contact with the slag” is specifically the part in the blast furnace hearth. It is an upper part including a fistula.
  • the brick of the present invention as described above can significantly extend the durability of the blast furnace by lining the blast furnace hearth.
  • the manufacturing method of the brick of this invention is demonstrated.
  • an aluminum oxynitride having a dense structure is obtained by heat-treating active calcined alumina or a mixture of an alumina precursor and metallic aluminum in a nitrogen atmosphere. Can do.
  • the calcined alumina used for the refractory raw material composition in the first production method of the present invention reacts with aluminum nitride formed by nitriding metal aluminum to produce aluminum oxynitride, and the particle size The smaller the is, the higher the activity is and the higher the rate of formation of aluminum oxynitride. Therefore, in the first production method of the present invention, the average particle size of the calcined alumina is 10 ⁇ m or less.
  • the average particle size of the calcined alumina exceeds 10 ⁇ m, the reactivity with aluminum nitride is lowered, so the proportion of aluminum oxynitride formed is low, and conversely the proportion of aluminum nitride is high, so the hydration resistance is high. It will be insufficient.
  • an alumina precursor having an average particle size of 10 ⁇ m or less can be used alone or in combination with the calcined alumina having an average particle size of 10 ⁇ m or less.
  • the “average particle diameter” means the particle diameter when the relationship between the particle diameter measured by a laser diffraction / scattering particle size distribution meter and the mass ratio is plotted on a graph and the mass integrated ratio reaches 50%.
  • the particle diameter of the metal aluminum used in the refractory raw material composition is 0.1 mm or less.
  • particle size refers to a sieve mesh
  • a particle size of 0.1 mm or less refers to a material that has passed through a sieve mesh of 0.1 mm.
  • the present inventor found that Al 4 O 6 / Al 4 N 4 is 18/82 to 80/20 from the Si 3 N 4 —AlN—Al 2 O 3 —SiO 2 system composition diagram of FIG. In this range, the production ratio of aluminum oxynitride was considered to be high. And these ratios are raw materials used in the refractory raw material composition, that is, A: calcined alumina having an average particle size of 10 ⁇ m or less and / or calcined alumina precursor having an average particle size of 10 ⁇ m or less, and B: particle size of 0.1 mm or less. The mass ratio A / B was 0.4 to 7.6 in terms of metal aluminum.
  • the mass ratio A / B When the mass ratio A / B is less than 0.4, the amount of metallic aluminum becomes excessive, so that the amount of free aluminum nitride in the brick becomes too large, resulting in a problem of hydration resistance, and when the amount of metallic aluminum added is large. Is difficult to obtain a sufficient density during molding. On the other hand, if the mass ratio A / B exceeds 7.6, the proportion of aluminum oxynitride becomes small and the slag resistance becomes insufficient.
  • a in the refractory raw material composition A: calcined alumina having an average particle size of 10 ⁇ m or less and / or alumina precursor having an average particle size of 10 ⁇ m or less, and B: metallic aluminum having a particle size of 0.1 mm or less. If the total amount (mixture amount) is less than 6% by mass, the oxynitride of aluminum in the matrix part will be insufficient and the slag resistance will be insufficient, and if it exceeds 38% by mass, the matrix part will be too much and the hot metal resistance will be increased. Is insufficient.
  • Alumina materials excluding calcined alumina are used to constitute the aggregate part and matrix part of bricks. Specifically, it is used in the range of 62 to 94% by mass in the first production method.
  • the second manufacturing method uses a sintered bond (bonding) in which the matrix portion contains aluminum oxynitride by using calcined alumina having an average particle size of 10 ⁇ m or less and aluminum oxynitride having a particle size of 0.1 mm or less. Therefore, the structure is excellent in hydration resistance and has improved hot metal resistance and slag resistance. Furthermore, by using aluminum oxynitride as a raw material, a brick in which aluminum oxynitride is uniformly contained from the surface layer to the central portion can be produced even with a thick large brick having a thickness of 200 mm to 300 mm.
  • the aluminum oxynitride used for the refractory raw material composition in the second production method has a particle diameter of 0.1 mm or less in order to be present in the matrix portion.
  • the ratio of the brick after firing and the ratio in the refractory raw material composition are almost the same. Use the necessary amount of bricks. More specifically, the ratio in the refractory raw material mixture is 7 to 50% by mass. If it is less than 7% by mass, the obtained brick has insufficient slag resistance, and if it exceeds 50% by mass, the hot metal resistance becomes insufficient.
  • calcined alumina having an average particle size of 10 ⁇ m or less is used in an amount of 5 to 30% by mass in order to form the matrix portion. If it is less than 5% by mass, the connective structure of the matrix portion is not developed, so that the brick has low strength. If it exceeds 30% by mass, the slag resistance becomes insufficient.
  • the alumina raw material excluding the calcined alumina is used for constituting the aggregate part and matrix part of the brick. Specifically, it is used in the range of 50 to 87% by mass or less.
  • carbonaceous raw materials such as scaly graphite, calcined anthracite, coke, and pitch can be used at 10% by mass or less for the purpose of improving slag resistance.
  • scaly graphite having a particle size of 0.2 mm or less is used in the range of 1 to 10% by mass, the slag resistance can be improved without causing a decrease in hot metal resistance.
  • the first production method when metal silicon powder is contained in the refractory raw material composition, AlN polymorphic sialon is more preferentially produced than aluminum oxynitride or aluminum nitride, and the hot metal resistance is insufficient. Become. Further, in the second manufacturing method, silicon nitride is generated and the hot metal resistance is still insufficient. Therefore, in the production method of the present invention, it is preferable to use a refractory raw material composition containing no metal silicon, but it is acceptable if it is 2% by mass or less.
  • SiO 2 small amounts of SiO 2 is an alumina raw material or carbonaceous material excluding the calcined alumina used in refractory raw material formulation in the first and second production methods have been contained, contained in these raw materials Since the Si component derived from is melted into the hot metal, the hot metal resistance is lowered. For this reason, it is best that there is no Si component in the refractory raw material composition, but it is preferable to keep it to 3% by mass or less, preferably 1% by mass or less. If it is this range, since the bad influence which has on slag resistance and hot metal resistance is small, it can also be used.
  • mullite, silicon nitride , silicon carbide, titanium oxide, chromium oxide, etc. are 7% by mass or less as an aggregate having a particle size exceeding 0.1 mm and
  • Si component in the refractory raw material composition is 3% by mass or less, preferably 1% by mass or less, it can be used because there is little adverse effect on the slag resistance and hot metal resistance.
  • the brick for the blast furnace hearth of the present invention is obtained by adding a binder to the refractory raw material composition as described above, kneading and molding, followed by 1300 ° C. to 1800 ° C. in the first production method in a nitrogen atmosphere. In this production method, it is obtained by firing at 1300 ° C. to 1600 ° C. Note that the aluminum nitride contained in the brick after firing may become excessive if the firing temperature is too low. In this case, the reaction between aluminum nitride and alumina is promoted by increasing the firing temperature, so that unreacted nitride Aluminum can be reduced or eliminated.
  • the firing temperature is lower than 1300 ° C.
  • the formation of aluminum oxynitride is insufficient, the effect of improving the hot metal resistance and slag resistance cannot be obtained, and the water resistance is also inferior.
  • the upper limit of the firing temperature is 1800 ° C., and if this temperature is exceeded, the oxynitride grain growth of aluminum proceeds excessively, resulting in a decrease in brick density or mechanical strength. The result is an unfavorable brick.
  • the firing temperature is lower than 1300 ° C., the calcined alumina is not sufficiently sintered, and the effect of improving the hot metal resistance and slag resistance cannot be obtained.
  • the upper limit of the firing temperature is 1600 ° C., and if this temperature is exceeded, sintering of the calcined alumina proceeds excessively and grain growth occurs, thereby impairing the denseness. Furthermore, since aluminum oxynitride also causes grain growth and partial decomposition, high corrosion resistance is impaired as a result.
