WO2018123448A1 - 積層体 - Google Patents

積層体 Download PDF

Info

Publication number
WO2018123448A1
WO2018123448A1 PCT/JP2017/043440 JP2017043440W WO2018123448A1 WO 2018123448 A1 WO2018123448 A1 WO 2018123448A1 JP 2017043440 W JP2017043440 W JP 2017043440W WO 2018123448 A1 WO2018123448 A1 WO 2018123448A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fluororubber
fluororesin
group
copolymer
Prior art date
Application number
PCT/JP2017/043440
Other languages
English (en)
French (fr)
Inventor
梢 大澤
利昭 増井
祐己 桑嶋
剛志 稲葉
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP17886557.2A priority Critical patent/EP3543007B1/en
Priority to KR1020197016731A priority patent/KR102389664B1/ko
Priority to JP2018558947A priority patent/JP7004916B2/ja
Priority to US16/470,319 priority patent/US11673376B2/en
Priority to CN201780079462.9A priority patent/CN110087878A/zh
Publication of WO2018123448A1 publication Critical patent/WO2018123448A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/044 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/246All polymers belonging to those covered by groups B32B27/32 and B32B27/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/50Phosphorus bound to carbon only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics

Definitions

  • the present invention relates to a laminate.
  • laminated hoses with a fluororesin as a barrier layer are used in order to improve low fuel permeability, but due to the recent strong demand for reducing environmental impact, A further low fuel permeability is required.
  • fluororubber is excellent in various properties such as heat resistance, oil resistance, and aging resistance, it has been proposed to use it as a rubber other than the above-described barrier layer.
  • Patent Document 1 discloses that an inner layer that is a molded product of a ternary fluororesin of tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride, 1,8-diazabicyclo (5.4.0) undecene-7 salt, An outer layer which is a vulcanized molding composition of an epichlorohydrin rubber or NBR / PVC blend blended with an organic phosphonium salt, a 1,8-diazabicyclo (5.4.0) undecene-7 salt and an organic phosphonium salt An automotive fuel piping hose is described in which an innermost layer, which is a vulcanized molded product of an NBR rubber or fluorine rubber vulcanized composition containing a salt, is firmly bonded.
  • An object of the present invention is to provide a laminate including a fluororubber layer and a fluororesin layer, in which the fluororubber layer and the fluororesin layer are firmly bonded. .
  • the fluororesin layer uses a fluororesin having a small fuel permeability coefficient. Even in this case, the present inventors have found that the fluororesin layer and the fluororubber layer are firmly bonded, and have completed the present invention.
  • the present invention is a laminate comprising a fluororubber layer (A) and a fluororesin layer (B) laminated on the fluororubber layer (A), wherein the fluororubber layer (A) A layer formed from a rubber composition, wherein the fluororubber composition is at least one selected from the group consisting of fluororubber, a basic polyfunctional compound, and a fluororesin (a1) and a phosphorus compound (a2).
  • the compound (a) is contained in an amount of 0.01 to 120 parts by mass with respect to 100 parts by mass of the fluororubber, and the fluororesin layer (B) has a fuel permeability coefficient of 2.
  • It is a laminated body characterized by being comprised from the fluororesin (b1) which is 0 g * mm / m ⁇ 2 > / day or less.
  • the fluororesin (a1) is non-melt processable polytetrafluoroethylene, low molecular weight polytetrafluoroethylene, tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, ethylene / Tetrafluoroethylene copolymer, ethylene / tetrafluoroethylene / hexafluoropropylene copolymer, polychlorotrifluoroethylene, chlorotrifluoroethylene / tetrafluoroethylene copolymer, ethylene / chlorotrifluoroethylene copolymer, polyfluorinated It is preferably at least one selected from the group consisting of vinyl and a fluoromonomer / vinyl ester copolymer.
  • the phosphorus compound (a2) is preferably a phosphine.
  • the phosphorus compound (a2) is preferably a phosphine compound represented by the general formula: PR 3 (wherein three Rs are the same or different and each represents a halogen atom or an organic group).
  • the fluororubber composition preferably further contains a peroxide vulcanizing agent.
  • the fluororesin (b1) is at least one selected from the group consisting of polychlorotrifluoroethylene, chlorotrifluoroethylene copolymers, and tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymers. It is preferable.
  • the fluororubber layer (A) is laminated on both sides of the fluororesin layer (B).
  • the fluororesin layer (B) is preferably laminated on both sides of the fluororubber layer (A).
  • the laminated body further includes a non-fluorinated rubber layer (C1a), and is preferably laminated in the order of a fluororubber layer (A) -a fluororesin layer (B) -a non-fluororubber layer (C1a).
  • the laminate described above further includes a non-fluorine rubber layer (D1a), in the order of non-fluorine rubber layer (D1a) -fluorine rubber layer (A) -fluorine resin layer (B) -non-fluorine rubber layer (C1a).
  • the rubber layer (C1a) and the non-fluorine rubber layer (D1a) are preferably laminated in this order.
  • the fluororubber layer (A) and the fluororesin layer (B) are vulcanized and bonded.
  • the laminated body of this invention has the said structure, the said fluororubber layer and the said fluororesin layer adhere
  • the laminate of the present invention comprises a fluororubber layer (A) and a fluororesin layer (B) laminated on the fluororubber layer (A).
  • A fluorororubber layer
  • B fluororesin layer
  • the fluoro rubber layer (A) is a layer formed from a fluoro rubber composition.
  • the fluororubber layer (A) is usually obtained by molding a fluororubber composition to obtain an unvulcanized fluororubber layer and then vulcanizing it.
  • the fluororubber composition contains fluororubber, a basic polyfunctional compound, and at least one compound (a) selected from the group consisting of a fluororesin (a1) and a phosphorus compound (a2).
  • the fluororubber usually comprises an amorphous polymer having a fluorine atom bonded to a carbon atom constituting the main chain and having rubber elasticity.
  • the fluororubber may be composed of one kind of polymer or may be composed of two or more kinds of polymers.
  • Fluoro rubber is usually one that does not have a clear melting point.
  • Fluorororubber is vinylidene fluoride (VdF) / hexafluoropropylene (HFP) copolymer, VdF / HFP / tetrafluoroethylene (TFE) copolymer, TFE / propylene copolymer, TFE / propylene / VdF copolymer.
  • the fluororubber is preferably non-perfluorofluororubber, and more preferably a copolymer containing polymerized units (VdF units) derived from vinylidene fluoride.
  • the copolymer containing a VdF unit is a copolymer unit derived from a VdF unit and a fluorine-containing ethylenic monomer (excluding the VdF unit.
  • fluorine-containing ethylenic monomer unit (a)) Is preferable.
  • the copolymer containing VdF units may be a copolymer consisting only of VdF units and fluorine-containing ethylenic monomer units (a), or VdF and fluorine-containing ethylenic monomers (provided that VdF is excluded.Hereinafter, it may be a copolymer containing a copolymer unit derived from a monomer copolymerizable with “fluorinated ethylenic monomer (a)”).
  • Examples of the copolymer containing VdF units include 30 to 90 mol% of VdF units and 70 to 10 mol% of fluorine-containing with respect to 100 mol% of the total of VdF units and fluorine-containing ethylenic monomer units (a). It preferably contains an ethylenic monomer unit (a), more preferably contains 30 to 85 mol% of VdF units and 70 to 15 mol% of a fluorine-containing ethylenic monomer unit (a), more preferably 30 to More preferably, it contains 80 mol% of VdF units and 70 to 20 mol% of fluorinated ethylenic monomer units (a).
  • a copolymer unit derived from a monomer copolymerizable with VdF and the fluorine-containing ethylenic monomer unit (a) (excluding the VdF unit) is composed of a VdF unit and a fluorine-containing ethylenic monomer (a).
  • the content is preferably 0 to 10 mol% with respect to the total amount of the copolymerized units derived.
  • fluorine-containing ethylenic monomer (a) examples include TFE, CTFE, trifluoroethylene, HFP, trifluoropropylene, tetrafluoropropylene, pentafluoropropylene, trifluorobutene, tetrafluoroisobutene, PAVE, vinyl fluoride,
  • CFX CXOCF 2 OR 1 (2) Wherein X is the same or different and represents H, F or CF 3 , and R 1 represents at least one atom selected from the group consisting of H, Cl, Br and I, which is linear or branched.
  • a fluoroalkyl group having 1 to 6 carbon atoms which may contain 1 to 2 carbon atoms, or 1 to 2 atoms selected from the group consisting of H, Cl, Br and I
  • a fluorine-containing monomer such as a fluorovinyl ether represented by (C) represents a cyclic fluoroalkyl group having 5 or 6 carbon atoms.
  • it is preferably at least one selected from the group consisting of fluorovinyl ether, TFE, HFP and PAVE represented by the formula (2), and at least selected from the group consisting of TFE, HFP and PAVE.
  • TFE fluorovinyl ether
  • HFP HFP
  • PAVE represented by the formula (2)
  • One type is more preferable.
  • CF 2 CFO (CF 2 CFY 1 O) p - (CF 2 CF 2 CF 2 O) q -Rf (3)
  • Y 1 represents F or CF 3
  • Rf represents a perfluoroalkyl group having 1 to 5 carbon atoms
  • p represents an integer of 0 to 5
  • q represents an integer of 0 to 5
  • the PAVE is preferably perfluoro (methyl vinyl ether) or perfluoro (propyl vinyl ether), and more preferably perfluoro (methyl vinyl ether). These can be used alone or in any combination.
  • Examples of the monomer copolymerizable with VdF and the fluorine-containing ethylenic monomer (a) include ethylene, propylene, and alkyl vinyl ether.
  • Such a copolymer containing VdF units include a VdF / HFP copolymer, a VdF / HFP / TFE copolymer, a VdF / CTFE copolymer, a VdF / CTFE / TFE copolymer, and a VdF.
  • copolymers containing VdF units at least one copolymer selected from the group consisting of VdF / HFP copolymers and VdF / HFP / TFE copolymers from the viewpoint of heat resistance. Is particularly preferred. It is preferable that the copolymer containing these VdF units satisfies the composition ratio of the VdF unit and the fluorine-containing ethylenic monomer unit (a) described above.
  • the VdF / HFP copolymer preferably has a VdF / HFP molar ratio of 45 to 85/55 to 15, more preferably 50 to 80/50 to 20, and still more preferably 60 to 80/40. ⁇ 20.
  • the VdF / HFP / TFE copolymer preferably has a molar ratio of VdF / HFP / TFE of 30 to 85/5 to 50/5 to 40, and a molar ratio of VdF / HFP / TFE of 35 to 80 /. More preferably, the molar ratio of VdF / HFP / TFE is more preferably 40 to 80/10 to 40/10 to 30, and the molar ratio of VdF / HFP / TFE is more preferably 8 to 45/8 to 35. Most preferred is 40 to 80/10 to 35/10 to 30.
  • VdF / PAVE copolymer As the VdF / PAVE copolymer, a VdF / PAVE molar ratio of 65 to 90/10 to 35 is preferable.
  • VdF / TFE / PAVE copolymer As the VdF / TFE / PAVE copolymer, a VdF / TFE / PAVE molar ratio of 40 to 80/3 to 40/15 to 35 is preferable.
  • VdF / HFP / PAVE copolymer those having a molar ratio of VdF / HFP / PAVE of 65 to 90/3 to 25/3 to 25 are preferable.
  • the VdF / HFP / TFE / PAVE copolymer preferably has a VdF / HFP / TFE / PAVE molar ratio of 40 to 90/0 to 25/0 to 40/3 to 35, more preferably 40 to 80/3 to 25/3 to 40/3 to 25.
  • the fluororubber is made of a copolymer containing a copolymer unit derived from a monomer that provides a crosslinking site.
  • the monomer that gives a crosslinking site include perfluoro (6,6-dihydro-6-iodo-3-oxa-1-) described in JP-B-5-63482 and JP-A-7-316234.
  • Hexene) and perfluoro (5-iodo-3-oxa-1-pentene) -containing monomers bromine-containing monomers described in JP-A-4-505341, JP-A-4-505345, Examples include cyano group-containing monomers, carboxyl group-containing monomers, and alkoxycarbonyl group-containing monomers as described in JP-T-5-500070.
  • the fluororubber is also preferably a fluororubber having an iodine atom or a bromine atom at the end of the main chain.
  • Fluororubber having iodine atom or bromine atom at the main chain end is produced by adding a radical initiator in the presence of a halogen compound in an aqueous medium in the absence of oxygen and performing emulsion polymerization of the monomer. it can.
  • halogen compound used include, for example, the general formula: R 2 I x Br y (Wherein x and y are each an integer of 0 to 2 and satisfy 1 ⁇ x + y ⁇ 2, and R 2 is a saturated or unsaturated fluorohydrocarbon group having 1 to 16 carbon atoms, carbon A saturated or unsaturated chlorofluorohydrocarbon group having 1 to 16 carbon atoms, a hydrocarbon group having 1 to 3 carbon atoms, or a cyclic hydrocarbon group having 3 to 10 carbon atoms which may be substituted with an iodine atom or a bromine atom And these may contain an oxygen atom).
  • halogen compound examples include 1,3-diiodoperfluoropropane, 1,3-diiodo-2-chloroperfluoropropane, 1,4-diiodoperfluorobutane, 1,5-diiodo-2,4- Dichloroperfluoropentane, 1,6-diiodoperfluorohexane, 1,8-diiodoperfluorooctane, 1,12-diiodoperfluorododecane, 1,16-diiodoperfluorohexadecane, diiodomethane, 1,2 - diiodoethane, 1,3-diiodo -n- propane, CF 2 Br 2, BrCF 2 CF 2 Br, CF 3 CFBrCF 2 Br, CFClBr 2, BrCF 2 CFClBr, CFBrClCFClBr, BrCF 2 CF 2 CF
  • 1,4-diiodoperfluorobutane or diiodomethane from the viewpoint of polymerization reactivity, crosslinking reactivity, availability, and the like.
  • the fluororubber preferably has a Mooney viscosity (ML 1 + 10 (100 ° C.)) of 5 to 200, preferably 10 to 150, from the viewpoint of good processability when producing a fluororubber composition. More preferably, it is 20 to 100. Mooney viscosity can be measured according to ASTM-D1646. Measuring equipment: ALPHA2000 TECHNOLOGIES MV2000E rotor speed: 2 rpm Measurement temperature: 100 ° C
  • the rubber component is preferably composed only of the fluororubber.
  • the fluororubber composition contains at least one compound (a) selected from the group consisting of a fluororesin (a1) and a phosphorus compound (a2).
  • the content of the compound (a) is 0.01 to 120 parts by mass with respect to 100 parts by mass of the fluororubber, whereby the fluororubber layer (A) and the fluororesin layer (B) Adhere firmly.
  • 0.05 mass part or more is preferable, 0.1 mass part or more is more preferable, 0.3 mass part or more is further more preferable, 0.5 mass part or more is especially preferable, 90 parts by mass or less is preferable, 65 parts by mass or less is more preferable, 48 parts by mass or less is further preferable, and 47 parts by mass or less is particularly preferable.
  • the fluororubber composition preferably contains a fluororesin (a1) as the compound (a).
  • the content of the fluororesin (a1) in this case is 0 with respect to 100 parts by mass of the fluororubber because the fluororubber layer (A) and the fluororesin layer (B) are more firmly bonded.
  • 0.5 to 100 parts by mass is preferable, 10 parts by mass or more is more preferable, 20 parts by mass or more is further preferable, 30 parts by mass or more is particularly preferable, 80 parts by mass or less is more preferable, 60 parts by mass or less is further preferable, 45 Part by mass or less is particularly preferable.
  • the fluororubber composition preferably contains a phosphorus compound (a2) as the compound (a).
  • the content of the phosphorus compound (a2) is 0 with respect to 100 parts by mass of the fluororubber because the fluororubber layer (A) and the fluororesin layer (B) are more firmly bonded. 0.01 to 20 parts by weight, preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, particularly preferably 0.3 to 3 parts by weight, and 0.5 to 2 parts by weight. Most preferred.
  • both the fluororesin (a1) and the phosphorus compound (a2) are used as the compound (a). It is also preferable to contain.
  • the content of the fluororesin (a1) in this case is 0 with respect to 100 parts by mass of the fluororubber because the fluororubber layer (A) and the fluororesin layer (B) are more firmly bonded.
  • the content of the phosphorus compound (a2) is as follows.
  • the fluororubber layer (A) and the fluororesin layer (B) are more firmly bonded. 01 to 20 parts by mass is preferred, 0.05 to 10 parts by mass is more preferred, 0.1 to 5 parts by mass is still more preferred, 0.3 to 3 parts by mass is particularly preferred, and 0.5 to 2 parts by mass is most preferred. preferable.
  • Fluororesin (a1) When the fluorororubber composition contains the fluororesin (a1), the fluororubber layer (A) and the fluororesin layer (B) are firmly bonded.
  • the fluororesin usually has a melting point and has thermoplasticity.
  • the fluororesin (a1) may be a melt processable fluororesin or a non-melt processable fluororesin, but is preferably the melt processable fluororesin.
  • melt processability means that the polymer can be melted and processed using conventional processing equipment such as an extruder and an injection molding machine. Therefore, the melt processable fluororesin usually has a melt flow rate measured by a measurement method described later of 0.01 to 100 g / 10 min.
  • fluororesin (a1) examples include non-melt processable polytetrafluoroethylene [PTFE], low molecular weight polytetrafluoroethylene, TFE / PAVE copolymer [PFA], TFE / HFP copolymer [FEP], ethylene [ Et] / TFE copolymer [ETFE], Et / TFE / HFP copolymer, polychlorotrifluoroethylene [PCTFE], CTFE / TFE copolymer, Et / CTFE copolymer, polyvinyl fluoride [PVF], Examples thereof include a fluoromonomer / vinyl ester copolymer, and among them, low molecular weight polytetrafluoroethylene is preferable.
  • PTFE non-melt processable polytetrafluoroethylene
  • PFA TFE / PAVE copolymer
  • FEP TFE / HFP copolymer
  • EFE Et] / TFE copolymer
  • PCTFE
  • the low molecular weight polytetrafluoroethylene preferably has melt processability and does not have fibrillation properties.
  • the low molecular weight PTFE is a TFE polymer having a number average molecular weight of 600,000 or less. “High molecular weight PTFE” having a number average molecular weight exceeding 600,000 exhibits fibrillation characteristics peculiar to PTFE (see, for example, JP-A-10-147617). High molecular weight PTFE has a high melt viscosity and is non-melt processable. When high molecular weight PTFE is used as an additive, it exhibits fibrillation characteristics, so that PTFE particles are likely to aggregate with each other and dispersibility in a matrix material is poor.
  • the low molecular weight PTFE is a TFE polymer having a melt viscosity of 1 ⁇ 10 2 to 7 ⁇ 10 5 (Pa ⁇ s) at 380 ° C. If PTFE has a melt viscosity within the above range, the number average molecular weight is within the above range.
  • the melt viscosity is in accordance with ASTM D 1238, and a 2 g sample previously heated at 380 ° C. for 5 minutes using a flow tester (manufactured by Shimadzu Corporation) and a 2 ⁇ -8L die under a load of 0.7 MPa. The value is measured while maintaining the above temperature.
  • the number average molecular weight is a value calculated from the melt viscosity measured by the measurement method.
  • the low molecular weight PTFE is preferably a TFE polymer having a melting point of 324 to 333 ° C.
  • the low molecular weight PTFE preferably has an average particle size of 0.01 to 1000 ⁇ m, more preferably 0.1 to 100 ⁇ m, still more preferably 0.3 to 50 ⁇ m, and more preferably 0.5 to 20 ⁇ m. Most preferably.
  • the average particle size is obtained by measuring the particle size distribution using a laser diffraction particle size distribution measuring device (for example, manufactured by Nippon Laser Co., Ltd.) without using a cascade, at a pressure of 0.1 MPa, and a measurement time of 3 seconds. It is assumed that it is equal to a value corresponding to 50% of the distribution integration.
  • the low molecular weight PTFE preferably has a melt flow rate (MFR) of 0.01 to 10 g / 10 min at 372 ° C. (load 1.2 kg).
  • MFR melt flow rate
  • the MFR uses a melt indexer (for example, manufactured by Toyo Seiki Seisakusho Co., Ltd.), and the weight of the polymer flowing out in a unit time (10 minutes) from a nozzle having a diameter of 2 mm and a length of 8 mm under a load of 372 ° C. and 1.2 kg (10 minutes) It can be specified by measuring g).
