WO2018123516A1 - モータ制御装置、モータシステム、モータ制御方法、および集積回路装置 - Google Patents

モータ制御装置、モータシステム、モータ制御方法、および集積回路装置 Download PDF

Info

Publication number
WO2018123516A1
WO2018123516A1 PCT/JP2017/044179 JP2017044179W WO2018123516A1 WO 2018123516 A1 WO2018123516 A1 WO 2018123516A1 JP 2017044179 W JP2017044179 W JP 2017044179W WO 2018123516 A1 WO2018123516 A1 WO 2018123516A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
order
current
zero
harmonic current
Prior art date
Application number
PCT/JP2017/044179
Other languages
English (en)
French (fr)
Inventor
正倫 綿引
智也 森
智哉 上田
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to US16/461,844 priority Critical patent/US10848088B2/en
Priority to JP2018558980A priority patent/JP7001064B2/ja
Priority to CN201780080755.9A priority patent/CN110121837B/zh
Priority to EP17889126.3A priority patent/EP3565106A4/en
Publication of WO2018123516A1 publication Critical patent/WO2018123516A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present disclosure relates to a motor control device, a motor system, and a motor control method for a permanent magnet synchronous motor.
  • the present disclosure also relates to an integrated circuit device used for such motor control.
  • the electromagnetic excitation force generated in the radial direction (radial direction) of the motor excites the vibration of the stator.
  • the electromagnetic excitation force in the radial direction is referred to as “radial force” and is generated between the teeth of the rotor and the stator.
  • the radial force has a plurality of order components (harmonic components) that vibrate at different time periods as the rotor rotates.
  • the sixth-order radial force of the electrical angle hereinafter sometimes simply referred to as “sixth-order radial force”) strongly excites the vibration of the annular mode of the stator, and thus a large vibration due to resonance. May cause noise.
  • Japanese Unexamined Patent Application Publication No. 2016-25810 discloses a motor control device that suppresses a sixth-order radial force by superimposing a sixth-order harmonic current of an electrical angle on at least one of the d-axis and q-axis currents.
  • the motor control device as disclosed in Japanese Patent Application Laid-Open No. 2016-25810 can suppress the sixth-order radial force, but the eighth-order radial force (hereinafter simply referred to as “8”). It is sometimes referred to as “next radial force”.).
  • the eighth-order radial force may greatly increase the vibration and noise of the motor due to resonance.
  • Embodiments of the present disclosure provide a motor control device and a motor control device that can suppress an increase in an eighth-order radial force that can be caused by superposition of harmonic currents and reduce a sixth-order radial force.
  • the embodiments of the present disclosure also provide a motor system including the motor control device and an integrated circuit device for controlling the motor.
  • the motor control device of the present disclosure is a motor control device that controls a permanent magnet synchronous motor including a rotor and a stator, and determines a d-axis zero-order current and a q-axis zero-order current.
  • a circuit a second circuit for determining a d-axis sixth harmonic current and a q-axis sixth harmonic current according to the position of the rotor, and superimposing the d-axis sixth harmonic current on the d-axis zeroth current
  • a third circuit that determines a value obtained by superimposing the q-axis sixth-order harmonic current on the q-axis zero-order current as a d-axis current command value and a q-axis current command value, respectively.
  • the amplitude i d6 and the phase ⁇ d6 of the d- axis sixth harmonic current and the amplitude i q6 and the phase ⁇ q6 of the q-axis sixth harmonic current are both zero in the amplitude i d6 and the amplitude i q6.
  • the electrical angle sixth-order radial force is reduced as compared to the case, and the amplitude i d6 , i q6 and the phases ⁇ d6 , ⁇ q6 are values that minimize the electrical angle sixth-order radial force. It has a value that reduces the angular eighth-order radial force.
  • a motor system includes the motor control device described above and a permanent magnet synchronous motor including a rotor and a stator.
  • the motor control method of the present disclosure is a motor control method for controlling a permanent magnet synchronous motor including a rotor and a stator, and includes determining a d-axis zero-order current and a q-axis zero-order current. Determining the d-axis 6th harmonic current and the q-axis 6th harmonic current according to the position of the rotor, wherein the amplitude i d6 and the amplitude i q6 are both electric compared to zero.
  • a value obtained by superimposing the d-axis sixth-order harmonic current on the d-axis zero-order current, and the q Q-axis 6th-order harmonic to the 0th-order current of the axis A value obtained by superimposing a current, respectively, comprising the steps of determining a d-axis current command value and the q-axis current command value.
  • An integrated circuit device of the present disclosure is an integrated circuit device for controlling a permanent magnet synchronous motor including a rotor and a stator, and includes a signal processing processor and a memory, and the memory is connected to the signal processing processor, d Determining the zero-axis current and q-axis zero-order current, determining the d-axis sixth harmonic current and the q-axis sixth harmonic current according to the position of the rotor, and the d-axis zero-order current A value in which the d-axis sixth harmonic current is superimposed and a value in which the q-axis sixth harmonic current is superimposed on the q-axis zero-order current are determined as a d-axis current command value and a q-axis current command value, respectively.
  • the amplitude i d6 and the phase ⁇ d6 of the d- axis sixth harmonic current and the amplitude i q6 and the phase ⁇ q6 of the q-axis sixth harmonic current are both zero in the amplitude i d6 and the amplitude i q6.
  • the electrical angle sixth-order radial force is reduced as compared to the case, and the amplitude i d6 , i q6 and the phases ⁇ d6 , ⁇ q6 are values that minimize the electrical angle sixth-order radial force. It has a value that reduces the angular eighth-order radial force.
  • FIG. 1 is a diagram schematically illustrating a configuration of a non-limiting exemplary embodiment of a motor control system according to the present disclosure.
  • FIG. 2 is a diagram schematically illustrating the configuration of a non-limiting exemplary embodiment of an integrated circuit device according to the present disclosure.
  • FIG. 3 is a flowchart illustrating a procedure in the embodiment of the motor control method according to the present disclosure.
  • FIG. 4A is a graph illustrating a simulation result in an example according to the present disclosure.
  • FIG. 4B is a graph illustrating an actual measurement result in the example according to the present disclosure.
  • a magnetic flux passing through an air gap between the rotor and the stator teeth mainly flows in a radial (radial) direction and a circumferential direction.
  • radial force not only circumferential force (torque) but also radial force (radial force) is generated between the stator and the rotor.
  • the magnetic flux that generates the electromagnetic force includes a magnetic flux component by a permanent magnet in the rotor and a magnetic flux component formed by energizing the windings of the stator.
  • the electromagnetic force also varies spatially and temporally. This causes electromagnetic vibration.
  • a harmonic current having an amplitude and a phase that satisfies a specific condition on the current flowing through the stator winding, it is possible to reduce vibration and noise caused by the radial force when driving the motor. .
  • both the amplitude and phase of the sixth-order harmonic current in the d-axis and the q-axis are suppressed in order to suppress an increase in the eighth-order radial force that may be caused by the superposition of the sixth-order harmonic current. Is determined to satisfy a specific condition (restraint condition).
  • the magnetic flux density B in each tooth is expressed by the following equation (1). expressed.
  • the magnetic flux density B is composed of a radial magnetic flux density B r and the circumferential direction magnetic flux density B theta. Assuming that the vacuum permeability is ⁇ 0 , the radial force F r acting on each tooth has a magnitude represented by the following equation (2) according to Maxwell's stress equation.
  • the radial force F r acting on each tooth is proportional to the square of the interlinkage magnetic flux ⁇ of the tooth.
  • the interlinkage magnetic flux ⁇ is expressed by a linear combination of the permanent magnet component ⁇ m created by the permanent magnet of the rotor and the current component ⁇ i created by the current flowing through the stator winding. To do.
  • ⁇ mU , ⁇ mV , and ⁇ mW are the flux linkages of the U, V, and W phases by the permanent magnet, respectively.
  • ⁇ iU , ⁇ iV , and ⁇ iW are flux linkages of U, V, and W phases due to the winding current, respectively.
  • the constant A is the reciprocal of 2 ⁇ 0 N 2 S.
  • the radial force of each tooth can be described as a function of the d-axis current i d0 and the q-axis current i q0 .
  • the d-axis and q-axis are synchronous rotation coordinates that rotate with the rotor.
  • “d” on the d-axis is an acronym for “direct”, and the d-axis faces the N-pole direction of the permanent magnet of the rotor.
  • “q” on the q-axis is an acronym for “quadrature”, and the q-axis faces a direction orthogonal to the d-axis at an electrical angle of 90 °.
