WO2018121587A1 - 一种基于单荧光染料的测序方法 - Google Patents

一种基于单荧光染料的测序方法 Download PDF

Info

Publication number
WO2018121587A1
WO2018121587A1 PCT/CN2017/118928 CN2017118928W WO2018121587A1 WO 2018121587 A1 WO2018121587 A1 WO 2018121587A1 CN 2017118928 W CN2017118928 W CN 2017118928W WO 2018121587 A1 WO2018121587 A1 WO 2018121587A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
nucleic acid
fluorophore
dye
Prior art date
Application number
PCT/CN2017/118928
Other languages
English (en)
French (fr)
Inventor
刘二凯
陈奥
章文蔚
Original Assignee
深圳华大生命科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华大生命科学研究院 filed Critical 深圳华大生命科学研究院
Priority to CA3049667A priority Critical patent/CA3049667A1/en
Priority to EP17886309.8A priority patent/EP3564387A4/en
Priority to RU2019123609A priority patent/RU2760737C2/ru
Priority to AU2017385424A priority patent/AU2017385424A1/en
Priority to US16/474,030 priority patent/US11466318B2/en
Priority to CN201780080605.8A priority patent/CN110114476B/zh
Publication of WO2018121587A1 publication Critical patent/WO2018121587A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates

Definitions

  • the invention relates to the field of nucleic acid sequencing.
  • the present invention provides a single fluorescent dye based sequencing method.
  • the invention also provides a modified nucleoside and nucleotide and a kit comprising the nucleoside and/or nucleotide, which are particularly suitable for use in the sequencing method of the invention.
  • the invention also provides the use of the nucleosides, nucleotides and kits for sequencing.
  • DNA sequencing technology includes the first generation DNA sequencing technology represented by Sanger sequencing and the second generation DNA sequencing technology represented by Illumina Hiseq 2500, Roche 454, ABI Solid, BGI SEQ-500 and the like.
  • the Sanger sequencing method has the characteristics of simple experimental operation, intuitive and accurate results, and short experimental period. It has wide application in the fields of clinical gene mutation detection and genotyping, which require high timeliness of detection results.
  • the disadvantages of the Sanger sequencing method are small throughput and high cost, which limits its application in large-scale gene sequencing.
  • the second generation DNA sequencing technology Compared with the first generation of DNA sequencing technology, the second generation DNA sequencing technology has the characteristics of large sequencing throughput, low cost, high degree of automation and single molecule sequencing.
  • the sequencing technology of Hiseq 2500V2 as an example, an experimental procedure can generate 10-200 G base data, and the average cost per base is less than 1/1000 of the sequencing cost of the Sanger sequencing method, and the obtained sequencing result is obtained. It can be processed and analyzed directly by computer. Therefore, second generation DNA sequencing technology is very suitable for large-scale sequencing.
  • the second-generation DNA sequencing technology that has been developed mainly involves the techniques of sequencing by ligation (SBL) and sequencing by synthesis (SBS).
  • SBL sequencing by ligation
  • SBS sequencing by synthesis
  • Typical examples of these sequencing technologies include the SOLiD sequencing method developed by Applied Biosystems, the combined probe anchor ligation method (cPAL) developed by Complete Genomics, and the combined probe anchor synthesis method (cPAS) developed by Huada Gene, Illumina
  • Illumina sequencing method developed by the company in cooperation with Solexa technology.
  • Illumina and Complate Genomics use a method for detecting optical signals.
  • the sequencing device in order to read the fluorescent signals carried by the respective bases, the sequencing device must be equipped with at least two monochromatic excitation light sources and at least two cameras, which results in a costly and bulky manufacturing of the sequencing device.
  • the identification and discrimination of four bases can be achieved by using two kinds of fluorescent dyes (Sara Goodwin, et. al. Nature Reviews Genetics 17, 333-351 (2016)).
  • the NextSeq sequencing system and the Mini-Seq sequencing system developed by Illumina use a dual fluorescent dye-based sequencing method.
  • the identification and discrimination of four bases is achieved by different combinations of two fluorescent dyes. For example, by labeling base A with a first fluorescent dye, marking base G with a second fluorescent dye, simultaneously labeling base C with first and second fluorescent dyes, and not marking base T/U, thereby distinguishing Four bases.
  • the sequencing device requires only one camera, but still requires at least 2 monochromatic excitation sources.
  • the manufacturing cost and volume of a sequencing apparatus using two kinds of fluorescent dyes are still relatively high.
  • the sequencing quality of the dual fluorescent dye-based sequencing method is significantly reduced compared to the sequencing method using four fluorescent dyes, mainly because it is difficult to distinguish the two-color fluorescence from the monochromatic fluorescence, and the accuracy is reduced. .
  • the sequencer of Oxford Nanopore in the three-generation sequencer makes the sequencer itself very small because of its sequencing principle. It can even be carried into space and then undergo sequencing experiments. Compared with the huge second-generation sequencer, three generations show it here. The superiority of the three generations of sequencers has a high error rate, which limits its application value. Therefore, new sequencing methods need to be developed to further reduce the manufacturing cost and volume of the sequencing device and ensure high sequencing quality.
  • the inventors of the present application have developed a new sequencing method that uses a fluorescent dye or two fluorescent dyes capable of emitting the same fluorescent signal under the same excitation condition to distinguish four bases.
  • the sequencing apparatus for carrying out the sequencing method of the present invention requires only one excitation light source and one camera, thereby greatly reducing the manufacturing cost and volume of the sequencing apparatus.
  • the sequencing device used in the sequencing method of the present invention can be conveniently carried around for immediate/on-site detection.
  • the sequencing method of the present invention has a high sequencing quality comparable to that of four fluorescent dye-based sequencing methods and can be used in various sequencing applications.
  • the invention provides a method of sequencing a nucleic acid molecule comprising the steps of:
  • nucleic acid molecule to be sequenced on the support or attaching the nucleic acid molecule to be sequenced to the support;
  • the compounds are derivatives of nucleotides A, (T/U), C and G, respectively, and have base complementary pairing ability; and, the hydroxy sugars at the 3' position of the ribose or deoxyribose of the four compounds ( -OH) is protected by a protecting group; and, the first compound and the third compound are unable to emit a fluorescent signal (for example, do not carry a fluorescent group), the second compound is capable of emitting a fluorescent signal (for example, carrying a fluorescent group), and the fourth compound cannot Fluorescent signal is emitted, or can emit the same fluorescent signal as the second compound (eg, carrying a fluorescent group, the fluorescent group is the same as the fluorescent group in the second compound, or the fluorescent group and the second compound
  • the fluorophore structure is different, but the two have
  • the method further comprises the steps of:
  • the method further comprises the following step (11):
  • the first compound is incorporated into the 3' end of the growing nucleic acid strand in the step (4), since the first compound itself does not carry a fluorescent group, and is not subjected to the step (6) The effect of the treatment in the process, therefore, no fluorescent signal will be detected in steps (5) and (7).
  • step (4) the second compound is incorporated into the 3' end of the growing nucleic acid strand, then since the second compound itself carries a fluorophore and is not affected by the treatment in step (6), Therefore, the fluorescent signal will be detected in both steps (5) and (7).
  • step (4) If, in step (4), the third compound is incorporated into the 3' end of the growing nucleic acid strand, then (i) since the third compound itself does not carry a fluorescent group, it will not be detected in step (5). To the fluorescent signal; and (ii) since the third compound has undergone the treatment of step (6), a fluorescent signal can be emitted, and therefore, a fluorescent signal will be detected in step (7).
  • step (4) If, in step (4), the fourth compound is incorporated into the 3' end of the growing nucleic acid strand, then (i) the fluorophore is carried as the fourth compound itself carries a fluorophore or is processed in step (5) a cluster, therefore, a fluorescent signal will be detected in step (5); and (ii) a fluorescent signal is lost due to the fourth compound undergoing the treatment of step (6), and therefore, will be detected in step (7) Not fluorescent signal.
  • the type of compound incorporated in the 3' end of the growing nucleic acid strand in step (4) is determined according to the detection results of steps (5) and (7), wherein
  • step (4) When the detection results of steps (5) and (7) are both, when the duplex does not emit the fluorescent signal, it is determined that the compound at the 3' end of the nucleic acid strand incorporated in step (4) is the first compound. ;
  • step (4) When the detection results of steps (5) and (7) are both, when the duplex emits the fluorescent signal, it is determined that the compound at the 3' end of the nucleic acid strand incorporated in step (4) is a second compound;
  • the detection result of the step (5) is that the duplex does not emit the fluorescent signal
  • the detection result of the step (7) is that the duplex emits the fluorescent signal
  • the compound at the 3' end of the growing nucleic acid strand is a fourth compound
  • the type of base at the corresponding position of the nucleic acid molecule to be sequenced is determined according to the type of compound incorporated in the 3' end of the growing nucleic acid strand in step (4).
  • the method of the invention comprises the steps of:
  • nucleic acid molecule to be sequenced on the support or attaching the nucleic acid molecule to be sequenced to the support;
  • Base1, Base2, Base3, and Base4 represent 4 different bases, and are selected from A, (T/U), C, and G;
  • R 1 is each independently selected from -H, a monophosphate group (-PO 3 H 2 ), a diphosphate group (-PO 3 H-PO 3 H 2 ), a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ) and a tetraphosphoric acid group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 );
  • R 2 is each independently selected from -H and -OH;
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 5b are each independently a reactive group capable of undergoing a bioorthogonal cleavage reaction
  • R 5a is a reactive group capable of performing a first bioorthogonal ligation reaction
  • L1 are each independently a linking group or are absent
  • L2 are each independently a linking group or are absent
  • Dye represents a fluorophore capable of emitting a fluorescent signal
  • R 7a is a fluorescent group capable of emitting a fluorescent signal (Dye 1 ), or a reactive group capable of performing a second bioorthogonal ligation reaction, or a member of a binding pair;
  • Dye and Dye 1 have the same structure, or different structures but have the same or substantially the same emission spectrum
  • R 8 capable of undergoing a third bioorthogonal ligation reaction between R 5b and R 7a ;
  • the fourth compound is capable of emitting the same fluorescent signal as the second compound, and R 7a is Dye 1 , the solution phase of the reaction system of the previous step is removed, and the duplex attached to the support is retained, And detecting whether the duplex or the growing nucleic acid strand emits the fluorescent signal;
  • the fourth compound is incapable of emitting a fluorescent signal
  • R 7a is a reactive group capable of undergoing a second bioorthogonal ligation reaction, or a member of the binding pair, such that the duplex or the growing nucleic acid strand
  • the treatment is carried out in a reaction system containing a solution phase and a solid phase, the treatment having no effect on the first compound, the second compound, and the third compound, but capable of causing R 7a in the fourth compound to carry a fluorescent group (for example, An agent having the same fluorophore structure as the second compound, or a fluorophore having the same emission spectrum as the fluorophore of the second compound (for example, another member of the binding pair, or capable of performing a second biological positive with R 7a )
  • the compound that cross-links reacts with a specific interaction/specific binding or a second bioorthogonal ligation reaction; after that, the solution phase of the reaction system of the previous step is removed, leaving the duplex attached to the support, And
  • Another member of the fluorophore-binding binding pair has the structure: R 7b -L-Dye 1 ; wherein R 7b is another member of the binding pair, L is independently a linking group or is absent; Dye 1 represents a fluorophore capable of emitting a fluorescent signal, and has the same structure as Dye, or has a different structure but the same emission spectrum; or
  • the fluorophore-bearing compound capable of undergoing a second bioorthogonal ligation reaction with R 7a has the following structure: R 7b -L-Dye 1 ; wherein R 7b is capable of performing a second bioorthogonal connection with R 7a a reactive group, L is independently a linking group or absent; Dye 1 represents a fluorophore capable of emitting a fluorescent signal, and has the same structure as Dye, or a different structure but having the same emission spectrum;
  • the first bioorthogonal ligation reaction occurs between R 5a in a reagent carrying a fluorescent group (for example, a fluorescent group having the same structure as the second compound, or a fluorescent group having a structure different from that of the second compound but having the same emission spectrum) , thereby introducing a fluorophore in the reagent into the third compound to emit a fluorescent signal; and (i) enabling a bioorthogonal cleavage reaction of R 5b in the fourth compound, thereby removing fluorescence in the fourth compound a group, or (ii) capable of causing a third orthogonal ligation reaction between R 8 in the fourth compound and the compound carrying the quencher group, thereby quenching the fluorescent signal emitted by the fluorophore Dye1 in the fourth compound;
  • a fluorescent group for example, a fluorescent group having the same structure as the second compound, or a fluorescent group having a structure different from that of the second compound but having the same emission spectrum
  • the method further comprises the steps of:
  • the method further comprises the steps of:
  • the method of the invention comprises the steps of:
  • nucleic acid molecule to be sequenced on the support or attaching the nucleic acid molecule to be sequenced to the support;
  • Base1, Base2, Base3, and Base4 represent 4 different bases, and are selected from A, (T/U), C, and G;
  • R 1 is each independently selected from -H, a monophosphate group (-PO 3 H 2 ), a diphosphate group (-PO 3 H-PO 3 H 2 ), a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ) and a tetraphosphoric acid group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 );
  • R 2 is each independently selected from -H and -OH;
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 4c are each independently a reactive group capable of undergoing a bioorthogonal cleavage reaction;
  • R 5a is a member of the first binding pair
  • R 6a (i) is a member of the second binding pair and is a member of the third binding pair;
  • (ii) is only one member of the third binding pair; and R 6a is Dye 1 or R 6a is also linked to -L3-Dye 1 ;
  • L1 are each independently a linking group or are absent
  • L2 are each independently a linking group or are absent
  • L3 is a linking group or does not exist
  • Dye and Dye 1 represent fluorophores capable of emitting a fluorescent signal; and, both have the same structure, or have different structures but have the same or substantially the same emission spectrum;
  • R 8 capable of undergoing a bioorthogonal ligation reaction between R 4c and R 6a ;
  • the fourth compound is incapable of emitting a fluorescent signal
  • R 6a is a member of the second binding pair and is a member of the third binding pair
  • the duplex or the growing nucleic acid strand is The treatment system containing the solution phase and the solid phase undergoes treatment which has no effect on the first compound, the second compound and the third compound, but enables the R 6a in the fourth compound to carry a fluorescent group (for example, An agent that has the same structurally identical fluorophore, or a fluorophore that differs in structure from the fluorophore of the second compound but emits the same or substantially the same fluorophore (eg, another member of the second binding pair) is specific Interaction/specific binding; thereafter, removing the solution phase of the reaction system of the previous step, leaving the duplex attached to the support, and detecting whether the duplex or the growing nucleic acid strand emits the Fluorescent signal
  • Another member of the second binding pair carrying the fluorophore has the structure: R 6b -L4-Dye 2 ; wherein R 6b is another member of the second binding pair, and L4 is independently a linking group or Does not exist; Dye 2 represents a fluorophore capable of emitting a fluorescent signal and has the same structure as Dye, or a different structure but having the same or substantially the same emission spectrum; (ii) the fourth compound is capable of emitting the same as the second compound Fluorescence signal, R 6a is only a member of the third binding pair, and R 6a is Dye 1 or is also linked to -L3-Dye 1 , then the solution phase of the reaction system of the previous step is removed, and remains attached to the support. a duplex and detecting whether the duplex or the growing nucleic acid strand emits the fluorescent signal;
  • Another member of the first binding pair carrying a fluorophore has the structure: R 5b -L5-Dye 3 ; wherein R 5b is another member of the first binding pair, and L5 is independently a linking group or Does not exist; Dye 3 represents a fluorophore capable of emitting a fluorescent signal, and has the same structure as the fluorophore contained in the second compound, or has a different structure but the same emission spectrum;
  • Another member of the third binding pair carrying the quenching group has the structure: R 6c -L6-Que; wherein R 6c is another member of the second binding pair, and L6 is independently a linking group or Does not exist; Que represents a quenching group capable of quenching the fluorescent signal emitted by Dye 1 or Dye 2 ;
  • the method further comprises the steps of:
  • the method further comprises the steps of:
  • the method of the invention comprises the steps of:
  • nucleic acid molecule to be sequenced on the support or attaching the nucleic acid molecule to be sequenced to the support;
  • Base1, Base2, Base3, and Base4 represent 4 different bases, and are selected from A, (T/U), C, and G;
  • R 1 is each independently selected from -H, a monophosphate group (-PO 3 H 2 ), a diphosphate group (-PO 3 H-PO 3 H 2 ), a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ) and a tetraphosphoric acid group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 );
  • R 2 is each independently selected from -H and -OH;
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 4c are each independently a reactive group capable of undergoing a bioorthogonal cleavage reaction;
  • R 5a is a reactive group capable of performing a first bioorthogonal ligation reaction
  • R 6a (i) is a member of the first binding pair and is a member of the second binding pair;
  • (ii) is only one member of the second binding pair, and R 6a is Dye 1 , or R 6a is also linked to -L3-Dye 1 ;
  • L1 are each independently a linking group or are absent
  • L2 are each independently a linking group or are absent
  • L3 is a linking group or does not exist
  • Dye denotes a fluorophore capable of emitting a fluorescent signal
  • Dye and Dye 1 have the same structure, or have different structures but have the same or substantially the same emission spectrum
  • R 8 capable of undergoing a second bioorthogonal ligation reaction between R 4c and R 6a ;
  • the fourth compound is incapable of emitting a fluorescent signal
  • R 6a is a member of the first binding pair and is a member of the second binding pair
  • the duplex or the growing nucleic acid strand is The treatment system containing the solution phase and the solid phase undergoes treatment which has no effect on the first compound, the second compound and the third compound, but enables the R 6a in the fourth compound to carry a fluorescent group
  • a fluorescent group for example, An agent having the same fluorophore as the fluorophore of the second compound or a fluorophore having the same or substantially the same emission fluorophore as the fluorophore of the second compound (eg, another member of the first binding pair) is specific Interaction/specific binding; thereafter, removing the solution phase of the reaction system of the previous step, leaving the duplex attached to the support, and detecting whether the duplex or the growing nucleic acid strand emits the Fluorescent signal
  • Another member of the first binding pair carrying the fluorophore has the structure: R 6b -L4-Dye 2 ; wherein R 6b is another member of the first binding pair, and L4 is independently a linking group or Does not exist; Dye 2 represents a fluorophore capable of emitting a fluorescent signal and has the same structure as Dye, or a different structure but having the same or substantially the same emission spectrum; (ii) the fourth compound is capable of emitting the same as the second compound Fluorescence signal, R 6a is only one member of the second binding pair, and R 6a is Dye 1 , or R 6a is also linked with -L3-Dye 1 , then the solution phase of the reaction system of the previous step is removed, and the connection is retained. a duplex on the object and detecting whether the duplex or the growing nucleic acid strand emits the fluorescent signal;
  • R 6c -L'-Que Another member of the second binding pair carrying the quenching group has the structure: R 6c -L'-Que; wherein R 6c is another member of the second binding pair, and L' is independently a linking group Group or absent; Que represents a quenching group capable of quenching the fluorescent signal emitted by Dye1 or Dye2;
  • the method further comprises the steps of:
  • the method further comprises the steps of:
  • the method of the invention comprises the steps of:
  • nucleic acid molecule to be sequenced on the support or attaching the nucleic acid molecule to be sequenced to the support;
  • Base1, Base2, Base3, and Base4 represent 4 different bases, and are selected from A, (T/U), C, and G;
  • R 1 is each independently selected from -H, a monophosphate group (-PO 3 H 2 ), a diphosphate group (-PO 3 H-PO 3 H 2 ), a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ) and a tetraphosphoric acid group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 );
  • R 2 is each independently selected from -H and -OH;
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 4c are each independently a reactive group capable of undergoing a bioorthogonal cleavage reaction;
  • R 5a is a member of the first binding pair
  • R 6a is a fluorescent group capable of emitting a fluorescent signal (Dye 1 ), a reactive group capable of performing a first bioorthogonal ligation reaction, and/or a member of a second binding pair;
  • L1 are each independently a linking group or are absent
  • L2 are each independently a linking group or are absent
  • Dye and Dye 1 represent fluorophores capable of emitting a fluorescent signal; and, Dye and Dye 1 have the same structure, or have different structures but have the same or substantially the same emission spectrum;
  • R 8 capable of undergoing a second bioorthogonal ligation reaction between R 4c and R 6a ;
  • the fourth compound is capable of emitting the same fluorescent signal as the second compound, and R 6a is Dye 1 , the solution phase of the reaction system of the previous step is removed, and the duplex attached to the support is retained, And detecting whether the duplex or the growing nucleic acid strand emits the fluorescent signal;
  • R 6a is a reactive group capable of undergoing a first bioorthogonal ligation reaction, or a member of the second binding pair is such that the duplex or the growing The nucleic acid strand undergoes treatment in a reaction system containing a solution phase and a solid phase, the treatment having no effect on the first compound, the second compound, and the third compound, but capable of causing R 6a in the fourth compound to carry a fluorescent group
  • an agent having the same fluorophore structure as the second compound, or a fluorophore identical or substantially identical to the emission spectrum of the fluorophore of the second compound eg, another member of the second binding pair, or capable of a compound in which the first bioorthogonal ligation reaction is carried out by R 6a
  • Another member of the second binding pair carrying the fluorophore has the structure: R 6b -L'-Dye 1 ; wherein R 6b is another member of the second binding pair, and L' is independently a linker Group or absent; Dye 1 represents a fluorophore capable of emitting a fluorescent signal and has the same structure as Dye, or a different structure but having the same or substantially the same emission spectrum; or
  • the fluorophore-bearing compound capable of performing a first bioorthogonal ligation reaction with R 6a has the following structure: R 6b -L'-Dye 1 ; wherein R 6b is capable of first bioorthogonality with R 6a a group attached to the reaction, L' is independently a linking group or absent; Dye 1 represents a fluorophore capable of emitting a fluorescent signal, and has the same structure as Dye, or a different structure but having the same or substantially the same emission spectrum ;
  • Another member of the first binding pair carrying a fluorophore has the structure: R 5b -L-Dye 2 ; wherein R 5b is another member of the first binding pair, and L is independently a linking group or Does not exist; Dye 2 represents a fluorophore capable of emitting a fluorescent signal and is identical to or substantially identical to the fluorophore contained in the second compound or from the fluorophore of the second compound;
  • the method further comprises the steps of:
  • the method further comprises the steps of:
  • the method of the invention comprises the steps of:
  • nucleic acid molecule to be sequenced on the support or attaching the nucleic acid molecule to be sequenced to the support;
  • Base1, Base2, Base3, and Base4 represent 4 different bases, and are selected from A, (T/U), C, and G;
  • R 1 is each independently selected from -H, a monophosphate group (-PO 3 H 2 ), a diphosphate group (-PO 3 H-PO 3 H 2 ), a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ) and a tetraphosphoric acid group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 );
  • R 2 is each independently selected from -H and -OH;
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 4c are each independently a reactive group capable of undergoing a bioorthogonal cleavage reaction;
  • R 5a is a member of the first binding pair
  • R 6a is a member of the second binding pair, optionally, R 6a is Dye 1 or is also linked to -L3-Dye 1 ;
  • L1 are each independently a linking group or are absent
  • L2 are each independently a linking group or are absent
  • L3 is a linking group or does not exist
  • Dye and Dye 1 represent fluorophores capable of emitting a fluorescent signal; and, both have the same structure, or have different structures but have the same or substantially the same emission spectrum;
  • R 8 capable of undergoing a bioorthogonal ligation reaction between R 4c and R 6a ;
  • the fourth compound is incapable of emitting a fluorescent signal, then subjecting the duplex or the growing nucleic acid strand to a treatment in a reaction system containing a solution phase and a solid phase, the treatment of the first compound,
  • the second compound and the third compound have no effect, but are capable of causing R 6a in the fourth compound to carry a fluorescent group (for example, a fluorescent group having the same structure as the second compound, or a structure of a fluorescent group of the second compound)
  • a fluorescent group for example, a fluorescent group having the same structure as the second compound, or a structure of a fluorescent group of the second compound
  • An agent that is different but emits a fluorophore having the same or substantially the same fluorophore eg, another member of the second binding pair
  • undergoes specific interaction/specific binding thereafter, the solution phase of the reaction system of the previous step is removed, Retaining a duplex attached to the support and detecting whether the duplex or the growing nucleic acid strand emits the fluorescent signal
  • Another member of the second binding pair carrying the fluorophore has the structure: R 6b -L4-Dye 2 ; wherein R 6b is another member of the second binding pair, and L4 is independently a linking group or Does not exist; Dye 2 represents a fluorophore capable of emitting a fluorescent signal and has the same structure as Dye, or a different structure but having the same or substantially the same emission spectrum; meanwhile, R 6b is a member of the third binding pair;
  • the fourth compound is capable of emitting the same fluorescent signal as the second compound, then removing the solution phase of the reaction system of the previous step, retaining the duplex attached to the support, and detecting the duplex or Whether the growing nucleic acid strand emits the fluorescent signal;
  • Another member of the first binding pair carrying a fluorophore has the structure: R 5b -L5-Dye 3 ; wherein R 5b is another member of the first binding pair, and L5 is independently a linking group or Does not exist; Dye 3 represents a fluorophore capable of emitting a fluorescent signal, and has the same structure as the fluorophore contained in the second compound, or a different structure but having the same or substantially the same emission spectrum;
  • the method further comprises the steps of:
  • the method further comprises the steps of:
  • the method of the invention comprises the steps of:
  • nucleic acid molecule to be sequenced on the support or attaching the nucleic acid molecule to be sequenced to the support;
  • Base1, Base2, Base3, and Base4 represent 4 different bases, and are selected from A, (T/U), C, and G;
  • R 1 is each independently selected from -H, a monophosphate group (-PO 3 H 2 ), a diphosphate group (-PO 3 H-PO 3 H 2 ), a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ) and a tetraphosphoric acid group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 );
  • R 2 is each independently selected from -H and -OH;
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 4c are each independently a reactive group capable of undergoing a bioorthogonal cleavage reaction;
  • R 5a is a reactive group capable of performing a first bioorthogonal ligation reaction
  • R 6a is a member of the first binding pair, optionally, R 6a is Dye 1 or is further linked to -L3-Dye 1 ;
  • L1 are each independently a linking group or are absent
  • L2 are each independently a linking group or are absent
  • L3 is a linking group or does not exist
  • Dye denotes a fluorophore capable of emitting a fluorescent signal
  • Dye and Dye 1 have the same structure, or have different structures but have the same or substantially the same emission spectrum
  • R 8 capable of undergoing a second bioorthogonal ligation reaction between R 4c and R 6a ;
  • the fourth compound is incapable of emitting a fluorescent signal, then subjecting the duplex or the growing nucleic acid strand to a treatment in a reaction system containing a solution phase and a solid phase, the treatment of the first compound,
  • the second compound and the third compound have no effect, but are capable of causing R 6a in the fourth compound to carry a fluorophore (for example, a fluorophore having the same structure as the second compound, or a structure of a fluorophore of the second compound)
  • a fluorophore for example, a fluorophore having the same structure as the second compound, or a structure of a fluorophore of the second compound
  • Reagents that differ in the emission of the same or substantially identical fluorophores (eg, another member of the first binding pair) undergo specific interaction/specific binding; thereafter, the solution phase of the reaction system of the previous step is removed, Retaining a duplex attached to the support and detecting whether the duplex or the growing nucleic
  • Another member of the first binding pair carrying the fluorophore has the structure: R 6b -L4-Dye 2 ; wherein R 6b is another member of the first binding pair, and L4 is independently a linking group or Does not exist; Dye 2 represents a fluorophore capable of emitting a fluorescent signal and has the same structure as Dye, or a different structure but having the same or substantially the same emission spectrum; meanwhile, R 6b is a member of the second binding pair;
  • the fourth compound is capable of emitting the same fluorescent signal as the second compound, then removing the solution phase of the reaction system of the previous step, retaining the duplex attached to the support, and detecting the duplex or Whether the growing nucleic acid strand emits the fluorescent signal;
  • R 6c -L'-Que Another member of the second binding pair carrying the quenching group has the structure: R 6c -L'-Que; wherein R 6c is another member of the second binding pair, and L' is independently a linking group Group or absent; Que represents a quenching group capable of quenching the fluorescent signal emitted by Dye 1 or Dye 2 ;
  • the method further comprises the steps of:
  • the method further comprises the steps of:
  • the invention provides a kit comprising four compounds as defined above.
  • the kit of the invention comprises four compounds (ie, first, second, third, and fourth compounds), wherein:
  • the four compounds are derivatives of nucleotides A, (T/U), C and G, respectively, and have a base complementary pairing ability;
  • hydroxyl group (-OH) at the 3' position of the ribose or deoxyribose of the four compounds is protected by a protecting group; and, the protecting group can be removed;
  • the first compound and the third compound are incapable of emitting a fluorescent signal (eg, not carrying a fluorescent group), the second compound is capable of emitting a fluorescent signal, the fourth compound is incapable of emitting a fluorescent signal, or is capable of emitting the same as the second compound Fluorescent signal (for example, carrying a fluorophore, the fluorophore is the same as the fluorophore in the second compound, or the fluorophore is different from the fluorophore structure in the second compound, but both have the same Or substantially the same emission spectrum); and,
  • the third compound is treated to emit the same fluorescent signal as the second compound (eg, to cause the third compound to carry the same fluorescent group as the second compound, or to cause the third compound to carry a fluorescent group with the second compound a fluorophore having the same or substantially the same emission spectrum;
  • the fourth compound is capable of emitting the same fluorescent signal as the second compound, the fourth compound is treated to remove its own fluorescent signal (eg, to remove its own fluorescent group, or to quench its own fluorescent group) Fluorescent signal emitted);
  • the fourth compound is capable of emitting the same fluorescent signal as the second compound after the first treatment (eg, causing the fourth compound to carry the same fluorescent group as the second compound, Or the fourth compound is allowed to carry a fluorophore identical or substantially identical to the emission spectrum of the fluorophore of the second compound; and the fourth compound is capable of removing its own fluorescent signal after the second treatment (eg, removing itself) Fluorescent group, or quenching the fluorescent signal emitted by its own fluorophore).
  • the kit of the present invention further comprises: reagents and/or devices for extracting nucleic acid molecules from the sample; reagents for pretreating the nucleic acid molecules; and for ligating the nucleic acid molecules to be sequenced a support; a reagent for linking (eg, covalently or non-covalently linking) a nucleic acid molecule to be sequenced to a support; a primer for initial nucleotide polymerization; for performing a nucleotide polymerization reaction Polymerase; one or more buffer solutions; one or more wash solutions; or any combination thereof.
  • Fig. 1 shows the comparison results of Experimental Photos 1 and 2 obtained in Experimental Example 1.
  • Fig. 2 shows the comparison results of Experimental Photos 1 and 2 obtained in Experimental Example 2.
  • Fig. 3 shows the comparison results of Experimental Photos 1 and 2 obtained in Experimental Example 3.
  • Fig. 4 shows the comparison results of Experimental Photos 1 and 2 obtained in Experimental Example 4.
  • the term "support” refers to any material (solid or semi-solid) that allows for stable attachment of nucleic acids, such as latex beads, dextran beads, polystyrene, polypropylene, polyacrylamide gels, Gold thin layers, glass and silicon wafers.
  • the support is optically clear, such as glass.
  • stable attachment means that the linkage between the nucleic acid molecule and the support is sufficiently strong that the nucleic acid molecule is not subjected to various reactions or treatments (eg, polymerization, bioorthogonal cleavage, biological The support and the washing treatment were used to remove the support.
  • the term "connected" is intended to cover any form of linkage, such as covalent linkages and non-covalent linkages.
  • the nucleic acid molecule is preferably linked to the support by a covalent means.
  • fragmentation refers to the process of converting a large nucleic acid fragment (eg, a large DNA fragment) into a small nucleic acid fragment (eg, a small DNA fragment).
  • large nucleic acid fragment is intended to encompass nucleic acid molecules (eg, DNA) greater than 5 kb, greater than 10 kb, greater than 25 kb, eg, greater than 500 kb, greater than 1 Mb, greater than 5 Mb or greater nucleic acid molecules (eg, DNA) ).
  • end-filled refers to the process of complementing the ends of a nucleic acid molecule having an overhanging end to form a nucleic acid molecule having a blunt end.
  • linker and “linker sequence” are used interchangeably.
  • linker and linker sequence refer to a stretch of oligonucleotide sequences introduced human at the 5' and/or 3' end of a nucleic acid molecule.
  • a connector can typically contain one or more regions for achieving a particular function.
  • the linker when a linker is introduced artificially at the 5' and/or 3' end of the nucleic acid molecule, the linker will be able to perform the specific function, thereby facilitating subsequent applications.
  • the linker can comprise one or more primer binding regions to facilitate binding of the primers.
  • the linker may comprise one or more primer binding regions, such as a primer binding region capable of hybridizing to a primer for amplification, and/or capable of hybridizing to a primer for use in a sequencing reaction. Primer binding region.
  • the linker comprises a universal linker sequence capable of hybridizing to a universal primer, for example, a universal linker sequence capable of hybridizing to a universal amplification primer and/or a universal sequencing primer.
  • the nucleic acid molecule carrying the linker can be conveniently amplified and/or sequenced by using universal amplification primers and/or universal sequencing primers.
  • the linker can also comprise a tag or tag sequence.
  • the terms “tag” and “tag sequence” are used interchangeably.
  • the terms “tag” and “tag sequence” refer to a segment of an oligonucleotide sequence introduced at the 5' and/or 3' end of a nucleic acid molecule with a particular base sequence. Labels are commonly used to identify/distinguish the source of nucleic acid molecules.
  • different tags can be introduced in different nucleic acid molecules from different sources, whereby when these nucleic acid molecules of different origin are mixed together, each nucleic acid molecule can be accurately determined by the unique tag sequence carried on each nucleic acid molecule. origin of.
  • the tag sequence can have any length, such as 2-50 bp, such as 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 bp, depending on actual needs.
  • hybridization generally refers to hybridization under stringent conditions.
  • the stringent conditions include, for example, moderate stringency conditions (eg, hybridization at about 45 ° C in 6 x sodium chloride / sodium citrate (SSC), then in 0.2 x SSC / 0.1% SDS One or more washes at about 50-65 ° C; high stringency conditions (eg, hybridization at about 45 ° C in 6 x SSC, then at about 68 ° C in 0.1 x SSC / 0.2% SDS or Multiple washes; and other stringent hybridization conditions known to those skilled in the art (see, for example, Ausubel, FM et al, 1989, Current Protocols in Molecular Biology, Vol. 1, Green Publishing Associates, Inc., and John Wiley & Sons , Inc., New York, pages 6.3.1-6.3.6 and 2.10.3).
  • reaction system containing a solution phase and a solid phase means that the reaction system of the present invention comprises both a support and a substance attached to the support (solid phase), and a solution/solvent dissolved in the solution/solvent.
  • removing the solution phase of the reaction system means removing the solution in the reaction system and the substance (solution phase) contained therein, and retaining only the support in the reaction system and the substance attached to the support. (Solid Phase).
  • the substance (solid phase) attached to the support may comprise a nucleic acid molecule to be sequenced, a growing nucleic acid strand, and/or a duplex formed by the nucleic acid molecule to be sequenced and the growing nucleic acid strand.
  • primer refers to an oligonucleotide sequence that hybridizes to a complementary sequence and initiates a specific polymerization reaction.
  • sequence of the primer is selected/designed to have maximum hybridization activity for the complementary sequence, while having very low non-specific hybridization activity for other sequences, thereby minimizing non-specific amplification.
  • Methods for designing primers are well known to those skilled in the art and can be performed using commercially available software (e.g., Primer Premier version 6.0, Oligo version 7.36, etc.).
  • polymerase refers to an enzyme capable of performing a nucleotide polymerization reaction. Such an enzyme is capable of introducing a nucleotide paired with a nucleotide at a position corresponding to a template nucleic acid at the 3' end of the growing nucleic acid strand according to the principle of base complementary pairing.
  • the expressions "A, (T/U), C, and G” are intended to cover two instances: “A, T, C, and G” and "A, U, C, and G.”
  • the expression “the four compounds are derivatives of nucleotides A, (T/U), C and G, respectively” is intended to mean that the four compounds are nucleotides A, T, C and G, respectively. Derivatives, or derivatives of nucleotides A, U, C and G, respectively.
  • a compound having a base complementary pairing ability means that the compound is capable of pairing with a corresponding base and forming a hydrogen bond according to the principle of base complementary pairing.
  • base A can be paired with base T or U
  • base G can be paired with base C.
  • a compound having a base complementary pairing ability when a compound having a base complementary pairing ability is a derivative of nucleotide A, it will be able to pair with a base T or U; when a compound having a base complementary pairing ability is a derivative of a nucleotide T or U When it is a substance, it will be able to pair with base A; when a compound having a base complementary pairing ability is a derivative of nucleotide C, it will be able to pair with base G; when a compound having a base complementary pairing ability is In the case of a derivative of nucleotide G, it will be able to pair with base C.
  • hydroxy (-OH) is protected by a protecting group means that H in the free hydroxyl group (-OH) is substituted with a protecting group (P) to form a protected hydroxyl group (-OP). .
  • the protecting group (P) can be removed such that the protected hydroxyl group (-OP) can be converted again to a free hydroxyl group (-OH).
  • binding pairing means a pair of molecules (ie, two members) that are capable of interacting by specific non-covalent interactions.
  • two members of a binding pair rely on each other's three-dimensional structure to achieve specific interactions (ie, specific recognition and binding).
  • Typical binding pairs include, for example, antigen (eg, small molecule antigen)-antibody, hapten-antibody, hormone-receptor, ligand-receptor, nucleic acid strand-complementary nucleic acid strand, substrate-enzyme, substrate analog- Enzymes, inhibitors-enzymes, sugar-plant lectins, biotin-avidin (eg, avidin and streptavidin), digoxin and digoxin antibodies, and 5-position bromode deoxygenation Guanosine and its antibodies.
  • antigen eg, small molecule antigen
  • hapten-antibody hormone-receptor
  • ligand-receptor ligand-receptor
  • nucleic acid strand-complementary nucleic acid strand substrate-enzyme
  • substrate analog- Enzymes substrate analog- Enzymes
  • inhibitors-enzymes inhibitors-enzymes
  • sugar-plant lectins eg, biotin-avidin (eg, avidin and
  • the term "specific interaction/binding” refers to a non-random interaction/binding reaction between two molecules, such as an interaction between an antibody and the antigen to which it is directed.
  • the presence of a specific interaction between two members of a binding pair means that one member of the binding pair is less than about 10 -5 M, such as less than about 10 -6 M, 10 -7 M, 10 Affinity (K D ) of -8 M, 10 -9 M or 10 -10 M or less is combined with another member.
  • K D means that two members of the binding pair interactions equilibrium dissociation constant, which is used to describe the binding affinity between the two members. The smaller the equilibrium dissociation constant, the tighter the binding between the two members and the higher the affinity between the two members. Typically, one member of the binding pair has a dissociation equilibrium constant of less than about 10 -5 M, such as less than about 10 -6 M, 10 -7 M, 10 -8 M, 10 -9 M, or 10 -10 M or less. (K D ) combines with another member.
  • SPR surface plasmon resonance
  • bioorthogonal reaction refers to a chemical reaction that can occur within an organism (eg, a living cell or tissue) without affecting the biochemical reaction of the organism itself.
  • the bioorthogonal reaction has strong activity and selectivity under physiological conditions, and its substrate and/or reaction mechanism is rare or absent in the organism, so it maintains good inertness to the active molecules in the living body and can be undisturbed. It is carried out in vivo.
  • Bioorthogonal reactions can be used to label biomacromolecules or small active molecules, and can be applied in molecular imaging, drug screening, and the like.
  • biological orthogonal cleavage reaction refers to a bioorthogonal reaction in which a reactive group in a substrate undergoes cleavage of a covalent bond to form a product.
  • Chemical reactions that can be used as bioorthogonal cleavage reactions include, but are not limited to, Ru-catalyzed deallyl reactions, Pd-catalyzed deacetylation reactions, Cu-catalyzed deacetylation reactions, specific IEDs -DA-induced "click-release” (sing-promoted alkene-azide cycloaddition-induced aryl azide reduction).
  • biometric orthogonal ligation reaction refers to a bioorthogonal reaction in which a reactive group in a substrate undergoes the formation of a covalent bond to form a product.
  • Chemical reactions that can be used as bioorthogonal ligation reactions include, but are not limited to, Staudinger Ligation, monovalent copper ion-catalyzed cycloaddition of azide and alkynyl groups (Cu catalyzed azide-alkyne cycloaddition) , AAC), ring tension-driven azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder reaction (IEDDA)), Pd-catalyzed Suzuki cross-coupling, disulfide bond formation reaction of mercapto and mercapto derivatives.
  • the term "reactive group” refers to a group capable of undergoing a chemical reaction.
  • the expression "reactive group capable of undergoing bioorthogonal ligation reaction” means that the reactive group is capable of undergoing a bioorthogonal ligation reaction with another reactive group (complementary group) and in two reactivity The formation of a covalent bond between the groups results in a covalent linkage between different compounds comprising the two reactive groups or between different moieties of the same compound.
  • the expression "reactive group capable of undergoing a bioorthogonal cleavage reaction” means that the reactive group is capable of undergoing a bioorthogonal cleavage reaction and causes the reactive group or a portion thereof to contain the reactive group The compound is broken or detached.
  • cycloalkenylene subunit includes both a divalent group obtained by eliminating one hydrogen atom from the same carbon atom on a cyclic olefin, and a hydrogen atom obtained by eliminating two hydrogen atoms on each of the ring olefins. Divalent group.
  • the inventors of the present application have developed a new sequencing method that uses a fluorescent dye to distinguish four bases.
  • the invention provides a method of sequencing a nucleic acid molecule comprising the steps of:
  • nucleic acid molecule to be sequenced on the support or attaching the nucleic acid molecule to be sequenced to the support;
  • the compounds are derivatives of nucleotides A, (T/U), C and G, respectively, and have base complementary pairing ability; and, the hydroxy sugars at the 3' position of the ribose or deoxyribose of the four compounds ( -OH) is protected by a protecting group; and, the first compound and the third compound are unable to emit a fluorescent signal (for example, do not carry a fluorescent group), the second compound is capable of emitting a fluorescent signal (for example, carrying a fluorescent group), and the fourth compound cannot Fluorescent signal is emitted, or can emit the same fluorescent signal as the second compound (eg, carrying a fluorescent group, the fluorescent group is the same as the fluorescent group in the second compound, or the fluorescent group and the second compound
  • the fluorophore structure is different, but the two have
  • the method further comprises the steps of:
  • the method further comprises the following step (11):
  • the nucleic acid molecule to be sequenced may be any nucleic acid molecule of interest.
  • the nucleic acid molecule to be sequenced comprises deoxyribonucleotides, ribonucleotides, modified deoxyribonucleotides, modified ribonucleotides, or any combination thereof.
  • the nucleic acid molecule to be sequenced is not limited by its type.
  • the nucleic acid molecule to be sequenced is DNA or RNA.
  • the nucleic acid molecule to be sequenced can be genomic DNA, mitochondrial DNA, chloroplast DNA, mRNA, cDNA, miRNA, or siRNA.
  • the nucleic acid molecule to be sequenced is linear or circular. In certain preferred embodiments, the nucleic acid molecule to be sequenced is double-stranded or single-stranded.
  • the nucleic acid molecule to be sequenced may be single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), single-stranded RNA (ssRNA), double-stranded RNA (dsRNA), or a hybrid of DNA and RNA.
  • the nucleic acid molecule to be sequenced is a single stranded DNA. In certain preferred embodiments, the nucleic acid molecule to be sequenced is a double stranded DNA.
  • the nucleic acid molecule to be sequenced is not limited by its source.
  • the nucleic acid molecule to be sequenced can be obtained from any source, for example, any cell, tissue or organism (e.g., viruses, bacteria, fungi, plants, and animals).
  • the nucleic acid molecule to be sequenced is derived from a mammal (eg, a human, a non-human primate, a rodent or a canine), a plant, a bird, a reptile, a fish, Fungus, bacteria or virus.
  • nucleic acid molecules from cells, tissues or organisms are well known to those skilled in the art. Suitable methods include, but are not limited to, ethanol precipitation, chloroform extraction, and the like. A detailed description of such methods can be found, for example, in J. Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989, and FMAusubel et al., Guide to Molecular Biology Experiments , 3rd edition, John Wiley & Sons, Inc., 1995. In addition, various commercial kits can be used to extract nucleic acid molecules from a variety of sources, such as cells, tissues or organisms.
  • the nucleic acid molecule to be sequenced is not limited by its length.
  • the nucleic acid molecule to be sequenced can be at least 10 bp, at least 20 bp, at least 30 bp, at least 40 bp, at least 50 bp, at least 100 bp, at least 200 bp, at least 300 bp, at least 400 bp, at least 500 bp, at least 1000 bp in length. , or at least 2000bp.
  • the nucleic acid molecule to be sequenced may be 10-20 bp, 20-30 bp, 30-40 bp, 40-50 bp, 50-100 bp, 100-200 bp, 200-300 bp, 300-400 bp, 400-500 bp, 500-1000 bp, 1000-2000 bp, or more than 2000 bp.
  • the nucleic acid molecule to be sequenced can have a length of 10-1000 bp to facilitate high throughput sequencing.
  • the nucleic acid molecule can be pretreated prior to attaching the nucleic acid molecule to the support.
  • pretreatments include, but are not limited to, fragmentation of nucleic acid molecules, complementation of ends, addition of linkers, addition of tags, repair of nicks, amplification of nucleic acid molecules, isolation and purification of nucleic acid molecules, and any combination thereof.
  • nucleic acid molecules can be subjected to fragmentation in order to obtain nucleic acid molecules of suitable length.
  • fragmentation of a nucleic acid molecule can be performed by any method known to those of ordinary skill in the art.
  • fragmentation can be carried out by enzymatic or mechanical means.
  • the mechanical method can be ultrasonic or physical shear.
  • the enzymatic method can be carried out by digestion with a nuclease (for example, deoxyribonuclease) or restriction endonuclease.
  • the fragmentation results in an end of the sequence that is not known.
  • the fragmentation results in a known end of the sequence.
  • the enzymatic method uses DNase I to fragment a nucleic acid molecule.