  • the low molecular weight PTFE may be a homopolymer of TFE or a modified PTFE containing a TFE unit and a modified monomer unit copolymerizable with TFE.
  • the content of the modified monomer unit copolymerizable with TFE is preferably 0.01 to 1% by mass, and preferably 0.01 to 0.5% by mass based on the total monomer units. More preferred is 0.03 to 0.3% by mass.
  • the modified monomer unit means a part derived from the modified monomer and part of the molecular structure of the modified PTFE, and the total monomer unit means all the single monomers in the molecular structure of the modified PTFE. It means a part derived from the body.
  • the content of the modified monomer unit is a value measured by performing infrared spectroscopic analysis or NMR (nuclear magnetic resonance).
  • the modified monomer in the modified PTFE is not particularly limited as long as it can be copolymerized with TFE.
  • perfluoroolefin such as hexafluoropropylene [HFP]; chloro such as chlorotrifluoroethylene [CTFE]
  • fluoroolefins such as hexafluoropropylene [HFP]
  • chloro such as chlorotrifluoroethylene [CTFE]
  • fluoroolefins hydrogen-containing fluoroolefins such as trifluoroethylene and vinylidene fluoride [VDF]
  • perfluorovinyl ethers perfluoroalkylethylenes: ethylene.
  • denatured monomer to be used may be 1 type, and multiple types may be sufficient as it.
  • the “perfluoro organic group” means an organic group in which all hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms.
  • the perfluoro organic group may have ether oxygen.
  • perfluorovinyl ether examples include perfluoro (alkyl vinyl ether) [PAVE] in which Rf represents a perfluoroalkyl group having 1 to 10 carbon atoms in the general formula (I).
  • the perfluoroalkyl group preferably has 1 to 5 carbon atoms.
  • Examples of the perfluoroalkyl group in the PAVE include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluorohexyl group.
  • Purple propyl vinyl ether [PPVE] in which the group is a perfluoropropyl group is preferred.
  • Rf is a perfluoro (alkoxyalkyl) group having 4 to 9 carbon atoms, and Rf is represented by the following formula:
  • Rf is the following formula:
  • n an integer of 1 to 4.
  • the perfluoroalkylethylene is not particularly limited, and examples thereof include perfluorobutylethylene (PFBE) and perfluorohexylethylene.
  • the modified monomer in the modified PTFE is preferably at least one monomer selected from the group consisting of HFP, CTFE, VDF, PPVE, PFBE and ethylene, and more preferably HFP.
  • the low molecular weight PTFE is preferably modified PTFE, and more preferably modified PTFE containing TFE units and polymerized units derived from HFP (HFP units).
  • the fluororesin (a1) preferably has an average particle size of 0.01 to 1000 ⁇ m, more preferably 0.1 to 100 ⁇ m, still more preferably 0.3 to 50 ⁇ m, and 0.5 Most preferably, it is ⁇ 20 ⁇ m.
  • the average particle size is obtained by measuring the particle size distribution using a laser diffraction particle size distribution measuring device (for example, manufactured by Nippon Laser Co., Ltd.) without using a cascade, at a pressure of 0.1 MPa, and a measurement time of 3 seconds. It is assumed that it is equal to a value corresponding to 50% of the distribution integration.
  • the phosphorus compound (a2) is a compound containing at least one phosphorus atom in one molecule, and examples thereof include phosphines, phosphate esters, phosphazenes, phosphine oxides, phosphonate esters, phosphinate esters and the like. Can be mentioned.
  • the general formula: PR 3 wherein three R are the same or And at least one selected from the group consisting of phosphine compounds, phosphonium salts, and phosphine oxides represented by (representing a halogen atom or an organic group), and the above phosphine compounds are more preferable.
  • the phosphine compound is represented by the general formula: PR 3 and three Rs in the formula may be the same or different and each represents a halogen atom or an organic group.
  • Examples of the phosphine compound include compounds having a structure represented by PR 3 such as triphenylphosphine hydrochloride, triphenylphosphine borane, triphenylphosphine-triphenylborane complex.
  • Examples of the organic group include hydrocarbon groups having 1 to 30 carbon atoms which may have a substituent.
  • the hydrocarbon group may be linear, branched, monocyclic or polycyclic, may have an unsaturated bond, may have aromaticity, or may include a hetero atom.
  • Examples of the substituent include an alkoxy group, an amino group, a cyano group, an aldehyde group, a carboxylic acid group, a halogen atom, a phosphine group, a phosphone group, and a diphenylphosphino group.
  • Examples of the phosphine compound include the following compounds.
  • phosphine compound any of the following compounds is preferable. 1 type (s) or 2 or more types can be used as said phosphine compound.
  • the phosphonium salt is preferably a quaternary phosphonium salt, for example, tetrabutylphosphonium chloride, benzyltriphenylphosphonium chloride, benzyltrimethylphosphonium chloride, benzyltributylphosphonium chloride, tributylallylphosphonium chloride, tributyl-2-methoxypropylphosphonium chloride. Benzylphenyl (dimethylamino) phosphonium chloride, tributyl (cyanomethyl) phosphonium chloride, and the like.
  • the fluororesin (a1) particularly low molecular weight PTFE, high adhesive strength can be obtained.
  • phosphine oxides compounds represented by the general formula: R 3 P ( ⁇ O) (wherein three Rs are the same or different and represent a halogen atom or an organic group) are preferable.
  • Examples of the organic group include hydrocarbon groups having 1 to 30 carbon atoms which may have a substituent.
  • the hydrocarbon group may be linear, branched, monocyclic or polycyclic, may have an unsaturated bond, may have aromaticity, or may include a hetero atom.
  • Examples of the substituent include an alkoxy group, an amino group, a cyano group, an aldehyde group, a carboxylic acid group, a halogen atom, a phosphine group, a phosphone group, and a diphenylphosphino group.
  • the following compounds are preferable.
  • the said fluororubber composition contains a basic polyfunctional compound, and, thereby, a fluororubber layer (A) and a fluororesin layer (B) adhere more firmly.
  • the basic polyfunctional compound is a compound having two or more functional groups having the same or different structures in one molecule and showing basicity.
  • the functional group possessed by the basic polyfunctional compound is preferably one showing basicity.
  • R 1 , R 2 , R 3 , R 4 and R 5 are preferably independently —H or an organic group having 1 to 12 carbon atoms, and —H or 1 to 12 carbon atoms.
  • the hydrocarbon group is preferably.
  • the hydrocarbon group may have one or more carbon-carbon double bonds.
  • the hydrocarbon group preferably has 1 to 8 carbon atoms.
  • R 1 is —H or —CH 3
  • Examples of the basic polyfunctional compound include ethylenediamine, propanediamine, putrescine, cadaverine, hexamethylenediamine, heptanediamine, octanediamine, nonanediamine, decanediamine, undecanediamine, dodecanediamine, phenylenediamine, N, N′-dicinenamilidene 1,6-hexamethylenediamine, N, N, N ′, N′-tetramethyl-1,6-hexamethylenediamine, N, N′-dimethyl-1,6-hexamethylenediamine, 6-aminohexylcarbamic acid Etc.
  • the basic polyfunctional compound contains at least two nitrogen atoms in the molecule, and the interatomic distance between nitrogen and nitrogen is 5.70 mm or more.
  • the interatomic distance between nitrogen and nitrogen is more preferably 6.30 mm or more, further preferably 7.60 mm or more, and particularly preferably 8.60 mm or more.
  • a wide interatomic distance between nitrogen and nitrogen increases the flexibility of the basic polyfunctional compound and facilitates vulcanization.
  • the interatomic distance between nitrogen and nitrogen is calculated according to the following method. That is, the structure optimization of each base is calculated using a density functional method (program is Gaussian 03, density functional is B3LYP, basis function is 6-31G *).
  • the basic polyfunctional compound is N, N′-dicinnamylidene-1,6-hexamethylenediamine and NH 2 — (CH 2 ) in terms of adhesion between the fluororubber layer (A) and the fluororesin layer (B). 2 ) n —NH 2 (wherein n is preferably 5 to 12), preferably at least one selected from the group consisting of hexamethylenediamine and N, N′-dicinnamylidene-1,6-hexa More preferably, it is at least one compound selected from the group consisting of methylenediamine.
  • the content of the basic polyfunctional compound is based on 100 parts by mass of the fluororubber. 0.5 parts by mass or more, preferably 0.6 parts by mass or more, more preferably 0.8 parts by mass or more, and particularly preferably 1.0 parts by mass or more. Preferably, it is 1.5 parts by mass or more.
  • the content of the basic polyfunctional compound is preferably 10 parts by mass or less, more preferably 6 parts by mass or less, and further preferably 5 parts by mass or less from the viewpoint of vulcanization inhibition and cost. Preferably, it is most preferably 3 parts by mass or less.
  • the fluororubber composition preferably further contains a vulcanizing agent because the fluororubber layer (A) and the fluororesin layer (B) are more firmly bonded.
  • a vulcanizing agent a peroxide vulcanizing agent or the like can be selected according to the purpose.
  • the fluororubber composition preferably contains a peroxide vulcanizing agent.
  • the peroxide vulcanizing agent is not particularly limited, and examples thereof include organic peroxides.
  • the organic peroxide is preferably one that easily generates a peroxy radical in the presence of heat or a redox system.
  • the amount used is appropriately selected from the amount of active —O—O—, the decomposition temperature, and the like.
  • the amount used is usually 0.1 to 15 parts by mass, preferably 0.3 to 5 parts by mass, and more preferably 1 to 2 parts by mass with respect to 100 parts by mass of the fluororubber.
  • a vulcanization aid or a co-vulcanizing agent may be used in combination.
  • the vulcanization aid or co-vulcanization agent is not particularly limited, and examples thereof include the above-described vulcanization aid and co-vulcanization agent.
  • triallyl isocyanurate (TAIC) is preferable from the viewpoint of vulcanizability and physical properties of the vulcanizate.
  • the blending amount of the vulcanizing aid and co-vulcanizing agent is preferably 0.2 to 10 parts by weight, more preferably 0.5 to 9 parts by weight, with respect to 100 parts by weight of the fluororubber. More preferred is 3 to 7 parts by mass. If the vulcanizing agent or co-curing agent is less than 0.2 parts by mass, the vulcanization density tends to be low and the compression set tends to be large, and if it exceeds 10 parts by mass, the vulcanization density becomes too high. For this reason, it tends to break easily during compression.
  • the fluororubber composition is a metal oxide, metal hydroxide, alkali metal as an acid acceptor or as a compounding agent for improving the adhesion between the fluororubber layer (A) and the fluororesin layer (B). And at least one compound selected from the group consisting of weak acid salts of alkaline earth metals.
  • metal oxides, metal hydroxides, alkali metal weak acid salts, and alkaline earth metal weak acid salts include oxides, hydroxides, carbonates, carboxylates, silicas of group (II) metals of the periodic table. Acid salts, borates, phosphites, periodic table group (IV) metal oxides, basic carbonates, basic carboxylates, basic phosphites, basic sulfites and the like. .
  • metal oxides, metal hydroxides, alkali metal weak acid salts and alkaline earth metal weak acid salts include magnesium oxide, zinc oxide, magnesium hydroxide, barium hydroxide, magnesium carbonate, barium carbonate, Calcium oxide (quick lime), calcium hydroxide (slaked lime), calcium carbonate, calcium silicate, calcium stearate, zinc stearate, calcium phthalate, calcium phosphite, tin oxide, basic tin phosphite and the like can be mentioned.
  • the content of the metal oxide, metal hydroxide, alkali metal weak acid salt, alkaline earth metal weak acid salt is preferably 5 parts by mass or less, More preferably, it is 3 parts by mass or less, and from the viewpoint of acid resistance, it is even more preferable not to include it.
  • the above-mentioned fluororubber composition is an ordinary additive blended in the fluororubber composition as necessary, for example, filler, processing aid, plasticizer, colorant, stabilizer, adhesion aid, acid acceptor.
  • Various additives such as mold release agents, conductivity imparting agents, thermal conductivity imparting agents, surface non-adhesives, flexibility imparting agents, heat resistance improvers, flame retardants, etc. You may contain 1 or more types of a different usual vulcanizing agent and a vulcanization accelerator.
  • Examples of the filler include carbon black.
  • the content of carbon black is preferably 0 to 100 parts by mass, more preferably 2 to 60 parts by mass, and still more preferably 5 to 40 parts by mass with respect to 100 parts by mass of the fluororubber. It is particularly preferably 10 to 30 parts by mass.
  • the use of carbon black has the advantage of improving mechanical properties, heat resistance, and the like.
  • the said fluororubber composition can be obtained by knead
  • a rubber kneading apparatus a roll, a kneader, a Banbury mixer, an internal mixer, a twin screw extruder, or the like can be used.
  • the fluororesin layer (B) is composed of a fluororesin (b1), and the fluororesin (b1) has a fuel permeability coefficient of 2.0 g ⁇ mm / m 2 / day or less. It is. When the fuel permeability coefficient is 2.0 g ⁇ mm / m 2 / day or less, excellent low fuel permeability is exhibited. Therefore, for example, the laminate of the present invention can be suitably used as a fuel hose or the like.
  • the fuel permeability coefficient is preferably 1.5 g ⁇ mm / m 2 / day or less, more preferably 0.8 g ⁇ mm / m 2 / day or less, and 0.55 g ⁇ mm / m 2 / day. It is more preferably not more than day, and particularly preferably not more than 0.5 g ⁇ mm / m 2 / day.
  • the fuel permeability coefficient is a SUS316 fuel permeability coefficient measuring cup made of SUS316 with an inner diameter of 40 mm ⁇ and a height of 20 mm charged with 18 mL of an isooctane / toluene / ethanol mixed solvent in which isooctane, toluene and ethanol are mixed at a volume ratio of 45:45:10.
  • the fluororesin (b1) is obtained from a polychlorotrifluoroethylene (PCTFE), a CTFE copolymer, and a TFE / HFP / VdF copolymer because a laminate having excellent low fuel permeability can be obtained. It is preferably at least one selected from the group consisting of, more preferably at least one selected from the group consisting of polychlorotrifluoroethylene (PCTFE) and a CTFE copolymer, and low fuel permeability From the viewpoint of flexibility, a CTFE copolymer is more preferable.
  • the TFE / HFP / VdF copolymer may contain 0 to 20 mol% of other monomers.
  • Other monomers include perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), perfluoro (propyl vinyl ether), chlorotrifluoroethylene, 2-chloropentafluoropropene, perfluorinated vinyl ethers (eg CF 3 OCF Perfluoroalkoxy vinyl ethers such as 2 CF 2 CF 2 OCF ⁇ CF 2 ), perfluoroalkyl vinyl ethers, perfluoro-1,3-butadiene, trifluoroethylene, hexafluoroisobutene, vinyl fluoride, ethylene, propylene, and And at least one monomer selected from the group consisting of alkyl vinyl ethers, perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), and the like. Ether) is preferably a perfluoro (propyl vinyl ether).
  • the PCTFE is a chlorotrifluoroethylene homopolymer.
  • the CTFE copolymer is more preferably a perhalopolymer.
  • the CTFE-based copolymer includes a CTFE unit and a copolymer unit derived from at least one monomer selected from the group consisting of TFE, HFP, and PAVE. More preferably, it consists only of copolymerized units of Further, from the viewpoint of low fuel permeability, it is preferable not to include a monomer having a CH bond such as ethylene, vinylidene fluoride, and vinyl fluoride.
  • Perhalopolymers that do not contain a monomer having a CH bond are usually difficult to adhere to fluororubber, but according to the configuration of the present invention, even if the fluororesin layer (B) is a layer made of perhalopolymer, The adhesion between the fluororesin layer (B) and the fluororubber layer (A) is strong.
  • the CTFE copolymer preferably has 10 to 90 mol% of CTFE units based on the total monomer units.
  • CTFE copolymer those containing a monomer ( ⁇ ) unit derived from a CTFE unit, a TFE unit and a monomer ( ⁇ ) copolymerizable therewith are particularly preferred.
  • CTFE unit and the “TFE unit” are a part derived from CTFE (—CFCl—CF 2 —) and a part derived from TFE (—CF 2 —CF 2 —), respectively, in the molecular structure of the CTFE copolymer.
  • the “monomer ( ⁇ ) unit” is a portion formed by adding the monomer ( ⁇ ) to the molecular structure of the CTFE copolymer.
  • the monomer ( ⁇ ) is not particularly limited as long as it is a monomer copolymerizable with CTFE and TFE.
  • X 6 is a hydrogen atom, a fluorine atom or a chlorine atom;
  • n is an integer of 1 to 10
  • CF 2 ⁇ CF—O—Rf 2 wherein Rf 2 is a perfluoroalkyl group having 1 to 5 carbon atoms
  • alkyl perfluorovinyl ether derivative those in which Rf 2 is a perfluoroalkyl group having 1 to 3 carbon atoms are preferable, and CF 2 ⁇ CF—OCF 2 —CF 2 CF 3 is more preferable.
  • the monomer ( ⁇ ) is preferably at least one selected from the group consisting of PAVE, the above vinyl monomer, and alkyl perfluorovinyl ether derivatives, and more preferably from the group consisting of PAVE and HFP. More preferably, it is at least one selected, and PAVE is particularly preferable.
  • the ratio of CTFE units to TFE units is 85 to 10 mol% of TFE units relative to 15 to 90 mol% of CTFE units, and more preferably 20 to 90 mol of CTFE units. %, And the TFE unit is 80 to 10 mol%. Also preferred are those composed of 15 to 25 mol% of CTFE units and 85 to 75 mol% of TFE units.
  • the CTFE copolymer preferably has a total of CTFE units and TFE units of 90 to 99.9 mol% and monomer ( ⁇ ) units of 0.1 to 10 mol%. If the monomer ( ⁇ ) unit is less than 0.1 mol%, it tends to be inferior in moldability, environmental stress crack resistance and fuel crack resistance, and if it exceeds 10 mol%, low fuel permeability, heat resistance, It tends to be inferior in mechanical properties.
  • the fluororesin (b1) is at least one selected from the group consisting of PCTFE, CTFE / TFE / PAVE copolymer and TFE / HFP / VdF copolymer from the viewpoint of low fuel permeability and adhesiveness. Is more preferable, at least one selected from the group consisting of a CTFE / TFE / PAVE copolymer and a TFE / HFP / VdF copolymer is more preferable, and a CTFE / TFE / PAVE copolymer is particularly preferable.
  • the CTFE / TFE / PAVE copolymer is a copolymer consisting essentially of CTFE, TFE and PAVE.
  • the PAVE includes perfluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE), perfluoro (propyl vinyl ether) (PPVE), perfluoro (butyl vinyl ether). Among these, at least one selected from the group consisting of PMVE, PEVE and PPVE is preferable.
  • the PAVE unit is preferably 0.5 mol% or more, and preferably 5 mol% or less of the total monomer units.
  • the structural unit such as CTFE unit is a value obtained by performing 19 F-NMR analysis.
  • At least one reactive functional group selected from the group consisting of a carbonyl group, a hydroxyl group, a heterocyclic group, and an amino group is introduced into the main chain terminal and / or side chain of the polymer. It may be a thing.
  • the “carbonyl group” is a carbon divalent group composed of a carbon-oxygen double bond, and is represented by —C ( ⁇ O) —.
  • the reactive functional group containing the carbonyl group is not particularly limited.
  • a carbonate group, a carboxylic acid halide group (halogenoformyl group), a formyl group, a carboxyl group, an ester bond (—C ( ⁇ O) O—), an acid Anhydride bond (—C ( ⁇ O) O—C ( ⁇ O) —), isocyanate group, amide group, imide group (—C ( ⁇ O) —NH—C ( ⁇ O) —), urethane bond (— NH—C ( ⁇ O) O—), carbamoyl group (NH 2 —C ( ⁇ O) —), carbamoyloxy group (NH 2 —C ( ⁇ O) O—), ureido group (NH 2 —C ( O) —NH—), oxamoy