  • the U-phase radial force F rU is expressed by the following equation using the d-axis magnetic flux ⁇ d and the q-axis magnetic flux ⁇ q .
  • is an electrical angle indicating the rotational position of the rotor.
  • the d-axis magnetic flux ⁇ d and the q-axis magnetic flux ⁇ q are expressed by the following equations.
  • ⁇ md0 and ⁇ md6 are the amplitudes of the zeroth-order component and the sixth-order component of the d-axis flux linkage generated by the permanent magnet, respectively.
  • ⁇ mq6 is the amplitude of the sixth-order component of the q-axis flux linkage generated by the permanent magnet.
  • L d0 and L q0 are a zero-order component of the d-axis self-inductance and a zero-order component of the q-axis self-inductance, respectively.
  • i d0 and i q0 are a d-axis current and a q-axis current (zero-order current) in a state where no harmonic current is superimposed, respectively.
  • the sixth-order harmonic component of the first term on the right-hand side of the equation (8) indicates that the U, V, and W phase interlinkage magnetic fluxes ⁇ mU , ⁇ mV , and ⁇ mW generated by the rotor permanent magnet are the rotational positions of the rotor, respectively. This occurs because it is approximately expanded as the sum of the first, fifth, and seventh harmonic components that change according to ⁇ . This expansion is expressed by the following equation.
  • the reason why there is no third-order harmonic component in the formula 9 is that the sum of the flux linkages ⁇ mU , ⁇ mV , and ⁇ mW of the U, V, and W phases is zero.
  • the first term on the right side of the equation (8) is obtained.
  • the first term on the right side of the equation (8) indicates the flux linkage component due to the permanent magnet of the rotor, and the second term on the right side indicates the flux linkage component due to the winding current.
  • interference between the harmonics of the inductance and the dq axis currents i d0 and i q0 is ignored.
  • the winding current is controlled to adjust the interlinkage magnetic flux component of the second term in Expression 8 to an appropriate value.
  • the d-axis sixth harmonic current and the q-axis sixth harmonic current are superimposed on the normal d-axis current i d0 and q-axis current i q0 , respectively.
  • the d-axis current i d0 and the q-axis current i q0 are, for example, from the outside It can be determined by a known vector control calculation according to the given torque command value and speed command value.
  • the motor is controlled based on the zero-order current (dq axis currents i d0 , i q0 ) determined in this way, the above-described sixth radial force is generated.
  • the d-axis sixth-order harmonic current and the q-axis sixth-order harmonic current are superimposed so as to reduce the sixth-order radial force. At this time, the increase in the eighth-order radial force is suppressed.
  • a specific relationship (constraint condition) is given to the amplitude and phase of the sixth harmonic current.
  • the d-axis sixth harmonic current and the q-axis sixth harmonic current are i d0 cos (6 ⁇ + ⁇ d6 ) and i q0 cos (6 ⁇ + ⁇ q6 ), respectively, the d-axis current i d and the q-axis current i q are It is represented by the following formula.
  • the d-axis flux ⁇ d and the q-axis flux ⁇ q can be viewed as a function of the amplitude and phase of the d-axis 6th harmonic current and the q-axis 6th harmonic current.
  • the radial force F rU of the U phase in Equation 7 can be adjusted by the amplitude and phase of the d-axis sixth harmonic current and the q-axis sixth harmonic current.
  • L d0 ⁇ i d6 is equal to L q0 ⁇ i q6, and the phase theta q6 phase theta d6 and q-axis sixth-order harmonic current of d-axis sixth-order harmonic current Is equal to ⁇ .
  • This condition may be said to be a constraint condition that suppresses an increase in the eighth-order radial force.
  • the expression “A is equal to B” in the present disclosure is not limited to the case where A and B completely match, and
  • the radial force F rU of the U phase is obtained from the formula (7) using the formula of the formula (10) substituted for the formula (8), the F rU is 0th, 2nd, 4th, 6th, 8 Next, it is represented by the sum of radial forces.
  • the eighth-order radial force F ′ r8 is expressed by the following equation (11).
  • the first term on the right side is the radial force of the electrical angle 8th order when there is no superposition of the harmonic current.
  • the second term on the right side is the radial force of the eighth electrical angle generated by the superposition of the d-axis sixth harmonic current
  • the third term on the right side is the superposition of the q-axis sixth harmonic current. Is the radial force of the eighth electrical angle generated by F d8 and F q8 are constants determined by the driving conditions of the motor.
  • the increase amount of the eighth radial force due to the superposition of the sixth harmonic current can be made zero.
  • the increase amount of the eighth-order radial force due to the superposition of the sixth-order harmonic current does not need to be zero, and the eighth-order radial force is reduced depending on conditions as compared with the case where the sixth-order harmonic current is not superimposed. There is also.
  • L d0 ⁇ id 6 and L q0 ⁇ i q6 do not have to completely match. Further, it is not necessary that the phase difference between the phase ⁇ d6 of the d- axis sixth harmonic current and the phase ⁇ q6 of the q-axis sixth harmonic current completely coincides with ⁇ .
  • the sixth-order radial force F ′ r6 can be expressed by the following equation (16).
  • the right side of the equation (16) shows the sixth-order radial force generated between the rotor and the stator when the d-axis zero-order current and the q-axis zero-order current without superimposing harmonic currents flow through the stator windings. It is represented by the sum of f r6 ⁇ cos (6 ⁇ + ⁇ r6 ) and the sixth-order radial force generated by the sixth harmonic current, that is, F d6 ⁇ i d6 cos (6 ⁇ + ⁇ d6 ) + F q6 ⁇ i q6 cos (6 ⁇ + ⁇ q6 ). ing.
  • F d6 and F q6 are constants determined by the driving conditions of the motor.
  • the total sixth-order radial force F ′ r6 can be made smaller than the sixth-order radial force Fr6 .
  • i d6 , i q6 , ⁇ d6 , and ⁇ q6 appearing in the above equation 16 are transformed into the following equation 17 in order to satisfy the relationship (constraint condition) of equations 12 and 13. can do.
  • the formula 17 can be further transformed into the following formula 18.
  • the first term on the right side is a component due to the zero-order current
  • the second term is a component due to the sixth-order harmonic current.
  • the sixth-order radial force F ′ r6 can be brought close to zero. That is, in the formulas (19) and (20), the relationship “the value on the right side is equal to the value on the left side” may be satisfied. As described above, this relationship is not limited to a perfect match between A and B in the expression “A is equal to B”, and
  • the motor control system 1000 of this embodiment includes a permanent magnet synchronous motor 100 including a rotor 100R and a stator 100S, a position sensor 200 for measuring or estimating the position of the rotor 100R, and permanent magnet synchronization. And a motor control device 300 that controls the motor 100.
  • the configuration of the permanent magnet synchronous motor 100 is not particularly limited.
  • a surface magnet type motor (SPM) in which a permanent magnet is incorporated in the surface of the rotor 100R may be used, or an embedded magnet type motor (IPM) in which a permanent magnet is incorporated in the rotor 100R.
  • the winding of the stator 100S is not limited to concentrated winding, and may be distributed winding.
  • a typical example of the position sensor 200 is a magnetic sensor such as a Hall element or Hall IC, a rotary encoder, or a resolver.
  • the position sensor 200 is not indispensable, and a configuration that estimates the position of the rotor 100R without a sensor can be adopted.
  • the motor control device 300 includes a first circuit 10 that determines a zero-order current (d-axis zero-order current i d0 and q-axis zero-order current i q0 ) by known vector control, and a harmonic current according to the position of the rotor 100R.
  • a second circuit 20 for determining (d-axis sixth harmonic current i dh and q-axis sixth harmonic current i qh ) and a third circuit 30 for determining a current command value are provided.
  • the third circuit 30 superimposes the d-axis sixth harmonic current i dh on the d-axis zero-order current i d0 and the q-axis sixth-order harmonic current i qh on the q-axis zero-order current i q0. These values are determined as the d-axis current command value i d and the q-axis current command value i q , respectively.
  • the third circuit 30 is included in the vector control circuit 40 included in the motor control device 300.
  • the vector control circuit 40 determines the d-axis voltage command value v d and the q-axis voltage command value v q based on the d-axis current command value i d and the q-axis current command value i q .
  • the motor control device 300 includes a first conversion circuit 50 that performs UVW / dq conversion, a second conversion circuit 60 that performs dq / UVW conversion, an inverter 70, and a mechanical angle ( ⁇ m) indicated by the output of the position sensor 200. Is converted into an electrical angle ( ⁇ e).
  • the first conversion circuit 50 generates a U-phase voltage command value vu, a V-phase voltage command value vv, and a W-phase voltage command value vw from the d-axis voltage command value v d and the q-axis voltage command value v q, and sends it to the inverter 70. Output.