  • DNase I is a universal enzyme that non-specifically cleaves double-stranded DNA (dsDNA) to release 5' phosphorylated dinucleotide, trinucleotide and oligonucleotide products.
  • dsDNA double-stranded DNA
  • DNase I has optimal activity in buffers containing Mn 2+ , Mg 2+ and Ca 2+ but no other salts, which are commonly used to fragment a large DNA genome into small DNA fragments, followed by The resulting small DNA fragments can be used to construct a DNA library.
  • DNase I The cleavage properties of DNase I will result in random digestion of DNA molecules (ie, no sequence bias) and, when used in the presence of buffers containing manganese ions, produce predominantly blunt-end dsDNA fragments (Melgar, E. And DAGoldthwait.1968. Deoxyribonucleic acid nucleases. II. The effects of metal on the mechanism of action of deoxyribonuclease IJ Biol. Chem. 243: 4409).
  • DNase I three factors can be considered: (i) amount of enzyme used (unit); (ii) digestion temperature (°C); and (iii) incubation time (minutes).
  • large DNA fragments or whole genomic DNA can be digested with DNase I for 1-2 minutes between 10 ° C and 37 ° C to produce DNA molecules of suitable length.
  • the nucleic acid molecule of interest (the nucleic acid molecule to be sequenced) is fragmented prior to step (1).
  • the nucleic acid molecules to be sequenced are subjected to fragmentation by enzymatic or mechanical means.
  • the nucleic acid molecule to be sequenced by DNase I is fragmented.
  • the nucleic acid molecules to be sequenced are subjected to fragmentation by sonication.
  • the fragmented nucleic acid molecule is 50-2000 bp in length, such as 50-100 bp, 100-200 bp, 200-300 bp, 300-400 bp, 400-500 bp, 500-1000 bp, 1000-2000 bp. , 50-1500 bp, or 50-1000 bp.
  • Fragmentation of double-stranded nucleic acid molecules can produce nucleic acid fragments having blunt ends or overhangs of one or two nucleotides in length.
  • genomic DNA gDNA
  • DNase I the product may comprise a DNA fragment having a blunt end or overhang.
  • the end of the nucleic acid molecule having an overhang can be made up using a polymerase to form a nucleic acid molecule having a blunt end to facilitate subsequent applications (e.g., to facilitate ligation of the fragmented nucleic acid molecule to a linker).
  • the fragmented nucleic acid molecule is treated with a DNA polymerase to produce a DNA fragment having a blunt end.
  • the DNA polymerase can be any known DNA polymerase, such as T4 DNA polymerase, Pfu DNA polymerase, Klenow DNA polymerase.
  • Pfu DNA polymerase may be advantageous because Pfu DNA polymerase not only complements the overhangs to form blunt ends, but also has 3'-5' exonuclease activity, Removal of single nucleotide and dinucleotide overhangs to further increase the number of DNA fragments with blunt ends (Costa, GL and MP Weiner. 1994a. Protocols for cloning and analysis of blunt-ended PCR-generated DNA fragments. PCR Methods Appl 3(5): S95; Costa, GLt A. Grafsky and MP Wemer. 1994b. Cloning and analysis of PCR-generated DNA fragments. PCR Methods Appl 3(6): 338; Costa, GL and MPWeiner. 1994c. Polishing with T4 or Pfu polymerase increases the efficiency of cloning of PCR products. Nucleic Acids Res. 22(12): 2423).
  • a linker can be introduced at the 5' and/or 3' end of the nucleic acid molecule to be sequenced.
  • the linker is an oligonucleotide sequence and it can be any sequence, of any length.
  • Linkers of suitable length and sequence can be selected by methods well known in the art.
  • a linker ligated to the end of a nucleic acid molecule to be sequenced is typically 5 to 100 nucleotides in length (eg, 5-10 bp, 10-20 bp, 20-30 bp, 30-40 bp, 40-50 bp, 50-100 bp).
  • the linker can have a primer binding region.
  • the linker has one or more primer binding regions. In certain preferred embodiments, the linker has one or more regions that are capable of hybridizing to a primer for amplification. In certain preferred embodiments, the linker has one or more regions that are capable of hybridizing to primers used in the sequencing reaction. In certain preferred embodiments, a linker is introduced at the 5' end of the nucleic acid molecule to be sequenced. In certain preferred embodiments, a linker is introduced at the 3' end of the nucleic acid molecule to be sequenced.
  • a linker is introduced at the 5' and 3' ends of the nucleic acid molecule to be sequenced.
  • the linker comprises a universal linker sequence that is capable of hybridizing to a universal primer.
  • the linker comprises a universal linker sequence that is capable of hybridizing to a universal amplification primer and/or a universal sequencing primer.
  • the tag sequence can be introduced into the nucleic acid molecule to be sequenced, or the tag sequence can be introduced into the linker described above.
  • a tag sequence refers to a segment of an oligonucleotide having a particular base sequence.
  • the tag sequence can have any length, such as 2-50 bp, such as 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 bp, depending on actual needs.
  • each nucleic acid molecule to be sequenced is subjected to a tag sequence containing a particular sequence to facilitate discrimination of the source of each nucleic acid molecule to be sequenced.
  • the tag sequence can be introduced directly at the 5' and/or 3' end of the nucleic acid molecule to be sequenced.
  • a tag sequence can be introduced into the linker and then ligated to the 5' and/or 3' end of the nucleic acid molecule to be sequenced.
  • the tag sequence can be located anywhere in the linker sequence, such as the 5' and/or 3' end of the linker sequence.
  • the linker comprises a primer binding region and a tag sequence.
  • the primer binding region comprises a universal linker sequence that is recognized by universal primers, and preferably, the tag sequence can be located at the 3' end of the primer binding region.
  • different tag sequences are used to label/distinguish nucleic acid molecules from different sources.
  • the same tag sequence is introduced into a nucleic acid molecule of the same source, and for each nucleic acid source, a unique tag sequence is used.
  • nucleic acid molecules of different origins can be combined to form a library, and the source of each nucleic acid molecule in the library can be identified/differentiated by the unique tag sequence carried on each nucleic acid molecule.
  • the nucleic acid molecule to be sequenced can be ligated to a linker or tag sequence by methods well known in the art (eg, PCR or ligation reactions). For example, if a part of the sequence of the nucleic acid molecule to be sequenced is known, the nucleic acid molecule to be sequenced by PCR can be carried out using an appropriate PCR primer containing a linker sequence and a sequence capable of specifically recognizing the nucleic acid molecule to be sequenced. Amplification. The amplified product obtained is the nucleic acid molecule to be tested which introduces a linker at the 5' and/or 3' end.
  • a nucleic acid molecule can be linked to a linker using a non-specific ligase (eg, T4 DNA ligase).
  • a nucleic acid molecule and a linker can be treated with a restriction enzyme such that they have the same cohesive ends, and then the ligase can be used to link nucleic acid molecules and linkers having the same cohesive ends together. Thereby obtaining a nucleic acid molecule linked to the linker.
  • the resulting product may have a nick at the junction.
  • a polymerase can be used to repair this incision.
  • a DNA polymerase that loses 3'-5' exonuclease activity but exhibits 5'-3' exonuclease activity can have the ability to recognize nicks and repair nicks (Hamilton, SC, JWFarchaus and MCDavis. 2001) .DNA polymerases as engines for biotechnology. BioTechniques 31:370).
  • DNA polymerases which can be used for this purpose include, for example, polI of Thermoanaerobacter thermosulfuricus, DNA polI of E. coli, and phage phi29.
  • polI of Bacillus stearothermophilus is used to repair the nick of dsDNA and form unnotched dsDNA.
  • the nucleic acid molecules to be sequenced can also be amplified to increase the amount or copy number of the nucleic acid molecule.
  • Methods for amplifying nucleic acid molecules are well known to those skilled in the art, a typical example of which is PCR.
  • nucleic acid molecules can be amplified using the following methods: (i) polymerase chain reaction (PCR) requiring temperature cycling (see, eg, Saiki et al, 1995. Science 230: 1350-1354), ligase chain Reaction (see, for example, Barany, 1991. Proc. Natl. Acad. Sci. USA 88: 189-193; Barringer et al, 1990.
  • PCR polymerase chain reaction
  • the nucleic acid molecule to be sequenced is amplified by PCR, and the primers used for PCR amplification comprise a linker sequence and/or a tag sequence.
  • the PCR product thus produced will carry a linker sequence and/or a tag sequence, which can be conveniently used for subsequent applications (e.g., high throughput sequencing).
  • the nucleic acid molecules to be sequenced are also isolated and purified before or after various pretreatment steps. Such separation and purification steps may be advantageous.
  • the isolation and purification steps can be used to obtain nucleic acid molecules of a suitable length (eg, 50-1000 bp) to be sequenced for subsequent applications (eg, high throughput sequencing).
  • agarose gel electrophoresis can be utilized to separate and purify the nucleic acid molecules to be sequenced.
  • the nucleic acid molecules to be sequenced can be isolated and purified by size exclusion chromatography or sucrose settling.
  • the pre-treatment steps described above are merely exemplary and not limiting.
  • Those skilled in the art can perform various desired pretreatments on the nucleic acid molecules to be sequenced according to actual needs, and each pretreatment step is not limited by a specific order.
  • the nucleic acid molecule can be first fragmented and a linker added prior to amplification.
  • the nucleic acid molecule can be amplified prior to fragmentation and addition of a linker.
  • the nucleic acid molecule is fragmented and a linker is added without an amplification step.
  • the nucleic acid molecule of interest eg, genomic DNA
  • pretreatment e.g, genomic DNA
  • nucleic acid molecule of interest eg, a large nucleic acid fragment, eg, genomic DNA
  • linker sequence comprising, for example, a primer binding region capable of hybridizing to a universal amplification primer, a primer binding region capable of hybridizing to a universal sequencing primer, and/or a tag sequence, and Optionally performing isolation, purification, and denaturation to produce a nucleic acid molecule to be sequenced;
  • support is sometimes also referred to as “solid support” or “solid support.”
  • solid support or “solid support.”
  • the “support” referred to herein is not limited to a solid, it may also be a semi-solid (eg, a gel).
  • the support for ligation of the nucleic acid molecule to be sequenced may be made of various suitable materials.
  • materials include, for example, inorganics, natural polymers, synthetic polymers, and any combination thereof.
  • Specific examples include, but are not limited to, cellulose, cellulose derivatives (such as nitrocellulose), acrylic resins, glass, silica gel, polystyrene, gelatin, polyvinylpyrrolidone, copolymers of vinyl and acrylamide, and Crosslinked polyphenylene bromide such as vinyl benzene (see, for example, Merrifield Biochemistry 1964, 3, 1385-1390), polyacrylamide, latex, dextran, rubber, silicon, plastic, natural sponge, metal plastic, cross-linking dextran (e.g., Sephadex TM), agarose gel (Sepharose TM), and other supports known to the skilled person.
  • Sephadex TM Sephadex TM
  • agarose gel Sepharose TM
  • the support for ligation of the nucleic acid molecule to be sequenced may be a solid support comprising an inert substrate or matrix (eg, slides, polymer beads, etc.), said inert substrate or matrix Functionalization has been functionalized, for example, by the use of intermediate materials containing reactive groups that allow covalent attachment of biomolecules such as polynucleotides.
  • inert substrate or matrix e.g., slides, polymer beads, etc.
  • Functionalization has been functionalized, for example, by the use of intermediate materials containing reactive groups that allow covalent attachment of biomolecules such as polynucleotides.
  • supports include, but are not limited to, polyacrylamide hydrogels supported on an inert substrate such as glass, in particular polyacrylamide hydrogels as described in WO 2005/065814 and US 2008/0280773, wherein The content of the patent application is hereby incorporated by reference in its entirety.
  • the biomolecule eg, a polynucleotide
  • an intermediate material eg, a hydrogel
  • the intermediate material itself can be non-covalently attached to the substrate or matrix (e.g, a glass substrate).
  • the support is a slide or wafer having a surface modified with a layer of avidin, amino, acrylamide silane or aldehyde based chemical groups.
  • the support or solid support is not limited by its size, shape and configuration.
  • the support or solid support is a planar structure, such as a slide, chip, microchip, and/or array.
  • the surface of such a support may be in the form of a planar layer.
  • the support or surface thereof is non-planar, such as the inner or outer surface of a tube or container.
  • the support or solid support comprises microspheres or beads.
  • microsphere or “bead” or “particle” or grammatical equivalent refers to a small discrete particle.
  • Suitable bead ingredients include, but are not limited to, plastics, ceramics, glass, polystyrene, methyl styrene, acrylic polymers, paramagnetic materials, cerium oxide sol, carbon graphite, titanium dioxide, latex, cross-linked dextran such as Sepharose , cellulose, nylon, crosslinked micelles and teflon, as well as any other materials outlined herein for the preparation of solid supports.
  • the beads may be spherical or non-spherical. In some embodiments, spherical beads can be used. In some embodiments, irregular particles can be used. In addition, the beads can also be porous.
  • the support for ligation of the nucleic acid molecule to be sequenced is an array of beads or wells (also referred to as a chip).
  • the array can be prepared using any of the materials outlined herein for preparing a solid support, and preferably, the surface of the beads or pores on the array is functionalized to facilitate ligation of the nucleic acid molecules.
  • the number of beads or holes on the array is not limited.
  • each array may comprise 10-10 2 , 10 2 -10 3 , 10 3 -10 4 , 10 4 -10 5 , 10 5 -10 6 , 10 6 -10 7 , 10 7 -10 8 , 10 8 -109 or more beads or holes.
  • each bead or well can be joined to one or more nucleic acid molecules.
  • each array can be connected 10-10 2 , 10 2 -10 3 , 10 3 -10 4 , 10 4 -10 5 , 10 5 -10 6 , 10 6 -10 7 , 10 7 -10 8 , 10 8 - 10 9 or more nucleic acid molecules.
  • arrays can be used particularly advantageously for high throughput sequencing of nucleic acid molecules.
  • Such techniques include, but are not limited to, photolithography, stamping techniques, plastic film technology, and microetching techniques. As will be appreciated by those skilled in the art, the techniques used will depend on the composition, structure and shape of the support.
  • the nucleic acid molecule to be sequenced can be linked (e.g., covalently or non-covalently linked) to the support by any method known to those of ordinary skill in the art.
  • the nucleic acid molecule to be sequenced can be linked to a support by covalent linkage, or by irreversible passive adsorption, or by intermolecular affinity (eg, affinity between biotin and avidin).
  • the linkage between the nucleic acid molecule to be sequenced and the support is sufficiently strong that the nucleic acid molecule does not undergo conditions for various reactions (eg, polymerization, bioorthogonal cleavage, and bioorthogonal ligation) And the washing of the water or buffer solution leaves the support.
  • the 5' end of the nucleic acid molecule to be sequenced carries a device capable of covalently attaching the nucleic acid molecule to a support, such as a chemically modified functional group.
  • a device capable of covalently attaching the nucleic acid molecule to a support such as a chemically modified functional group.
  • functional groups include, but are not limited to, a phosphate group, a carboxylic acid molecule, an aldehyde molecule, a thiol, a hydroxyl group, a dimethoxytrityl group (DMT), or an amino group.
  • the 5' end of the nucleic acid molecule to be sequenced may be modified with a chemical functional group (eg, a phosphoric acid, a thiol or an amino group), and the support (eg, a porous glass bead) may be an amino-alkane.
  • a chemical functional group eg, a phosphoric acid, a thiol or an amino group
  • the support eg, a porous glass bead
  • Oxysilane for example, aminopropyltrimethoxysilane, aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, etc.
  • the molecule is covalently attached to the support.
  • the 5' end of the nucleic acid molecule to be sequenced can be modified with a carboxylic acid or an aldehyde group, and the support (eg, latex beads) is derivatized with hydrazine so that the chemistry between the reactive groups can be The reaction covalently attaches the nucleic acid molecule to the support (Kremsky et al., 1987).
  • cross-linking agent can be used to link the nucleic acid molecule of interest to the support.
  • crosslinking agents include, for example, succinic anhydride, phenyl diisothiocyanate (Guo et al., 1994), maleic anhydride (Yang et al., 1998), 1-ethyl-3-(3-di).
  • Methylaminopropyl)-carbodiimide hydrochloride EDC
  • m-maleimidobenzoic acid-N-hydroxysuccinimide ester MBS
  • N-succinimidyl group [4] -iodoacetyl]aminobenzoic acid SIAB
  • 4-(N-maleimidomethyl)cyclohexane-1-carboxylic acid succinimide SCC
  • GMBS N- ⁇ -maleyl Iminobutyryloxy-succinimide ester
  • SMPB 4-(p-maleimidophenyl)butyric acid succinimide
  • corresponding thio compounds water soluble
  • the support can also be derivatized with a bifunctional crosslinker such as a homobifunctional crosslinker and a heterobifunctional crosslinker to provide a modified functionalized surface.
  • a bifunctional crosslinker such as a homobifunctional crosslinker and a heterobifunctional crosslinker to provide a modified functionalized surface.
  • a nucleic acid molecule having a 5'-phosphate, thiol or amino group is capable of interacting with a functionalized surface to form a covalent linkage between the nucleic acid and the support.
  • a large number of bifunctional crosslinkers and methods of use thereof are well known in the art (see, for example, Pierce Catalog and Handbook, pages 155-200).
  • a primer for initiating nucleotide polymerization, a polymerase for performing nucleotide polymerization, and a polymerase for performing nucleotide polymerization are added to the nucleic acid molecule to be sequenced, and Four base derivatives form a reaction system containing a solution phase and a solid phase.
  • the primer may be of any length and may comprise any sequence or any base as long as it can specifically anneal to a region of the target nucleic acid molecule.
  • the primer is not limited to its length, structure and composition.
  • the primers may be 5-50 bp in length, such as 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, 45-50 bp.
  • the primers are capable of forming a secondary structure (eg, a hairpin structure).
  • the primer does not form any secondary structure (eg, a hairpin structure).
  • the primers may comprise naturally occurring or non-naturally occurring nucleotides.
  • the primer comprises or consists of a naturally occurring nucleotide.
  • the primer comprises a modified nucleotide, such as a locked nucleic acid (LNA).
  • LNA locked nucleic acid
  • the primer is capable of hybridizing to a nucleic acid of interest under stringent conditions, such as moderately stringent conditions or highly stringent conditions.
  • the primer has a sequence that is fully complementary to a target sequence in a nucleic acid molecule of interest.
  • the primer is partially complementary to a target sequence in a nucleic acid molecule of interest (eg, a mismatch is present).
  • the primer comprises a universal primer sequence.
  • the nucleic acid molecule to be sequenced comprises a linker, and the linker comprises a sequence capable of hybridizing to a universal primer, and the primer used is a universal primer.
  • the polymerase is capable of synthesizing a new DNA strand (eg, a DNA polymerase) using DNA as a template.
  • the polymerase is capable of synthesizing a new DNA strand (eg, a reverse transcriptase) using RNA as a template.
  • the polymerase is capable of synthesizing a new RNA strand (eg, RNA polymerase) using DNA or RNA as a template.
  • the polymerase is selected from the group consisting of a DNA polymerase, an RNA polymerase, and a reverse transcriptase.
  • a suitable polymerase can be selected for nucleotide polymerization according to actual needs.
  • the polymerization reaction is a polymerase chain reaction (PCR).
  • the polymerization reaction is a reverse transcription reaction.
  • steps (4) - (7) may be repeated.
  • one or more rounds of nucleotide polymerization can be carried out.
  • the nucleotide polymerization can be carried out in one or more steps.
  • the same or different polymerases can be used for each round of nucleotide polymerization.
  • a first DNA polymerase can be used in the first round of nucleotide polymerization
  • a second DNA polymerase can be used in the second round of nucleotide polymerization.
  • the same polymerase eg, the same DNA polymerase
  • the four compounds used in the step (2) are derivatives of nucleotides A, (T/U), C and G, respectively.
  • the four compounds are derivatives of ribose or deoxyribonucleotides A, T, C, and G, respectively.
  • the four compounds are derivatives of ribose or deoxyribonucleotides A, U, C, and G, respectively. It is particularly advantageous that the four compounds do not undergo a chemical reaction with each other during the nucleotide polymerization.
  • the four compounds described have a base complementary pairing ability.
  • the compound when the compound is a derivative of nucleotide A, it will be capable of pairing with the base T or U.
  • the compound When the compound is a derivative of nucleotide T or U, it will be able to pair with base A.
  • the compound When the compound is a derivative of nucleotide C, it will be able to pair with base G.
  • the polymerase eg, DNA polymerase
  • the polymerase will incorporate a compound capable of complementary pairing with a base at a corresponding position in the template nucleic acid into the growing nucleic acid strand according to the principle of base complementary pairing.
  • the type of the base at the corresponding position in the template nucleic acid can be determined by the principle of base complementary pairing. For example, if a compound incorporated at the 3' end of the growing nucleic acid strand is identified as a derivative of nucleotide A, then the base at the corresponding position in the template nucleic acid can be determined to be T or U. If a compound incorporated at the 3' end of the growing nucleic acid strand is identified as a derivative of nucleotide T or U, then it is determined that the base at the corresponding position in the template nucleic acid is A.
  • a compound incorporated at the 3' end of the growing nucleic acid strand is identified as a derivative of nucleotide C, then it is determined that the base at the corresponding position in the template nucleic acid is G. If a compound incorporated at the 3' end of the growing nucleic acid strand is identified as a derivative of nucleotide G, then it is determined that the base at the corresponding position in the template nucleic acid is C.
  • the hydroxy group (-OH) at the 3' position of the ribose or deoxyribose of the four compounds is protected.
  • the hydroxyl groups (-OH) at the 3' position of the ribose or deoxyribose of the four compounds are protected by a protecting group such that they are capable of terminating the polymerase (eg, DNA polymerase) The polymerization.
  • the polymerase when any of the four compounds is introduced into the 3' end of the growing nucleic acid strand, the polymerase is not present at the 3' position of the ribose or deoxyribose of the compound, the polymerase The next round of polymerization will not proceed and the polymerization will be terminated. In this case, in each round of polymerization, one and only one base will be incorporated into the growing nucleic acid strand.
  • the protecting groups at the 3' position of the ribose or deoxyribose of the four compounds can be removed.
  • the protecting group is removed and converted to a free hydroxyl group (-OH).
  • the polymerase and the four compounds can be used to carry out the next round of polymerization of the grown nucleic acid strand and introduce one more base.
  • the four compounds used in step (2) have reversible termination properties: when they are incorporated into the 3' end of the growing nucleic acid strand (eg, in step (4)), they will terminate the polymerase and continue the polymerization. Acting to terminate further extension of the growing nucleic acid strand; and, after the protecting group they comprise is removed, the polymerase will be able to continue to polymerize the growing nucleic acid strand (eg, in step (10)), continuing to extend Nucleic acid chain.
  • any material capable of emitting a fluorescent signal e.g., a fluorophore
  • fluorophores include, but are not limited to, various known fluorescent labels such as AF532, ALEX-350, FAM, VIC, TET, CAL Gold 540, JOE, HEX, CAL Fluor Orange 560, TAMRA, CAL Fluor Red 590, ROX, CAL Fluor Red 610, TEXAS RED, CAL Fluor Red 635, Quasar 670, CY3, CY5, CY5.5, Quasar 705, and the like.
  • fluorescent labels such as AF532, ALEX-350, FAM, VIC, TET, CAL Gold 540, JOE, HEX, CAL Fluor Orange 560, TAMRA, CAL Fluor Red 590, ROX, CAL Fluor Red 610, TEXAS RED, CAL Fluor Red 635, Quasar 670, CY3, CY5, CY5.5, Quasar 70
  • Different fluorophores may have the same or substantially the same emission spectrum under the same or near excitation conditions, thereby emitting the same or substantially the same fluorescent signal.
  • CY3 is capable of emitting fluorescence at a wavelength of about 560 nm under excitation light having a wavelength of about 550 nm
  • AF532 is capable of emitting fluorescence at a wavelength of about 555 nm under excitation light having a wavelength of about 530 nm. Choosing the appropriate excitation light conditions allows the two to produce the same or substantially the same luminescence spectrum.
  • substantially the same luminescence spectrum means that under the same excitation condition, the maximum emission wavelength of the emission spectrum is close (e.g., the phase difference is less than 20 nm), so that the same signal is given on the optical filter to be considered to be substantially the same spectrum.
  • a fluorophore can be a member of a binding pair, and/or can undergo a bioorthogonal reaction (eg, a bioorthogonal ligation reaction or a bioorthogonal cleavage reaction).
  • a bioorthogonal reaction eg, a bioorthogonal ligation reaction or a bioorthogonal cleavage reaction.
  • the fluorophore Cy3 as a member of the binding pair, can specifically bind to another member of the Cy3 antibody that binds to the pair.
  • the type of compound incorporated into the growing nucleic acid strand is identified/determined by only one fluorophore (or a different fluorophore capable of emitting the same fluorescent signal).
  • the fluorescent signal detection of the duplex or the growing nucleic acid strand is carried out twice after each round of polymerization.
  • a nucleic acid molecule to be sequenced is used as a template, and one of the four compounds is incorporated into a growing nucleic acid strand according to the principle of base complementary pairing.
  • step 4 subsequently, if the fourth compound itself is capable of emitting a fluorescent signal, the growing nucleic acid strand is first detected to determine whether it emits a fluorescent signal; if the fourth compound does not carry a fluorescent group a group, wherein the duplex or the grown nucleic acid strand is subjected to treatment in a reaction system containing a solution phase and a solid phase, the treatment having no effect on the first compound, the second compound, and the third compound, but capable of The fourth compound is caused to emit the same fluorescent signal as the second compound (step 5); after the detection, the growing nucleic acid strand is treated, the treatment has no effect on the first compound and the second compound, but enables the third The compound emits the same fluorescent signal as the second compound and is capable of removing the fluorescent signal of the fourth compound (step 6); then, the growing nucleic acid strand is subjected to a second time Test to determine if it emits fluorescence signal (step 7). Based on the results of the two fluorescent signal detections, the type of
  • step (4) the first compound is incorporated into the 3' end of the growing nucleic acid strand, then since the first compound itself does not carry a fluorophore and is not subject to the step (6) The effect of the treatment, therefore, no fluorescent signal will be detected in steps (5) and (7). That is, if no fluorescent signal is detected in both of steps (5) and (7), it can be determined that the compound incorporated at the 3' end of the growing nucleic acid strand is the first compound.
  • step (4) the second compound is incorporated into the 3' end of the growing nucleic acid strand, then since the second compound itself carries a fluorophore and is not affected by the treatment in step (6), Therefore, the fluorescent signal will be detected in both steps (5) and (7). That is, if a fluorescent signal is detected in both of steps (5) and (7), it can be determined that the compound incorporated at the 3' end of the growing nucleic acid strand is the second compound.
  • step (4) If, in step (4), the third compound is incorporated into the 3' end of the growing nucleic acid strand, then (i) since the third compound itself does not carry a fluorescent group, it will not be detected in step (5). To the fluorescent signal; and (ii) since the third compound has undergone the treatment of step (6), a fluorescent signal can be emitted, and therefore, a fluorescent signal will be detected in step (7). That is, if a fluorescent signal is not detected in the step (5) and a fluorescent signal is detected in the step (7), it can be determined that the compound incorporated at the 3' end of the growing nucleic acid strand is the third compound.
  • step (4) If, in step (4), the fourth compound is incorporated into the 3' end of the growing nucleic acid strand, then (i) the fluorescent compound is carried by the fourth compound itself, or is subjected to treatment in step (5) to carry fluorescence. a group, therefore, a fluorescent signal will be detected in step (5); and (ii) the fluorescent signal is lost due to the fourth compound undergoing the treatment of step (6), and therefore, in step (7) No fluorescent signal was detected. That is, if a fluorescent signal is detected in the step (5) and a fluorescent signal is not detected in the step (7), it can be determined that the compound incorporated at the 3' end of the growing nucleic acid strand is the fourth compound.
  • the method of the present invention further comprises, after step (7), determining the nucleic acid incorporated in step (4) according to the detection results of steps (5) and (7). a type of compound at the 3' end of the chain, wherein
  • step (4) When the detection results of steps (5) and (7) are both, when the duplex or the growing nucleic acid strand does not emit the fluorescent signal, it is determined that the nucleic acid strand incorporated in step (4) is grown 3
  • the compound at the end is the first compound
  • steps (5) and (7) When the detection results of steps (5) and (7) are both, when the duplex or the growing nucleic acid strand emits the fluorescent signal, determining 3' of the nucleic acid strand incorporated in step (4) The compound at the end is a second compound;
  • the detection result of the step (5) is that the duplex or the grown nucleic acid strand does not emit the fluorescent signal
  • the detection result of the step (7) is that the duplex or the growing nucleic acid strand is emitted.
  • the compound that determines the 3' end of the nucleic acid strand that is incorporated in step (4) is the third compound;
  • the detection result of the step (5) is that the fluorescent signal is emitted by the duplex or the grown nucleic acid strand
  • the detection result of the step (7) is that the duplex or the growing nucleic acid strand is not emitted
  • the compound which determines the 3' end of the nucleic acid strand which is incorporated in step (4) is the fourth compound.
  • the method of the present invention further comprises, after step (7), based on the base complementary pairing principle, according to the type of compound incorporated in the 3' end of the growing nucleic acid strand in step (4),
  • the type of base at the corresponding position in the nucleic acid molecule to be sequenced is determined. For example, if a compound incorporated at the 3' end of the growing nucleic acid strand is identified as a first compound (eg, a derivative of nucleotide A), then the base at the corresponding position in the nucleic acid molecule to be sequenced can be determined to be capable of A base paired with a compound (eg, T or U).
  • a compound eg, T or U
  • a compound incorporated at the 3' end of the growing nucleic acid strand is identified as a derivative of nucleotide A, then it is determined that the base at the corresponding position in the nucleic acid molecule to be sequenced is T or U. If the compound incorporated at the 3' end of the growing nucleic acid strand is determined to be a derivative of nucleotide T or U, then it is determined that the base at the corresponding position in the nucleic acid molecule to be sequenced is A. If the compound incorporated at the 3' end of the growing nucleic acid strand is determined to be a derivative of nucleotide C, then it is determined that the base at the corresponding position in the nucleic acid molecule to be sequenced is G. If the compound incorporated at the 3' end of the growing nucleic acid strand is determined to be a derivative of nucleotide G, then it is determined that the base at the corresponding position in the nucleic acid molecule to be sequenced is C.
  • each round of polymerization may involve two fluorescent signal detections, as well as two or three treatments of the duplex or growing nucleic acid strand, wherein step (6)
  • the treatment in can be used to alter the fluorescent signal of the third compound and the fourth compound (so that it is convenient to distinguish/identify the type of compound incorporated into the 3' end of the growing nucleic acid strand);
  • the treatment in step (8) can be used to remove incorporation and growth a protecting group at the 3' position of the ribose or deoxyribose in the compound at the 3' end of the nucleic acid strand (so that a new round of polymerization can be initiated) and removing the duplex or the nucleic acid strand that may be carried on the growing Fluorescent signal (thus avoiding interference with subsequent fluorescence detection); optionally, if the fourth compound itself is not capable of emitting a fluorescent signal, then step (5) comprises a treatment to bring the fourth compound to a fluorescent group.
  • a reactive group capable of performing a bioorthogonal cleavage reaction and/or a bioorthogonal ligation reaction may be introduced in one or more of the four compounds to facilitate The ability of the four compounds to emit a fluorescent signal is controlled (e.g., maintained or altered) in step (6).
  • members of the binding pair may be introduced in one or more of the four compounds to facilitate control (eg, maintenance or alteration) of the four compounds in step (6) The ability to emit fluorescent signals.
  • a reactive group capable of undergoing a bioorthogonal ligation reaction can be introduced into the third compound and in the third compound by bioorthogonal ligation reaction in step (6)
  • a fluorophore is introduced to give it the ability to emit a fluorescent signal.
  • one member of the binding pair can be introduced into the third compound and in step (6) by another member of the member that is paired with the binding (which carries a fluorophore) The specific interaction interacts to introduce a fluorophore into the third compound, giving it the ability to emit a fluorescent signal.
  • a reactive group capable of undergoing a bioorthogonal cleavage reaction can be introduced into the fourth compound, and the fluorescence in the fourth compound can be induced by a bioorthogonal cleavage reaction in step (6) The group is cleaved to lose its ability to emit a fluorescent signal.
  • one member of the binding pair can be introduced into the fourth compound and in step (6) by another member of the member that is paired with the binding (which carries the quenching group) The specific interaction between the two introduces a quenching group capable of quenching fluorescence in the fourth compound, causing it to lose its ability to emit a fluorescent signal.
  • a reactive group capable of undergoing a bioorthogonal cleavage reaction can be introduced into the four compounds to facilitate removal of the 3' position of ribose or deoxyribose in step (8) Protecting groups and fluorescent signals that may be present.
  • the washing step can be increased as needed.
  • the washing step can be increased at any desired stage, and optionally, the washing step can be performed one or more times.
  • one or more washings may be performed to sufficiently remove the residual solution phase.
  • Such a washing step may be advantageous, which can be used to substantially remove free (ie, non-growth nucleic acid strands) fluorophore-bearing compounds, minimizing non-specific fluorescent signals.
  • step (7) after removing the solution phase of the reaction system, one or more washings may be performed to sufficiently remove the residual solution phase.
  • a washing step may be advantageous, which can be used to substantially remove the reagents used in step (6), which may carry fluorescence, thereby minimizing non-specific fluorescent signals.
  • step (9) after removing the solution phase of the reaction system, one or more washings may be performed to sufficiently remove the residual solution phase.
  • a washing step may be advantageous, which can be used to sufficiently remove the reagents used in step (8) as well as the products produced (which may carry fluorescence), thereby minimizing non-specific fluorescent signals and avoiding subsequent The polymerization reaction has an adverse effect.
  • the washing step can be carried out using a variety of suitable washing solutions.
  • suitable washing solutions include, but are not limited to, phosphate buffer, citrate buffer, Tris-HCl buffer, acetate buffer, carbonate buffer, and the like. It is within the ability of those skilled in the art to select a suitable wash solution (including suitable ingredients, concentrations, ionic strength, pH, etc.) depending on the actual needs.
  • the four may be controlled (eg, maintained or altered) in step (6) by using a reactive group capable of undergoing a bioorthogonal cleavage reaction and/or a bioorthogonal ligation reaction.
  • a reactive group capable of undergoing a bioorthogonal cleavage reaction and/or a bioorthogonal ligation reaction capable of undergoing a bioorthogonal cleavage reaction.
  • the ability of a compound to emit a fluorescent signal; and preferably, the removal of the protecting group and the fluorescent signal can be achieved in step (8) by using a reactive group capable of undergoing a bioorthogonal cleavage reaction.
  • the first, second, third, and fourth compounds may have the formulas (I), (II), (III), and (IV), respectively. structure:
  • Base1, Base2, Base3, and Base4 represent 4 different bases, and are selected from A, (T/U), C, and G;
  • R 1 is each independently selected from -H, a monophosphate group (-PO 3 H 2 ), a diphosphate group (-PO 3 H-PO 3 H 2 ), a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ) and a tetraphosphoric acid group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 );
  • R 2 is each independently selected from -H and -OH;
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 5b are each independently a reactive group capable of undergoing a bioorthogonal cleavage reaction
  • R 5a is a reactive group capable of performing a first bioorthogonal ligation reaction
  • L1 are each independently a linking group or are absent
  • L2 are each independently a linking group or are absent
  • Dye represents a fluorophore capable of emitting a fluorescent signal
  • R 7a is a fluorescent group capable of emitting a fluorescent signal (Dye 1 ), or a reactive group capable of performing a second bioorthogonal ligation reaction, or a member of a binding pair;
  • Dye and Dye 1 have the same structure, or different structures but have the same or substantially the same emission spectrum
  • a reactive group R 8 capable of undergoing a third bioorthogonal ligation reaction is also present between R 5b and R 7a .
  • the fourth compound itself may carry a fluorophore capable of emitting the same fluorescent signal as the second compound, or may not carry a fluorophore, but in step (5), pass and carry fluorescence
  • An agent of a group eg, a fluorophore having the same structure as the second compound, or a fluorophore having the same emission spectrum as the fluorophore of the second compound
  • the compound undergoing the second bioorthogonal ligation reaction undergoes specific interaction/specific binding or a second bioorthogonal ligation reaction occurs, and the fluorophore is introduced into the compound IV, and is capable of emitting the same fluorescent signal as the second compound.
  • R 5a can be made by reacting a fluorescent group with a fluorescent group (for example, the same fluorescent group as the second compound, or a fluorescent group different from the fluorescent compound of the second compound but having the same or substantially the same emission spectrum)
  • the reagent undergoes a first bioorthogonal ligation reaction such that the third compound carries a fluorophore; and (i) enables biobiometric cleavage of R 5b in the fourth compound to remove fluorescence in the fourth compound group, or (ii) a fourth compound capable of connecting R 8 with a compound carrying the quencher third orthogonal occur, thereby quenching the fluorescence signal of the fourth compound.
  • the duplex or the growing nucleic acid strand is subjected to treatment which has no effect on the first compound and the second compound, but is capable of First bioorthogonal connection of R 5a with an agent carrying a fluorophore (eg, the same fluorophore as the second compound, or a different fluorophore structure than the second compound but having the same or substantially the same emission spectrum) Reaction (thus introducing a fluorophore carried in the reagent into the third compound to carry a fluorophore and emitting a fluorescent signal); and enabling biobigonal cleavage of R 5b (thus removing the fourth compound) Fluorescent group, such that it no longer emits a fluorescent signal), or enables a second orthogonal ligation reaction between R 8 in the fourth compound and the compound carrying the quencher group, thereby quenching the fluorophore in the fourth compound Fluorescent signal emitted.
  • a fluorophore eg, the same fluorophore as the
  • the first compound and the third compound, if present do not fluoresce, and the second compound and the fourth compound, if present, fluoresce; Also, after the treatment of step (6), the first compound (if present) still does not fluoresce, the second compound (if present) still fluoresces, the third compound (if present) changes to fluoresce, and The fourth compound, if present, was changed to not fluoresce.
  • the type of compound incorporated into the 3' end of the growing nucleic acid strand can be determined by the results of two fluorescent signal detections.
  • a compound that incorporates the 3' end of the growing nucleic acid strand can be made by subjecting R 3a , R 3b , R 3c , R 3d , R 4a , R 4b to a bioorthogonal cleavage reaction.
  • the protecting group at the 3' position of the ribose or deoxyribose is removed, and the fluorophore (if present) on the duplex or growing nucleic acid strand is removed.
  • step (8) the duplex or the growing nucleic acid strand is subjected to treatment which enables R 3a , R 3b , R 3c , R 3d , R 4a , R 4b bio-orthogonal cleavage reaction occurs.
  • the grown nucleic acid strand will not have any fluorophore, and its 3' terminal nucleotide will have a 3' position at the 3' position of the ribose or deoxyribose sugar. Free hydroxyl groups, which can be used to initiate the next round of polymerization.
  • the method of the invention comprises the steps of:
  • nucleic acid molecule to be sequenced on the support or attaching the nucleic acid molecule to be sequenced to the support;
  • Base1, Base2, Base3, and Base4 represent 4 different bases, and are selected from A, (T/U), C, and G;
  • R 1 is each independently selected from -H, a monophosphate group (-PO 3 H 2 ), a diphosphate group (-PO 3 H-PO 3 H 2 ), a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ) and a tetraphosphoric acid group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 );
  • R 2 is each independently selected from -H and -OH;
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 5b are each independently a reactive group capable of undergoing a bioorthogonal cleavage reaction
  • R 5a is a reactive group capable of performing a first bioorthogonal ligation reaction
  • L1 are each independently a linking group or are absent
  • L2 are each independently a linking group or are absent
  • Dye represents a fluorophore capable of emitting a fluorescent signal
  • R 7a is a fluorescent group capable of emitting a fluorescent signal (Dye 1 ), or a reactive group capable of performing a second bioorthogonal ligation reaction, or a member of a binding pair;
  • Dye and Dye 1 have the same structure, or different structures but have the same or substantially the same emission spectrum
  • R 8 capable of undergoing a third bioorthogonal ligation reaction between R 5b and R 7a ;
  • the fourth compound is capable of emitting the same fluorescent signal as the second compound, and R 7a is Dye 1 , the solution phase of the reaction system of the previous step is removed, and the duplex attached to the support is retained, And detecting whether the duplex or the growing nucleic acid strand emits the fluorescent signal;
  • the fourth compound is incapable of emitting a fluorescent signal
  • R 7a is a reactive group capable of undergoing a second bioorthogonal ligation reaction, or a member of the binding pair, such that the duplex or the growing nucleic acid strand
  • the treatment is carried out in a reaction system containing a solution phase and a solid phase, the treatment having no effect on the first compound, the second compound, and the third compound, but capable of causing R 7a in the fourth compound to carry a fluorescent group (for example, An agent having the same fluorophore as the second compound, or a fluorophore identical or substantially identical to the emission spectrum of the fluorophore of the second compound (eg, another member of the binding pair, or capable of performing the same with R 7a )
  • the second bioorthogonal reaction reaction compound undergoes specific interaction/specific binding or a second bioorthogonal ligation reaction occurs; after that, the solution phase of the reaction system of the previous step is removed, leaving the double attached to the support a chain
  • Another member of the fluorophore-binding binding pair has the structure: R 7b -L-Dye 1 ; wherein R 7b is another member of the binding pair, L is independently a linking group or is absent; Dye 1 represents a fluorophore capable of emitting a fluorescent signal, and has the same structure as Dye, or has a different structure but the same emission spectrum; or
  • the fluorophore-bearing compound capable of undergoing a second bioorthogonal ligation reaction with R 7a has the following structure: R 7b -L-Dye 1 ; wherein R 7b is capable of performing a second bioorthogonal connection with R 7a a reactive group, L is independently a linking group or absent; Dye 1 represents a fluorophore capable of emitting a fluorescent signal, and has the same structure as Dye, or a different structure but having the same emission spectrum;
  • ligation reaction is carried out to introduce a fluorophore in the reagent into the third compound to emit a fluorescent signal; and (i) to cause a bioorthogonal cleavage reaction of R 5b in the fourth compound, thereby removing the fourth compound a fluorophore in the middle, or (ii) capable of causing a third orthogonal ligation reaction between R 8 in the fourth compound and the compound carrying the quenching group, thereby quenching the fluorescing group Dye 1 in the fourth compound Fluorescent signal; and
  • the method further comprises the steps of:
  • the method further comprises the steps of:
  • step (4) if, in step (4), the compound of formula (I) is incorporated into the 3' end of the growing nucleic acid strand, then since the compound of formula (I) does not itself carry a fluorophore, It does not react at step (6), and therefore, no fluorescent signal will be detected in steps (5) and (7). That is, if no fluorescent signal is detected in both of steps (5) and (7), it can be determined that the compound incorporated at the 3' end of the growing nucleic acid strand is a compound of formula (I).
  • step (4) the compound of formula (II) is incorporated into the 3' end of the growing nucleic acid strand, then since the compound of formula (II) itself carries a fluorophore and it does not undergo any reaction in step (6) Therefore, the fluorescent signal will be detected in both steps (5) and (7). That is, if a fluorescent signal is detected in both of steps (5) and (7), it can be determined that the compound incorporated at the 3' end of the growing nucleic acid strand is a compound of formula (II).
  • step (4) the compound of formula (III) is incorporated into the 3' end of the growing nucleic acid strand, then (i) since the compound of formula (III) does not itself carry a fluorophore, therefore, in step (5) The fluorescent signal is not detected by the chemistry; and (ii) because the compound of formula (III) undergoes a bioorthogonal ligation reaction with the reagent carrying the fluorophore in step (6), causing the fluorophore to be introduced into the growing nucleic acid strand, Therefore, a fluorescent signal will be detected in step (7). That is, if a fluorescent signal is not detected in the step (5) and a fluorescent signal is detected in the step (7), it can be determined that the compound incorporated at the 3' end of the grown nucleic acid strand is a compound of the formula (III).
  • step (4) the compound of formula (IV) is incorporated into the 3' end of the growing nucleic acid strand, then (i) since the compound of formula (IV) itself carries a fluorophore or is treated in step (5) While carrying a fluorophore, therefore, a fluorescent signal will be detected in step (5); and (ii) a bioorthogonal cleavage reaction or a third orthogonal connection occurs in step (6) due to the compound of formula (IV) The reaction is lost and the fluorescent group is lost or the fluorescent signal is quenched, so that no fluorescent signal will be detected in step (7). That is, if a fluorescent signal is detected in the step (5) and a fluorescent signal is not detected in the step (7), it can be determined that the compound incorporated at the 3' end of the grown nucleic acid strand is a compound of the formula (IV).
  • the method of the present invention further comprises, after step (7), determining the nucleic acid incorporated in step (4) according to the detection results of steps (5) and (7). a type of compound at the 3' end of the chain, wherein
  • step (4) When the detection results of steps (5) and (7) are both, when the duplex or the growing nucleic acid strand does not emit the fluorescent signal, it is determined that the nucleic acid strand incorporated in step (4) is grown 3 'The compound at the end is a compound of formula (I);
  • step (4) when the detection results of steps (5) and (7) are both, when the duplex or the growing nucleic acid strand emits the fluorescent signal, determining 3' of the nucleic acid strand incorporated in step (4)
  • the compound at the end is a compound of formula (II);
  • the detection result of the step (5) is that the duplex or the grown nucleic acid strand does not emit the fluorescent signal
  • the detection result of the step (7) is that the duplex or the growing nucleic acid strand is emitted.
  • the compound which determines the 3' end of the nucleic acid strand which is incorporated in step (4) is a compound of the formula (III);
  • the detection result of the step (5) is that the fluorescent signal is emitted by the duplex or the grown nucleic acid strand
  • the detection result of the step (7) is that the duplex or the growing nucleic acid strand is not emitted
  • the compound which determines the 3' end of the nucleic acid strand which is incorporated in step (4) is a compound of the formula (IV).
  • the method of the present invention further comprises, after step (7), based on the base complementary pairing principle, according to the type of compound incorporated in the 3' end of the growing nucleic acid strand in step (4), The type of base at the corresponding position in the nucleic acid molecule to be sequenced is determined.
  • the compound of formula (I), the compound of formula (II), the compound of formula (III) and the compound of formula (IV) do not undergo a chemical reaction with one another during the nucleotide polymerization reaction.