  • the hydrogen atom bonded to the nitrogen atom may be substituted with a hydrocarbon group such as an alkyl group, for example. .
  • the reactive functional group is easy to introduce, and since the fluororesin (b1) has moderate heat resistance and good adhesion at a relatively low temperature, an amide group, a carbamoyl group, a hydroxyl group, a carboxyl group , A carbonate group, a carboxylic acid halide group, and an acid anhydride bond are preferable, and an amide group, a carbamoyl group, a hydroxyl group, a carbonate group, a carboxylic acid halide group, and an acid anhydride bond are more preferable.
  • the fluororesin (b1) can be obtained by a conventionally known polymerization method such as suspension polymerization, solution polymerization, emulsion polymerization or bulk polymerization. In the polymerization, each condition such as temperature and pressure, the polymerization initiator and other additives can be appropriately set according to the composition and amount of the fluororesin (b1).
  • the melting point of the fluororesin (b1) is not particularly limited, but is preferably 160 to 270 ° C.
  • the melting point of the fluororesin (b1) is determined as a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a DSC device (Seiko).
  • the molecular weight of the fluororesin (b1) is preferably in a range where the obtained laminate can exhibit good mechanical properties, low fuel permeability, and the like.
  • the melt flow rate (MFR) is used as an index of molecular weight
  • the MFR at an arbitrary temperature in the range of about 230 to 350 ° C., which is a general molding temperature range of fluororesin is 0.5 to 100 g / 10 minutes. It is preferable. More preferably, it is 1 to 50 g / 10 minutes, and still more preferably 2 to 35 g / 10 minutes.
  • MFR is measured at 297 ° C.
  • the above MFR uses a melt indexer (manufactured by Toyo Seiki Seisakusho).
  • melt indexer manufactured by Toyo Seiki Seisakusho.
  • the weight of the polymer flowing out from a nozzle having a diameter of 2 mm and a length of 8 mm under a load of 297 ° C. and 5 kg per unit time (10 minutes) (g) can be determined by measuring.
  • the fluororesin layer (B) may contain one of these fluororesins (b1), or may contain two or more.
  • a perhalopolymer is a polymer in which halogen atoms are bonded to all the carbon atoms constituting the main chain of the polymer.
  • the fluororesin layer (B) is a blend of various fillers such as inorganic powder, glass fiber, carbon powder, carbon fiber, and metal oxide, as long as the performance is not impaired depending on the purpose and application. There may be.
  • smectite-based lamellar minerals such as montmorillonite, beidellite, saponite, nontronite, hectorite, soconite, and stevensite, and fine layered minerals with high aspect ratio such as mica are used. It may be added.
  • a conductive filler may be added.
  • the conductive filler is not particularly limited, and examples thereof include conductive simple powder such as metal and carbon or conductive single fiber; powder of conductive compound such as zinc oxide; surface conductive powder.
  • conductive simple powder such as metal and carbon or conductive single fiber
  • powder of conductive compound such as zinc oxide
  • surface conductive powder it is preferable to prepare a pellet in advance by melt-kneading.
  • the conductive single powder or conductive single fiber is not particularly limited, and is described in, for example, metal powder such as copper and nickel; metal fiber such as iron and stainless steel; carbon black, carbon fiber, and Japanese Patent Laid-Open No. 3-174018 Carbon fibrils and the like.
  • the surface conductive treatment powder is a powder obtained by conducting a conductive treatment on the surface of a nonconductive powder such as glass beads or titanium oxide.
  • the method for the surface conductive treatment is not particularly limited, and examples thereof include metal sputtering and electroless plating.
  • carbon black is preferably used because it is advantageous in terms of economy and prevention of electrostatic charge accumulation.
  • the volume resistivity of the fluororesin composition comprising a conductive filler is preferably 1 ⁇ 10 0 to 1 ⁇ 10 9 ⁇ ⁇ cm.
  • a more preferred lower limit is 1 ⁇ 10 2 ⁇ ⁇ cm, and a more preferred upper limit is 1 ⁇ 10 8 ⁇ ⁇ cm.
  • the thickness of the fluororubber layer (A) is not limited, but is preferably 100 ⁇ m or more, for example.
  • the upper limit of the thickness of the fluororubber layer (A) is, for example, 5000 ⁇ m.
  • the thickness of the said fluororesin layer (B) is not limited, For example, it is preferable that it is 10 micrometers or more.
  • the upper limit of the thickness of the fluororesin layer (B) is, for example, 1000 ⁇ m.
  • the adhesive strength between the fluororubber layer (A) and the fluororesin layer (B) is preferably 7 N / cm or more, and more preferably 11 N / cm or more.
  • the adhesive strength is 7 N / cm or more, there is an advantage that displacement does not easily occur when the hose is vulcanized in a specific shape, and peeling does not occur when an impact is applied.
  • the laminated body of this invention can make adhesive strength into the said range by having the said structure.
  • the adhesive strength is more preferably 12 N / cm or more, and particularly preferably 15 N / cm or more.
  • the laminate was cut into strips of width 10 mm ⁇ length 40 mm ⁇ 3 sets, sample pieces were prepared, and the fluororubber layer (A) and the fluororesin layer (B) for the test pieces.
  • the interface between the fluororubber layer (A) and the fluororesin layer (B) is once gently pulled by hand in order to measure the adhesive strength of only the adhesive surface.
  • an autograph AGS-J 5 kN, manufactured by Shimadzu Corporation
  • JIS-K-6256 vulcanized rubber adhesion test method
  • the fluorororubber layer (A) and the fluororesin layer (B) are preferably vulcanized and bonded.
  • Such a laminate can be obtained by laminating an unvulcanized fluororubber layer (A) and a fluororesin layer (B) and then vulcanizing.
  • vulcanization treatment conventionally known vulcanization methods and conditions for fluorororubber compositions can be employed. For example, a method of vulcanizing an unvulcanized laminate for a long time, a heat treatment as a pretreatment for the unvulcanized laminate in a relatively short time (which also causes vulcanization), and then vulcanizing for a long time. There is a method of performing sulfuration.
  • a method in which the unvulcanized laminate is subjected to a heat treatment as a pretreatment in a relatively short time, and then vulcanized over a long time is obtained by performing the pretreatment with a fluororubber layer (A) and a fluororesin layer ( Adhesion with B) can be easily obtained, and since the fluororubber layer (A) has already been vulcanized in the pretreatment and the shape is stabilized, there are various methods for holding the laminate in subsequent vulcanization. It is preferable that it can be selected.
  • the conditions for the vulcanization treatment are not particularly limited and can be performed under ordinary conditions, but at 140 to 180 ° C. for 2 to 80 minutes, steam, press, oven, air bath, infrared, microwave,
  • the treatment is preferably performed using lead vulcanization or the like. More preferably, it is carried out at 150 to 170 ° C. for 5 to 60 minutes.
  • the vulcanization treatment may be performed separately for primary vulcanization and secondary vulcanization.
  • a method for producing a laminate comprising a fluororesin (b1) that is not more than day is preferable as a production method for producing a laminate in which a fluororubber layer and a fluororesin layer are firmly bonded.
  • the laminate of the present invention described above can be manufactured by the above manufacturing method. In the production method of the present invention, the conditions for the vulcanization treatment are the same as those described above.
  • the step of mixing the fluororubber, the basic polyfunctional compound, and the compound (a) to obtain a fluororubber composition includes, for example, the fluororubber, the basic polyfunctional compound, and the compound (a).
  • a fluororubber composition includes, for example, the fluororubber, the basic polyfunctional compound, and the compound (a).
  • a rubber kneading apparatus a roll, a kneader, a Banbury mixer, an internal mixer, a twin screw extruder, or the like can be used.
  • the mixing is performed according to need, such as a vulcanizing agent, a vulcanizing aid, a co-vulcanizing agent, a vulcanizing accelerator, and a filling. It may be mixed with other additives such as materials.
  • the mixing temperature is, for example, 20 to 200 ° C.
  • the mixing time is, for example, 2 to 80 minutes.
  • the unvulcanized fluororubber layer and the fluororesin layer are laminated by separately molding the unvulcanized fluororubber layer and the fluororesin layer by means such as pressure bonding. And a method in which a fluororesin layer is formed by applying a fluororesin to an unvulcanized fluororubber layer.
  • Molding of the unvulcanized fluororubber layer can be done in various shapes such as sheet, tube, etc. by heat compression molding method, transfer molding method, extrusion molding method, injection molding method, calendar molding method, coating method, etc. It can be set as this molded object.
  • the fluororesin layer can be formed by a method such as heat compression molding, melt extrusion molding, injection molding, or coating (including powder coating).
  • a method such as heat compression molding, melt extrusion molding, injection molding, or coating (including powder coating).
  • fluororesin molding machines such as injection molding machines, blow molding machines, extrusion molding machines, and various coating devices can be used to produce laminates of various shapes such as sheets and tubes. Is possible. Of these, the melt extrusion molding method is preferred because of its excellent productivity.
  • a fluororubber composition that forms an unvulcanized fluororubber layer and a fluororesin (b1) that forms a fluororesin layer are used.
  • Examples thereof include a method of laminating simultaneously with molding by a method such as a multilayer compression molding method, a multilayer transfer molding method, a multilayer extrusion molding method, a multilayer injection molding method, and a doubling method.
  • the laminate of the present invention may have a two-layer structure of a fluororubber layer (A) and a fluororesin layer (B), or a fluororubber layer (A) laminated on both sides of the fluororesin layer (B).
  • the fluororesin layer (B) may be laminated on both sides of the fluororubber layer (A).
  • a three-layer structure of fluororubber layer (A) -fluororesin layer (B) -fluororubber layer (A) or fluororesin layer (B) -fluororubber layer (A) -fluororesin layer (B) may be used.
  • it may be a multilayer structure of three or more layers in which polymer layers (C) other than the fluororubber layer (A) and the fluororesin layer (B) are bonded, or the fluororubber layer (A) and the fluororesin layer (
  • the polymer layer (D) may be provided on one side or both sides of a three-layer multilayer structure to which a polymer layer (C) other than B) is bonded.
  • the polymer layer (C) and the polymer layer (D) may be the same or different.
  • the laminate of the present invention may have a polymer layer (C) on one side or both sides of a three-layer structure of fluororubber layer (A) -fluororesin layer (B) -fluororubber layer (A).
  • the polymer layers (C) and (D) may be rubber layers (C1) or (D1) other than the fluororubber layer (A).
  • Examples of the rubber layer (C1) or (D1) include a non-fluorinated rubber layer (C1a) or (D1a) formed from a non-fluorinated rubber. Non-fluorinated rubber is preferred because of its good cold resistance and excellent cost.
  • the non-fluorine rubber layer (C1a) and the non-fluorine rubber layer (D1a) may be formed from the same non-fluorine rubber, or may be formed from different non-fluorine rubbers.
  • the laminate of the present invention may be laminated in the order of fluororubber layer (A) -fluororesin layer (B) -non-fluororubber layer (C1a). Further, it further includes a non-fluorine rubber layer (D1a), in the order of non-fluorine rubber layer (D1a) -fluorine rubber layer (A) -fluorine resin layer (B) -non-fluorine rubber layer (C1a), A) -fluorine resin layer (B) -non-fluorine rubber layer (D1a) -non-fluorine rubber layer (C1a), or fluorine rubber layer (A) -fluorine resin layer (B) -non-fluorine rubber layer (C1a) ) -Non-fluorinated rubber layer (D1a) may be laminated in this order.
  • a non-fluorine rubber layer (D1a) in the order of non-fluorine rubber layer (D1a)
  • non-fluorine rubber examples include, for example, acrylonitrile-butadiene rubber (NBR) or a hydride thereof (HNBR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), butadiene rubber (BR), and natural rubber (NR).
  • NBR acrylonitrile-butadiene rubber
  • HNBR hydride thereof
  • SBR styrene-butadiene rubber
  • CR chloroprene rubber
  • BR butadiene rubber
  • natural rubber NR
  • Diene rubber such as isoprene rubber (IR), ethylene-propylene-termonomer copolymer rubber, silicone rubber, butyl rubber, epichlorohydrin rubber, acrylic rubber, chlorinated polyethylene (CPE), acrylonitrile-butadiene rubber and vinyl chloride Examples thereof include polyblend (PVC-NBR), ethylene propylene diene rubber (EPDM), chlorosulfonated polyethylene (CSM) and the like.
  • gum which mixed these non-fluororubbers and fluororubbers in arbitrary ratios is mention
  • the non-fluorine rubber is preferably a diene rubber or epichlorohydrin rubber from the viewpoint of good heat resistance, oil resistance, weather resistance and extrusion moldability. More preferred is NBR, HNBR or epichlorohydrin rubber.
  • the rubber layer (C1) is preferably made of NBR, HNBR or epichlorohydrin rubber.
  • the rubber layer (D1) is made of acrylonitrile-butadiene rubber, epichlorohydrin rubber, chlorinated polyethylene (CPE), acrylonitrile-butadiene rubber and vinyl chloride polyblend (PVC-NBR), ethylene propylene diene in terms of weather resistance and cost. It is preferably made of rubber (EPDM), acrylic rubber, or a mixture thereof. In addition, you may mix
  • the rubber layer (C1) is composed of acrylonitrile butadiene rubber, hydrogenated acrylonitrile butadiene rubber, epichlorohydrin rubber, or acrylonitrile butadiene. A layer made of a mixture of rubber and acrylic rubber is preferred.
  • the fuel pipe has a three-layer structure of a fluororubber layer (A) -a fluororesin layer (B) -a rubber layer (C1). A fluororubber layer is provided as the rubber layer (C1), and the rubber layer (C1) is connected to the pipe.
  • Three-layer structure of resin layer-fluorine rubber layer (A) -resin layer A three-layer structure of fluororesin layer (B) -fluorine rubber layer (A) -fluorine resin layer (B) can be mentioned.
  • the inner and outer resin layers may be the same type or different types.
  • an optional fluorororubber layer (A) or rubber layer (C1) and fluororesin layer (B) are laminated according to the purpose. May be.
  • a layer such as a metal foil may be provided, or an adhesive layer may be interposed other than the interlayer between the fluororubber layer (A) and the fluororesin layer (B).
  • a reinforcing layer such as a reinforcing yarn may be provided as appropriate.
  • the laminate of the present invention is excellent in low fuel permeability, heat resistance, oil resistance, fuel oil resistance, LLC resistance, steam resistance, weather resistance, ozone resistance, and under severe conditions. Can be used for various purposes.
  • automotive engine main body main motion system, valve system, lubrication / cooling system, fuel system, intake / exhaust system, drive system transmission system, chassis steering system, brake system, etc.
  • Gaskets that require heat resistance, oil resistance, fuel oil resistance, LLC resistance, steam resistance, non-contact type and contact type packings (self-sealing) such as basic electric parts, control system electric parts, equipment electric parts, etc. (Packing, piston ring, split ring type packing, mechanical seal, oil seal, etc.), etc., and suitable characteristics as bellows, diaphragm, hose, tube, electric wire, etc.
  • gaskets such as general gaskets, seals such as O-rings, packing, timing belt cover gaskets, hoses such as control hoses, anti-vibration rubber for engine mounts, hydrogen Sealing material for high pressure valves in storage systems.
  • Shaft seals such as crankshaft seals and camshaft seals for the main motion system.
  • Lubricating / cooling engine oil cooler hose oil return hose, seal gasket, water hose around radiator, vacuum pump oil hose for vacuum pump, etc.
  • CAC composite air control
  • Transmission related bearing seals oil seals, O-rings, packings, torque converter hoses, etc. AT transmission oil hoses, ATF hoses, O-rings, packings, etc.
  • Brake oil seals O-rings, packings, brake oil hoses, etc., master back atmospheric valves, vacuum valves, diaphragms, master cylinder piston cups (rubber cups), caliper seals, boots, etc.
  • Tubes of harness exterior parts such as insulators and sheaths of electric wires (harnesses) of basic electrical components.
  • Coating materials for various sensor wires for control system electrical components are Coating materials for various sensor wires for control system electrical components.
  • medical applications include medicine plugs, bottle cap seals, can seals, medicinal tapes, medicinal pads, syringe syringe packings, transdermal drug substrates, suckers for baby bottles, medical bags, catheters, infusions, etc.
  • examples of the offshore molded product to which the laminate of the present invention can be applied include subsea oil field tubes or hoses (including injection tubes and crude oil transfer tubes).
  • the laminate is particularly preferably used as a tube or a hose. That is, the laminate is preferably a tube or a hose. Among tubes, it can be suitably used as a fuel piping tube or hose for automobiles in terms of heat resistance and low fuel permeability.
  • the fuel pipe made of the laminate in the present invention can be produced by a usual method and is not particularly limited.
  • melt flow rate For the fluororesins listed in Table 1, a melt indexer (manufactured by Toyo Seiki Seisakusho Co., Ltd.) was used, and the polymer flowing out from a nozzle having a diameter of 2 mm and a length of 8 mm under a load of 297 ° C. and 5 kg per unit time (10 minutes). The weight (g) was measured.
  • a melt indexer manufactured by Toyo Seiki Seisakusho
  • the fuel permeation coefficient (g ⁇ mm / m 2 / day) was calculated from the change in mass per unit time (part where the mass change at the beginning of measurement was constant), the surface area of the sheet in the wetted part, and the thickness of the sheet.
  • An average particle diameter laser diffraction particle size distribution measuring device (manufactured by Nippon Laser Co., Ltd.) of low molecular weight PTFE is used, the cascade is not used, the particle size distribution is measured at a pressure of 0.1 MPa and a measurement time of 3 seconds. The value corresponding to 50% of the accumulated particle size distribution was taken as the average particle size.
  • Adhesiveness The obtained laminate was cut into strips having a width of 10 mm, a length of 40 mm, and 3 sets, and a sample piece was prepared by peeling off the fluororesin sheet and grasping it. This test piece does not include the adhesive strength at the interface between the fluororubber layer and the fluororesin layer.
  • the fluororubber composition or the fluororesin broke down at the interface of the laminate and could not be peeled off at the interface.
  • X Easy peeling at the interface of the laminate.
  • the maximum torque value (MH) and the minimum torque value (ML) are measured at 170 ° C. for the fluorororubber composition using a curast meter type II (model number: JSR curast meter, manufactured by JSR).
  • the induction time (T10) and the optimum vulcanization time (T90) were determined. Table 3 shows the measurement results. T10 is a time when ⁇ (MH) ⁇ (ML) ⁇ ⁇ 0.1 + ML, T90 is a time when ⁇ (MH) ⁇ (ML) ⁇ ⁇ 0.9 + ML, and MH and ML are , Measured according to JIS K 6300-2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

