WO2018121734A1 - 车辆及其制动方法和装置 - Google Patents

车辆及其制动方法和装置 Download PDF

Info

Publication number
WO2018121734A1
WO2018121734A1 PCT/CN2017/119864 CN2017119864W WO2018121734A1 WO 2018121734 A1 WO2018121734 A1 WO 2018121734A1 CN 2017119864 W CN2017119864 W CN 2017119864W WO 2018121734 A1 WO2018121734 A1 WO 2018121734A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
target
wheels
brake
vehicle
Prior art date
Application number
PCT/CN2017/119864
Other languages
English (en)
French (fr)
Inventor
姚东亮
翁建平
钟志靖
石为利
吴春芬
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018121734A1 publication Critical patent/WO2018121734A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition

Definitions

  • the present application relates to the technical field of automobiles, and in particular to a braking method for a vehicle, a braking device for a vehicle, and a vehicle.
  • the braking mode of the vehicle mainly includes hydraulic braking and motor feedback braking.
  • the hydraulic brake realizes the wheel brake through passive boosting and active boosting, and when the critical point of the wheel lock is reached, the wheel is always close to lock by controlling the pressure maintaining valve and the pressure relief valve, but there is no locking system.
  • the process the response speed of the hydraulic brake is slow. For example, it takes 200ms to realize a pressure change, which takes 200ms to achieve pressure or pressure relief at the critical point.
  • the vehicle travels with ever-changing conditions, hydraulic pressure. Each response time is too long, resulting in unsatisfactory control; and because hydraulic control is a mechanical process, it takes time to pressurize and depressurize.
  • the motor feedback brake generates braking force through the feedback of four wheel-side motors, and the braking is achieved by the engagement and release of the clutch.
  • the ability of the motor to feedback the brakes is too small to meet the braking requirements.
  • the present application aims to solve at least one of the technical problems in the above-mentioned techniques to some extent.
  • the first object of the present application is to propose a braking method for a vehicle.
  • the method can shorten the response time and braking distance of the wheel during the locking and releasing process, and improve the smoothness of the braking.
  • a second object of the present application is to propose a brake device for a vehicle.
  • a third object of the present application is to propose a vehicle.
  • a first aspect of the present application provides a braking method for a vehicle, the vehicle including a hydraulic braking system and a motor feedback braking system, the method comprising: detecting a wheel of the vehicle wheel in real time. Speed, the depth of the brake pedal; obtaining a required braking force of the vehicle according to the current depth of the brake pedal; obtaining a target braking force of each wheel according to the required braking force of the vehicle and the current road condition, and according to each The target braking force of the wheels and the maximum braking feedback torque of the wheel-side motor corresponding to each wheel are the target master cylinder pressure values assigned to each wheel of the hydraulic brake system, and the brake system is assigned to the motor feedback system.
  • a target brake feedback torque of the wheels controlling the hydraulic brake system to hydraulically brake each wheel of the vehicle with the target master cylinder pressure value, and controlling the motor to feedback the brake system to the target Brake feedback torque is applied to each wheel of the vehicle for feedback braking; each of the wheels is obtained based on a current wheel speed of each wheel and an estimated vehicle reference vehicle speed Current slip ratio, and adjusting the target master cylinder pressure value of each of the wheels and the target brake feedback torque of each of the wheels according to the current slip ratio of each of the wheels, or for each of the The target brake feedback torque of each wheel is adjusted.
  • the braking method of the vehicle obtains the target braking force of each wheel according to the required braking force of the vehicle and the current road surface condition when braking the vehicle, and according to the target braking force of each wheel and each
  • the maximum brake feedback torque of the wheel-side motor corresponding to each wheel is the target master cylinder pressure value and the target brake feedback torque for each wheel of the hydraulic brake system and the motor feedback brake system, respectively, and the hydraulic brake system is controlled to target The master cylinder pressure value and the motor feedback brake system brake each wheel of the vehicle with the target brake feedback torque, and the target master cylinder pressure value and the target brake feedback torque for each wheel according to the current slip ratio of the wheel.
  • Adjusting or adjusting the target brake feedback torque of each wheel thereby achieving the characteristics of large hydraulic braking performance and fast motor response, which can shorten the response time and braking of the wheel during the locking and releasing process.
  • the distance improves the smoothness of the brakes.
  • a second aspect of the present application provides a brake device for a vehicle, the vehicle including a hydraulic brake system and a motor feedback brake system, the device comprising: a detection module for real-time detection a wheel speed of a vehicle wheel, a depth of a brake pedal; a obtaining module for obtaining a required braking force of the vehicle according to a current depth of the brake pedal; a distribution module for braking force according to a demand of the vehicle
  • the current road surface condition calculates the target braking force of each wheel, and assigns the target master of each wheel to the hydraulic brake system according to the target braking force of each wheel and the maximum braking feedback torque of the wheel side motor corresponding to each wheel.
  • a control module for controlling the hydraulic brake system to the target master cylinder pressure value for each of the vehicles Hydraulically braking the wheels and controlling the motor feedback brake system to perform feedback braking on each wheel of the vehicle with the target brake feedback torque; a module for obtaining a current slip ratio of each of the wheels based on a current wheel speed of each of the wheels and an estimated vehicle reference vehicle speed, and targeting the each of the wheels according to a current slip ratio of each of the wheels
  • the master cylinder pressure value and the target brake feedback torque of each of the wheels are adjusted, or the target brake feedback torque of each of the wheels is adjusted.
  • the braking device of the vehicle obtains the target braking force of each wheel according to the required braking force of the vehicle and the current road surface condition during the braking control of the vehicle, and according to the target system of each wheel.
  • the maximum braking feedback torque of the power and the wheel-side motor corresponding to each wheel is the target master cylinder pressure value and the target brake feedback torque of each wheel for the hydraulic brake system and the motor feedback brake system, respectively, which are respectively controlled by the control module.
  • the hydraulic brake system brakes each wheel with the target master cylinder pressure value and the motor feedback brake system with the target brake feedback torque, and the corresponding target master cylinder pressure value and target according to the current slip ratio of each wheel.
  • the brake feedback torque is adjusted, or the corresponding target brake feedback torque is adjusted, thereby enabling the hydraulic brake performance to be high and the motor response to be fast, which can shorten the response time of the wheel during the lock and release process. And the braking distance improves the smoothness of the brake.
  • the present application proposes a vehicle including the brake device of the vehicle of the above embodiment.
  • the vehicle of the embodiment of the present invention can exhibit the characteristics of large hydraulic braking performance and fast response of the motor through the braking device of the above-mentioned vehicle, and can shorten the response time and braking distance of the wheel during the locking and releasing process, and improve the system. Dynamic smoothness.
  • FIG. 1 is a flow chart of a braking method of a vehicle according to an embodiment of the present application
  • FIG. 2 is an information interaction diagram in a braking method of a vehicle according to an embodiment of the present application
  • FIG. 3 is a comparison diagram of effect curves of a braking method of a vehicle and a pure hydraulic braking method according to a specific example of the present application;