  • the brick of the present invention is excellent in hydration resistance, hot metal resistance and slag resistance, the life of the blast furnace hearth can be improved.
  • tissue photograph of the brick for blast furnace hearth parts of this invention It is an example of the structure
  • the calcined alumina having an average particle size of 10 ⁇ m or less used for the refractory raw material composition in the present invention is a highly specific alumina having a high specific surface area, and is sometimes referred to as easily sinterable alumina, but is generally commercially available. You can use what you have.
  • An alumina precursor having an average particle size of 10 ⁇ m or less is an aluminum compound that generates aluminum oxide when heated in a nitrogen atmosphere, such as pseudoboehmide type aluminum hydroxide, ⁇ alumina, aluminum alkoxide, and the like. .
  • alumina raw material except calcination alumina 1 or more types can be used among electrofused alumina, a sintered alumina, bauxite, and a banquet, for example.
  • an alumina material having a content of SiO 2 of 1% by mass or less, more preferably 0.5% by mass or less is preferably used.
  • the Al 2 O 3 purity is preferably 90% by mass or more, more preferably 98% by mass or more from the viewpoint of hot metal resistance.
  • the metal aluminum having a particle size of 0.1 mm or less used for the refractory raw material composition can be used without any problem as long as it is normally in the form of powder used for refractories.
  • Powdered aluminum is commercially available in atomized powder and flake powder due to the difference in its production method. Either one can be used in the present invention.
  • the carbonaceous raw material for further improving the slag resistance scaly graphite, calcined anthracite, coke, pitch or the like can be used alone or in combination.
  • the carbonaceous raw material does not include an organic binder such as a phenol resin or tar used as a binder.
  • scaly graphite those generally used as raw materials for refractories can be used, and those having a particle size of 0.2 mm or less are used.
  • particle size means a sieve mesh, and a particle size of 0.2 mm or less means a material that has passed through a 0.2 mm mesh.
  • a pulverized product can also be used.
  • the Si 3 N 4 —AlN—Al 2 O 3 —SiO 2 system composition diagram (FIG. 2)
  • the ratio of these crystal phases is preferably 95% by mass or more, and the Si component content is preferably 1% by mass or less.
  • the aluminum oxynitride may be one produced by a known production method. For example, an AlON solid solution composition and Al 2 O 3 synthesized by a nitriding reaction between metallic aluminum and calcined alumina or an alumina precursor. ⁇ AlN phase, it is possible to use one made of 2Al 2 O 3 ⁇ AlN phase.
  • the brick for a blast furnace hearth of the present invention When used (lining) for a blast furnace hearth, it can be used in combination with a conventional carbon brick or by replacing it entirely. Specifically, it can be applied to the side wall or the bottom of the furnace below the tuyere.
  • the bricks were added to the refractory raw material blends shown in Tables 1 and 2 with an appropriate amount of a resol-type phenol resin as a binder and kneaded, and an oil press produced a JIS regular brick-shaped compact. 250 After heat treatment at ° C., it was obtained by firing at 1400 ° C. in a nitrogen stream.
  • Fused alumina used in the refractory raw material formulation Al 2 O 3 is 98 mass% or more, but SiO 2 is less 0.5 wt%, calcined alumina Al 2 O 3 is 98 mass% or more, SiO 2 Is 0.5% by mass or less, scaly graphite is natural scaly graphite having C of 95% by mass or more, and metal aluminum is a flake type having a particle size of 74 ⁇ m or less.
  • AlN was a commercial product with a purity of 98% or more, and AlN polymorph sialon was used as 27R type synthesized in advance by a reactive sintering method.
  • the aluminum oxynitride used was an AlON solid solution composition synthesized by nitriding reaction between metallic aluminum and calcined alumina and an Al 2 O 3 .AlN phase.
  • the purity of each mineral composition was 95%, and the content of Si component was less than 1% by mass.
  • the resulting brick was analyzed for mineral composition, measured for apparent porosity and compressive strength, and evaluated for slag resistance, hot metal resistance and hydration resistance.
  • the apparent porosity was measured according to JIS-R2205, and the compressive strength was measured according to JIS-R2206.
  • Mineral species were quantified using X-ray diffraction and chemical analysis. Although the total amount was not 100% by mass in the mineral composition, the balance was an amorphous phase mainly composed of Al 2 O 3 that could not be quantitatively measured by X-ray.
  • blast furnace slag and pig iron were induction-heated and melted and adjusted to 1600 ° C, and the test brick with a square bar shape of 20 x 20 x 180 mm was eroded for 5 h to reduce the erosion thickness. It was measured and evaluated by an erosion damage index with the erosion thickness of the brick of Comparative Example 5 being 100.
  • the hot metal resistance was measured by the erosion thickness of the hot metal immersion part
  • the slag resistance was measured by measuring the erosion thickness of the maximum wear part of the slag-hot metal boundary part. It was evaluated with. The smaller the erosion damage index, the better the hot metal resistance and slag resistance.
  • hydration resistance a 10 ⁇ 10 ⁇ 10 mm sample was cut out from a JIS standard test brick, immersed in 200 ml of room temperature water, the pH was measured, and the amount of ammonia gas generated from the pH after 24 hours was calculated. Then, the ammonia gas amount of Comparative Example 4 was set as 100 and displayed as an index. The smaller the index, the better the hydration resistance.
  • Example 1 is a solid solution of AlON as an aluminum oxynitride
  • Example 2 is Al 2 O 3 .AlN as an aluminum oxynitride
  • the total amount of AlON solid solution and Al 2 O 3 .AlN as aluminum oxynitride was 15% by mass.
  • Example 6 is an example including aluminum oxynitride in a 7 mass% matrix portion
  • Example 7 is an example including aluminum oxynitride in a 50 mass% matrix portion. Is also excellent in slag resistance, hot metal resistance, and hydration resistance.
  • Comparative Example 1 the oxynitride of aluminum is 4% by mass, which is lower than the lower limit of the present invention, and the slag resistance is greatly reduced. Further, in Comparative Example 2, the aluminum oxynitride is 60% by mass, which exceeds the upper limit of the present invention, and the hot metal resistance is lowered.
  • Example 8 is an example containing 3% by mass of AlN polymorphic sialon, but is excellent in slag resistance, hot metal resistance, and hydration resistance.
  • Comparative Example 3 was an example containing 4% by mass of AlN polymorphic sialon, which resulted in poor hydration resistance.
  • Example 9 and Example 10 contain 2% by mass and 3% by mass of aluminum nitride, respectively, and are excellent in slag resistance, hot metal resistance, and hydration resistance.
  • Comparative Example 4 contained 4% by mass of aluminum nitride, resulting in poor hydration resistance.
  • Example 9, Example 10, and Comparative Example 4 were manufactured by firing at a lower temperature than other Examples and Comparative Examples in order to leave unreacted aluminum nitride. *
  • Example 11 contains scaly graphite and exhibits good slag resistance.
  • Example 12 is an example in which ⁇ -alumina having an average particle diameter of 5 ⁇ m is used as an alumina precursor
  • Example 13 is an example in which aluminum hydroxide having an average particle diameter of 5 ⁇ m is used as an alumina precursor. It has slag resistance, hot metal resistance, and hydration resistance equivalent to or better than when used.
  • Comparative Example 7 is an example using calcined alumina having an average particle diameter of 20 ⁇ m, and the amount of aluminum oxynitride produced is as small as 5% by mass.
  • Example 14 is an example in which an AlON solid solution is used as a raw material as an oxynitride of aluminum, and the result is equivalent to or better than that of Example 1 with respect to slag resistance, hot metal resistance, and hydration resistance.
  • Example 15 is an example in which Al 2 O 3 .AlN is used as a raw material as an oxynitride of aluminum, and the result is equivalent to or better than that of Example 2 with respect to slag resistance, hot metal resistance, and hydration resistance. ing.
  • Comparative Example 8 was fired in a container filled with silicon nitride grains and coke grains, and a large amount of aluminum nitride was produced, resulting in reduced hydration resistance.
  • Comparative Example 9 was fired in a container filled with silicon nitride grains and coke grains without using calcined alumina having an average grain size of 10 ⁇ m or less, and the production ratio of aluminum nitride relative to the amount of metal aluminum used was Further, the hydration resistance is lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Blast Furnaces (AREA)
  • Ceramic Products (AREA)