フッ素ゴム層とフッ素樹脂層とを備える積層体であって、上記フッ素ゴム層と上記フッ素樹脂層とが強固に接着した積層体を提供する。フッ素ゴム層(A)と、フッ素ゴム層(A)上に積層されたフッ素樹脂層(B)と、を備える積層体であって、フッ素ゴム層(A)は、フッ素ゴム組成物から形成される層であり、上記フッ素ゴム組成物は、フッ素ゴム、塩基性の多官能化合物、並びに、フッ素樹脂(a1)及びリン化合物(a2)からなる群より選択される少なくとも1種の化合物(a)を含み、化合物(a)の含有量が上記フッ素ゴム100質量部に対して0.01~120質量部であり、フッ素樹脂層(B)は、燃料透過係数が2.0g・mm/m/day以下であるフッ素樹脂(b1)から構成されることを特徴とする積層体である。

Description

積層体
本発明は、積層体に関する。
従来、昨今の環境意識の高まりから、燃料揮発を防止するための法整備が進み、特に自動車業界では米国を中心に燃料揮発抑制の傾向が著しく、燃料バリア性に優れた材料へのニーズが大きくなりつつある。
特に、燃料輸送ゴムホースにおいて、低燃料透過性を良好にするためにフッ素樹脂をバリア層とした積層ホース(バリア層以外はゴム)が使用されているが、昨今の環境負荷低減の強い要求により、一層の低燃料透過性が必要とされる。
また、フッ素ゴムは、耐熱性、耐油性、耐老化性等の諸特性に優れることから、上記のバリア層以外のゴムとして使用することが提案されている。
しかしながら、フッ素樹脂、特に低燃料透過性に優れるフッ素樹脂をバリア層として使用する場合、相手材である外内層のフッ素ゴムとの接着が困難である。そこで、特許文献1には、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフロライドの三元系フッ素樹脂の成形物である内層と、1,8-ジアザビシクロ(5.4.0)ウンデセン-7塩と有機ホスホニウム塩を配合したエピクロルヒドリンゴムかNBR/PVCのブレンド物の加硫用組成物の加硫成型物である外層と、1,8-ジアザビシクロ(5.4.0)ウンデセン-7塩と有機ホスホニウム塩を配合したNBR系ゴムかフッ素ゴムの加硫用組成物の加硫成型物である最内層とが、強固に接着されてなることを特徴とする自動車燃料配管用ホースが記載されている。
特許第2932980号公報
しかし、フッ素ゴム層とフッ素樹脂層との更なる接着性の向上が求められる。
本発明は、上記現状に鑑み、フッ素ゴム層とフッ素樹脂層とを備える積層体であって、上記フッ素ゴム層と上記フッ素樹脂層とが強固に接着した積層体を提供することを目的とする。
本発明者らは、塩基性の多官能化合物、及び、フッ素樹脂(a1)又はリン化合物(a2)の少なくとも一方をフッ素ゴム層に使用すると、フッ素樹脂層に燃料透過係数が小さいフッ素樹脂を使用した場合であっても、フッ素樹脂層とフッ素ゴム層とが強固に接着することを見出し、本発明を完成するに至った。
すなわち、本発明は、フッ素ゴム層(A)と、フッ素ゴム層(A)上に積層されたフッ素樹脂層(B)と、を備える積層体であって、フッ素ゴム層(A)は、フッ素ゴム組成物から形成される層であり、上記フッ素ゴム組成物は、フッ素ゴム、塩基性の多官能化合物、並びに、フッ素樹脂(a1)及びリン化合物(a2)からなる群より選択される少なくとも1種の化合物(a)を含み、化合物(a)の含有量が上記フッ素ゴム100質量部に対して0.01~120質量部であり、フッ素樹脂層(B)は、燃料透過係数が2.0g・mm/m/day以下であるフッ素樹脂(b1)から構成されることを特徴とする積層体である。
フッ素樹脂(a1)は、非溶融加工性ポリテトラフルオロエチレン、低分子量ポリテトラフルオロエチレン、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、エチレン/テトラフルオロエチレン共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレン/テトラフルオロエチレン共重合体、エチレン/クロロトリフルオロエチレン共重合体、ポリフッ化ビニル、及び、フルオロモノマー/ビニルエステル共重合体からなる群より選択される少なくとも1種であることが好ましい。
リン化合物(a2)は、ホスフィン類であることが好ましい。
リン化合物(a2)は、一般式:PR(式中、3つのRは、同一又は異なって、ハロゲン原子又は有機基を表す)で表されるホスフィン化合物であることが好ましい。
上記フッ素ゴム組成物は、更に、パーオキサイド加硫系加硫剤を含むことが好ましい。
フッ素樹脂(b1)は、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレン系共重合体、及び、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン共重合体からなる群より選択される少なくとも1種であることが好ましい。
上述の積層体において、フッ素樹脂層(B)の両側にフッ素ゴム層(A)が積層されていることが好ましい。
上述の積層体において、フッ素ゴム層(A)の両側にフッ素樹脂層(B)が積層されていることが好ましい。
上述の積層体は、更に、非フッ素ゴム層(C1a)を含み、フッ素ゴム層(A)-フッ素樹脂層(B)-非フッ素ゴム層(C1a)の順に積層されていることが好ましい。
上述の積層体は、更に、非フッ素ゴム層(D1a)を含み、非フッ素ゴム層(D1a)-フッ素ゴム層(A)-フッ素樹脂層(B)-非フッ素ゴム層(C1a)の順、フッ素ゴム層(A)-フッ素樹脂層(B)-非フッ素ゴム層(D1a)-非フッ素ゴム層(C1a)の順、又は、フッ素ゴム層(A)-フッ素樹脂層(B)-非フッ素ゴム層(C1a)-非フッ素ゴム層(D1a)の順、に積層されていることが好ましい。
上述の積層体において、フッ素ゴム層(A)とフッ素樹脂層(B)とが加硫接着されていることが好ましい。
本発明の積層体は、上記構成を有することから、上記フッ素ゴム層と上記フッ素樹脂層とが強固に接着する。
以下、本発明を具体的に説明する。
本発明の積層体は、フッ素ゴム層(A)と、フッ素ゴム層(A)上に積層されたフッ素樹脂層(B)とを備える。
以下、各構成要素について説明する。
(A)フッ素ゴム層
上記フッ素ゴム層(A)は、フッ素ゴム組成物から形成される層である。上記フッ素ゴム層(A)は、通常、フッ素ゴム組成物を成形して未加硫フッ素ゴム層を得た後、加硫処理して得られるものである。
上記フッ素ゴム組成物は、フッ素ゴム、塩基性の多官能化合物、並びに、フッ素樹脂(a1)及びリン化合物(a2)からなる群より選択される少なくとも1種の化合物(a)を含む。
〔フッ素ゴム〕
フッ素ゴムは、通常、主鎖を構成する炭素原子に結合しているフッ素原子を有し、且つゴム弾性を有する非晶質の重合体からなる。上記フッ素ゴムは、1種の重合体からなるものであってもよいし、2種以上の重合体からなるものであってもよい。フッ素ゴムは、通常、明確な融点を有さないものである。
フッ素ゴムは、ビニリデンフルオライド(VdF)/ヘキサフルオロプロピレン(HFP)共重合体、VdF/HFP/テトラフルオロエチレン(TFE)共重合体、TFE/プロピレン共重合体、TFE/プロピレン/VdF共重合体、エチレン/HFP共重合体、エチレン/HFP/VdF共重合体、エチレン/HFP/TFE共重合体、VdF/TFE/パーフルオロ(アルキルビニルエーテル)(PAVE)共重合体、VdF/クロロトリフルオロエチレン(CTFE)共重合体、及び、VdF/CH=CFRf(式中、Rfは、炭素数1~12の直鎖又は分岐したフルオロアルキル基)共重合体からなる群より選択される少なくとも1種であることが好ましい。フッ素ゴムは、非パーフルオロフッ素ゴムであることが好ましく、ビニリデンフルオライドに由来する重合単位(VdF単位)を含む共重合体であることがより好ましい。
VdF単位を含む共重合体としては、VdF単位及び含フッ素エチレン性単量体由来の共重合単位(但し、VdF単位は除く。以下、「含フッ素エチレン性単量体単位(a)」ともいう。)を含む共重合体であることが好ましい。VdF単位を含む共重合体は、VdF単位及び含フッ素エチレン性単量体単位(a)のみからなる共重合体であってもよいし、更に、VdF及び含フッ素エチレン性単量体(但し、VdFは除く。以下、「含フッ素エチレン性単量体(a)」ともいう。)と共重合可能な単量体由来の共重合単位を含む共重合体であってもよい。
VdF単位を含む共重合体としては、VdF単位及び含フッ素エチレン性単量体単位(a)の合計100モル%に対して、30~90モル%のVdF単位及び70~10モル%の含フッ素エチレン性単量体単位(a)を含むことが好ましく、30~85モル%のVdF単位及び70~15モル%の含フッ素エチレン性単量体単位(a)を含むことがより好ましく、30~80モル%のVdF単位及び70~20モル%の含フッ素エチレン性単量体単位(a)を含むことが更に好ましい。
VdF及び含フッ素エチレン性単量体単位(a)と共重合可能な単量体由来の共重合単位(但し、VdF単位は除く。)は、VdF単位と含フッ素エチレン性単量体(a)由来の共重合単位の合計量に対して、0~10モル%であることが好ましい。
含フッ素エチレン性単量体(a)としては、例えばTFE、CTFE、トリフルオロエチレン、HFP、トリフルオロプロピレン、テトラフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、PAVE、フッ化ビニル、下記一般式(2):
CFX=CXOCFOR   (2)
(式中、Xは、同一又は異なり、H、F又はCFを表し、Rは、直鎖又は分岐した、H、Cl、Br及びIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が1~6のフルオロアルキル基、若しくは、H、Cl、Br及びIからなる群より選択される少なくとも1種の原子を1~2個含んでいてもよい炭素数が5又は6の環状フルオロアルキル基を表す。)で表されるフルオロビニルエーテルなどの含フッ素単量体が挙げられる。これらのなかでも、式(2)で表されるフルオロビニルエーテル、TFE、HFP及びPAVEからなる群より選択される少なくとも1種であることが好ましく、TFE、HFP及びPAVEからなる群より選択される少なくとも1種であることがより好ましい。
上記PAVEとしては、一般式(3):
CF=CFO(CFCFYO)-(CFCFCFO)-Rf  (3)
(式中、YはF又はCFを表し、Rfは炭素数1~5のパーフルオロアルキル基を表す。pは0~5の整数を表し、qは0~5の整数を表す。)であることが好ましい。
上記PAVEとしては、パーフルオロ(メチルビニルエーテル)又はパーフルオロ(プロピルビニルエーテル)であることがより好ましく、パーフルオロ(メチルビニルエーテル)であることが更に好ましい。これらをそれぞれ単独で、又は任意に組み合わせて用いることができる。
VdF及び含フッ素エチレン性単量体(a)と共重合可能な単量体としては、例えばエチレン、プロピレン、アルキルビニルエーテルなどが挙げられる。
このようなVdF単位を含む共重合体として、具体的には、VdF/HFP共重合体、VdF/HFP/TFE共重合体、VdF/CTFE共重合体、VdF/CTFE/TFE共重合体、VdF/PAVE共重合体、VdF/TFE/PAVE共重合体、VdF/HFP/PAVE共重合体、及び、VdF/HFP/TFE/PAVE共重合体からなる群より選択される少なくとも1種の共重合体が好ましい。これらのVdF単位を含む共重合体のなかでも、耐熱性の点から、VdF/HFP共重合体、及び、VdF/HFP/TFE共重合体からなる群より選択される少なくとも1種の共重合体が特に好ましい。これらのVdF単位を含む共重合体は、上述したVdF単位と含フッ素エチレン性単量体単位(a)との組成割合を満足することが好ましい。
VdF/HFP共重合体としては、VdF/HFPのモル比が45~85/55~15であるものが好ましく、より好ましくは50~80/50~20であり、更に好ましくは60~80/40~20である。
VdF/HFP/TFE共重合体としては、VdF/HFP/TFEのモル比が30~85/5~50/5~40であることが好ましく、VdF/HFP/TFEのモル比が35~80/8~45/8~35であることがより好ましく、VdF/HFP/TFEのモル比が40~80/10~40/10~30であることが更に好ましく、VdF/HFP/TFEのモル比が40~80/10~35/10~30であるものが最も好ましい。
VdF/PAVE共重合体としては、VdF/PAVEのモル比が65~90/10~35であるものが好ましい。
VdF/TFE/PAVE共重合体としては、VdF/TFE/PAVEのモル比が40~80/3~40/15~35であるものが好ましい。
VdF/HFP/PAVE共重合体としては、VdF/HFP/PAVEのモル比が65~90/3~25/3~25であるものが好ましい。
VdF/HFP/TFE/PAVE共重合体としては、VdF/HFP/TFE/PAVEのモル比が40~90/0~25/0~40/3~35であるものが好ましく、より好ましくは40~80/3~25/3~40/3~25である。
上記フッ素ゴムは、架橋部位を与えるモノマー由来の共重合単位を含む共重合体からなることも好ましい。架橋部位を与えるモノマーとしては、例えば特公平5-63482号公報、特開平7-316234号公報に記載されているようなパーフルオロ(6,6-ジヒドロ-6-ヨード-3-オキサ-1-ヘキセン)やパーフルオロ(5-ヨード-3-オキサ-1-ペンテン)などのヨウ素含有モノマー、特表平4-505341号公報に記載されている臭素含有モノマー、特表平4-505345号公報、特表平5-500070号公報に記載されているようなシアノ基含有モノマー、カルボキシル基含有モノマー、アルコキシカルボニル基含有モノマーなどが挙げられる。
フッ素ゴムは、主鎖末端にヨウ素原子又は臭素原子を有するフッ素ゴムであることも好ましい。主鎖末端にヨウ素原子又は臭素原子を有するフッ素ゴムは、実質的に無酸素下で、水媒体中でハロゲン化合物の存在下に、ラジカル開始剤を添加してモノマーの乳化重合を行うことにより製造できる。使用するハロゲン化合物の代表例としては、例えば、一般式:
Br
(式中、x及びyはそれぞれ0~2の整数であり、かつ1≦x+y≦2を満たすものであり、Rは、炭素数1~16の飽和若しくは不飽和のフルオロ炭化水素基、炭素数1~16の飽和若しくは不飽和のクロロフルオロ炭化水素基、炭素数1~3の炭化水素基、又は、ヨウ素原子若しくは臭素原子で置換されていてもよい炭素数3~10の環状炭化水素基であり、これらは酸素原子を含んでいてもよい)で表される化合物が挙げられる。
ハロゲン化合物としては、例えば、1,3-ジヨードパーフルオロプロパン、1,3-ジヨード-2-クロロパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,5-ジヨード-2,4-ジクロロパーフルオロペンタン、1,6-ジヨードパーフルオロヘキサン、1,8-ジヨードパーフルオロオクタン、1,12-ジヨードパーフルオロドデカン、1,16-ジヨードパーフルオロヘキサデカン、ジヨードメタン、1,2-ジヨードエタン、1,3-ジヨード-n-プロパン、CFBr、BrCFCFBr、CFCFBrCFBr、CFClBr、BrCFCFClBr、CFBrClCFClBr、BrCFCFCFBr、BrCFCFBrOCF、1-ブロモ-2-ヨードパーフルオロエタン、1-ブロモ-3-ヨードパーフルオロプロパン、1-ブロモ-4-ヨードパーフルオロブタン、2-ブロモ-3-ヨードパーフルオロブタン、3-ブロモ-4-ヨードパーフルオロブテン-1、2-ブロモ-4-ヨードパーフルオロブテン-1、ベンゼンのモノヨードモノブロモ置換体、ベンゼンのジヨードモノブロモ置換体、ならびに、ベンゼンの(2-ヨードエチル)及び(2-ブロモエチル)置換体などがあげられ、これらの化合物は、単独で使用してもよく、相互に組み合わせて使用することもできる。
これらのなかでも、重合反応性、架橋反応性、入手容易性などの点から、1,4-ジヨードパーフルオロブタン又はジヨードメタンを用いるのが好ましい。
上記フッ素ゴムは、フッ素ゴム組成物を製造する際の加工性が良好である点から、ムーニー粘度(ML1+10(100℃))が5~200であることが好ましく、10~150であることがより好ましく、20~100であることが更に好ましい。
ムーニー粘度は、ASTM-D1646に準拠して測定することができる。
測定機器:ALPHA TECHNOLOGIES社製のMV2000E型
ローター回転数:2rpm
測定温度:100℃
上記フッ素ゴム組成物は、ゴム成分が上記フッ素ゴムのみからなるものであることが好ましい。
〔化合物(a)〕
上記フッ素ゴム組成物は、フッ素樹脂(a1)及びリン化合物(a2)からなる群より選択される少なくとも1種の化合物(a)を含む。
上記化合物(a)の含有量は、上記フッ素ゴム100質量部に対して、0.01~120質量部であり、これによって、上記フッ素ゴム層(A)と上記フッ素樹脂層(B)とが強固に接着する。上記化合物(a)の含有量としては、0.05質量部以上が好ましく、0.1質量部以上がより好ましく、0.3質量部以上が更に好ましく、0.5質量部以上が特に好ましく、90質量部以下が好ましく、65質量部以下がより好ましく、48質量部以下が更に好ましく、47質量部以下が特に好ましい。
上記フッ素ゴム組成物は、化合物(a)として、フッ素樹脂(a1)を含むことも好ましい。この場合の、上記フッ素樹脂(a1)の含有量としては、フッ素ゴム層(A)とフッ素樹脂層(B)とがより強固に接着することから、上記フッ素ゴム100質量部に対して、0.5~100質量部が好ましく、10質量部以上がより好ましく、20質量部以上が更に好ましく、30質量部以上が特に好ましく、80質量部以下がより好ましく、60質量部以下が更に好ましく、45質量部以下が特に好ましい。
上記フッ素ゴム組成物は、化合物(a)として、リン化合物(a2)を含むことも好ましい。この場合の、上記リン化合物(a2)の含有量としては、フッ素ゴム層(A)とフッ素樹脂層(B)とがより強固に接着することから、上記フッ素ゴム100質量部に対して、0.01~20質量部が好ましく、0.05~10質量部がより好ましく、0.1~5質量部が更に好ましく、0.3~3質量部が特に好ましく、0.5~2質量部が最も好ましい。
上記フッ素ゴム組成物は、フッ素ゴム層(A)とフッ素樹脂層(B)とがより一層強固に接着することから、化合物(a)として、フッ素樹脂(a1)及びリン化合物(a2)の両方を含むことも好ましい。この場合の、上記フッ素樹脂(a1)の含有量としては、フッ素ゴム層(A)とフッ素樹脂層(B)とがより強固に接着することから、上記フッ素ゴム100質量部に対して、0.5~100質量部が好ましく、10質量部以上がより好ましく、20質量部以上が更に好ましく、30質量部以上が特に好ましく、80質量部以下がより好ましく、60質量部以下が更に好ましく、45質量部以下が特に好ましい。この場合の上記リン化合物(a2)の含有量としては、フッ素ゴム層(A)とフッ素樹脂層(B)とがより強固に接着することから、上記フッ素ゴム100質量部に対して、0.01~20質量部が好ましく、0.05~10質量部がより好ましく、0.1~5質量部が更に好ましく、0.3~3質量部が特に好ましく、0.5~2質量部が最も好ましい。
〔フッ素樹脂(a1)〕