  • FIG. 4 is a structural block diagram of a braking device of a vehicle according to an embodiment of the present application.
  • FIG. 1 is a flow chart of a braking method of a vehicle according to an embodiment of the present application.
  • the vehicle includes a hydraulic brake system and a motor feedback brake system.
  • the braking method of the vehicle includes:
  • the wheel speed of the wheel can be detected by a wheel speed sensor mounted on the wheel of the vehicle, and the depth of the brake pedal can be detected by a depth sensor mounted on the brake pedal.
  • the wheel speed sensor includes a magnetoelectric wheel speed sensor, a Hall type wheel speed sensor, and the like.
  • the depth sensor includes a displacement sensor or the like.
  • the target brake feedback torque of each wheel is K times the maximum brake feedback torque of the corresponding wheel side motor, wherein K is determined by the road surface condition and is less than 1.
  • the target brake feedback torque is less than the maximum brake feedback torque
  • the target brake feedback torque may be the maximum brake feedback torque multiplied by a preset coefficient K less than one.
  • the value of K may be 0.8; if the road surface condition is a high road surface, the value of K may be 0.9.
  • the low-attached road surface is a road surface with a low adhesion coefficient
  • the vehicle is easy to slip when driving on a low-attached road surface, such as snow, ice, etc.
  • the high-attached road surface is a road surface with a high adhesion coefficient, and the vehicle travels on a high-attached road surface. It is not easy to slip and it is safer to drive.
  • the current road surface condition of the vehicle may be determined by the image captured by the camera of the panoramic image of the vehicle.
  • the road condition image of the captured vehicle may be correlated (the specific related image processing method is prior art). Therefore, the current road surface condition image after processing is compared with the preset road surface condition comparison image, and the current road surface condition of the vehicle is determined according to the comparison result.
  • the current road surface condition in which the vehicle is located may be determined based on the wheel speed of the wheel and the vehicle speed. Specifically, when the vehicle speed is greater than the wheel speed, it is determined that the vehicle is on the low road surface; when the wheel speed is equal to the vehicle speed, it is determined that the vehicle is on the high road surface.
  • a road condition button (such as an asphalt road, a cement road, a gravel road, etc.) may be disposed at the multimedia operation module of the vehicle, and the driver may select a corresponding road condition button according to the current road condition of the vehicle traveling.
  • the target braking force of each wheel can be set to be smaller than the required braking force, and then the target master cylinder pressure value is assigned to the hydraulic brake system and the motor feedback brake system is allocated in combination with the maximum brake feedback torque of each wheel motor.
  • Target braking feedback torque; the target braking force of each wheel can be set equal to the required braking force, and thus the target master cylinder pressure value of each wheel is assigned to the hydraulic braking system in combination with the maximum braking feedback torque of each wheel motor
  • the target brake feedback torque for each wheel is assigned to the motor feedback brake system.
  • the braking force applied by the target master cylinder pressure value and the target brake feedback torque obtained by each wheel is equal to the target braking force corresponding to each wheel.
  • Vi is the wheel speed of each wheel
  • V is the estimated vehicle reference vehicle speed
  • i is a positive integer greater than or equal to 1 and less than or equal to n
  • n is the number of wheels, which may be 4.
  • the target slip force of the wheel is reduced to achieve a preset slip ratio of the wheel.
  • a slip ratio wherein if the magnitude of the reduced target braking force is greater than the difference between the maximum braking feedback torque of the wheel-side motor and the target braking feedback torque of the wheel, the wheel is simultaneously reduced The target master cylinder pressure value and the target brake feedback torque; if the magnitude of the reduced target braking force is less than or equal to the difference between the maximum brake feedback torque of the wheel-side motor and the target brake feedback torque of the wheel, Then the target brake feedback torque of the wheel is reduced.
  • the preset optimal slip ratio can be 20%.
  • the torque Tn required for the magnitude of the reduced target braking force is greater than the maximum brake feedback of the wheel-side motor corresponding to the wheel.
  • the difference between the torque Tmax and the target brake feedback torque K*Tmax (Tmax-K*Tmax) simultaneously reduces the target master cylinder pressure value and the target brake feedback torque of the wheel.
  • the reduction value of the target brake feedback torque of the wheel may be K*(Tmax-K*Tmax), and the braking force corresponding to the decrease value of the target master cylinder pressure value corresponds to the torque [Tn-K*(Tmax- K*Tmax)] corresponding braking force.
  • the torque Tn required for the magnitude of the reduced target braking force is less than or equal to the difference between the maximum braking feedback torque Tmax of the wheel-side motor corresponding to the wheel and the target braking feedback torque K*Tmax, the target of the wheel is reduced.
  • the brake feedback torque is reduced (K*Tmax-Tn).
  • the target slip force of the wheel is increased to achieve the preset slip ratio of the wheel.
  • a slip ratio wherein if the magnitude of the increased target braking force is greater than the difference between the maximum braking feedback torque of the wheel-side motor and the target braking feedback torque of the wheel, the target of the wheel is simultaneously increased The master cylinder pressure value and the target brake feedback torque; if the magnitude of the increased target braking force is less than or equal to the difference between the maximum brake feedback torque of the wheel-side motor and the target brake feedback torque of the wheel, Increase the target brake feedback torque of the wheel.
  • the torque Tn required for the magnitude of the increased target braking force is greater than the maximum brake feedback of the wheel-side motor corresponding to the wheel.
  • the difference between the torque Tmax and the target brake feedback torque K*Tmax (Tmax-K*Tmax) increases the target master cylinder pressure value and the target brake feedback torque of the wheel at the same time.
  • the increased target brake feedback torque is (K*Tmax+Tn)
  • the wheel speed of each wheel, the vehicle speed (estimated by the wheel speed), the depth of the brake pedal, and the controller are collected in real time.
  • the controller or the motor controller calculates the slip ratio of each wheel according to each wheel speed and the vehicle speed in real time, calculates the required braking force of the vehicle according to the depth of the brake pedal, and determines the current road condition of the vehicle according to the vehicle speed and the wheel speed, and further The target braking force of each wheel is determined based on the current road surface condition and the required braking force.
  • the target braking force is distributed, that is, the target master cylinder pressure value of each wheel is assigned to the hydraulic braking system, and the braking system is fed back to the motor. Assign the target brake feedback torque for each wheel. And controlling the hydraulic brake system to hydraulically brake each wheel of the vehicle with the target master cylinder pressure value, and controlling the motor feedback brake system to perform feedback braking on each wheel of the vehicle with the target brake feedback torque.
  • the controller controls the hydraulic brake system to hydraulically brake each wheel of the vehicle with the target master cylinder pressure value, and controls the motor feedback brake system to perform feedback braking on each wheel of the vehicle with the target brake feedback torque.
  • the controller reduces the target braking force of the wheel to reduce the slip rate of the wheel to a preset optimal slip ratio when the current slip ratio of any one of the wheels is greater than a preset optimal slip ratio of 20%.
  • the target master cylinder of the wheel is simultaneously reduced The pressure value and the target brake feedback torque; if the torque required to reduce the magnitude of the target braking force is less than or equal to the difference between the maximum brake feedback torque of the wheel-side motor corresponding to the wheel and the target brake feedback torque, then decrease The target brake feedback torque of the wheel.