Abstract

本発明の目的は、耐水和性に優れしかも耐溶銑性と耐スラグ性を向上させた高炉炉床部用れんがを提供することにある。すなわち本発明の一観点によれば、コランダムを47~92質量%と、アルミニウムの酸窒化物を7~50質量%とを含み、これらの合量が84質量%以上であり、しかも炭素質原料の含有量が10質量%以下(0を含まない)窒化アルミニウムの含有量が3質量%以下(0を含む)、AlN多形サイアロン、β'-サイアロン、及び窒化珪素の含有量が合量で3質量%以下(0を含む)であり、さらにマトリックス部に、前記アルミニウムの酸窒化物を7質量%以上含有する高炉炉床部用れんがが提供される。

Description

高炉炉床部用れんが及びこれを使用した高炉炉床部並びに高炉炉床部用れんがの製造方法
 本発明は、高炉炉床部(高炉において羽口より下の側壁と炉底とを含む炉床部のことをいう。以下同じ。)で使用される高炉炉床部用れんが及びこれを使用した高炉炉床部、並びに高炉炉床部用れんがの製造方法に関する。
 高炉炉床部には、主として、黒鉛を骨材とする炭素質れんが、あるいはアルミナを骨材とするアルミナ質れんがが使用されているが、炉寿命を支配する要因の一つとしてこれらの高炉炉床部用れんがの損耗が挙げられる。
 例えば高炉炉床部の内張り材(ライニング材)としては、炭素質れんが(ブロック)が主流となっているが、炭素成分の多いれんがは、高炉炉床部での使用時に炭素が溶銑中へ溶け出しやすく耐溶銑性が良くない。そのため、炉外から内張り材の冷却を強化して、れんが稼働面に溶銑粘稠層を形成し、この溶銑粘稠層によって炭素質れんがから溶銑中への炭素の溶け出しを防止して耐溶銑性を確保している。しかしながら、このような炉外からの冷却は、大きいエネルギーロスをもたらすことになる。
 そこで、溶銑中へ溶け出しにくいアルミナを主体とするアルミナ質れんがも近年使用されてきている。特に、化学式Si6-ZAl8-Zで表されるβ’-サイアロンをマトリックス部に含むサイアロンボンドアルミナれんがは、炭素をほとんど含まないため、耐溶銑性に優れ、しかも高炉中で発生するスラグに対する耐食性(耐スラグ性)に優れている。
 例えば特許文献1には、マトリックス部(結合基質)に、Z値(β’-サイアロンの化学式Si6-ZAl8-ZにおけるZ値のことをいう。)が0.5~4のβ’-サイアロンを12~45質量%含有するサイアロンボンドアルミナれんがが開示されている。しかし、この特許文献1のサイアロンボンドアルミナれんがでは、そのマトリックス部に含まれるβ’-サイアロン中のSiが少しずつ溶銑中へ溶け出すため、れんがの損耗が進み、耐溶銑性が十分ではない。
 そこで、マトリックス部にSiを含まないれんがとして、アルミニウム化合物を結合組織とするアルミニウム化合物結合れんがも開発されている。
 例えば、特許文献2では、れんがの組織が結晶相と非晶質相とからなり、結晶相が、コランダムが80~98質量%、並びに窒化アルミニウム結晶及び/又は酸炭化アルミニウム結晶が1~18質量%であり、非晶質相が0.5~10質量%であり、且つ、Si含有量が3質量%以下である高炉炉床部用アルミニウム化合物結合れんがが開示されている。そして、窒化アルミニウムや酸炭化アルミニウム(主にAlOCあるいはAlC)を結合組織とする耐火物は耐溶銑性に優れることが開示されている。
 しかしながら、特許文献2の高炉炉床部用アルミニウム化合物結合れんがは、窒化アルミニウムや酸炭化アルミニウムを含有しているため、れんがの切削加工時の水分あるいは施工時のモルタル中の水分さらには保管中に空気中の水分によって、これらが水和されやすいという耐水和性に劣る問題がある。また、耐スラグ性もまだ不十分であった。
 一方、特許文献3の実施例3には、コランダム、窒化アルミニウム、及びアルミニウムの酸窒化物としてAlONを含有するアルミニウム化合物結合れんが開示されている。そして、このれんがの製造方法として、アルミニウム粉末と耐火原料粉末とからなる配合物の成形体を密閉可能な容器に入れ、その容器内に窒化珪素粒を充填した状態で焼成することが開示されている。この時、焼成雰囲気中には、大気に由来する酸素が共存するので、窒化アルミニウムの他に酸窒化アルミニウムも生成する。すなわち、焼成雰囲気中の窒素分圧及び酸素分圧に応じて気相反応を介して、窒化アルミニウムの他に酸窒化アルミニウムを同時に生成析出することが開示されている。
 この特許文献3の製造方法によって得られたアルミニウム化合物結合れんがでは、酸窒化アルミニウムは窒化アルミニウムの副生成物として窒化アルミニウムが酸化することで生成するものであり、酸窒化アルミニウムを優先して生成することが難しく、しかも生成量が少ない。実施例3のれんがはX線の回折ピーク強度において、AlNが800に対してAlONが200であり、AlONの割合が低い。このため耐溶銑性及び耐スラグ性は改善されてはいるが、さらにこれらの改善が望まれている。また窒化アルミニウムは水和しやすく、その含有率が高い場合には前述の耐水和性の問題がある。
 すなわち、高炉は新しく築造された後、最近は15~20年も使用され、しかも高炉炉床部は補修ができないため、この高炉炉床部の損耗が高炉の寿命を左右する場合が多く、常に耐スラグ性及び耐溶銑性の改善が望まれている。
特表平6-502140号公報(特許第3212600号公報) 国際公開第2009/72652号 特許第4245122号
 本発明が解決しようとする課題は、耐水和性に優れしかも耐溶銑性と耐スラグ性を向上させた高炉炉床部用れんがを提供し、さらに高炉炉床部の寿命を向上することにある。
 本発明者は、高炉炉床部用のアルミニウム化合物を結合組織とするれんがにおいて、マトリックス部の組織が耐溶銑性及び耐スラグ性に大きな影響を与えると考え、このマトリックス部の改善に着目して種々の実験を行った。その結果、マトリックス部の組織としてアルミニウムの酸窒化物は、窒化アルミニウムや酸炭化アルミニウムよりも耐スラグ性及び耐溶銑性に格段に優れ、かつ耐水和性にも優れることを知見した。
 すなわち本発明の要旨は次のとおりである。
(1)
 コランダムを47~92質量%と、アルミニウムの酸窒化物を7~50質量%とを含み、これらの合量が84質量%以上であり、
 しかも炭素質原料の含有量が10質量%以下(0を含まない)、窒化アルミニウムの含有量が3質量%以下(0を含む)、AlN多形サイアロン、β’-サイアロン、及び窒化珪素の含有量が合量で3質量%以下(0を含む)であり、
 さらにマトリックス部に、前記アルミニウムの酸窒化物を7質量%以上含有する高炉炉床部用れんが。
(2)
 コランダムを47~92質量%と、アルミニウムの酸窒化物を7~50質量%とを含み、これらの合量が94質量%以上であり、
 しかも炭素質原料を含有せず、窒化アルミニウムの含有量が3質量%以下(0を含む)、AlN多形サイアロン、β’-サイアロン、及び窒化珪素の含有量が合量で3質量%以下(0を含む)であり、
 さらにマトリックス部に、前記アルミニウムの酸窒化物を7質量%以上含有する高炉炉床部用れんが。
(3)
 (1)又は(2)に記載の高炉炉床部用れんががライニングされた高炉炉床部。
(4)
 A:平均粒径10μm以下の仮焼アルミナ及び/又は平均粒径10μm以下のアルミナ前駆体とB:粒径0.1mm以下の金属アルミニウムとの質量比(A/B)が0.4~7.6である混合物を6~38質量%と、仮焼アルミナを除くアルミナ質原料を62~94質量%とを含む耐火原料配合物に、バインダーを添加して混練し成形後、窒素雰囲気中で1300~1800℃で焼成する、高炉炉床部用れんがの製造方法。
(5)
 仮焼アルミナを除くアルミナ質原料を50~87質量%と、平均粒径10μm以下の仮焼アルミナを5~30質量%と、粒径0.1mm以下のアルミニウムの酸窒化物を7~50質量%とを含む耐火原料配合物に、バインダーを添加して混練し成形後、窒素雰囲気中で1300~1600℃で焼成する、高炉炉床部用れんがの製造方法。
(6)
 前記耐火原料配合物が、粒径0.2mm以下の鱗状黒鉛を1~10質量%含有する(4)又は(5)に記載の高炉炉床部用れんがの製造方法。
 以下、本発明の詳細を説明する。
 本発明の高炉炉床部用れんが(以下、単に「本発明のれんが」ともいう。)の組織は、骨材からなる骨材部と、その骨材どうしを結合する結合組織であるマトリックス部とからなる。そして図1に示すように、骨材とは0.1mm超の粒子であり、マトリックス部とは骨材と骨材の間に存在する0.1mm以下の粒子が連続した組織の部分である。