  • Base1 and Base2 are purine bases, and Base3 and Base4 are pyrimidine bases.
  • Base1 is base G
  • Base2 is base A
  • Base3 is base C
  • Base4 is base T or U.
  • Base1 is base G
  • Base2 is base A
  • Base3 is base T or U
  • Base4 is base C.
  • Base1 is base A
  • Base2 is base G
  • Base3 is base C
  • Base4 is base T or U.
  • Base1 is base A, Base2 is base G, Base3 is base T or U
  • Base4 is base C.
  • Base1 and Base2 are pyrimidine bases, and Base3 and Base4 are purine bases.
  • Base1 is base C
  • Base2 is base T or U
  • Base3 is base G
  • Base4 is base A
  • Base1 is base C
  • Base2 is base T or U
  • Base3 is base A
  • Base4 is base G.
  • Base1 is base T or U
  • Base2 is base C
  • Base3 is base G
  • Base4 is base A.
  • Base1 is base T or U
  • Base2 is base C
  • Base3 Base G
  • Base4 is base A.
  • Base1 is base T or U
  • Base2 is base C
  • Base3 is base A
  • Base4 is base G.
  • the compound of formula (I), the compound of formula (II), the compound of formula (III) and the compound of formula (IV) have the same R 1 .
  • R 1 is each independently -H.
  • R 1 is each independently a monophosphate group (-PO 3 H 2 ).
  • each R 1 is independently a diphosphate group (-PO 3 H-PO 3 H 2 ).
  • each R 1 is independently a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ).
  • each R 1 is independently a tetraphosphate group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 ).
  • the compound of formula (I), the compound of formula (II), the compound of formula (III) and the compound of formula (IV) have the same R 2 .
  • each R 2 is independently -H.
  • each R 2 is independently -OH.
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , R 5a , R 5b are each independently capable of undergoing a bioorthogonal cleavage or ligation reaction.
  • each independently capable of undergoing bioorthogonal cleavage or ligation reaction means that the reactive groups, reagents, or molecules, etc., respectively, are capable of bioorthogonal cleavage or ligation reactions. And do not interfere or affect each other.
  • R 3a is a first reactive group capable of undergoing a bioorthogonal cleavage reaction in the presence of a first reagent;
  • R 3b is capable of biologically occurring in the presence of a second reagent a second reactive group that cross-cleaves the reaction;
  • R 3c is a third reactive group capable of undergoing a bioorthogonal cleavage reaction in the presence of a third reagent;
  • R 3d is capable of occurring in the presence of the fourth reagent a fourth reactive group of the bioorthogonal cleavage reaction;
  • R 4a is a fifth reactive group capable of undergoing a bioorthogonal cleavage reaction in the presence of a fifth reagent;
  • R 4b is a condition capable of being present in the sixth reagent a sixth reactive group in which a bioorthogonal cleavage reaction occurs;
  • R 5a is a seventh reactive group capable of undergoing a bioorthogonal ligation reaction in the presence of a
  • a seventh reagent and an eighth reagent may be added such that R 5a (if present) in the compound of formula (III) undergoes a first bioorthogonal connection
  • the reaction is carried out and the R 5b (if present) in the compound of formula (IV) undergoes a bioorthogonal cleavage reaction.
  • the seventh reagent may comprise a compound M carrying the same fluorophore as the second compound and the fourth compound (or a fluorophore having a different structure but having the same or substantially the same luminescence spectrum), and the compound M
  • a first bioorthogonal ligation reaction can occur with R 5a and thereby the fluorophore in compound M can be introduced into the compound of formula (III).
  • the eighth reagent capable of formula (IV) compound R 5b bioorthogonal cleavage reaction occurs, and thereby the formula R 5b (IV) compound and a fluorescent group connected thereto is removed.
  • the seventh reagent does not chemically react with the first compound and the second compound, and further preferably, the eighth reagent does not react with the first compound and the first compound The two compounds undergo a chemical reaction.
  • the seventh reagent and the eighth reagent may be added to form a reaction system comprising a solution phase and a solid phase, wherein the seventh reagent comprises the compound M, Compound M carries the same fluorophore as the second compound and the fourth compound (or a fluorophore having a different structure but the same or substantially the same luminescence spectrum), and the compound M is capable of bioorthogonal ligation with R 5a , thereby compound M is introduced into the third fluorophore compound; and then, under conditions that allow compound M and R 5a is connected bioorthogonal reaction, R 5b and allow bioorthogonal cleavage reaction occurs, and the duplex The seventh reagent and the eighth reagent are incubated.
  • a first reagent, a second reagent, a third reagent, a fourth reagent, a fifth reagent, and a sixth reagent may be added such that R 3a , R 3b , R3c , R3d , R4a , R4b (if present) each undergo a bioorthogonal cleavage reaction.
  • R 3a , R 3b , R 3c , R 3d (if present) will be removed from the 3' position of ribose or deoxyribose (in other words, -OR 3a , -OR 3b , -OR 3c or -OR 3d ( If present, it will be converted to a free hydroxyl group, and R 4a and the fluorophore attached thereto (if present) and R 4b and the fluorophore attached thereto (if present) will also be removed.
  • the growing nucleic acid strand will not carry the fluorophore and will have a free hydroxyl group at the 3' end, which can be used for the next round of polymerization.
  • a first reagent, a second reagent, a third reagent, a fourth reagent, a fifth reagent, and a sixth reagent are added to form a solution phase and a solid phase.
  • a reaction system and allowing the duplex to react with the first reagent and the second under conditions that allow each of R 3a , R 3b , R 3c , R 3d , R 4a , and R 4b to undergo a bioorthogonal cleavage reaction
  • the reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are incubated.
  • R 3a , R 3b , R 3c , and R 3d are each capable of undergoing a bioorthogonal cleavage reaction in the presence of the same reagent.
  • the first reagent, the second reagent, the third reagent, and the fourth reagent are the same reagent.
  • R 3a , R 3b , R 3c and R 3d are the same reactive group.
  • the first reagent, the second reagent, the third reagent, and the fourth reagent are the same reagent. That is, in step (8), the same R 3a , R 3b , R 3c and R 3d (if present) will each be carried out in the presence of the same reagent (ie, the first reagent) The bioorthogonal cleavage reaction is excised from the growing nucleic acid strand.
  • R 4a and R 4b are each capable of undergoing a bioorthogonal cleavage reaction in the presence of the same reagent.
  • the fifth reagent and the sixth reagent are the same reagent.
  • R 4a and R 4b are the same reactive group.
  • the fifth reagent and the sixth reagent are the same reagent. That is, in step (8), the same R 4a and R 4b (if present) will each undergo a bioorthogonal cleavage reaction in the presence of the same reagent (ie, the fifth reagent), And excised from the growing nucleic acid strand.
  • R 3a , R 3b , R 3c , R 3d , R 4a , and R 4b are each capable of undergoing a bioorthogonal cleavage reaction in the presence of the same reagent.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are the same reagent.
  • the R 3a , R 3b , R 3c , R 3d , R 4a and R 4b will each undergo a bioorthogonal cleavage reaction and be cleaved from the growing nucleic acid strand.
  • R 7a is a fluorophore Dye 1 capable of emitting a fluorescent signal, Dye 1 having the same structure as Dye, or having a different structure but having the same emission spectrum, so that the fourth compound itself can emit The second compound has the same fluorescent signal.
  • step (5) comprises adding a ninth reagent such that R7a (if present) in the compound of formula (IV) undergoes a second bioorthogonal ligation reaction.
  • the ninth reagent may comprise a compound M' having the structure R 7b -L-Dye 1 , wherein R 7b is a group capable of undergoing a second bioorthogonal ligation reaction with R 7a , and L is independently a linking group Or absent; Dye 1 represents a fluorophore capable of emitting a fluorescent signal and has the same structure as Dye, or is structurally different but has the same emission spectrum.
  • step (5) comprises adding a ninth agent such that R 7a (if present) in the compound of formula (IV) specifically interacts with another member of the binding pair and/or Specific binding.
  • the ninth reagent may comprise a compound M" having the structure R 7b -L-Dye 1 , wherein R 7b is another member of the binding pair, L is independently a linking group or absent;
  • Dye 1 represents A fluorophore capable of emitting a fluorescent signal and having the same structure as Dye, or a different structure but having the same emission spectrum.
  • a reactive group R 8 capable of undergoing a third bioorthogonal ligation reaction is also present between R 5b and R 7a of the fourth compound.
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , R 5a , R 8 are each independently capable of undergoing a bioorthogonal cleavage or ligation reaction.
  • R 8a is capable of undergoing a third bioorthogonal ligation reaction in the presence of a tenth agent.
  • step (6) a seventh reagent and a tenth reagent may be added such that R 5a (if present) in the compound of formula (III) undergoes a first bioorthogonal connection
  • the reaction is carried out and a third bioorthogonal ligation reaction occurs where R 8 (if present) in the compound of formula (IV).
  • the seventh reagent may comprise a compound M carrying the same fluorophore as the second compound and the fourth compound (or a fluorophore having a different structure but having the same or substantially the same luminescence spectrum), and the compound M A first bioorthogonal ligation reaction can occur with R 5a and thereby the fluorophore in compound M can be introduced into the compound of formula (III).
  • the tenth reagent is capable of causing a third bioorthogonal ligation reaction of R 8 in the compound of formula (IV) and thereby quenching the fluorescent signal in the compound of formula (IV).
  • the seventh reagent does not chemically react with the first compound and the second compound, and further preferably, the tenth reagent does not react with the first compound and The two compounds undergo a chemical reaction.
  • a seventh reagent and a tenth reagent may be added to form a reaction system comprising a solution phase and a solid phase, wherein the seventh reagent comprises the compound M, Compound M carries the same fluorophore as the second compound and the fourth compound (or a fluorophore having a different structure but the same or substantially the same luminescence spectrum), and the compound M is capable of undergoing a first bioorthogonal ligation reaction with R 5a , whereby the compound M is introduced into the third fluorophore compound; tenth agent comprises a compound M "', the compound M"' carries the quencher, and the compound M "'and the third biological capable of R 8 orthogonal ligation reaction, whereby the compound M "'quencher incorporated in the fourth compound; and then, allowing the compound M"' is connected orthogonal to a first biological reaction occurs with R 5a, R 8 and allows the occurrence of the third and M4
  • the seventh reagent comprises the compound M
  • a group e.g., -C 3 cycloalkenyl, -C 4 cycloalkenyl, -C 5 membered cycloalkenyl, -C 6 cycloalkenyl, -C 7 cycloalkenyl or -C 8 cycloalkenyl).
  • the -C 3-8 cycloalkenyl is selected from the group consisting of -C 3 cycloalkenyl and -C 8 cycloalkenyl. In certain preferred embodiments, the -C 3-8 cycloalkenyl group is In certain preferred embodiments, the -C 3-8 cycloalkenyl group is
  • the C 3-8 cycloalkenyl is selected from the group consisting of C 3 cycloalkenyl and C 8 cycloalkenyl.
  • the C 3-8 cycloalkenyl group is In certain preferred embodiments, the C 3-8 cycloalkenyl group is
  • R 3a , R 3b , R 3c and R 3d are the same reactive group and are both -CH 2 N 3 .
  • R 4a and R 4b are each independently selected from the group consisting of: -OC 3-8 cycloalkenylene subunit.
  • the "-OC 3-8 cycloalkenylene subunit" is selected from the group consisting of -OC 3 cycloalkenylene, -OC 4 cycloalkenylene, -OC 5 cycloalkenylene, -OC 6 cycloalkenylene, -OC 7 cycloalkenylene, and -OC 8 cycloalkenylene.
  • the "-OC 3-8 cycloalkenylene subunit" is In certain preferred embodiments, the "-OC 3-8 cycloalkenylene subunit" is
  • R 4a and R 4b are the same reactive group and are selected from the group consisting of: -OC 3-8 cycloalkenylene subunit.
  • the "-OC 3-8 cycloalkenylene subunit” is selected from the group consisting of -OC 3 cycloalkenylene, -OC 4 cycloalkenylene, -OC 5 cycloalkenylene, -OC 6 cycloalkenylene, -OC 7 cycloalkenylene, and -OC 8 cycloalkenylene.
  • the "-OC 3-8 cycloalkenylene subunit" is In certain preferred embodiments, the "-OC 3-8 cycloalkenylene subunit" is
  • both R 4a and R 4b are identical to both R 4a and R 4b.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent each independently comprise a material selected from the group consisting of:
  • a complex of palladium for example, a complex of palladium and four triphenylphosphine tri-sulfonic acids
  • ruthenium for example, a complex of ruthenium and quinoline carboxylate (or a derivative thereof), allyl or cyclopentadiene
  • a phosphide eg, a carboxyphosphine or hydroxyphosphine such as P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 );
  • Z 1 and Z 2 are each independently selected from a modified or unmodified alkyl group (for example, a C 1 -C 6 alkyl group such as a C 1 alkyl group, a C 2 alkyl group, a C 3 alkyl group, a C 4 alkyl group). a C 5 alkyl or C 6 alkyl group) and a modified or unmodified aromatic group (for example, a 6-10 membered aromatic group such as a 6-membered aromatic group, a 7-membered aromatic group, an 8-membered aromatic group, a 9-membered aromatic group or A 10-membered aromatic group such as phenyl or pyridyl).
  • a modified or unmodified alkyl group for example, a C 1 -C 6 alkyl group such as a C 1 alkyl group, a C 2 alkyl group, a C 3 alkyl group, a C 4 alkyl group.
  • R 4a and R 4b are Still further preferably, the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise a complex of palladium or a complex of ruthenium.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are the same reagent, and comprise a complex of palladium or a complex of ruthenium.
  • R 3a , R 3b , R 3c and R 3d are —CH 2 —N 3 .
  • R 4a and R 4b are Still further preferably, the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise a phosphonide such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent and the sixth reagent are the same reagent and comprise a phosphine such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 ) CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • a phosphine such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 ) CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • R 3a , R 3b , R 3c and R 3d are In this case, preferably, R 4a and R 4b are Still further preferably, the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise the compound Q as defined above. Further preferably, in compound Q, Z 1 is a methyl group; and Z 2 is a modified or unmodified pyridyl group. More preferably, compound Q is Wherein W is hydrogen or a modifying group.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are the same reagent and comprise Compound Q as defined above.
  • the linking groups L1 and L2 in the first compound, the second compound, the third compound, and the fourth compound, and L in R 7b -L-Dye 1 are each independently, and Not subject to special restrictions.
  • One skilled in the art can select suitable linking groups L1, L2 according to the bases (Base1, Base2, Base3 and Base4) used in the compound and the reactive groups (R 4a , R 4b , R 5a and R 5b ). And L.
  • L1 and L2 in the first compound, the second compound, the third compound, and the fourth compound, and L in R 7b -L-Dye 1 are each independently selected from the group consisting of:
  • n1, n2, n3, n4, p1, p2, p3, a, b, c, d, e and f are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • L1 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of: Wherein m1, m2, m3 and m4 are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • L1 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of:
  • L2 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of: Wherein n1, n2, n3, n4, p1, p2, p3, a, b, c, d, e and f are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • L2 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of: Wherein n1, n2, n3, n4, p1, p2, p3 are each independently selected from 0, 1, 2, 3, 4, 5 or 6. .
  • L2 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of:
  • R 5a is selected from the group consisting of:
  • R 5b is selected from the group consisting of:
  • the seventh reagent comprises a compound M selected from the group consisting of:
  • Y is selected from an alkyl group (e.g., a C 1 -C 6 alkyl group such as a C 1 alkyl group, a C 2 alkyl group, a C 3 alkyl group, a C 4 alkyl group, a C 5 alkyl group or a C 6 alkyl group) and an aromatic group.
  • a group for example, a 6-10 membered aromatic group such as a 6-membered aromatic group, a 7-membered aromatic group, an 8-membered aromatic group, a 9-membered aromatic group or a 10-membered aromatic group such as a phenyl group
  • Dye is a fluorophore, the fluorophore is the same as the fluorophore contained in the second compound and the fourth compound (or different in structure but the same or substantially the same emission spectrum);
  • Compound M3 having a structural formula Wherein Z 3 are each independently selected from an alkyl group (eg, C 1 -C 6 alkyl, such as C 1 alkyl, C 2 alkyl, C 3 alkyl, C 4 alkyl, C 5 alkyl or C 6 alkane) And an aromatic group (for example, a 6-10 membered aromatic group such as a 6-membered aromatic group, a 7-membered aromatic group, an 8-membered aromatic group, a 9-membered aromatic group or a 10-membered aromatic group such as a phenyl group), and Dye is a fluorescent group.
  • the fluorophore is the same as the fluorophore contained in the second compound and the fourth compound (or the structure is different but the emission spectra are the same or substantially the same).
  • the linking group L0 is not particularly limited. A person skilled in the art can select a suitable linking group L0 according to actual needs.
  • L0 can be Wherein q1, q2, q3, q4 are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • the reagent comprising a compound of the seventh M1, and wherein, Y is C 1 -C 6 alkyl, such as methyl.
  • L0 in compound M1 is In certain preferred embodiments, Dye in compound M1 is AF532.
  • compound M1 has the structure:
  • the seventh agent in addition to compound M, further comprises a complex of ruthenium. In certain preferred embodiments, the seventh reagent comprises a complex of compound M2 and hydrazine.
  • the eighth reagent comprises Compound M as defined above, and Compound M is selected from Compounds M1, M2 and M3 as defined above.
  • the eighth reagent in addition to compound M, further comprises a complex of ruthenium.
  • the eighth reagent comprises a complex of compound M2 and hydrazine.
  • R 5a is capable of undergoing a bioorthogonal ligation reaction in the presence of the same reagent
  • R 5b is capable of undergoing a bioorthogonal cleavage reaction.
  • the seventh reagent and the eighth reagent are the same reagent.
  • R 5a is In this case, preferably, R 5b is Still further preferably, the seventh reagent and the eighth reagent comprise the compound M1.
  • the seventh reagent and the eighth reagent are the same reagent and comprise the compound M1 as defined above.
  • R 5a is In this case, preferably, R 5b is Still further preferably, the seventh reagent and the eighth reagent comprise the compound M2. More preferably, both the seventh reagent and the eighth reagent comprise a complex of compound M2 and hydrazine. Preferably, the seventh reagent and the eighth reagent are the same reagent and comprise a complex of compound M2 and hydrazine as defined above.
  • R 5a is In this case, preferably, R 5b is Still further preferably, the seventh reagent and the eighth reagent comprise the compound M3.
  • the seventh reagent and the eighth reagent are the same reagent and comprise the compound M3 as defined above.
  • R 4a and R 4b are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise a complex of palladium or a complex of ruthenium;
  • R 5a is R 5b is The seventh reagent and the eighth reagent comprise the compound M1.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are the same reagent, and comprise a complex of palladium or a complex of ruthenium.
  • the seventh reagent and the eighth reagent are the same reagent and comprise the compound M1 as defined above.
  • R 3a , R 3b , R 3c and R 3d are -CH 2 -N 3 ;
  • R 4a and R 4b are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise a phosphine such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 ;
  • R 5a is R 5b is The seventh reagent and the eighth reagent comprise the compound M1.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent and the sixth reagent are the same reagent and comprise a phosphine such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 ) CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • the seventh reagent and the eighth reagent are the same reagent and comprise the compound M1 as defined above.
  • R 3a , R 3b , R 3c and R 3d are -CH 2 -N 3 ;
  • R 4a and R 4b are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise a phosphide such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 ;
  • R 5a is R 5b is
  • the seventh reagent and the eighth reagent comprise a complex of the compound M2 and hydrazine.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent and the sixth reagent are the same reagent and comprise a phosphine such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 ) CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • the seventh reagent and the eighth reagent are the same reagent and comprise a complex of compound M2 and hydrazine.
  • R 4a and R 4b are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise a complex of palladium or a complex of ruthenium;
  • R 5a is R 5b is The seventh reagent and the eighth reagent comprise the compound M3.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are the same reagent, and comprise a complex of palladium or a complex of ruthenium.
  • the seventh reagent and the eighth reagent are the same reagent and comprise the compound M3.
  • R 3a , R 3b , R 3c and R 3d are R 4a and R 4b are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise Compound Q (eg, Compound Q as defined above); R 5a is R 5b is The seventh reagent and the eighth reagent comprise a complex of the compound M2 and hydrazine.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are the same reagent, and comprise Compound Q (eg, Compound Q as defined above).
  • the seventh reagent and the eighth reagent are the same reagent and comprise a complex of compound M2 and hydrazine.
  • R 3a , R 3b , R 3c and R 3d are R 4a and R 4b are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise Compound Q (eg, Compound Q as defined above); R 5a is R 5b is The seventh reagent and the eighth reagent comprise the compound M3.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are the same reagent, and comprise Compound Q (eg, Compound Q as defined above).
  • the seventh reagent and the eighth reagent are the same reagent and comprise the compound M3.
  • the Dye in the third compound is Cy3 or AF532.
  • R 7a in the fourth compound is Dye 1 .
  • Dye 1 is Cy3 or AF532.
  • the third compound is Dye AF532, R 7a fourth compound is Cy3.
  • the third compound is Dye Cy3
  • fourth compound is R 7a is AF532.
  • the fourth compound itself does not carry a fluorescent group and R 7a is a reactive group capable of undergoing a second bioorthogonal ligation reaction.
  • R 7a is selected from the group consisting of:
  • the compound M capable of undergoing a second bioorthogonal ligation reaction with R 7a is selected from the compounds M1, M2, M3 as defined above.
  • the fourth compound does not itself carry a fluorophore and R 7a is a member of the binding pair.
  • the binding is selected from the group consisting of: an antigen (eg, a small molecule antigen)-antibody, a hapten-antibody, a hormone-receptor, a ligand-receptor, a nucleic acid strand-complementary nucleic acid strand, a bottom - Enzymes, substrate analogs - enzymes, inhibitors - enzymes, sugar - phytohemagglutinin, biotin - avidin (eg, avidin and streptavidin), digoxin and digoxin The antibody, as well as the 5-position deoxyguanosine and its antibody.
  • an antigen eg, a small molecule antigen
  • hapten-antibody e.g., a hormone-receptor, a ligand-receptor, a nucleic acid strand-complementary nucleic acid strand, a
  • the two members of the binding pair are selected from the group consisting of: (a) biotin and avidin (eg, streptavidin), (b) desthiobiotin and avidin ( For example, streptavidin) and (c) digoxin and digoxin antibodies.
  • the first compound has the structure shown in formula (Ia):
  • the second compound has the structure shown in formula (IIa):
  • the third compound has the structure shown in formula (IIIa):
  • the fourth compound has the structure shown in formula (IVa):
  • the washing step can be increased as needed.
  • the washing step can be increased at any desired stage, and optionally, the washing step can be performed one or more times.
  • one or more washings may be performed to sufficiently remove the residual solution phase.
  • a washing step may be advantageous, which can be used to sufficiently remove free (ie, non-incorporated nucleic acid strands) fluorophore-bearing compounds (eg, compounds of formula (II) and compounds of formula (IV)), thereby Minimize non-specific fluorescent signals.
  • one or more washings may be performed to sufficiently remove the residual solution phase.
  • Such a washing step may be advantageous, which can be used to sufficiently remove the fluorescent-carrying reagent used in step (6) to minimize non-specific fluorescent signals.
  • step (9) after removing the solution phase of the reaction system, one or more washings may be performed to sufficiently remove the residual solution phase.
  • a washing step may be advantageous, which can be used to sufficiently remove the reagents used in step (8) as well as the products produced (which may carry fluorescence), thereby minimizing non-specific fluorescent signals and avoiding subsequent The polymerization reaction has an adverse effect.
  • the washing step can be carried out using a variety of suitable washing solutions.
  • suitable washing solutions include, but are not limited to, phosphate buffer, citrate buffer, Tris-HCl buffer, acetate buffer, carbonate buffer, and the like. It is within the ability of those skilled in the art to select a suitable wash solution (including suitable ingredients, concentrations, ionic strength, pH, etc.) depending on the actual needs.
  • control eg, maintenance or alteration
  • the control can be controlled (eg, maintained or altered) in step (6) by using a binding pair comprising two members that are capable of interacting by specific non-covalent interactions
  • the ability of the four compounds to emit a fluorescent signal; and preferably, the removal of the protecting group and the fluorescent signal can be achieved in step (8) by using a reactive group capable of undergoing a bioorthogonal cleavage reaction.
  • the first, second, third, and fourth compounds may have the formulas (I), (II), (III), and (IV), respectively. structure:
  • Base1, Base2, Base3, and Base4 represent 4 different bases, and are selected from A, (T/U), C, and G;
  • R 1 is each independently selected from -H, a monophosphate group (-PO 3 H 2 ), a diphosphate group (-PO 3 H-PO 3 H 2 ), a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ) and a tetraphosphoric acid group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 );
  • R 2 is each independently selected from -H and -OH;
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 4c are each independently a reactive group capable of undergoing a bioorthogonal cleavage reaction;
  • R 5a is a member of the first binding pair
  • R 6a (i) is a member of the second binding pair and is a member of the third binding pair;
  • (ii) is only one member of the third binding pair; and R 6a is Dye 1 or R 6a is also linked to -L3-Dye 1 ;
  • L1 are each independently a linking group or are absent
  • L2 are each independently a linking group or are absent
  • L3 is a linking group or does not exist
  • Dye and Dye 1 represent fluorophores capable of emitting a fluorescent signal; and, both have the same structure, or have different structures but have the same or substantially the same emission spectrum;
  • a reactive group R 8 capable of undergoing a bioorthogonal ligation reaction is also present between R 4c and R 6a .
  • the fourth compound itself may carry a fluorophore capable of emitting the same fluorescent signal as the second compound, or may not carry a fluorophore, but in step (5), pass and carry fluorescence
  • An agent of a group eg, a fluorophore having the same structure as the second compound, or a fluorophore identical or substantially identical to the emission spectrum of the fluorophore of the second compound
  • a compound capable of performing a second bioorthogonal ligation reaction with R 6a to undergo specific interaction/specific binding or a second bioorthogonal ligation reaction and a fluorophore introduced into the compound four, and capable of emitting and second The same fluorescent signal of the compound.
  • R 5b -L-Dye 3 another member (referred to herein as "R 5b -L-Dye 3 ", wherein R 5b is another member of the first binding pair, can be made by pairing R 5a with a first binding member carrying a fluorophore , L is a linking group or absent;
  • Dye 3 represents a fluorophore capable of emitting a fluorescent signal, which is preferably the same fluorophore as the second compound, or a fluorescent structure having the same or substantially the same emission spectrum The group) specifically interacts/specifically binds such that the third compound carries a fluorophore.
  • R 6c -L6-Que another member (referred to herein as "R 6c -L6-Que", wherein R 6c is a third binding pair, may be made by pairing R 6a with a third binding carrying a quenching group; a member, L6 is a linking group or absent; Que represents a quencher group capable of quenching the fluorescent signal emitted by Dye) specific interaction/specific binding, such that the fluorescent signal emitted by the fourth compound is quenched .
  • (ii) is capable of orthogonally linking R 8 in the fourth compound to the compound carrying the quenching group, thereby quenching the fluorescent signal in the fourth compound.
  • R 6a can be a member of two binding pairs (second binding pair R 6a and R 6b , third binding pair R 6a and R 6c ). Particularly preferably, there is no interaction between the two members (R 5a and R 5b ) of the first binding pair and the two members (R 6a and R 6b ) of the third binding pair. Further, it is particularly preferred that R 5a and R 5b do not affect the specific interaction between R 6a and R 6c , and R 6a and R 6c do not affect the specific interaction between R 5a and R 5b .
  • step (6) the duplex or the growing nucleic acid strand is subjected to treatment which has no effect on the first compound and the second compound, but is capable of The specific interaction/specific binding of R 5a to another member (R 5b -L5-Dye 3 ) paired with the first binding group carrying the fluorophore (thereby introducing the fluorophore into the third compound, Carrying a fluorescent group and emitting a fluorescent signal), and capable of specifically interacting/specifically binding R 6a to another member (R 6c -L6-Que) paired with a second binding group carrying a quenching group (thus Quenching the fluorescent signal emitted by the fluorescent group in the fourth compound) or orthogonally linking R 8 in the fourth compound to the compound carrying the quenching group (thus quenching the fluorescent group in the fourth compound) Fluorescent signal emitted).
  • the first compound and the third compound, if present do not fluoresce, and the second compound and the fourth compound, if present, fluoresce; Also, after the treatment of step (6), the first compound (if present) still does not fluoresce, the second compound (if present) still fluoresces, the third compound (if present) changes to fluoresce, and The fourth compound, if present, was changed to not fluoresce.
  • the type of compound incorporated into the 3' end of the growing nucleic acid strand can be determined by the results of two fluorescent signal detections.
  • a suitable quenching group can be selected depending on the fluorophore used.
  • Quenching groups for various fluorophores are well known in the art, and typical examples thereof include, but are not limited to, DABCYL, BHQ-based quenchers (such as BHQ-1 or BHQ-2), ECLIPSE, and/or TAMRA.
  • the growth-incorporated nucleic acid strand 3 can be made by subjecting R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , R 4c to a bioorthogonal cleavage reaction.
  • the protecting group at the 3' position of the ribose or deoxyribose in the 'end compound is removed, and the fluorophore (if present) on the duplex or growing nucleic acid strand is removed.
  • step (8) the duplex or the growing nucleic acid strand is subjected to treatment which enables R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , R 4c undergo biobiometric cleavage reaction.
  • the grown nucleic acid strand will not have any fluorophore, and its 3' terminal nucleotide will have a 3' position at the 3' position of the ribose or deoxyribose sugar. Free hydroxyl groups, which can be used to initiate the next round of polymerization.
  • the method of the invention comprises the steps of:
  • the method of the invention comprises the steps of:
  • nucleic acid molecule to be sequenced on the support or attaching the nucleic acid molecule to be sequenced to the support;
  • Base1, Base2, Base3, and Base4 represent 4 different bases, and are selected from A, (T/U), C, and G;
  • R 1 is each independently selected from -H, a monophosphate group (-PO 3 H 2 ), a diphosphate group (-PO 3 H-PO 3 H 2 ), a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ) and a tetraphosphoric acid group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 );
  • R 2 is each independently selected from -H and -OH;
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 4c are each independently a reactive group capable of undergoing a bioorthogonal cleavage reaction;
  • R 5a is a member of the first binding pair
  • R 6a (i) is a member of the second binding pair and is a member of the third binding pair;
  • (ii) is only one member of the third binding pair; and R 6a is Dye 1 or R 6a is also linked to -L3-Dye 1 ;
  • L1 are each independently a linking group or are absent
  • L2 are each independently a linking group or are absent
  • L3 is a linking group or does not exist
  • Dye and Dye 1 represent fluorophores capable of emitting a fluorescent signal; and, both have the same structure, or have different structures but have the same or substantially the same emission spectrum;
  • R 8 capable of undergoing a bioorthogonal ligation reaction between R 4c and R 6a ;
  • the fourth compound is incapable of emitting a fluorescent signal
  • R 6a is a member of the second binding pair and is a member of the third binding pair
  • the duplex or the growing nucleic acid strand is The treatment system containing the solution phase and the solid phase undergoes treatment which has no effect on the first compound, the second compound and the third compound, but enables the R 6a in the fourth compound to carry a fluorescent group (for example, An agent that has the same structurally identical fluorophore, or a fluorophore that differs in structure from the fluorophore of the second compound but emits the same or substantially the same fluorophore (eg, another member of the second binding pair) is specific Interaction/specific binding; thereafter, removing the solution phase of the reaction system of the previous step, leaving the duplex attached to the support, and detecting whether the duplex or the growing nucleic acid strand emits the Fluorescent signal
  • Another member of the second binding pair carrying the fluorophore has the structure: R 6b -L4-Dye 2 ; wherein R 6b is another member of the second binding pair, and L4 is independently a linking group or Does not exist; Dye 2 represents a fluorophore capable of emitting a fluorescent signal and has the same structure as Dye, or a different structure but having the same or substantially the same emission spectrum;
  • the fourth compound is capable of emitting the same fluorescent signal as the second compound, R 6a is only a member of the third binding pair, and R 6a is Dye 1 or is also linked to -L3-Dye 1 , then the previous step is removed a solution phase of the reaction system, retaining the duplex attached to the support, and detecting whether the duplex or the growing nucleic acid strand emits the fluorescent signal;
  • Another member of the first binding pair carrying a fluorophore has the structure: R 5b -L5-Dye 3 ; wherein R 5b is another member of the first binding pair, and L5 is independently a linking group or Does not exist; Dye 3 represents a fluorophore capable of emitting a fluorescent signal, and has the same structure as the fluorophore contained in the second compound, or has a different structure but the same emission spectrum;
  • Another member of the third binding pair carrying the quenching group has the structure: R 6c -L6-Que; wherein R 6c is another member of the second binding pair, and L6 is independently a linking group or Does not exist; Que represents a quenching group capable of quenching the fluorescent signal emitted by Dye 1 or Dye 2 ;
  • the method further comprises the steps of:
  • the method further comprises the steps of:
  • step (4) if, in step (4), the compound of formula (I) is incorporated into the 3' end of the growing nucleic acid strand, then since the compound of formula (I) does not itself carry a fluorophore, It does not react at step (6), and therefore, no fluorescent signal will be detected in steps (5) and (7). That is, if no fluorescent signal is detected in both of steps (5) and (7), it can be determined that the compound incorporated at the 3' end of the growing nucleic acid strand is a compound of formula (I).
  • step (4) the compound of formula (II) is incorporated into the 3' end of the growing nucleic acid strand, then since the compound of formula (II) itself carries a fluorophore and it does not undergo any reaction in step (6) Therefore, the fluorescent signal will be detected in both steps (5) and (7). That is, if a fluorescent signal is detected in both of steps (5) and (7), it can be determined that the compound incorporated at the 3' end of the growing nucleic acid strand is a compound of formula (II).
  • step (4) the compound of formula (III) is incorporated into the 3' end of the growing nucleic acid strand, then (i) since the compound of formula (III) does not itself carry a fluorophore, therefore, in step (5)
  • the fluorescent signal is not detected by the chemistry; and (ii) the specific binding of the compound of formula (III) to another member (R 5b -L-Dye 3 ) paired with the first binding group carrying the fluorophore in step (6)
  • This causes the fluorophore to be introduced into the growing nucleic acid strand, and therefore, a fluorescent signal will be detected in step (7). That is, if a fluorescent signal is not detected in the step (5) and a fluorescent signal is detected in the step (7), it can be determined that the compound incorporated at the 3' end of the grown nucleic acid strand is a compound of the formula (III).
  • step (4) the compound of formula (IV) is incorporated into the 3' end of the growing nucleic acid strand, then (i) since the compound of formula (IV) itself carries a fluorophore or is treated in step (5) While carrying a fluorophore, therefore, a fluorescent signal will be detected in step (5); and (ii) another due to the compound of formula (IV) paired with the third binding carrying the quenching group in step (6)
  • the member (R 6C -L'-Que) specifically binds, or bioorthogonal ligation reaction occurs, causing the quenching group to be introduced into the growing nucleic acid strand, quenching the fluorescent signal emitted by the fluorescent group, and therefore, in the step ( 7)
  • the fluorescent signal is not detected by the Captain. That is, if a fluorescent signal is detected in the step (5) and a fluorescent signal is not detected in the step (7), it can be determined that the compound incorporated at the 3' end of the grown nucleic acid strand is
  • the method of the present invention further comprises, after step (7), determining the nucleic acid incorporated in step (4) according to the detection results of steps (5) and (7). a type of compound at the 3' end of the chain, wherein
  • step (4) When the detection results of steps (5) and (7) are both, when the duplex or the growing nucleic acid strand does not emit the fluorescent signal, it is determined that the nucleic acid strand incorporated in step (4) is grown 3 'The compound at the end is a compound of formula (I);
  • step (4) when the detection results of steps (5) and (7) are both, when the duplex or the growing nucleic acid strand emits the fluorescent signal, determining 3' of the nucleic acid strand incorporated in step (4)
  • the compound at the end is a compound of formula (II);
  • the detection result of the step (5) is that the duplex or the grown nucleic acid strand does not emit the fluorescent signal
  • the detection result of the step (7) is that the duplex or the growing nucleic acid strand is emitted.
  • the compound which determines the 3' end of the nucleic acid strand which is incorporated in step (4) is a compound of the formula (III);
  • the detection result of the step (5) is that the fluorescent signal is emitted by the duplex or the grown nucleic acid strand
  • the detection result of the step (7) is that the duplex or the growing nucleic acid strand is not emitted
  • the compound which determines the 3' end of the nucleic acid strand which is incorporated in step (4) is a compound of the formula (IV).
  • the method of the present invention further comprises, after step (7), based on the base complementary pairing principle, according to the type of compound incorporated in the 3' end of the growing nucleic acid strand in step (4), The type of base at the corresponding position in the nucleic acid molecule to be sequenced is determined.
  • the compound of formula (I), the compound of formula (II), the compound of formula (III) and the compound of formula (IV) do not undergo a chemical reaction with each other during the nucleotide polymerization reaction.
  • Base1 and Base2 are purine bases, and Base3 and Base4 are pyrimidine bases.
  • Base1 is base G
  • Base2 is base A
  • Base3 is base C
  • Base4 is base T or U.
  • Base1 is base G
  • Base2 is base A
  • Base3 is base T or U
  • Base4 is base C.
  • Base1 is base A
  • Base2 is base G
  • Base3 is base C
  • Base4 is base T or U.
  • Base1 is base A, Base2 is base G, Base3 is base T or U
  • Base4 is base C.
  • Base1 and Base2 are pyrimidine bases, and Base3 and Base4 are purine bases.
  • Base1 is base C
  • Base2 is base T or U
  • Base3 is base G
  • Base4 is base A
  • Base1 is base C
  • Base2 is base T or U
  • Base3 is base A
  • Base4 is base G.
  • Base1 is base T or U
  • Base2 is base C
  • Base3 is base G
  • Base4 is base A.
  • Base1 is base T or U
  • Base2 is base C
  • Base3 Base G
  • Base4 is base A.
  • Base1 is base T or U
  • Base2 is base C
  • Base3 is base A
  • Base4 is base G.
  • the compound of formula (I), the compound of formula (II), the compound of formula (III) and the compound of formula (IV) have the same R 1 .
  • R 1 is each independently -H.
  • R 1 is each independently a monophosphate group (-PO 3 H 2 ).
  • each R 1 is independently a diphosphate group (-PO 3 H-PO 3 H 2 ).
  • each R 1 is independently a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ).
  • each R 1 is independently a tetraphosphate group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 ).
  • the compound of formula (I), the compound of formula (II), the compound of formula (III) and the compound of formula (IV) have the same R 2 .
  • each R 2 is independently -H.
  • each R 2 is independently -OH.
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , R 4c are each independently capable of undergoing a bioorthogonal cleavage reaction.
  • each capable of independently undergoing a bioorthogonal cleavage reaction means that the reactive groups, reagents, or molecules, etc., as mentioned, are each capable of undergoing a bioorthogonal cleavage reaction, while in each other Do not interfere or affect each other.
  • R 3a and R 3b are each independently capable of undergoing a bioorthogonal cleavage reaction
  • R 3a and R 3b are capable of undergoing a bioorthogonal cleavage reaction
  • R 3a does not affect the bioorthogonal cleavage reaction of R 3b
  • the progress of R 3b does not affect the bio-orthogonal cleavage reaction of R 3a .
  • R 3a is a first reactive group capable of undergoing a bioorthogonal cleavage reaction in the presence of a first reagent
  • R 3b is capable of biologically occurring in the presence of a second reagent a second reactive group that cross-cleaves the reaction
  • R 3c is a third reactive group capable of undergoing a bioorthogonal cleavage reaction in the presence of a third reagent
  • R 3d is capable of occurring in the presence of the fourth reagent a fourth reactive group of the bioorthogonal cleavage reaction
  • R 4a is a fifth reactive group capable of undergoing a bioorthogonal cleavage reaction in the presence of a fifth reagent
  • R 4b is a condition capable of being present in the sixth reagent A sixth reactive group in which a bioorthogonal cleavage reaction occurs
  • R 4c is a seventh reactive group capable of undergoing a bioorthogonal cleavage reaction in the presence of a seventh reagent.
  • a first reagent, a second reagent, a third reagent, a fourth reagent, a fifth reagent, a sixth reagent, and a seventh reagent may be added, thereby making R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , R 4c (if present) each undergo a bioorthogonal cleavage reaction.
  • R 3a , R 3b , R 3c , R 3d (if present) will be removed from the 3' position of ribose or deoxyribose (in other words, -OR 3a , -OR 3b , -OR 3c or -OR 3d ( If present, will be converted to a free hydroxyl group), and R 4a and the fluorophore attached thereto (if present), R 4b and the fluorophore attached thereto (if present), and R 4c and The fluorophore (if present) to which it is attached will also be removed.
  • the growing nucleic acid strand will not carry the fluorophore and will have a free hydroxyl group at the 3' end, which can be used for the next round of polymerization. Therefore, in certain preferred embodiments, in step (8), the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are added to form a solution containing a reaction system of a phase and a solid phase, and allowing the double-stranded body to be subjected to a bioorthogonal cleavage reaction of each of R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 4c
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are incubated.
  • R 3a , R 3b , R 3c , R 3d are each capable of undergoing a bioorthogonal cleavage reaction in the presence of the same reagent.
  • the first reagent, the second reagent, the third reagent, and the fourth reagent are the same reagent.
  • R 3a , R 3b , R 3c , R 3d are the same reactive group.
  • the first reagent, the second reagent, the third reagent, and the fourth reagent are the same reagent. That is, in step (8), in the presence of the same reagent (ie, the first reagent), the same R 3a , R 3b , R 3c , R 3d (if present) will each proceed The bioorthogonal cleavage reaction is excised from the growing nucleic acid strand.
  • R 4a , R 4b , R 4c are each capable of undergoing a bioorthogonal cleavage reaction in the presence of the same reagent.
  • the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent.
  • R 4a , R 4b , R 4c are the same reactive group.
  • the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent. That is, in step (8), the same R 4a , R 4b , R 4c (if present) will each be bioorthogonal in the presence of the same reagent (ie, the fifth reagent) The reaction is cleaved and excised from the growing nucleic acid strand.
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , R 4c are each capable of undergoing a bioorthogonal cleavage reaction in the presence of the same reagent.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent.
  • the R 3a , R 3b , R3c , R3d , R4a , R4b , R4c are each subjected to a bioorthogonal cleavage reaction and excised from the growing nucleic acid strand.
  • R 5a and R 5b there is no interaction between two members of the first binding pair (R 5a and R 5b ) and two members of the third binding pair (R 6a and R 6c ) . Further, it is particularly preferred that R 5a and R 5b do not affect the specific interaction between R 6a and R 6c , and R 6a and R 6c do not affect the specific interaction between R 5a and R 5b .
  • R 5b -L-Dye and R 6b -L'-Que may be added such that R 5a (if present) in the compound of formula (III) specifically binds to R 5b in 3 R 5b -L5-Dye, and that of formula (IV) R 6a compound (if present) and R 6c -L6-Que-specific binding of R 6b.
  • the fluorophore Dye linked to R 5b is introduced into the compound of formula (III) such that formula (III) The compound emits a fluorescent signal.
  • the quenching group Que linked to R 6c is introduced into the compound of formula (IV) such that formula (IV) The fluorescent signal from Dye in the compound is quenched and the compound of formula (IV) no longer fluoresces.
  • R 5b -L5 - Dye 3 does not chemically react with the first compound and the second compound, and further preferably, R 6c -L6-Que Does not chemically react with the first compound and the second compound.
  • R 5b -L5-Dye 3 and R 6c -L6-Que may be added to form a reaction system comprising a solution phase and a solid phase, wherein R 5b Another member of the first binding pair, L5 is a linking group or absent; Dye 3 represents a fluorophore capable of emitting a fluorescent signal, and R 6c is another member of a third binding pair, L6 is a linking group or Does not exist; Que represents a quenching group capable of quenching the fluorescent signal emitted by Dye 1 or Dye 2 ; then, under conditions allowing R 5a and R 5b to specifically bind and allowing specific binding of R 6a and R 6c The duplex is incubated with R 5b -L5-Dye 3 and R 6c -L6-Que.
  • step (6) comprises adding an eighth reagent such that R 6a (if present) in the compound of formula (IV) specifically interacts with another member of the third binding pair and/or Specific binding.
  • the eighth reagent can comprise another member of a third binding pair carrying a fluorophore having the structure R 6c -L6-Que, wherein R 6c is another member of the third binding pair, and L6 is independently linked
  • the group is either absent; Que represents a quenching group capable of quenching the fluorescent signal emitted by Dye 1 or Dye 2 .
  • step (5) comprises adding a ninth agent such that R 6a (if present) in the compound of formula (IV) specifically interacts with another member of the second binding pair and/or Specific binding.
  • the ninth reagent can comprise another member of a second binding pair carrying a fluorophore having the structure R 6b -L4-Dye 2 , wherein R 6b is another member of the second binding pair, L4 is independently
  • the linking group is either absent;
  • Dye 2 represents a fluorophore capable of emitting a fluorescent signal and has the same structure as Dye, or is structurally different but has the same emission spectrum.
  • step (6) comprises adding a tenth reagent such that R 6a (if present) in the compound of formula (IV) specifically interacts with another member of the third binding pair and/or Specific binding.
  • the tenth reagent can comprise another member of a third binding pair carrying a fluorophore having the structure R 6c -L6-Que, wherein R 6c is another member of the third binding pair, and L6 is independently linked
  • the group is either absent; Que represents a quenching group capable of quenching the fluorescent signal emitted by Dye 1 or Dye 2 .
  • the eleventh reagent and the tenth reagent may be added such that R 5a (if present) in the compound of formula (III) is paired with the first binding Another member of the compound undergoes specific action and/or specific binding and allows R 6a (if present) in the compound of formula (IV) to specifically and/or specifically bind to another member of the third binding pair .
  • the eleventh reagent can comprise another member of the first binding pair, the other member of the first binding pair carrying the same fluorophore as the second compound and the fourth compound (or different in structure but the same luminescence spectrum or Substantially identical fluorophores), and another member of the first binding pair is capable of specifically binding to R 5a and thereby introducing the carried fluorophore into the compound of formula (III).