  • the slip ratio of the wheel reaches a preset optimal slip ratio, wherein, if the increase is The required torque of the target braking force is greater than the difference between the maximum braking feedback torque of the wheel-side motor corresponding to the wheel and the target braking feedback torque, and simultaneously increases the target master cylinder pressure value and the target braking feedback of the wheel.
  • Torque if the torque required to increase the magnitude of the target braking force is less than or equal to the difference between the maximum braking feedback torque of the wheel-side motor corresponding to the wheel and the target braking feedback torque, increase the target braking feedback of the wheel Torque.
  • the braking effect of the above braking method can be as shown in FIG. 3.
  • the method of the present application can maintain the slip ratio of the wheel at the optimal slip. The rate is about 20%, and the number of cycles of wheel braking is greatly increased.
  • the braking method of the vehicle in the embodiment of the present application can be used in a braking process such as basic braking, EBD (Electric Brake Force Dis-tribution), and the like, and can be especially used in an ABS anti-lock braking system.
  • EBD Electrical Brake Force Dis-tribution
  • the hydraulic braking efficiency is high and the motor feedback braking response is fast, so that the response time and braking distance of the wheel during the locking and releasing process can be shortened, so that the slip ratio of the wheel is kept at the optimal slip.
  • the rate is about 20%, which improves the smoothness of the brake.
  • the braking method of the vehicle obtains the target braking force of each wheel according to the required braking force of the vehicle and the current road surface condition when braking the vehicle, and according to the target braking force of each wheel and each
  • the maximum brake feedback torque of the wheel-side motor corresponding to each wheel assigns the target master cylinder pressure value of each wheel to the hydraulic brake system and the target brake feedback torque of each wheel to the motor feedback brake system, respectively controlling the hydraulic pressure
  • the brake system brakes each wheel of the vehicle with the target master cylinder pressure value and the motor feedback brake system with the target brake feedback torque, while the target master cylinder pressure for each wheel is determined according to the current slip ratio of each wheel.
  • the value and the target brake feedback torque are adjusted, or the target brake feedback torque of each wheel is adjusted, thereby exerting the characteristics of large hydraulic brake performance and fast motor response, which can shorten the wheel lock and The response time and braking distance during the release process improve the smoothness of the brake.
  • FIG. 4 is a brake device of a vehicle according to an embodiment of the present application.
  • the vehicle includes a hydraulic brake system, a motor feedback brake system.
  • the braking device of the vehicle includes a detecting module 10, an obtaining module 20, a distribution module 30, a control module 40, and an adjustment module 50.
  • the detection module 10 is configured to detect the wheel speed of the vehicle wheel and the depth of the brake pedal in real time.
  • the acquisition module 20 is configured to obtain a required braking force of the vehicle based on the current depth of the brake pedal.
  • the distribution module 30 is configured to calculate a target braking force of each wheel according to the required braking force of the vehicle and the current road surface condition, and according to the target braking force of each wheel and the maximum braking feedback torque of the wheel side motor corresponding to each wheel respectively
  • the hydraulic brake system distributes the target master cylinder pressure value for each wheel and assigns the target brake feedback torque for each wheel to the motor feedback brake system.
  • the control module 40 is configured to control the hydraulic brake system to hydraulically brake each wheel of the vehicle with the target master cylinder pressure value, and control the motor feedback brake system to perform feedback braking on each wheel of the vehicle with the target brake feedback torque.
  • the adjustment module 50 is configured to obtain a current slip ratio of each wheel according to a current wheel speed of each wheel and an estimated vehicle reference vehicle speed, and a target master cylinder pressure value for each wheel according to a current slip ratio of each wheel The target brake feedback torque of each wheel is adjusted, or the target brake feedback torque of each wheel is adjusted.
  • the target brake feedback torque of each wheel is K times the maximum brake feedback torque of the corresponding wheel side motor, wherein K is determined by the road surface condition and is less than 1.
  • the adjustment module 50 is specifically configured to reduce the target braking force of the wheel to reduce the slip of the wheel when the current slip ratio of any one of the wheels is greater than a preset optimal slip ratio.
  • the rate reaches a preset optimal slip ratio, wherein if the magnitude of the reduced target braking force is greater than the difference between the maximum braking feedback torque of the wheel-side motor and the target braking feedback torque of the wheel, At the same time, the target master cylinder pressure value and the target brake feedback torque of the wheel are reduced; if the magnitude of the reduced target braking force is less than or equal to the maximum brake feedback torque of the wheel corresponding motor of the wheel and the target brake The difference in feedback torque reduces the target brake feedback torque of the wheel.
  • the adjustment module 50 is further configured to increase the target braking force of the wheel to increase the current slip ratio of any one wheel when the current slip ratio is less than the preset optimal slip ratio.
  • the shift rate reaches a preset optimal slip ratio, wherein if the magnitude of the increased target braking force is greater than the difference between the maximum brake feedback torque of the wheel-side motor and the target brake feedback torque of the wheel, At the same time, the target master cylinder pressure value and the target brake feedback torque of the wheel are increased; if the magnitude of the increased target braking force is less than or equal to the maximum brake feedback torque of the wheel-side motor corresponding to the wheel and the target brake The difference in feedback torque increases the target brake feedback torque of the wheel.
  • the preset optimal slip ratio can be 20%.
  • the slip ratio s (V - Vi) * 100% / V, where Vi is the wheel speed of each wheel and V is the estimated vehicle reference vehicle speed.
  • the braking device of the vehicle obtains the target braking force of each wheel according to the required braking force of the vehicle and the current road surface condition during the braking control of the vehicle, and according to the target system of each wheel.
  • the maximum braking feedback torque of the power and the wheel-side motor corresponding to each wheel is the target master cylinder pressure value and the target brake feedback torque of each wheel for the hydraulic brake system and the motor feedback brake system, respectively, which are respectively controlled by the control module.
  • the hydraulic brake system brakes each wheel of the vehicle with the target master cylinder pressure value and the motor feedback brake system with the target brake feedback torque, while the target master cylinder for each wheel is based on the current slip ratio of each wheel.
  • the pressure value and the target brake feedback torque are adjusted, or only the target brake feedback torque of each wheel is adjusted, thereby exerting the characteristics of large hydraulic brake performance and fast motor response, which can shorten the wheel hug
  • the response time and braking distance during death and release improve the smoothness of the brake.
  • the embodiment of the present application also proposes a vehicle including the brake device of the vehicle described in the above embodiment.
  • the vehicle of the embodiment of the present application can exhibit the characteristics of large hydraulic braking performance and fast response of the motor through the above-mentioned braking device, thereby shortening the response time and system of the wheel during the locking and releasing process.
  • the dynamic distance improves the smoothness of the brake.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present application can be understood on a case-by-case basis.
  • the first feature "on” or “below” the second feature may be the direct contact of the first and second features, or the first and second features are indirectly through the intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