 そして本発明のれんがにおいて、マトリックス部は主にアルミニウムの酸窒化物のみ、あるいはアルミニウムの酸窒化物とコランダムから成り、骨材部は主にコランダムのみ、あるいはコランダムとアルミニウムの酸窒化物から成っている。ここで、「アルミニウムの酸窒化物」とは図2のSi-AlN-Al-SiO系組成図において、AlON/x=0.22から2Hδ/x=6までの範囲に含まれる組成をいう。すなわち本発明では、これらをアルミニウムの酸窒化物という。なお、AlON/xとはAl(8+X)/3(4-X)であり、2Hδ/xとはSi(6-X)Al(16+X)(24-X)である。また、本発明においてAlON固溶体とは図2においてAlON/x=0.22からAlON/x=0.57の範囲に含まれる組成をいう。
 アルミニウムの酸窒化物はコランダムよりも耐スラグ性が高いため、骨材部よりもスラグが浸透しやすいマトリックス部に存在することで耐スラグ性が高まる。具体的には本発明のれんがにおいてアルミニウムの酸窒化物はマトリックス部に7質量%以上含有する。7質量%未満では、耐スラグ性が不十分となる。なお、アルミニウムの酸窒化物は骨材部に含有しても悪影響はなく、最大15質量%程度までは骨材部に含有することもできる。
 また、本発明のれんがにおいてアルミニウムの酸窒化物の総含有量は7~50質量%である。7質量%未満では耐スラグ性が不十分となり、50質量%を超えると耐溶銑性が不足してくる。
 コランダムは耐溶銑性に優れるため主に骨材部に含有するが、一部はマトリックス部に含有しても問題ない。コランダムは47質量%未満では耐溶銑性が不十分となり、92質量%を超えると相対的にアルミニウムの酸窒化物が不十分となるため耐スラグ性が不十分となる。
 さらに、本発明のれんがにおいて、コランダムとアルミニウムの酸窒化物との合量は鱗状黒鉛、仮焼無煙炭、コークス、ピッチなどの炭素質原料を含有する場合には84質量%以上であるが、さらに耐溶銑性を高めるために炭素質原料を含有しない場合には94質量%以上とすることができる。コランダムとアルミニウムの酸窒化物との合量が84質量%未満では、実用上要求される耐食性(耐スラグ性)が得られない。なお、コランダムとアルミニウムの酸窒化物以外の成分としては、X線測定で定量測定することができないAlを主成分とする非晶質相などである。さらに、耐スラグ性を補助するためあるいは製造時の副生成物として、窒化アルミニウムやAlN多形サイアロンを少量含むこともできる。
 本発明のれんがにおいて、窒化アルミニウムは、耐スラグ性を高めるためには有効であるが、耐水和性が低下するため含有しない方が良い。ただし、3質量%以下であれば耐水和性の悪影響を最小限とすることができる。
 本発明のれんがにおいて、AlN多形サイアロン、β’-サイアロン、及び窒化珪素は、溶銑に溶けやすいため含有しない方が良いが、これらが合量で3質量%以下であれば許容できる。なお、AlN多形サイアロンとはSi-Al-O-N固溶体であって、Ramsdellの表記法において、Si含有率の少ない順に2Hδ型、27R型、21R型、12H型、15R型及び8H型の6種のことである。
 本発明のれんがにおいて、高炉炉床部でもスラグと接しない部位にライニングする場合などの耐溶銑性を優先する場合には、鱗状黒鉛、仮焼無煙炭、コークス、ピッチなどの炭素質原料は溶銑中に溶解しやすいため含有しない方が良い。一方、スラグと接する部位にライニングされる場合などの耐スラグ性を優先する場合には、鱗状黒鉛、仮焼無煙炭、コークス、ピッチなどの炭素質原料は耐スラグ性を向上する目的で、10質量%以下で含有することができる。特に粒径0.2mm以下の鱗状黒鉛を1~10質量%含有することで、耐溶銑性の低下を招くことなく耐スラグ性を向上することができる。なお、「スラグと接しない部位」とは、具体的には高炉炉床部において出銑孔より下方の部位であり、「スラグと接する部位」とは、具体的には高炉炉床部において出銑孔を含む上方の部位である。
 以上のような本発明のれんがは、高炉炉床部にライニングすることで高炉の耐用性を大幅に延長することができる。
 次に、本発明のれんがの製造方法について説明する。
 本発明のれんがの製造方法には2つの製造方法がある。すなわち、アルミナと金属アルミニウムが窒化されて生じた窒化アルミニウムとが反応してアルミニウムの酸窒化物を生成する第一の製造方法と、アルミニウムの酸窒化物を原料として最初から使用する第二の製造方法である。
 前述の特許文献3の製造方法においては、金属アルミニウムを窒素と酸素を含む混合雰囲気中で熱処理することによって、気相反応によりアルミニウムの酸窒化物が得られる。したがって得られるアルミニウムの酸窒化物の結晶形態は羽毛状、針状、あるいはひげ状を成しており、緻密な組織のアルミニウムの酸窒化物を得ることが困難である。これに対して本発明の第一の製造方法では、活性な仮焼アルミナ又はアルミナ前駆体と金属アルミニウムとの混合物を窒素雰囲気中で熱処理することにより緻密な組織のアルミニウムの酸窒化物を得ることができる。
 すなわち、本発明の第一の製造方法において耐火原料配合物に使用する仮焼アルミナは、金属アルミニウムが窒化されて生じた窒化アルミニウムと反応してアルミニウムの酸窒化物を生成するうえで、粒径が小さいほどその活性が高くアルミニウムの酸窒化物が生成する割合が高くなる。したがって、本発明の第一の製造方法において仮焼アルミナの平均粒径は10μm以下とする。この仮焼アルミナの平均粒径が10μmを超えると窒化アルミニウムとの反応性が低くなるためアルミニウムの酸窒化物が生成する割合が低くなり、逆に窒化アルミニウムの割合が高くなるため耐水和性が不十分となってしまう。平均粒径10μm以下の仮焼アルミナと同様に平均粒径10μm以下のアルミナの前駆体も単独又は平均粒径10μm以下の仮焼アルミナと併用して使用可能である。ここで、「平均粒径」とはレーザー回折散乱式粒度分布計で測定した粒径と質量割合の関係をグラフにプロットし、質量積算割合が50%に達するときの粒径を意味する。
 また、前述と同様に活性を高くするために、耐火原料配合物に使用する金属アルミニウムの粒径は0.1mm以下とする。ここで「粒径」とは篩目のことであり、粒径が0.1mm以下とは0.1mmの篩目を通過したものをいう。
 第一の製造方法において本発明者は、図2のSi-AlN-Al-SiO系組成図から、Al/Alが18/82~80/20の範囲で、アルミニウムの酸窒化物の生成割合が高くなると考えた。そしてこれらの比を耐火原料配合物に使用する原料、すなわちA:平均粒径10μm以下の仮焼アルミナ及び/又は平均粒径10μm以下の仮焼アルミナ前駆体と、B:粒径0.1mm以下の金属アルミニウムに換算して、その質量比A/Bを0.4~7.6とした。この質量比A/Bが0.4未満では金属アルミニウムが過剰となるためれんが中のフリーの窒化アルミニウムが多くなりすぎて耐水和性の問題が生じ、さらには金属アルミニウムの添加量が多い場合には成形時に十分な密度が得られ難くなる。一方、質量比A/Bが7.6を超えると、アルミニウムの酸窒化物の割合が小さくなり耐スラグ性が不十分となる。
 また、第一の製造方法において耐火原料配合物中のA:平均粒径10μm以下の仮焼アルミナ及び/又は平均粒径10μm以下のアルミナ前駆体と、B:粒径0.1mm以下の金属アルミニウムとの合量(混合物量)が6質量%未満ではマトリックス部中のアルミニウムの酸窒化物が不足し耐スラグ性が不十分となり、38質量%を超えるとマトリックス部が多くなりすぎて耐溶銑性が不十分となる。
 仮焼アルミナを除くアルミナ質原料は、れんがの骨材部やマトリックス部を構成するために使用する。具体的には第一の製造方法では62~94質量%の範囲で使用する。
 次に第二の製造方法について説明する。
 第二の製造方法は、平均粒径が10μm以下の仮焼アルミナと粒径0.1mm以下のアルミニウムの酸窒化物を使用することでマトリックス部がアルミニウムの酸窒化物を含む焼結ボンド(結合組織)を形成するため、耐水和性に優れしかも耐溶銑性と耐スラグが向上した組織となるものである。さらに、原料としてアルミニウムの酸窒化物を使用することで厚みが200mm~300mmと厚い大型れんがでもアルミニウムの酸窒化物が表層から中心部まで均一に含有されるれんがを製造することができる。
 