  • the inverter 70 applies a U-phase voltage u, a V-phase voltage v, and a W-phase voltage w to the U-phase winding, V-phase winding, and W-phase winding of the permanent magnet synchronous motor 100, respectively, to obtain a desired current.
  • a circuit that generates a PWM signal based on the voltage command values vu, vv, and vw, and a gate driver that generates a gate drive signal that switches a transistor in the inverter 70 based on the PWM signal may be provided in the previous stage of the inverter 70. .
  • the amplitude i d6 and the phase ⁇ d6 of the d- axis sixth harmonic current and the amplitude i q6 and the phase ⁇ q6 of the q-axis sixth harmonic current are the amplitude i d6 and the amplitude i q6.
  • the electrical angle sixth-order radial force is reduced as compared with the case where both are zero, and the amplitudes i d6 and i q6 and the phases ⁇ d6 and ⁇ q6 are values that minimize the electrical angle sixth-order radial force. In comparison, it has a value that reduces the electrical angle eighth-order radial force.
  • Such operations for determining the amplitudes i d6 and i q6 and the phases ⁇ d6 and ⁇ q6 can be executed using the above-described calculation formula. However, instead of executing such calculation in real time, it is prepared in advance according to various parameters determined by the electrical and mechanical characteristics of the motor, and command values and detection values used to determine the zero-order current.
  • the amplitudes i d6 and i q6 and the phases ⁇ d6 and ⁇ q6 may be determined by reading numerical values from the table.
  • Some or all of the components such as the first circuit 10, the second circuit 20, the third circuit 30, the vector control circuit 40, the first conversion circuit 50, and the second conversion circuit 60 may be realized by an integrated circuit device.
  • Such an integrated circuit device can typically be formed by one or more semiconductor components.
  • the integrated circuit device 500 illustrated in FIG. 2 includes a signal processor 520 and a memory 540.
  • the memory 540 stores a program that causes the signal processor 520 to execute the following processing.
  • the amplitude i d6 and the phase ⁇ d6 of the d- axis sixth harmonic current and the amplitude i q6 and the phase ⁇ q6 of the q-axis sixth harmonic current are compared to the case where both the amplitude i d6 and the amplitude i q6 are zero.
  • the electric angle eighth-order radial force is reduced. It has a decreasing value.
  • the integrated circuit device 500 includes an A / D converter 560 that converts an analog signal from the position sensor 200 into a digital signal and an analog signal from a sensor (not shown) that detects a current flowing through the winding of the motor 100 as a digital signal. And an A / D converter 580 for conversion into
  • the integrated circuit device 500 in this example outputs a PWM signal applied to the inverter 70. At least a part of the inverter 70 may be included in the integrated circuit device 500. Such an integrated circuit device 500 is typically realized by connecting one or more semiconductor chips to each other in one package. A part or all of the integrated circuit device 500 may be realized by writing a program specific to the present disclosure in, for example, a general-purpose microcontroller unit (MCU).
  • MCU general-purpose microcontroller unit
  • step S1 a command value such as a torque command value and a sensor detection value are received, and a d-axis zero-order current and a q-axis zero-order current are determined.
  • a table that associates various command values and sensor detection values with the command values of the d-axis zero-order current and the q-axis zero-order current may be used.
  • Such a table can be recorded in a memory built in the motor control device.
  • the magnitudes of the d-axis zero-order current and the q-axis zero-order current can be determined based on, for example, a torque command value, a motor rotation speed, a motor applied voltage, and the like.
  • the magnitudes of the d-axis zero-order current and the q-axis zero-order current may be determined based on a speed command and an actual speed output from a speed controller (not shown).
  • step S2 the d-axis sixth harmonic current and the q-axis sixth harmonic current are determined according to the position of the rotor.
  • the electrical angle sixth-order radial force is made smaller than when no harmonic current is superimposed, and the amplitude i d6 , i q6 and the phases ⁇ d6 , ⁇ q6 minimize the electrical angle sixth-order radial force.
  • the phase ⁇ q6 is determined.
  • a table that relates the position of the rotor and the amplitude and phase of the harmonic current may be used. Such a table can be recorded in a memory built in the motor control device.
  • step S3 a value obtained by superimposing the d-axis 6th harmonic current on the d-axis 0th order current and a value obtained by superposing the q-axis 6th harmonic current on the q-axis 0th order current are respectively set to the d-axis current command value and Determined as q-axis current command value.
  • step S4 a d-axis voltage command value and a q-axis voltage command value are determined based on the d-axis current command value and the q-axis current command value.
  • each UVW phase voltage command value is determined based on the d-axis voltage command value and the q-axis voltage command value.
  • Example> The inventors of the present invention performed simulation and actual vibration measurement for a surface permanent magnet synchronous motor having concentrated winding 8 poles and 12 slots. For the simulation, the structural analysis was performed using the result of the magnetic field analysis by the electromagnetic field analysis software.
  • the amplitude and phase values of the 6th harmonic were determined so as to satisfy all the above-described relationships. Specifically, the following values were adopted.
  • the zero-order component L d0 of the d-axis self-inductance and the zero-order component L q0 of the q-axis self-inductance that appear in the constraint condition of Equation 12 are both about 40 microhenries [ ⁇ H].
  • d0 is equal to L q0 .
  • the command value for the zero-order current on the dq axis is a value represented by the following Equation 22.
  • command value of the sixth harmonic current on the dq axis is a value represented by the following Equation 23.
  • FIG. 4A is a graph showing a simulation result in this example.
  • the horizontal axis of this graph represents the electrical angle order of vibration, and the vertical axis represents vibration acceleration.
  • the height of the “constant current command” bar indicates the magnitude of the motor vibration (calculation result) when the electrical angle 6th-order harmonic current is not superimposed (dq axis zero-order current only). Yes.
  • the height of the bar of the “harmonic current command” indicates the magnitude of the vibration of the motor when the electrical angle sixth-order harmonic current (Equation 23) in this embodiment is superimposed on the dq-axis zero-order current (calculation). Result).
  • FIG. 4A calculation results were obtained in which each of the vibrations of the fourth, sixth, and eighth electrical angles was reduced. The reason why the vibrations of these orders are reduced is that the radial forces of the corresponding orders are reduced.
  • FIG. 4B shows an actual measurement result in this example.
  • the horizontal axis and vertical axis of the graph are the same as the horizontal axis and vertical axis in the graph of FIG. 4A.
  • “Vibration acceleration” on the vertical axis indicates a value measured by an acceleration sensor attached to the motor.
  • the height of the “constant current command” bar is the magnitude of the vibration of the motor (measured value) measured when the harmonic current of the sixth electrical angle is not superimposed (dq axis zero-order current only). ).
  • the height of the bar of the “harmonic current command” indicates the magnitude of the vibration of the motor (measured value) measured when the electrical current sixth-order harmonic current in this embodiment is superimposed on the dq-axis zero-order current. ).
  • the electrical angle is increased without increasing the fourth-order and eighth-order vibrations.
  • Sixth-order vibration can be reduced. Specifically, it was confirmed that a reduction of 10 [dB] can be realized with respect to the vibration of the electrical angle 6th order.
  • the reason why the electrical angle 6th order vibration obtained by actual measurement is larger than the electrical angle 6th order vibration obtained by the simulation is that the permanent magnet synchronous motor fixed to the motor bench has the electrical angle 6th order vibration. This is because the resonance occurred due to the vibration.
  • the motor control device, the motor control method, the motor system, and the integrated circuit device of the present disclosure can realize low vibration of the motor by current control, various permanent magnet synchronous motors that are required to reduce vibration or noise, and permanent
  • the present invention can be widely applied to an apparatus or system including a magnet motor.
  • SYMBOLS 10 ... 1st circuit, 20 ... 2nd circuit, 30 ... 3rd circuit, 40 ... Vector control circuit, 50 ... 1st conversion circuit, 60 ... 2nd conversion circuit, DESCRIPTION OF SYMBOLS 70 ... Inverter, 100 ... Permanent magnet synchronous motor, 100S ... Stator of permanent magnet synchronous motor, 100R ... Rotor of permanent magnet synchronous motor, 200 ... Position sensor, 300 ... Motor control Device, 500 ... integrated circuit device, 1000 ... motor system