一种车辆的制动方法和装置。车辆包括液压制动系统和电机回馈制动系统。方法包括:实时检测车轮的轮速、制动踏板的深度;根据制动踏板的深度获得需求制动力;根据需求制动力和当前路面状况获得各车轮的目标制动力,并根据各目标制动力和各轮边电机的最大制动回馈扭矩分别为液压制动系统和电机回馈制动系统分配各车轮的目标主缸压力值和目标制动回馈扭矩;分别控制液压制动系统以目标主缸压力值、电机回馈制动系统以目标制动回馈扭矩对各车轮进行制动;根据各车轮的当前滑移率调节其对应的目标主缸压力值和目标制动回馈扭矩进行调节、或目标制动回馈扭矩,该制动方法和装置能够缩短响应时间和制动距离,提高了制动平顺性。

Description

车辆及其制动方法和装置
相关申请的交叉引用
本申请基于申请号为201611260807.4、申请日为2016年12月30日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及汽车技术领域,具体涉及一种车辆的制动方法、一种车辆的制动装置和一种车辆。
背景技术
目前,车辆的制动方式主要包括液压制动和电机回馈制动。
液压制动是通过被动增压和主动增压实现车轮制动,并在达到车轮抱死临界点时,通过控制保压阀和泄压阀实现车轮始终接近抱死,但是又没有抱死的制动过程。然而,液压制动的响应速度慢,例如,需要200ms时间才能实现一次压力变化,导致每次在临界点需要进行保压或者泄压时,都需要200ms才能实现;另外,车辆行驶路况千变万化,液压每个响应时间太长,导致控制效果不理想;且由于液压控制为机械过程,增压和泄压也需要时间。
电机回馈制动是通过4个轮边电机回馈产生制动力,通过离合器的接入和松开,实现制动。然而,电机回馈制动的能力偏小,很难满足制动需求。
发明内容
本申请旨在至少在一定程度上解决上述技术中的技术问题之一。
为此,本申请的第一个目的在于提出一种车辆的制动方法。该方法能够缩短车轮在抱死和释放过程中的响应时间和制动距离,提高了制动的平顺性。
本申请的第二个目的在于提出一种车辆的制动装置。
本申请的第三个目的在于提出一种车辆。
为达到上述目的,本申请第一方面实施例提出了一种车辆的制动方法,所述车辆包括液压制动系统、电机回馈制动系统,所述方法包括:实时检测所述车辆车轮的轮速、制动踏板的深度;根据所述制动踏板的当前深度获得所述车辆的需求制动力;根据所述车辆的 需求制动力和当前路面状况获得每个车轮的目标制动力,并根据每个车轮的目标制动力和每个车轮对应的轮边电机的最大制动回馈扭矩为所述液压制动系统分配每个车轮的目标主缸压力值,并为所述电机回馈制动系统分配每个车轮的目标制动回馈扭矩;控制所述液压制动系统以所述目标主缸压力值对所述车辆的每个车轮进行液压制动,并控制所述电机回馈制动系统以所述目标制动回馈扭矩对所述车辆的每个车轮进行回馈制动;根据每个车轮的当前轮速和估算的车辆参考车速获得所述每个车轮的当前滑移率,并根据所述每个车轮的当前滑移率对所述每个车轮的目标主缸压力值和所述每个车轮的目标制动回馈扭矩进行调节、或对所述每个车轮的目标制动回馈扭矩进行调节。
本申请实施例的车辆的制动方法,在对车辆进行制动控制时,根据车辆的需求制动力和当前路面状况获得每个车轮的目标制动力,并根据每个车轮的目标制动力和每个车轮对应的轮边电机的最大制动回馈扭矩分别为液压制动系统和电机回馈制动系统分配每个车轮的目标主缸压力值和目标制动回馈扭矩,分别控制液压制动系统以目标主缸压力值和电机回馈制动系统以目标制动回馈扭矩对车辆的每个车轮进行制动,同时根据车轮的当前滑移率对每个车轮的目标主缸压力值和目标制动回馈扭矩进行调节、或对每个车轮的目标制动回馈扭矩进行调节,由此,能够发挥液压制动效能大,电机响应快的特点,能够缩短车轮在抱死和释放过程中的响应时间和制动距离,提高了制动的平顺性。
为达到上述目的,本申请第二方面实施例提出了一种车辆的制动装置,所述车辆包括液压制动系统、电机回馈制动系统,所述装置包括:检测模块,用于实时检测所述车辆车轮的轮速、制动踏板的深度;获得模块,用于根据所述制动踏板的当前深度获得所述车辆的需求制动力;分配模块,用于根据所述车辆的需求制动力和当前路面状况计算每个车轮的目标制动力,并根据每个车轮的目标制动力和每个车轮对应的轮边电机的最大制动回馈扭矩为所述液压制动系统分配每个车轮的目标主缸压力值,并为所述电机回馈制动系统分配每个车轮的目标制动回馈扭矩;控制模块,用于控制所述液压制动系统以所述目标主缸压力值对所述车辆的每个车轮进行液压制动,并控制所述电机回馈制动系统以所述目标制动回馈扭矩对所述车辆的每个车轮进行回馈制动;调节模块,用于根据每个车轮的当前轮速和估算的车辆参考车速获得所述每个车轮的当前滑移率,并根据所述每个车轮的当前滑移率对所述每个车轮的目标主缸压力值和所述每个车轮的目标制动回馈扭矩进行调节、或对所述每个车轮的目标制动回馈扭矩进行调节。
本申请实施例的车辆的制动装置,在对车辆进行制动控制时,通过分配模块根据车辆的需求制动力和当前路面状况获得每个车轮的目标制动力,并根据每个车轮的目标制动力和每个车轮对应的轮边电机的最大制动回馈扭矩分别为液压制动系统和电机回馈制动系统 分配每个车轮的目标主缸压力值和目标制动回馈扭矩,通过控制模块分别控制液压制动系统以目标主缸压力值和电机回馈制动系统以目标制动回馈扭矩对每个车轮进行制动,同时根据各车轮的当前滑移率对其对应的目标主缸压力值和目标制动回馈扭矩进行调节、或对其对应的目标制动回馈扭矩进行调节,由此,能够发挥液压制动效能大,电机响应快的特点,能够缩短车轮在抱死和释放过程中的响应时间和制动距离,提高了制动的平顺性。
进一步地,本申请提出了一种车辆,其包括上述实施例的车辆的制动装置。
本申请实施例的车辆,通过上述车辆的制动装置,能够发挥液压制动效能大,电机响应快的特点,能够缩短车轮在抱死和释放过程中的响应时间和制动距离,提高了制动的平顺性。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一个实施例的车辆的制动方法的流程图;
图2是根据本申请一个实施例的车辆的制动方法中的信息交互图;
图3是根据本申请一个具体示例的车辆的制动方法与纯液压制动方法的效果曲线对比图;
图4是根据本申请一个实施例的车辆的制动装置的结构框图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的车辆的制动方法和车辆的制动装置。
图1是根据本申请一个实施例的一种车辆的制动方法的流程图。
在本申请的实施例中,车辆包括液压制动系统和电机回馈制动系统。
如图1所示,车辆的制动方法包括:
S1,实时检测车辆车轮的轮速、制动踏板的深度。