  • the tenth reagent comprises another member of the third binding pair carrying the quencher and is capable of specific and/or specific binding to R 6a (if present) and thereby the compound of formula (IV) The fluorescent signal in the quench is quenched.
  • the eleventh reagent does not chemically react with the first compound and the second compound, and further preferably, the tenth reagent does not react with the first compound and The second compound undergoes a chemical reaction.
  • the eleventh reagent and the tenth reagent may be added to form a reaction system comprising a solution phase and a solid phase, wherein the eleventh reagent comprises the first combination Another member of the pair, the other member of the first binding pair is capable of carrying the same fluorophore as the second compound and the fourth compound (or fluorophores having different structures but the same or substantially the same luminescence spectrum), and Another member of the first binding pair is capable of specifically interacting and/or specifically binding to R 5a to introduce the carried fluorophore into the third compound; the tenth reagent comprises another member of the third binding pair Another member of the third binding pair carries a quencher, and another member of the third binding pair is capable of specifically interacting and/or specifically binding to R 6a , thereby carrying the quencher introduction of a fourth compound; and then, a specific function and / or specific binding member is allowed to occur in the other of the first binding pair R 5a and R 6a and
  • a reactive group R 8 capable of undergoing a third bioorthogonal ligation reaction is also present between R 5b and R 7a of the fourth compound.
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , R 5a , R 8 are each independently capable of undergoing a bioorthogonal cleavage or ligation reaction.
  • R 8a is capable of undergoing a third bioorthogonal ligation reaction in the presence of a twelfth agent.
  • step (6) an eleventh reagent and a twelfth reagent may be added such that R 5a (if present) in the compound of formula (III) occurs first biologically
  • the ligation reaction is carried out and a third bioorthogonal ligation reaction occurs in R 8 (if present) in the compound of formula (IV).
  • the eleventh reagent can comprise another member of the first binding pair, the other member of the first binding pair carrying the same fluorophore as the second compound and the fourth compound (or different in structure but the same luminescence spectrum or Substantially identical fluorophores), and another member of the first binding pair is capable of specifically binding to R 5a and thereby introducing the carried fluorophore into the compound of formula (III).
  • the twelfth reagent is capable of causing a third bioorthogonal ligation reaction of R 8 in the compound of formula (IV) and thereby quenching the fluorescent signal in the compound of formula (IV).
  • the eleventh reagent does not chemically react with the first compound and the second compound, and further preferably, the twelfth reagent does not react with the first compound Chemical reaction with the second compound.
  • the eleventh reagent and the twelfth reagent may be added to form a reaction system containing a solution phase and a solid phase, wherein the eleventh reagent comprises the first Binding another member of the pair, the other member of the first binding pair is capable of carrying the same fluorophore as the second compound and the fourth compound (or fluorophores having different structures but having the same or substantially the same luminescence spectrum), and Another member of the first binding pair is capable of specifically interacting and/or specifically binding to R 5a to introduce the carried fluorophore into the third compound; the twelfth reagent comprises compound M, the compound M carries a quencher, and the compound M is capable of undergoing a third bioorthogonal ligation reaction with R 8 to introduce a quencher in compound M into the fourth compound; then, allowing R 5a to be paired with the first bond another member of the occurrence of specific effects and / or specific binding, and allows M and
  • a group e.g., -C 3 cycloalkenyl, -C 4 cycloalkenyl, -C 5 membered cycloalkenyl, -C 6 cycloalkenyl, -C 7 cycloalkenyl or -C 8 cycloalkenyl).
  • the -C 3-8 cycloalkenyl is selected from the group consisting of -C 3 cycloalkenyl and -C 8 cycloalkenyl. In certain preferred embodiments, the -C 3-8 cycloalkenyl group is In certain preferred embodiments, the -C 3-8 cycloalkenyl group is
  • the cycloalkenyl group is selected from C 38 cycloalkenyl, and C 3 C 8 cycloalkenyl.
  • the C 3-8 cycloalkenyl group is In certain preferred embodiments, the C 3-8 cycloalkenyl group is
  • R 3a , R 3b , R 3c and R 3d are the same reactive group and are both -CH 2 N 3 .
  • R 4a , R 4b and R 4c are each independently selected from the group consisting of: -OC 3-8 cycloalkenylene subunit.
  • the "-OC 3-8 cycloalkenylene subunit" is selected from the group consisting of -OC 3 cycloalkenylene, -OC 4 cycloalkenylene, -OC 5 cycloalkenylene, -OC 6 cycloalkenylene, -OC 7 cycloalkenylene, and -OC 8 cycloalkenylene.
  • the "-OC 3-8 cycloalkenylene subunit" is In certain preferred embodiments, the "-OC 3-8 cycloalkenylene subunit" is
  • R 4a , R 4b and R 4c are the same reactive group and are selected from the group consisting of: -OC 3-8 cycloalkenylene subunit.
  • the "-OC 3-8 cycloalkenylene subunit" is selected from the group consisting of -OC 3 cycloalkenylene, -OC 4 cycloalkenylene, -OC 5 cycloalkenylene, -OC 6 cycloalkenylene, -OC 7 cycloalkenylene, and -OC 8 cycloalkenylene.
  • the "-OC 3-8 cycloalkenylene subunit" is In certain preferred embodiments, the "-OC 3-8 cycloalkenylene subunit" is
  • R 4a , R 4b and R 4c are
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent each independently comprise a material selected from the group consisting of:
  • a complex of palladium for example, a complex of palladium and four triphenylphosphine tri-sulfonic acids
  • ruthenium for example, a complex of ruthenium and quinoline carboxylate (or a derivative thereof), allyl or cyclopentadiene
  • a phosphide eg, a carboxyphosphine or hydroxyphosphine such as P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 );
  • Z 1 and Z 2 are each independently selected from a modified or unmodified alkyl group (for example, a C 1 -C 6 alkyl group such as a C 1 alkyl group, a C 2 alkyl group, a C 3 alkyl group, a C 4 alkyl group). a C 5 alkyl or C 6 alkyl group) and a modified or unmodified aromatic group (for example, a 6-10 membered aromatic group such as a 6-membered aromatic group, a 7-membered aromatic group, an 8-membered aromatic group, a 9-membered aromatic group or A 10-membered aromatic group such as phenyl or pyridyl).
  • a modified or unmodified alkyl group for example, a C 1 -C 6 alkyl group such as a C 1 alkyl group, a C 2 alkyl group, a C 3 alkyl group, a C 4 alkyl group.
  • R 4a , R 4b and R 4 are Still further preferably, the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise a complex of palladium or a complex of ruthenium.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise a complex of palladium or a complex of ruthenium.
  • R 3a , R 3b , R 3c and R 3d are —CH 2 —N 3 .
  • R 4a , R 4b and R 4 are Still further preferably, the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise a phosphonide such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 ) CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise a phosphonium compound such as a carboxyphosphine or a hydroxyphosphine compound, for example P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • a phosphonium compound such as a carboxyphosphine or a hydroxyphosphine compound, for example P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • R 3a , R 3b , R 3c and R 3d are In this case, preferably, R 4a , R 4b and R 4c are Still further preferably, the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise the compound Q as defined above. Further preferably, in compound Q, Z 1 is a methyl group; and Z 2 is a modified or unmodified pyridyl group. More preferably, compound Q is Wherein W is hydrogen or a modifying group.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent and comprise the compound Q as defined above.
  • the linking groups L4, L5 and L6 in R 6c -L6-Que are each independent and are not particularly limited.
  • One skilled in the art can base on the bases (Base1, Base2, Base3, and Base4) used in the compound, the reactive groups (R 4a , R 4b , and R 4c ), and the members of the first and second binding pairs (R). 5a , R 5b , R 6a and R 6b ), select the appropriate linking groups L1, L2, L3, L4, L5 and L6.
  • linking groups L1, L2, L3, L4, L5, and L6 are each independently selected from the group consisting of:
  • n1, n2, n3, n4, p1, p2, p3, a, b, c, d, e and f are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • L1 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of: Wherein m1, m2, m3 and m4 are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • L1 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of:
  • L2 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of: Wherein n1, n2, n3, n4, p1, p2, p3, a, b, c, d, e and f are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • L2 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of: Wherein n1, n2, n3, n4, p1, p2, p3 are each independently selected from 0, 1, 2, 3, 4, 5 or 6. .
  • L2 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of:
  • R 5a and R 5b are two members of a first binding pair
  • R 6a and R 6b are two members of a second binding pair
  • R 6a and R 6c are a third binding pair Two members.
  • the first binding pair and the second binding pair are each independently selected from the group consisting of: an antigen (eg, a small molecule antigen)-antibody, a hapten-antibody, a hormone-receptor, a ligand-receptor, Nucleic acid strand-complementary nucleic acid strand, substrate-enzyme, substrate analog-enzyme, inhibitor-enzyme, sugar-plant lectin, biotin-avidin (eg, avidin and streptavidin) , digoxin and digoxin antibodies, and 5-position brohydrodeoxyguanosine and its antibodies.
  • an antigen eg, a small molecule antigen
  • hapten-antibody e.g., a hormone-receptor, a ligand-recept
  • the two members of the first binding pair are selected from the group consisting of: (a) biotin and avidin (eg, streptavidin), (b) desthiobiotin and avidin ( For example, streptavidin) and (c) digoxin and digoxin antibodies.
  • R 5a is biotin or desthiobiotin
  • R 5b is avidin (eg, streptavidin).
  • R 5a is digoxin and R 5b is a digoxin antibody.
  • the two members of the second binding pair are selected from the group consisting of: (a) biotin and avidin (eg, streptavidin), (b) desthiobiotin and avidin ( For example, streptavidin) and (c) digoxin and digoxin antibodies.
  • R 6a is biotin or desthiobiotin
  • R 6b is avidin (eg, streptavidin).
  • R 6a is digoxin and R 6b is a digoxin antibody.
  • the two members of the third binding pair are selected from the group consisting of: (a) biotin and avidin (eg, streptavidin), (b) desthiobiotin and avidin ( For example, streptavidin), (c) digoxin and digoxin antibodies, (d) Cy3 and Cy3 antibodies.
  • R 6a is Cy3 and R 6c is a Cy3 antibody. It is particularly preferred that there is no interaction between the two members (R 5a and R 5b ) of the first binding pair and the two members (R 6a and R 6c ) of the third binding pair.
  • R 5a and R 5b do not affect the specific interaction between R 6a and R 6c
  • R 6a and R 6c do not affect the specific interaction between R 5a and R 5b
  • the two members of the first binding pair are biotin and avidin (eg, streptavidin)
  • the two members of the third binding pair are digoxin and Digoxin antibody.
  • the two members of the first binding pair are digoxin and digoxin antibodies, respectively
  • the two members of the third binding pair are biotin and avidin, respectively (eg, streptavidin) Prime).
  • the two members of the first binding pair are biotin and avidin (eg, streptavidin), and the two members of the third binding pair are Cy3 and Cy3 antibodies, respectively.
  • R 4a , R 4b and R 4c are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise a complex of palladium or a complex of ruthenium;
  • R 5a is biotin; and R 5b is avidin (eg streptavidin);
  • R 6a is digoxin;
  • R 6b is digoxin antibody.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise a complex of palladium or a complex of ruthenium.
  • R 3a , R 3b , R 3c and R 3d are -CH 2 -N 3 ;
  • R 4a , R 4b and R 4c are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise a phosphonide such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 CH 2 COOH) 3 Or P(CH 2 CH 2 OH) 3 ;
  • R 5a is biotin;
  • R 5b is avidin (eg streptavidin);
  • R 6a is digoxin;
  • R 6b is digoxin antibody.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise a phosphide such as a carboxyphosphine or a hydroxyphosphine, for example P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • a phosphide such as a carboxyphosphine or a hydroxyphosphine, for example P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • R 3a , R 3b , R 3c and R 3d are -CH 2 -N 3 ;
  • R 4a , R 4b and R 4c are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise a phosphonide such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 CH 2 COOH) 3 Or P(CH 2 CH 2 OH) 3 ;
  • R 5a is digoxin;
  • R 5b is a digoxin antibody;
  • R 6a is biotin; and
  • R 6b is avidin (eg streptavidin).
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise a phosphide such as a carboxyphosphine or a hydroxyphosphine, for example P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • a phosphide such as a carboxyphosphine or a hydroxyphosphine, for example P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • R 4a , R 4b and R 4c are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise a complex of palladium or a complex of ruthenium;
  • R 5a is digoxin;
  • R 5b is ground height Octanoantibody;
  • R 6a is biotin;
  • R 6b is avidin (eg streptavidin).
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise a complex of palladium or a complex of ruthenium.
  • R 3a , R 3b , R 3c and R 3d are R 4a , R 4b and R 4c are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise Compound Q (for example, Compound Q as defined above);
  • R 5a is biotin;
  • R 5b Is avidin (eg streptavidin);
  • R 6a is digoxin;
  • R 6b is digoxin antibody.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise Compound Q (eg, Compound Q as defined above) .
  • R 3a , R 3b , R 3c and R 3d are R 4a , R 4b and R 4c are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise Compound Q (for example, Compound Q as defined above); R 5a is digoxin; R 5b is a digoxin antibody; R 6a is biotin; and R 6b is avidin (eg streptavidin).
  • Compound Q for example, Compound Q as defined above
  • R 5a is digoxin
  • R 5b is a digoxin antibody
  • R 6a is biotin
  • R 6b is avidin (eg streptavidin).
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise Compound Q (eg, Compound Q as defined above) .
  • R 4a , R 4b and R 4c are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise a complex of palladium or a complex of ruthenium;
  • R 5a is biotin; and R 5b is avidin (eg streptavidin);
  • R 6a is Cy3;
  • R 6b is a Cy3 antibody.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise a complex of palladium or a complex of ruthenium.
  • R 3a , R 3b , R 3c and R 3d are R 4a , R 4b and R 4c are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise Compound Q (for example, Compound Q as defined above); R 5a is biotin; R 5b Is avidin (eg streptavidin); R 6a is Cy3; R 6b is a Cy3 antibody.
  • Compound Q for example, Compound Q as defined above
  • R 5a is biotin
  • R 6a is Cy3
  • R 6b is a Cy3 antibody.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise Compound Q (eg, Compound Q as defined above) .
  • R 3a , R 3b , R 3c and R 3d are R 4a , R 4b and R 4c are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise Compound Q (for example, Compound Q as defined above); R 5a is biotin; R 5b Is avidin (eg streptavidin); R 6a is Cy3; R 6b is a Cy3 antibody.
  • Compound Q for example, Compound Q as defined above
  • R 5a is biotin
  • R 6a is Cy3
  • R 6b is a Cy3 antibody.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise Compound Q (eg, Compound Q as defined above) .
  • the first compound has the structure shown in formula (Ib):
  • the second compound has the structure shown in formula (IIb):
  • the third compound has the structure shown in formula (IIIb):
  • the fourth compound has the structure shown in formula (IVb):
  • the washing step can be increased as needed.
  • the washing step can be increased at any desired stage, and optionally, the washing step can be performed one or more times.
  • one or more washings may be performed to sufficiently remove the residual solution phase.
  • a washing step may be advantageous, which may be used to sufficiently remove free (ie, non-incorporated nucleic acid strands) fluorophore-bearing compounds (eg, R 6b -L4-Dye 2 , a compound of formula (II) or a compound of formula (IV)) to minimize non-specific fluorescent signals.
  • one or more washings may be performed to sufficiently remove the residual solution phase.
  • a washing step may be advantageous, which can be used to sufficiently remove the fluorescent-carrying reagent (e.g., R 5b -L5-Dye 3 ) used in step (6) to minimize non-specific fluorescent signals.
  • step (9) after removing the solution phase of the reaction system, one or more washings may be performed to sufficiently remove the residual solution phase.
  • a washing step may be advantageous, which can be used to sufficiently remove the reagents used in step (8) as well as the products produced (which may carry fluorescence), thereby minimizing non-specific fluorescent signals and avoiding subsequent The polymerization reaction has an adverse effect.
  • the washing step can be carried out using a variety of suitable washing solutions.
  • suitable washing solutions include, but are not limited to, phosphate buffer, citrate buffer, Tris-HCl buffer, acetate buffer, carbonate buffer, and the like. It is within the ability of those skilled in the art to select a suitable wash solution (including suitable ingredients, concentrations, ionic strength, pH, etc.) depending on the actual needs.
  • the step can be performed by using a binding pair comprising two members capable of interacting by specific non-covalent interactions and a reactive group capable of performing a bioorthogonal ligation reaction. 6) controlling (eg, maintaining or altering) the ability of the four compounds to emit a fluorescent signal; and preferably, in step (8), by using a reactive group capable of performing a bioorthogonal cleavage reaction Removal of protecting groups and fluorescent signals.
  • the first, second, third, and fourth compounds may have the formulas (I), (II), (III), and (IV), respectively. structure:
  • Base1, Base2, Base3, and Base4 represent 4 different bases, and are selected from A, (T/U), C, and G;
  • R 1 is each independently selected from -H, a monophosphate group (-PO 3 H 2 ), a diphosphate group (-PO 3 H-PO 3 H 2 ), a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ) and a tetraphosphoric acid group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 );
  • R 2 is each independently selected from -H and -OH;
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 4c are each independently a reactive group capable of undergoing a bioorthogonal cleavage reaction;
  • R 5a is a reactive group capable of performing a first bioorthogonal ligation reaction
  • R 6a (i) is a member of the first binding pair and is a member of the second binding pair;
  • (ii) is only one member of the second binding pair, and R 6a is Dye 1 , or R 6a is also linked to -L3-Dye 1 ;
  • L1 are each independently a linking group or are absent
  • L2 are each independently a linking group or are absent
  • L3 is a linking group or does not exist
  • Dye denotes a fluorophore capable of emitting a fluorescent signal
  • Dye and Dye 1 have the same structure, or have different structures but have the same or substantially the same emission spectrum
  • a reactive group R 8 capable of undergoing a second bioorthogonal ligation reaction is also present between R 4c and R 6a .
  • the fourth compound itself may carry a fluorophore capable of emitting the same fluorescent signal as the second compound, or may not carry a fluorophore, but in step (5), pass and carry fluorescence
  • An agent eg, a fluorophore having the same structure as the second compound, or a fluorophore identical or substantially identical to the emission spectrum of the fluorophore of the second compound
  • an agent eg, a fluorophore having the same structure as the second compound, or a fluorophore identical or substantially identical to the emission spectrum of the fluorophore of the second compound
  • an agent eg, a fluorophore having the same structure as the second compound, or a fluorophore identical or substantially identical to the emission spectrum of the fluorophore of the second compound
  • Specific interaction/specific binding occurs, while a fluorophore is introduced into compound IV and is capable of emitting the same fluorescent signal as the second compound.
  • R 5a can be made by carrying R 5a with a fluorophore (for example, the same fluorophore as the second compound, or a fluorophore structure different from the fluorophore of the second compound, but having the same or substantially the same fluorophore)
  • a fluorophore for example, the same fluorophore as the second compound, or a fluorophore structure different from the fluorophore of the second compound, but having the same or substantially the same fluorophore
  • the reagent undergoes a first bioorthogonal ligation reaction such that the third compound carries a fluorophore.
  • R 6c -L'-Que another member (referred to herein as "R 6c -L'-Que", wherein R 6c is paired with said binding pair, may be made by pairing R 6a with a second binding carrying a quenching group;
  • Another member, L' is a linking group or absent;
  • Que represents a quencher group capable of quenching the fluorescent signal emitted by Dye) specific interaction/specific binding, such that the fluorescent signal emitted by the fourth compound is Quenching; or
  • R 5a and the fluorophore-bearing agent there is no interaction between the R 5a and the fluorophore-bearing agent and the two members of the second binding pair (R 6a and R 6b ). Further, it is particularly preferred that the R 5a and the fluorophore-carrying reagent do not affect the specific interaction between R 6a and R 6b , and R 6a and R 6b do not affect the R 5a and the fluorophore-carrying group. Bioorthogonal ligation reaction between reagents.
  • the duplex or the growing nucleic acid strand is subjected to treatment which has no effect on the first compound and the second compound, but is capable of First bioorthogonal connection of R 5a with an agent carrying a fluorophore (eg, the same fluorophore as the second compound, or a different fluorophore structure than the second compound but having the same or substantially the same emission spectrum) Reaction (thereby introducing a fluorophore carried in the reagent into the third compound to carry the fluorophore and emitting a fluorescent signal) and capable of pairing R 6a with the binding carrying the quenching group a member (R 6b -L'-Que) undergoes specific interaction/specific binding (thus quenching the fluorescent signal emitted by the fluorescent group in the fourth compound), or is capable of quenching R 8 in the fourth compound
  • the compound of the cleavage group undergoes a second orthogonal ligation reaction (thus quenching the fluorescent signal
  • the first compound and the third compound, if present do not fluoresce, and the second compound and the fourth compound, if present, fluoresce; Also, after the treatment of step (6), the first compound (if present) still does not fluoresce, the second compound (if present) still fluoresces, the third compound (if present) changes to fluoresce, and The fourth compound, if present, was changed to not fluoresce.
  • the type of compound incorporated into the 3' end of the growing nucleic acid strand can be determined by the results of two fluorescent signal detections.
  • a suitable quenching group can be selected depending on the fluorophore used.
  • Quenching groups for various fluorophores are well known in the art, and typical examples thereof include, but are not limited to, DABCYL, BHQ-based quenchers (such as BHQ-1 or BHQ-2), ECLIPSE, and/or TAMRA.
  • the growth-incorporated nucleic acid strand 3 can be made by subjecting R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , R 4c to a bioorthogonal cleavage reaction.
  • the protecting group at the 3' position of the ribose or deoxyribose in the 'end compound is removed, and the fluorophore (if present) on the duplex or growing nucleic acid strand is removed.
  • step (8) the duplex or the growing nucleic acid strand is subjected to treatment which enables R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , R 4c undergo biobiometric cleavage reaction.
  • the grown nucleic acid strand will not have any fluorophore, and its 3' terminal nucleotide will have a 3' position at the 3' position of the ribose or deoxyribose sugar. Free hydroxyl groups, which can be used to initiate the next round of polymerization.
  • the method of the invention comprises the steps of:
  • the method of the invention comprises the steps of:
  • nucleic acid molecule to be sequenced on the support or attaching the nucleic acid molecule to be sequenced to the support;
  • Base1, Base2, Base3, and Base4 represent 4 different bases, and are selected from A, (T/U), C, and G;
  • R 1 is each independently selected from -H, a monophosphate group (-PO 3 H 2 ), a diphosphate group (-PO 3 H-PO 3 H 2 ), a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ) and a tetraphosphoric acid group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 );
  • R 2 is each independently selected from -H and -OH;
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 4c are each independently a reactive group capable of undergoing a bioorthogonal cleavage reaction;
  • R 5a is a reactive group capable of performing a first bioorthogonal ligation reaction
  • R 6a (i) is a member of the first binding pair and is a member of the second binding pair;
  • (ii) is only one member of the second binding pair, and R 6a is Dye 1 , or R 6a is also linked to -L3-Dye 1 ;
  • L1 are each independently a linking group or are absent
  • L2 are each independently a linking group or are absent
  • L3 is a linking group or does not exist
  • Dye denotes a fluorophore capable of emitting a fluorescent signal
  • Dye and Dye 1 have the same structure, or have different structures but have the same or substantially the same emission spectrum
  • R 8 capable of undergoing a second bioorthogonal ligation reaction between R 4c and R 6a ;
  • the fourth compound is incapable of emitting a fluorescent signal
  • R 6a is a member of the first binding pair and is a member of the second binding pair
  • the duplex or the growing nucleic acid strand is The treatment system containing the solution phase and the solid phase undergoes treatment which has no effect on the first compound, the second compound and the third compound, but enables the R 6a in the fourth compound to carry a fluorescent group
  • a fluorescent group for example, An agent having the same fluorophore as the fluorophore of the second compound or a fluorophore having the same or substantially the same emission fluorophore as the fluorophore of the second compound (eg, another member of the first binding pair) is specific Interaction/specific binding; thereafter, removing the solution phase of the reaction system of the previous step, leaving the duplex attached to the support, and detecting whether the duplex or the growing nucleic acid strand emits the Fluorescent signal
  • Another member of the first binding pair carrying the fluorophore has the structure: R 6b -L4-Dye 2 ; wherein R 6b is another member of the first binding pair, and L4 is independently a linking group or Does not exist; Dye 2 represents a fluorophore capable of emitting a fluorescent signal and has the same structure as Dye, or a different structure but having the same or substantially the same emission spectrum;
  • the fourth compound is capable of emitting the same fluorescent signal as the second compound, R 6a is only a member of the second binding pair, and R 6a is Dye 1 , or R 6a is also linked to -L3-Dye 1 , then removed The solution phase of the reaction system of the previous step, retaining the duplex attached to the support, and detecting whether the duplex or the growing nucleic acid strand emits the fluorescent signal;
  • R 6c -L'-Que Another member of the second binding pair carrying the quenching group has the structure: R 6c -L'-Que; wherein R 6c is another member of the second binding pair, and L' is independently a linking group Group or absent; Que represents a quenching group capable of quenching the fluorescent signal emitted by Dye1 or Dye2;
  • the method further comprises the steps of:
  • the method further comprises the steps of:
  • step (4) if, in step (4), the compound of formula (I) is incorporated into the 3' end of the growing nucleic acid strand, then since the compound of formula (I) does not itself carry a fluorophore, It does not react at step (6), and therefore, no fluorescent signal will be detected in steps (5) and (7). That is, if no fluorescent signal is detected in both of steps (5) and (7), it can be determined that the compound incorporated at the 3' end of the growing nucleic acid strand is a compound of formula (I).
  • step (4) the compound of formula (II) is incorporated into the 3' end of the growing nucleic acid strand, then since the compound of formula (II) itself carries a fluorophore and it does not undergo any reaction in step (6) Therefore, the fluorescent signal will be detected in both steps (5) and (7). That is, if a fluorescent signal is detected in both of steps (5) and (7), it can be determined that the compound incorporated at the 3' end of the growing nucleic acid strand is a compound of formula (II).
  • step (4) the compound of formula (III) is incorporated into the 3' end of the growing nucleic acid strand, then (i) since the compound of formula (III) does not itself carry a fluorophore, therefore, in step (5) The fluorescent signal is not detected by the chemistry; and (ii) because the compound of formula (III) undergoes a bioorthogonal ligation reaction with the reagent carrying the fluorophore in step (6), causing the fluorophore to be introduced into the growing nucleic acid strand, Therefore, a fluorescent signal will be detected in step (7). That is, if a fluorescent signal is not detected in the step (5) and a fluorescent signal is detected in the step (7), it can be determined that the compound incorporated at the 3' end of the grown nucleic acid strand is a compound of the formula (III).
  • step (4) the compound of formula (IV) is incorporated into the 3' end of the growing nucleic acid strand, then (i) since the compound of formula (IV) itself carries a fluorophore or is treated in step (5) While carrying a fluorophore, therefore, a fluorescent signal will be detected in step (5); and (ii) another due to the compound of formula (IV) paired with the binding carrying the quenching group in step (6)
  • the member (R 6b -L'-Que) specifically binds or undergoes a third orthogonal ligation reaction, resulting in the quenching group being introduced into the growing nucleic acid strand, quenching the fluorescent signal emitted by the fluorescent group, thus, in the step ( 7)
  • the fluorescent signal is not detected by the Kennedy. That is, if a fluorescent signal is detected in the step (5) and a fluorescent signal is not detected in the step (7), it can be determined that the compound incorporated at the 3' end of the grown nucleic acid strand is
  • the method of the present invention further comprises, after step (7), determining the nucleic acid incorporated in step (4) according to the detection results of steps (5) and (7). a type of compound at the 3' end of the chain, wherein
  • step (4) When the detection results of steps (5) and (7) are both, when the duplex or the growing nucleic acid strand does not emit the fluorescent signal, it is determined that the nucleic acid strand incorporated in step (4) is grown 3 'The compound at the end is a compound of formula (I);
  • step (4) when the detection results of steps (5) and (7) are both, when the duplex or the growing nucleic acid strand emits the fluorescent signal, determining 3' of the nucleic acid strand incorporated in step (4)
  • the compound at the end is a compound of formula (II);
  • the detection result of the step (5) is that the duplex or the grown nucleic acid strand does not emit the fluorescent signal
  • the detection result of the step (7) is that the duplex or the growing nucleic acid strand is emitted.
  • the compound which determines the 3' end of the nucleic acid strand which is incorporated in step (4) is a compound of the formula (III);
  • the detection result of the step (5) is that the fluorescent signal is emitted by the duplex or the grown nucleic acid strand
  • the detection result of the step (7) is that the duplex or the growing nucleic acid strand is not emitted
  • the compound which determines the 3' end of the nucleic acid strand which is incorporated in step (4) is a compound of the formula (IV).
  • the method of the present invention further comprises, after step (7), based on the base complementary pairing principle, according to the type of compound incorporated in the 3' end of the growing nucleic acid strand in step (4), The type of base at the corresponding position in the nucleic acid molecule to be sequenced is determined.
  • the compound of formula (I), the compound of formula (II), the compound of formula (III) and the compound of formula (IV) do not undergo a chemical reaction with each other during the nucleotide polymerization reaction.
  • Base1 and Base2 are purine bases, and Base3 and Base4 are pyrimidine bases.
  • Base1 is base G
  • Base2 is base A
  • Base3 is base C
  • Base4 is base T or U.
  • Base1 is base G
  • Base2 is base A
  • Base3 is base T or U
  • Base4 is base C.
  • Base1 is base A
  • Base2 is base G
  • Base3 is base C
  • Base4 is base T or U.
  • Base1 is base A, Base2 is base G, Base3 is base T or U
  • Base4 is base C.
  • Base1 and Base2 are pyrimidine bases, and Base3 and Base4 are purine bases.
  • Base1 is base C
  • Base2 is base T or U
  • Base3 is base G
  • Base4 is base A
  • Base1 is base C
  • Base2 is base T or U
  • Base3 is base A
  • Base4 is base G.
  • Base1 is base T or U
  • Base2 is base C
  • Base3 is base G
  • Base4 is base A.
  • Base1 is base T or U
  • Base2 is base C
  • Base3 Base G
  • Base4 is base A.
  • Base1 is base T or U
  • Base2 is base C
  • Base3 is base A
  • Base4 is base G.
  • the compound of formula (I), the compound of formula (II), the compound of formula (III) and the compound of formula (IV) have the same R 1 .
  • R 1 is each independently -H.
  • R 1 is each independently a monophosphate group (-PO 3 H 2 ).
  • each R 1 is independently a diphosphate group (-PO 3 H-PO 3 H 2 ).
  • each R 1 is independently a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ).
  • each R 1 is independently a tetraphosphate group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 ).
  • the compound of formula (I), the compound of formula (II), the compound of formula (III) and the compound of formula (IV) have the same R 2 .
  • each R 2 is independently -H.
  • each R 2 is independently -OH.
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , R 4c are each independently capable of undergoing a bioorthogonal cleavage reaction.
  • each capable of independently undergoing a bioorthogonal cleavage reaction means that the reactive groups, reagents, or molecules, etc., as mentioned, are each capable of undergoing a bioorthogonal cleavage reaction, while in each other Do not interfere or affect each other.
  • R 3a and R 3b are each independently capable of undergoing a bioorthogonal cleavage reaction
  • R 3a and R 3b are capable of undergoing a bioorthogonal cleavage reaction
  • R 3a does not affect the bioorthogonal cleavage reaction of R 3b
  • the progress of R 3b does not affect the bio-orthogonal cleavage reaction of R 3a .
  • R 3a is a first reactive group capable of undergoing a bioorthogonal cleavage reaction in the presence of a first reagent
  • R 3b is capable of biologically occurring in the presence of a second reagent a second reactive group that cross-cleaves the reaction
  • R 3c is a third reactive group capable of undergoing a bioorthogonal cleavage reaction in the presence of a third reagent
  • R 3d is capable of occurring in the presence of the fourth reagent a fourth reactive group of the bioorthogonal cleavage reaction
  • R 4a is a fifth reactive group capable of undergoing a bioorthogonal cleavage reaction in the presence of a fifth reagent
  • R 4b is a condition capable of being present in the sixth reagent a sixth reactive group in which a bioorthogonal cleavage reaction occurs
  • R 4c is a seventh reactive group capable of undergoing a bioorthogonal cleavage reaction in the presence of a seventh reagent
  • a first reagent, a second reagent, a third reagent, a fourth reagent, a fifth reagent, a sixth reagent, and a seventh reagent may be added, thereby making R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , R 4c (if present) each undergo a bioorthogonal cleavage reaction.
  • R 3a , R 3b , R 3c , R 3d (if present) will be removed from the 3' position of ribose or deoxyribose (in other words, -OR 3a , -OR 3b , -OR 3c or -OR 3d ( If present, will be converted to a free hydroxyl group), and R 4a and the fluorophore attached thereto (if present), R 4b and the fluorophore attached thereto (if present), and R 4c and The fluorophore (if present) to which it is attached will also be removed.
  • the growing nucleic acid strand will not carry the fluorophore and will have a free hydroxyl group at the 3' end, which can be used for the next round of polymerization. Therefore, in certain preferred embodiments, in step (8), the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are added to form a solution containing a reaction system of a phase and a solid phase, and allowing the double-stranded body to be subjected to a bioorthogonal cleavage reaction of each of R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 4c
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are incubated.
  • R 3a , R 3b , R 3c , R 3d are each capable of undergoing a bioorthogonal cleavage reaction in the presence of the same reagent.
  • the first reagent, the second reagent, the third reagent, and the fourth reagent are the same reagent.
  • R 3a , R 3b , R 3c , R 3d are the same reactive group.
  • the first reagent, the second reagent, the third reagent, and the fourth reagent are the same reagent. That is, in step (8), in the presence of the same reagent (ie, the first reagent), the same R 3a , R 3b , R 3c , R 3d (if present) will each proceed The bioorthogonal cleavage reaction is excised from the growing nucleic acid strand.
  • R 4a , R 4b , R 4c are each capable of undergoing a bioorthogonal cleavage reaction in the presence of the same reagent.
  • the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent.
  • R 4a , R 4b , R 4c are the same reactive group.
  • the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent. That is, in step (8), the same R 4a , R 4b , R 4c (if present) will each be bioorthogonal in the presence of the same reagent (ie, the fifth reagent) The reaction is cleaved and excised from the growing nucleic acid strand.
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , R 4c are each capable of undergoing a bioorthogonal cleavage reaction in the presence of the same reagent.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent.
  • the R 3a , R 3b , R3c , R3d , R4a , R4b , R4c are each subjected to a bioorthogonal cleavage reaction and excised from the growing nucleic acid strand.
  • R 5a and the fluorophore-bearing agent there is no interaction between the R 5a and the fluorophore-bearing agent and the two members (R 6a and R 6b ) of the second binding pair. Further, it is particularly preferred that the R 5a and the fluorophore-carrying reagent do not affect the specific interaction between R 6a and R 6b , and R 6a and R 6b do not affect the R 5a and the fluorophore-carrying group. Bioorthogonal ligation reaction between reagents.
  • an eighth reagent and R 6c -L'-Que may be added such that R 5a (if present) in the compound of formula (III) is biologically positive cross ligation reaction, and such that the formula (IV) R 6a compound (if present) and R 6c -L'-Que-specific binding of R 6b.
  • the eighth reagent may comprise a compound M carrying a fluorophore which is identical (or different in structure but having the same or substantially the same emission spectrum) as the second compound and the fourth compound, and the compound M is capable of R 5a undergoes a bioorthogonal ligation reaction, and thereby the fluorophore in compound M is introduced into the compound of formula (III) such that the compound of formula (III) emits a fluorescent signal.
  • the quenching group Que linked to R 6c is introduced into the compound of formula (IV) such that formula (IV) The fluorescent signal emitted in the compound is quenched and the compound of formula (IV) no longer fluoresces.
  • the eighth reagent does not chemically react with the first compound and the second compound, and further preferably, R 6c -L'-Que does not A compound and a second compound chemically react.
  • an eighth reagent and R 6c -L'-Que may be added to form a reaction system comprising a solution phase and a solid phase, wherein the eighth reagent comprises a compound M, the compound M carries a fluorophore which is identical (or has a different structure but has the same or substantially the same emission spectrum) as the second compound and the fourth compound, and the compound M is capable of bioorthogonal ligation with R 5a
  • R 6c is another member of the second binding pair
  • L' is a linking group or absent
  • Que represents quenching capable of quenching the fluorescent signal emitted by Dye a group; then, under the condition that a compound M is allowed to undergo a bioorthogonal ligation reaction with R 5a , and R 6a and R 6c are allowed to specifically bind, the duplex and the eighth reagent and R 6c -L' -Qu
  • R 6a is a fluorophore Dye 1 capable of emitting a fluorescent signal, Dye 1 having the same structure as Dye, or having a different structure but having the same emission spectrum, so that the fourth compound itself can emit The second compound has the same fluorescent signal.
  • step (5) comprises adding a ninth agent such that R 6a (if present) in the compound of formula (IV) specifically interacts with another member of the binding pair and/or Specific binding.
  • the ninth reagent may comprise a compound M' having the structure R 6b -L4-Dye 2 , wherein R 6b is another member of the first binding pair, L4 is independently a linking group or absent;
  • Dye 2 represents A fluorophore capable of emitting a fluorescent signal and having the same structure as Dye, or a different structure but having the same or substantially the same emission spectrum.
  • a reactive group R 8 capable of undergoing a third bioorthogonal ligation reaction is also present between R 4c and R 6a of the fourth compound.
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , R 5a , R 8 are each independently capable of undergoing a bioorthogonal cleavage or ligation reaction.
  • R 8a is capable of undergoing a second bioorthogonal ligation reaction in the presence of a tenth agent.
  • step (6) a seventh reagent and a tenth reagent may be added such that R 5a (if present) in the compound of formula (III) undergoes a first bioorthogonal connection
  • the reaction is carried out and a second bioorthogonal ligation reaction occurs where R 8 (if present) in the compound of formula (IV).
  • the seventh reagent may comprise a compound M carrying the same fluorophore as the second compound and the fourth compound (or a fluorophore having a different structure but having the same or substantially the same luminescence spectrum), and the compound M A first bioorthogonal ligation reaction can occur with R 5a and thereby the fluorophore in compound M can be introduced into the compound of formula (III).
  • the tenth reagent is capable of causing a second bioorthogonal ligation reaction of R 8 in the compound of formula (IV) and thereby quenching the fluorescent signal in the compound of formula (IV).
  • the seventh reagent does not chemically react with the first compound and the second compound, and further preferably, the tenth reagent does not react with the first compound and The two compounds undergo a chemical reaction.
  • a seventh reagent and a tenth reagent may be added to form a reaction system comprising a solution phase and a solid phase, wherein the seventh reagent comprises the compound M, Compound M carries the same fluorophore as the second compound and the fourth compound (or different in structure but the same or substantially the same emission spectrum), and the compound M is capable of undergoing a first bioorthogonal ligation reaction with R 5a to thereby M is introduced into the third fluorophore compound; agent comprising compound X M ", the compound M" carries the quencher, and the compound M "can be connected to a second bio-orthogonal reaction with R 8, whereby The quencher in compound M" is introduced into the fourth compound; then, under the condition that the first bioorthogonal ligation reaction of the compound M" and R 5a is allowed, and the second bioorthogonal ligation reaction of M" and R 8 is allowed
  • the duplex is incubated with a
  • a group e.g., -C 3 cycloalkenyl, -C 4 cycloalkenyl, -C 5 membered cycloalkenyl, -C 6 cycloalkenyl, -C 7 cycloalkenyl or -C 8 cycloalkenyl).
  • the -C 3-8 cycloalkenyl is selected from the group consisting of -C 3 cycloalkenyl and -C 8 cycloalkenyl. In certain preferred embodiments, the -C 3-8 cycloalkenyl group is In certain preferred embodiments, the -C 3-8 cycloalkenyl group is
  • the C 3-8 cycloalkenyl is selected from the group consisting of C 3 cycloalkenyl and C 8 cycloalkenyl.
  • the C 3-8 cycloalkenyl group is In certain preferred embodiments, the C 3-8 cycloalkenyl group is
  • R 3a , R 3b , R 3c and R 3d are the same reactive group and are both -CH 2 N 3 .
  • R 4a , R 4b and R 4c are each independently selected from the group consisting of: -OC 3-8 cycloalkenylene subunit.
  • the "-OC 3-8 cycloalkenylene subunit" is selected from the group consisting of -OC 3 cycloalkenylene, -OC 4 cycloalkenylene, -OC 5 cycloalkenylene, -OC 6 cycloalkenylene, -OC 7 cycloalkenylene, and -OC 8 cycloalkenylene.
  • the "-OC 3-8 cycloalkenylene subunit" is In certain preferred embodiments, the "-OC 3-8 cycloalkenylene subunit" is
  • R 4a , R 4b and R 4c are the same reactive group and are selected from the group consisting of: -OC 3-8 cycloalkenylene subunit.
  • the "-OC 3-8 cycloalkenylene subunit" is selected from the group consisting of -OC 3 cycloalkenylene, -OC 4 cycloalkenylene, -OC 5 cycloalkenylene, -OC 6 cycloalkenylene, -OC 7 cycloalkenylene, and -OC 8 cycloalkenylene.
  • the "-OC 3-8 cycloalkenylene subunit" is In certain preferred embodiments, the "-OC 3-8 cycloalkenylene subunit" is
  • R 4a , R 4b and R 4c are
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent each independently comprise a material selected from the group consisting of:
  • a complex of palladium for example, a complex of palladium and four triphenylphosphine tri-sulfonic acids
  • ruthenium for example, a complex of ruthenium and quinoline carboxylate (or a derivative thereof), allyl or cyclopentadiene
  • a phosphide eg, a carboxyphosphine or hydroxyphosphine such as P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 );
  • Z 1 and Z 2 are each independently selected from a modified or unmodified alkyl group (for example, a C 1 -C 6 alkyl group such as a C 1 alkyl group, a C 2 alkyl group, a C 3 alkyl group, a C 4 alkyl group). a C 5 alkyl or C 6 alkyl group) and a modified or unmodified aromatic group (for example, a 6-10 membered aromatic group such as a 6-membered aromatic group, a 7-membered aromatic group, an 8-membered aromatic group, a 9-membered aromatic group or A 10-membered aromatic group such as phenyl or pyridyl).
  • a modified or unmodified alkyl group for example, a C 1 -C 6 alkyl group such as a C 1 alkyl group, a C 2 alkyl group, a C 3 alkyl group, a C 4 alkyl group.
  • R 4a , R 4b and R 4c are Still further preferably, the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise a complex of palladium or a complex of ruthenium.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise a complex of palladium or a complex of ruthenium.
  • R 3a , R 3b , R 3c and R 3d are —CH 2 —N 3 .
  • R 4a , R 4b and R 4c are Still further preferably, the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise a phosphonide such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 ) CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise a phosphonium compound such as a carboxyphosphine or a hydroxyphosphine compound, for example P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • a phosphonium compound such as a carboxyphosphine or a hydroxyphosphine compound, for example P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • R 3a , R 3b , R 3c and R 3d are In this case, preferably, R 4a , R 4b and R 4c are Still further preferably, the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise the compound Q as defined above. Further preferably, in compound Q, Z 1 is a methyl group; and Z 2 is a modified or unmodified pyridyl group. More preferably, compound Q is Wherein W is hydrogen or a modifying group.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent and comprise the compound Q as defined above.
  • the linking groups L1, L2 and L3 in the first compound, the second compound, the third compound and the fourth compound, L4 and R 6b -L in R 6b -L4-Dye 2 The linking group L' in '-Que is independent of each other and is not particularly limited.
  • One skilled in the art can base on the bases (Base1, Base2, Base3, and Base4) used in the compound, reactive groups (R 4a , R 4b , R 4c , and R 5a ), and members of the binding pair (R). 6a and R 6b ), select the appropriate linking groups L1, L2, L3, L4 and L'.
  • linking groups L1, L2, L3, L4, and L' are each independently selected from the group consisting of:
  • n1, n2, n3, n4, p1, p2, p3, a, b, c, d, e and f are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • L1 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of: Wherein m1, m2, m3 and m4 are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • L1 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of:
  • L2 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of: Wherein n1, n2, n3, n4, p1, p2, p3, a, b, c, d, e and f are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • L2 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of: Wherein n1, n2, n3, n4, p1, p2, p3 are each independently selected from 0, 1, 2, 3, 4, 5 or 6. .
  • L2 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of:
  • R 5a is selected from the group consisting of:
  • the eighth reagent comprises a compound M selected from the group consisting of:
  • Y is selected from an alkyl group (e.g., a C 1 -C 6 alkyl group such as a C 1 alkyl group, a C 2 alkyl group, a C 3 alkyl group, a C 4 alkyl group, a C 5 alkyl group or a C 6 alkyl group) and an aromatic group.
  • a group for example, a 6-10 membered aromatic group such as a 6-membered aromatic group, a 7-membered aromatic group, an 8-membered aromatic group, a 9-membered aromatic group or a 10-membered aromatic group such as a phenyl group
  • Dye is a fluorophore, the fluorophore is the same as the fluorophore contained in the second compound and the fourth compound (or different in structure but the same or substantially the same emission spectrum);
  • Compound M3 having a structural formula Wherein Z 3 are each independently selected from an alkyl group (eg, C 1 -C 6 alkyl, such as C 1 alkyl, C 2 alkyl, C 3 alkyl, C 4 alkyl, C 5 alkyl or C 6 alkane) And an aromatic group (for example, a 6-10 membered aromatic group such as a 6-membered aromatic group, a 7-membered aromatic group, an 8-membered aromatic group, a 9-membered aromatic group or a 10-membered aromatic group such as a phenyl group), and Dye is a fluorescent group.
  • the fluorophore is the same as the fluorophore contained in the second compound and the fourth compound (or the structure is different but the emission spectra are the same or substantially the same).
  • the linking group L0 is not particularly limited. A person skilled in the art can select a suitable linking group L0 according to actual needs.
  • L0 can be Wherein q1, q2, q3, q4 are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • the reagent comprising a compound VIII M1, and wherein, Y is C 1 -C 6 alkyl, such as methyl.
  • L0 in compound M1 is In certain preferred embodiments, Dye in compound M1 is AF532.