 第二の製造方法において耐火原料配合物に使用するアルミニウムの酸窒化物は、マトリックス部中に存在させるために粒径0.1mm以下のものを使用する。
 また、第二の製造方法において耐火原料配合物に使用するアルミニウムの酸窒化物は焼成中に変化しないため、焼成後のれんが中の割合と耐火原料配合物中の割合はほぼ同じ割合になるため、れんが中に必要な量を使用すれば良い。より具体的には耐火原料配合物中の割合は7~50質量%とする。7質量%未満では得られたれんがの耐スラグ性が不十分となり、50質量%を超えると耐溶銑性が不足してくる。
 第二の製造方法において、平均粒径が10μm以下の仮焼アルミナは、マトリックス部を形成するために5~30質量%使用する。5質量%未満では、マトリックス部の結合組織が未発達となるためれんがが低強度となり、30質量%を超えると耐スラグ性が不十分となる。
 仮焼アルミナを除くアルミナ質原料は、れんがの骨材部やマトリックス部を構成するために使用する。具体的には50~87質量%以下の範囲で使用する。
 また、第一及び第二の製造方法において、鱗状黒鉛、仮焼無煙炭、コークス、ピッチなどの炭素質原料は耐スラグ性を向上する目的で、10質量%以下で使用することも可能である。特に粒径0.2mm以下の鱗状黒鉛を1~10質量%の範囲で使用すると、耐溶銑性の低下を招くことなく耐スラグ性を向上することができる。
 一方、第一の製造方法において、金属シリコン粉末を耐火原料配合物に含有すると、アルミニウムの酸窒化物や窒化アルミニウムよりもAlN多形サイアロンが優先して生成しやすくなり耐溶銑性が不十分となる。また、第二の製造方法においては、窒化珪素が生成しやはり耐溶銑性が不十分となる。したがって本発明の製造方法では、金属シリコンを含有しない耐火原料配合物を使用することが好ましいが、2質量%以下であれば許容できる。
 また、第一及び第二の製造方法において耐火原料配合物に使用する仮焼アルミナを除くアルミナ質原料あるいは炭素質原料には少量のSiOが含有されており、これらの原料に含まれるSiOに由来するSi成分は溶銑中に溶け出すため耐溶銑性を低下させることになる。このため耐火原料配合物中のSi成分はないことが最も良いが、3質量%以下、好ましくは1質量%以下に抑えることが好ましい。この範囲であれば耐スラグ性及び耐溶銑性に与える悪影響は小さいことから使用することもできる。
 また、第一及び第二の製造方法においては前述の原料以外にも、ムライト、窒化珪素炭化珪素、酸化チタン、酸化クロム等は、粒径0.1mm超の骨材として7質量%以下かつ耐火原料配合物中のSi成分が3質量%以下、好ましくは1質量%以下の場合には、耐スラグ性及び耐溶銑性への悪影響は少ないため使用可能である。
 本発明の高炉炉床部用れんがは、以上のような耐火原料配合物に、バインダーを添加して混練し成形後、窒素雰囲気中で第一の製造方法では1300℃~1800℃で、第二の製造方法では1300℃~1600℃で焼成することによって得られる。なお、焼成後のれんが中に含まれる窒化アルミニウムは焼成温度が低すぎると多くなりすぎることがあり、その場合には焼成温度を上げることで窒化アルミニウムとアルミナとの反応が促進され未反応の窒化アルミニウムを少なく又はなくすことができる。
 第一の製造方法において、焼成温度が1300℃よりも低いとアルミニウムの酸窒化物の生成が不十分であり耐溶銑性と耐スラグ性の向上効果が得られないとともに、耐水性も劣る結果になる。焼成温度の上限は1800℃で、この温度を超えるとアルミニウムの酸窒化物の粒成長が甚大に進むことによって、れんがの緻密性が低下するあるいは機械的強度が低下するなど、高炉炉床部用れんがとして好ましくない結果になる。
 第二の製造方法において、焼成温度が1300℃よりも低いと仮焼アルミナの焼結が不十分であり耐溶銑性と耐スラグ性の向上効果が得られない。焼成温度の上限は1600℃で、この温度を超えると仮焼アルミナの焼結が過度に進行して粒成長を生じることにより緻密性が損なわれる。さらにアルミニウムの酸窒化物も同様に粒成長及び部分的な分解も生じるために、結果として高耐食性が損なわれる。
 本発明のれんがは、耐水和性、耐溶銑性及び耐スラグ性に優れるため、高炉炉床部の寿命を向上させることができる。
本発明の高炉炉床部用れんがの組織写真の一例である。 Si-AlN-Al-SiO系組成図である。
 本発明において耐火原料配合物に使用する平均粒径10μm以下の仮焼アルミナとは、比表面積が大きく、反応性の高いアルミナであり、易焼結性アルミナとも呼ばれることもあるが、一般に市販されているものが使用できる。また、平均粒径10μm以下のアルミナの前駆体とは、窒素雰囲気中で加熱されることで酸化アルミニウムを生成するアルミニウム化合物であり、例えば擬ベーマイド型水酸化アルミニウム、γアルミナ、アルミニウムアルコキシド等がある。
 また、仮焼アルミナを除くアルミナ質原料としては、例えば電融アルミナ、焼結アルミナ、ボーキサイト、及びバンケツのうち1種以上を使用することができる。ただし、SiOの含有量は少ないほど耐溶銑性が向上するので、好ましくはSiOの含有量が1質量%以下、より好ましくは0.5質量%以下のアルミナ質原料を使用する。またAl純度としては耐溶銑性の面から90質量%以上のものを使用することが好ましく、98質量%以上のものがより好ましい。
 本発明において耐火原料配合物に使用する粒径0.1mm以下の金属アルミニウムとしては、通常、耐火物に使用されている粉末状のものであれば問題なく使用することができる。粉末状アルミニウムはその製法の違いにより、アトマイズ粉とフレーク粉とが市販されている。本発明ではどちらのものでも使用可能である。
 本発明において、耐スラグ性をさらに向上させるための炭素質原料としては、鱗状黒鉛、仮焼無煙炭、コークス、ピッチなどを単独使用あるいは併用することもできる。ここで、炭素質原料にはバインダーとして使用するフェノール樹脂やタール等の有機バインダーは含まない。
 鱗状黒鉛は一般的に耐火物の原料として使用されているものを使用することができ、その粒径は0.2mm以下のものを使用する。前述のとおり「粒径」とは篩目のことであり、粒径が0.2mm以下とは0.2mmの篩目を通過したものをいう。なお、粉砕処理したものも使用可能である。
 本発明において耐火原料配合物に使用する粒径0.1mm以下のアルミニウムの酸窒化物としては、前述のSi-AlN-Al-SiO系組成図(図2)において、AlON/x=0.22から2Hδ/x=6までの範囲に含まれる組成のもの、具体的にはAlON固溶体、3Al・AlN、Al・AlNなどの結晶相を有するもの及びこれらの混合物であれば問題なく使用することができる。また、これらの結晶相の割合は95質量%以上で、しかもSi成分の含有量は1質量%以下であるものが好ましい。