在本申请的实施例中,可以通过安装在车辆车轮上的轮速传感器检测车轮的轮速,可 以通过安装在制动踏板上的深度传感器检测制动踏板的深度。其中,轮速传感器包括磁电式轮速传感器、霍尔式轮速传感器等。深度传感器包括位移传感器等。
S2,根据制动踏板的当前深度获得车辆的需求制动力。
S3,根据车辆的需求制动力和当前路面状况获得每个车轮的目标制动力,并根据每个车轮的目标制动力和每个车轮对应的轮边电机的最大制动回馈扭矩为液压制动系统分配每个车轮的目标主缸压力值,并为电机回馈制动系统分配每个车轮的目标制动回馈扭矩。
其中,每个车轮的目标制动回馈扭矩为其对应的轮边电机的最大制动回馈扭矩的K倍,其中,K由路面状况确定,且小于1。
即言,目标制动回馈扭矩小于最大制动回馈扭矩,如目标制动回馈扭矩可以是最大制动回馈扭矩乘以一个小于1的预设系数K。
举例而言,如果路面状况为低附路面,则K的取值可以是0.8;如果路面状况为高附路面,则K的取值可以是0.9。
具体的,低附路面为附着系数低的路面,车辆在低附路面上行驶时容易打滑,比如雪地,冰面等等,高附路面为附着系数高的路面,车辆在高附路面上行驶时不容易打滑,行驶较安全。
在本申请的一个示例中,可以通过车辆全景影像的摄像头拍摄的图像判断车辆所处的当前路面状况,例如,可以将拍摄的车辆的路况图像进行相关处理(具体相关图像处理方法为现有技术,此处不做赘述),进而将处理后的当前路面状况图像与预设路面状况比对图像进行比较,根据比较结果确定车辆的当前路面状况。
在本申请的另一个示例中,可以根据车轮的轮速和车速确定车辆所处的当前路面状况。具体而言,车速大于轮速时,判断车辆处于低附路面;轮速等于车速时,判断车辆处于高附路面。
在本申请的又一个示例中,可以在车辆的多媒体操作模块处设置路况按键(如沥青路、水泥路、砂石路等),驾驶员可以根据车辆行驶的当前路面状况选择对应的路况按键。
具体地,每个车轮的目标制动力可以设置为小于需求制动力,进而结合每个轮边电机的最大制动回馈扭矩为液压制动系统分配目标主缸压力值和为电机回馈制动系统分配目标制动回馈扭矩;每个车轮的目标制动力可以设置为等于需求制动力,进而结合每个轮边电机的最大制动回馈扭矩为液压制动系统分配每个车轮的目标主缸压力值和为电机回馈制动系统分配每个车轮的目标制动回馈扭矩。其中,每个车轮获得的由目标主缸压力值和目标制动回馈扭矩施加的制动力等于每个车轮对应的目标制动力。
S4,控制液压制动系统以目标主缸压力值对车辆的每个车轮进行液压制动,并控制电机回馈制动系统以目标制动回馈扭矩对车辆的每个车轮进行回馈制动。
S5,根据每个车轮的当前轮速和估算的车辆参考车速获得每个车轮的当前滑移率,并根据每个车轮的当前滑移率对每个车轮的目标主缸压力值和每个车轮的目标制动回馈扭矩进行调节、或对每个车轮的目标制动回馈扭矩进行调节。
具体地,可以根据多个车轮的轮速(V1、…、Vi、…、Vn)得到估算的车辆参考车速V,进而可计算得到滑移率s=(V-Vi)*100%/V,其中,Vi为每个车轮的轮速,V为估算的车辆参考车速,i为大于等于1且小于等于n的正整数,n为车轮的个数,如可以是4。
在本申请的一个实施例中,当任意一个车轮的当前滑移率大于预设最佳滑移率时,通过减小该车轮的目标制动力以使该车轮的滑移率达到预设最佳滑移率,其中,若减小的目标制动力的幅度所需要的扭矩大于该车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则同时减小该车轮的目标主缸压力值和目标制动回馈扭矩;若减小的目标制动力的幅度所需要的扭矩小于等于该车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则减小该车轮的目标制动回馈扭矩。
其中,预设最佳滑移率可以为20%。
具体而言,当任意一个车轮的当前滑移率大于预设最佳滑移率时,若减小的目标制动力的幅度所需要的扭矩Tn大于该车轮对应的轮边电机的最大制动回馈扭矩Tmax与目标制动回馈扭矩K*Tmax的差值(Tmax-K*Tmax),则同时减小该车轮的目标主缸压力值和目标制动回馈扭矩。其中,该车轮的目标制动回馈扭矩的减小值可以是K*(Tmax-K*Tmax),目标主缸压力值的的减小值对应的制动力对应扭矩[Tn-K*(Tmax-K*Tmax)]对应的制动力。
若减小的目标制动力的幅度所需要的扭矩Tn小于等于该车轮对应的轮边电机的最大制动回馈扭矩Tmax与目标制动回馈扭矩K*Tmax的差值,则减小该车轮的目标制动回馈扭矩,减小后的目标制动回馈扭矩为(K*Tmax-Tn)。
在本申请的另一个实施例中,当任意一个车轮的当前滑移率小于预设最佳滑移率时,通过增加该车轮的目标制动力以使该车轮的滑移率达到预设最佳滑移率,其中,若增大的目标制动力的幅度所需要的扭矩大于该车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则同时增加该车轮的目标主缸压力值和目标制动回馈扭矩;若增大的目标制动力的幅度所需要的扭矩小于等于该车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则增大该车轮的目标制动回馈扭矩。
具体而言,当任意一个车轮的当前滑移率小于预设最佳滑移率时,若增大的目标制动力的幅度所需要的扭矩Tn大于该车轮对应的轮边电机的最大制动回馈扭矩Tmax与目标制动回馈扭矩K*Tmax的差值(Tmax-K*Tmax),则同时增加该车轮的目标主缸压力值和目标制动回馈扭矩。其中,该车轮的目标制动回馈扭矩可以增加至K*Tmax+K* (Tmax-K*Tmax)=(2K-K*K)Tmax,目标主缸压力值增加值对应的制动力为扭矩[Tn-(2K-K*K)Tmax]对应的制动力。
若增大的目标制动力的幅度所需要的扭矩Tn小于等于该车轮对应的轮边电机的最大制动回馈扭矩Tmax与目标制动回馈扭矩K*Tmax的差值,则增大该车轮的目标制动回馈扭矩,增大后的目标制动回馈扭矩为(K*Tmax+Tn)
在本申请的一个示例中,如图2所示,在车辆制动过程中,实时采集每个车轮的轮速、车速(可由轮速估算)、制动踏板的深度,控制器(如整车控制器或电机控制器)实时根据各轮速和车速计算各车轮的滑移率,并根据制动踏板的深度计算车辆的需求制动力,以及根据车速和轮速确定车辆的当前路面状况,进而根据当前路面状况和需求制动力确定每个车轮的目标制动力。
进一步地,结合每个车轮对应的轮边电机的最大制动回馈扭矩,将目标制动力进行分配,即为液压制动系统分配每个车轮的目标主缸压力值,并为电机回馈制动系统分配每个车轮的目标制动回馈扭矩。并控制液压制动系统以目标主缸压力值对车辆的每个车轮进行液压制动,控制电机回馈制动系统以目标制动回馈扭矩对车辆的每个车轮进行回馈制动。