Abstract

本開示のモータ制御装置は、実施形態において、d軸0次電流およびq軸0次電流を決定する第1回路10と、ロータの位置に応じてd軸6次高調波電流およびq軸6次高調波電流を決定する第2回路20と、d軸0次電流にd軸6次高調波電流を重畳した値、およびq軸0次電流にq軸6次高調波電流を重畳した値を、それぞれ、d軸電流指令値およびq軸電流指令値として決定する第3回路30とを備える。d軸6次高調波電流の振幅id6および位相θd6、ならびにq軸6次高調波電流の振幅iq6および位相θq6は、振幅id6および振幅iq6の両方がゼロの場合に比べて電気角6次ラジアル力を低下させ、かつ、振幅id6、iq6および位相θd6、θq6が電気角6次ラジアル力を最小化する値である場合に比べて電気角8次ラジアル力を低下させる値を有している。

Description

モータ制御装置、モータシステム、モータ制御方法、および集積回路装置
 本開示は、永久磁石同期モータのためのモータ制御装置、モータシステム、およびモータ制御方法に関する。また、本開示は、このようなモータ制御に用いられる集積回路装置にも関する。
 モータの振動および騒音の原因のひとつは、モータの半径方向(ラジアル方向)に発生する電磁加振力がステータの振動を励起することにある。ラジアル方向の電磁加振力は「ラジアル力」と称され、ロータとステータの各ティースとの間に発生する。ラジアル力には、ロータの回転に伴って異なる時間的周期で振動する複数の次数成分(高調波成分)が存在している。複数の次数成分のうち、電気角6次のラジアル力(以下、単に「6次ラジアル力」と称することがある。)は、ステータの円環モードの振動を強く励起するため、共振によって大きな振動および騒音を引き起こすことがある。
 特開2016-25810号公報には、d軸およびq軸の少なくとも一方の電流に電気角6次の高調波電流を重畳して6次ラジアル力を抑制するモータ制御装置が開示されている。
特開2016-25810号公報
 本発明者らの研究によると、特開2016-25810号公報に開示されているようなモータ制御装置では、6次ラジアル力を抑制できるが、電気角8次のラジアル力(以下、単に「8次ラジアル力」と称することがある。)が増加する場合のあることがわかった。モータの構造および駆動状態によっては、8次ラジアル力が共振によってモータの振動および騒音を大きく増加させることがある。
 本開示の実施形態は、高調波電流の重畳によって生じ得る8次ラジアル力の増加を抑制し、かつ、6次ラジアル力を低減することのできるモータ制御装置およびモータ制御装置を提供する。また、本開示の実施形態は、当該モータ制御装置を備えるモータシステム、および、モータを制御するための集積回路装置を提供する。
 本開示のモータ制御装置は、例示的な実施形態において、ロータおよびステータを備える永久磁石同期モータを制御するモータ制御装置であって、d軸0次電流およびq軸0次電流を決定する第1回路と、前記ロータの位置に応じてd軸6次高調波電流およびq軸6次高調波電流を決定する第2回路と、前記d軸0次電流に前記d軸6次高調波電流を重畳した値、および前記q軸0次電流に前記q軸6次高調波電流を重畳した値を、それぞれ、d軸電流指令値およびq軸電流指令値として決定する第3回路とを備える。前記d軸6次高調波電流の振幅id6および位相θd6、ならびに前記q軸6次高調波電流の振幅iq6および位相θq6は、前記振幅id6および前記振幅iq6の両方がゼロの場合に比べて電気角6次ラジアル力を低下させ、かつ、前記振幅id6、iq6および前記位相θd6、θq6が電気角6次ラジアル力を最小化する値である場合に比べて電気角8次ラジアル力を低下させる値を有している。
 本開示のモータシステムは、上記のモータ制御装置と、ロータおよびステータを備える永久磁石同期モータとを備える。
 本開示のモータ制御方法は、例示的な実施形態において、ロータおよびステータを備える永久磁石同期モータを制御するモータ制御方法であって、d軸0次電流およびq軸0次電流を決定するステップと、前記ロータの位置に応じてd軸6次高調波電流およびq軸6次高調波電流を決定するステップであって、前記振幅id6および前記振幅iq6の両方がゼロの場合に比べて電気角6次ラジアル力を低下させ、かつ、前記振幅id6、iq6および前記位相θd6、θq6が電気角6次ラジアル力を最小化する値である場合に比べて電気角8次ラジアル力を低下させるように、前記振幅id6、iq6および前記位相θd6、θq6を決定するステップと、前記d軸0次電流に前記d軸6次高調波電流を重畳した値、および前記q軸0次電流に前記q軸6次高調波電流を重畳した値を、それぞれ、d軸電流指令値およびq軸電流指令値として決定するステップとを包含する。
 本開示の集積回路装置は、ロータおよびステータを備える永久磁石同期モータを制御するための集積回路装置であって、信号処理プロセッサと、メモリとを備え、前記メモリは、前記信号処理プロセッサに、d軸0次電流およびq軸0次電流を決定すること、前記ロータの位置に応じてd軸6次高調波電流およびq軸6次高調波電流を決定すること、および前記d軸0次電流に前記d軸6次高調波電流を重畳した値、および前記q軸0次電流に前記q軸6次高調波電流を重畳した値を、それぞれ、d軸電流指令値およびq軸電流指令値として決定することを実行させるプログラムを格納している。前記d軸6次高調波電流の振幅id6および位相θd6、ならびに前記q軸6次高調波電流の振幅iq6および位相θq6は、前記振幅id6および前記振幅iq6の両方がゼロの場合に比べて電気角6次ラジアル力を低下させ、かつ、前記振幅id6、iq6および前記位相θd6、θq6が電気角6次ラジアル力を最小化する値である場合に比べて電気角8次ラジアル力を低下させる値を有している。
 本開示の実施形態によると、電気角6次の高調波電流の重畳によって生じ得る8次ラジアル力の増加を抑制しつつ、6次ラジアル力を低減することが可能になる。
図1は、本開示によるモータ制御システムの限定的ではない例示的な実施形態の構成を模式的に示す図である。 図2は、本開示による集積回路装置の限定的ではない例示的な実施形態の構成を模式的に示す図である。 図3は、本開示によるモータ制御方法の実施形態における手順を示すフローチャートである。 図4Aは、本開示による実施例におけるシミュレーションの結果を示すグラフである。 図4Bは、本開示による実施例における実測結果を示すグラフである。
 ロータおよびステータを備える永久磁石同期モータ内において、ロータとステータの各ティースとの間にあるエアギャップを通る磁束は、主に半径(ラジアル)方向と周方向に流れる。その結果、ステータとロータとの間には、周方向の力(トルク)だけではなく、ラジアル方向の力(ラジアル力)も発生する。これらの力は「電磁力」と称されている。電磁力を生成する磁束は、ロータ内の永久磁石による磁束成分と、ステータの巻線に通電して形成される磁束成分とを含む。各ティースを貫通する磁束成分の大きさは、空間的および時間的に変化するため、電磁力も空間的および時間的に変化する。これが電磁振動の原因になる。ステータの巻線を流れる電流に対して、特定条件を満足する振幅および位相を持つ高調波電流を重畳することにより、モータ駆動時のラジアル力に起因する振動および騒音を低減することが可能になる。
 前述した特開2016-25810号公報に開示されている装置では、電気角6次のラジアル力を低減するために、通常のd軸およびq軸電流(0次電流)の少なくとも一方に電気角6次の高調波電流(以下、単に「6次高調波電流」と称する場合がある。)を重畳している。この装置では、6次高調波電流の振幅を補正しているが、d軸およびq軸のそれぞれにおける6次高調波電流の位相は、同一の値に設定することを前提にしている。これに対して、本開示の実施形態では、6次高調波電流の重畳によって生じ得る8次ラジアル力の増加を抑制するため、d軸およびq軸における6次高調波電流の振幅および位相の両方が特定の条件(拘束条件)を満たすように決定する。
 本開示の実施形態を説明する前に、ラジアル力の発生原因を説明する。
 ステータの各ティースにおいて、磁束をφ、ティース先端の面積をS、鎖交磁束をΨ、巻線のターン数をN、とすると、各ティース内の磁束密度Bは、下記の数1の式で表される。
Figure JPOXMLDOC01-appb-M000002
 磁束密度Bは、半径方向磁束密度Brと周方向磁束密度Bθとから構成される。真空の透磁率をμ0とすると、マックスウェルの応力式により、各ティースに働くラジアル力Frは、下記の数2の式で表される大きさを持つ。
Figure JPOXMLDOC01-appb-M000003
 一般に、半径方向磁束密度Brと周方向磁束密度 Bθの間には、Br 2>> Bθ 2の関係がある。このため、磁束密度Bが積分面内で一様に分布していると仮定すると、ラジアル力Frは、下記の数3に示すように近似できる。
Figure JPOXMLDOC01-appb-M000004
 ラジアル力Frの近似式は、更に以下のように変形される。
Figure JPOXMLDOC01-appb-M000005
 数4の式から明らかなように、各ティースに働くラジアル力Frは、ティースの鎖交磁束Ψの2乗に比例する。鎖交磁束Ψは、ロータの永久磁石が作る永久磁石成分Ψmと、ステータの巻線を流れる電流が作る電流成分Ψiとの線形結合によって表されるため、以下の数5の式が成立する。
Figure JPOXMLDOC01-appb-M000006
 したがって、UVW相の3相で駆動される永久磁石同期モータでは、UVW相の各ティースのラジアル力FrU、FrV、FrWは、以下の数6の式で表される。
ここで、ΨmU、ΨmV、ΨmWは、それぞれ、永久磁石によるU、V、W相の鎖交磁束である。ΨiU、ΨiV、ΨiWは、それぞれ、巻線電流によるU、V、W相の鎖交磁束である。定数Aは、2μ02Sの逆数である。
 上記の数6の式について、dq/UVW変換を行うことにより、各ティースのラジアル力をd軸電流id0およびq軸電流iq0の関数として記述することができる。d軸およびq軸は、ロータとともに回転する同期回転座標である。d軸の「d」は「direct」の頭文字であり、d軸はロータの永久磁石のN極方向を向く。q軸の「q」は「quadrature」の頭文字であり、q軸はd軸に対して電気角90°で直交する方向を向く。
 U相のラジアル力FrUは、d軸磁束Ψdとq軸磁束Ψqを用いて以下の式で表される。
Figure JPOXMLDOC01-appb-M000008