 アルミニウムの酸窒化物は、公知の製造方法で製造されたものを使用することができ、例えば金属アルミニウムと仮焼アルミナあるいはアルミナの前駆体との窒化反応で合成したAlON固溶体組成及びAl・AlN相、2Al・AlN相からなるものを使用することができる。
 本発明の高炉炉床部用れんがを高炉炉床部に使用(ライニング)する場合、従来のカーボンれんがと併用してあるいは全て置き換えて使用することができる。具体的には、羽口より下の側壁あるいは炉底に適用することができる。
 各例のれんがは、それぞれ表1及び表2に示した耐火原料配合物にバインダーとしてレゾール型フェノール樹脂を適量添加して混練し、オイルプレスでJIS並形れんが形状の成形体を作製し、250℃で加熱処理後、窒素気流中で1400℃で焼成して得た。
 耐火原料配合物に使用した電融アルミナはAlが98質量%以上、SiOが0.5質量%以下のもので、仮焼アルミナはAlが98質量%以上、SiOが0.5質量%以下のものを、鱗状黒鉛はCが95質量%以上の天然鱗状黒鉛を、金属アルミニウムは、粒径が74μm以下のフレークタイプを使用した。AlNは市販品で純度98%以上のものを、AlN多形サイアロンは事前に反応焼結法で合成した27R型を使用した。また、アルミニウムの酸窒化物は金属アルミニウムと仮焼アルミナとの窒化反応で合成したAlON固溶体組成及びAl・AlN相からなるものを使用した。それぞれの鉱物組成の純度は95%、Si成分の含有量は1質量%未満であった。
 得られたれんがについて鉱物組成を分析するとともに、見掛気孔率及び圧縮強さを測定するとともに、耐スラグ性、耐溶銑性及び耐水和性を評価した。見掛気孔率はJIS-R2205、圧縮強さはJIS-R2206に従い測定した。鉱物種の定量はX線回折法と化学分析法を使用して行った。鉱物組成において合量が100質量%になっていないが、残部はX線で定量測定できないAlを主成分とする非晶質相であった。
 耐スラグ性及び耐溶銑性については、高炉スラグと銑鉄を誘導加熱溶解して1600℃に調整した中で、20×20×180mmの角棒形状とした試験れんがを5h侵食させて侵食厚さを計測し、比較例5のれんがの侵食厚さを100とする侵食損傷指数で評価した。具体的には、耐溶銑性は溶銑浸漬部の侵食厚さ、耐スラグ性はスラグ-溶銑境界部の最大損耗部の侵食厚さをそれぞれ測定し、比較例5の侵食厚さを100として指数で評価した。侵食損傷指数が小さいほど耐溶銑性及び耐スラグ性に優れるということである。
 耐水和性については、JIS並形の試験れんがから10×10×10mmの試料を切り出し、200mlの室温の水に漬けてpHを測定し24時間後のpHから発生したアンモニアガス量を計算した。そして比較例4のアンモニアガス量を100として指数で表示した。この指数が小さいほど耐水和性に優れるということである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1はアルミニウムの酸窒化物としてAlONの固溶体を、実施例2はアルミニウムの酸窒化物としてAl・AlNを、実施例3はアルミニウムの酸窒化物として2Hδ/x=6をそれぞれ15質量%マトリックス部中に含有するものであり、耐スラグ性、耐溶銑性、及び耐水和性に優れている。また、実施例4は、アルミニウムの酸窒化物としてAlONの固溶体とAl・AlNとを合計で15質量%、実施例5はアルミニウムの酸窒化物としてAl・AlNと2Hδ/x=6とを合計で15質量%、それぞれマトリックス部中に含有するものであり、耐スラグ性、耐溶銑性、及び耐水和性に優れている。
 また、実施例6は、アルミニウムの酸窒化物を7質量%マトリックス部中に含む例であり、実施例7は、アルミニウムの酸窒化物を50質量%マトリックス部中に含む例であるが、いずれも、耐スラグ性、耐溶銑性、及び耐水和性に優れている。
 これに対して比較例1は、アルミニウムの酸窒化物が4質量%と本発明の下限値を下回っており耐スラグ性が大幅に低下している。また、比較例2はアルミニウムの酸窒化物が60質量%と本発明の上限値を上回っており、耐溶銑性が低下している。
 実施例8は、AlN多形サイアロンを3質量%含有する例であるが、耐スラグ性、耐溶銑性、及び耐水和性に優れている。これに対して比較例3はAlN多形サイアロンを4質量%含有する例で、耐水和性に劣る結果となった。
 実施例9及び実施例10は窒化アルミニウムを2質量%及び3質量%それぞれ含有しているが、耐スラグ性、耐溶銑性、及び耐水和性に優れている。これに対して比較例4は窒化アルミニウムを4質量%含有しており、耐水和性に劣る結果となった。なお、実施例9、実施例10、及び比較例4は未反応の窒化アルミニウムを残すために、他の実施例及び比較例よりも低温で焼成することで製造した。 
 実施例11は鱗状黒鉛を含有しており、良好な耐スラグ性を示している。
 比較例5は、A:平均粒径10μm以下のアルミナ及び/又は平均粒径10μm以下のアルミナ前駆体と、B:粒径0.1mm以下の金属アルミニウムとの質量比A/Bが0.25と本発明の下限値を下回っており、窒化アルミニウムが5質量%含まれるため耐水和性が低下している。
 比較例6は、質量比A/Bが10と本発明の上限値を上回っており、耐スラグ性が低下している。
 実施例12はアルミナ前駆体として平均粒径5μmのγアルミナを、実施例13はアルミナ前駆体として平均粒径5μmの水酸化アルミニウムを使用した例であるが、平均粒径5μmの仮焼アルミナを使用した場合と同等又は同等以上の耐スラグ性、耐溶銑性、及び耐水和性となっている。これに対して、比較例7は、平均粒径20μmの仮焼アルミナを使用した例であり、アルミニウムの酸窒化物の生成量が5質量%と少ない。
 実施例14はアルミニウムの酸窒化物としてAlON固溶体を原料に使用した例であり、耐スラグ性、耐溶銑性、及び耐水和性に関して実施例1と同等又は同等以上の結果となっている。
 実施例15はアルミニウムの酸窒化物としてAl・AlNを原料に使用した例であり、耐スラグ性、耐溶銑性、及び耐水和性に関して実施例2と同等又は同等以上の結果となっている。
 比較例8は、窒化珪素粒とコークス粒を充填した容器の中で焼成したものであり、窒化アルミニウムが多く生成し、耐水和性が低下している。比較例9は、平均粒径10μm以下の仮焼アルミナを使用せずに窒化珪素粒とコークス粒を充填した容器の中で焼成したものであり、金属アルミニウムの使用量に対する窒化アルミニウムの生成割合がさらに高くなり、耐水和性が低下している。