在控制器分别控制液压制动系统以目标主缸压力值对车辆的每个车轮进行液压制动,控制电机回馈制动系统以目标制动回馈扭矩对车辆的每个车轮进行回馈制动的过程中,控制器在任意一个车轮的当前滑移率大于预设最佳滑移率20%时,通过减小该车轮的目标制动力以使该车轮的滑移率达到预设最佳滑移率,其中,若减小的目标制动力的幅度所需要的扭矩大于该车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则同时减小该车轮的目标主缸压力值和目标制动回馈扭矩;若减小的目标制动力的幅度所需要的扭矩小于等于该车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则减小该车轮的目标制动回馈扭矩。以及在任意一个车轮的当前滑移率小于预设最佳滑移率时,通过增加该车轮的目标制动力以使该车轮的滑移率达到预设最佳滑移率,其中,若增大的目标制动力的幅度所需要的扭矩大于该车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则同时增加该车轮的目标主缸压力值和目标制动回馈扭矩;若增大的目标制动力的幅度所需要的扭矩小于等于该车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则增大该车轮的目标制动回馈扭矩。
在本申请一个具体示例中,上述制动方法的制动效果可如图3所示,相较于单纯的液压制动过程,本申请的方法能够使车轮的滑移率保持在最佳滑移率20%左右,且车轮制动的循环次数大大增加。
需要说明的是,在本申请实施例的车辆的制动方法,可用于基础制动、EBD(Electric Brakeforce Dis-tribution,电子制动力分配)等制动过程中,尤其可用在ABS防抱死系统中, 充分发挥液压制动效能大以及电机回馈制动响应快的特点,从而可缩短车轮在抱死和释放过程中的响应时间和制动距离,使得车轮的滑移率保持在最佳滑移率20%左右,提高了制动的平顺性。
本申请实施例的车辆的制动方法,在对车辆进行制动控制时,根据车辆的需求制动力和当前路面状况获得每个车轮的目标制动力,并根据每个车轮的目标制动力和每个车轮对应的轮边电机的最大制动回馈扭矩分别给液压制动系统分配每个车轮的目标主缸压力值和给电机回馈制动系统分配每个车轮的目标制动回馈扭矩,分别控制液压制动系统以目标主缸压力值和电机回馈制动系统以目标制动回馈扭矩对车辆的每个车轮进行制动,同时根据每个车轮的当前滑移率对每个车轮的目标主缸压力值和目标制动回馈扭矩进行调节、或对每个车轮的所述目标制动回馈扭矩进行调节,由此,发挥了液压制动效能大,电机响应快的特点,能够缩短车轮在抱死和释放过程中的响应时间和制动距离,提高了制动的平顺性。
图4是根据本申请一个实施例的车辆的制动装置。
在本申请的实施例中,车辆包括液压制动系统、电机回馈制动系统。
如图4所示,该车辆的制动装置包括:检测模块10、获得模块20、分配模块30、控制模块40和调节模块50。
其中,检测模块10用于实时检测车辆车轮的轮速、制动踏板的深度。获得模块20用于根据制动踏板的当前深度获得车辆的需求制动力。分配模块30用于根据车辆的需求制动力和当前路面状况计算每个车轮的目标制动力,并根据每个车轮的目标制动力和每个车轮对应的轮边电机的最大制动回馈扭矩分别为液压制动系统分配每个车轮的目标主缸压力值,并为电机回馈制动系统分配每个车轮的目标制动回馈扭矩。控制模块40用于控制液压制动系统以目标主缸压力值对车辆的每个车轮进行液压制动,并控制电机回馈制动系统以目标制动回馈扭矩对车辆的每个车轮进行回馈制动。调节模块50用于根据每个车轮的当前轮速和估算的车辆参考车速获得每个车轮的当前滑移率,并根据每个车轮的当前滑移率对每个车轮的目标主缸压力值和每个车轮的目标制动回馈扭矩进行调节、或对每个车轮的目标制动回馈扭矩进行调节。
其中,每个车轮的目标制动回馈扭矩为其对应的轮边电机的最大制动回馈扭矩的K倍,其中,K由路面状况确定,且小于1。
在本申请的一个实施例中,调节模块50具体用于在任意一个车轮的当前滑移率大于预设最佳滑移率时,通过减小该车轮的目标制动力以使该车轮的滑移率达到预设最佳滑移率,其中,若减小的目标制动力的幅度所需要的扭矩大于该车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则同时减小该车轮的目标主缸压力值和目标制动回馈扭矩;若减小的目标制动力的幅度所需要的扭矩小于等于该车轮对应的轮边电机的最大制 动回馈扭矩与目标制动回馈扭矩的差值,则减小该车轮的目标制动回馈扭矩。
在本申请的另一个实施例中,调节模块50具体还用于在任意一个车轮的当前滑移率小于预设最佳滑移率时,通过增加该车轮的目标制动力以使该车轮的滑移率达到预设最佳滑移率,其中,若增大的目标制动力的幅度所需要的扭矩大于该车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则同时增加该车轮的目标主缸压力值和目标制动回馈扭矩;若增大的目标制动力的幅度所需要的扭矩小于等于该车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则增大该车轮的目标制动回馈扭矩。
其中,预设最佳滑移率可以为20%。
在本申请的实施例中,滑移率s=(V-Vi)*100%/V,其中,Vi为每个车轮的轮速,V为估算出的车辆参考车速。
需要说明的是,本申请实施例的车辆的制动装置的具体实施方式可参加上述实施例的车辆的制动方法,为减少冗余,此处不做赘述。
本申请实施例的车辆的制动装置,在对车辆进行制动控制时,通过分配模块根据车辆的需求制动力和当前路面状况获得每个车轮的目标制动力,并根据每个车轮的目标制动力和每个车轮对应的轮边电机的最大制动回馈扭矩分别为液压制动系统和电机回馈制动系统分配每个车轮的目标主缸压力值和目标制动回馈扭矩,通过控制模块分别控制液压制动系统以目标主缸压力值和电机回馈制动系统以目标制动回馈扭矩对车辆的每个车轮进行制动,同时根据每个车轮的当前滑移率对每个车轮的目标主缸压力值和目标制动回馈扭矩进行调节、或只对每个车轮的所述目标制动回馈扭矩进行调节,由此,发挥了液压制动效能大,电机响应快的特点,能够缩短车轮在抱死和释放过程中的响应时间和制动距离,提高了制动的平顺性。
此外,本申请实施例还提出了一种车辆,其包括上述实施例描述的车辆的制动装置。
本申请实施例的车辆,通过上述的制动装置,在进行制动控制时,能够发挥液压制动效能大,电机响应快的特点,从而缩短车轮在抱死和释放过程中的响应时间和制动距离,提高了制动的平顺性。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性 或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种车辆的制动方法,其特征在于,所述车辆包括液压制动系统、电机回馈制动系统,所述方法包括:
    检测所述车辆车轮的轮速和车辆制动踏板的深度;
    根据所述车辆制动踏板的当前深度获得所述车辆的需求制动力;
    根据所述车辆的需求制动力和当前路面状况获得每个车轮的目标制动力,并根据每个车轮的目标制动力和每个车轮对应的轮边电机的最大制动回馈扭矩为所述液压制动系统分配每个车轮的目标主缸压力值,并为所述电机回馈制动系统分配每个车轮的目标制动回馈扭矩;
    控制所述液压制动系统以所述目标主缸压力值对所述车辆的每个车轮进行液压制动,并控制所述电机回馈制动系统以所述目标制动回馈扭矩对所述车辆的每个车轮进行回馈制动;
    根据每个车轮的当前轮速和估算的车辆参考车速获得所述每个车轮的当前滑移率,并根据所述每个车轮的当前滑移率对所述每个车轮的目标主缸压力值和所述每个车轮的目标制动回馈扭矩进行调节、或对所述每个车轮的目标制动回馈扭矩进行调节。
  2. 如权利要求1所述的车辆的制动方法,其特征在于,所述每个车轮的目标制动回馈扭矩为其对应的轮边电机的最大制动回馈扭矩的K倍,其中,K由路面状况确定,且小于1。
  3. 如权利要求1或2所述的车辆的制动方法,其特征在于,当任意一个车轮的当前滑移率大于预设最佳滑移率时,通过减小所述任意一个车轮的目标制动力以使所述任意一个车轮的滑移率达到所述预设最佳滑移率,其中,
    若减小的目标制动力的幅度所需要的扭矩大于所述任意一个车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则同时减小所述任意一个车轮的目标主缸压力值和目标制动回馈扭矩;
    若减小的目标制动力的幅度所需要的扭矩小于等于所述任意一个车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则减小所述任意一个车轮的目标制动回馈扭矩。
  4. 如权利要求1或2所述的车辆的制动方法,其特征在于,当任意一个车轮的当前滑移率小于预设最佳滑移率时,通过增加所述任意一个车轮的目标制动力以使所述任意一个车轮的滑移率达到预设最佳滑移率,其中,
    若增大的目标制动力的幅度所需要的扭矩大于所述任意一个车轮对应的轮边电机的最 大制动回馈扭矩与目标制动回馈扭矩的差值,则同时增加所述任意一个车轮的目标主缸压力值和目标制动回馈扭矩;
    若增大的目标制动力的幅度所需要的扭矩小于等于所述任意一个车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则增大所述任意一个车轮的目标制动回馈扭矩。
  5. 如权利要求1至4中任一项所述的车辆的制动方法,其特征在于,所述预设最佳滑移率为20%。
  6. 如权利要求1至5中任一项所述的车辆的制动方法,其特征在于,所述滑移率s=(V-Vi)*100%/V,其中,Vi为每个车轮的轮速,V为估算的车辆参考车速。
  7. 一种车辆的制动装置,其特征在于,所述车辆包括液压制动系统、电机回馈制动系统,所述装置包括:
    检测模块,用于实时检测所述车辆车轮的轮速、制动踏板的深度;
    获得模块,用于根据所述制动踏板的当前深度获得所述车辆的需求制动力;
    分配模块,用于根据所述车辆的需求制动力和当前路面状况获得每个车轮的目标制动力,并根据每个车轮的目标制动力和每个车轮对应的轮边电机的最大制动回馈扭矩为所述液压制动系统分配每个车轮的目标主缸压力值,并为所述电机回馈制动系统分配每个车轮的目标制动回馈扭矩;
    控制模块,用于控制所述液压制动系统以所述目标主缸压力值对所述车辆的每个车轮进行液压制动,并控制所述电机回馈制动系统以所述目标制动回馈扭矩对所述车辆的每个车轮进行回馈制动;
    调节模块,用于根据每个车轮的当前轮速和估算的车辆参考车速获得所述每个车轮的当前滑移率,并根据所述每个车轮的当前滑移率对所述每个车轮的目标主缸压力值和所述每个车轮的目标制动回馈扭矩进行调节、或对所述每个车轮的目标制动回馈扭矩进行调节。
  8. 如权利要求7所述的车辆的制动装置,其特征在于,所述每个车轮的目标制动回馈扭矩为其对应的轮边电机的最大制动回馈扭矩的K倍,其中,K由路面状况确定,且小于1。
  9. 如权利要求7或8所述的车辆的制动装置,其特征在于,所述调节模块,具体用于:
    在任意一个车轮的当前滑移率大于预设最佳滑移率时,通过减小所述任意一个车轮的目标制动力以使所述任意一个车轮的滑移率达到所述预设最佳滑移率,其中,
    若减小的目标制动力的幅度所需要的扭矩大于所述任意一个车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则同时减小所述任意一个车轮的目标主缸压力值和目标制动回馈扭矩;
    若减小的目标制动力的幅度所需要的扭矩小于等于所述任意一个车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则减小所述任意一个车轮的目标制动回馈扭矩。
  10. 如权利要求7或8所述的车辆的制动装置,其特征在于,所述调节模块,具体还用于:
    在任意一个车轮的当前滑移率小于预设最佳滑移率时,通过增加所述任意一个车轮的目标制动力以使所述任意一个车轮的滑移率达到所述预设最佳滑移率,其中,
    若增大的目标制动力的幅度所需要的扭矩大于所述任意一个车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则同时增加所述任意一个车轮的目标主缸压力值和目标制动回馈扭矩;
    若增大的目标制动力的幅度所需要的扭矩小于等于所述任意一个车轮对应的轮边电机的最大制动回馈扭矩与目标制动回馈扭矩的差值,则增大所述任意一个车轮的目标制动回馈扭矩。
  11. 如权利要求7至10中任一项所述的车辆的制动装置,其特征在于,所述预设最佳滑移率为20%。
  12. 如权利要求7至11中任一项所述的车辆的制动装置,其特征在于,所述滑移率s=(V-Vi)*100%/V,其中,Vi为每个车轮的轮速,V为估算的车辆参考车速。
  13. 一种车辆,其特征在于,包括如权利要求7至12中任一项所述的车辆的制动装置。
PCT/CN2017/119864 2016-12-30 2017-12-29 车辆及其制动方法和装置 WO2018121734A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611260807.4A CN108263217A (zh) 2016-12-30 2016-12-30 车辆及其制动方法和装置
CN201611260807.4 2016-12-30