  • compound M1 has the structure:
  • the eighth reagent in addition to compound M, further comprises a complex of ruthenium. In certain preferred embodiments, the eighth reagent comprises a complex of compound M2 and hydrazine.
  • R 5a is In this case, preferably, the eighth reagent comprises the compound M1.
  • R 5a is In this case, preferably, the eighth reagent comprises the compound M2. More preferably, the eighth reagents each comprise a complex of compound M2 and hydrazine.
  • R 5a is In this case, preferably, the eighth reagent comprises the compound M3.
  • R 6a and R 6b are two members of the first binding pair.
  • R 6a and R 6c are two members of the second binding pair.
  • the first binding pair and the second binding pair are each independently selected from the group consisting of: an antigen (eg, a small molecule antigen)-antibody, a hapten-antibody, a hormone-receptor, a ligand- Body, nucleic acid strand-complementary nucleic acid strand, substrate-enzyme, substrate analog-enzyme, inhibitor-enzyme, sugar-plant lectin, biotin-avidin (eg, avidin and chain enzyme affinity) , digoxin and digoxin antibodies, and 5-position brohydrodeoxyguanosine and its antibodies.
  • an antigen eg, a small molecule antigen
  • hapten-antibody e.g., a hormone-receptor
  • a ligand- Body e.g., nucleic acid strand-complementary nucleic acid
  • the two members of the first binding pair are selected from the group consisting of: (a) biotin and avidin (eg, streptavidin), (b) desthiobiotin and affinity (eg streptavidin) and (c) digoxin and digoxin antibodies.
  • the two members of the second binding pair are selected from the group consisting of (a) biotin and avidin (eg, streptavidin), (b) desthiobiotin and avidin (eg streptavidin) and (c) digoxin and digoxin antibodies.
  • R 6a is biotin or desthiobiotin
  • R 6b is avidin (eg, streptavidin).
  • R 6a is digoxin and R 6b is a digoxin antibody.
  • R 5a and the fluorophore-bearing reagent there is no interaction between the R 5a and the fluorophore-bearing reagent and the two members (R 6a and R 6c ) of the second binding pair. Further, it is particularly preferred that the R 5a and the fluorophore-carrying reagent do not affect the specific interaction between R 6a and R 6c , and R 6a and R 6c do not affect the R 5a and the fluorophore-carrying group. Bioorthogonal ligation reaction between reagents.
  • R 4a , R 4b and R 4c are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise a complex of palladium or a complex of ruthenium;
  • R 5a is The eighth reagent comprises compound M1;
  • R 6a is biotin; and R 6b is avidin (eg streptavidin).
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise a complex of palladium or a complex of ruthenium.
  • R 3a , R 3b , R 3c and R 3d are -CH 2 -N 3 ;
  • R 4a , R 4b and R 4c are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise a phosphonide such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 CH 2 COOH) 3 Or P(CH 2 CH 2 OH) 3 ;
  • R 5a is The eighth reagent comprises compound M1;
  • R 6a is biotin; and
  • R 6b is avidin (eg streptavidin).
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise a phosphide such as a carboxyphosphine or a hydroxyphosphine, for example P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • a phosphide such as a carboxyphosphine or a hydroxyphosphine, for example P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • R 3a , R 3b , R 3c and R 3d are -CH 2 -N 3 ;
  • R 4a , R 4b and R 4c are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise a phosphonide such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 CH 2 COOH) 3 Or P(CH 2 CH 2 OH) 3 ;
  • R 5a is
  • the eighth reagent comprises a complex of compound M2 and hydrazine;
  • R 6a is biotin; and
  • R 6b is avidin (eg streptavidin).
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise a phosphide such as a carboxyphosphine or a hydroxyphosphine, for example P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • a phosphide such as a carboxyphosphine or a hydroxyphosphine, for example P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • R 4a , R 4b and R 4c are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise a complex of palladium or a complex of ruthenium;
  • R 5a is The eighth reagent comprises compound M3;
  • R 6a is biotin; and R 6b is avidin (eg streptavidin).
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise a complex of palladium or a complex of ruthenium.
  • R 3a , R 3b , R 3c and R 3d are R 4a , R 4b and R 4c are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise a compound Q (eg, compound Q as defined above); R 5a is The eighth reagent comprises a complex of compound M2 and hydrazine; R 6a is biotin; and R 6b is avidin (eg streptavidin).
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise Compound Q (eg, Compound Q as defined above) .
  • R 3a , R 3b , R 3c and R 3d are R 4a , R 4b and R 4c are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent comprise a compound Q (eg, compound Q as defined above); R 5a is The eighth reagent comprises compound M3; R 6a is biotin; and R 6b is avidin (eg streptavidin).
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, the sixth reagent, and the seventh reagent are the same reagent, and comprise Compound Q (eg, Compound Q as defined above) .
  • the washing step can be increased as needed.
  • the washing step can be increased at any desired stage, and optionally, the washing step can be performed one or more times.
  • one or more washings may be performed to sufficiently remove the residual solution phase.
  • a washing step may be advantageous, which can be used to sufficiently remove free (ie, non-incorporated nucleic acid strands) fluorophore-bearing compounds (eg, compounds of formula (II) and compounds of formula (IV)), thereby Minimize non-specific fluorescent signals.
  • one or more washings may be performed to sufficiently remove the residual solution phase.
  • Such a washing step may be advantageous, which can be used to sufficiently remove the fluorescent-carrying reagent used in step (6) to minimize non-specific fluorescent signals.
  • step (9) after removing the solution phase of the reaction system, one or more washings may be performed to sufficiently remove the residual solution phase.
  • a washing step may be advantageous, which can be used to sufficiently remove the reagents used in step (8) as well as the products produced (which may carry fluorescence), thereby minimizing non-specific fluorescent signals and avoiding subsequent The polymerization reaction has an adverse effect.
  • the washing step can be carried out using a variety of suitable washing solutions.
  • suitable washing solutions include, but are not limited to, phosphate buffer, citrate buffer, Tris-HCl buffer, acetate buffer, carbonate buffer, and the like. It is within the ability of those skilled in the art to select a suitable wash solution (including suitable ingredients, concentrations, ionic strength, pH, etc.) depending on the actual needs.
  • the step can be performed by using a reactive group capable of performing a bioorthogonal cleavage reaction and a binding pair comprising two members capable of interacting by specific non-covalent interactions ( 6) controlling (eg, maintaining or altering) the ability of the four compounds to emit a fluorescent signal; and preferably, in step (8), by using a reactive group capable of performing a bioorthogonal cleavage reaction Removal of protecting groups and fluorescent signals.
  • the first, second, third, and fourth compounds may have the formulas (I), (II), (III), and (IV), respectively. structure:
  • Base1, Base2, Base3, and Base4 represent 4 different bases, and are selected from A, (T/U), C, and G;
  • R 1 is each independently selected from -H, a monophosphate group (-PO 3 H 2 ), a diphosphate group (-PO 3 H-PO 3 H 2 ), a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ) and a tetraphosphoric acid group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 );
  • R 2 is each independently selected from -H and -OH;
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 6 are each independently a reactive group capable of undergoing a bioorthogonal cleavage reaction
  • R 5a is a member of the first binding pair
  • R 6a is a fluorescent group capable of emitting a fluorescent signal (Dye 1 ), a reactive group capable of performing a first bioorthogonal ligation reaction, and/or a member of a second binding pair;
  • L1 are each independently a linking group or are absent
  • L2 are each independently a linking group or are absent
  • Dye and Dye 1 represent fluorophores capable of emitting a fluorescent signal; and, Dye and Dye 1 have the same structure, or are structurally different but have the same or substantially the same emission spectrum; optionally, between R 4c and R 6a There is a reactive group R 8 capable of undergoing a second bioorthogonal ligation reaction.
  • the fourth compound itself may carry a fluorophore capable of emitting the same fluorescent signal as the second compound, or may not carry a fluorophore, but in step (5), pass and carry fluorescence
  • An agent of a group eg, a fluorophore having the same structure as the second compound, or a fluorophore identical or substantially identical to the emission spectrum of the fluorophore of the second compound
  • a compound capable of performing a first bioorthogonal ligation reaction with R 6a to undergo specific interaction/specific binding or a first bioorthogonal ligation reaction and a fluorophore introduced into the compound four, and capable of emitting and second The same fluorescent signal of the compound.
  • R 5b -L-Dye 2 another member (referred to herein as "R 5b -L-Dye 2 ", wherein R 5b is another member of the binding pair, can be made by pairing R 5a with a first binding member carrying a fluorophore , L is a linking group or absent;
  • Dye 2 represents a fluorescent group capable of emitting a fluorescent signal, which is preferably the same fluorescent group as the second compound, or the same emission spectrum as the fluorescent group of the second compound or Substantially identical fluorophores) specifically interact/specifically bind such that the third compound carries a fluorophore.
  • R 4c in the fourth compound undergoes a second orthogonal ligation reaction to quench the fluorescent signal emitted by the fluorescent group in the fourth compound;
  • R 5a and R 5b do not affect biological orthogonal cleavage reaction R 4c, R 4c and does not affect the specific interaction between R 5a and R 5b.
  • R 5a and R 5b there is no interaction between the two members (R 5a and R 5b ) of the first binding pair and R 8 . Further, particularly preferably, R 5a and R 5b do not affect biological orthogonal ligation reaction R 8, and R 8 do not affect the specific interaction between R 5a and R 5b.
  • step (6) the duplex or the growing nucleic acid strand is subjected to treatment which has no effect on the first compound and the second compound, but is capable of Specific interaction/specific binding of R 5a to another member (R 5b -L-Dye 2 ) that is paired with said binding carrying a fluorophore (thus introducing the fluorophore into the third compound, Carrying a fluorescent group and emitting a fluorescent signal), and capable of causing a bioorthogonal cleavage reaction of R 4c (thus removing the fluorescent group in the fourth compound so that it no longer emits a fluorescent signal), or enabling the fourth compound to R 8 undergoes a second orthogonal ligation reaction with the compound carrying the quencher group (thus quenching the fluorescent signal emitted by the fluorophore in the fourth compound).
  • the first compound and the third compound, if present do not fluoresce, and the second compound and the fourth compound, if present, fluoresce; Also, after the treatment of step (6), the first compound (if present) still does not fluoresce, the second compound (if present) still fluoresces, the third compound (if present) changes to fluoresce, and The fourth compound, if present, was changed to not fluoresce.
  • the type of compound incorporated into the 3' end of the growing nucleic acid strand can be determined by the results of two fluorescent signal detections.
  • a compound that incorporates the 3' end of the growing nucleic acid strand can be made by subjecting R 3a , R 3b , R 3c , R 3d , R 4a , R 4b to a bioorthogonal cleavage reaction.
  • the protecting group at the 3' position of the ribose or deoxyribose is removed, and the fluorophore (if present) on the duplex or growing nucleic acid strand is removed.
  • step (8) the duplex or the growing nucleic acid strand is subjected to treatment which enables R 3a , R 3b , R 3c , R 3d , R 4a , R 4b bio-orthogonal cleavage reaction occurs.
  • the grown nucleic acid strand will not have any fluorophore, and its 3' terminal nucleotide will have a 3' position at the 3' position of the ribose or deoxyribose sugar. Free hydroxyl groups, which can be used to initiate the next round of polymerization.
  • the method of the invention comprises the steps of:
  • the method of the invention comprises the steps of:
  • nucleic acid molecule to be sequenced on the support or attaching the nucleic acid molecule to be sequenced to the support;
  • Base1, Base2, Base3, and Base4 represent 4 different bases, and are selected from A, (T/U), C, and G;
  • R 1 is each independently selected from -H, a monophosphate group (-PO 3 H 2 ), a diphosphate group (-PO 3 H-PO 3 H 2 ), a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ) and a tetraphosphoric acid group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 );
  • R 2 is each independently selected from -H and -OH;
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 4c are each independently a reactive group capable of undergoing a bioorthogonal cleavage reaction;
  • R 5a is a member of the first binding pair
  • R 6a is a fluorescent group capable of emitting a fluorescent signal (Dye 1 ), a reactive group capable of performing a first bioorthogonal ligation reaction, and/or a member of a second binding pair;
  • L1 are each independently a linking group or are absent
  • L2 are each independently a linking group or are absent
  • Dye and Dye 1 represent fluorophores capable of emitting a fluorescent signal; and, Dye and Dye 1 have the same structure, or have different structures but have the same or substantially the same emission spectrum;
  • R 8 capable of undergoing a second bioorthogonal ligation reaction between R 4c and R 6a ;
  • the fourth compound is capable of emitting the same fluorescent signal as the second compound, and R 6a is Dye 1 , the solution phase of the reaction system of the previous step is removed, and the duplex attached to the support is retained, And detecting whether the duplex or the growing nucleic acid strand emits the fluorescent signal;
  • R 6a is a reactive group capable of undergoing a first bioorthogonal ligation reaction, or a member of the second binding pair is such that the duplex or the growing The nucleic acid strand undergoes treatment in a reaction system containing a solution phase and a solid phase, the treatment having no effect on the first compound, the second compound, and the third compound, but capable of causing R 6a in the fourth compound to carry a fluorescent group
  • an agent having the same fluorophore structure as the second compound, or a fluorophore identical or substantially identical to the emission spectrum of the fluorophore of the second compound eg, another member of the second binding pair, or capable of a compound in which the first bioorthogonal ligation reaction is carried out by R 6a
  • Another member of the second binding pair carrying the fluorophore has the structure: R 6b -L'-Dye 1 ; wherein R 6b is another member of the second binding pair, and L is independently a linking group Or absent; Dye 1 represents a fluorophore capable of emitting a fluorescent signal and has the same structure as Dye, or a different structure but having the same or substantially the same emission spectrum; or
  • the fluorophore-bearing compound capable of performing a first bioorthogonal ligation reaction with R 6a has the following structure: R 6b -L'-Dye 1 ; wherein R 6b is capable of first bioorthogonality with R 6a a group linking the reaction, L is independently a linking group or absent; Dye 1 represents a fluorophore capable of emitting a fluorescent signal, and has the same structure as Dye, or a different structure but having the same or substantially the same emission spectrum;
  • Another member of the first binding pair carrying a fluorophore has the structure: R 5b -L-Dye 2 ; wherein R 5b is another member of the first binding pair, and L is independently a linking group or Does not exist; Dye 2 represents a fluorophore capable of emitting a fluorescent signal and is identical to the fluorophore contained in the second compound or identical or substantially identical to the emission spectrum of the fluorophore of the second compound;
  • the method further comprises the steps of:
  • the method further comprises the steps of:
  • step (4) if, in step (4), the compound of formula (I) is incorporated into the 3' end of the growing nucleic acid strand, then since the compound of formula (I) does not itself carry a fluorophore, It does not react at step (6), and therefore, no fluorescent signal will be detected in steps (5) and (7). That is, if no fluorescent signal is detected in both of steps (5) and (7), it can be determined that the compound incorporated at the 3' end of the growing nucleic acid strand is a compound of formula (I).
  • step (4) the compound of formula (II) is incorporated into the 3' end of the growing nucleic acid strand, then since the compound of formula (II) itself carries a fluorophore and it does not undergo any reaction in step (6) Therefore, the fluorescent signal will be detected in both steps (5) and (7). That is, if a fluorescent signal is detected in both of steps (5) and (7), it can be determined that the compound incorporated at the 3' end of the growing nucleic acid strand is a compound of formula (II).
  • step (4) the compound of formula (III) is incorporated into the 3' end of the growing nucleic acid strand, then (i) since the compound of formula (III) does not itself carry a fluorophore, therefore, in step (5)
  • the fluorescent signal is not detected by the chemistry; and (ii) the specific binding of the compound of formula (III) to another member (R 5b -L-Dye 2 ) paired with the binding group carrying the fluorophore in step (6)
  • This causes the fluorophore to be introduced into the growing nucleic acid strand, and therefore, a fluorescent signal will be detected in step (7). That is, if a fluorescent signal is not detected in the step (5) and a fluorescent signal is detected in the step (7), it can be determined that the compound incorporated at the 3' end of the grown nucleic acid strand is a compound of the formula (III).
  • step (4) the compound of formula (IV) is incorporated into the 3' end of the growing nucleic acid strand, then (i) since the compound of formula (IV) itself carries a fluorophore or is treated in step (5) While carrying a fluorophore, therefore, a fluorescent signal will be detected in step (5); and (ii) a bioorthogonal cleavage reaction or a second orthogonal connection occurs in step (6) due to the compound of formula (IV) The reaction is lost and the fluorescent group is lost or the fluorescent signal is quenched, so that no fluorescent signal will be detected in step (7). That is, if a fluorescent signal is detected in the step (5) and a fluorescent signal is not detected in the step (7), it can be determined that the compound incorporated at the 3' end of the grown nucleic acid strand is a compound of the formula (IV).
  • the method of the present invention further comprises, after step (7), determining the nucleic acid incorporated in step (4) according to the detection results of steps (5) and (7). a type of compound at the 3' end of the chain, wherein
  • step (4) When the detection results of steps (5) and (7) are both, when the duplex or the growing nucleic acid strand does not emit the fluorescent signal, it is determined that the nucleic acid strand incorporated in step (4) is grown 3 'The compound at the end is a compound of formula (I);
  • step (4) when the detection results of steps (5) and (7) are both, when the duplex or the growing nucleic acid strand emits the fluorescent signal, determining 3' of the nucleic acid strand incorporated in step (4)
  • the compound at the end is a compound of formula (II);
  • the detection result of the step (5) is that the duplex or the grown nucleic acid strand does not emit the fluorescent signal
  • the detection result of the step (7) is that the duplex or the growing nucleic acid strand is emitted.
  • the compound which determines the 3' end of the nucleic acid strand which is incorporated in step (4) is a compound of the formula (III);
  • the detection result of the step (5) is that the fluorescent signal is emitted by the duplex or the grown nucleic acid strand
  • the detection result of the step (7) is that the duplex or the growing nucleic acid strand is not emitted
  • the compound which determines the 3' end of the nucleic acid strand which is incorporated in step (4) is a compound of the formula (IV).
  • the method of the present invention further comprises, after step (7), based on the base complementary pairing principle, according to the type of compound incorporated in the 3' end of the growing nucleic acid strand in step (4), The type of base at the corresponding position in the nucleic acid molecule to be sequenced is determined.
  • the compound of formula (I), the compound of formula (II), the compound of formula (III) and the compound of formula (IV) do not undergo a chemical reaction with each other during the nucleotide polymerization reaction.
  • Base1 and Base2 are purine bases, and Base3 and Base4 are pyrimidine bases.
  • Base1 is base G
  • Base2 is base A
  • Base3 is base C
  • Base4 is base T or U.
  • Base1 is base G
  • Base2 is base A
  • Base3 is base T or U
  • Base4 is base C.
  • Base1 is base A
  • Base2 is base G
  • Base3 is base C
  • Base4 is base T or U.
  • Base1 is base A, Base2 is base G, Base3 is base T or U
  • Base4 is base C.
  • Base1 and Base2 are pyrimidine bases, and Base3 and Base4 are purine bases.
  • Base1 is base C
  • Base2 is base T or U
  • Base3 is base G
  • Base4 is base A
  • Base1 is base C
  • Base2 is base T or U
  • Base3 is base A
  • Base4 is base G.
  • Base1 is base T or U
  • Base2 is base C
  • Base3 is base G
  • Base4 is base A.
  • Base1 is base T or U
  • Base2 is base C
  • Base3 Base G
  • Base4 is base A.
  • Base1 is base T or U
  • Base2 is base C
  • Base3 is base A
  • Base4 is base G.
  • the compound of formula (I), the compound of formula (II), the compound of formula (III) and the compound of formula (IV) have the same R 1 .
  • R 1 is each independently -H.
  • R 1 is each independently a monophosphate group (-PO 3 H 2 ).
  • each R 1 is independently a diphosphate group (-PO 3 H-PO 3 H 2 ).
  • each R 1 is independently a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ).
  • each R 1 is independently a tetraphosphate group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 ).
  • the compound of formula (I), the compound of formula (II), the compound of formula (III) and the compound of formula (IV) have the same R 2 .
  • each R 2 is independently -H.
  • each R 2 is independently -OH.
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b are each independently capable of undergoing a bioorthogonal cleavage reaction.
  • each capable of independently undergoing a bioorthogonal cleavage reaction means that the reactive groups, reagents, or molecules, etc., as mentioned, are each capable of undergoing a bioorthogonal cleavage reaction, while in each other Do not interfere or affect each other.
  • R 3a and R 3b are each independently capable of undergoing a bioorthogonal cleavage reaction
  • R 3a and R 3b are capable of undergoing a bioorthogonal cleavage reaction
  • R 3a does not affect the bioorthogonal cleavage reaction of R 3b
  • the progress of R 3b does not affect the bio-orthogonal cleavage reaction of R 3a .
  • R 3a is a first reactive group capable of undergoing a bioorthogonal cleavage reaction in the presence of a first reagent
  • R 3b is capable of biologically occurring in the presence of a second reagent a second reactive group that cross-cleaves the reaction
  • R 3c is a third reactive group capable of undergoing a bioorthogonal cleavage reaction in the presence of a third reagent
  • R 3d is capable of occurring in the presence of the fourth reagent a fourth reactive group of the bioorthogonal cleavage reaction
  • R 4a is a fifth reactive group capable of undergoing a bioorthogonal cleavage reaction in the presence of a fifth reagent
  • R 4b is a condition capable of being present in the sixth reagent A sixth reactive group in which a bioorthogonal cleavage reaction occurs
  • R 4c is a seventh reactive group capable of undergoing a bioorthogonal cleavage reaction in the presence of a seventh reagent.
  • R 5a and R 5b there is no interaction between the two members (R 5a and R 5b ) of the first binding pair and R 4c .
  • R 5a and R 5b do not affect biological orthogonal cleavage reaction R 4c, R 4c and does not affect the specific interaction between R 5a and R 5b.
  • R 5b -L-Dye 2 and a seventh reagent may be added such that R 5a (if present) and R 5b in the compound of formula (III) R 5b in -L-Dye 2 specifically binds and causes R 4c (if present) in the compound of formula (IV) to undergo a bioorthogonal cleavage reaction.
  • R 5a and R 5b specifically binds and causes R 4c (if present) in the compound of formula (IV) to undergo a bioorthogonal cleavage reaction.
  • the fluorophore Dye 2 linked to R 5b is introduced into the compound of formula (III) such that formula (III) The compound emits a fluorescent signal.
  • the seventh reagent is capable of causing a bioorthogonal cleavage reaction of R 4c in the compound of the formula (IV), and thereby removing R 6 in the compound of the formula (IV) and a fluoro group attached thereto.
  • R 5b -L-Dye 2 does not chemically react with the first compound and the second compound, and further preferably, the seventh reagent does not A compound and a second compound chemically react.
  • R 5b -L-Dye 2 and a seventh reagent may be added to form a reaction system comprising a solution phase and a solid phase, wherein R 5b is the first Another member of the binding pair, L is a linking group or absent; Dye represents a fluorophore capable of emitting a fluorescent signal; then, allowing R 5a and R 5b to specifically bind and allowing R 4c to bio-orthogonal cleavage The duplex was incubated with R 5b -L-Dye 2 and a seventh reagent under the conditions.
  • a reactive group R 8 capable of undergoing a second bioorthogonal ligation reaction is also present between R 5b and R 7a of the fourth compound.
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , R 5a , R 8 are each independently capable of undergoing a bioorthogonal cleavage or ligation reaction.
  • R 8a is capable of undergoing a third bioorthogonal ligation reaction in the presence of an eighth reagent.
  • R 5a and R 5b do not affect biological orthogonal ligation reaction R 8, and R 8 do not affect the specific interaction between R 5a and R 5b.
  • R 5b -L-Dye 2 and an eighth reagent may be added such that R 5a (if present) and R 5b in the compound of formula (III) R 5b in -L-Dye 2 specifically binds and causes R 8 (if present) in the compound of formula (IV) to undergo a bioorthogonal ligation reaction.
  • the fluorophore Dye 2 linked to R 5b is introduced into the compound of formula (III) such that formula (III) The compound emits a fluorescent signal.
  • the eighth reagent is capable of bioorthogonal ligation of R 4c in the compound of formula (IV) and thereby quenching the fluorescent signal in the compound of formula (IV).
  • R 5b -L-Dye 2 does not chemically react with the first compound and the second compound, and further preferably, the eighth reagent does not A compound and a second compound chemically react.
  • R 5b -L-Dye 2 and the eighth reagent may be added to form a reaction system comprising a solution phase and a solid phase, wherein R 5b is the first Another member of the binding pair, L is a linking group or absent; Dye 2 represents a fluorophore capable of emitting a fluorescent signal; then, allowing R 5a and R 5b to specifically bind and allowing R 8 bioorthogonal ligation The duplex is incubated with R 5b -L-Dye 2 and the eighth reagent under the conditions of the reaction.
  • a first reagent, a second reagent, a third reagent, a fourth reagent, a fifth reagent, and a sixth reagent may be added such that R 3a , R 3b , R3c , R3d , R4a , R4b (if present) each undergo a bioorthogonal cleavage reaction.
  • R 3a , R 3b , R 3c , R 3d (if present) will be removed from the 3' position of ribose or deoxyribose (in other words, -OR 3a , -OR 3b , -OR 3c or -OR 3d ( If present, it will be converted to a free hydroxyl group, and R 4a and the fluorophore attached thereto (if present) and R 4b and the fluorophore attached thereto (if present) will also be removed.
  • the growing nucleic acid strand will not carry the fluorophore and will have a free hydroxyl group at the 3' end, which can be used for the next round of polymerization.
  • a first reagent, a second reagent, a third reagent, a fourth reagent, a fifth reagent, and a sixth reagent are added to form a solution phase and a solid phase.
  • a reaction system and allowing the duplex to react with the first reagent and the second under conditions that allow each of R 3a , R 3b , R 3c , R 3d , R 4a , and R 4b to undergo a bioorthogonal cleavage reaction
  • the reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are incubated.
  • R 3a , R 3b , R 3c , and R 3d are each capable of undergoing a bioorthogonal cleavage reaction in the presence of the same reagent.
  • the first reagent, the second reagent, the third reagent, and the fourth reagent are the same reagent.
  • R 3a , R 3b , R 3c and R 3d are the same reactive group.
  • the first reagent, the second reagent, the third reagent, and the fourth reagent are the same reagent. That is, in step (8), the same R 3a , R 3b , R 3c and R 3d (if present) will each be carried out in the presence of the same reagent (ie, the first reagent) The bioorthogonal cleavage reaction is excised from the growing nucleic acid strand.
  • R 4a and R 4b are each capable of undergoing a bioorthogonal cleavage reaction in the presence of the same reagent.
  • the fifth reagent and the sixth reagent are the same reagent.
  • R 4a and R 4b are the same reactive group.
  • the fifth reagent and the sixth reagent are the same reagent. That is, in step (8), the same R 4a and R 4b (if present) will each undergo a bioorthogonal cleavage reaction in the presence of the same reagent (ie, the fifth reagent), And excised from the growing nucleic acid strand.
  • R 3a , R 3b , R 3c , R 3d , R 4a , and R 4b are each capable of undergoing a bioorthogonal cleavage reaction in the presence of the same reagent.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are the same reagent.
  • the R 3a , R 3b , R 3c , R 3d , R 4a and R 4b will each undergo a bioorthogonal cleavage reaction and be cleaved from the growing nucleic acid strand.
  • R 6a is a fluorophore Dye 1 capable of emitting a fluorescent signal, Dye 1 having the same structure as Dye, or having a different structure but having the same emission spectrum, so that the fourth compound itself can emit The second compound has the same fluorescent signal.
  • step (5) comprises adding a ninth reagent such that R6a (if present) in the compound of formula (IV) undergoes a first bioorthogonal ligation reaction.
  • the ninth reagent may comprise a compound M' having the structure R 6b -L'-Dye 1 , wherein R 6b is a group capable of undergoing a first bioorthogonal ligation reaction with R 6a , and L is independently a linker Group or non-existent; Dye 1 represents a fluorophore capable of emitting a fluorescent signal and has the same structure as Dye, or has a different structure but the same emission spectrum.
  • step (5) comprises adding a ninth agent such that R 6a (if present) in the compound of formula (IV) specifically interacts with another member of the second binding pair and/or Specific binding.
  • the ninth reagent may comprise a compound M" having the structure R 6b -L'-Dye 1 , wherein R 6b is another member of the second binding pair, L is independently a linking group or is absent;
  • Dye 1 Represents a fluorophore capable of emitting a fluorescent signal and having the same structure as Dye, or a different structure but having the same emission spectrum.
  • a group e.g., -C 3 cycloalkenyl, -C 4 cycloalkenyl, -C 5 membered cycloalkenyl, -C 6 cycloalkenyl, -C 7 cycloalkenyl or -C 8 cycloalkenyl).
  • the -C 3-8 cycloalkenyl is selected from the group consisting of -C 3 cycloalkenyl and -C 8 cycloalkenyl. In certain preferred embodiments, the -C 3-8 cycloalkenyl group is In certain preferred embodiments, the -C 3-8 cycloalkenyl group is
  • the C 3-8 cycloalkenyl is selected from the group consisting of C 3 cycloalkenyl and C 8 cycloalkenyl.
  • the C 3-8 cycloalkenyl group is In certain preferred embodiments, the C 3-8 cycloalkenyl group is
  • R 3a , R 3b , R 3c and R 3d are the same reactive group and are both -CH 2 N 3 .
  • R 4a and R 4b are each independently selected from the group consisting of: -OC 3-8 cycloalkenylene subunit.
  • the "-OC 3-8 cycloalkenylene subunit" is selected from the group consisting of -OC 3 cycloalkenylene, -OC 4 cycloalkenylene, -OC 5 cycloalkenylene, -OC 6 cycloalkenylene, -OC 7 cycloalkenylene, and -OC 8 cycloalkenylene.
  • the "-OC 3-8 cycloalkenylene subunit" is In certain preferred embodiments, the "-OC 3-8 cycloalkenylene subunit" is
  • R 4a and R 4b are the same reactive group and are selected from the group consisting of: -OC 3-8 cycloalkenylene subunit.
  • the "-OC 3-8 cycloalkenylene subunit” is selected from the group consisting of -OC 3 cycloalkenylene, -OC 4 cycloalkenylene, -OC 5 cycloalkenylene, -OC 6 cycloalkenylene, -OC 7 cycloalkenylene, and -OC 8 cycloalkenylene.
  • the "-OC 3-8 cycloalkenylene subunit" is In certain preferred embodiments, the "-OC 3-8 cycloalkenylene subunit" is
  • both R 4a and R 4b are identical to both R 4a and R 4b.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent each independently comprise a material selected from the group consisting of:
  • a complex of palladium for example, a complex of palladium and four triphenylphosphine tri-sulfonic acids
  • ruthenium for example, a complex of ruthenium and quinoline carboxylate (or a derivative thereof), allyl or cyclopentadiene
  • a phosphide eg, a carboxyphosphine or hydroxyphosphine such as P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 );
  • Z 1 and Z 2 are each independently selected from a modified or unmodified alkyl group (for example, a C 1 -C 6 alkyl group such as a C 1 alkyl group, a C 2 alkyl group, a C 3 alkyl group, a C 4 alkyl group). a C 5 alkyl or C 6 alkyl group) and a modified or unmodified aromatic group (for example, a 6-10 membered aromatic group such as a 6-membered aromatic group, a 7-membered aromatic group, an 8-membered aromatic group, a 9-membered aromatic group or A 10-membered aromatic group such as phenyl or pyridyl).
  • a modified or unmodified alkyl group for example, a C 1 -C 6 alkyl group such as a C 1 alkyl group, a C 2 alkyl group, a C 3 alkyl group, a C 4 alkyl group.
  • R 4a and R 4b are Still further preferably, the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise a complex of palladium or a complex of ruthenium.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are the same reagent, and comprise a complex of palladium or a complex of ruthenium.
  • R 3a , R 3b , R 3c and R 3d are —CH 2 —N 3 .
  • R 4a and R 4b are Still further preferably, the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise a phosphonide such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent and the sixth reagent are the same reagent and comprise a phosphine such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 ) CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • a phosphine such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 ) CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • R 3a , R 3b , R 3c and R 3d are In this case, preferably, R 4a and R 4b are Still further preferably, the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise the compound Q as defined above. Further preferably, in compound Q, Z 1 is a methyl group; and Z 2 is a modified or unmodified pyridyl group. More preferably, compound Q is Wherein W is hydrogen or a modifying group.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are the same reagent and comprise Compound Q as defined above.
  • the linking groups L1 and L2 in the first compound, the second compound, the third compound, and the fourth compound, and the linking group L and R 6b -L in R 5b -L-Dye is independent of each other and is not particularly limited.
  • One skilled in the art can base on the bases (Base1, Base2, Base3, and Base4) used in the compound, reactive groups (R 4a , R 4b , and R 6 ), and members of the binding pair (R 5a and R). 5b ), select the appropriate linking groups L1, L2, L and L'.
  • linking groups L1, L2, L, and L' are each independently selected from the group consisting of:
  • n1, n2, n3, n4, p1, p2, p3, a, b, c, d, e and f are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • L1 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of: Wherein m1, m2, m3 and m4 are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • L1 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of:
  • L2 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of: Wherein n1, n2, n3, n4, p1, p2, p3, a, b, c, d, e and f are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • L2 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of: Wherein n1, n2, n3, n4, p1, p2, p3 are each independently selected from 0, 1, 2, 3, 4, 5 or 6. .
  • L2 in the first compound, the second compound, the third compound, and the fourth compound are each independently selected from the group consisting of:
  • R 5a and R 5b are two members of the first binding pair.
  • R 6a and R 6b are two members of a second binding pair.
  • the binding pair is selected from the group consisting of: an antigen (eg, a small molecule antigen)-antibody, a hapten-antibody, a hormone-receptor, a ligand-receptor, a nucleic acid strand-complementary nucleic acid strand, a bottom - Enzymes, substrate analogs - enzymes, inhibitors - enzymes, sugar - phytohemagglutinin, biotin - avidin (eg, avidin and streptavidin), digoxin and digoxin The antibody, as well as the 5-position deoxyguanosine and its antibody.
  • an antigen eg, a small molecule antigen
  • hapten-antibody e.g., a hormone-receptor, a ligand-receptor, a nucleic acid strand-complementary
  • the two members of the first binding pair are selected from the group consisting of: (a) biotin and avidin (eg, streptavidin), (b) desthiobiotin and avidin ( For example, streptavidin) and (c) digoxin and digoxin antibodies.
  • the two members of the second binding pair are selected from the group consisting of: (a) biotin and avidin (eg, streptavidin), (b) desthiobiotin and avidin ( For example, streptavidin) and (c) digoxin and digoxin antibodies.
  • R 5a is biotin or desthiobiotin
  • R 5b is avidin (eg, streptavidin).
  • R 5a is digoxin and R 5b is a digoxin antibody.
  • R 4c is selected from the group consisting of:
  • the seventh reagent comprises Compound M selected from the group consisting of:
  • Y is selected from an alkyl group (e.g., a C 1 -C 6 alkyl group such as a C 1 alkyl group, a C 2 alkyl group, a C 3 alkyl group, a C 4 alkyl group, a C 5 alkyl group or a C 6 alkyl group) and an aromatic group.
  • a group for example, a 6-10 membered aromatic group such as a 6-membered aromatic group, a 7-membered aromatic group, an 8-membered aromatic group, a 9-membered aromatic group or a 10-membered aromatic group such as a phenyl group
  • Dye is a fluorophore, the fluorophore is the same as the fluorophore contained in the second compound and the fourth compound (or different in structure but the same or substantially the same emission spectrum);
  • Compound M3 having a structural formula Wherein Z 3 are each independently selected from an alkyl group (eg, C 1 -C 6 alkyl, such as C 1 alkyl, C 2 alkyl, C 3 alkyl, C 4 alkyl, C 5 alkyl or C 6 alkane) And an aromatic group (for example, a 6-10 membered aromatic group such as a 6-membered aromatic group, a 7-membered aromatic group, an 8-membered aromatic group, a 9-membered aromatic group or a 10-membered aromatic group such as a phenyl group), and Dye is a fluorescent group.
  • the fluorophore is the same as the fluorophore contained in the second compound and the fourth compound (or the structure is different but the emission spectra are the same or substantially the same).
  • the linking group L0 is not particularly limited. A person skilled in the art can select a suitable linking group L0 according to actual needs.
  • L0 can be Wherein q1, q2, q3, q4 are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • the reagent comprising a compound of the seventh M1, and wherein, Y is C 1 -C 6 alkyl, such as methyl.
  • L0 in compound M1 is In certain preferred embodiments, Dye in compound M1 is AF532.
  • compound M1 has the structure:
  • the seventh agent in addition to compound M, further comprises a complex of ruthenium. In certain preferred embodiments, the seventh reagent comprises a complex of compound M2 and hydrazine.
  • R 4c is In this case, preferably, the seventh reagent comprises the compound M1.
  • R 4c is In this case, preferably, the seventh reagent comprises the compound M2. More preferably, the seventh reagents each comprise a complex of compound M2 and hydrazine.
  • R 4c is In this case, preferably, the seventh reagent comprises the compound M3.
  • the fourth compound comprises a reactive group R 8 capable of undergoing a second bioorthogonal ligation reaction.
  • R 8 is selected from the group consisting of:
  • the compound capable of undergoing a second bioorthogonal ligation reaction with R 8 is N, and N comprises the following groups:
  • the compound N is selected from the group consisting of:
  • Y is selected from an alkyl group (e.g., a C 1 -C 6 alkyl group such as a C 1 alkyl group, a C 2 alkyl group, a C 3 alkyl group, a C 4 alkyl group, a C 5 alkyl group or a C 6 alkyl group) and an aromatic group.
  • a group for example, a 6-10 membered aromatic group such as a 6-membered aromatic group, a 7-membered aromatic group, an 8-membered aromatic group, a 9-membered aromatic group or a 10-membered aromatic group such as a phenyl group
  • L0 is absent or is a linking group.
  • Que is a quencher capable of quenching the fluorescent signal on the fourth compound;
  • Que is a quencher capable of quenching the fluorescent signal on the fourth compound
  • Compound N3 having a structural formula Wherein Z 3 are each independently selected from an alkyl group (eg, C 1 -C 6 alkyl, such as C 1 alkyl, C 2 alkyl, C 3 alkyl, C 4 alkyl, C 5 alkyl or C 6 alkane) And an aromatic group (for example, a 6-10 membered aromatic group such as a 6-membered aromatic group, a 7-membered aromatic group, an 8-membered aromatic group, a 9-membered aromatic group or a 10-membered aromatic group such as a phenyl group), and Que is a quencher
  • the fluorescent signal on the fourth compound can be quenched.
  • the linking group L0 is not particularly limited. A person skilled in the art can select a suitable linking group L0 according to actual needs.
  • L0 can be Wherein q1, q2, q3, q4 are each independently selected from 0, 1, 2, 3, 4, 5 or 6.
  • the compound N is 1,2,4,5-tetrazine BHQ2, the structure of which is as follows:
  • R 4a and R 4b are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise a complex of palladium or a complex of ruthenium;
  • R 5a is biotin; and
  • R 5b is avidin (eg, streptavidin) Avidin);
  • R 4c is The seventh reagent comprises the compound M1.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are the same reagent, and comprise a complex of palladium or a complex of ruthenium.
  • R 3a , R 3b , R 3c and R 3d are -CH 2 -N 3 ;
  • R 4a and R 4b are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise a phosphide such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 ;
  • R 5a is biotin;
  • R 5b is avidin (eg streptavidin);
  • R 6 is The seventh reagent comprises the compound M1.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent and the sixth reagent are the same reagent and comprise a phosphine such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 ) CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • a phosphine such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 ) CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • R 3a , R 3b , R 3c and R 3d are -CH 2 -N 3 ;
  • R 4a and R 4b are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise a phosphine such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 ;
  • R 5a is biotin;
  • R 5b is avidin (eg streptavidin);
  • R 6 is The seventh reagent comprises a complex of compound M2 and hydrazine.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent and the sixth reagent are the same reagent and comprise a phosphine such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 ) CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • a phosphine such as a carboxyphosphine or a hydroxyphosphine such as P(CH 2 ) CH 2 COOH) 3 or P(CH 2 CH 2 OH) 3 .
  • R 4a and R 4b are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise a complex of palladium or a complex of ruthenium;
  • R 5a is biotin; and
  • R 5b is avidin (eg, streptavidin) Avidin);
  • R 6 is The seventh reagent comprises the compound M3.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are the same reagent, and comprise a complex of palladium or a complex of ruthenium.
  • R 3a , R 3b , R 3c and R 3d are R 4a and R 4b are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise Compound Q (eg, Compound Q as defined above); R 5a is biotin; R 5b is avidin ( For example, streptavidin); R 6 is The seventh reagent comprises a complex of compound M2 and hydrazine.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are the same reagent, and comprise Compound Q (eg, Compound Q as defined above).
  • R 3a , R 3b , R 3c and R 3d are R 4a and R 4b are The first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent comprise Compound Q (eg, Compound Q as defined above); R 5a is biotin; R 5b is avidin ( For example, streptavidin); R 6 is The seventh reagent comprises the compound M3.
  • the first reagent, the second reagent, the third reagent, the fourth reagent, the fifth reagent, and the sixth reagent are the same reagent, and comprise Compound Q (eg, Compound Q as defined above).
  • the Dye in the third compound is Cy3 or AF532.
  • R 6a in the fourth compound is Dye 1 .
  • Dye 1 is Cy3 or AF532.
  • the third compound is Dye AF532
  • R 6a is the fourth compound AF532.
  • the fourth compound itself does not carry a fluorescent group and R 6a is a reactive group capable of undergoing a second bioorthogonal ligation reaction.
  • R 6a is selected from the group consisting of:
  • the compound N capable of undergoing a second bioorthogonal ligation reaction with R 7a is selected from the compounds N1, N2, N3 as defined above.
  • the fourth compound does not itself carry a fluorophore and R 7a is a member of the second binding pair.
  • the second binding is selected from the group consisting of: an antigen (eg, a small molecule antigen)-antibody, a hapten-antibody, a hormone-receptor, a ligand-receptor, a nucleic acid strand-complementary nucleic acid strand, a bottom - Enzymes, substrate analogs - enzymes, inhibitors - enzymes, sugar - phytohemagglutinin, biotin - avidin (eg, avidin and streptavidin), digoxin and digoxin The antibody, as well as the 5-position deoxyguanosine and its antibody.
  • an antigen eg, a small molecule antigen
  • hapten-antibody e.g., a hormone-receptor, a ligand-receptor, a nucleic acid strand-complementary nucleic acid strand,
  • the two members of the binding pair are selected from the group consisting of: (a) biotin and avidin (eg, streptavidin), (b) desthiobiotin and avidin ( For example, streptavidin) and (c) digoxin and digoxin antibodies.
  • R 3a , R 3b , R 3c and R 3d are -CH 2 -N 3 ;
  • R 4a , R 4b and R 4c are R 5a is biotin;
  • R 5b is avidin (eg streptavidin);
  • R 6a is AF532,
  • R 8 is The eighth reagent comprises Compound N, which is 1,2,4,5-tetrazine BHQ2.
  • the first compound has the structure shown in formula (Ic):
  • the second compound has the structure shown in formula (IIc):
  • the third compound has the structure shown in formula (IIIc):
  • the fourth compound has the structure shown in formula (IVc):
  • the washing step can be increased as needed.
  • the washing step can be increased at any desired stage, and optionally, the washing step can be performed one or more times.
  • one or more washings may be performed to sufficiently remove the residual solution phase.
  • a washing step may be advantageous, which can be used to sufficiently remove free (ie, non-incorporated nucleic acid strands) fluorophore-carrying compounds (eg, compounds of formula (II) and compounds of formula (IV)), thereby Minimize non-specific fluorescent signals.
  • one or more washings may be performed to sufficiently remove the residual solution phase.
  • Such a washing step may be advantageous, which can be used to sufficiently remove the fluorescent-carrying reagent used in step (6) to minimize non-specific fluorescent signals.
  • step (9) after removing the solution phase of the reaction system, one or more washings may be performed to sufficiently remove the residual solution phase.
  • a washing step may be advantageous, which can be used to sufficiently remove the reagents used in step (8) as well as the products produced (which may carry fluorescence), thereby minimizing non-specific fluorescent signals and avoiding subsequent The polymerization reaction has an adverse effect.
  • the washing step can be carried out using a variety of suitable washing solutions.
  • suitable washing solutions include, but are not limited to, phosphate buffer, citrate buffer, Tris-HCl buffer, acetate buffer, carbonate buffer, and the like. It is within the ability of those skilled in the art to select a suitable wash solution (including suitable ingredients, concentrations, ionic strength, pH, etc.) depending on the actual needs.
  • control eg, maintenance or alteration
  • the control can be controlled (eg, maintained or altered) in step (6) by using a binding pair comprising two members that are capable of interacting by specific non-covalent interactions
  • the ability of the four compounds to emit a fluorescent signal; and preferably, the removal of the protecting group and the fluorescent signal can be achieved in step (8) by using a reactive group capable of undergoing a bioorthogonal cleavage reaction.