上記フッ素ゴム組成物が上記フッ素樹脂(a1)を含むことにより、上記フッ素ゴム層(A)と上記フッ素樹脂層(B)とが強固に接着する。フッ素樹脂は、通常、融点を有し、熱可塑性を有する。
上記フッ素樹脂(a1)としては、溶融加工性フッ素樹脂であっても、非溶融加工性フッ素樹脂であってもよいが、上記溶融加工性フッ素樹脂であることが好ましい。本明細書において、溶融加工性とは、押出機および射出成形機などの従来の加工機器を用いて、ポリマーを溶融して加工することが可能であることを意味する。従って、溶融加工性のフッ素樹脂は、後述する測定方法により測定されるメルトフローレートが0.01~100g/10分であることが通常である。
上記フッ素樹脂(a1)としては、非溶融加工性ポリテトラフルオロエチレン〔PTFE〕、低分子量ポリテトラフルオロエチレン、TFE/PAVE共重合体〔PFA〕、TFE/HFP共重合体〔FEP〕、エチレン〔Et〕/TFE共重合体〔ETFE〕、Et/TFE/HFP共重合体、ポリクロロトリフルオロエチレン〔PCTFE〕、CTFE/TFE共重合体、Et/CTFE共重合体、ポリフッ化ビニル〔PVF〕、フルオロモノマー/ビニルエステル共重合体等が挙げられ、なかでも、低分子量ポリテトラフルオロエチレンが好ましい。
上記低分子量ポリテトラフルオロエチレンは、溶融加工性を有し、フィブリル化性を有しないことが好ましい。
上記低分子量PTFEは、数平均分子量が60万以下のTFE重合体である。数平均分子量が60万を超える「高分子量PTFE」は、PTFE特有のフィブリル化特性が発現する(例えば、特開平10-147617号公報参照。)。高分子量PTFEは、溶融粘度が高く、非溶融加工性である。高分子量PTFEは、添加剤として用いるとフィブリル化特性が発現するため、PTFE粒子同士が凝集しやすくなり、マトリックス材料への分散性が劣る。
上記低分子量PTFEは、380℃における溶融粘度が1×10~7×10(Pa・s)であるTFE重合体である。PTFEは、溶融粘度が上記範囲内にあれば、数平均分子量が上記範囲内となる。
上記溶融粘度は、ASTM D 1238に準拠し、フローテスター(島津製作所社製)及び2φ-8Lのダイを用い、予め380℃で5分間加熱しておいた2gの試料を0.7MPaの荷重にて上記温度に保って測定する値である。上記数平均分子量は、上記測定方法により測定した溶融粘度から、それぞれ算出した値である。
上記低分子量PTFEは、融点が324~333℃であるTFE重合体であることが好ましい。
上記低分子量PTFEは、平均粒径が0.01~1000μmであることが好ましく、0.1~100μmであることがより好ましく、0.3~50μmであることがさらに好ましく、0.5~20μmであることが最も好ましい。
上記平均粒径は、レーザー回折式粒度分布測定装置(例えば、日本レーザー社製)を用い、カスケードは使用せず、圧力0.1MPa、測定時間3秒で粒度分布を測定し、得られた粒度分布積算の50%に対応する値に等しいとする。
上記低分子量PTFEは、372℃(荷重1.2kg)におけるメルトフローレート(MFR)が0.01~10g/10分であることが好ましい。
上記MFRは、メルトインデクサー(例えば、東洋精機製作所社製)を用い、372℃、1.2kg荷重下で直径2mm、長さ8mmのノズルから単位時間(10分間)に流出するポリマーの重量(g)を測定することにより特定できる。
上記低分子量PTFEは、TFEの単独重合体であってもよいし、TFE単位とTFEと共重合可能な変性モノマー単位とを含む変性PTFEであってもよい。
上記変性PTFEは、TFEと共重合可能な変性モノマー単位の含有量が全単量体単位の0.01~1質量%であることが好ましく、0.01~0.5質量%であることが更に好ましく、0.03~0.3質量%であることが最も好ましい。
本明細書において、上記変性モノマー単位とは、変性PTFEの分子構造の一部分であって変性モノマーに由来する部分を意味し、全単量体単位とは、変性PTFEの分子構造における全ての単量体に由来する部分を意味する。上記変性モノマー単位の含有量は、赤外分光分析又はNMR(核磁気共鳴)を行うことにより測定する値である。
上記変性PTFEにおける変性モノマーとしては、TFEとの共重合が可能なものであれば特に限定されず、例えば、ヘキサフルオロプロピレン〔HFP〕等のパーフルオロオレフィン;クロロトリフルオロエチレン〔CTFE〕等のクロロフルオロオレフィン;トリフルオロエチレン、フッ化ビニリデン〔VDF〕等の水素含有フルオロオレフィン;パーフルオロビニルエーテル;パーフルオロアルキルエチレン:エチレン等が挙げられる。また、用いる変性モノマーは1種であってもよいし、複数種であってもよい。
上記パーフルオロビニルエーテルとしては特に限定されず、例えば、下記一般式(I)
CF=CF-ORf (I)
(式中、Rfは、パーフルオロ有機基を表す。)で表されるパーフルオロ不飽和化合物等が挙げられる。本明細書において、上記「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。上記パーフルオロ有機基は、エーテル酸素を有していてもよい。
上記パーフルオロビニルエーテルとしては、例えば、上記一般式(I)において、Rfが炭素数1~10のパーフルオロアルキル基を表すものであるパーフルオロ(アルキルビニルエーテル)〔PAVE〕が挙げられる。上記パーフルオロアルキル基の炭素数は、好ましくは1~5である。
上記PAVEにおけるパーフルオロアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等が挙げられるが、パーフルオロアルキル基がパーフルオロプロピル基であるパープルオロプロピルビニルエーテル〔PPVE〕が好ましい。
上記パーフルオロビニルエーテルとしては、更に、上記一般式(I)において、Rfが炭素数4~9のパーフルオロ(アルコキシアルキル)基であるもの、Rfが下記式:
Figure JPOXMLDOC01-appb-C000001
(式中、mは、0又は1~4の整数を表す。)で表される基であるもの、Rfが下記式:
Figure JPOXMLDOC01-appb-C000002
(式中、nは、1~4の整数を表す。)で表される基であるもの等が挙げられる。
パーフルオロアルキルエチレンとしては特に限定されず、例えば、パーフルオロブチルエチレン(PFBE)、パーフルオロヘキシルエチレン等が挙げられる。
上記変性PTFEにおける変性モノマーとしては、HFP、CTFE、VDF、PPVE、PFBE及びエチレンからなる群より選択される少なくとも1種の単量体が好ましく、HFPがより好ましい。
上記低分子量PTFEは、変性PTFEであることが好ましく、TFE単位とHFPに由来する重合単位(HFP単位)とを含む変性PTFEであることがより好ましい。
上記フッ素樹脂(a1)は、平均粒径が0.01~1000μmであることが好ましく、0.1~100μmであることがより好ましく、0.3~50μmであることがさらに好ましく、0.5~20μmであることが最も好ましい。
上記平均粒径は、レーザー回折式粒度分布測定装置(例えば、日本レーザー社製)を用い、カスケードは使用せず、圧力0.1MPa、測定時間3秒で粒度分布を測定し、得られた粒度分布積算の50%に対応する値に等しいとする。
〔リン化合物(a2)〕
上記フッ素ゴム組成物がリン化合物(a2)を含むことにより、上記フッ素ゴム層(A)と上記フッ素樹脂層(B)とが強固に接着する。リン化合物(a2)は、1分子中に少なくとも1つのリン原子を含む化合物であり、例えば、ホスフィン類、リン酸エステル類、ホスファゼン類、ホスフィンオキシド類、ホスホン酸エステル類、ホスフィン酸エステル類等が挙げられる。
リン化合物(a2)としては、上記フッ素ゴム層(A)と上記フッ素樹脂層(B)とがより一層強固に接着することから、一般式:PR(式中、3つのRは、同一又は異なって、ハロゲン原子又は有機基を表す)で表されるホスフィン化合物、ホスホニウム塩、及び、ホスフィンオキシド類からなる群より選択される少なくとも1種が好ましく、上記ホスフィン化合物がより好ましい。
上記ホスフィン化合物は、一般式:PRで表され、式中の3つのRは、同一又は異なっていてよく、それぞれハロゲン原子又は有機基を表す。上記ホスフィン化合物には、トリフェニルホスフィン塩酸塩、トリフェニルホスフィンボラン、トリフェニルホスフィン-トリフェニルボラン錯体等のPRで表される構造を含む化合物も含まれる。
上記有機基としては、置換基を有していてもよい炭素数1~30の炭化水素基が挙げられる。上記炭化水素基は、直鎖、分岐鎖、単環又は多環であってもよく、不飽和結合を有していてもよく、芳香族性を有していてもよく、ヘテロ原子を含んでもよい。上記置換基としては、アルコキシ基、アミノ基、シアノ基、アルデヒド基、カルボン酸基、ハロゲン原子、ホスフィン基、ホスホン基、ジフェニルホスフィノ基等が挙げられる。
上記ホスフィン化合物としては、次の化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
上記ホスフィン化合物としては、なかでも、次の化合物のいずれかが好ましい。上記ホスフィン化合物として、1種又は2種以上を使用することができる。
Figure JPOXMLDOC01-appb-C000011
上記ホスホニウム塩としては、第4級ホスホニウム塩が好ましく、例えば、テトラブチルホスホニウムクロリド、ベンジルトリフェニルホスホニウムクロリド、ベンジルトリメチルホスホニウムクロリド、ベンジルトリブチルホスホニウムクロリド、トリブチルアリルホスホニウムクロリド、トリブチル-2-メトキシプロピルホスホニウムクロリド、ベンジルフェニル(ジメチルアミノ)ホスホニウムクロリド、トリブチル(シアノメチル)ホスホニウムクロリド等が挙げられる。上記ホスホニウム塩は、上記フッ素樹脂(a1)、特に低分子量PTFEと共に使用することによって、高い接着強度が得られる。
上記ホスフィンオキシド類としては、一般式:RP(=O)(式中、3つのRは、同一又は異なって、ハロゲン原子又は有機基を表す)で表される化合物が好ましい。
上記有機基としては、置換基を有していてもよい炭素数1~30の炭化水素基が挙げられる。上記炭化水素基は、直鎖、分岐鎖、単環又は多環であってもよく、不飽和結合を有していてもよく、芳香族性を有していてもよく、ヘテロ原子を含んでもよい。上記置換基としては、アルコキシ基、アミノ基、シアノ基、アルデヒド基、カルボン酸基、ハロゲン原子、ホスフィン基、ホスホン基、ジフェニルホスフィノ基等が挙げられる。
上記ホスフィンオキシド類としては、なかでも、次の化合物が好ましい。
Figure JPOXMLDOC01-appb-C000012
〔塩基性の多官能化合物〕
上記フッ素ゴム組成物は、塩基性の多官能化合物を含み、これによって、フッ素ゴム層(A)とフッ素樹脂層(B)とがより強固に接着する。上記塩基性の多官能化合物は、1つの分子中に同一又は異なる構造の2つ以上の官能基を有し、塩基性を示す化合物である。
上記塩基性の多官能化合物が有する官能基としては、塩基性を示すものであることが好ましく、例えば、-NH、-NH 、-NHCOOH、-NHCOO、-N=CR(式中、R及びRは、独立して、炭素数0~12の有機基である)、-NR(式中、R及びRは、独立して、炭素数0~12の有機基である)、-NR(式中、R、R及びRは、独立して、炭素数0~12の有機基である)、及び、加熱によって上記官能基に変化する官能基からなる群より選択される少なくとも1種が好ましく、-NH、-NH 、-N=CR(式中、R及びRは、上記と同じ)、及び、NR(式中、R、R及びRは、上記と同じ)からなる群より選択される少なくとも1種がより好ましく、-NH、-NH 及び-N=CR(式中、R及びRは、上記と同じ)からなる群より選択される少なくとも1種が更に好ましい。
上記R、R、R、R及びRは、独立して、-H、又は、炭素数1~12の有機基であることが好ましく、-H、又は、炭素数1~12の炭化水素基であることが好ましい。上記炭化水素基は、1又は2以上の炭素-炭素二重結合を有するものであってもよい。上記炭化水素基の炭素数は、1~8であることが好ましい。
上記Rは-H、又は、-CHであり、Rは、-CH=CHR(Rは、フェニル基(-C)、ベンジル基(-CH-C)、又は、-Hである)であることが好ましく、上記Rは-Hであり、Rは、-CH=CH-Cであることがより好ましい。
上記塩基性の多官能化合物としては、エチレンジアミン、プロパンジアミン、プトレシン、カダベリン、ヘキサメチレンジアミン、ヘプタンジアミン、オクタンジアミン、ノナンジアミン、デカンジアミン、ウンデカンジアミン、ドデカンジアミン、フェニレンジアミン、N,N’-ジシンナミリデン-1,6-ヘキサメチレンジアミン、N,N,N’,N’-テトラメチル-1,6-ヘキサメチレンジアミン、N,N’-ジメチル-1,6-ヘキサメチレンジアミン、6-アミノヘキシルカルバミド酸等が挙げられる。
上記塩基性の多官能化合物は、分子中に少なくとも2個の窒素原子を含有し、窒素-窒素間の原子間距離が5.70Å以上である。上記窒素-窒素間の原子間距離は、6.30Å以上であることがより好ましく、7.60Å以上であることが更に好ましく、8.60Å以上であることが特に好ましい。窒素-窒素間の原子間距離が広いことによって塩基性の多官能化合物の柔軟性が増し、加硫が容易となる。
ここで、窒素-窒素間の原子間距離は下記の方法に従って計算する。すなわち、各塩基の構造最適化は密度汎関数法(プログラムはGaussian03、密度汎関数はB3LYP、基底関数は6-31G*)を用いて算出する。
上記塩基性の多官能化合物は、フッ素ゴム層(A)とフッ素樹脂層(B)との接着性の点で、N,N’-ジシンナミリデン-1,6-ヘキサメチレンジアミン及びNH-(CH-NH(式中、nは5~12)からなる群より選択される少なくとも1種であることが好ましく、ヘキサメチレンジアミン、及び、N,N’-ジシンナミリデン-1,6-ヘキサメチレンジアミンからなる群より選択される少なくとも1種の化合物であることがより好ましい。
フッ素ゴム層(A)とフッ素樹脂層(B)とがより強固に接着することから、上記フッ素ゴム組成物において、塩基性の多官能化合物の含有量は、上記フッ素ゴム100質量部に対して、0.5質量部以上であることが好ましく、0.6質量部以上であることがより好ましく、0.8質量部以上であることが更に好ましく、1.0質量部以上であることが特に好ましく、1.5質量部以上であることが最も好ましい。
塩基性の多官能化合物の含有量は、加硫阻害、コストの観点から、10質量部以下であることが好ましく、6質量部以下である事がより好ましく、5質量部以下であることが更に好ましく、3質量部以下であることが最も好ましい。
〔その他の成分〕
上記フッ素ゴム組成物は、フッ素ゴム層(A)とフッ素樹脂層(B)とがより強固に接着することから、更に、加硫剤を含むことも好ましい。上記加硫剤としては、パーオキサイド加硫系加硫剤等を目的に応じて選択することができる。上記フッ素ゴム組成物は、パーオキサイド加硫系加硫剤を含むことが好ましい。
上記パーオキサイド加硫系加硫剤としては特に限定されず、例えば、有機過酸化物を挙げることができる。上記有機過酸化物としては、熱や酸化還元系の存在下で容易にパーオキシラジカルを発生するものが好ましく、例えば1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロキシパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、ジクミルパーオキシド、α,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ベンゾイルパーオキシド、t-ブチルパーオキシベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシイソプロピルカーボネート等を例示することができる。なかでも、ジアルキル化合物がより好ましい。
一般に、使用量は、活性-O-O-の量、分解温度等から適宜選択される。使用量は通常、上記フッ素ゴム100質量部に対して0.1~15質量部であり、好ましくは0.3~5質量部であり、更に好ましくは1~2質量部である。
有機過酸化物を加硫剤として使用する場合は、加硫助剤や共加硫剤を併用してもよい。上記加硫助剤又は共加硫剤としては特に限定されず、例えば、上述の加硫助剤及び共加硫剤を挙げることができる。これらの中でも、加硫性、加硫物の物性の点から、トリアリルイソシアヌレート(TAIC)が好ましい。
上記加硫助剤や共加硫剤の配合量としては、フッ素ゴム100質量部に対して、0.2~10質量部が好ましく、0.5~9質量部がより好ましく、2~8質量部が更に好ましく、3~7質量部が最も好ましい。加硫剤や共加硫剤が、0.2質量部未満であると、加硫密度が低くなり圧縮永久歪みが大きくなる傾向があり、10質量部をこえると、加硫密度が高くなりすぎるため、圧縮時に割れやすくなる傾向がある。
上記フッ素ゴム組成物は、受酸剤として、またはフッ素ゴム層(A)とフッ素樹脂層(B)との接着性を向上させるための配合剤として、金属酸化物、金属水酸化物、アルカリ金属の弱酸塩、及び、アルカリ土類金属の弱酸塩からなる群より選択される少なくとも1種の化合物を含有してもよい。
上記金属酸化物、金属水酸化物、アルカリ金属の弱酸塩及びアルカリ土類金属の弱酸塩としては、周期表第(II)族金属の酸化物、水酸化物、炭酸塩、カルボン酸塩、ケイ酸塩、ホウ酸塩、亜リン酸塩、周期表第(IV)族金属の酸化物、塩基性炭酸塩、塩基性カルボン酸塩、塩基性亜リン酸塩、塩基性亜硫酸塩等が挙げられる。
金属酸化物、金属水酸化物、アルカリ金属の弱酸塩及びアルカリ土類金属の弱酸塩の具体的な例としては、酸化マグネシウム、酸化亜鉛、水酸化マグネシウム、水酸化バリウム、炭酸マグネシウム、炭酸バリウム、酸化カルシウム(生石灰)、水酸化カルシウム(消石灰)、炭酸カルシウム、ケイ酸カルシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、フタル酸カルシウム、亜リン酸カルシウム、酸化錫、塩基性亜リン酸錫等をあげることができる。
有機過酸化物を加硫剤として使用する場合には、上記金属酸化物、金属水酸化物、アルカリ金属の弱酸塩、アルカリ土類金属の弱酸塩の含有量は、5質量部以下が好ましく、より好ましくは3質量部以下、耐酸性の観点からは、含まないことが更に好ましい。
上記フッ素ゴム組成物は、必要に応じてフッ素ゴム組成物中に配合される通常の添加物、例えば、充填剤、加工助剤、可塑剤、着色剤、安定剤、接着助剤、受酸剤、離型剤、導電性付与剤、熱伝導性付与剤、表面非粘着剤、柔軟性付与剤、耐熱性改善剤、難燃剤等の各種添加剤を配合することができ、上述のものとは異なる常用の加硫剤や加硫促進剤を1種又はそれ以上含有してもよい。
上記充填剤としては、カーボンブラックが挙げられる。カーボンブラックの含有量は、上記フッ素ゴム100質量部に対して0~100質量部であることが好ましく、2~60質量部であることがより好ましく、5~40質量部であることが更に好ましく、10~30質量部であることが特に好ましい。カーボンブラックを使用することで、機械物性、耐熱性等の向上という利点がある。