Publications (1)

Publication Number Publication Date
WO2018121734A1 true WO2018121734A1 (zh) 2018-07-05

Family

ID=62710341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119864 WO2018121734A1 (zh) 2016-12-30 2017-12-29 车辆及其制动方法和装置

Country Status (2)

Country Link
CN (1) CN108263217A (zh)
WO (1) WO2018121734A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111645528A (zh) * 2020-06-05 2020-09-11 中国第一汽车股份有限公司 制动能量回收控制方法、系统、装置、车辆及存储介质
CN113635771A (zh) * 2021-08-02 2021-11-12 江铃汽车股份有限公司 一种前驱式电动汽车能量回收扭矩标定方法
CN116461508A (zh) * 2023-04-27 2023-07-21 广州汽车集团股份有限公司 车辆控制方法、装置、终端以及介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111071286B (zh) * 2018-10-19 2021-03-19 中车唐山机车车辆有限公司 一种微轨车辆及其制动系统和制动方法
KR20200059348A (ko) * 2018-11-20 2020-05-29 현대자동차주식회사 전기 모터를 구비한 자동차 및 그를 위한 제동 제어 방법
CN112848907B (zh) * 2019-11-12 2022-09-30 广州汽车集团股份有限公司 车辆制动控制方法及装置
CN111319595A (zh) * 2020-02-18 2020-06-23 宁波吉利汽车研究开发有限公司 一种车辆制动方法、装置、系统及车辆
CN111361534B (zh) * 2020-02-25 2021-12-14 苏州挚途科技有限公司 一种控制主缸压力的方法及装置
CN112092635B (zh) * 2020-08-24 2022-06-21 奇瑞新能源汽车股份有限公司 纯电动汽车及其能量回收控制方法、装置和存储介质
CN112622856B (zh) * 2020-12-25 2022-02-08 中国第一汽车股份有限公司 混合动力总成台架的再生制动方法、装置、车辆及介质
CN112829603A (zh) * 2021-02-09 2021-05-25 的卢技术有限公司 一种四驱电动汽车制动系统及制动调节方法
CN113580948B (zh) * 2021-08-11 2023-08-01 华人运通(江苏)技术有限公司 一种电动汽车的制动控制方法、装置、设备及存储介质
CN114274931B (zh) * 2022-03-03 2022-06-17 万向钱潮股份有限公司 一种多轴商用车线控制动系统压力目标决策方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306137A (ja) * 2002-04-11 2003-10-28 Denso Corp ブレーキ制御装置
JP2007282406A (ja) * 2006-04-07 2007-10-25 Tokyo Metropolitan Univ 自動車の制動力制御システム
CN102745181A (zh) * 2011-04-18 2012-10-24 株式会社万都 车辆制动系统及其控制方法
CN103241127A (zh) * 2012-02-09 2013-08-14 日立汽车系统株式会社 车辆运动控制装置以及车辆运动控制方法
CN103857571A (zh) * 2011-09-28 2014-06-11 大陆-特韦斯贸易合伙股份公司及两合公司 用于电驱动机动车的防滑调节的制动系统
CN104890521A (zh) * 2015-05-11 2015-09-09 郑州宇通客车股份有限公司 一种复合制动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306137A (ja) * 2002-04-11 2003-10-28 Denso Corp ブレーキ制御装置
JP2007282406A (ja) * 2006-04-07 2007-10-25 Tokyo Metropolitan Univ 自動車の制動力制御システム
CN102745181A (zh) * 2011-04-18 2012-10-24 株式会社万都 车辆制动系统及其控制方法
CN103857571A (zh) * 2011-09-28 2014-06-11 大陆-特韦斯贸易合伙股份公司及两合公司 用于电驱动机动车的防滑调节的制动系统
CN103241127A (zh) * 2012-02-09 2013-08-14 日立汽车系统株式会社 车辆运动控制装置以及车辆运动控制方法
CN104890521A (zh) * 2015-05-11 2015-09-09 郑州宇通客车股份有限公司 一种复合制动方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111645528A (zh) * 2020-06-05 2020-09-11 中国第一汽车股份有限公司 制动能量回收控制方法、系统、装置、车辆及存储介质
CN111645528B (zh) * 2020-06-05 2022-02-11 中国第一汽车股份有限公司 制动能量回收控制方法、系统、装置、车辆及存储介质
CN113635771A (zh) * 2021-08-02 2021-11-12 江铃汽车股份有限公司 一种前驱式电动汽车能量回收扭矩标定方法
CN113635771B (zh) * 2021-08-02 2023-06-20 江铃汽车股份有限公司 一种前驱式电动汽车能量回收扭矩标定方法
CN116461508A (zh) * 2023-04-27 2023-07-21 广州汽车集团股份有限公司 车辆控制方法、装置、终端以及介质
CN116461508B (zh) * 2023-04-27 2024-04-02 广州汽车集团股份有限公司 车辆控制方法、装置、终端以及介质

Also Published As

Publication number Publication date
CN108263217A (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
WO2018121734A1 (zh) 车辆及其制动方法和装置
CN102991479B (zh) 用于混合动力电动车辆的再生制动系统及相应方法
US11597283B2 (en) Control apparatus for electric vehicle, control system for electric vehicle, and control method for electric vehicle
CN108216240B (zh) 用于控制四轮驱动车辆的前轮和后轮扭矩分配的方法和装置
US10974705B2 (en) Wheel controller for a vehicle
US10137784B2 (en) Control device for electric vehicle
CN102398585B (zh) 用于控制机动车的制动设备的方法以及用于机动车的制动设备
JP5368954B2 (ja) 車両用制動システム
WO2015072384A1 (ja) アンチロックブレーキ制御装置
US20150224970A1 (en) Braking control device for vehicle
CN103857571A (zh) 用于电驱动机动车的防滑调节的制动系统
JP2008178216A (ja) 自動車及び自動車の制御装置
JP2010247782A (ja) 電気自動車の制御装置
WO2017033753A1 (ja) 電動車両の制御方法、及び、制御装置
JPWO2014013991A1 (ja) 車両用制動力発生装置
JP2007282406A (ja) 自動車の制動力制御システム
JP5841265B2 (ja) 車輪制御装置、車両、車輪制御方法
US11034238B2 (en) Method for determining a contact force on a utility vehicle
JP2008228407A (ja) 車両の制駆動制御装置
JP2016111891A (ja) 車両用制動力制御装置
JP2008301564A (ja) 車両の回生制動制御装置及びそれを含む車両制御装置
JP2012095391A (ja) 車両用ブレーキ装置
JP2011193702A (ja) 電気自動車および制動プログラム
CN109927701A (zh) 一种集中驱动式纯线控汽车制动系统及其控制方法
JP2011254590A (ja) 電気自動車およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888171

Country of ref document: EP

Kind code of ref document: A1