ここで、θはロータの回転位置を示す電気角である。d軸磁束Ψdとq軸磁束Ψqは下記の式で表される。
Figure JPOXMLDOC01-appb-M000009

ここで、Ψmd0およびΨmd6は、それぞれ、永久磁石によって生じるd軸鎖交磁束の0次成分および6次成分の振幅である。Ψmq6は、永久磁石によって生じるq軸鎖交磁束の6次成分の振幅である。また、Ld0およびLq0は、それぞれ、d軸自己インダクタンスの0次成分およびq軸自己インダクタンスの0次成分である。id0およびiq0は、それぞれ、高調波電流が重畳されない状態のd軸電流およびq軸電流(0次電流)である。
 巻線電流に6次高調波電流を重畳しないときでも、dq座標上では、ロータの回転位置θに応じて変化する6次高調波成分の鎖交磁束が発生する。数8の式における右辺第1項の6次の高調波成分は、ロータの永久磁石によって生じるU、V、W相の鎖交磁束ΨmU、ΨmV、ΨmWが、それぞれ、ロータの回転位置θに応じて変化する1次、5次、7次の高調波成分の和として近似的に展開されために発生する。この展開は、以下の式によって表現される。
Figure JPOXMLDOC01-appb-M000010
 この数9の式に3次の高調波成分が無い理由は、U、V、W相の鎖交磁束ΨmU、ΨmV、ΨmWの総和がゼロであることによる。上記の数9の式に対してdq/UVW変換を行うと、数8の式の右辺第1項が得られる。数8の式の右辺第1項は、ロータの永久磁石による鎖交磁束成分を示し、右辺第2項は巻線電流による鎖交磁束成分を示している。右辺第2項の巻線電流による鎖交磁束成分では、インダクタンスの高調波とdq軸電流id0、iq0との干渉を無視している。
 本開示の実施形態では、巻線電流を制御して、数8の式における第2項の鎖交磁束成分を適切な値に調整する。具体的には、通常のd軸電流id0およびq軸電流iq0に、それぞれ、d軸6次高調波電流およびq軸6次高調波電流を重畳する。高調波電流を重畳する前の通常のd軸電流およびq軸電流(0次電流)を、それぞれ、id0およびiq0とすると、d軸電流id0およびq軸電流iq0は、例えば外部から与えられたトルク指令値および速度指令値に応じて、公知のベクトル制御演算によって決定され得る。このようにして決定された0次電流(dq軸電流id0、iq0)に基づいてモータを制御すると、前述した6次ラジアル力が発生する。本開示の実施形態では、6次ラジアル力を低減するようにd軸6次高調波電流およびq軸6次高調波電流を重畳するが、そのとき、8次ラジアル力の増加を抑制するように6次高調波電流の振幅および位相に特定の関係(拘束条件)を与える。
 d軸6次高調波電流およびq軸6次高調波電流を、それぞれ、id0cos(6θ+θd6)およびiq0cos(6θ+θq6)とすると、d軸電流idおよびq軸電流iqは、下記の式で表される。
Figure JPOXMLDOC01-appb-M000011
 前述の数8の式におけるd軸電流id0およびq軸電流iq0を、数10の式におけるd軸電流idおよびq軸電流iqで置き換えると、d軸磁束Ψdおよびq軸磁束Ψqをd軸6次高調波電流およびq軸6次高調波電流の振幅および位相の関数としてみることができる。その結果、数7におけるU相のラジアル力FrUを、d軸6次高調波電流およびq軸6次高調波電流の振幅および位相によって調整することが可能になる。
 本開示の実施形態において、Ld0×id6は、Lq0×iq6に等しく、かつ、d軸6次高調波電流の位相θd6とq軸6次高調波電流の位相θq6との差はπに等しい。このように振幅および位相を定めることにより、8次ラジアル力の増加を抑制することができる。この条件は、8次ラジアル力の増加を抑制する拘束条件であると言ってよい。
 なお、本開示における「Aは、Bに等しい」の表現は、AとBとが完全に一致することに限定されず、|A-B|/(A+B)が0以上0.1以下の範囲にあることを意味する。
<8次ラジアル力の増加の抑制>
 上記の拘束条件によって8次ラジアル力の増加が抑制される理由を説明する。
 数10の式を数8の式に代入したものを用いて、数7の式からU相のラジアル力FrUを求めると、FrUは、0次、2次、4次、6次、8次、・・・のラジアル力の和によって表される。このうち、8次ラジアル力F’r8は、以下の数11の式で表される。
Figure JPOXMLDOC01-appb-M000012
 数11の第1行目の式において、右辺第1項は、高調波電流の重畳がないときにおける電気角8次のラジアル力である。これに対して、右辺第2項は、d軸の6次高調波電流の重畳によって生じた電気角8次のラジアル力であり、右辺第3項は、q軸の6次高調波電流の重畳によって生じた電気角8次のラジアル力である。なお、Fd8およびFq8は、モータの駆動条件によって定まる定数である。
 本開示の好ましい実施形態では、高調波電流の重畳による8次ラジアル力F’r8の増加を抑制するため、以下の数12および数13の関係が満たされる。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 上記の数12および数13の関係を満たすように6次高調波電流の振幅id6、iq6および位相θd6、θq6が設定されていると、8次ラジアル力F’r8を示す数11の式における下記の2項が互いに相殺される。
Figure JPOXMLDOC01-appb-M000015
 同様に、8次ラジアル力F’r8を示す数11の式における下記の2項も互いに相殺される。
Figure JPOXMLDOC01-appb-M000016
 その結果として、6次高調波電流の重畳に起因する8次ラジアル力の増加量を零にすることが可能になる。なお、6次高調波電流の重畳に起因する8次ラジアル力の増加量は零である必要は無く、条件により、6次高調波電流を重畳しない場合に比べて8次ラジアル力が減少することもある。
 なお、前述したように、本開示の実施形態において、Ld0×id6とLq0×iq6とは完全に一致する必要はない。また、d軸6次高調波電流の位相θd6とq軸6次高調波電流の位相θq6との位相差がπに完全に一致する必要もない。すなわち、|Ld0×id6-Lq0×iq6|/(Ld0×id6+Lq0×iq6)が0以上0.1以下の範囲にあり、かつ、|(θd6-θq6)-π|/[(θd6-θq6)+π]が0以上0.1以下の範囲にあれば、6次高調波電流の重畳に起因する8次ラジアル力の増加を抑制する効果が充分に得られる。
<6次ラジアル力の低減>
 本開示の実施形態では、上記の拘束条件のもとで、6次ラジアル力を減少させるように高調波電流の振幅および位相を更に調整する。以下、この点を説明する。
 本開示の実施形態において、6次ラジアル力F’r6は以下の数16の式で表現することができる。
Figure JPOXMLDOC01-appb-M000017
 数16の式の右辺は、高調波電流を重畳していないd軸0次電流およびq軸0次電流がステータの巻線を流れたときにロータとステータとの間に発生する6次ラジアル力fr6・cos(6θ+θr6)と、6次高調波電流によって生じる6次ラジアル力、すなわち、Fd6・id6cos(6θ+θd6)+Fq6・iq6cos(6θ+θq6)との和で表されている。なお、Fd6およびFq6は、モータの駆動条件によって定まる定数である。
 数16の第1行目の等式における右辺の第2項+第3項が、右辺第1項の6次ラジアル力に対して逆位相の関係を持つことにより、合計6次ラジアル力F’r6を6次ラジアル力Fr6よりも小さくすることができる。
 なお、数12および数13の拘束条件を無視して6次ラジアル力F’r6を最小化するようにid6、iq6、θd6、およびθq6を決定した場合、そのようにして決定したid6、iq6、θd6、およびθq6を持つ6次高調波電流の重畳は、8次ラジアル力F’r8を大きく増加させてしまう。具体的には、6次ラジアル力F’r6を最小化するid6、iq6、θd6、およびθq6を数11の式に代入すると、sin8θの項の振幅が2倍に増大してしまう。本開示の実施形態では、このような8次ラジアル力F’r8の増大を抑制することが可能になる。
 ここで、上記の数16の式に登場するid6、iq6、θd6、およびθq6は、数12および数13の関係(拘束条件)を満足するため、下記の数17の式に変形することができる。
Figure JPOXMLDOC01-appb-M000018
 数17の式は、更に下記の数18の式に変形することができる。
Figure JPOXMLDOC01-appb-M000019