  • the first, second, third, and fourth compounds may have the formulas (I), (II), (III), and (IV), respectively. structure:
  • Base1, Base2, Base3, and Base4 represent 4 different bases, and are selected from A, (T/U), C, and G;
  • R 1 is each independently selected from -H, a monophosphate group (-PO 3 H 2 ), a diphosphate group (-PO 3 H-PO 3 H 2 ), a triphosphate group (-PO 3 H-PO 3 H-PO 3 H 2 ) and a tetraphosphoric acid group (-PO 3 H-PO 3 H-PO 3 H-PO 3 H 2 );
  • R 2 is each independently selected from -H and -OH;
  • R 3a , R 3b , R 3c , R 3d , R 4a , R 4b , and R 4c are each independently a reactive group capable of undergoing a bioorthogonal cleavage reaction;
  • R 5a is a member of the first binding pair
  • R 6a is a member of the second binding pair, optionally, R 6a is Dye 1 or is also linked to -L3-Dye 1 ;
  • L1 are each independently a linking group or are absent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Saccharide Compounds (AREA)
  • Pyrane Compounds (AREA)

Abstract

提供了一种基于单荧光染料的测序方法。此外,还提供了一种经修饰的核苷和核苷酸以及包含所述核苷和/或核苷酸的试剂盒,其特别适合用于所述的测序方法。此外,还提供了所述核苷、核苷酸和试剂盒用于测序的用途。

Description

一种基于单荧光染料的测序方法 技术领域
本发明涉及核酸测序领域。特别地,本发明提供了一种基于单荧光染料的测序方法。此外,本发明还提供了一种经修饰的核苷和核苷酸以及包含所述核苷和/或核苷酸的试剂盒,其特别适合用于本发明所述的测序方法。此外,本发明还提供了所述核苷、核苷酸和试剂盒用于测序的用途。
背景技术
DNA测序技术包括以桑格(Sanger)测序法为代表的第一代DNA测序技术与以Illumina Hiseq2500,Roche 454,ABI Solid,BGISEQ-500等为代表的第二代DNA测序技术。桑格测序法具有实验操作简单、结果直观准确和实验周期短等特点,在对检测结果时效性要求很高的临床基因突变检测以及基因分型等领域有着广泛的应用。然而,桑格测序法的缺点是通量小、成本高,这限制了其在大规模基因测序中的应用。
第二代DNA测序技术与第一代DNA测序技术相比,具有测序通量大、成本低、自动化程度高和单分子测序的特点。以Hiseq2500V2的测序技术为例,其一个实验流程可以产生10-200G碱基的数据,平均每个碱基的测序成本不到桑格测序法的测序成本的1/1000,并且所获得的测序结果可通过计算机直接进行处理和分析。因此,第二代DNA测序技术非常适合于大规模测序。
目前已开发的第二代DNA测序技术主要涉及,边连接边测序(sequencing by ligation,SBL)技术和边合成边测序(sequencing by synthesis,SBS)技术。这些测序技术的典型实例包括,Applied Biosystems公司开发的SOLiD测序法,Complete Genomics自主开发的组合探针锚定连接法(cPAL)和华大基因开发的组合探针锚定合成法(cPAS),Illumina公司和Solexa technology公司合作开发的Illumina测序法等等。在这些测序方式中,Illumina和Complate Genomics采用了检测光信号的方法,为了实现4种碱基(A、T/U、C和G)的鉴别和区分,通常需要使用4种荧光染料来分别对这4种碱基进行标记。在这种情况下,为了读取各个碱基携带的荧光信号,测序装置必须配备至少2种单色激发光源和至少2个相机,这导致测序装置的制造成本昂贵且体积巨大。
已有研究报道,可通过使用2种荧光染料来实现对4种碱基的鉴别和区分(Sara Goodwin,et.al.Nature Reviews Genetics 17,333-351(2016))。例如,Illumina公司开发的NextSeq测序系统和Mini-Seq测序系统即使用了基于双荧光染料的测序方法。在此类测序方法中,通过2种荧光染料的不同组合来实现4种碱基的鉴别和区分。例如,可通过用第一荧光染料标记碱基A,用第二荧光染料标记碱基G,用第一和第二荧光染料同时标记碱基C,且不对碱基T/U进行标记,从而区分四种碱基。在此类测序方法中,测序装置仅需要一个相机,但仍然需要配备至少2种单色激发光源。因此,使用2种荧光染料的测序装置的制造成本和体积仍然相对较高。此外,与使用4种荧光染料的测序方法相比,基于双荧光染料的测序方法的测序质量明显下降,这主要是因为将双色荧光与单色荧光进行区分的难度较大,准确性有所下降。
而三代测序仪中Oxford Nanopore的测序仪因为其测序原理的不同使其测序仪本身非常小,甚至可以被携带至太空之后进行测序实验,相对于巨大的二代测序仪,三代展示了其在这方面的优越性,但是三代测序仪的错误率较高,限制了其应用价值,因此,需要开发新的测序方法,以进一步降低测序装置的制造成本和体积,并且确保高测序质量。
发明概述
为了解决上述技术问题,本申请的发明人开发了一种新的测序方法,其使用一种荧光染料,或者在同一激发条件下能够发出同样荧光信号的两种荧光染料,来区分4种碱基。由此,用于实施本发明测序方法的测序装置仅需配备一个激发光源和一个相机,从而大大降低了测序装置的制造成本和体积。例如,用于本发明测序方法的测序装置甚至可以方便地随身携带,用于即时/现场检测。此外,本发明的测序方法具有与基于4种荧光染料的测序方法相当的高测序质量,可用于各种测序应用中。
因此,在一个方面,本发明提供了一种对核酸分子进行测序的方法,其包括以下步骤:
(1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
(2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及四种化合物,从而形成含有溶液相和固相的反应体系;其中,所述四种化合物分别为核苷酸A、(T/U)、C和G的衍生物,并且具有碱基互补配对能力;并且,所述四种化合物的核糖或脱氧核糖的3'位置处的羟基(-OH)被保护基团保护;并且,第一化合物和第三化合物不能发出荧光信号(例如不携带荧光基团), 第二化合物能够发出荧光信号(例如携带荧光基团),第四化合物不能发出荧光信号,或者能够发出与第二化合物相同的荧光信号(例如,携带荧光基团,所述荧光基团与第二化合物中的荧光基团相同,或所述荧光基团与第二化合物中的荧光基团结构不同,但二者具有相同或实质相同的发射光谱);
(3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
(4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
(5)(i)若第四化合物能够发出与第二化合物相同的荧光信号,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
(ii)若第四化合物不能发出荧光信号,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物发出与第二化合物相同的荧光信号(例如,对第四化合物进行修饰,使之携带荧光基团,所述荧光基团与第二化合物的荧光基团相同,或者与第二化合物的荧光基团相比具有相同的发射光谱);之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
(6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物发出与第二化合物相同的荧光信号(例如,对第三化合物进行修饰,使之携带荧光基团,所述荧光基团与第二化合物的荧光基团相同,或者与第二化合物的荧光基团相比具有相同的发射光谱),并且能够去除第四化合物的荧光信号(例如,去除第四化合物上的荧光基团,或者淬灭由第四化合物上的荧光基团发出的荧光信号);和
(7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号。
在某些优选的实施方案中,所述方法还包括下述步骤:
(8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够去除并入生长的核酸链3'端的化合物中的核糖或脱氧核糖的3'位置处的保护基团,以及所述双链体或生长的核酸链上的荧光信号,如果存在的话;和
(9)移除前一步骤的反应体系的溶液相;
(10)添加用于进行核苷酸聚合反应的聚合酶,以及所述四种化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7)。
任选地,所述方法还包括下述步骤(11):
(11)重复进行步骤(8)-(10)一次或多次。
在本发明的方法中,如果在步骤(4)中,第一化合物被并入生长的核酸链的3'端,那么,由于第一化合物本身不携带荧光基团,并且不受步骤(6)中的所述处理的影响,因此,在步骤(5)和(7)中将检测不到荧光信号。
如果在步骤(4)中,第二化合物被并入生长的核酸链的3'端,那么,由于第二化合物本身携带荧光基团,并且不受步骤(6)中的所述处理的影响,因此,在步骤(5)和(7)中将都检测到荧光信号。
如果在步骤(4)中,第三化合物被并入生长的核酸链的3'端,那么,(i)由于第三化合物本身不携带荧光基团,因此,在步骤(5)中将检测不到荧光信号;并且(ii)由于第三化合物经历了步骤(6)的所述处理,而能够发出荧光信号,因此,在步骤(7)中将检测到荧光信号。
如果在步骤(4)中,第四化合物被并入生长的核酸链的3'端,那么,(i)由于第四化合物本身携带荧光基团或者在步骤(5)中经过处理而携带荧光基团,因此,在步骤(5)中将检测到荧光信号;并且(ii)由于第四化合物经历步骤(6)的所述处理,而丧失了荧光信号,因此,在步骤(7)中将检测不到荧光信号。
因此,在某些优选的实施方案中,根据步骤(5)和(7)的检测结果来确定在步骤(4)中并入生长的核酸链的3'端的化合物的类型,其中,
当步骤(5)和(7)的检测结果均为,所述双链体不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为第一化合物;
当步骤(5)和(7)的检测结果均为,所述双链体发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为第二化合物;
当步骤(5)的检测结果为所述双链体不发出所述荧光信号,且步骤(7)的检测结果为所述双链体发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为第三化合物;并且
当步骤(5)的检测结果为所述双链体发出所述荧光信号,且步骤(7)的检测结果为所述双链体不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为第四化合物;
任选地,基于碱基互补配对原则,根据步骤(4)中并入生长的核酸链的3'端的化合物的类型,确定待测序的核酸分子的相应位置处的碱基类型。
在某些示例性实施方案中,本发明的方法包括下述步骤:
(1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
(2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
Figure PCTCN2017118928-appb-000001
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 5b各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为能够进行第一生物正交连接反应的反应性基团;
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
Dye表示能够发出荧光信号的荧光基团;
R 7a为能够发出荧光信号的荧光基团(Dye 1),或者能够进行第二生物正交连接反应的反应性基团,或者结合配对的一个成员;
并且,Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 5b与R 7a之间还存在能够进行第三生物正交连接反应的反应性基团R 8
(3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核 酸分子一起形成连接于支持物上的双链体;
(4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
(5)(i)第四化合物能够发出与第二化合物相同的荧光信号,R 7a为Dye 1,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
(ii)第四化合物不能发出荧光信号,R 7a为能够进行第二生物正交连接反应的反应性基团,或者结合配对的一个成员,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 7a与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同的荧光基团)的试剂(例如结合配对的另一个成员,或者能够与R 7a进行第二生物正交连接反应的化合物)发生特异性相互作用/特异性结合或者发生第二生物正交连接反应;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
所述携带荧光基团的结合配对的另一个成员具有下述结构:R 7b-L-Dye 1;其中,R 7b为结合配对的另一个成员,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同的发射光谱;或者
所述携带荧光基团的能够与R 7a进行第二生物正交连接反应的化合物具有下述结构:R 7b-L-Dye 1;其中,R 7b为能够与R 7a进行第二生物正交连接反应的基团,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同的发射光谱;
(6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的结构不同但发射光谱相同的荧光基团)的试剂发生第一生物正交连接反应,从而将所述试剂中的荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使第四化合物中的R 5b发生生物正交切割反应,从而去除第四化合物中的荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生第三正交连接反应,从而淬灭第四化合物中的荧光基团Dye1发出的荧光信号;和
(7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号。
在某些优选的实施方案中,所述方法还包括下述步骤:
(8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a或R 4b连接的荧光基团),如果存在的话;
(9)移除前一步骤的反应体系的溶液相;
(10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(11)重复进行步骤(8)-(10)一次或多次。
在某些示例性实施方案中,本发明的方法包括下述步骤:
(1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
(2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
Figure PCTCN2017118928-appb-000002
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为第一结合配对的一个成员;
R 6a(i)是第二结合配对的一个成员,同时是第三结合配对的一个成员;或者
(ii)只是第三结合配对的一个成员;并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,二者具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行生物正交连接反应的反应性基团R 8
(3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
(4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
(5)(i)第四化合物不能发出荧光信号,R 6a为第二结合配对的一个成员,同时是第三结合配对的一个成员,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 6a与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的结构不同但发射光谱相同或实质相同的荧光基团)的试剂(例如第二结合配对的另一个成员)发生特异性相互作用/特异性结合;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测 所述双链体或所述生长的核酸链是否发出所述荧光信号;
所述携带荧光基团的第二结合配对的另一个成员具有下述结构:R 6b-L4-Dye 2;其中,R 6b为第二结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;(ii)第四化合物能够发出与第二化合物相同的荧光信号,R 6a只是第三结合配对的一个成员,并且R 6a为Dye 1或还连接有-L3-Dye 1,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
(6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团的第一结合配对的另一个成员特异性结合,从而将所述荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使第四化合物中的R 6a与携带淬灭基团的第三结合配对的另一个成员特异性结合,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号其中,
所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 5b-L5-Dye 3;其中,R 5b为第一结合配对的另一个成员,L5独立地为连接基团或不存在;Dye 3表示能够发出荧光信号的荧光基团,并且与第二化合物包含的荧光基团结构相同,或者结构不同但具有相同的发射光谱;并且
所述携带淬灭基团的第三结合配对的另一个成员具有下述结构:R 6c-L6-Que;其中,R 6c为第二结合配对的另一个成员,L6独立地为连接基团或不存在;Que表示能够淬灭Dye 1或Dye 2发出的荧光信号的淬灭基团;和
(7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号。
在某些优选的实施方案中,所述方法还包括下述步骤:
(8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a、R 4b或R 4c连接的荧光基团),如果存在的话;
(9)移除前一步骤的反应体系的溶液相;
(10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(11)重复进行步骤(8)-(10)一次或多次。
在某些优选的实施方案中,本发明的方法包括下述步骤:
(1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
(2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
Figure PCTCN2017118928-appb-000003
Figure PCTCN2017118928-appb-000004
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为能够进行第一生物正交连接反应的反应性基团;
R 6a(i)是第一结合配对的一个成员,同时是第二结合配对的一个成员;或者
(ii)只是第二结合配对的一个成员,并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye表示能够发出荧光信号的荧光基团;Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
(3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
(4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
(5)(i)第四化合物不能发出荧光信号,R 6a为第一结合配对的一个成员,同时是第二结合配对的一个成员,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 6a与携带荧光基团(例如,与第二化合物结构同的荧光基团,或者与第二化合物的荧光基团的结构不同但发射光谱相同或实质相同的荧光基团)的试剂(例如第一结合配对的另一个成员)发生特异性相互作用/特异性结合;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 6b-L4-Dye 2;其中,R 6b为第一结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;(ii)第四化合物能够发出与第二化合物相同的荧光信号,R 6a只是第二结合配对的一个成员,并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所 述双链体或所述生长的核酸链是否发出所述荧光信号;
(6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团(例如,与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂发生第一生物正交连接反应,从而将所述试剂中的荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使第四化合物中的R 6a与携带淬灭基团的第二结合配对的另一个成员特异性结合,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生第二正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号;其中,
所述携带淬灭基团的第二结合配对的另一个成员具有下述结构:R 6c-L'-Que;其中,R 6c为第二结合配对的另一个成员,L'独立地为连接基团或不存在;Que表示能够淬灭Dye1或Dye2发出的荧光信号的淬灭基团;和
(7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号。
在某些优选的实施方案中,所述方法还包括下述步骤:
(8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a、R 4b或R 4c连接的荧光基团),如果存在的话;
(9)移除前一步骤的反应体系的溶液相;
(10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(11)重复进行步骤(8)-(10)一次或多次。
在某些优选的实施方案中,本发明的方法包括下述步骤:
(1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
(2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
Figure PCTCN2017118928-appb-000005
Figure PCTCN2017118928-appb-000006
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为第一结合配对的一个成员;
R 6a为能够发出荧光信号的荧光基团(Dye 1),能够进行第一生物正交连接反应的反应性基团,和/或第二结合配对的一个成员;
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c和R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
(3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
(4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
(5)(i)第四化合物能够发出与第二化合物相同的荧光信号,R 6a为Dye 1,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
(ii)第四化合物不能发出荧光信号,R 6a为能够进行第一生物正交连接反应的反应性基团,或者第二结合配对的一个成员,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 6a与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂(例如第二结合配对的另一个成员,或者能够与R 6a进行第一生物正交连接反应的化合物)发生特异性相互作用/特异性结合或者发生第一生物正交连接反应;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
所述携带荧光基团的第二结合配对的另一个成员具有下述结构:R 6b-L’-Dye 1;其中,R 6b为第二结合配对的另一个成员,L’独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;或者
所述携带荧光基团的能够与R 6a进行第一生物正交连接反应的化合物具有下述结构:R 6b-L’-Dye 1;其中,R 6b为能够与R 6a进行第一生物正交连接反应的基团,L’独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
(6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团的第一结合配对的另一个成员特异性结合,从而将所述荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使第四化合物中的R 4c发生生物正交切割反应,从而去除第四化合物中的荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生第二正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1发出的荧光信号;其中,
所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 5b-L-Dye 2;其中,R 5b为第一结合配对的另一个成员,L独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且与第二化合物包含的荧光基团相同,或者与第二化合物的荧光基团的发射光谱相同或实质相同; 和
(7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号。
在某些优选的实施方案中,所述方法还包括下述步骤:
(8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a或R 4b连接的荧光基团),如果存在的话;
(9)移除前一步骤的反应体系的溶液相;
(10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(11)重复进行步骤(8)-(10)一次或多次。
在某些示例性实施方案中,本发明的方法包括下述步骤:
(1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
(2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
Figure PCTCN2017118928-appb-000007
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为第一结合配对的一个成员;
R 6a为第二结合配对的一个成员,任选地,R 6a为Dye 1或者还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,二者具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行生物正交连接反应的反应性基团R 8
(3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
(4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
(5)(i)第四化合物不能发出荧光信号,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 6a与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的结构不同但发射光谱相同或实质相同的荧光基团)的试剂(例如第二结合配对的另一个成员)发生特异性相互作用/特异性结合;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
所述携带荧光基团的第二结合配对的另一个成员具有下述结构:R 6b-L4-Dye 2;其中,R 6b为第二结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;同时,R 6b是第三结合配对的一个成员;
(ii)第四化合物能够发出与第二化合物相同的荧光信号,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
(6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团的第一结合配对的另一个成员特异性结合,从而将所述荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使R 6b与第三结合配对的另一成员R 6c之间发生特异性相互作用/特异性结合,使R 6b与R 6a的结合物解离,从而使第四化合物失去荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号;其中,
所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 5b-L5-Dye 3;其中,R 5b为第一结合配对的另一个成员,L5独立地为连接基团或不存在;Dye 3表示能够发出荧光信号的荧光基团,并且与第二化合物包含的荧光基团结构相同,或者结构不同但具有相同或实质相同的发射光谱;和
(7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号。
在某些优选的实施方案中,所述方法还包括下述步骤:
(8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a、R 4b或R 4c连接的荧光基团),如果存在的话;
(9)移除前一步骤的反应体系的溶液相;
(10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(11)重复进行步骤(8)-(10)一次或多次。
在某些优选的实施方案中,本发明的方法包括下述步骤:
(1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
(2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相 的反应体系:
Figure PCTCN2017118928-appb-000008
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为能够进行第一生物正交连接反应的反应性基团;
R 6a为第一结合配对的一个成员,任选地,R 6a为Dye 1或者还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye表示能够发出荧光信号的荧光基团;Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
(3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
(4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
(5)(i)第四化合物不能发出荧光信号,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 6a与携带荧光基团(例如,与第二化合物结构同的荧光基团,或者与第二化合物的荧光基团的结构不同但发射光谱相同或实质相同的荧光基团)的试剂(例如第一结合配对的另一个成员)发生特异性相互作用/特异性结合;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 6b-L4-Dye 2;其中,R 6b为第一结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;同时,R 6b是第二结合配对的一个成员;
(ii)第四化合物能够发出与第二化合物相同的荧光信号,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
(6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团(例如,与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂发生第一生物正交连接反应,从而将所述试剂中的荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使R 6b与第二结合配对的另一成员R 6c之间发生特异性相互作用/特异性结合,使R 6b与R 6a的结合物解离,从而使第四化合物失去荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生第二正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号;其中,
所述携带淬灭基团的第二结合配对的另一个成员具有下述结构:R 6c-L'-Que;其中,R 6c为第二结合配对的另一个成员,L'独立地为连接基团或不存在;Que表示能够淬灭Dye 1或Dye 2发出的荧光信号的淬灭基团;和
(7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号。
在某些优选的实施方案中,所述方法还包括下述步骤:
(8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a、R 4b或R 4c连接的荧光基团),如果存在的话;
(9)移除前一步骤的反应体系的溶液相;
(10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(11)重复进行步骤(8)-(10)一次或多次。
在另一个方面,本发明提供了一种试剂盒,其包含如上文所定义的四种化合物。在某些优选的实施方案中,本发明的试剂盒包含四种化合物(即,第一、第二、第三和第四化合物),其中:
所述四种化合物分别为核苷酸A、(T/U)、C和G的衍生物,且具有碱基互补配对能力;并且,
所述四种化合物的核糖或脱氧核糖的3'位置处的羟基(-OH)被保护基团保护;并且,所述保护基团能够被去除;
所述第一化合物和第三化合物不能发出荧光信号(例如不携带荧光基团),所述第二化合物能够发出荧光信号,所述第四化合物不能发出荧光信号,或者能够发出与第二化合物相同的荧光信号(例如,携带荧光基团,所述荧光基团与第二化合物中的荧光基团相同,或所述荧光基团与第二化合物中的荧光基团结构不同,但二者具有相同或实质相同的发射光谱);并且,
所述第三化合物经处理后能够发出与第二化合物相同的荧光信号(例如,使第三化合物携带与第二化合物相同的荧光基团,或者或者使第三化合物携带与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团);
若所述第四化合物能够发出与第二化合物相同的荧光信号,所述第四化合物经处理后能够去除自身的荧光信号(例如,去除自身的荧光基团,或者淬灭由自身的荧光基团发出的荧光信号);
若所述第四化合物不能发出荧光信号,则所述第四化合物经第一处理后能够发出与第二化合物相同的荧光信号(例如,使第四化合物携带与第二化合物相同的荧光基团,或者使第四化合物携带与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团);并且,所述第四化合物经第二处理后能够去除自身的荧光信号(例如,去除自身的荧光基团,或者淬灭由自身的荧光基团发出的 荧光信号)。
在某些优选的实施方案中,本发明的试剂盒还包含:用于从样品中提取核酸分子的试剂和/或装置;用于预处理核酸分子的试剂;用于连接待测序的核酸分子的支持物;用于将待测序的核酸分子与支持物连接(例如,共价或非共价连接)的试剂;用于起始核苷酸聚合反应的引物;用于进行核苷酸聚合反应的聚合酶;一种或多种缓冲溶液;一种或多种洗涤溶液;或其任何组合。
附图简述
图1显示了实验例1中获得的实验照片1和2的比较结果。
图2显示了实验例2中获得的实验照片1和2的比较结果。
图3显示了实验例3中获得的实验照片1和2的比较结果。
图4显示了实验例4中获得的实验照片1和2的比较结果。
序列信息
本发明涉及的序列的信息提供于下表中:
Figure PCTCN2017118928-appb-000009
发明详述
在本发明中,除非另外定义,否则本文所用的全部技术和科学术语都具有与本发明所属领域普通技术人员通常所理解的相同意思。在本发明的实施方案中,可以使用与本文所述的那些方法和材料类似或等同的方法和材料,下文仅仅是描述了例示性的适合的方法和材料。将所有公开出版物、专利申请、专利和其它参考文献并入本文作为参考。此外,所述材料、方法和实施例仅仅是示范性的而非限制性的。同时,为了更好地理解本发明,下面提供相关术语的定义和解释。
如本文中所使用的,术语“支持物”是指允许核酸稳定附着的任何材料(固体或半固体),例如乳胶珠、葡聚糖珠、聚苯乙烯、聚丙烯、聚丙烯酰胺凝胶、金薄层、玻璃和硅片等。在一些示例性实施方案中,所述支持物是光学透明的,例如玻璃。如本文中所使用的,“稳定附着”是指,核酸分子与支持物之间的连接足够强,从而核酸分子不会因各种反应或处理(例如聚合反应、生物正交切割反应、生物正交连接反应和洗涤处理)所使用的条件而脱离支持物。
如本文中所使用的,术语“连接”意欲涵盖任何形式的连接,例如共价连接和非共价连接。在某些示例性实施方案中,核酸分子优选地通过共价方式与支持物相连接。
如本文中所使用的,术语“片段化”是指,将大的核酸片段(例如大的DNA片段)转变成小的核酸片段(例如小的DNA片段)的过程。在某些实施方案中,术语“大的核酸片段”意欲涵盖大于5kb,大于10kb,大于25kb的核酸分子(例如DNA),例如大于500kb,大于1Mb,大于5Mb或更大的核酸分子(例如DNA)。
如本文中所使用的,术语“末端补齐”是指,将具有悬突末端的核酸分子的末端补齐,形成具有钝末端的核酸分子的过程。
在本文中,术语“接头”和“接头序列”可互换使用。如本文中所使用的,术语“接头”和“接头序列”是指,在核酸分子的5'和/或3'端人为引入的一段寡核苷酸序列。接头通常可包含一个或多个用于实现特定功能的区域。由此,当在核酸分子的5'和/或3'端人为引入接头时,接头将能够实现所述特定功能,从而利于后续应用。例如,接头可包含一个或多个引物结合区,以便于引物的结合。在一些示例性实施方案中,所述接头可包含一个或多个引物结合区,例如能够与用于进行扩增的引物杂交的引物结合区,和/或能够与用于测序反应的引物杂交的引物结合区。在某些优选实施方案中,所述接头包含,能够与通用引物杂交的通用接头序列,例如,能够与通用扩增引物和/或通用测序引物杂交的通用接头序列。由此,可方便地通过使用通用扩增引物和/或通用测序引物,对携带有接头的核酸分子进行扩增和/或测序。在一些示例性实施方案中,所述接头还可包含标签或标签序列。
在本文中,术语“标签”和“标签序列”可互换使用。如本文中所使用的,术语“标签”和“标签序列”是指,在核酸分子的5'和/或3'端人为引入的、具有特定碱基序列的一段寡核苷酸序列。标签通常用于鉴别/区分核酸分子的来源。例如,可在不同来源的核酸分子中分别引入不同的标签,由此,当这些不同来源的核酸分子混合在一起时,可通过各个核酸分子上携带的独特标签序列,准确地确定每一个核酸分子的来源。根据实际需要,标签序列可以具有任意长度,例如2-50bp,例如2、3、4、5、10、15、20、25、30、35、40、45、50bp。
如本文中所使用的,术语“杂交”通常是指,严紧条件下的杂交。在分子生物学领域中杂交技术是熟知的。为了举例说明的目的,所述严紧条件包括例如,中度严紧条件(例如,在6×氯化钠/柠檬酸钠(SSC)中约45℃下杂交,然后在0.2×SSC/0.1%SDS中于约50-65℃下进行一次或多次洗涤);高度严紧条件(例如,在6×SSC中约45℃下杂交,然后在0.1×SSC/0.2%SDS中于约68℃下进行一次或多次洗涤);以及本领域技术人员已知的其它严紧杂交条件(参见例如Ausubel,F.M.等编,1989,Current Protocols in Molecular Biology,第1卷,Green Publishing Associates,Inc.,和John Wiley & Sons,Inc.,纽约,第6.3.1-6.3.6和2.10.3页)。
如本文中所使用的,表述“含有溶液相和固相的反应体系”是指,本发明的反应体系既包含支持物以及连接于支持物的物质(固相),又包含溶解于溶液/溶剂中的物质(溶液相)。相应地,表述“移除反应体系的溶液相”是指,将反应体系中的溶液以及其包含的物质(溶液相)移除,而仅保留反应体系中的支持物以及连接于支持物的物质(固相)。在本发明的背景中,连接于支持物的物质(固相)可包括,待测序的核酸分子,生长的核酸链,和/或由待测序的核酸分子和生长的核酸链形成的双链体。
如本文中所使用的,术语“引物”是指,含有能与互补序列杂交并引发特异性聚合反应的寡核苷酸序列。在通常情况下,选择/设计引物的序列,以使其对互补序列具有最大杂交活性,而对其他序列具有非常低的非特异性杂交活性,从而尽可能减少非特异性扩增。设计引物的方法是本领域技术人员公知的,并且可用商业化的软件(例如Primer Premier version 6.0,Oligo version 7.36等)来执行。
如本文中所使用的,术语“聚合酶”是指,能够进行核苷酸聚合反应的酶。此类酶能够按照碱基互补配对原则,在生长的核酸链的3'端引入与模板核酸相应位置的核苷酸配对的核苷酸。
如本文中所使用的,表述“A、(T/U)、C和G”意欲涵盖两种情况:“A、T、C和G”和“A、U、C和G”。因此,表述“所述四种化合物分别为核苷酸A、(T/U)、C和G的衍生物”意欲表示,所述四种化合物分别为核苷酸A、T、C和G的衍生物,或者分别为核苷酸A、U、C和G的衍生物。
如本文中所使用的,表述“化合物具有碱基互补配对能力”是指,化合物能够按照碱基互补配对原则,与对应的碱基配对并形成氢键。按照碱基互补配对原则,碱基A能够与碱基T或U配对,碱基G能够与碱基C配对。因此,当具有碱基互补配对能力的化合物为核苷酸A的衍生物时,其将能够与碱基T或U配对;当具有碱基互补配对能力的化合物为核苷酸T或U的衍生物时,其将能够与碱基A配对;当具有碱基互补配对能力的化合物为核苷酸C的衍生物时,其将能够与碱基G配对;当具有碱基互补配对能力的化合物为核苷酸G的衍生物时,其将能够与碱基C配对。
如本文中所使用的,表述“羟基(-OH)被保护基团保护”是指,游离羟基(-OH)中的H被保护基团(P)取代,形成受保护的羟基(-OP)。在某些优选的实施方案中,保护基团(P)能够被去除,从 而,受保护的羟基(-OP)能再次转化为游离的羟基(-OH)。
如本文中所使用的,术语“结合配对”意指,能够通过特异性非共价作用而相互作用的一对分子(即,两个成员)。在通常情况下,结合配对的两个成员依赖于彼此的三维结构,而实现特异性相互作用(即,特异性识别和结合)。典型的结合配对包括例如,抗原(例如小分子抗原)-抗体、半抗原-抗体、激素-受体、配体-受体、核酸链-互补核酸链、底物-酶、底物类似物-酶、抑制剂-酶、糖-植物凝集素、生物素-抗生物素蛋白(例如,亲和素和链酶亲和素)、地高辛和地高辛抗体,以及5位溴代去氧鸟苷和其抗体等。
如本文中所使用的,术语“特异性相互作用/结合”是指,两个分子间的非随机的相互作用/结合反应,例如抗体和其所针对的抗原之间的相互作用。在某些实施方式中,结合配对的两个成员之间存在特异性相互作用是指,结合配对的一个成员以小于大约10 -5M,例如小于大约10 -6M、10 -7M、10 -8M、10 -9M或10 -10M或更小的亲和力(K D)结合另一个成员。
如本文中所使用的,术语“K D”是指结合配对的两个成员相互作用的解离平衡常数,其用于描述两个成员之间的结合亲和力。平衡解离常数越小,两个成员之间的结合越紧密,两个成员之间的亲和力越高。通常,结合配对的一个成员以小于大约10 -5M,例如小于大约10 -6M、10 -7M、10 -8M、10 -9M或10 -10M或更小的解离平衡常数(K D)结合另一个成员。可使用各种已知的方法来测定结合配对的两个成员的结合亲和力,例如,使用表面等离子体共振术(SPR)来进行测定。
如本文中所使用的,术语“生物正交反应”是指,可以在生物体(例如活的细胞或组织)内发生,而不影响生物体自身的生化反应的化学反应。生物正交反应在生理条件下具有很强的活性和选择性,其底物和/或反应机理在生物体中少见或者没有,因此对生物体内的活性分子保持良好的惰性,可以不被打扰地在生物体内进行。生物正交反应可用于对生物大分子或活性小分子进行标记,可在分子成像、药物筛选等方面得到应用。
如本文中所使用的,术语“生物正交切割反应”是指,底物中的反应性基团经历共价键的断裂而生成产物的生物正交反应。可用作生物正交切割反应的化学反应包括但不限于:Ru-催化的脱烯丙基反应,Pd-催化的脱炔丙基反应,Cu-催化的脱炔丙基反应,特异性的IED-DA–引发的“点击-裂解”反应(specific IED-DA–induced‘click and release’reaction),SPAAC引发的芳基叠氮还原反应(strain-promoted alkene-azide cycloaddition–induced aryl azide reduction)。
如本文中所使用的,术语“生物正交连接反应”是指,底物中的反应性基团经历共价键的形成而生成产物的生物正交反应。可用作生物正交连接反应的化学反应包括但不限于:施陶丁格连接反应(Staudinger Ligation),一价铜离子催化的叠氮与炔基的环加成反应(Cu catalyzed azide-alkyne cycloaddition,AAC),环张力驱动的叠氮与炔基的环加成反应(strain-promoted azide-alkyne cycloaddition,SPAAC),逆电子需求的狄尔斯—阿尔德反应(inverse electron-demand Diels-Alder reaction(IEDDA)),Pd-催化的Suzuki交叉偶联反应(palladium-mediated Suzuki cross-coupling),巯基和巯基衍生物的二硫键形成反应。
如本文中所使用的,术语“反应性基团”是指,能够发生化学反应的基团。表述“能够发生生物正交连接反应的反应性基团”是指,所述反应性基团能够与另一反应性基团(互补基团)进行生物正交连接反应,并在两个反应性基团之间形成共价键,导致包含这两个反应性基团的不同化合物之间或同一化合物的不同部分之间产生共价连接。表述“能够发生生物正交切割反应的反应性基团”是指,所述反应性基团能够进行生物正交切割反应,并导致所述反应性基团或其部分从包含该反应性基团的化合物上断裂或脱离。
如本文中所使用的,术语“环烯亚基”既包括环烯烃上同一个碳原子消除两个氢原子得到的二价基团,也包括环烯烃上两个碳原子各消除一个氢原子得到的二价基团。
如本文中所使用的,
Figure PCTCN2017118928-appb-000010
都表示反式环辛烯。
(一)测序方法
本申请的发明人开发了一种新的测序方法,其使用一种荧光染料来区分4种碱基。
因此,在一个方面,本发明提供了一种对核酸分子进行测序的方法,其包括以下步骤:
(1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
(2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及四种化合物,从而形成含有溶液相和固相的反应体系;其中,所述四种化合物分别为核苷酸A、(T/U)、C和G的衍生物,并且具有碱基互补配对能力;并且,所述四种化合物的核糖或脱氧核糖的3'位置处的羟基 (-OH)被保护基团保护;并且,第一化合物和第三化合物不能发出荧光信号(例如不携带荧光基团),第二化合物能够发出荧光信号(例如携带荧光基团),第四化合物不能发出荧光信号,或者能够发出与第二化合物相同的荧光信号(例如,携带荧光基团,所述荧光基团与第二化合物中的荧光基团相同,或所述荧光基团与第二化合物中的荧光基团结构不同,但二者具有相同或实质相同的发射光谱);
(3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
(4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
(5)(i)若第四化合物能够发出与第二化合物相同的荧光信号,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
(ii)若第四化合物不能发出荧光信号,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物发出与第二化合物相同的荧光信号(例如,对第四化合物进行修饰,使之携带荧光基团,所述荧光基团与第二化合物的荧光基团相同,或者与第二化合物的荧光基团相比具有相同的发射光谱);之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
(6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物发出与第二化合物相同的荧光信号(例如,对第三化合物进行修饰,使之携带荧光基团,所述荧光基团与第二化合物的荧光基团相同,或者与第二化合物的荧光基团相比具有相同的发射光谱),并且能够去除第四化合物的荧光信号(例如,去除第四化合物上的荧光基团,或者淬灭由第四化合物上的荧光基团发出的荧光信号);和
(7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号。
在某些优选的实施方案中,所述方法还包括下述步骤:
(8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够去除并入生长的核酸链3'端的化合物中的核糖或脱氧核糖的3'位置处的保护基团,以及所述双链体或生长的核酸链上的荧光信号,如果存在的话;和
(9)移除前一步骤的反应体系的溶液相;
(10)添加用于进行核苷酸聚合反应的聚合酶,以及所述四种化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7)。
任选地,所述方法还包括下述步骤(11):
(11)重复进行步骤(8)-(10)一次或多次。
核酸分子
在本发明的方法中,待测序的核酸分子可以是任何目的核酸分子。在某些优选的实施方案中,所述待测序的核酸分子包含脱氧核糖核苷酸、核糖核苷酸、经修饰的脱氧核糖核苷酸、经修饰的核糖核苷酸、或其任何组合。在本发明的方法中,待测序的核酸分子不受其类型的限制。在某些优选的实施方案中,所述待测序的核酸分子为DNA或RNA。在某些优选的实施方案中,所述待测序的核酸分子可以为基因组DNA,线粒体DNA,叶绿体DNA,mRNA,cDNA,miRNA,或siRNA。在某些优选的实施方案中,所述待测序的核酸分子为线性的或者环状的。在某些优选的实施方案中,所述待测序的核酸分子为双链的或者单链的。例如,所述待测序的核酸分子可以为单链DNA(ssDNA),双链DNA(dsDNA),单链RNA(ssRNA),双链RNA(dsRNA),或者DNA和RNA的杂合体。在某些优选的实施方案中,所述待测序的核酸分子为单链DNA。在某些优选的实施方案中,所述待测序的核酸分子为双链DNA。
在本发明的方法中,待测序的核酸分子不受其来源的限制。在某些优选的实施方案中,待测序 的核酸分子可以获自任何来源,例如,任何细胞、组织或生物体(例如,病毒,细菌,真菌,植物和动物)。在某些优选的实施方案中,待测序的核酸分子源自哺乳动物(例如,人、非人灵长类动物、啮齿类动物或犬科动物)、植物、鸟类、爬行类、鱼类、真菌、细菌或病毒。
从细胞、组织或生物体中提取或获得核酸分子的方法是本领域技术人员公知的。合适的方法包括但不限于乙醇沉淀法,氯仿抽提法等。关于此类方法的详细描述可参见例如,J.Sambrook等人,分子克隆:实验室手册,第2版,冷泉港实验室出版社,1989,以及F.M.Ausubel等人,精编分子生物学实验指南,第3版,John Wiley & Sons,Inc.,1995。另外,还可使用各种商业化的试剂盒来从各种来源(例如细胞、组织或生物体)提取核酸分子。
在本发明的方法中,待测序的核酸分子不受其长度的限制。在某些优选的实施方案中,待测序的核酸分子的长度可以为至少10bp,至少20bp,至少30bp,至少40bp,至少50bp,至少100bp,至少200bp,至少300bp,至少400bp,至少500bp,至少1000bp,或者至少2000bp。在某些优选的实施方案中,待测序的核酸分子的长度可以为10-20bp,20-30bp,30-40bp,40-50bp,50-100bp,100-200bp,200-300bp,300-400bp,400-500bp,500-1000bp,1000-2000bp,或者超过2000bp。在某些优选的实施方案中,待测序的核酸分子可具有10-1000bp的长度,以利于进行高通量测序。
在某些优选的实施方案中,在将核酸分子连接于支持物之前,可以对核酸分子进行预处理。此类预处理包括但不限于,核酸分子的片段化,末端的补齐,接头的添加,标签的添加,切口的修复,核酸分子的扩增,核酸分子的分离和纯化,以及其任何组合。
例如,在某些优选的实施方案中,为了获得具有合适长度的核酸分子,可以对核酸分子进行片段化处理。在本发明的方法中,可以通过本领域普通技术人员已知的任何方法进行核酸分子(例如DNA)的片段化。例如,可通过酶学方法或机械方法进行片段化。所述机械方法可以是超声波或物理剪切。所述酶学方法可以通过用核酸酶(例如,脱氧核糖核酸酶)或限制性核酸内切酶消化来进行。在某些优选的实施方案中,所述片段化导致序列未知的末端。在某些优选的实施方案中,所述片段化导致序列已知的末端。
在某些优选的实施方案中,所述酶学方法使用DNA酶I来对核酸分子进行片段化。DNA酶I是一种非特异性剪切双链DNA(dsDNA)以释放5'磷酸化的二核苷酸、三核苷酸和寡核苷酸产物的通用酶。DNA酶I在含有Mn 2+、Mg 2+和Ca 2+但不含其它盐的缓冲液中具有最佳活性,其通常用于将一个大的DNA基因组片段化成为小的DNA片段,随后所产生的小的DNA片段可用于构建DNA文库。
DNA酶I的剪切特性将导致DNA分子的随机消化(即,没有序列偏向性),并且当在含有锰离子的缓冲液存在的情况下使用时,主要产生钝末端dsDNA片段(Melgar,E.和D.A.Goldthwait.1968.Deoxyribonucleic acid nucleases.II.The effects of metal on the mechanism of action of deoxyribonuclease I.J.Biol.Chem.243:4409)。当使用DNA酶I处理基因组DNA时,可考虑以下三种因素:(i)所用酶的量(单位);(ii)消化温度(℃);和(iii)温育时间(分钟)。通常,可以在10℃-37℃之间,用DNA酶I消化大的DNA片段或全基因组DNA 1-2分钟,以产生具有合适长度的DNA分子。
因此,在某些优选的实施方案中,在步骤(1)之前,对目的核酸分子(待测序的核酸分子)进行片段化。在某些优选的实施方案中,通过酶学方法或机械方法对待测序的核酸分子进行片段化处理。在某些优选的实施方案中,使用DNA酶I对待测序的核酸分子进行片段化。在某些优选的实施方案中,通过超声处理来待测序的核酸分子进行片段化。在某些优选的实施方案中,经片段化的核酸分子的长度为50-2000bp,例如50-100bp,100-200bp,200-300bp,300-400bp,400-500bp,500-1000bp,1000-2000bp,50-1500bp,或50-1000bp。
双链核酸分子(例如dsDNA,基因组DNA)的片段化可产生具有钝末端的或长度为一个或两个核苷酸的悬突的核酸片段。例如,当用超声法或者DNA酶I处理基因组DNA(gDNA)时,其产物可包含具有钝末端或悬突的DNA片段。在这种情况下,可使用聚合酶将具有悬突的核酸分子的末端补齐,形成具有钝末端的核酸分子,以利于后续的应用(例如便于将经片段化的核酸分子与接头连接)。
因此,在某些优选的实施方案中,在对待测序的核酸分子(例如dsDNA)进行片段化后,用DNA聚合酶来处理经片段化的核酸分子,以产生具有钝末端的DNA片段。在某些优选的实施方案中,所述DNA聚合酶可以是任何已知的DNA聚合酶,例如T4DNA聚合酶,Pfu DNA聚合酶,Klenow DNA聚合酶。在某些情况下,Pfu DNA聚合酶的使用可能是有利的,这是因为Pfu DNA聚合酶不仅能够补齐悬突部分形成钝末端,而且其具有3'-5'核酸外切酶活性,能够去除单核苷酸和双核苷酸突起,从而进一步增加具有钝末端的DNA片段的数量(Costa,G.L.和M.P.Weiner.1994a.Protocols for cloning and analysis of blunt-ended PCR-generated DNA fragments.PCR Methods Appl 3(5):S95;Costa,G.L.t A.Grafsky和M.P.Wemer.1994b.Cloning and analysis of PCR-generated DNA fragments.PCR Methods Appl 3(6):338;Costa,G.L.和M.P.Weiner.1994c.Polishing with T4 or Pfu polymerase  increases the efficiency of cloning of PCR products.Nucleic Acids Res.22(12):2423)。