Claims (6)

  1.  コランダムを47~92質量%と、アルミニウムの酸窒化物を7~50質量%とを含み、これらの合量が84質量%以上であり、
     しかも炭素質原料の含有量が10質量%以下(0を含まない)、窒化アルミニウムの含有量が3質量%以下(0を含む)、AlN多形サイアロン、β’-サイアロン、及び窒化珪素の含有量が合量で3質量%以下(0を含む)であり、
     さらにマトリックス部に、前記アルミニウムの酸窒化物を7質量%以上含有する高炉炉床部用れんが。
  2.  コランダムを47~92質量%と、アルミニウムの酸窒化物を7~50質量%とを含み、これらの合量が94質量%以上であり、
     しかも炭素質原料を含有せず、窒化アルミニウムの含有量が3質量%以下(0を含む)、AlN多形サイアロン、β’-サイアロン、及び窒化珪素の含有量が合量で3質量%以下(0を含む)であり、
     さらにマトリックス部に、前記アルミニウムの酸窒化物を7質量%以上含有する高炉炉床部用れんが。
  3.  請求項1又は請求項2に記載の高炉炉床部用れんががライニングされた高炉炉床部。
  4.  A:平均粒径10μm以下の仮焼アルミナ及び/又は平均粒径10μm以下のアルミナ前駆体とB:粒径0.1mm以下の金属アルミニウムとの質量比(A/B)が0.4~7.6である混合物を6~38質量%と、仮焼アルミナを除くアルミナ質原料を62~94質量%とを含む耐火原料配合物に、バインダーを添加して混練し成形後、窒素雰囲気中で1300~1800℃で焼成する、高炉炉床部用れんがの製造方法。
  5.  仮焼アルミナを除くアルミナ質原料を50~87質量%と、平均粒径10μm以下の仮焼アルミナを5~30質量%と、粒径0.1mm以下のアルミニウムの酸窒化物を7~50質量%とを含む耐火原料配合物に、バインダーを添加して混練し成形後、窒素雰囲気中で1300~1600℃で焼成する、高炉炉床部用れんがの製造方法。
  6.  前記耐火原料配合物が、粒径0.2mm以下の鱗状黒鉛を1~10質量%含有する請求項4又は請求項5に記載の高炉炉床部用れんがの製造方法。
PCT/JP2017/045512 2016-12-28 2017-12-19 高炉炉床部用れんが及びこれを使用した高炉炉床部並びに高炉炉床部用れんがの製造方法 WO2018123726A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780072887.7A CN110023268A (zh) 2016-12-28 2017-12-19 高炉炉床部用砖及使用高炉炉床部用砖的高炉炉床部以及高炉炉床部用砖的制造方法
EP17887063.0A EP3564201A4 (en) 2016-12-28 2017-12-19 BRICK FOR FURNACES AND FURNACES AS WELL AS A PROCESS FOR MANUFACTURING BRICK FOR FURNACES
JP2017567251A JP6999426B2 (ja) 2016-12-28 2017-12-19 高炉炉床部用れんが及びこれを使用した高炉炉床部並びに高炉炉床部用れんがの製造方法
KR1020197007308A KR20190040008A (ko) 2016-12-28 2017-12-19 고로 노상부용 벽돌 및 이를 사용한 고로 노상부와 고로 노상부용 벽돌의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016254688 2016-12-28
JP2016-254688 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123726A1 true WO2018123726A1 (ja) 2018-07-05

Family

ID=62707555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045512 WO2018123726A1 (ja) 2016-12-28 2017-12-19 高炉炉床部用れんが及びこれを使用した高炉炉床部並びに高炉炉床部用れんがの製造方法

Country Status (6)