 上記の数18の式における右辺第1項は0次電流による成分であり、第2項は6次高調波電流による成分である。下記の数19および数20の式を満足するようにid6およびθd6の値を決定すれば、6次ラジアル力F’r6は零になる。
Figure JPOXMLDOC01-appb-M000020


Figure JPOXMLDOC01-appb-M000021
 数19および数20の式における等号の両辺の値が完全に一致しない場合でも、6次ラジアル力F’r6を零に近づけることは可能である。すなわち、数19および数20の式において、「右辺の値は、左辺の値に等しい」という関係が成立すればよい。この関係は、前述したように、「Aは、Bに等しい」の表現において、AとBとが完全に一致することに限定されず、|A-B|/(A+B)が0以上0.1以下の範囲にあればよい関係である。
<モータ制御装置および制御システムの構成例>
 図1を参照して、本開示によるモータ制御システムの限定的ではない例示的な実施形態を説明する。図示されている例において、本実施形態のモータ制御システム1000は、ロータ100Rおよびステータ100Sを備える永久磁石同期モータ100と、ロータ100Rの位置を測定または推定するための位置センサ200と、永久磁石同期モータ100を制御するモータ制御装置300とを備えている。
 永久磁石同期モータ100の構成は、特に限定されない。永久磁石がロータ100Rの表面に組み込まれた表面磁石型モータ(SPM)であってもよいし、永久磁石がロータ100Rの内部に組み込まれた埋込磁石型モータ(IPM)であってもよい。また、ステータ100Sの巻線は集中巻に限定されず、分布巻であってもよい。位置センサ200の典型例は、ホール素子またはホールICなどの磁気センサ、ロータリエンコーダ、レゾルバである。位置センサ200は不可欠ではなく、センサレスでロータ100Rの位置を推定する構成を採用し得る。
 モータ制御装置300は、公知のベクトル制御によって0次電流(d軸0次電流id0およびq軸0次電流iq0)を決定する第1回路10と、ロータ100Rの位置に応じて高調波電流(d軸6次高調波電流idhおよびq軸6次高調波電流iqh)を決定する第2回路20と、電流指令値を決定する第3回路30とを備えている。
 なお、第3回路30は、d軸0次電流id0にd軸6次高調波電流idhを重畳した値、およびq軸0次電流iq0にq軸6次高調波電流iqhを重畳した値を、それぞれ、d軸電流指令値idおよびq軸電流指令値iqとして決定する。図示されている例において、第3回路30は、モータ制御装置300が備えるベクトル制御回路40に含まれている。ベクトル制御回路40は、d軸電流指令値idおよびq軸電流指令値iqに基づいて、d軸電圧指令値vdおよびq軸電圧指令値vqを決定する。
 モータ制御装置300は、他に、UVW/dq変換を行う第1変換回路50、dq/UVW変換を行う第2変換回路60、インバータ70、および、位置センサ200の出力が示す機械角(θm)を電気角(θe)に変換する回路80を備えている。第1変換回路50は、d軸電圧指令値vdおよびq軸電圧指令値vqからU相電圧指令値vu、V相電圧指令値vv、W相電圧指令値vwを生成してインバータ70に出力する。インバータ70は、U相電圧u、V相電圧v、W相電圧wを、それぞれ、永久磁石同期モータ100のU相巻線、V相巻線、W相巻線に印加して、所望の電流を各相の巻線に流す。インバータ70の前段には、電圧指令値vu、vv、vwに基づいてPWM信号を生成する回路、PWM信号に基づいてインバータ70内のトランジスタをスイッチングするゲート駆動信号を生成するゲートドライバが設けられ得る。これらの要素は公知であり、簡単のため、記載が省略されている。
 本開示のモータ制御装置300では、d軸6次高調波電流の振幅id6および位相θd6、ならびにq軸6次高調波電流の振幅iq6および位相θq6は、振幅id6および振幅iq6の両方がゼロの場合に比べて電気角6次ラジアル力を低下させ、かつ、振幅id6、iq6および位相θd6、θq6が電気角6次ラジアル力を最小化する値である場合に比べて電気角8次ラジアル力を低下させる値を有している。このような振幅id6、iq6、および位相θd6、θq6を決定するための演算は、前述した計算式を用いて実行し得る。しかし、このような演算をリアルタイムで実行する代わりに、モータの電気的機械的特性によって定まる各種パラメータ、および、0次電流を決定するために用いられる指令値および検出値に応じて、前もって用意されたテーブルから数値を読み出すことにより、振幅id6、iq6、および位相θd6、θq6を決定してもよい。
 第1回路10、第2回路20、第3回路30、ベクトル制御回路40、第1変換回路50、および第2変換回路60などの構成要素の一部または全部は、集積回路装置によって実現され得る。このような集積回路装置は、典型的には1個または複数個の半導体部品によって形成され得る。
<集積回路装置の構成例>
 図2を参照して、本開示による集積回路装置の限定的ではない例示的な実施形態を説明する。図2に例示されている集積回路装置500は、信号処理プロセッサ520と、メモリ540とを備える。メモリ540は、信号処理プロセッサ520に、以下の処理を実行させるプログラムを格納している。
 ・d軸0次電流およびq軸0次電流を決定する処理
 ・ロータの位置に応じてd軸6次高調波電流およびq軸6次高調波電流を決定する処理
 ・d軸0次電流にd軸6次高調波電流を重畳した値、およびq軸0次電流にq軸6次高調波電流を重畳した値を、それぞれ、d軸電流指令値およびq軸電流指令値として決定する処理
 d軸6次高調波電流の振幅id6および位相θd6、ならびにq軸6次高調波電流の振幅iq6および位相θq6は、振幅id6および振幅iq6の両方がゼロの場合に比べて電気角6次ラジアル力を低下させ、かつ、振幅id6、iq6および位相θd6、θq6が電気角6次ラジアル力を最小化する値である場合に比べて電気角8次ラジアル力を低下させる値を有している。
 この集積回路装置500は、位置センサ200からのアナログ信号をデジタル信号に変換するA/Dコンバータ560と、モータ100の巻線を流れる電流を検出するセンサ(不図示)からのアナログ信号をデジタル信号に変換するA/Dコンバータ580とを備えている。
 この例における集積回路装置500は、インバータ70に与えるPWM信号を出力する。インバータ70の少なくとも一部が集積回路装置500に含まれていても良い。このような集積回路装置500は、典型的には、1個また複数個の半導体チップを1個のパッケージ内で相互に接続することによって実現される。集積回路装置500の一部または全部は、例えば汎用的なマイクロコントローラユニット(MCU)に本開示に特有のプログラムを書き込むことによって実現され得る。