上記フッ素ゴム組成物は、各成分を、一般に使用されているゴム混練り装置を用いて混練りすることにより得ることができる。上記ゴム混練り装置としては、ロール、ニーダー、バンバリーミキサー、インターナルミキサー、二軸押し出し機等を用いることができる。
(B)フッ素樹脂層
フッ素樹脂層(B)は、フッ素樹脂(b1)から構成されるものであり、該フッ素樹脂(b1)は、燃料透過係数が2.0g・mm/m/day以下である。
燃料透過係数が2.0g・mm/m/day以下であることによって、優れた燃料低透過性が発揮される。従って、例えば、本発明の積層体は、燃料用ホース等として好適に使用可能である。
上記燃料透過係数は、1.5g・mm/m/day以下であることが好ましく、0.8g・mm/m/day以下であることがより好ましく、0.55g・mm/m/day以下であることが更に好ましく、0.5g・mm/m/day以下であることが特に好ましい。
上記燃料透過係数は、イソオクタン、トルエン及びエタノールを45:45:10の容積比で混合したイソオクタン/トルエン/エタノール混合溶媒18mLを投入した内径40mmφ、高さ20mmのSUS316製の燃料透過係数測定用カップに測定対象樹脂から下記方法により作製したフッ素樹脂シート(直径45mm、厚み120μm)を組み入れ、60℃において測定した質量変化から算出される値である。
(フッ素樹脂シートの作製方法)
樹脂ペレットを、それぞれ、直径120mmの金型に入れ、300℃に加熱したプレス機にセットし、約2.9MPaの圧力で溶融プレスして、厚さ0.12mmのフッ素樹脂シートを得、そのシートを直径45mm、厚み120μmに加工する。
上記フッ素樹脂(b1)は、優れた燃料低透過性を有する積層体が得られることから、ポリクロロトリフルオロエチレン(PCTFE)、CTFE系共重合体、及び、TFE/HFP/VdF共重合体からなる群より選択される少なくとも1種であることが好ましく、ポリクロロトリフルオロエチレン(PCTFE)及びCTFE系共重合体からなる群より選択される少なくとも1種であることがより好ましく、燃料低透過性及び柔軟性の観点から、CTFE系共重合体が更に好ましい。
TFE/HFP/VdF共重合体は、VdF含有率が少ないと燃料低透過性が優れることから、TFE、HFP及びVdFの共重合割合(モル%比)がTFE/HFP/VdF=75~95/0.1~10/0.1~19である事が好ましく、77~95/1~8/1~17(モル比)であることがより好ましく、77~95/2~8/2~15.5(モル比)であることが更に好ましく、79~90/5~8/5~15(モル比)であることが最も好ましい。また、TFE/HFP/VdF共重合体はその他のモノマーを0~20モル%含んでいてもよい。他のモノマーとしては、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)、クロロトリフルオロエチレン、2-クロロペンタフルオロプロペン、過フッ素化されたビニルエーテル(例えばCFOCFCFCFOCF=CFなどのペルフルオロアルコキシビニルエーテル)などのフッ素含有モノマー、ペルフルオロアルキルビニルエーテル、ペルフルオロ-1,3-ブタジエン、トリフルオロエチレン、ヘキサフルオロイソブテン、フッ化ビニル、エチレン、プロピレン、および、アルキルビニルエーテルからなる群より選択される少なくとも一種のモノマー等が挙げられ、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)であることが好ましい。
上記PCTFEは、クロロトリフルオロエチレンの単独重合体である。
上記CTFE系共重合体としては、CTFEに由来する共重合単位(CTFE単位)と、TFE、HFP、PAVE、VdF、フッ化ビニル、へキサフルオロイソブテン、式:
CH=CX(CF
(式中、XはH又はF、XはH、F又はCl、nは1~10の整数である)で示される単量体、エチレン、プロピレン、1-ブテン、2-ブテン、塩化ビニル、及び、塩化ビニリデンからなる群より選択される少なくとも1種の単量体に由来する共重合単位と、を含むことが好ましい。
また、CTFE系共重合体は、パーハロポリマーであることがより好ましい。
CTFE系共重合体としては、CTFE単位と、TFE、HFP及びPAVEからなる群より選択される少なくとも1種の単量体に由来する共重合単位と、を含むことがより好ましく、実質的にこれらの共重合単位のみからなることが更に好ましい。また、燃料低透過性の観点から、エチレン、フッ化ビニリデン、フッ化ビニル等のCH結合を有するモノマーを含まないことが好ましい。
CH結合を有するモノマーを含まないパーハロポリマーはフッ素ゴムとの接着が通常困難であるが、本発明の構成によれば、フッ素樹脂層(B)がパーハロポリマーからなる層であっても、フッ素樹脂層(B)とフッ素ゴム層(A)との層間の接着は強固である。
CTFE系共重合体は、全単量体単位の10~90モル%のCTFE単位を有することが好ましい。
CTFE系共重合体としては、CTFE単位、TFE単位及びこれらと共重合可能な単量体(α)に由来する単量体(α)単位を含むものが特に好ましい。
「CTFE単位」及び「TFE単位」は、CTFE系共重合体の分子構造上、それぞれ、CTFEに由来する部分(-CFCl-CF-)、TFEに由来する部分(-CF-CF-)であり、前記「単量体(α)単位」は、同様に、CTFE系共重合体の分子構造上、単量体(α)が付加してなる部分である。
単量体(α)としては、CTFE及びTFEと共重合可能な単量体であれば特に限定されず、エチレン(Et)、ビニリデンフルオライド(VdF)、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基)で表されるPAVE、CX=CX(CF(式中、X、X及びXは同一もしくは異なって、水素原子又はフッ素原子;Xは、水素原子、フッ素原子又は塩素原子;nは、1~10の整数)で表されるビニル単量体、CF=CF-O-Rf(式中、Rfは、炭素数1~5のパーフルオロアルキル基)で表されるアルキルパーフルオロビニルエーテル誘導体等があげられる。
上記アルキルパーフルオロビニルエーテル誘導体としては、Rfが炭素数1~3のパーフルオロアルキル基であるものが好ましく、CF=CF-OCF-CFCFがより好ましい。
単量体(α)としては、なかでも、PAVE、上記ビニル単量体、及び、アルキルパーフルオロビニルエーテル誘導体からなる群より選択される少なくとも1種であることが好ましく、PAVE及びHFPからなる群より選択される少なくとも1種であることがより好ましく、PAVEが特に好ましい。
CTFE系共重合体における、CTFE単位とTFE単位との比率は、CTFE単位が15~90モル%に対し、TFE単位が85~10モル%であり、より好ましくは、CTFE単位が20~90モル%であり、TFE単位が80~10モル%である。また、CTFE単位15~25モル%と、TFE単位85~75モル%とから構成されるものも好ましい。
CTFE系共重合体は、CTFE単位とTFE単位との合計が90~99.9モル%であり、単量体(α)単位が0.1~10モル%であるものが好ましい。単量体(α)単位が0.1モル%未満であると、成形性、耐環境応力割れ性及び耐燃料クラック性に劣りやすく、10モル%を超えると、燃料低透過性、耐熱性、機械特性に劣る傾向にある。
フッ素樹脂(b1)は、燃料低透過性、接着性の観点から、PCTFE、CTFE/TFE/PAVE共重合体及びTFE/HFP/VdF共重合体からなる群より選択される少なくとも1種であることがより好ましく、CTFE/TFE/PAVE共重合体及びTFE/HFP/VdF共重合体からなる群より選択される少なくとも1種であることが更に好ましく、CTFE/TFE/PAVE共重合体が特に好ましい。
上記CTFE/TFE/PAVE共重合体とは、実質的にCTFE、TFE及びPAVEのみからなる共重合体である。
CTFE/TFE/PAVE共重合体において、上記PAVEとしては、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)、パーフルオロ(ブチルビニルエーテル)等があげられ、なかでもPMVE、PEVE及びPPVEからなる群より選択される少なくとも1種であることが好ましい。
CTFE/TFE/PAVE共重合体において、PAVE単位は、全単量体単位の0.5モル%以上であることが好ましく、5モル%以下であることが好ましい。
CTFE単位等の構成単位は、19F-NMR分析を行うことにより得られる値である。
フッ素樹脂(b1)は、ポリマーの主鎖末端及び/又は側鎖に、カルボニル基、ヒドロキシル基、ヘテロ環基、及びアミノ基からなる群より選択される少なくとも1種の反応性官能基を導入したものであってもよい。
本明細書において、「カルボニル基」は、炭素-酸素二重結合から構成される炭素2価の基であり、-C(=O)-で表されるものに代表される。前記カルボニル基を含む反応性官能基としては特に限定されず、たとえばカーボネート基、カルボン酸ハライド基(ハロゲノホルミル基)、ホルミル基、カルボキシル基、エステル結合(-C(=O)O-)、酸無水物結合(-C(=O)O-C(=O)-)、イソシアネート基、アミド基、イミド基(-C(=O)-NH-C(=O)-)、ウレタン結合(-NH-C(=O)O-)、カルバモイル基(NH-C(=O)-)、カルバモイルオキシ基(NH-C(=O)O-)、ウレイド基(NH-C(=O)-NH-)、オキサモイル基(NH-C(=O)-C(=O)-)等、化学構造上の一部としてカルボニル基を含むものがあげられる。
アミド基、イミド基、ウレタン結合、カルバモイル基、カルバモイルオキシ基、ウレイド基、オキサモイル基等においては、その窒素原子に結合する水素原子は、たとえばアルキル基等の炭化水素基で置換されていてもよい。
反応性官能基は、導入が容易である点、フッ素樹脂(b1)が適度な耐熱性と比較的低温での良好な接着性とを有する点から、アミド基、カルバモイル基、ヒドロキシル基、カルボキシル基、カーボネート基、カルボン酸ハライド基、酸無水物結合が好ましく、さらにはアミド基、カルバモイル基、ヒドロキシル基、カーボネート基、カルボン酸ハライド基、酸無水物結合が好ましい。
フッ素樹脂(b1)は、懸濁重合、溶液重合、乳化重合、塊状重合等、従来公知の重合方法により得ることができる。前記重合において、温度、圧力等の各条件、重合開始剤やその他の添加剤は、フッ素樹脂(b1)の組成や量に応じて適宜設定することができる。
フッ素樹脂(b1)の融点は特に限定されないが、160~270℃であることが好ましい。フッ素樹脂(b1)の融点は、DSC装置(セイコー社製)を用い、10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度として求める。
またフッ素樹脂(b1)の分子量は、得られる積層体が良好な機械特性や燃料低透過性等を発現できるような範囲であることが好ましい。たとえば、メルトフローレート(MFR)を分子量の指標とする場合、フッ素樹脂一般の成形温度範囲である約230~350℃の範囲の任意の温度におけるMFRは、0.5~100g/10分であることが好ましい。より好ましくは、1~50g/10分であり、更に好ましくは、2~35g/10分である。例えば、フッ素樹脂(b1)が、PCTFE、CTFE系共重合体又はTFE/HFP/VdF共重合体である場合には、297℃でMFRを測定する。
上記MFRは、メルトインデクサー(東洋精機製作所社製)を用い、例えば、297℃、5kg荷重下で直径2mm、長さ8mmのノズルから単位時間(10分間)に流出するポリマーの重量(g)を測定することにより特定できる。
本発明においてフッ素樹脂層(B)は、これらのフッ素樹脂(b1)を1種含有するものであってもよいし、2種以上含有するものであってもよい。
なお、フッ素樹脂(b1)がパーハロポリマーである場合、耐薬品性及び燃料低透過性がより優れたものとなる。パーハロポリマーとは、重合体の主鎖を構成する炭素原子の全部にハロゲン原子が結合している重合体である。
フッ素樹脂層(B)は、さらに、目的や用途に応じてその性能を損なわない範囲で、無機質粉末、ガラス繊維、炭素粉末、炭素繊維、金属酸化物等の種々の充填剤を配合したものであってもよい。
たとえば、燃料透過性をさらに低減させるために、モンモリロナイト、バイデライト、サポナイト、ノントロナイト、ヘクトライト、ソーコナイト、スチブンサイト等のスメクタイト系の層状粘度鉱物や、雲母等の高アスペクト比を有する微小層状鉱物を添加してもよい。
また、導電性を付与するために、導電性フィラーを添加してもよい。導電性フィラーとしては特に限定されず、たとえば金属、炭素等の導電性単体粉末又は導電性単体繊維;酸化亜鉛等の導電性化合物の粉末;表面導電化処理粉末等があげられる。導電性フィラーを配合する場合、溶融混練して予めペレットを作製することが好ましい。
導電性単体粉末又は導電性単体繊維としては特に限定されず、たとえば銅、ニッケル等の金属粉末;鉄、ステンレススチール等の金属繊維;カーボンブラック、炭素繊維、特開平3-174018号公報等に記載の炭素フィブリル等があげられる。
表面導電化処理粉末は、ガラスビーズ、酸化チタン等の非導電性粉末の表面に導電化処理を施して得られる粉末である。
表面導電化処理の方法としては特に限定されず、たとえば金属スパッタリング、無電解メッキ等があげられる。
導電性フィラーのなかでもカーボンブラックは、経済性や静電荷蓄積防止の観点で有利であるので好適に用いられる。
導電性フィラーを配合してなるフッ素樹脂組成物の体積抵抗率は、1×10~1×10Ω・cmであることが好ましい。より好ましい下限は、1×10Ω・cmであり、より好ましい上限は、1×10Ω・cmである。
また、充填剤以外に、熱安定化剤、補強剤、紫外線吸収剤、顔料、その他任意の添加剤を配合してもよい。
(積層体)
本発明の積層体において、上記フッ素ゴム層(A)の厚みは限定されないが、例えば、100μm以上であることが好ましい。上記フッ素ゴム層(A)の厚みの上限としては、例えば、5000μmである。
上記フッ素樹脂層(B)の厚みは限定されないが、例えば、10μm以上であることが好ましい。上記フッ素樹脂層(B)の厚みの上限としては、例えば、1000μmである。
本発明の積層体は、上記フッ素ゴム層(A)と上記フッ素樹脂層(B)との接着強度が7N/cm以上であることが好ましく、11N/cm以上であることがより好ましい。接着強度が7N/cm以上であることによって、ホースを特定の形状で加硫する際にズレが起こりにくい、衝撃が加わった際に剥がれが起こらないという利点がある。本発明の積層体は、上記構成を有することによって、接着強度を上記範囲にすることができる。接着強度は12N/cm以上であることが更に好ましく、15N/cm以上であることが特に好ましい。
上記接着強度は、積層体を幅10mm×長さ40mm×3セットの短冊状に切断し、試料片を作成し、この試験片について、上記フッ素ゴム層(A)と上記フッ素樹脂層(B)との境界面の接着強度を含まず、接着面のみの接着強度を測定するために、上記フッ素ゴム層(A)と上記フッ素樹脂層(B)の界面を一度ゆっくりと手で引っ張ることにより2~3mm掴みしろを増やしてから、オートグラフ(島津製作所社製 AGS-J 5kN)を使用して、JIS-K-6256(加硫ゴムの接着試験方法)に記載の方法に準拠し、25℃において50mm/分の引張速度で剥離試験を行い、剥離モードを観測して測定した値である。
本発明の積層体は、上記フッ素ゴム層(A)と上記フッ素樹脂層(B)が加硫接着されていることが好ましい。このような積層体は、未加硫のフッ素ゴム層(A)とフッ素樹脂層(B)とを積層した後、加硫処理することにより得られる。
上記加硫処理は、従来公知のフッ素ゴム組成物の加硫方法と条件が採用できる。たとえば、未加硫の積層体を長時間加硫する方法、未加硫の積層体を比較的短時間で前処理としての熱処理を行い(加硫も生じている)、ついで長時間かけて加硫を行う方法がある。これらのうち、未加硫の積層体を比較的短時間で前処理としての熱処理を行い、ついで長時間かけて加硫を行う方法が、前処理でフッ素ゴム層(A)とフッ素樹脂層(B)との密着性が容易に得られ、また、前処理で既にフッ素ゴム層(A)が加硫しており形状が安定化しているので、その後の加硫における積層体の保持方法をさまざまに選択することができるので好適である。
加硫処理の条件は特に制限されるものではなく、通常の条件で行うことができるが、140~180℃で、2分~80分、スチーム、プレス、オーブン、エアーバス、赤外線、マイクロウェーブ、被鉛加硫等を用いて処理を行うことが好ましい。より好ましくは、150~170℃で、5~60分かけて行う。加硫処理を1次加硫と2次加硫に分けて行ってもよい。
上記フッ素ゴムと、塩基性の多官能化合物と、化合物(a)とを混合してフッ素ゴム組成物を得る工程、上記フッ素ゴム組成物を成形して得られる未加硫フッ素ゴム層と、フッ素樹脂層とを積層する工程、積層された未加硫フッ素ゴム層とフッ素樹脂層に加硫処理する工程、を含み、上記フッ素樹脂層は、燃料透過係数が2.0g・mm/m/day以下であるフッ素樹脂(b1)から構成されることを特徴とする積層体の製造方法は、フッ素ゴム層とフッ素樹脂層とが強固に接着した積層体を製造するための製造方法として好ましい。
上記製造方法により、上述した本発明の積層体を製造することができる。
本発明の製造方法において、加硫処理の条件は上述したものと同じである。
上記フッ素ゴムと、塩基性の多官能化合物と、化合物(a)とを混合してフッ素ゴム組成物を得る工程は、例えば、上記フッ素ゴムと、塩基性の多官能化合物と、化合物(a)とを、一般に使用されているゴム混練り装置を用いて混練りするものである。
上記ゴム混練り装置としては、ロール、ニーダー、バンバリーミキサー、インターナルミキサー、二軸押し出し機等を用いることができる。
上記混合は、上記フッ素ゴムと、塩基性の多官能化合物と、化合物(a)とに加え、必要に応じて、加硫剤、加硫助剤、共加硫剤、加硫促進剤、充填材等のその他添加剤とともに混合するものであってよい。
上記混合の温度は、例えば、20~200℃である。また、上記混合の時間は、例えば、2~80分である。
上記未加硫フッ素ゴム層とフッ素樹脂層の積層は、未加硫フッ素ゴム層とフッ素樹脂層を別々に成形した後に圧着等の手段で積層する方法、未加硫フッ素ゴム層とフッ素樹脂層とを同時に成形して積層する方法、未加硫フッ素ゴム層にフッ素樹脂を塗布してフッ素樹脂層を形成する方法のいずれでもよい。
未加硫フッ素ゴム層とフッ素樹脂層を別々に成形した後に圧着等の手段で積層する方法では、フッ素樹脂の成形方法とフッ素ゴム組成物のそれぞれ単独での成形方法が採用できる。
未加硫フッ素ゴム層の成形は、フッ素ゴム組成物を加熱圧縮成形法、トランスファー成形法、押出成形法、射出成形法、カレンダー成形法、塗装法等により、シート状、チューブ状等の各種形状の成形体とすることができる。
フッ素樹脂層は、加熱圧縮成形、溶融押出成形、射出成形、塗装(粉体塗装を含む)等の方法により成形できる。成形には通常用いられるフッ素樹脂の成形機、たとえば射出成形機、ブロー成形機、押出成形機、各種塗装装置等が使用でき、シート状、チューブ状等、各種形状の積層体を製造することが可能である。これらのうち、生産性が優れている点から、溶融押出成形法が好ましい。