在某些优选的实施方案中,可以在待测序的核酸分子的5'和/或3'端引入接头。在一般情况下,接头为寡核苷酸序列,并且其可以是任何序列,任意长度。可用本领域熟知的方法选择具有合适长度和序列的接头。例如,连接于待测序的核酸分子末端的接头通常是长度为5-100个核苷酸(例如5-10bp,10-20bp,20-30bp,30-40bp,40-50bp,50-100bp)之间的相对较短的核苷酸序列。在某些优选的实施方案中,所述接头可具有引物结合区。此类引物结合区可与引物发生退火或杂交,从而可用于引发特异性聚合酶反应。在某些优选的实施方案中,所述接头具有一个或多个引物结合区。在某些优选的实施方案中,所述接头具有能够与用于进行扩增的引物杂交的一个或多个区域。在某些优选的实施方案中,所述接头具有能够与用于测序反应的引物杂交的一个或多个区域。在某些优选的实施方案中,在待测序的核酸分子的5'端引入接头。在某些优选的实施方案中,在待测序的核酸分子的3'端引入接头。在某些优选的实施方案中,在待测序的核酸分子的5'端和3'端引入接头。在一些实施方案中,所述接头包含,能够与通用引物杂交的通用接头序列。在一些实施方案中,所述接头包含,能够与通用扩增引物和/或通用测序引物杂交的通用接头序列。
在某些优选的实施方案中,可以在待测序的核酸分子中引入标签序列,或者可以在上文所述的接头中引入标签序列。标签序列是指具有特定碱基序列的一段寡核苷酸。根据实际需要,标签序列可以具有任意长度,例如2-50bp,例如2、3、4、5、10、15、20、25、30、35、40、45、50bp。在某些优选的实施方案中,使每个待测序的核酸分子均带上含特定序列的标签序列,以利于区分每个待测序的核酸分子的来源。在某些优选的实施方案中,可直接在待测序的核酸分子的5'和/或3'端引入标签序列。在某些优选的实施方案中,可在接头中引入标签序列,然后再将接头连接至待测序的核酸分子的5'和/或3'端。标签序列可以位于接头序列的任何位置,例如接头序列的5'和/或3'端。在某些优选的实施方案中,接头包含引物结合区和标签序列。在某些进一步优选的实施方案中,所述引物结合区包含可被通用引物识别的通用接头序列,并且优选地,标签序列可位于引物结合区的3'端。
在某些优选的实施方案中,使用不同的标签序列来标记/区分来自不同来源的核酸分子。在此类实施方案中,优选地,将相同的标签序列引入相同来源的核酸分子,并且针对每一种核酸来源,使用一种独特的标签序列。随后,可将不同来源的核酸分子组合在一起,构成文库,并通过各个核酸分子上所携带的独特标签序列来鉴别/区分文库中的各个核酸分子的来源。
可通过本领域熟知的方法(例如,PCR或连接反应),将待测序的核酸分子与接头或标签序列相连接。例如,如果待测序的核酸分子的一部分序列是已知的,那么,可使用适当的PCR引物(其含有接头序列以及能够特异性识别待测序的核酸分子的序列)通过PCR对待测序的核酸分子进行扩增。所获得的扩增产物即是在5'和/或3'端引入了接头的待测核酸分子。在某些实施方案中,可使用非特异性的连接酶(例如T4DNA连接酶),将核酸分子与接头相连接。在某些实施方案中,可使用限制性内切酶对核酸分子和接头进行处理,从而使它们具有相同的粘性末端,随后可使用连接酶将具有相同的粘性末端的核酸分子和接头连接在一起,从而获得与接头相连接的核酸分子。
在某些实施方案中,在使用连接酶将核酸分子和接头连接在一起后,所获得的产物在接合处可存在切口。在这种情况下,可使用聚合酶来修复这种切口。例如,丧失3'-5'核酸外切酶活性但显示5'-3'核酸外切酶活性的DNA聚合酶可具有识别切口并修复切口的能力(Hamilton,S.C.,J.W.Farchaus and M.C.Davis.2001.DNA polymerases as engines for biotechnology.BioTechniques 31:370)。可用于这种用途的DNA聚合酶包括例如硫化氢热厌氧杆菌(Thermoanaerobacter thermosulfuricus)的polI、大肠肝菌(E.coli)的DNA polI、和噬菌体phi29。在一个优选的实施方案中,将嗜热脂肪芽孢杆菌(Bacillus stearothermophilus)的polI用于修复dsDNA的切口并且形成无缺口的dsDNA。
在某些优选的实施方案中,还可以对待测序的核酸分子进行扩增,以增加核酸分子的量或者拷贝数。用于扩增核酸分子的方法是本领域技术人员所熟知的,其典型实例为PCR。例如,可使用下述方法来扩增核酸分子:(i)需要温度循环的聚合酶链式反应(PCR)(参见例如,Saiki等人,1995.Science 230:1350-1354),连接酶链式反应(参见例如,Barany,1991.Proc.Natl.Acad.Sci.USA 88:189-193;Barringer等人,1990.Gene 89:117-122),和基于转录的扩增(参见例如,Kwoh等人,1989.Proc.Natl.Acad.Sci.USA 86:1173-1177);(ii)等温扩增系统(参见例如,Guatelli等人,1990.Proc.Natl.Acad.Sci.USA 87:1874-1878);QP复制酶系统(参见例如,Lizardi等人,1988.BioTechnology 6:1197-1202);和链置换扩增(Nucleic Acids Res.1992 Apr 11;20(7):1691-6)。在某些优选的实施方案中,通过PCR来扩增待测序的核酸分子,并且,用于进行PCR扩增的引物包含接头序列和/或标签序列。由此所产生的PCR产物将带有接头序列和/或标签序列,从而可方便地用于后续应用(例如高通量测序)。
在某些优选的实施方案中,在进行各种预处理步骤之前或之后,还可以对待测序的核酸分子进行分离和纯化。此类分离和纯化步骤可能是有利的。例如,在某些优选的实施方案中,所述分离和纯化步骤可用于获得具有适宜长度(例如50-1000bp)的待测序的核酸分子,以利于后续应用(例如高通量测序)。在某些优选的实施方案中,可利用琼脂糖凝胶电泳来分离和纯化待测序的核酸分子。在某些优选的实施方案中,可以通过大小排阻层析法或蔗糖沉降来分离和纯化待测序的核酸分子。
应当理解的是,上述的预处理步骤(例如,片段化,末端补齐,添加接头,添加标签,切口修复,扩增,分离和纯化)仅仅是示例性的,而非限制性的。本领域技术人员可以根据实际需要,对待测序的核酸分子进行各种期望的预处理,并且各个预处理步骤不受特定的顺序限制。例如,在某些实施方案中,可以先对核酸分子进行片段化并添加接头,然后再进行扩增。在另一些实施方案中,可以先对核酸分子进行扩增,然后再进行片段化和添加接头。在某些实施方案中,对核酸分子进行片段化并添加接头,而不进行扩增步骤。
在某些示例性实施方案中,在步骤(1)之前,对目的核酸分子(例如,基因组DNA)进行下述预处理:
(i)对所述目的核酸分子(例如大的核酸片段,例如基因组DNA)进行片段化,从而产生经片段化的核酸分子;
(ii)将经片段化的核酸分子与接头序列(其例如包含,能够与通用扩增引物杂交的引物结合区,能够与通用测序引物杂交的引物结合区,和/或标签序列)连接,并任选地进行分离、纯化和变性,从而产生待测序的核酸分子;
(iii)将待测序的核酸分子与支持物相连接,从而获得连接于支持物上的待测序的核酸分子。
支持物
在通常情况下,用于连接待测序的核酸分子的支持物呈固相,以便于操作。因此,在本公开内容中,“支持物”有时也被称为“固体支持物”或“固相支持物”。然而,应当理解的是,本文所提及的“支持物”并不限于固体,其还可以是半固体(例如凝胶)。
在本发明的方法中,用于连接待测序的核酸分子的支持物可以由各种合适的材料制成。此类材料包括例如:无机物、天然聚合物、合成聚合物,以及其任何组合。具体的例子包括但不限于:纤维素、纤维素衍生物(例如硝化纤维素)、丙烯酸树脂、玻璃、硅胶、聚苯乙烯、明胶、聚乙烯吡咯烷酮、乙烯基和丙烯酰胺的共聚物、与二乙烯基苯等交联的聚苯乙缔(参见例如,Merrifield Biochemistry 1964,3,1385-1390)、聚丙烯酰胺、乳胶、葡聚糖、橡胶、硅、塑料、天然海绵、金属塑料、交联的葡聚糖(例如,Sephadex TM)、琼脂糖凝胶(Sepharose TM),以及本领域技术人员已知的其他支持物。
在某些优选的实施方案中,用于连接待测序的核酸分子的支持物可以是包括惰性基底或基质(例如,载玻片、聚合物珠等)的固体支持物,所述惰性基底或基质已例如通过应用含有活性基团的中间材料而被功能化,所述活性基团允许共价连接诸如多核苷酸的生物分子。此类支持物的实例包括但不限于,负载于诸如玻璃的惰性基底上的聚丙酰胺水凝胶,特别是WO 2005/065814和US 2008/0280773中描述的聚丙烯酰胺水凝胶,其中,所述专利申请的内容通过引用以其全文并入本文。在此类实施方案中,生物分子(例如多核苷酸)可被直接地共价地连接至中间材料(例如水凝胶),而中间材料其自身可被非共价地连接至基底或基质(例如,玻璃基底)。在某些优选的实施方案中,所述支持物为表面修饰了一层亲和素、氨基、丙烯酰胺硅烷或醛基化学基团的玻片或硅片。
在本发明中,支持物或固体支持物不受限于其大小、形状和构造。在一些实施方案中,支持物或固体支持物是平面结构,例如载片、芯片、微芯片和/或阵列。此类支持物的表面可以是平面层的形式。
在一些实施方案中,支持物或其表面是非平面的,例如管或容器的内表面或外表面。在一些实施方案中,支持物或固体支持物包括微球或珠。本文中“微球”或“珠”或“颗粒”或语法上的等同物是指小的离散颗粒。合适的珠成分包括但不限于塑料、陶瓷、玻璃、聚苯乙烯、甲基苯乙烯、丙烯酸聚合物、顺磁材料、二氧化钍溶胶、碳石墨、二氧化钛、乳胶、交联葡聚糖例如Sepharose、纤维素、尼龙、交联胶束和teflon,以及本文概述的用于制备固体支持物的任何其他材料。此外,珠可以是球形的,也可以是非球形的。在一些实施方案中,可以使用球形的珠。在一些实施方案中,可以使用不规则的颗粒。此外,珠还可以是多孔的。
在某些优选的实施方案中,用于连接待测序的核酸分子的支持物为珠或孔的阵列(其也被称为芯片)。所述阵列可以使用本文概述的用于制备固体支持物的任何材料来制备,并且优选地,阵列上的珠或孔的表面进行了官能化,以利于核酸分子的连接。阵列上的珠或孔的数目不受限制。例如, 每一个阵列可包含10-10 2、10 2-10 3、10 3-10 4、10 4-10 5、10 5-10 6、10 6-10 7、10 7-10 8、10 8-10 9或更多个珠或孔。在某些示例性实施方案中,每个珠或孔的表面可连接一个或多个核酸分子。相应地,每一个阵列可连接10-10 2、10 2-10 3、10 3-10 4、10 4-10 5、10 5-10 6、10 6-10 7、10 7-10 8、10 8-10 9或更多个核酸分子。因此,此类阵列可特别有利地用于核酸分子的高通量测序。
如本领域普遍所知的,可利用多种技术来制造支持物。此类技术包括但不限于照相平板印刷术、冲压技术、塑膜技术和显微蚀刻技术。如将被本领域人员所领会的,所使用的技术将取决于支持物的组成、结构和形状。
待测序的核酸分子与支持物的连接
在本发明的方法中,可以通过本领域普通技术人员已知的任何方法将待测序的核酸分子与支持物连接(例如,共价或非共价连接)。例如,可通过共价连接,或通过不可逆的被动吸附,或通过分子间的亲和力(例如,生物素与亲和素之间的亲和力),将待测序的核酸分子与支持物相连接。然而优选的是,待测序的核酸分子与支持物之间的连接足够强,从而核酸分子不会因各种反应(例如聚合反应、生物正交切割反应和生物正交连接反应)所使用的条件以及水或缓冲溶液的洗涤而脱离支持物。
例如,在某些优选的实施方案中,待测序的核酸分子的5'端携带有能够将该核酸分子共价连接于支持物的装置,例如化学修饰的官能团。此类官能团的实例包括但不限于磷酸基团、羧酸分子、醛分子、硫醇、羟基、二甲氧基三苯甲基(DMT)或氨基。
例如,在某些优选的实施方案中,待测序的核酸分子的5'端可用化学官能团(例如磷酸、硫醇或氨基基团)进行修饰,并且支持物(例如多孔玻璃珠)用氨基-烷氧基硅烷(例如氨基丙基三甲氧基硅烷、氨基丙基三乙氧基硅烷、4-氨基丁基三乙氧基硅烷等)进行衍生,从而可通过活性基团之间的化学反应将核酸分子共价连接在支持物上。在某些优选的实施方案中,待测序的核酸分子的5'端可用羧酸或醛基进行修饰,并且支持物(例如乳胶珠)用肼进行衍生,从而可通过活性基团之间的化学反应将核酸分子共价连接在支持物上(Kremsky等人,1987)。
另外,还可以采用交联剂将目的核酸分子与支持物相连接。此类交联剂包括例如,琥珀酰酐、苯基二异硫氰酸盐(Guo等人,1994)、马来酸酐(Yang等人,1998)、1-乙基-3-(3-二甲基氨基丙基)-碳二亚胺盐酸盐(EDC)、间-马来酰亚胺基苯甲酸-N-羟基琥珀酰亚胺酯(MBS)、N-琥珀酰亚胺基[4-碘代乙酰基]氨基苯甲酸(SIAB)、4-(N-马来酰亚胺基甲基)环己烷-1-羧酸琥珀酰亚胺(SMCC)、N-γ-马来酰亚胺基丁酰氧基-琥珀酰亚胺酯(GMBS)、4-(p-马来酰亚胺基苯基)丁酸琥珀酰亚胺(SMPB),以及相应的硫代化合物(水溶性的)。
此外,还可用双功能交联剂(例如同源双功能交联剂和异源双功能交联剂)对支持物进行衍生,从而提供经修饰的功能化表面。随后,具有5'-磷酸、硫醇或氨基基团的核酸分子即能够与功能化表面相互作用,形成核酸和支持物之间的共价连接。大量的双功能交联剂及其使用方法是本领域公知的(参见例如,Pierce Catalog and Handbook,第155-200页)。
引物、聚合酶和碱基衍生物
在某些优选的实施方案中,在步骤(2)中,向所述待测序的核酸分子添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及四种碱基衍生物,从而形成含有溶液相和固相的反应体系。
在本发明的方法中,引物可以是任何长度,并且可以包含任何序列或任何碱基,只要它能够特异性地退火到目标核酸分子的一个区域上。换言之,在本发明的方法中,引物不受限于其长度、结构和组成。例如,在一些示例性实施方案中,所述引物的长度可以为5-50bp,例如5-10、10-15、15-20、20-25、25-30、30-35、35-40、40-45、45-50bp。在一些示例性实施方案中,所述引物能够形成二级结构(例如发夹结构)。在一些示例性实施方案中,所述引物不形成任何二级结构(例如发夹结构)。在一些示例性实施方案中,所述引物可包含天然存在或非天然存在的核苷酸。在一些示例性实施方案中,所述引物包含天然存在的核苷酸或者由天然存在的核苷酸组成。在一些示例性实施方案中,所述引物包含经修饰的核苷酸,例如锁核酸(LNA)。在一些示例性实施方案中,所述引物能够在严紧条件(例如中度严紧条件或高度严紧条件)下与目的核酸分子杂交。在一些示例性实施方案中,所述引物具有与目的核酸分子中的靶序列完全互补的序列。在一些示例性实施方案中,所述引物与目的核酸分子中的靶序列是部分互补的(例如,存在错配)。在一些示例性实施方案中,所述引物包含通用引物序列。在一些示例性实施方案中,所述待测序的核酸分子包含接头,并且所述接头包含能够与通用引物杂交的序列,并且所使用的引物为通用引物。
在本发明的方法中,可使用各种已知的聚合酶来进行核苷酸聚合反应。在一些示例性实施方案中,所述聚合酶能够以DNA为模板合成新的DNA链(例如DNA聚合酶)。在一些示例性实施方案中,所述聚合酶能够以RNA为模板合成新的DNA链(例如反转录酶)。在一些示例性实施方案中,所述聚合酶能够以DNA或RNA为模板合成新的RNA链(例如RNA聚合酶)。因此,在某些优选的实施方案中,所述聚合酶选自DNA聚合酶,RNA聚合酶,和反转录酶。可根据实际需要,选择合适的聚合酶来进行核苷酸聚合反应。在某些优选的实施方案中,所述聚合反应为聚合酶链式反应(PCR)。在某些优选的实施方案中,所述聚合反应为反转录反应。
此外,如上文所描述的,在本发明的方法中,可重复进行步骤(4)-(7)。因此,在本发明的某些优选实施方案中,可进行一轮或多轮的核苷酸聚合反应。换言之,在本发明的某些优选实施方案中,可在一个或多个步骤中进行核苷酸聚合反应。在这种情况下,每一轮核苷酸聚合反应可以使用相同或不同的聚合酶。例如,可在第一轮核苷酸聚合反应中使用第一种DNA聚合酶,并且可在第二轮核苷酸聚合反应中使用第二种DNA聚合酶。然而,在某些示例性实施方案中,在所有的核苷酸聚合反应中,使用相同的聚合酶(例如相同的DNA聚合酶)。
在本发明的方法中,步骤(2)中所使用的四种化合物分别为核苷酸A、(T/U)、C和G的衍生物。在某些示例性实施方案中,所述的四种化合物分别为核糖或脱氧核糖核苷酸A、T、C和G的衍生物。在某些示例性实施方案中,所述的四种化合物分别为核糖或脱氧核糖核苷酸A、U、C和G的衍生物。特别有利地,所述的四种化合物在核苷酸聚合反应过程中,彼此之间不会发生化学反应。
此外,所述的四种化合物具有碱基互补配对能力。例如,当所述化合物为核苷酸A的衍生物时,其将能够与碱基T或U配对。当所述化合物为核苷酸T或U的衍生物时,其将能够与碱基A配对。当所述化合物为核苷酸C的衍生物时,其将能够与碱基G配对。当所述化合物为核苷酸G的衍生物时,其将能够与碱基C配对。由此,在步骤(4)中,聚合酶(例如DNA聚合酶)将根据碱基互补配对原则,将能够与模板核酸中相应位置处的碱基互补配对的化合物并入生长的核酸链的3'端。相应地,在通过荧光信号确定并入生长的核酸链3'端的化合物的类型后,可通过碱基互补配对原则,确定模板核酸中相应位置处的碱基的类型。例如,如果并入生长的核酸链3'端的化合物被确定为核苷酸A的衍生物,那么即可确定模板核酸中相应位置处的碱基为T或U。如果并入生长的核酸链3'端的化合物被确定为核苷酸T或U的衍生物,那么即可确定模板核酸中相应位置处的碱基为A。如果并入生长的核酸链3'端的化合物被确定为核苷酸C的衍生物,那么即可确定模板核酸中相应位置处的碱基为G。如果并入生长的核酸链3'端的化合物被确定为核苷酸G的衍生物,那么即可确定模板核酸中相应位置处的碱基为C。
在某些优选实施方案中,所述四种化合物的核糖或脱氧核糖的3'位置处的羟基(-OH)是受保护的。换言之,在某些优选实施方案中,在所述四种化合物的核糖或脱氧核糖的3'位置处的羟基(-OH)被保护基团保护,从而,它们能够终止聚合酶(例如DNA聚合酶)的聚合作用。例如,当所述四种化合物中的任一种被引入生长的核酸链的3'端时,由于该化合物的核糖或脱氧核糖的3'位置处不存在游离的羟基(-OH),聚合酶将无法继续进行下一轮的聚合反应,从而聚合反应将被终止。在这种情况下,在每一轮的聚合反应中,将有且只有一个碱基被并入生长的核酸链。
特别有利地,所述四种化合物的核糖或脱氧核糖的3'位置处的保护基团能够被去除。在某些优选的实施方案中,在步骤(7)之后(例如,在步骤(8)中),将所述保护基团去除,并转变为游离的羟基(-OH)。随后,可使用聚合酶和所述四种化合物对生长的核酸链进行下一轮的聚合反应,并再次引入一个碱基。
因此,步骤(2)中所使用的四种化合物具有可逆终止特性:当它们被并入生长的核酸链的3'端(例如在步骤(4)中)时,它们将终止聚合酶继续进行聚合作用,终止生长的核酸链的进一步延伸;并且,在它们所包含的保护基团被去除后,聚合酶将能够继续对生长的核酸链进行聚合作用(例如在步骤(10)中),继续延伸核酸链。
荧光信号和荧光基团
在本发明的方法中,可使用任何能发出荧光信号的材料(例如,荧光基团)。荧光基团的实例包括但不限于各种已知的荧光标记物,例如AF532,ALEX-350,FAM,VIC,TET,CAL
Figure PCTCN2017118928-appb-000011
Gold 540,JOE,HEX,CAL Fluor Orange 560,TAMRA,CAL Fluor Red 590,ROX,CAL Fluor Red 610,TEXAS RED,CAL Fluor Red 635,Quasar 670,CY3,CY5,CY5.5,Quasar 705等。此类荧光基团及其检测方法是本领域公知的,并且可根据实际需要进行选择。
不同的荧光基团可能会在同样的或接近的激发条件下有相同或实质相同的发射光谱,从而发出 相同或实质相同的荧光信号。例如,CY3能够在波长约550nm的激发光条件下,发出波长约560nm的荧光,AF532能够在波长约530nm的激发光条件下,发出波长约555nm的荧光。选择合适的激发光条件,可以让二者产生相同或实质相同的发光光谱。本发明中,发光光谱实质相同是指,在同一激发条件下,发射光谱的最大发射波长接近(例如相差小于20nm),因此在光学滤波片上给出相同的信号被认为是实质相同的光谱。
在某些实施方案中,荧光基团可以是结合配对的一个成员,和/或能够发生生物正交反应(例如生物正交连接反应或者生物正交切割反应)。例如,荧光基团Cy3作为结合配对的一个成员,可以与结合配对的另一成员Cy3抗体发生特异性结合。
并入生长的核酸链的化合物的确定
在本发明的方法中,仅通过一种荧光基团(或者能发出相同荧光信号的不同荧光基团)来鉴别/确定并入生长的核酸链的化合物的类型。为此目的,在本发明的方法中,在每一轮聚合反应之后,对双链体或生长的核酸链进行了两次的荧光信号检测。简言之,在本发明的方法中,首先通过使用聚合酶,以待测序的核酸分子为模板,按照碱基互补配对原则,将所述四种化合物中的一种并入生长的核酸链的3'端(步骤4);随后,若第四化合物本身能够发出荧光信号,则对所述生长的核酸链进行第一次检测,以确定其是否发出荧光信号;若第四化合物不携带荧光基团,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物发出与第二化合物相同的荧光信号(步骤5);检测后,对所述生长的核酸链进行处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物发出与第二化合物相同的荧光信号,并且能够去除第四化合物的荧光信号(步骤6);然后,对所述生长的核酸链进行第二次检测,以确定其是否发出荧光信号(步骤7)。根据两次荧光信号检测的结果,可以准确地确定并入生长的核酸链的3'端的化合物的类型。
特别地,如果在步骤(4)中,第一化合物被并入生长的核酸链的3'端,那么,由于第一化合物本身不携带荧光基团,并且不受步骤(6)中的所述处理的影响,因此,在步骤(5)和(7)中将检测不到荧光信号。也即,如果在步骤(5)和(7)中都检测不到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为第一化合物。
如果在步骤(4)中,第二化合物被并入生长的核酸链的3'端,那么,由于第二化合物本身携带荧光基团,并且不受步骤(6)中的所述处理的影响,因此,在步骤(5)和(7)中将都检测到荧光信号。也即,如果在步骤(5)和(7)中都检测到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为第二化合物。
如果在步骤(4)中,第三化合物被并入生长的核酸链的3'端,那么,(i)由于第三化合物本身不携带荧光基团,因此,在步骤(5)中将检测不到荧光信号;并且(ii)由于第三化合物经历了步骤(6)的所述处理,而能够发出荧光信号,因此,在步骤(7)中将检测到荧光信号。也即,如果在步骤(5)中检测不到荧光信号且在步骤(7)中检测到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为第三化合物。
如果在步骤(4)中,第四化合物被并入生长的核酸链的3'端,那么,(i)由于第四化合物本身携带荧光基团,或者在步骤(5)中经过处理而携带荧光基团,因此,在步骤(5)中将检测到荧光信号;并且(ii)由于第四化合物经历步骤(6)的所述处理,而丧失了荧光信号,因此,在步骤(7)中将检测不到荧光信号。也即,如果在步骤(5)中检测到荧光信号且在步骤(7)中检测不到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为第四化合物。
因此,在某些优选的实施方案中,本发明的方法还包括,在步骤(7)之后,根据步骤(5)和(7)的检测结果来确定在步骤(4)中并入生长的核酸链的3'端的化合物的类型,其中,
当步骤(5)和(7)的检测结果均为,所述双链体或所述生长的核酸链不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为第一化合物;
当步骤(5)和(7)的检测结果均为,所述双链体或所述生长的核酸链发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为第二化合物;
当步骤(5)的检测结果为所述双链体或所述生长的核酸链不发出所述荧光信号,且步骤(7)的检测结果为所述双链体或所述生长的核酸链发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为第三化合物;并且
当步骤(5)的检测结果为所述双链体或所述生长的核酸链发出所述荧光信号,且步骤(7)的检测结果为所述双链体或所述生长的核酸链不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为第四化合物。
在某些优选的实施方案中,本发明的方法还包括,在步骤(7)之后,基于碱基互补配对原则,根据步骤(4)中并入生长的核酸链的3'端的化合物的类型,确定待测序的核酸分子中相应位置处的碱基类型。例如,如果并入生长的核酸链3'端的化合物被确定为第一化合物(例如核苷酸A的衍生物),那么即可确定待测序的核酸分子中相应位置处的碱基为能够与第一化合物配对的碱基(例如T或U)。
更具体而言,如果并入生长的核酸链3'端的化合物被确定为核苷酸A的衍生物,那么即可确定待测序的核酸分子中相应位置处的碱基为T或U。如果并入生长的核酸链3'端的化合物被确定为核苷酸T或U的衍生物,那么即可确定待测序的核酸分子中相应位置处的碱基为A。如果并入生长的核酸链3'端的化合物被确定为核苷酸C的衍生物,那么即可确定待测序的核酸分子中相应位置处的碱基为G。如果并入生长的核酸链3'端的化合物被确定为核苷酸G的衍生物,那么即可确定待测序的核酸分子中相应位置处的碱基为C。
双链体或生长的核酸链的处理
在本发明方法的某些优选实施方案中,每一轮的聚合反应可涉及两次的荧光信号检测,以及对双链体或生长的核酸链进行的两次或三次处理,其中,步骤(6)中的处理可用于改变第三化合物和第四化合物的荧光信号(从而便于区分/鉴别并入生长的核酸链3'端的化合物的类型);步骤(8)中的处理可用于去除并入生长的核酸链3'端的化合物中的核糖或脱氧核糖的3'位置处的保护基团(从而可开始新一轮的聚合反应),并去除所述双链体或生长的核酸链上可能携带的荧光信号(从而可避免对后续的荧光检测造成干扰);任选地,若第四化合物本身不能发出荧光信号,则步骤(5)中包含使第四化合物带上荧光基团的处理。
可根据所使用的四种化合物的结构和类型,设计和选自合适的处理方式。例如,在某些示例性实施方案中,可在所述四种化合物的一种或多种中引入能够进行生物正交切割反应和/或生物正交连接反应的反应性基团,以便于在步骤(6)中控制(例如,维持或改变)所述四种化合物发出荧光信号的能力。在某些示例性实施方案中,可在所述四种化合物的一种或多种中引入结合配对的成员,以便于在步骤(6)中控制(例如,维持或改变)所述四种化合物发出荧光信号的能力。
例如,在某些示例性实施方案中,可在第三化合物中引入能够发生生物正交连接反应的反应性基团,并在步骤(6)中通过生物正交连接反应来在第三化合物中引入荧光基团,使其具有发出荧光信号的能力。在某些示例性实施方案中,可在第三化合物中引入结合配对的一个成员,并在步骤(6)中通过所述成员与该结合配对的另一个成员(其携带荧光基团)之间的特异性相互作用来在第三化合物中引入荧光基团,使其具有发出荧光信号的能力。在某些示例性实施方案中,可在第四化合物中引入能够发生生物正交切割反应的反应性基团,并在步骤(6)中通过生物正交切割反应来将第四化合物中的荧光基团切除,使其丧失发出荧光信号的能力。在某些示例性实施方案中,可在第四化合物中引入结合配对的一个成员,并在步骤(6)中通过所述成员与该结合配对的另一个成员(其携带淬灭基团)之间的特异性相互作用来在第四化合物中引入能够淬灭荧光的淬灭基团,使其丧失发出荧光信号的能力。在某些示例性实施方案中,可在所述四种化合物中引入能够进行生物正交切割反应的反应性基团,以便于在步骤(8)中去除核糖或脱氧核糖的3'位置处的保护基团以及可能存在的荧光信号。
洗涤步骤
在本发明的方法中,可根据需要,增加洗涤步骤。可在任何期望的阶段,增加所述洗涤步骤,并且任选地,所述洗涤步骤可进行一次或多次。
例如,在步骤(5)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除游离的(即,未并入生长的核酸链的)携带荧光基团的化合物,尽可能减少非特异性的荧光信号。
类似地,在步骤(7)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除步骤(6)中应用的试剂(其可能携带荧光),从而尽可能减少非特异性的荧光信号。
类似地,在步骤(9)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除步骤(8)中应用的试剂以及产生的产物(其可能携带荧光),从而尽可能减少非特异性的荧光信号,并且尽可能避免对后续的聚合反应造成不利的影响。
可使用各种合适的洗涤溶液来进行洗涤步骤。此类洗涤溶液的实例包括但不限于,磷酸盐缓冲液,柠檬酸盐缓冲液,Tris-HCl缓冲液,醋酸盐缓冲液,碳酸盐缓冲液等等。可根据实际需要来选择 合适的洗涤溶液(包括合适的成分,浓度,离子强度,pH值等),这在本领域技术人员的能力范围之内。
下文详细描述了本发明方法的两种示例性实施方案。然而,应当理解的是,下文所详细描述的实施方案仅仅是示例性的,而并非是限制性的。本领域技术人员根据本文公开内容的详细教导,可对下文详细描述的实施方案进行修改和修饰,并且本申请意欲涵盖所有的此类修改和修饰。
示例性实施方案1
在某些示例性实施方案中,可通过使用能够进行生物正交切割反应和/或生物正交连接反应的反应性基团,在步骤(6)中控制(例如,维持或改变)所述四种化合物发出荧光信号的能力;并且优选地,可通过使用能够进行生物正交切割反应的反应性基团,在步骤(8)中实现所述保护基团和荧光信号的去除。例如,在某些示例性实施方案中,所述第一、第二、第三和第四化合物可分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
Figure PCTCN2017118928-appb-000012
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 5b各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为能够进行第一生物正交连接反应的反应性基团;
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
Dye表示能够发出荧光信号的荧光基团;
R 7a为能够发出荧光信号的荧光基团(Dye 1),或者能够进行第二生物正交连接反应的反应性基 团,或者结合配对的一个成员;
并且,Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 5b与R 7a之间还存在能够进行第三生物正交连接反应的反应性基团R 8
在此类示例性实施方案中,第四化合物本身可以携带与第二化合物能够发出相同荧光信号的荧光基团,也可以不携带荧光基团,而是在步骤(5)中,通过与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同的荧光基团)的试剂(例如结合配对的另一个成员,或者能够与R 7a进行第二生物正交连接反应的化合物)发生特异性相互作用/特异性结合或者发生第二生物正交连接反应,而将荧光基团引入化合物四,并能够发出与第二化合物相同的荧光信号。进一步地,可通过使R 5a与携带荧光基团(例如与第二化合物相同的荧光基团,或者与第二化合物的荧光基团结构不同但具有相同或实质相同的发射光谱的荧光基团)的试剂发生第一生物正交连接反应,从而使得第三化合物携带荧光基团;并且,(i)能够使第四化合物中的R 5b发生生物正交切割反应,从而去除第四化合物中的荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生第三正交连接反应,从而淬灭第四化合物中的荧光信号。因此,在某些优选的实施方案中,在步骤(6)中,使所述双链体或所述生长的核酸链经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使R 5a与携带荧光基团(例如与第二化合物相同的荧光基团,或者与第二化合物的荧光基团结构不同但具有相同或实质相同的发射光谱)的试剂发生第一生物正交连接反应(从而将所述试剂中携带的荧光基团引入第三化合物,使其携带荧光基团,并发出荧光信号);并且能够使R 5b发生生物正交切割反应(从而去除第四化合物中的荧光基团,使其不再发出荧光信号),或者能够使第四化合物中的R 8与携带淬灭基团的化合物发生第二正交连接反应,从而淬灭第四化合物中的荧光基团发出的荧光信号。在此类示例性实施方案中,在步骤(6)的处理之前,第一化合物和第三化合物(如果存在的话)不发出荧光,且第二化合物和第四化合物(如果存在的话)发出荧光;并且,在步骤(6)的处理之后,第一化合物(如果存在的话)仍然不发出荧光,第二化合物(如果存在的话)仍然发出荧光,第三化合物(如果存在的话)改变为发出荧光,且第四化合物(如果存在的话)改变为不发出荧光。因此,可通过两次荧光信号检测的结果来确定并入生长的核酸链3'端的化合物的类型。
进一步,在此类示例性实施方案中,可通过使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物中的核糖或脱氧核糖的3'位置处的保护基团被去除,以及所述双链体或生长的核酸链上的荧光基团(如果存在的话)被去除。因此,在某些优选的实施方案中,在步骤(8)中,使所述双链体或所述生长的核酸链经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b发生生物正交切割反应。在此类示例性实施方案中,在步骤(8)的处理之后,生长的核酸链将不具有任何荧光基团,并且其3'端核苷酸的核糖或脱氧核糖的3'位置处将具有游离的羟基,所述游离的羟基能够用于起始下一轮的聚合反应。
因此,在某些优选的实施方案中,本发明的方法包括下述步骤:
(1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
(2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
Figure PCTCN2017118928-appb-000013
Figure PCTCN2017118928-appb-000014
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 5b各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为能够进行第一生物正交连接反应的反应性基团;
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
Dye表示能够发出荧光信号的荧光基团;
R 7a为能够发出荧光信号的荧光基团(Dye 1),或者能够进行第二生物正交连接反应的反应性基团,或者结合配对的一个成员;
并且,Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 5b与R 7a之间还存在能够进行第三生物正交连接反应的反应性基团R 8
(3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
(4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
(5)(i)第四化合物能够发出与第二化合物相同的荧光信号,R 7a为Dye 1,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
(ii)第四化合物不能发出荧光信号,R 7a为能够进行第二生物正交连接反应的反应性基团,或者结合配对的一个成员,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 7a与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂(例如结合配对的另一个成员,或者能够与R 7a进行第二生物正交连接反应的化合物)发生特异性相互作用/特异性结合或者发生第二生物正交连接反应;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
所述携带荧光基团的结合配对的另一个成员具有下述结构:R 7b-L-Dye 1;其中,R 7b为结合配对的另一个成员,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同的发射光谱;或者
所述携带荧光基团的能够与R 7a进行第二生物正交连接反应的化合物具有下述结构:R 7b-L-Dye 1;其中,R 7b为能够与R 7a进行第二生物正交连接反应的基团,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同的发射光谱;
(6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的结构不同但发射光谱相同或实质相同的荧光基团) 的试剂发生第一生物正交连接反应,从而将所述试剂中的荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使第四化合物中的R 5b发生生物正交切割反应,从而去除第四化合物中的荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生第三正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1发出的荧光信号;和
(7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号。
在某些优选的实施方案中,所述方法还包括下述步骤:
(8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a或R 4b连接的荧光基团),如果存在的话;
(9)移除前一步骤的反应体系的溶液相;
(10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(11)重复进行步骤(8)-(10)一次或多次。
在某些示例性实施方案中,如果在步骤(4)中,式(I)化合物被并入生长的核酸链的3'端,那么,由于式(I)化合物本身不携带荧光基团,并且其在步骤(6)未发生任何反应,因此,在步骤(5)和(7)中将检测不到荧光信号。也即,如果在步骤(5)和(7)中都检测不到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(I)化合物。
如果在步骤(4)中,式(II)化合物被并入生长的核酸链的3'端,那么,由于式(II)化合物本身携带荧光基团,并且其在步骤(6)未发生任何反应,因此,在步骤(5)和(7)中将都检测到荧光信号。也即,如果在步骤(5)和(7)中都检测到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(II)化合物。
如果在步骤(4)中,式(III)化合物被并入生长的核酸链的3'端,那么,(i)由于式(III)化合物本身不携带荧光基团,因此,在步骤(5)中将检测不到荧光信号;并且(ii)由于式(III)化合物在步骤(6)中与携带荧光基团的试剂发生了生物正交连接反应,导致荧光基团被引入生长的核酸链,因此,在步骤(7)中将检测到荧光信号。也即,如果在步骤(5)中检测不到荧光信号且在步骤(7)中检测到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(III)化合物。
如果在步骤(4)中,式(IV)化合物被并入生长的核酸链的3'端,那么,(i)由于式(IV)化合物本身携带荧光基团或在步骤(5)中经过处理而携带荧光基团,因此,在步骤(5)中将检测到荧光信号;并且(ii)由于式(IV)化合物在步骤(6)中发生了生物正交切割反应或发生第三正交连接反应,而丧失了荧光基团或者荧光信号被淬灭,因此,在步骤(7)中将检测不到荧光信号。也即,如果在步骤(5)中检测到荧光信号且在步骤(7)中检测不到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(IV)化合物。
因此,在某些优选的实施方案中,本发明的方法还包括,在步骤(7)之后,根据步骤(5)和(7)的检测结果来确定在步骤(4)中并入生长的核酸链的3'端的化合物的类型,其中,
当步骤(5)和(7)的检测结果均为,所述双链体或所述生长的核酸链不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(I)化合物;
当步骤(5)和(7)的检测结果均为,所述双链体或所述生长的核酸链发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(II)化合物;
当步骤(5)的检测结果为所述双链体或所述生长的核酸链不发出所述荧光信号,且步骤(7)的检测结果为所述双链体或所述生长的核酸链发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(III)化合物;并且
当步骤(5)的检测结果为所述双链体或所述生长的核酸链发出所述荧光信号,且步骤(7)的检测结果为所述双链体或所述生长的核酸链不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(IV)化合物。
在某些优选的实施方案中,本发明的方法还包括,在步骤(7)之后,基于碱基互补配对原则,根据步骤(4)中并入生长的核酸链的3'端的化合物的类型,确定待测序的核酸分子中相应位置处的碱基类型。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物在核苷酸聚合反应过程中,彼此之间不会发生化学反应。
在某些优选的实施方案中,Base1和Base2为嘌呤碱基,并且Base3和Base4为嘧啶碱基。在某些优选的实施方案中,Base1为碱基G,Base2为碱基A,Base3为碱基C,Base4为碱基T或U。在某些优选的实施方案中,Base1为碱基G,Base2为碱基A,Base3为碱基T或U,Base4为碱基C。在某些优选的实施方案中,Base1为碱基A,Base2为碱基G,Base3为碱基C,Base4为碱基T或U。在某些优选的实施方案中,Base1为碱基A,Base2为碱基G,Base3为碱基T或U,Base4为碱基C。
在某些优选的实施方案中,Base1和Base2为嘧啶碱基,并且Base3和Base4为嘌呤碱基。在某些优选的实施方案中,Base1为碱基C,Base2为碱基T或U,Base3为碱基G,Base4为碱基A。在某些优选的实施方案中,Base1为碱基C,Base2为碱基T或U,Base3为碱基A,Base4为碱基G。在某些优选的实施方案中,Base1为碱基T或U,Base2为碱基C,Base3为碱基G,Base4为碱基A。在某些优选的实施方案中,Base1为碱基T或U,Base2为碱基C,Base3为碱基A,Base4为碱基G。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物具有相同的R 1。在某些优选的实施方案中,R 1各自独立地为-H。在某些优选的实施方案中,R 1各自独立地为单磷酸基团(-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为二磷酸基团(-PO 3H-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为三磷酸基团(-PO 3H-PO 3H-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2)。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物具有相同的R 2。在某些优选的实施方案中,R 2各自独立地为-H。在某些优选的实施方案中,R 2各自独立地为-OH。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 5a、R 5b各自独立地能够发生生物正交切割或连接反应。如本文中所使用的,表述“各自独立地能够发生生物正交切割或连接反应”意指,所提及的反应性基团、试剂、或分子等各自都能够进行生物正交切割或连接反应,而在彼此之间不互相干扰或影响。例如,表述“R 3a和R 3b各自独立地能够发生生物正交切割或连接反应”意指,R 3a和R 3b均能够发生生物正交切割或连接反应,并且R 3a不影响R 3b的生物正交切割或连接反应的进行,R 3b不影响R 3a的生物正交切割或连接反应的进行。
在某些示例性实施方案中,R 3a为能够在第一试剂存在的条件下发生生物正交切割反应的第一反应性基团;R 3b为能够在第二试剂存在的条件下发生生物正交切割反应的第二反应性基团;R 3c为能够在第三试剂存在的条件下发生生物正交切割反应的第三反应性基团;R 3d为能够在第四试剂存在的条件下发生生物正交切割反应的第四反应性基团;R 4a为能够在第五试剂存在的条件下发生生物正交切割反应的第五反应性基团;R 4b为能够在第六试剂存在的条件下发生生物正交切割反应的第六反应性基团;R 5a为能够在第七试剂存在的条件下发生生物正交连接反应的第七反应性基团;且,R 5b为能够在第八试剂存在的条件下发生生物正交切割反应的第八反应性基团。
优选地,在此类实施方案中,在步骤(6)中,可添加第七试剂和第八试剂,从而使得式(III)化合物中的R 5a(如果存在的话)发生第一生物正交连接反应,并且使得式(IV)化合物中的R 5b(如果存在的话)发生生物正交切割反应。例如,第七试剂可以包含化合物M,所述化合物M携带与第二化合物和第四化合物相同的荧光基团(或者结构不同但发光光谱相同或实质相同的荧光基团),并且所述化合物M能够与R 5a发生第一生物正交连接反应,并由此将化合物M中的荧光基团引入式(III)化合物。此外,第八试剂能够使式(IV)化合物中的R 5b发生生物正交切割反应,并由此将式(IV)化合物中的R 5b以及与其相连接的荧光基团去除。在此类实施方案中,还特别优选地,在步骤(6)中,第七试剂不与第一化合物和第二化合物发生化学反应,并且进一步优选地,第八试剂不与第一化合物和第二化合物发生化学反应。因此,在某些优选实施方案中,在步骤(6)中,可添加第七试剂和第八试剂,从而形成含有溶液相和固相的反应体系,其中,第七试剂包含化合物M,所述化合物M携带与第二化合物和第四化合物相同的荧光基团(或者结构不同但发光光谱相同或实质相同的荧光基团),并且所述化合物M能够与R 5a发生生物正交连接反应,从而将化合物M中的荧光基团引入第三化合物;然后,在允许化合物M与R 5a发生生物正交连接反应,且允许R 5b发生生物正交切割反应的条件下,将所述双链体与第七试剂和第八试剂进行温育。
还优选地,在此类实施方案中,在步骤(8)中,可添加第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂,从而使得R 3a、R 3b、R 3c、R 3d、R 4a、R 4b(如果存在的话)各自发生生物正交切割反应。由此,R 3a、R 3b、R 3c、R 3d(如果存在的话)将被从核糖或脱氧核糖的3'位置去除(换言之,-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)将被转变为游离的羟基),并且R 4a和与其相连接的荧光基团(如果存在的话)以及R 4b和与其相连接的荧光基团(如果存在的话)也将被去除。 由此,在步骤(8)之后,所述生长的核酸链将不携带所述荧光基团,并且在3'端具有游离的羟基,能够用于进行下一轮的聚合反应。因此,在某些优选实施方案中,在步骤(8)中,添加第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂,从而形成含有溶液相和固相的反应体系,并在允许R 3a、R 3b、R 3c、R 3d、R 4a、R 4b各自发生生物正交切割反应的条件下,将所述双链体与所述第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂进行温育。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂和第四试剂是相同的试剂。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是相同的反应性基团。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂和第四试剂是相同的试剂。也即,在步骤(8)中,在所述相同的试剂(即,第一试剂)的存在下,所述相同的R 3a、R 3b、R 3c和R 3d(如果存在的话)将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些优选的实施方案中,R 4a和R 4b能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第五试剂和第六试剂是相同的试剂。
在某些优选的实施方案中,R 4a和R 4b是相同的反应性基团。在这种情况下,优选地,在步骤(8)中,第五试剂和第六试剂是相同的试剂。也即,在步骤(8)中,在所述相同的试剂(即,第五试剂)的存在下,所述相同的R 4a和R 4b(如果存在的话)将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a和R 4b能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂。也即,在步骤(8)中,仅需添加所述相同的试剂(即,第一试剂),并且在所述相同的试剂(即,第一试剂)的存在下,所述R 3a、R 3b、R 3c、R 3d、R 4a和R 4b(如果存在的话),将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些示例性实施方案中,R 7a为能够发出荧光信号的荧光基团Dye 1,Dye 1具有与Dye相同的结构,或者结构不同但具有相同的发射光谱,因此第四化合物本身能够发出与第二化合物相同的荧光信号。
在某些示例性实施方案中,第四化合物本身不携带荧光基团,R 7a为能够发生第二生物正交连接反应的反应性基团。在此类实施方案中,步骤(5)包括,添加第九试剂,从而使得式(IV)化合物中的R 7a(如果存在的话)发生第二生物正交连接反应。例如,第九试剂可以包含化合物M’,其结构为R 7b-L-Dye 1,其中,R 7b为能够与R 7a进行第二生物正交连接反应的基团,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同的发射光谱。
在某些示例性实施方案中,第四化合物本身不携带荧光基团,R 7a为结合配对的一个成员。在此类实施方案中,步骤(5)包括,添加第九试剂,从而使得式(IV)化合物中的R 7a(如果存在的话)与所述结合配对的另一个成员发生特异性作用和/或特异性结合。例如,第九试剂可以包含化合物M”,其结构为R 7b-L-Dye 1,其中,R 7b为所述结合配对的另一个成员,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同的发射光谱。
在某些示例性实施方案中,第四化合物的R 5b与R 7a之间还存在能够进行第三生物正交连接反应的反应性基团R 8。在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 5a、R 8各自独立地能够发生生物正交切割或连接反应。在某些示例性实施方案中,R 8a能够在第十试剂存在的条件下发生第三生物正交连接反应。
优选地,在此类实施方案中,在步骤(6)中,可添加第七试剂和第十试剂,从而使得式(III)化合物中的R 5a(如果存在的话)发生第一生物正交连接反应,并且使得式(IV)化合物中的R 8(如果存在的话)发生第三生物正交连接反应。例如,第七试剂可以包含化合物M,所述化合物M携带与第二化合物和第四化合物相同的荧光基团(或者结构不同但发光光谱相同或实质相同的荧光基团),并且所述化合物M能够与R 5a发生第一生物正交连接反应,并由此将化合物M中的荧光基团引入式(III)化合物。此外,第十试剂能够使式(IV)化合物中的R 8发生第三生物正交连接反应,并由此将式(IV)化合物中的荧光信号淬灭。在此类实施方案中,还特别优选地,在步骤(6)中,第七试剂不与第一化合物和第二化合物发生化学反应,并且进一步优选地,第十试剂不与第一化合物和第二化合物发生化学反应。因此,在某些优选实施方案中,在步骤(6)中,可添加第七试剂和第十试剂,从而形成含 有溶液相和固相的反应体系,其中,第七试剂包含化合物M,所述化合物M携带与第二化合物和第四化合物相同的荧光基团(或者结构不同但发光光谱相同或实质相同的荧光基团),并且所述化合物M能够与R 5a发生第一生物正交连接反应,从而将化合物M中的荧光基团引入第三化合物;第十试剂包含化合物M”’,所述化合物M”’携带淬灭剂,并且所述化合物M”’能够与R 8发生第三生物正交连接反应,从而将化合物M”’中的淬灭剂引入第四化合物;然后,在允许化合物M”’与R 5a发生第一生物正交连接反应,且允许M4与R 8发生第三生物正交连接反应的条件下,将所述双链体与第七试剂和第十试剂进行温育。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d各自独立地选自下列基团:-CH 2CH=CH 2、-CH 2N 3、-C 3-8环烯基(例如-C 3环烯基、-C 4环烯基、-C 5元环烯基、-C 6环烯基、-C 7环烯基或-C 8环烯基)。在某些优选的实施方案中,所述-C 3-8环烯基选自-C 3环烯基和-C 8环烯基。在某些优选的实施方案中,所述-C 3-8环烯基为
Figure PCTCN2017118928-appb-000015
在某些优选的实施方案中,所述-C 3-8环烯基为
Figure PCTCN2017118928-appb-000016
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是相同的反应性基团,并且选自下列基团:-CH 2CH=CH 2、-CH 2N 3、C 3-8环烯基(例如C 3环烯基、C 4环烯基、C 5元环烯基、C 6环烯基、C 7环烯基或C 8环烯基)。在某些优选的实施方案中,所述C 3-8环烯基选自C 3环烯基和C 8环烯基。在某些优选的实施方案中,所述C 3-8环烯基为
Figure PCTCN2017118928-appb-000017
在某些优选的实施方案中,所述C 3-8环烯基为
Figure PCTCN2017118928-appb-000018
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是相同的反应性基团,并且均为-CH 2N 3
在某些优选的实施方案中,R 4a和R 4b各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000019
-O-C 3-8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”选自-O-C 3环烯亚基,-O-C 4环烯亚基,-O-C 5环烯亚基,-O-C 6环烯亚基,-O-C 7环烯亚基,和-O-C 8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000020
在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000021
在某些优选的实施方案中,R 4a和R 4b是相同的反应性基团,并且选自下列基团:
Figure PCTCN2017118928-appb-000022
Figure PCTCN2017118928-appb-000023
-O-C 3-8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”选自-O-C 3环烯亚基,-O-C 4环烯亚基,-O-C 5环烯亚基,-O-C 6环烯亚基,-O-C 7环烯亚基,和-O-C 8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000024
在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000025
在某些优选的实施方案中,R 4a和R 4b均为
Figure PCTCN2017118928-appb-000026
在某些优选的实施方案中,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂各自独立地包含选自下列的物质:
钯的配合物(例如钯和4个三苯基膦三间磺酸的配合物);
钌的配合物(例如钌和喹啉羧酸酯(或其衍生物)、烯丙基或环戊二烯的配合物);
膦化物(例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3);以及
化合物Q,其具有结构式
Figure PCTCN2017118928-appb-000027
其中,Z 1和Z 2各自独立地选自修饰或未经修饰的烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和修饰或未经修饰的芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基或吡啶基)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2。在这种情况下,优选地,R 4a和R 4b
Figure PCTCN2017118928-appb-000028
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含钯的配合物或钌的配合物。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3。在这种情况下,优选地,R 4a和R 4b
Figure PCTCN2017118928-appb-000029
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000030
在这种情况下,优选地,R 4a和R 4b
Figure PCTCN2017118928-appb-000031
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含如上所定义的化合物Q。进一步优选地,在化合物Q中,Z 1为甲基;Z 2为修饰或未经修饰的吡啶基。更优选地,化合物Q为
Figure PCTCN2017118928-appb-000032
其中,W为氢或修饰基团。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,且包含如上所定义的化合物Q。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的连接基团L1和L2,和R 7b-L-Dye 1中的L是各自独立的,并且不受特别的限制。本领域技术人员可以根据化合物中所使用的碱基(Base1、Base2、Base3和Base4)以及反应性基团(R 4a、R 4b、R 5a和R 5b),选择合适的连接基团L1、L2和L。
在某些示例性实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L1和L2,和R 7b-L-Dye 1中的L各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000033
Figure PCTCN2017118928-appb-000034
其中,m1、m2、m3、m4、n1、n2、n3、n4、p1、p2、p3、a、b、c、d、e和f各自独立地选自0、1、2、3、4、5或6。
在某些示例性实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L1各自独 立地选自下列基团:
Figure PCTCN2017118928-appb-000035