Country Link
EP (1) EP3564201A4 (ja)
JP (1) JP6999426B2 (ja)
KR (1) KR20190040008A (ja)
CN (1) CN110023268A (ja)
TW (1) TWI652247B (ja)
WO (1) WO2018123726A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315475A4 (en) * 2015-06-25 2019-01-02 Krosakiharima Corporation Brick for hearth section of molten pig iron production furnace
CN112266236A (zh) * 2020-10-19 2021-01-26 北京瑞尔非金属材料有限公司 一种炼铁高炉用铝钛复合耐火定型制品
CN114455941A (zh) * 2022-01-19 2022-05-10 北京科技大学 一种高炉用硅-刚玉-高钛莫来石复合耐火材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113430314B (zh) * 2021-06-10 2022-04-12 北京金隅通达耐火技术有限公司 长寿命高炉炉底炉缸耐材结构及维护方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101454A (ja) * 1984-10-23 1986-05-20 日本坩堝株式会社 酸窒化アルミニウム含有耐火物
JPS62212259A (ja) * 1986-03-13 1987-09-18 日本坩堝株式会社 高炉内張用耐火物
JPH01208362A (ja) * 1988-02-12 1989-08-22 Shinagawa Refract Co Ltd 溶銑処理用酸窒化アルミニウム及び窒化珪素含有耐火れんが
JPH01208363A (ja) * 1988-02-12 1989-08-22 Shinagawa Refract Co Ltd 溶銑処理用酸窒化アルミニウム含有耐火れんが
JPH06502140A (ja) 1990-10-24 1994-03-10 サヴワ レフラクテール シアロン基質により結合された耐火性材料及び調製方法
JP4245122B2 (ja) 2002-08-28 2009-03-25 黒崎播磨株式会社 窒化アルミニウム結合耐火れんがの製造方法
WO2009072652A1 (ja) 2007-12-07 2009-06-11 Krosakiharima Corporation 高炉炉床用アルミニウム化合物結合れんが

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002633A1 (en) * 1984-10-23 1986-05-09 Nippon Crucible Co., Ltd. Refractory containing aluminum nitride oxide, refractory for sliding nozzle, and nozzle for continuously casting steel
JPH0649877A (ja) * 1992-07-28 1994-02-22 Matsushita Electric Works Ltd 貯水槽用ボールタップ
CN1300057C (zh) * 2004-08-25 2007-02-14 武汉科技大学 一种高炉用赛隆刚玉砖耐火材料及制备方法
JP2009072652A (ja) 2007-09-19 2009-04-09 Panasonic Corp 超音波送電装置
CN103214256B (zh) * 2013-05-10 2014-12-10 北京科技大学 Al23O27N5结合的刚玉质复合滑板及其制备方法
JP6266968B2 (ja) 2013-12-11 2018-01-24 黒崎播磨株式会社 高炉炉床部の内張り構造
WO2016208666A1 (ja) * 2015-06-25 2016-12-29 黒崎播磨株式会社 溶銑製造炉の炉床用れんが
CN105294081A (zh) * 2015-11-25 2016-02-03 北京科技大学 一种Al5O6N结合刚玉质复合耐火材料的制备方法
CN106588024A (zh) * 2017-01-05 2017-04-26 北京科技大学 一种Al7O3N5结合刚玉质复合耐火材料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101454A (ja) * 1984-10-23 1986-05-20 日本坩堝株式会社 酸窒化アルミニウム含有耐火物
JPS62212259A (ja) * 1986-03-13 1987-09-18 日本坩堝株式会社 高炉内張用耐火物
JPH01208362A (ja) * 1988-02-12 1989-08-22 Shinagawa Refract Co Ltd 溶銑処理用酸窒化アルミニウム及び窒化珪素含有耐火れんが
JPH01208363A (ja) * 1988-02-12 1989-08-22 Shinagawa Refract Co Ltd 溶銑処理用酸窒化アルミニウム含有耐火れんが
JPH06502140A (ja) 1990-10-24 1994-03-10 サヴワ レフラクテール シアロン基質により結合された耐火性材料及び調製方法
JP3212600B2 (ja) 1990-10-24 2001-09-25 サヴワ レフラクテール シアロン基質により結合された耐火性材料及び調製方法
JP4245122B2 (ja) 2002-08-28 2009-03-25 黒崎播磨株式会社 窒化アルミニウム結合耐火れんがの製造方法
WO2009072652A1 (ja) 2007-12-07 2009-06-11 Krosakiharima Corporation 高炉炉床用アルミニウム化合物結合れんが

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3564201A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315475A4 (en) * 2015-06-25 2019-01-02 Krosakiharima Corporation Brick for hearth section of molten pig iron production furnace
CN112266236A (zh) * 2020-10-19 2021-01-26 北京瑞尔非金属材料有限公司 一种炼铁高炉用铝钛复合耐火定型制品
CN114455941A (zh) * 2022-01-19 2022-05-10 北京科技大学 一种高炉用硅-刚玉-高钛莫来石复合耐火材料及其制备方法
CN114455941B (zh) * 2022-01-19 2022-12-13 北京科技大学 一种高炉用硅-刚玉-高钛莫来石复合耐火材料及其制备方法

Also Published As

Publication number Publication date
JPWO2018123726A1 (ja) 2019-10-31
TWI652247B (zh) 2019-03-01
EP3564201A1 (en) 2019-11-06
EP3564201A4 (en) 2020-08-19
KR20190040008A (ko) 2019-04-16
CN110023268A (zh) 2019-07-16
TW201829350A (zh) 2018-08-16
JP6999426B2 (ja) 2022-02-04

Similar Documents

Publication Publication Date Title
WO2018123726A1 (ja) 高炉炉床部用れんが及びこれを使用した高炉炉床部並びに高炉炉床部用れんがの製造方法
JP5249948B2 (ja) 高炉炉床
WO2008047868A1 (fr) Matériau de boue
JP4234330B2 (ja) 不定形耐火組成物
CN105593192B (zh) 具有SiAlON基体的耐火产品
TWI532703B (zh) Blast furnace with castable refractory
JP6154772B2 (ja) アルミナ−炭化珪素−炭素質れんが
JPH0196070A (ja) 溶融金属樋用流し込み施工耐火物
JP6856343B2 (ja) 高炉炉床用れんがの製造方法
JP6412646B2 (ja) 溶銑製造炉の炉床用れんが
JP6266968B2 (ja) 高炉炉床部の内張り構造
US20130260981A1 (en) Alumina-coated spinel-silicon carbide refractory composition with high corrosion resistance to coal slag and method for manufacturing the same
JP2617086B2 (ja) 炭化珪素質流し込み材
JP6620954B2 (ja) 高炉樋用キャスタブル耐火物
JP4245122B2 (ja) 窒化アルミニウム結合耐火れんがの製造方法
JP4160796B2 (ja) 高耐熱衝撃性スライディングノズルプレートれんが
JP2019503973A (ja) 耐火物を製造するための粒子、その粒子の使用、耐火物、耐火物を製造するプロセス、および該プロセスによって製造された製品
JP6541607B2 (ja) スライディングノズル用炭素含有プレート耐火物の製造方法
JP2009242122A (ja) 高炉炉床用れんが及びこれをライニングした高炉炉床
CN114180977B (zh) 一种铸造用无磷可塑料及其制备方法
JP3510642B2 (ja) マグネシアクリンカーおよびその製造法
JPS63129072A (ja) 炭化珪素質耐火物の製造方法
JP2002338371A (ja) 湿式吹付用不定形耐火物
JPS6047224B2 (ja) 炭素−炭化珪素質耐火物の製法
JPH085717B2 (ja) 鉱石還元炉炉壁用炭化珪素−炭素質れんがの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017567251

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17887063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197007308

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017887063

Country of ref document: EP

Effective date: 20190729