未加硫フッ素ゴム層とフッ素樹脂層を同時に成形して積層する方法としては、未加硫フッ素ゴム層を形成するフッ素ゴム組成物、及び、フッ素樹脂層を形成するフッ素樹脂(b1)を用いて、多層圧縮成形法、多層トランスファー成形法、多層押出成形法、多層射出成形法、ダブリング法等の方法により成形と同時に積層する方法があげられる。この方法では、未加硫成形体である未加硫フッ素ゴム層とフッ素樹脂層とを同時に積層できるため、未加硫フッ素ゴム層とフッ素樹脂層とを密着させる工程が特に必要ではなく、また、後の加硫工程において強固な接着を得るのに好適である。密着が不足している場合はラッピング等の密着工程を行ってもよい。
(積層体の積層構造)
本発明の積層体は、フッ素ゴム層(A)とフッ素樹脂層(B)の2層構造でもよいし、フッ素樹脂層(B)の両側にフッ素ゴム層(A)が積層されたものであってもよいし、フッ素ゴム層(A)の両側にフッ素樹脂層(B)が積層されたものであってもよい。
例えば、フッ素ゴム層(A)-フッ素樹脂層(B)-フッ素ゴム層(A)又はフッ素樹脂層(B)-フッ素ゴム層(A)-フッ素樹脂層(B)といった3層構造でもよい。
さらに、フッ素ゴム層(A)及びフッ素樹脂層(B)以外のポリマー層(C)が接着された3層以上の多層構造であってもよいし、フッ素ゴム層(A)及びフッ素樹脂層(B)以外のポリマー層(C)が接着された3層の多層構造の片側もしくは両側にポリマー層(D)を有していてもよい。ポリマー層(C)とポリマー層(D)は同じであってもよいし、異なっていてもよい。
本発明の積層体は、フッ素ゴム層(A)-フッ素樹脂層(B)-フッ素ゴム層(A)の3層構造の片側もしくは両側にポリマー層(C)を有してもよい。
ポリマー層(C)、(D)としては、フッ素ゴム層(A)以外のゴム層(C1)又は(D1)でもよい。ゴム層(C1)又は(D1)としては、非フッ素ゴムから形成される非フッ素ゴム層(C1a)又は(D1a)があげられる。非フッ素ゴムは、耐寒性が良好な点や、コスト面で優れていることから好ましい。非フッ素ゴム層(C1a)と非フッ素ゴム層(D1a)は同じ非フッ素ゴムから形成されたものでもよいし、異なる非フッ素ゴムから形成されたものでもよい。
本発明の積層体は、フッ素ゴム層(A)-フッ素樹脂層(B)-非フッ素ゴム層(C1a)の順に積層されているものであってもよい。
また、更に、非フッ素ゴム層(D1a)を含み、非フッ素ゴム層(D1a)-フッ素ゴム層(A)-フッ素樹脂層(B)-非フッ素ゴム層(C1a)の順、フッ素ゴム層(A)-フッ素樹脂層(B)-非フッ素ゴム層(D1a)-非フッ素ゴム層(C1a)の順、又は、フッ素ゴム層(A)-フッ素樹脂層(B)-非フッ素ゴム層(C1a)-非フッ素ゴム層(D1a)の順、に積層されているものであってもよい。
非フッ素ゴムの具体例としては、たとえばアクリロニトリル-ブタジエンゴム(NBR)又はその水素化物(HNBR)、スチレン-ブタジエンゴム(SBR)、クロロプレンゴム(CR)、ブタジエンゴム(BR)、天然ゴム(NR)、イソプレンゴム(IR)等のジエン系ゴム、エチレン-プロピレン-ターモノマー共重合体ゴム、シリコーンゴム、ブチルゴム、エピクロルヒドリンゴム、アクリル系ゴム、塩素化ポリエチレン(CPE)、アクリロニトリル-ブタジエンゴムと塩化ビニルのポリブレンド(PVC-NBR)、エチレンプロピレンジエンゴム(EPDM)、クロロスルホン化ポリエチレン(CSM)等があげられる。また、これらの非フッ素ゴムおよびフッ素ゴムを任意の割合で混合したゴムもあげられる。
非フッ素ゴムとしては、耐熱性、耐油性、耐候性、押出成形性が良好な点から、ジエン系のゴム、またはエピクロルヒドリンゴムであることが好ましい。より好ましくは、NBR、HNBR又はエピクロルヒドリンゴムである。ゴム層(C1)は、NBR、HNBR又はエピクロルヒドリンゴムからなることが好ましい。
また、ゴム層(D1)は耐候性、コストの点から、アクリロニトリル-ブタジエンゴム、エピクロルヒドリンゴム、塩素化ポリエチレン(CPE)、アクリロニトリル-ブタジエンゴムと塩化ビニルのポリブレンド(PVC-NBR)、エチレンプロピレンジエンゴム(EPDM)、アクリル系ゴム、またはこれらの混合物からなることが好ましい。なお、ゴム層(C1)、(D1)を形成する未加硫ゴム組成物中にも、加硫剤や、その他の配合剤を配合してもよい。
つぎに本発明の積層体の層構造について更に詳細に説明する。
(1)フッ素ゴム層(A)-フッ素樹脂層(B)の2層構造
基本構造であり、従来、フッ素樹脂層(B)とフッ素ゴム層(A)を積層させるには、層間(フッ素ゴム層-フッ素樹脂層)の接着が不充分なため、樹脂側において表面処理を施したり、別途接着剤を層間に塗布したり、テープ状のフィルムを巻き付けて固定したり等と工程が複雑になりがちであったが、そのような複雑な工程を組まずに、加硫することにより加硫接着が起こり化学的に強固な接着が得られる。
(2)ゴム層-フッ素樹脂層(B)-ゴム層の3層構造
フッ素ゴム層(A)-フッ素樹脂層(B)-フッ素ゴム層(A)の3層構造、及び、フッ素ゴム層(A)-フッ素樹脂層(B)-ゴム層(C1)の3層構造がある。
シール性が要求される場合、たとえば燃料配管等の接合部は、シール性保持のためにゴム層を両側に配置することが望ましい。内外層のゴム層は同じ種類であっても、違う種類であってもよい。
フッ素ゴム層(A)-フッ素樹脂層(B)-ゴム層(C1)の3層構造の場合、ゴム層(C1)は、アクリロニトリルブタジエンゴム、水素化アクリロニトリルブタジエンゴム、エピクロルヒドリンゴム、又は、アクリロニトリルブタジエンゴムとアクリル系ゴムの混合物からなる層であることが好ましい。
また、燃料配管をフッ素ゴム層(A)-フッ素樹脂層(B)-ゴム層(C1)の3層構造とし、ゴム層(C1)としてフッ素ゴム層を設け、ゴム層(C1)を配管の内層にすることにより、耐薬品性、燃料低透過性が向上する。
(3)樹脂層-フッ素ゴム層(A)-樹脂層の3層構造
フッ素樹脂層(B)-フッ素ゴム層(A)-フッ素樹脂層(B)の3層構造が挙げられる。内外層の樹脂層は同じ種類であっても、違う種類であってもよい。
(4)フッ素樹脂層(B)-フッ素ゴム層(A)-ゴム層(C1)の3層構造
(5)4層構造以上
(2)~(4)の3層構造に加えて、さらに任意のフッ素ゴム層(A)又はゴム層(C1)、フッ素樹脂層(B)を目的に応じて積層してもよい。また、金属箔等の層を設けてもよいし、フッ素ゴム層(A)とフッ素樹脂層(B)との層間以外には接着剤層を介在させてもよい。
またさらに、ポリマー層(C)と積層してライニング体とすることもできる。
なお、各層の厚さ、形状等は、使用目的、使用形態等によって適宜選定すればよい。
また、耐圧向上の目的で、補強糸等の補強層を適宜設けてもよい。
本発明の積層体は、燃料低透過性に優れるほか、耐熱性・耐油性・耐燃料油性・耐LLC性・耐スチーム性、耐侯性、耐オゾン性に優れており、また、苛酷な条件下での使用に充分耐えうるものであり、各種の用途に使用可能である。
たとえば、自動車用エンジンのエンジン本体、主運動系、動弁系、潤滑・冷却系、燃料系、吸気・排気系等、駆動系のトランスミッション系等、シャーシのステアリング系、ブレーキ系等、電装品の基本電装部品、制御系電装部品、装備電装部品等の、耐熱性・耐油性・耐燃料油性・耐LLC性・耐スチーム性が要求されるガスケットや非接触型及び接触型のパッキン類(セルフシールパッキン、ピストンリング、割リング形パッキン、メカニカルシール、オイルシール等)等のシール、ベローズ、ダイヤフラム、ホース、チューブ、電線等として好適な特性を備えている。
具体的には、以下に列記する用途に使用可能である。
エンジン本体の、シリンダーヘッドガスケット、シリンダーヘッドカバーガスケット、オイルパンパッキン、一般ガスケット等のガスケット、O-リング、パッキン、タイミングベルトカバーガスケット等のシール、コントロールホース等のホース、エンジンマウントの防振ゴム、水素貯蔵システム内の高圧弁用シール材等。
主運動系の、クランクシャフトシール、カムシャフトシール等のシャフトシール等。
動弁系の、エンジンバルブのバルブステムシール等。
潤滑・冷却系の、エンジンオイルクーラーのエンジンオイルクーラーホース、オイルリターンホース、シールガスケット等や、ラジエータ周辺のウォーターホース、バキュームポンプのバキュームポンプオイルホース等。
燃料系の、燃料ポンプのオイルシール、ダイヤフラム、バルブ等、フィラー(ネック)ホース、燃料供給ホース、燃料リターンホース、ベーパー(エバポ)ホース等の燃料ホース、燃料タンクのインタンクホース、フィラーシール、タンクパッキン、インタンクフューエルポンプマウント等、燃料配管チューブのチューブ本体やコネクターO-リング等、燃料噴射装置のインジェクタークッションリング、インジェクターシールリング、インジェクターO-リング、プレッシャーレギュレーターダイヤフラム、チェックバルブ類等、キャブレターのニードルバルブ花弁、加速ポンプピストン、フランジガスケット、コントロールホース等、複合空気制御装置(CAC)のバルブシート、ダイヤフラム等。中でも、燃料ホース及び燃料タンクのインタンクホースとして好適である。
吸気・排気系の、マニホールドの吸気マニホールドパッキン、排気マニホールドパッキン等、EGR(排気際循環)のダイヤフラム、コントロールホース、エミッションコントロールホース等、BPTのダイヤフラム等、ABバルブのアフターバーン防止バルブシート等、スロットルのスロットルボディパッキン、ターボチャージャーのターボオイルホース(供給)、ターボオイルホース(リターン)、ターボエアホース、インタークーラーホース、タービンシャフトシール等。
トランスミッション系の、トランスミッション関連のベアリングシール、オイルシール、O-リング、パッキン、トルコンホース等、ATのミッションオイルホース、ATFホース、O-リング、パッキン類等。
ステアリング系の、パワーステアリングオイルホース等。
ブレーキ系の、オイルシール、O-リング、パッキン、ブレーキオイルホース等、マスターバックの大気弁、真空弁、ダイヤフラム等、マスターシリンダーのピストンカップ(ゴムカップ)等、キャリパーシール、ブーツ類等。
基本電装部品の、電線(ハーネス)の絶縁体やシース等、ハーネス外装部品のチューブ等。
制御系電装部品の、各種センサー線の被覆材料等。
装備電装部品の、カーエアコンのO-リング、パッキン、クーラーホース、外装品のワイパーブレード等。
また自動車用以外では、たとえば、船舶、航空機等の輸送機関における耐油、耐薬品、耐熱、耐スチーム、あるいは耐候用のパッキン、O-リング、ホース、その他のシール材、ダイヤフラム、バルブに、また化学プラントにおける同様のパッキン、O-リング、シール材、ダイヤフラム、バルブ、ホース、ロール、チューブ、耐薬品用コーティング、ライニングに、化学処理分野におけるホースまたはガスケットに、食品プラント機器及び食品機器(家庭用品を含む)における同様のパッキン、O-リング、ホース、シール材、ベルト、ダイヤフラム、バルブ、ロール、チューブに、原子力プラント機器における同様のパッキン、O-リング、ホース、シール材、ダイヤフラム、バルブ、チューブに、OA機器、一般工業部品における同様のパッキン、O-リング、ホース、シール材、ダイヤフラム、バルブ、ロール、チューブ、ライニング、マンドレル、電線、フレキシブルジョイント、ベルト、ゴム板、ウエザーストリップ、PPC複写機のロールブレード等への用途に好適である。たとえば、PTFEダイヤフラムのバックアップゴム材は滑り性が悪いため、使用している間にすり減ったり、破れたりする問題があったが、本発明の積層体を用いることにより、この問題を改善でき、好適に使用できる。
また、食品ゴムシール材用途においては、従来ゴムシール材において着香性やゴムの欠片等が食品中に混入するトラブルがあるが、本発明の積層体を用いることにより、この問題を改善でき、好適に使用できる。医薬・ケミカル用途のゴムシール材溶剤を使用する配管のシール材としてゴム材料は溶剤に膨潤する問題があるが、本発明の積層体を用いることにより、樹脂を被覆する事で改善される。一般工業分野では、ゴム材料の強度、すべり性、耐薬品性、透過性を改善する目的において、たとえば、ゴムロール、O-リング、パッキン、シール材等に好適に用いることができる。特に、リチウムイオン電池のパッキン用途には耐薬品性とシールの両方を同時に維持できることから好適に使用できる。その他、低摩擦による摺動性が要求される用途においては、好適に使用できる。
また、医療用用途としては、薬栓、ボトルのキャップシール、缶シール、薬用テープ、薬用パッド、注射器シリンジパッキン、経皮吸収薬用基材、ほ乳びん等の吸い口、医療用バッグ、カテーテル、輸液セット、混注管、キャップライナー、真空採血管のキャップ、シリンジ用ガスケット、輸液チューブ、医療機器のガスケット・キャップ、シリンジチップ、グロメット、採血管キャップ、キャップシール、バッキング、O-リング、シースイントロデューサー、ダイレーター、ガイディングシース、血液回路、人工心肺回路、ロ-タブレーター用チューブ、留置針、インフュージョンセット、輸液チューブ、閉鎖式輸液システム、輸液バッグ、血液バッグ、血液成分分離バッグ、血液成分分離バッグ用チューブ、人工血管、動脈カニューレ、ステント、内視鏡処置具保護チューブ、内視鏡スコープチューブ、内視鏡トップオーバーチューブ、咽頭部通過用ガイドチューブ、冠動脈バイパス術用チューブ、イレウスチューブ、経皮経肝胆道ドレナージ術用チューブ、電気メス外装チューブ、超音波メス外装チューブ、剥離鉗子外装チューブ、細胞培養用バッグ等が挙げられる。
また、本発明の積層体が適用できるオフショア用成形品としては、海底油田用チューブ若しくはホース(インジェクションチューブ、原油移送チューブ含む)が挙げられる。
これらの中でも、特に上記積層体は、チューブ又はホースとして好適に用いられる。すなわち、上記積層体は、チューブ又はホースでもあることが好ましい。チューブの中でも、耐熱性、燃料低透過性の点で自動車用の燃料配管チューブ又はホースとして好適に利用できる。
本発明における前記積層体からなる燃料配管は通常の方法によって製造することができ、特に制限されることはない。
以下に、実施例によって本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。
実施例及び比較例では、下記方法により各物性値等を測定した。
(1)ポリマーの組成
19F-NMR分析により測定した。
(2)融点
セイコー型DSC装置を用い、10℃/分の速度で昇温したときの融解ピークを記録し、極大値に対応する温度を融点とした。
(3)メルトフローレート(MFR)
表1に記載のフッ素樹脂については、メルトインデクサー(東洋精機製作所社製)を用い、297℃、5kg加重下で直径2mm、長さ8mmのノズルから単位時間(10分間)に流出するポリマーの重量(g)を測定した。
低分子量PTFEについては、メルトインデクサー(東洋精機製作所社製)を用い、372℃、1.2kg加重下で直径2mm、長さ8mmのノズルから単位時間(10分間)に流出するポリマーの重量(g)を測定した。
(4)燃料透過係数
フッ素樹脂ペレットを、それぞれ、直径120mmの金型に入れ、300℃に加熱したプレス機にセットし、約2.9MPaの圧力で溶融プレスして、厚さ0.12mmのシートを得た。CE10(イソオクタンとトルエンとの容量比50:50の混合物にエタノール10容量%を混合した燃料)を18mL投入した内径40mmφ、高さ20mmのSUS316製の透過係数測定用カップに得られたシートを入れ、60℃における質量変化を1000時間まで測定した。時間あたりの質量変化(測定初期における質量変化が一定の部分)、接液部のシートの表面積およびシートの厚さから燃料透過係数(g・mm/m/day)を算出した。
(5)低分子量PTFEの平均粒径
レーザー回折式粒度分布測定装置(日本レーザー社製)を用い、カスケードは使用せず、圧力0.1MPa、測定時間3秒で粒度分布を測定し、得られた粒度分布積算の50%に対応する値を平均粒径とした。
(6)接着性
得られた積層体を幅10mm×長さ40mm×3セットの短冊状に切断し、フッ素樹脂シートを剥がして掴みしろとした試料片を作成した。この試験片について、フッ素ゴム層とフッ素樹脂層との境界面の接着強度を含まず、接着面のみの接着強度を測定するために、フッ素ゴム層とフッ素樹脂層の界面を一度ゆっくりと手で引っ張ることにより2~3mm掴みしろを増やしてから、オートグラフ(島津製作所社製 AGS-J 5kN)を使用して、JIS K-6256(加硫ゴムの接着試験方法)に記載の方法に準拠し、25℃において50mm/minの引張速度で剥離試験を行い、接着強度を測定し、得られたN=3のデータの平均値を算出した。また、剥離モードを観測し、以下の基準で評価した。
◎・・・積層体の界面でフッ素ゴム組成物あるいはフッ素樹脂が材料破壊し、界面で剥離するのが不可能であった。
○・・・一部材料破壊を生じ、積層体の界面での剥離強度が7N/cm以上であった。
×・・・積層体の界面で容易に剥離が可能であった。
下記に実施例及び比較例で使用した材料を示す。
Figure JPOXMLDOC01-appb-T000013
フッ素ゴム(1):ダイエルG902、ダイキン工業社製
フッ素ゴム(2):ダイエルG802、ダイキン工業社製
カーボンブラック:Thermax N-990、カンカーブ社製
加硫助剤:トリアリルイソシアヌレート(TAIC)、日本化成社製
加硫剤:パーオキサイド加硫系加硫剤、パーヘキサ25B、日油社製
ホスフィン(1):1,2-ビス(ジフェニルホスフィノ)エタン、東京化成工業社製
ホスフィン(2):クロロジフェニルホスフィン、東京化成工業社製
ホスフィン(3):トリス2,6-ジメトキシフェニルホスフィン、東京化成工業社製
ホスフィン(4):トリフェニルホスフィン、東京化成工業社製
ホスホニウム塩(5):トリブチル(シアノメチル)ホスホニウムクロリド、東京化成工業社製
塩基性多官能化合物:N,N’-ジシンナミリデン-1,6-ヘキサメチレンジアミン(V-3、ダイキン工業社製)
Figure JPOXMLDOC01-appb-T000014
実施例及び比較例
(フッ素樹脂シートの製造)
表1に記載のフッ素樹脂を用いて、厚み120μm(0.12mm)のシートが得られるようにスペーサーを置き、280℃で10分プレスすることによってフッ素樹脂シートを得た。
(フッ素ゴムシート(フッ素ゴム組成物)の製造)
表3及び表4に示す材料を、8インチオープンロールを用いて混練することにより、約3mmの厚みのシート状のフッ素ゴム組成物(フッ素ゴムシート)を得た。
また、フッ素ゴム組成物に対して、キュラストメーターII型(型番:JSRキュラストメーター。JSR社製)を用いて、170℃にて最大トルク値(MH)と最少トルク値(ML)を測定し、誘導時間(T10)及び最適加硫時間(T90)を求めた。測定結果を表3に示す。なお、T10は、{(MH)-(ML)}×0.1+MLとなる時間であり、T90は、{(MH)-(ML)}×0.9+MLとなる時間であり、MH及びMLは、JIS K 6300-2に準じて測定した値である。
(積層体の製造)
厚さ約3mmのフッ素ゴムシートと、厚さ約0.12mmのフッ素樹脂シートを重ね合わせ、片方の端部に幅約50mmのフッ素樹脂フィルム(厚さ10μm)を両シートの間に挟んだ後、プレス圧300kgf/cm、170℃で45分間プレスすることにより、シート状の積層体を得た。結果を表3及び表4に示す。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016