<モータ制御方法の構成例>
 図3を参照して、本開示によるモータ制御方法の実施形態を説明する。
 まず、ステップS1において、トルク指令値などの指令値およびセンサ検出値を受け取り、d軸0次電流およびq軸0次電流を決定する。決定に際しては、各種の指令値およびセンサ検出値と、d軸0次電流およびq軸0次電流の指令値とを関係づけるテーブルを用いても良い。そのようなテーブルは、モータ制御装置が内蔵するメモリに記録され得る。d軸0次電流およびq軸0次電流のそれぞれの大きさは、例えば、トルク指令値、モータ回転速度、モータ印加電圧などに基づいて決定することができる。また、不図示の速度制御器から出力される速度指令および実速度などに基づいて、d軸0次電流およびq軸0次電流のそれぞれの大きさを決定しても良い。
 ステップS2において、ロータの位置に応じてd軸6次高調波電流およびq軸6次高調波電流を決定する。このステップS2では、高調波電流を重畳しないときよりも電気角6次ラジアル力が小さくなるように、かつ、振幅id6、iq6および位相θd6、θq6が電気角6次ラジアル力を最小化する値である場合に比べて電気角8次ラジアル力を低下させるように、d軸6次高調波電流の振幅id6および位相θd6、ならびにq軸6次高調波電流の振幅iq6および位相θq6を決定する。決定に際しては、ロータの位置などと高調波電流の振幅および位相とを関係づけるテーブルを用いても良い。そのようなテーブルは、モータ制御装置が内蔵するメモリに記録され得る。
 ステップS3では、d軸0次電流にd軸6次高調波電流を重畳した値、およびq軸0次電流にq軸6次高調波電流を重畳した値を、それぞれ、d軸電流指令値およびq軸電流指令値として決定する。
 更に、ステップS4では、d軸電流指令値およびq軸電流指令値に基づいて、d軸電圧指令値およびq軸電圧指令値を決定する。
 ステップS5では、d軸電圧指令値およびq軸電圧指令値に基づいて、UVW相のそれぞれの電圧指令値を決定する。
<実施例>
 本発明者らは、集中巻の8極12スロットを有する表面永久磁石同期モータについて、シミュレーションおよび振動の実測を行った。シミュレーションについては、電磁界解析用ソフトウェアによる磁界解析の結果を用いて構造解析を行った。
 磁界解析と構造解析は、モータ回転数2000[rpm]で行い、dq軸6次電流の異なる指令値で振動低減の傾向を調べた。所定のトルクを出すためのdq軸0次電流は、トルク-回転数(T-N)曲線に基づいて決定した値を解析に使用した。dq軸0次電流および6次高調波電流は、数10の式によって与えられる。
 本シミュレーションでは、電気角8次のラジアル力を増大させないようにするため、前述した関係を全て満足するように6次高調波の振幅および位相の値を決定した。具体的には、以下の値を採用した。
Figure JPOXMLDOC01-appb-M000022
 本実施例において、数12の拘束条件に現れるd軸自己インダクタンスの0次成分Ld0、およびq軸自己インダクタンスの0次成分Lq0は、いずれも約40マイクロヘンリ[μH]であったため、Ld0はLq0に等しい。
 実験はモータベンチにモータを取り付け、モータハウジングに3軸加速度ピックアップを接着剤で固定し、振動測定を行った。dq軸における0次電流の指令値で行った0から3000[rpm]までの振動トラッキング解析を行ったところ、モータ回転数が1400から2000[rpm]の範囲において、電気角6次の振動が500から800[Hz]で共振状態になった。本実施例では、この共振状態を念頭に、シミュレーションで見積もったdq軸6次電流指令値を用い、振動の評価を行った。
 dq軸の0次電流の指令値は、下記の数22に示される値である。
Figure JPOXMLDOC01-appb-M000023
 また、dq軸の6次高調波電流の指令値は、下記の数23に示される値である。
Figure JPOXMLDOC01-appb-M000024
 まず、6次高調波電流の指令値を加えたことによる効果を評価するために、回転数が2000[rpm]の定速回転で実験を行った。
 図4Aは、本実施例におけるシミュレーション結果を示すグラフである。このグラフの横軸は振動の電気角次数を示し、縦軸が振動加速度である。グラフにおいて「一定電流指令」のバーの高さは、電気角6次の高調波電流を重畳していないとき(dq軸0次電流のみ)におけるモータの振動の大きさ(計算結果)を示している。一方、「高調波電流指令」のバーの高さは、本実施例における電気角6次の高調波電流(数23)をdq軸0次電流に重畳したときにおけるモータの振動の大きさ(計算結果)を示している。図4Aからわかるように、電気角4次、6次、8次のそれぞれの振動が低減する計算結果が得られた。これらの次数の振動が低減する理由は、対応する次数のラジアル力が小さくなるためである。
 図4Bは、本実施例における実測結果を示している。グラフの横軸および縦軸は、図4Aのグラフにおける横軸および縦軸と同様である。縦軸の「振動加速度」は、モータに取り付けた加速度センサによって計測された値を示している。このグラフにおいて「一定電流指令」のバーの高さは、電気角6次の高調波電流を重畳していないとき(dq軸0次電流のみ)に測定されたモータの振動の大きさ(計測値)を示している。一方、「高調波電流指令」のバーの高さは、本実施例における電気角6次の高調波電流をdq軸0次電流に重畳したときに測定されたモータの振動の大きさ(計測値)を示している。図4Bからわかるように、本実施例における電気角6次の高調波電流(数23)をdq軸0次電流に重畳すると、電気角4次および8次の振動を増加させることなく、電気角6次の振動を低減することができる。具体的には、電気角6次の振動について10[dB]の低減を実現できることを確認した。なお、シミュレーションによって得られた電気角6次の振動に比べて、実測によって得られた電気角6次の振動が大きくなった原因は、モータベンチに固定された永久磁石同期モータが電気角6次の振動で共振したためである。
 本開示のモータ制御装置、モータ制御方法、モータシステム、および集積回路装置は、電流制御によってモータの低振動化を実現できるため、振動または騒音の低減が求められる各種の永久磁石同期モータ、および永久磁石モータを備える装置またはシステムに広く適用され得る。
  10・・・第1回路、20・・・第2回路、30・・・第3回路、40・・・ベクトル制御回路、50・・・第1変換回路、60・・・第2変換回路、70・・・インバータ、100・・・永久磁石同期モータ、100S・・・永久磁石同期モータのステータ、100R・・・永久磁石同期モータのロータ、200・・・位置センサ、300・・・モータ制御装置、500・・・集積回路装置、1000・・・モータシステム