Claims (11)

  1. フッ素ゴム層(A)と、フッ素ゴム層(A)上に積層されたフッ素樹脂層(B)と、を備える積層体であって、
    フッ素ゴム層(A)は、フッ素ゴム組成物から形成される層であり、
    前記フッ素ゴム組成物は、フッ素ゴム、塩基性の多官能化合物、並びに、フッ素樹脂(a1)及びリン化合物(a2)からなる群より選択される少なくとも1種の化合物(a)を含み、
    化合物(a)の含有量が前記フッ素ゴム100質量部に対して0.01~120質量部であり、
    フッ素樹脂層(B)は、燃料透過係数が2.0g・mm/m/day以下であるフッ素樹脂(b1)から構成される
    ことを特徴とする積層体。
  2. フッ素樹脂(a1)は、非溶融加工性ポリテトラフルオロエチレン、低分子量ポリテトラフルオロエチレン、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、エチレン/テトラフルオロエチレン共重合体、エチレン/テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレン/テトラフルオロエチレン共重合体、エチレン/クロロトリフルオロエチレン共重合体、ポリフッ化ビニル、及び、フルオロモノマー/ビニルエステル共重合体からなる群より選択される少なくとも1種である請求項1記載の積層体。
  3. リン化合物(a2)は、ホスフィン類である請求項1又は2記載の積層体。
  4. リン化合物(a2)は、一般式:PR(式中、3つのRは、同一又は異なって、ハロゲン原子又は有機基を表す)で表されるホスフィン化合物である請求項1、2又は3記載の積層体。
  5. 前記フッ素ゴム組成物は、更に、パーオキサイド加硫系加硫剤を含む請求項1、2、3又は4記載の積層体。
  6. フッ素樹脂(b1)は、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレン系共重合体、及び、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン共重合体からなる群より選択される少なくとも1種である請求項1、2、3、4又は5記載の積層体。
  7. フッ素樹脂層(B)の両側にフッ素ゴム層(A)が積層されている請求項1、2、3、4、5又は6記載の積層体。
  8. フッ素ゴム層(A)の両側にフッ素樹脂層(B)が積層されている請求項1、2、3、4、5又は6記載の積層体。
  9. 更に、非フッ素ゴム層(C1a)を含み、
    フッ素ゴム層(A)-フッ素樹脂層(B)-非フッ素ゴム層(C1a)の順に積層されている請求項1、2、3、4、5又は6記載の積層体。
  10. 更に、非フッ素ゴム層(D1a)を含み、
    非フッ素ゴム層(D1a)-フッ素ゴム層(A)-フッ素樹脂層(B)-非フッ素ゴム層(C1a)の順、フッ素ゴム層(A)-フッ素樹脂層(B)-非フッ素ゴム層(D1a)-非フッ素ゴム層(C1a)の順、又は、フッ素ゴム層(A)-フッ素樹脂層(B)-非フッ素ゴム層(C1a)-非フッ素ゴム層(D1a)の順、に積層されている請求項9記載の積層体。
  11. フッ素ゴム層(A)とフッ素樹脂層(B)とが加硫接着されている請求項1、2、3、4、5、6、7、8、9又は10記載の積層体。

     
PCT/JP2017/043440 2016-12-27 2017-12-04 積層体 WO2018123448A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17886557.2A EP3543007B1 (en) 2016-12-27 2017-12-04 Laminate
KR1020197016731A KR102389664B1 (ko) 2016-12-27 2017-12-04 적층체
JP2018558947A JP7004916B2 (ja) 2016-12-27 2017-12-04 積層体
US16/470,319 US11673376B2 (en) 2016-12-27 2017-12-04 Laminate
CN201780079462.9A CN110087878A (zh) 2016-12-27 2017-12-04 层积体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016253499 2016-12-27
JP2016-253499 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123448A1 true WO2018123448A1 (ja) 2018-07-05

Family

ID=62707356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043440 WO2018123448A1 (ja) 2016-12-27 2017-12-04 積層体

Country Status (6)

Country Link
US (1) US11673376B2 (ja)
EP (1) EP3543007B1 (ja)
JP (1) JP7004916B2 (ja)
KR (1) KR102389664B1 (ja)
CN (1) CN110087878A (ja)
WO (1) WO2018123448A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090713A1 (ja) 2019-11-05 2021-05-14 ダイキン工業株式会社 積層体および押出成形品
US11602920B2 (en) 2019-02-22 2023-03-14 Daikin Industries, Ltd. Laminate
JP7316400B1 (ja) 2022-02-02 2023-07-27 Nok株式会社 正・逆両回転用オイルシール

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021123114A1 (en) 2019-12-18 2021-06-24 Solvay Specialty Polymers Italy S.P.A. Base-resistant fluoroelastomer composition
CN113386981B (zh) * 2021-06-07 2022-09-27 上海空间推进研究所 一种波纹式锥柱形隔膜贮箱
CN117227199B (zh) * 2023-11-15 2024-02-06 镇江市宜扬密封制品有限公司 一种复合聚四氟乙烯垫片及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157616A (ja) * 1995-12-08 1997-06-17 Daikin Ind Ltd 含フッ素接着剤ならびにそれを用いた接着性フィルムおよび積層体
JPH1182822A (ja) * 1997-07-17 1999-03-26 Tokai Rubber Ind Ltd 燃料ホース
JP2002054768A (ja) * 2000-05-31 2002-02-20 Tokai Rubber Ind Ltd 燃料ホース
JP2010280103A (ja) * 2009-06-03 2010-12-16 Daikin Ind Ltd 積層体、成形品、燃料ホース、及び、積層体の製造方法
WO2015072491A1 (ja) * 2013-11-15 2015-05-21 ダイキン工業株式会社 積層体、積層体の製造方法及びフッ素ゴム組成物
JP2015214145A (ja) * 2014-04-24 2015-12-03 ダイキン工業株式会社 積層体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2932980B2 (ja) 1994-10-17 1999-08-09 丸五ゴム工業株式会社 自動車燃料配管用ホース
US5588469A (en) 1994-10-17 1996-12-31 Marugo Rubber Industries, Ltd. Hose for automotive fuel piping
US6682796B2 (en) 2000-05-31 2004-01-27 Tokai Rubber Industries, Ltd. Fuel hose
SG119379A1 (en) * 2004-08-06 2006-02-28 Nippon Catalytic Chem Ind Resin composition method of its composition and cured formulation
JP4910704B2 (ja) 2004-11-26 2012-04-04 ダイキン工業株式会社 熱可塑性重合体組成物
CN101065442A (zh) * 2004-11-26 2007-10-31 大金工业株式会社 热塑性聚合物组合物及热塑性聚合物组合物的制造方法
US7598302B2 (en) * 2006-08-30 2009-10-06 Veyance Technologies, Inc Adhesion promoter for bonding fluoropolymer layers in a multi-layered article
KR20120024876A (ko) * 2009-06-30 2012-03-14 다이킨 고교 가부시키가이샤 적층체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157616A (ja) * 1995-12-08 1997-06-17 Daikin Ind Ltd 含フッ素接着剤ならびにそれを用いた接着性フィルムおよび積層体
JPH1182822A (ja) * 1997-07-17 1999-03-26 Tokai Rubber Ind Ltd 燃料ホース
JP2002054768A (ja) * 2000-05-31 2002-02-20 Tokai Rubber Ind Ltd 燃料ホース
JP2010280103A (ja) * 2009-06-03 2010-12-16 Daikin Ind Ltd 積層体、成形品、燃料ホース、及び、積層体の製造方法
WO2015072491A1 (ja) * 2013-11-15 2015-05-21 ダイキン工業株式会社 積層体、積層体の製造方法及びフッ素ゴム組成物
JP2015214145A (ja) * 2014-04-24 2015-12-03 ダイキン工業株式会社 積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3543007A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11602920B2 (en) 2019-02-22 2023-03-14 Daikin Industries, Ltd. Laminate
WO2021090713A1 (ja) 2019-11-05 2021-05-14 ダイキン工業株式会社 積層体および押出成形品
JP2021075053A (ja) * 2019-11-05 2021-05-20 ダイキン工業株式会社 積層体および押出成形品
JP7032676B2 (ja) 2019-11-05 2022-03-09 ダイキン工業株式会社 積層体および押出成形品
KR20220070033A (ko) 2019-11-05 2022-05-27 다이킨 고교 가부시키가이샤 적층체 및 압출 성형품
JP7316400B1 (ja) 2022-02-02 2023-07-27 Nok株式会社 正・逆両回転用オイルシール
JP2023112869A (ja) * 2022-02-02 2023-08-15 Nok株式会社 正・逆両回転用オイルシール

Also Published As

Publication number Publication date
KR102389664B1 (ko) 2022-04-22
EP3543007B1 (en) 2023-11-22
CN110087878A (zh) 2019-08-02
JPWO2018123448A1 (ja) 2019-06-27
EP3543007A1 (en) 2019-09-25
EP3543007A4 (en) 2020-06-17
JP7004916B2 (ja) 2022-01-21
KR20190082889A (ko) 2019-07-10
US11673376B2 (en) 2023-06-13
US20190344545A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
JP7004916B2 (ja) 積層体
JP6229732B2 (ja) 積層体、積層体の製造方法及びフッ素ゴム組成物
JP5482790B2 (ja) 積層体
JP5880760B2 (ja) 積層体
JP5370564B2 (ja) 積層体
JP7032676B2 (ja) 積層体および押出成形品
WO2012081413A1 (ja) 積層体
JP6855738B2 (ja) 積層体
JP5401954B2 (ja) ゴム層とフッ素樹脂層からなる積層体および加硫用ゴム組成物
JP2015178258A (ja) 積層体及びその製造方法
JP2018015935A (ja) 積層体、積層体の製造方法及びフッ素ゴム組成物
JP7389398B1 (ja) 積層体
US11602920B2 (en) Laminate
JP2013163286A (ja) 積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558947

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197016731

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017886557

Country of ref document: EP

Effective date: 20190619