Claims (7)

  1.  ロータおよびステータを備える永久磁石同期モータを制御するモータ制御装置であって、
     d軸0次電流およびq軸0次電流を決定する第1回路と、
     前記ロータの位置に応じてd軸6次高調波電流およびq軸6次高調波電流を決定する第2回路と、
     前記d軸0次電流に前記d軸6次高調波電流を重畳した値、および前記q軸0次電流に前記q軸6次高調波電流を重畳した値を、それぞれ、d軸電流指令値およびq軸電流指令値として決定する第3回路と、
    を備え、
     前記d軸6次高調波電流の振幅id6および位相θd6、ならびに前記q軸6次高調波電流の振幅iq6および位相θq6は、
     前記振幅id6および前記振幅iq6の両方がゼロの場合に比べて電気角6次ラジアル力を低下させ、かつ、
     前記振幅id6、iq6および前記位相θd6、θq6が電気角6次ラジアル力を最小化する値である場合に比べて電気角8次ラジアル力を低下させる値を有している、モータ制御装置。
  2.  d軸自己インダクタンスの0次成分およびq軸自己インダクタンスの0次成分を、それぞれ、Ld0およびLq0とするとき、
     Ld0×id6は、Lq0×iq6に等しく
     前記d軸6次高調波電流の位相θd6と前記q軸6次高調波電流の位相θq6との差は、πに等しい、請求項1に記載のモータ制御装置。
  3.  前記d軸6次高調波電流の振幅id6および位相θd6は、それぞれ、
     前記d軸0次電流および前記q軸0次電流が前記ステータの巻線を流れたときに前記ロータと前記ステータとの間に発生する6次ラジアル力に対して逆位相を持つ電気角6次ラジアル力を形成する値を持つ、請求項2に記載のモータ制御装置。
  4.  前記d軸0次電流および前記q軸0次電流が前記ステータの巻線を流れたときに前記ロータと前記ステータとの間に発生する電気角6次ラジアル力がfr6・cos(6θ+θr6)によって表現され、
     前記d軸6次高調波電流および前記q軸6次高調波電流の重畳によって前記ロータと前記ステータとの間に発生する前記逆位相を持つ電気角6次ラジアル力がFd6・id6cos(6θ+θd6)+Fq6・iq6cos(6θ+θq6)で表現されるとき、
     Fd6およびFq6はモータの駆動条件によって定まる定数であり、下記の式における左辺の値は、右辺の値に等しい、
    Figure JPOXMLDOC01-appb-M000001
    請求項3に記載のモータ制御装置。
  5.  請求項1から4のいずれかに記載のモータ制御装置と、
     ロータおよびステータを備える永久磁石同期モータと、
    を備えるモータシステム。
  6.  ロータおよびステータを備える永久磁石同期モータを制御するモータ制御方法であって、
     d軸0次電流およびq軸0次電流を決定するステップと、
     前記ロータの位置に応じてd軸6次高調波電流およびq軸6次高調波電流を決定するステップであって、前記振幅id6および前記振幅iq6の両方がゼロの場合に比べて電気角6次ラジアル力を低下させ、かつ、前記振幅id6、iq6および前記位相θd6、θq6が電気角6次ラジアル力を最小化する値である場合に比べて電気角8次ラジアル力を低下させるように、前記振幅id6、iq6および前記位相θd6、θq6を決定するステップと、
     前記d軸0次電流に前記d軸6次高調波電流を重畳した値、および前記q軸0次電流に前記q軸6次高調波電流を重畳した値を、それぞれ、d軸電流指令値およびq軸電流指令値として決定するステップと、
    を包含する、モータ制御方法。
  7.  ロータおよびステータを備える永久磁石同期モータを制御するための集積回路装置であって、
     信号処理プロセッサと、メモリとを備え、
     前記メモリは、前記信号処理プロセッサに、
     d軸0次電流およびq軸0次電流を決定すること、
     前記ロータの位置に応じてd軸6次高調波電流およびq軸6次高調波電流を決定すること、および
     前記d軸0次電流に前記d軸6次高調波電流を重畳した値、および前記q軸0次電流に前記q軸6次高調波電流を重畳した値を、それぞれ、d軸電流指令値およびq軸電流指令値として決定すること、
    を実行させるプログラムを格納しており、
     前記d軸6次高調波電流の振幅id6および位相θd6、ならびに前記q軸6次高調波電流の振幅iq6および位相θq6は、前記振幅id6および前記振幅iq6の両方がゼロの場合に比べて電気角6次ラジアル力を低下させ、かつ、
     前記振幅id6、iq6および前記位相θd6、θq6が電気角6次ラジアル力を最小化する値である場合に比べて電気角8次ラジアル力を低下させる値を有している、集積回路装置。
PCT/JP2017/044179 2016-12-27 2017-12-08 モータ制御装置、モータシステム、モータ制御方法、および集積回路装置 WO2018123516A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/461,844 US10848088B2 (en) 2016-12-27 2017-12-08 Motor control apparatus, motor system, motor control method, and integrated circuit device
JP2018558980A JP7001064B2 (ja) 2016-12-27 2017-12-08 モータ制御装置、モータシステム、モータ制御方法、および集積回路装置
CN201780080755.9A CN110121837B (zh) 2016-12-27 2017-12-08 马达控制装置、马达系统、马达控制方法和集成电路装置
EP17889126.3A EP3565106A4 (en) 2016-12-27 2017-12-08 MOTOR CONTROL DEVICE, MOTOR SYSTEM, MOTOR CONTROL METHOD AND INTEGRATED SWITCHING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016253596 2016-12-27
JP2016-253596 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123516A1 true WO2018123516A1 (ja) 2018-07-05

Family

ID=62710579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044179 WO2018123516A1 (ja) 2016-12-27 2017-12-08 モータ制御装置、モータシステム、モータ制御方法、および集積回路装置

Country Status (5)

Country Link
US (1) US10848088B2 (ja)
EP (1) EP3565106A4 (ja)
JP (1) JP7001064B2 (ja)
CN (1) CN110121837B (ja)
WO (1) WO2018123516A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213124A1 (ja) * 2019-04-18 2020-10-22 三菱電機株式会社 回転電機の制御装置および駆動システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230088734A1 (en) 2020-02-13 2023-03-23 Wobben Properties Gmbh Method for controlling an electric generator of a wind turbine
CN114172435B (zh) * 2021-11-30 2023-06-02 重庆长安汽车股份有限公司 异步电动机运行噪声与振动数据的后处理方法、系统及计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253155A (ja) * 2004-03-02 2005-09-15 Toyota Motor Corp 電動機
JP2013085439A (ja) * 2011-09-27 2013-05-09 Mitsuba Corp ブラシレスモータ制御方法及びブラシレスモータ制御装置並びに電動パワーステアリング装置
JP2016025810A (ja) 2014-07-24 2016-02-08 日産自動車株式会社 モータ制御装置及びモータ制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3519200B2 (ja) * 1995-02-16 2004-04-12 関西電力株式会社 同期機の励磁制御装置
JP2011036078A (ja) * 2009-08-04 2011-02-17 Nissan Motor Co Ltd モータ制御装置
GB201109348D0 (en) * 2011-06-03 2011-07-20 Trw Ltd Motor control with voltage harmonic shaping
JP5672278B2 (ja) * 2012-08-29 2015-02-18 株式会社デンソー 3相回転機の制御装置
JP6064207B2 (ja) * 2012-12-17 2017-01-25 株式会社ミツバ ブラシレスモータ制御方法及びブラシレスモータ制御装置並びに電動パワーステアリング装置
CN104579080A (zh) * 2015-02-10 2015-04-29 南车株洲电力机车研究所有限公司 一种永磁同步电机转矩脉动抑制方法
JP6455295B2 (ja) * 2015-04-22 2019-01-23 株式会社デンソー 3相回転機の制御装置
JP6580899B2 (ja) * 2015-08-26 2019-09-25 株式会社東芝 ドライブシステムおよびインバータ装置
JP6132948B1 (ja) * 2016-03-29 2017-05-24 三菱電機株式会社 モータ制御装置およびモータ制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253155A (ja) * 2004-03-02 2005-09-15 Toyota Motor Corp 電動機
JP2013085439A (ja) * 2011-09-27 2013-05-09 Mitsuba Corp ブラシレスモータ制御方法及びブラシレスモータ制御装置並びに電動パワーステアリング装置
JP2016025810A (ja) 2014-07-24 2016-02-08 日産自動車株式会社 モータ制御装置及びモータ制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3565106A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213124A1 (ja) * 2019-04-18 2020-10-22 三菱電機株式会社 回転電機の制御装置および駆動システム
JPWO2020213124A1 (ja) * 2019-04-18 2021-11-04 三菱電機株式会社 回転電機の制御装置および駆動システム
CN113678366A (zh) * 2019-04-18 2021-11-19 三菱电机株式会社 旋转电机的控制装置以及驱动系统
JP7072721B2 (ja) 2019-04-18 2022-05-20 三菱電機株式会社 回転電機の制御装置および駆動システム
CN113678366B (zh) * 2019-04-18 2024-03-05 三菱电机株式会社 旋转电机的控制装置以及驱动系统

Also Published As

Publication number Publication date
US10848088B2 (en) 2020-11-24
EP3565106A4 (en) 2020-10-21
CN110121837B (zh) 2022-10-21
CN110121837A (zh) 2019-08-13
EP3565106A1 (en) 2019-11-06
JP7001064B2 (ja) 2022-01-19
US20190372496A1 (en) 2019-12-05
JPWO2018123516A1 (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
US7710066B2 (en) Motor control device
JP4631672B2 (ja) 磁極位置推定方法、モータ速度推定方法及びモータ制御装置
JP5324159B2 (ja) モータ制御装置
US20090237014A1 (en) Synchronous motor control device and method for optimizing synchronous motor control
JP4674516B2 (ja) 同期モータの磁極位置推定方法
JP5332400B2 (ja) 電動機のトルク脈動抑制装置および抑制方法
JP4910445B2 (ja) Ipmモータのベクトル制御装置
JP5273451B2 (ja) モータ制御装置
JP5168536B2 (ja) モータ制御装置
WO2018123516A1 (ja) モータ制御装置、モータシステム、モータ制御方法、および集積回路装置
WO2015019495A1 (ja) モータ駆動システムおよびモータ制御装置
WO2016129338A1 (ja) モータ駆動制御装置
JP5330652B2 (ja) 永久磁石モータ制御装置
JP2007274779A (ja) 電動駆動制御装置及び電動駆動制御方法
JP2010105763A (ja) 電力変換装置およびそれを用いたエレベータ
JPH1155986A (ja) 永久磁石回転電機の制御装置
JP2010035352A (ja) 同期電動機のロータ位置推定装置
JP6551473B2 (ja) 制御装置及び制御方法
JP2005168195A (ja) インバータ制御装置及びインバータ制御方法並びに記憶媒体
JP7090812B2 (ja) 交流回転電機の制御装置及び電動パワーステアリング装置
JP5106295B2 (ja) 同期電動機のロータ位置推定装置
WO2019150984A1 (ja) 三相同期電動機の制御装置
JPWO2019189646A1 (ja) モータ制御装置および電動パワーステアリング装置
WO2019230818A1 (ja) モータ制御装置、モータ制御方法およびモータシステム
JP7357112B2 (ja) 回転機制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017889126

Country of ref document: EP

Effective date: 20190729