其中,m1、m2、m3和m4各自独立地选自0、1、2、3、4、5或6。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L1各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000036
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000037
Figure PCTCN2017118928-appb-000038
其中,n1、n2、n3、n4、p1、p2、p3、a、b、c、d、e和f各自独立地选自0、1、2、3、4、5或6。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000039
其中,n1、n2、n3、n4、p1、p2、p3各自独立地选自0、1、2、3、4、5或6。。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000040
在某些优选的实施方案中,R 5a选自下列基团:
Figure PCTCN2017118928-appb-000041
在某些优选的实施方案中,R 5b选自下列基团:
Figure PCTCN2017118928-appb-000042
在某些优选的实施方案中,第七试剂包含的化合物M选自以下化合物:
化合物M1,其具有结构式
Figure PCTCN2017118928-appb-000043
其中,Y选自烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基),L0不存在或者为连接基团,Dye为荧光基团,所述荧光基团与第二化合物和第四化合物包含的荧光基团相同(或结构不同但发射光谱相同或实质相同);
化合物M2,其具有结构式
Figure PCTCN2017118928-appb-000044
其中,Dye为荧光基团,所述荧光基团与第二化合物和第四化合物包含的荧光基团相同(或结构不同但发射光谱相同或实质相同);
化合物M3,其具有结构式
Figure PCTCN2017118928-appb-000045
其中,Z 3各自独立地选自烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基),Dye为荧光基团,所述荧光基团与第二化合物和第四化合物包含的荧光基团相同(或结构不同但发射光谱相同或实质相同)。
在本发明的实施方案中,连接基团L0不受特别的限制。本领域技术人员可以根据实际需要,选择合适的连接基团L0。例如,在某些优选的实施方案中,L0可以为
Figure PCTCN2017118928-appb-000046
其中,q1、q2、q3、q4各自独立地选自0、1、2、3、4、5或6。
在某些优选的实施方案中,第七试剂包含化合物M1,并且其中,Y为C 1-C 6烷基,例如甲基。在某些优选的实施方案中,化合物M1中的L0为
Figure PCTCN2017118928-appb-000047
在某些优选的实施方案中,化合物M1中的Dye为AF532。在某些优选的实施方案中,化合物M1具有以下结构:
Figure PCTCN2017118928-appb-000048
在某些优选的实施方案中,除了化合物M,所述第七试剂还包含钌的配合物。在某些优选的实施方案中,所述第七试剂包含化合物M2和钌的配合物。
在某些优选的实施方案中,所述第八试剂包含如上定义的化合物M,并且,化合物M选自如上定义的化合物M1、M2和M3。在某些优选的实施方案中,除了化合物M,所述第八试剂还包含钌的配合物。在某些优选的实施方案中,所述第八试剂包含化合物M2和钌的配合物。
在某些优选的实施方案中,在相同的试剂存在下,R 5a能够发生生物正交连接反应,并且R 5b能够发生生物正交切割反应。在这种情况下,优选地,在步骤(7)中,第七试剂和第八试剂是相同的试剂。
在某些优选的实施方案中,R 5a
Figure PCTCN2017118928-appb-000049
在这种情况下,优选地,R 5b
Figure PCTCN2017118928-appb-000050
还进一步优选地,第七试剂和第八试剂包含化合物M1。优选地,第七试剂和第八试剂是相同的试剂,且包含如上所定义的化合物M1。
在某些优选的实施方案中,R 5a
Figure PCTCN2017118928-appb-000051
在这种情况下,优选地,R 5b
Figure PCTCN2017118928-appb-000052
还进一步优选地,第七试剂和第八试剂包含化合物M2。更优选地,第七试剂和第八试剂均包含化合物M2和钌的配合物。优选地,第七试剂和第八试剂是相同的试剂,且包含如上所定义的化合物M2和钌的配合物。
在某些优选的实施方案中,R 5a
Figure PCTCN2017118928-appb-000053
在这种情况下,优选地,R 5b
Figure PCTCN2017118928-appb-000054
还进一步优选地,第七试剂和第八试剂包含化合物M3。优选地,第七试剂和第八试剂是相同的试剂,且包含如上所定义的化合物M3。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2;R 4a和R 4b
Figure PCTCN2017118928-appb-000055
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含钯的配合物或钌的配合物;R 5a
Figure PCTCN2017118928-appb-000056
R 5b
Figure PCTCN2017118928-appb-000057
第七试剂和第八试剂包含化合物M1。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,并且包含钯的配合物或钌的配合物。优选地,第七试剂和第八试剂是相同的试剂,且包含如上所定义的化合物M1。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3;R 4a和R 4b
Figure PCTCN2017118928-appb-000058
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含膦化物,例如羧基膦化物或羟基膦化物, 例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3;R 5a
Figure PCTCN2017118928-appb-000059
R 5b
Figure PCTCN2017118928-appb-000060
第七试剂和第八试剂包含化合物M1。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,并且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3。优选地,第七试剂和第八试剂是相同的试剂,且包含如上所定义的化合物M1。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3;R 4a和R 4b
Figure PCTCN2017118928-appb-000061
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3;R 5a
Figure PCTCN2017118928-appb-000062
R 5b
Figure PCTCN2017118928-appb-000063
第七试剂和第八试剂包含化合物M2和钌的配合物。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,并且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3。优选地,第七试剂和第八试剂是相同的试剂,且包含化合物M2和钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2;R 4a和R 4b
Figure PCTCN2017118928-appb-000064
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含钯的配合物或钌的配合物;R 5a
Figure PCTCN2017118928-appb-000065
R 5b
Figure PCTCN2017118928-appb-000066
第七试剂和第八试剂包含化合物M3。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,并且包含钯的配合物或钌的配合物。优选地,第七试剂和第八试剂是相同的试剂,且包含化合物M3。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000067
R 4a和R 4b
Figure PCTCN2017118928-appb-000068
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a
Figure PCTCN2017118928-appb-000069
R 5b
Figure PCTCN2017118928-appb-000070
第七试剂和第八试剂包含化合物M2和钌的配合物。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。优选地,第七试剂和第八试剂是相同的试剂,且包含化合物M2和钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000071
R 4a和R 4b
Figure PCTCN2017118928-appb-000072
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a
Figure PCTCN2017118928-appb-000073
R 5b
Figure PCTCN2017118928-appb-000074
第七试剂和第八试剂包含化合物M3。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。优选地,第七试剂和第八试剂是相同的试剂,且包含化合物M3。
在某些优选的实施方案中,第三化合物中的Dye是Cy3或AF532。
在某些优选的实施方案中,第四化合物中的R 7a为Dye 1。在某些优选的实施方案中,Dye 1为Cy3或AF532。
在某些优选的实施方案中,第三化合物中的Dye是AF532,第四化合物中的R 7a为Cy3。
在某些优选的实施方案中,第三化合物中的Dye是Cy3,第四化合物中的R 7a为AF532。
在某些示例性实施方案中,第四化合物本身不携带荧光基团,R 7a为能够发生第二生物正交连接反应的反应性基团。在某些优选的实施方案中,R 7a选自下列基团:
Figure PCTCN2017118928-appb-000075
Figure PCTCN2017118928-appb-000076
在某些示例性实施方案中,能够与R 7a发生第二生物正交连接反应的化合物M选自如上定义的化合物M1、M2、M3。
在某些示例性实施方案中,第四化合物本身不携带荧光基团,R 7a为结合配对的一个成员。在某些优选的实施方案中,所述结合配选自:抗原(例如小分子抗原)-抗体、半抗原-抗体、激素-受体、配体-受体、核酸链-互补核酸链、底物-酶、底物类似物-酶、抑制剂-酶、糖-植物凝集素、生物素-抗生物素蛋白(例如,亲和素和链酶亲和素)、地高辛和地高辛抗体,以及5位溴代去氧鸟苷和其抗体。在某些优选的实施方案中,所述结合配对的两个成员选自下述组合:(a)生物素和亲和素(例如链霉亲和素),(b)脱硫生物素和亲和素(例如链霉亲和素)和(c)地高辛和地高辛抗体。
在某些优选的实施方案中,第一化合物具有式(Ia)所示的结构:
Figure PCTCN2017118928-appb-000077
在某些优选的实施方案中,第二化合物具有式(IIa)所示的结构:
Figure PCTCN2017118928-appb-000078
在某些优选的实施方案中,第三化合物具有式(IIIa)所示的结构:
Figure PCTCN2017118928-appb-000079
在某些优选的实施方案中,第四化合物具有式(IVa)所示的结构:
Figure PCTCN2017118928-appb-000080
另外,如上文所描述的,在本发明的方法中,可根据需要,增加洗涤步骤。可在任何期望的阶段,增加所述洗涤步骤,并且任选地,所述洗涤步骤可进行一次或多次。
例如,在步骤(5)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除游离的(即,未并入生长的核酸链的)携带荧光基团的化合物(例如式(II)化合物和式(IV)化合物),从而尽可能减少非特异性的荧光信号。
类似地,在步骤(7)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除步骤(6)中应用的携带荧光的试剂,从而尽可能减少非特异性的荧光信号。
类似地,在步骤(9)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除步骤(8)中应用的试剂以及产生的产物(其可能携带荧光),从而尽可能减少非特异性的荧光信号,并且尽可能避免对后续的聚合反应造成不利的影响。
可使用各种合适的洗涤溶液来进行洗涤步骤。此类洗涤溶液的实例包括但不限于,磷酸盐缓冲液,柠檬酸盐缓冲液,Tris-HCl缓冲液,醋酸盐缓冲液,碳酸盐缓冲液等等。可根据实际需要来选择合适的洗涤溶液(包括合适的成分,浓度,离子强度,pH值等),这在本领域技术人员的能力范围之内。
示例性实施方案2
在某些示例性实施方案中,可通过使用结合配对(其包含能够通过特异性非共价作用而相互作用的两个成员),在步骤(6)中控制(例如,维持或改变)所述四种化合物发出荧光信号的能力;并且优选地,可通过使用能够进行生物正交切割反应的反应性基团,在步骤(8)中实现所述保护基团和荧光信号的去除。例如,在某些示例性实施方案中,所述第一、第二、第三和第四化合物可分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
Figure PCTCN2017118928-appb-000081
Figure PCTCN2017118928-appb-000082
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为第一结合配对的一个成员;
R 6a(i)是第二结合配对的一个成员,同时是第三结合配对的一个成员;或者
(ii)只是第三结合配对的一个成员;并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,二者具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行生物正交连接反应的反应性基团R 8
在此类示例性实施方案中,第四化合物本身可以携带与第二化合物能够发出相同荧光信号的荧光基团,也可以不携带荧光基团,而是在步骤(5)中,通过与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂(例如第二结合配对的另一个成员,或者能够与R 6a进行第二生物正交连接反应的化合物)发生特异性相互作用/特异性结合或者发生第二生物正交连接反应,而将荧光基团引入化合物四,并能够发出与第二化合物相同的荧光信号。进一步地,可通过使R 5a与携带荧光基团的第一结合配对的另一个成员(在本文中表示为“R 5b-L-Dye 3”,其中R 5b为第一结合配对的另一个成员,L为连接基团或不存在;Dye 3表示能够发出荧光信号的荧光基团,其优选地为与第二化合物相同的荧光基团,或者结构不同但具有相同或实质相同的发射光谱的荧光基团)特异性相互作用/特异性结合,从而使得第三化合物携带荧光基团。此外,(i)可通过使R 6a与携带淬灭基团的第三结合配对的另一个成员(在本文中表示为“R 6c-L6-Que”,其中R 6c为第三结合配对的另一个成员,L6为连接基团或不存在;Que表示能够淬灭Dye发出的荧光信号的淬灭基团)特异性相互作用/特异性结合,从而使得第四化合物所发出的荧光信号被淬灭。;或者,(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生正交连接反应,从而淬灭第四化合物中的荧光信号。在此类示例性实施方案中,R 6a可以是两个结合配对的成员(第二结合配对R 6a和R 6b,第三结合配对R 6a和R 6c)。特别优选地,第一结合配对的两个成员(R 5a和R 5b)与第三结合配对的两个成员(R 6a和R 6b)之间不存在相互作用。此外,特别优选地,R 5a和R 5b不影响R 6a和R 6c之间的特异性相互作用,并且R 6a和R 6c不影响R 5a和R 5b之间的特异性相互作用。
因此,在某些优选的实施方案中,在步骤(6)中,使所述双链体或所述生长的核酸链经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使R 5a与携带荧光基团的第一结合配对的另一个成员(R 5b-L5-Dye 3)发生特异性相互作用/特异性结合(从而将所述荧光基团引入第三化合物, 使其携带荧光基团,并发出荧光信号),并且能够使R 6a与携带淬灭基团的第二结合配对的另一个成员(R 6c-L6-Que)发生特异性相互作用/特异性结合(从而淬灭第四化合物中的荧光基团发出的荧光信号),或者使第四化合物中的R 8与携带淬灭基团的化合物发生正交连接反应(从而淬灭第四化合物中的荧光基团发出的荧光信号)。在此类示例性实施方案中,在步骤(6)的处理之前,第一化合物和第三化合物(如果存在的话)不发出荧光,且第二化合物和第四化合物(如果存在的话)发出荧光;并且,在步骤(6)的处理之后,第一化合物(如果存在的话)仍然不发出荧光,第二化合物(如果存在的话)仍然发出荧光,第三化合物(如果存在的话)改变为发出荧光,且第四化合物(如果存在的话)改变为不发出荧光。因此,可通过两次荧光信号检测的结果来确定并入生长的核酸链3'端的化合物的类型。
在本发明的方法中,可根据所使用的荧光基团,选择合适的淬灭基团。各种荧光基团的淬灭基团是本领域熟知的,其典型实例包括但不限于,DABCYL、BHQ类淬灭剂(如BHQ-1或BHQ-2)、ECLIPSE和/或TAMRA。
进一步,在此类示例性实施方案中,可通过使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物中的核糖或脱氧核糖的3'位置处的保护基团被去除,以及所述双链体或生长的核酸链上的荧光基团(如果存在的话)被去除。因此,在某些优选的实施方案中,在步骤(8)中,使所述双链体或所述生长的核酸链经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应。在此类示例性实施方案中,在步骤(8)的处理之后,生长的核酸链将不具有任何荧光基团,并且其3'端核苷酸的核糖或脱氧核糖的3'位置处将具有游离的羟基,所述游离的羟基能够用于起始下一轮的聚合反应。
因此,在某些优选的实施方案中,本发明的方法包括下述步骤:
在某些示例性实施方案中,本发明的方法包括下述步骤:
(1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
(2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
Figure PCTCN2017118928-appb-000083
Figure PCTCN2017118928-appb-000084
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为第一结合配对的一个成员;
R 6a(i)是第二结合配对的一个成员,同时是第三结合配对的一个成员;或者
(ii)只是第三结合配对的一个成员;并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,二者具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行生物正交连接反应的反应性基团R 8
(3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
(4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
(5)(i)第四化合物不能发出荧光信号,R 6a为第二结合配对的一个成员,同时是第三结合配对的一个成员,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 6a与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的结构不同但发射光谱相同或实质相同的荧光基团)的试剂(例如第二结合配对的另一个成员)发生特异性相互作用/特异性结合;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
所述携带荧光基团的第二结合配对的另一个成员具有下述结构:R 6b-L4-Dye 2;其中,R 6b为第二结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
(ii)第四化合物能够发出与第二化合物相同的荧光信号,R 6a只是第三结合配对的一个成员,并且R 6a为Dye 1或还连接有-L3-Dye 1,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
(6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团的第一结合配对的另一个成员特异性结合,从而将所述荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使第四化合物中的R 6a与携带淬灭基团的第三结合配对的另一个成员特异性结合,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号其中,
所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 5b-L5-Dye 3;其中,R 5b为第一结合配对的另一个成员,L5独立地为连接基团或不存在;Dye 3表示能够发出荧光信号的荧光基团,并且与第二化合物包含的荧光基团结构相同,或者结构不同但具有相同的发射光谱;并且
所述携带淬灭基团的第三结合配对的另一个成员具有下述结构:R 6c-L6-Que;其中,R 6c为第二结合配对的另一个成员,L6独立地为连接基团或不存在;Que表示能够淬灭Dye 1或Dye 2发出的荧光信号的淬灭基团;和
(7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所 述生长的核酸链是否发出所述荧光信号。
在某些优选的实施方案中,所述方法还包括下述步骤:
(8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a、R 4b或R 4c连接的荧光基团),如果存在的话;
(9)移除前一步骤的反应体系的溶液相;
(10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(11)重复进行步骤(8)-(10)一次或多次。
在某些示例性实施方案中,如果在步骤(4)中,式(I)化合物被并入生长的核酸链的3'端,那么,由于式(I)化合物本身不携带荧光基团,并且其在步骤(6)未发生任何反应,因此,在步骤(5)和(7)中将检测不到荧光信号。也即,如果在步骤(5)和(7)中都检测不到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(I)化合物。
如果在步骤(4)中,式(II)化合物被并入生长的核酸链的3'端,那么,由于式(II)化合物本身携带荧光基团,并且其在步骤(6)未发生任何反应,因此,在步骤(5)和(7)中将都检测到荧光信号。也即,如果在步骤(5)和(7)中都检测到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(II)化合物。
如果在步骤(4)中,式(III)化合物被并入生长的核酸链的3'端,那么,(i)由于式(III)化合物本身不携带荧光基团,因此,在步骤(5)中将检测不到荧光信号;并且(ii)由于式(III)化合物在步骤(6)中与携带荧光基团的第一结合配对的另一个成员(R 5b-L-Dye 3)特异性结合,导致荧光基团被引入生长的核酸链,因此,在步骤(7)中将检测到荧光信号。也即,如果在步骤(5)中检测不到荧光信号且在步骤(7)中检测到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(III)化合物。
如果在步骤(4)中,式(IV)化合物被并入生长的核酸链的3'端,那么,(i)由于式(IV)化合物本身携带荧光基团或在步骤(5)中经过处理而携带荧光基团,因此,在步骤(5)中将检测到荧光信号;并且(ii)由于式(IV)化合物在步骤(6)中与携带淬灭基团的第三结合配对的另一个成员(R 6C-L'-Que)特异性结合,或者发生生物正交连接反应,导致淬灭基团被引入生长的核酸链,淬灭了荧光基团发出的荧光信号,因此,在步骤(7)中将检测不到荧光信号。也即,如果在步骤(5)中检测到荧光信号且在步骤(7)中检测不到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(IV)化合物。
因此,在某些优选的实施方案中,本发明的方法还包括,在步骤(7)之后,根据步骤(5)和(7)的检测结果来确定在步骤(4)中并入生长的核酸链的3'端的化合物的类型,其中,
当步骤(5)和(7)的检测结果均为,所述双链体或所述生长的核酸链不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(I)化合物;
当步骤(5)和(7)的检测结果均为,所述双链体或所述生长的核酸链发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(II)化合物;
当步骤(5)的检测结果为所述双链体或所述生长的核酸链不发出所述荧光信号,且步骤(7)的检测结果为所述双链体或所述生长的核酸链发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(III)化合物;并且
当步骤(5)的检测结果为所述双链体或所述生长的核酸链发出所述荧光信号,且步骤(7)的检测结果为所述双链体或所述生长的核酸链不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(IV)化合物。
在某些优选的实施方案中,本发明的方法还包括,在步骤(7)之后,基于碱基互补配对原则,根据步骤(4)中并入生长的核酸链的3'端的化合物的类型,确定待测序的核酸分子中相应位置处的碱基类型。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物在核苷酸聚合反应过程中,彼此之间不会发生化学反应。
在某些优选的实施方案中,Base1和Base2为嘌呤碱基,并且Base3和Base4为嘧啶碱基。在某些优选的实施方案中,Base1为碱基G,Base2为碱基A,Base3为碱基C,Base4为碱基T或U。在某些优选的实施方案中,Base1为碱基G,Base2为碱基A,Base3为碱基T或U,Base4为碱基C。 在某些优选的实施方案中,Base1为碱基A,Base2为碱基G,Base3为碱基C,Base4为碱基T或U。在某些优选的实施方案中,Base1为碱基A,Base2为碱基G,Base3为碱基T或U,Base4为碱基C。
在某些优选的实施方案中,Base1和Base2为嘧啶碱基,并且Base3和Base4为嘌呤碱基。在某些优选的实施方案中,Base1为碱基C,Base2为碱基T或U,Base3为碱基G,Base4为碱基A。在某些优选的实施方案中,Base1为碱基C,Base2为碱基T或U,Base3为碱基A,Base4为碱基G。在某些优选的实施方案中,Base1为碱基T或U,Base2为碱基C,Base3为碱基G,Base4为碱基A。在某些优选的实施方案中,Base1为碱基T或U,Base2为碱基C,Base3为碱基A,Base4为碱基G。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物具有相同的R 1。在某些优选的实施方案中,R 1各自独立地为-H。在某些优选的实施方案中,R 1各自独立地为单磷酸基团(-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为二磷酸基团(-PO 3H-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为三磷酸基团(-PO 3H-PO 3H-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2)。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物具有相同的R 2。在某些优选的实施方案中,R 2各自独立地为-H。在某些优选的实施方案中,R 2各自独立地为-OH。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地能够发生生物正交切割反应。如本文中所使用的,表述“各自独立地能够发生生物正交切割反应”意指,所提及的反应性基团、试剂、或分子等各自都能够进行生物正交切割反应,而在彼此之间不互相干扰或影响。例如,表述“R 3a和R 3b各自独立地能够发生生物正交切割反应”意指,R 3a和R 3b均能够发生生物正交切割反应,并且R 3a不影响R 3b的生物正交切割反应的进行,R 3b不影响R 3a的生物正交切割反应的进行。
在某些示例性实施方案中,R 3a为能够在第一试剂存在的条件下发生生物正交切割反应的第一反应性基团;R 3b为能够在第二试剂存在的条件下发生生物正交切割反应的第二反应性基团;R 3c为能够在第三试剂存在的条件下发生生物正交切割反应的第三反应性基团;R 3d为能够在第四试剂存在的条件下发生生物正交切割反应的第四反应性基团;R 4a为能够在第五试剂存在的条件下发生生物正交切割反应的第五反应性基团;R 4b为能够在第六试剂存在的条件下发生生物正交切割反应的第六反应性基团;且,R 4c为能够在第七试剂存在的条件下发生生物正交切割反应的第七反应性基团。
优选地,在此类实施方案中,在步骤(8)中,可添加第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂,从而使得R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c(如果存在的话)各自发生生物正交切割反应。由此,R 3a、R 3b、R 3c、R 3d(如果存在的话)将被从核糖或脱氧核糖的3'位置去除(换言之,-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)将被转变为游离的羟基),并且R 4a和与其相连接的荧光基团(如果存在的话),R 4b和与其相连接的荧光基团(如果存在的话),以及R 4c和与其相连接的荧光基团(如果存在的话)也将被去除。由此,在步骤(8)之后,所述生长的核酸链将不携带所述荧光基团,并且在3'端具有游离的羟基,能够用于进行下一轮的聚合反应。因此,在某些优选实施方案中,在步骤(8)中,添加第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂,从而形成含有溶液相和固相的反应体系,并在允许R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自发生生物正交切割反应的条件下,将所述双链体与所述第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂进行温育。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂和第四试剂是相同的试剂。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d是相同的反应性基团。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂和第四试剂是相同的试剂。也即,在步骤(8)中,在所述相同的试剂(即,第一试剂)的存在下,所述相同的R 3a、R 3b、R 3c、R 3d(如果存在的话)将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些优选的实施方案中R 4a、R 4b、R 4c能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第五试剂、第六试剂和第七试剂是相同的试剂。
在某些优选的实施方案中,R 4a、R 4b、R 4c是相同的反应性基团。在这种情况下,优选地,在步骤(8)中,第五试剂、第六试剂和第七试剂是相同的试剂。也即,在步骤(8)中,在所述相同的试剂(即,第五试剂)的存在下,所述相同的R 4a、R 4b、R 4c(如果存在的话)将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂、 第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂。也即,在步骤(8)中,仅需添加所述相同的试剂(即,第一试剂),并且在所述相同的试剂(即,第一试剂)的存在下,所述R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c(如果存在的话),将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些示例性实施方案中,特别优选地,第一结合配对的两个成员(R 5a和R 5b)与第三结合配对的两个成员(R 6a和R 6c)之间不存在相互作用。此外,特别优选地,R 5a和R 5b不影响R 6a和R 6c之间的特异性相互作用,并且R 6a和R 6c不影响R 5a和R 5b之间的特异性相互作用。在此类实施方案中,优选地,在步骤(6)中,可添加R 5b-L-Dye和R 6b-L'-Que,从而使得式(III)化合物中的R 5a(如果存在的话)与R 5b-L5-Dye 3中的R 5b特异性结合,并且使得式(IV)化合物中的R 6a(如果存在的话)与R 6c-L6-Que中的R 6b特异性结合。由此,通过第一结合配对的两个成员(R 5a和R 5b)之间的特异性相互作用,与R 5b相连接的荧光基团Dye被引入式(III)化合物,使得式(III)化合物发出荧光信号。同时,通过第三结合配对的两个成员(R 6a和R 6c)之间的特异性相互作用,与R 6c相连接的淬灭基团Que被引入式(IV)化合物,使得式(IV)化合物中Dye发出的荧光信号被淬灭,式(IV)化合物不再发出荧光。在此类实施方案中,还特别优选地,在步骤(6)中,R 5b-L5-Dye 3不与第一化合物和第二化合物发生化学反应,并且进一步优选地,R 6c-L6-Que不与第一化合物和第二化合物发生化学反应。因此,在某些优选实施方案中,在步骤(6)中,可添加R 5b-L5-Dye 3和R 6c-L6-Que,从而形成含有溶液相和固相的反应体系,其中,R 5b为第一结合配对的另一个成员,L5为连接基团或不存在;Dye 3表示能够发出荧光信号的荧光基团,并且R 6c为第三结合配对的另一个成员,L6为连接基团或不存在;Que表示能够淬灭Dye 1或Dye 2发出的荧光信号的淬灭基团;然后,在允许R 5a和R 5b特异性结合且允许R 6a和R 6c特异性结合的条件下,将所述双链体与R 5b-L5-Dye 3和R 6c-L6-Que进行温育。
在某些示例性实施方案中,R 6a是第三结合配对的一个成员;并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1,Dye 1具有与Dye相同的结构,或者结构不同但具有相同的发射光谱,因此第四化合物本身能够发出与第二化合物相同的荧光信号。在此类实施方案中,步骤(6)包括,添加第八试剂,从而使得式(IV)化合物中的R 6a(如果存在的话)与第三结合配对的另一个成员发生特异性作用和/或特异性结合。例如,第八试剂可以包含携带荧光基团的第三结合配对的另一个成员,其结构为R 6c-L6-Que,其中,R 6c为第三结合配对的另一个成员,L6独立地为连接基团或不存在;Que表示能够淬灭Dye 1或Dye 2发出的荧光信号的淬灭基团。
在某些示例性实施方案中,第四化合物本身不携带荧光基团,R 6a是第二结合配对的一个成员,同时是第三结合配对的一个成员。在此类实施方案中,步骤(5)包括,添加第九试剂,从而使得式(IV)化合物中的R 6a(如果存在的话)与第二结合配对的另一个成员发生特异性作用和/或特异性结合。例如,第九试剂可以包含携带荧光基团的第二结合配对的另一个成员,其结构为R 6b-L4-Dye 2,其中,R 6b为第二结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同的发射光谱。在此类实施方案中,步骤(6)包括,添加第十试剂,从而使得式(IV)化合物中的R 6a(如果存在的话)与第三结合配对的另一个成员发生特异性作用和/或特异性结合。例如,第十试剂可以包含携带荧光基团的第三结合配对的另一个成员,其结构为R 6c-L6-Que,其中,R 6c为第三结合配对的另一个成员,L6独立地为连接基团或不存在;Que表示能够淬灭Dye 1或Dye 2发出的荧光信号的淬灭基团。
优选地,在上述两类实施方案中,在步骤(6)中,可添加第十一试剂和第十试剂,从而使得式(III)化合物中的R 5a(如果存在的话)与第一结合配对的另一成员发生特异性作用和/或特异性结合,并且使得式(IV)化合物中的R 6a(如果存在的话)与第三结合配对的另一个成员发生特异性作用和/或特异性结合。例如,第十一试剂可以包含第一结合配对的另一个成员,所述第一结合配对的另一个成员携带与第二化合物和第四化合物相同的荧光基团(或者结构不同但发光光谱相同或实质相同的荧光基团),并且所述第一结合配对的另一个成员能够与R 5a发生特异性结合,并由此将所携带的荧光基团引入式(III)化合物。此外,第十试剂包含携带淬灭剂的第三结合配对的另一个成员,并且能够与R 6a(如果存在的话)发生特异性作用和/或特异性结合,并由此将式(IV)化合物中的荧光信号淬灭。在此类实施方案中,还特别优选地,在步骤(6)中,第十一试剂不与第一化合物和第二化合物发生化学反应,并且进一步优选地,第十试剂不与第一化合物和第二化合物发生化学反应。因此,在某些优选实施方案中,在步骤(6)中,可添加第十一试剂和第十试剂,从而形成含有溶液相和固相的反应体系,其中,第十一试剂包含第一结合配对的另一个成员,所述第一结合配对的另一个成员能够携带与第二化合物和第四化合物相同的荧光基团(或者结构不同但发光光谱相同或实质相同的荧光基团),并且所述第一结合配对的另一个成员能够能够与R 5a发生特异性作用和/或特异性结合,从而 将所携带的荧光基团引入第三化合物;第十试剂包含第三结合配对的另一成员,所述第三结合配对的另一成员携带淬灭剂,并且所述第三结合配对的另一成员能够与R 6a发生特异性作用和/或特异性结合,从而将所携带的淬灭剂引入第四化合物;然后,在允许R 5a与第一结合配对的另一成员发生特异性作用和/或特异性结合,且允许R 6a与第三结合配对的另一成员发生特异性作用和/或特异性结合的条件下,将所述双链体与第十一试剂和第十试剂进行温育。
在某些示例性实施方案中,第四化合物的R 5b与R 7a之间还存在能够进行第三生物正交连接反应的反应性基团R 8。在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 5a、R 8各自独立地能够发生生物正交切割或连接反应。在某些示例性实施方案中,R 8a能够在第十二试剂存在的条件下发生第三生物正交连接反应。
优选地,在此类实施方案中,在步骤(6)中,可添加第十一试剂和第十二试剂,从而使得式(III)化合物中的R 5a(如果存在的话)发生第一生物正交连接反应,并且使得式(IV)化合物中的R 8(如果存在的话)发生第三生物正交连接反应。例如,第十一试剂可以包含第一结合配对的另一个成员,所述第一结合配对的另一个成员携带与第二化合物和第四化合物相同的荧光基团(或者结构不同但发光光谱相同或实质相同的荧光基团),并且所述第一结合配对的另一个成员能够与R 5a发生特异性结合,并由此将所携带的荧光基团引入式(III)化合物。此外,第十二试剂能够使式(IV)化合物中的R 8发生第三生物正交连接反应,并由此将式(IV)化合物中的荧光信号淬灭。在此类实施方案中,还特别优选地,在步骤(6)中,第十一试剂不与第一化合物和第二化合物发生化学反应,并且进一步优选地,第十二试剂不与第一化合物和第二化合物发生化学反应。因此,在某些优选实施方案中,在步骤(6)中,可添加第十一试剂和第十二试剂,从而形成含有溶液相和固相的反应体系,其中,第十一试剂包含第一结合配对的另一个成员,所述第一结合配对的另一个成员能够携带与第二化合物和第四化合物相同的荧光基团(或者结构不同但发光光谱相同或实质相同的荧光基团),并且所述第一结合配对的另一个成员能够能够与R 5a发生特异性作用和/或特异性结合,从而将所携带的荧光基团引入第三化合物;第十二试剂包含化合物M,所述化合物M携带淬灭剂,并且所述化合物M能够与R 8发生第三生物正交连接反应,从而将化合物M中的淬灭剂引入第四化合物;然后,在允许R 5a与第一结合配对的另一成员发生特异性作用和/或特异性结合,且允许M与R 8发生第三生物正交连接反应的条件下,将所述双链体与第十一试剂和第十二试剂进行温育。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d各自独立地选自下列基团:-CH 2CH=CH 2、-CH 2N 3、-C 3-8环烯基(例如-C 3环烯基、-C 4环烯基、-C 5元环烯基、-C 6环烯基、-C 7环烯基或-C 8环烯基)。在某些优选的实施方案中,所述-C 3-8环烯基选自-C 3环烯基和-C 8环烯基。在某些优选的实施方案中,所述-C 3-8环烯基为
Figure PCTCN2017118928-appb-000085
在某些优选的实施方案中,所述-C 3-8环烯基为
Figure PCTCN2017118928-appb-000086
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是相同的反应性基团,并且选自下列基团:-CH 2CH=CH 2、-CH 2N 3、C 3-8环烯基(例如C 3环烯基、C 4环烯基、C 5元环烯基、C 6环烯基、C 7环烯基或C 8环烯基)。在某些优选的实施方案中,所述C 38环烯基选自C 3环烯基和C 8环烯基。在某些优选的实施方案中,所述C 3-8环烯基为
Figure PCTCN2017118928-appb-000087
在某些优选的实施方案中,所述C 3-8环烯基为
Figure PCTCN2017118928-appb-000088
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是相同的反应性基团,并且均为-CH 2N 3
在某些优选的实施方案中,R 4a、R 4b和R 4c各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000089
-O-C 3-8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”选自-O-C 3环烯亚基,-O-C 4环烯亚基,-O-C 5环烯亚基,-O-C 6环烯亚基,-O-C 7环烯亚基,和-O-C 8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000090
在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000091
在某些优选的实施方案中,R 4a、R 4b和R 4c是相同的反应性基团,并且选自下列基团:
Figure PCTCN2017118928-appb-000092
Figure PCTCN2017118928-appb-000093
-O-C 3-8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”选自-O-C 3环烯亚基,-O-C 4环烯亚基,-O-C 5环烯亚基,-O-C 6环烯亚基,-O-C 7环烯亚基,和-O-C 8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000094
在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000095
在某些优选的实施方案中,R 4a、R 4b和R 4c均为
Figure PCTCN2017118928-appb-000096
在某些优选的实施方案中,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂各自独立地包含选自下列的物质:
钯的配合物(例如钯和4个三苯基膦三间磺酸的配合物);
钌的配合物(例如钌和喹啉羧酸酯(或其衍生物)、烯丙基或环戊二烯的配合物);
膦化物(例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3);以及
化合物Q,其具有结构式
Figure PCTCN2017118928-appb-000097
其中,Z 1和Z 2各自独立地选自修饰或未经修饰的烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和修饰或未经修饰的芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基或吡啶基)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2。在这种情况下,优选地,R 4a、R 4b和R 4
Figure PCTCN2017118928-appb-000098
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含钯的配合物或钌的配合物。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3。在这种情况下,优选地,R 4a、R 4b和R 4
Figure PCTCN2017118928-appb-000099
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000100
在这种情况下,优选地,R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000101
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含如上所定义的化合物Q。进一步优选地,在化合物Q中,Z 1为甲基;Z 2为修饰或未经修饰的吡啶基。更优选地,化合物Q为
Figure PCTCN2017118928-appb-000102
其中,W为氢或修饰基团。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,且包含如上所定义的化合物Q。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的连接基团 L1、L2和L3以及R 6b-L4-Dye 2、R 5b-L5-Dye 3和R 6c-L6-Que中的连接基团L4、L5和L6是各自独立的,并且不受特别的限制。本领域技术人员可以根据化合物中所使用的碱基(Base1、Base2、Base3和Base4)、反应性基团(R 4a、R 4b和R 4c)、以及第一和第二结合配对的成员(R 5a、R 5b、R 6a和R 6b),选择合适的连接基团L1、L2、L3、L4、L5和L6。
在某些示例性实施方案中,连接基团L1、L2、L3、L4、L5和L6各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000103
其中,m1、m2、m3、m4、n1、n2、n3、n4、p1、p2、p3、a、b、c、d、e和f各自独立地选自0、1、2、3、4、5或6。
在某些示例性实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L1各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000104
其中,m1、m2、m3和m4各自独立地选自0、1、2、3、4、5或6。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L1各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000105
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000106
Figure PCTCN2017118928-appb-000107
其中,n1、n2、n3、n4、p1、p2、p3、a、b、c、d、e和f各自独立地选自0、1、2、3、4、5或6。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000108
其中,n1、n2、n3、n4、p1、p2、p3各自独立地选自0、1、2、3、4、5或6。。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000109
在某些优选的实施方案中,R 5a和R 5b为第一结合配对的两个成员,R 6a和R 6b为第二结合配对的两个成员,R 6a和R 6c为第三结合配对的两个成员。在某些优选的实施方案中,第一结合配对和第二结合配对各自独立地选自:抗原(例如小分子抗原)-抗体、半抗原-抗体、激素-受体、配体-受体、核酸链-互补核酸链、底物-酶、底物类似物-酶、抑制剂-酶、糖-植物凝集素、生物素-抗生物素蛋白(例如,亲和素和链酶亲和素)、地高辛和地高辛抗体,以及5位溴代去氧鸟苷和其抗体。
在某些优选的实施方案中,第一结合配对的两个成员选自下述组合:(a)生物素和亲和素(例如链霉亲和素),(b)脱硫生物素和亲和素(例如链霉亲和素)和(c)地高辛和地高辛抗体。在某些优选的实施方案中,R 5a为生物素或脱硫生物素,并且R 5b为亲和素(例如链霉亲和素)。某些优选的实施方案中,R 5a为地高辛,并且R 5b为地高辛抗体。
在某些优选的实施方案中,第二结合配对的两个成员选自下述组合:(a)生物素和亲和素(例如链霉亲和素),(b)脱硫生物素和亲和素(例如链霉亲和素)和(c)地高辛和地高辛抗体。在某些优选的实施方案中,R 6a为生物素或脱硫生物素,并且R 6b为亲和素(例如链霉亲和素)。某些优选的实施方案中,R 6a为地高辛,并且R 6b为地高辛抗体。
在某些优选的实施方案中,第三结合配对的两个成员选自下述组合:(a)生物素和亲和素(例如链霉亲和素),(b)脱硫生物素和亲和素(例如链霉亲和素),(c)地高辛和地高辛抗体,(d)Cy3和Cy3抗体。在某些优选的实施方案中,R 6a为Cy3,并且R 6c为Cy3抗体。特别优选的是,第一结合配对的两个成员(R 5a和R 5b)与第三结合配对的两个成员(R 6a和R 6c)之间不存在相互作用。此外,特别优选地,R 5a和R 5b不影响R 6a和R 6c之间的特异性相互作用,并且R 6a和R 6c不影响R 5a和R 5b之间的特异性相互作用。因此,在某些优选的实施方案中,第一结合配对的两个成员分别为生物素和亲和素(例如链霉亲和素),且第三结合配对的两个成员分别为地高辛和地高辛抗体。在某些优选的实施方案中,第一结合配对的两个成员分别为地高辛和地高辛抗体,且第三结合配对的两个成员分别为生物素和亲和素(例如链霉亲和素)。在某些优选的实施方案中,第一结合配对的两个成员分别为生物素和亲和素(例如链霉亲和素),且第三结合配对的两个成员分别为Cy3和Cy3抗体。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000110
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含钯的配合物或钌的配合物;R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是地高辛;R 6b是地高辛抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000111
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3;R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是地高辛;R 6b是地高辛抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000112
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3;R 5a是地高辛;R 5b是地高辛抗体;R 6a是生物素;R 6b是亲和素(例如链霉亲和素)。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000113
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含钯的配合物或钌的配合物;R 5a是地高辛;R 5b是地高辛抗体;R 6a是生物素;R 6b是亲和素(例如链霉亲和素)。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000114
R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000115
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是地高辛;R 6b是地高辛抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000116
R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000117
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a是地高辛;R 5b是地高辛抗体;R 6a是生物素;R 6b是亲和素(例如链霉亲和素)。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000118
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含钯的配合物或钌的配合物;R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是Cy3;R 6b是Cy3抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000119
R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000120
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是Cy3;R 6b是Cy3抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000121
R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000122
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是Cy3;R 6b是Cy3抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。
在某些优选的实施方案中,第一化合物具有式(Ib)所示的结构:
Figure PCTCN2017118928-appb-000123
在某些优选的实施方案中,第二化合物具有式(IIb)所示的结构:
Figure PCTCN2017118928-appb-000124
Figure PCTCN2017118928-appb-000125
在某些优选的实施方案中,第三化合物具有式(IIIb)所示的结构:
Figure PCTCN2017118928-appb-000126
在某些优选的实施方案中,第四化合物具有式(IVb)所示的结构:
Figure PCTCN2017118928-appb-000127
另外,如上文所描述的,在本发明的方法中,可根据需要,增加洗涤步骤。可在任何期望的阶段,增加所述洗涤步骤,并且任选地,所述洗涤步骤可进行一次或多次。
例如,在步骤(5)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除游离的(即,未并入生长的核酸链的)携带荧光基团的化合物(例如R 6b-L4-Dye 2、式(II)化合物或式(IV)化合物),从而尽可能减少非特异性的荧光信号。
类似地,在步骤(7)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除步骤(6)中应用的携带荧光的试剂(例如R 5b-L5-Dye 3),从而尽可能减少非特异性的荧光信号。
类似地,在步骤(9)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除步骤(8)中应用的试剂以及产生的产物(其可能携带荧光),从而尽可能减少非特异性的荧光信号,并且尽可能避免对后续的聚合反应造成不利的影响。
可使用各种合适的洗涤溶液来进行洗涤步骤。此类洗涤溶液的实例包括但不限于,磷酸盐缓冲液,柠檬酸盐缓冲液,Tris-HCl缓冲液,醋酸盐缓冲液,碳酸盐缓冲液等等。可根据实际需要来选择合适的洗涤溶液(包括合适的成分,浓度,离子强度,pH值等),这在本领域技术人员的能力范围之内。
示例性实施方案3
在某些示例性实施方案中,可通过使用结合配对(其包含能够通过特异性非共价作用而相互作用的两个成员)以及能够进行生物正交连接反应的反应性基团,在步骤(6)中控制(例如,维持或改变)所述四种化合物发出荧光信号的能力;并且优选地,可通过使用能够进行生物正交切割反应的反应性基团,在步骤(8)中实现所述保护基团和荧光信号的去除。例如,在某些示例性实施方案中,所述第一、第二、第三和第四化合物可分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
Figure PCTCN2017118928-appb-000128
Figure PCTCN2017118928-appb-000129
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为能够进行第一生物正交连接反应的反应性基团;
R 6a(i)是第一结合配对的一个成员,同时是第二结合配对的一个成员;或者
(ii)只是第二结合配对的一个成员,并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye表示能够发出荧光信号的荧光基团;Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
在此类示例性实施方案中,第四化合物本身可以携带与第二化合物能够发出相同荧光信号的荧光基团,也可以不携带荧光基团,而是在步骤(5)中,通过与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂(例如第一结合配对的另一个成员)发生特异性相互作用/特异性结合,而将荧光基团引入化合物IV,并能够发出与第二化合物相同的荧光信号。进一步地,可通过使R 5a与携带荧光基团(例如与第二化合物相同的荧光基团,或者与第二化合物的荧光基团结构不同,但发射光谱相同或实质相同的荧光基团)的试剂发生第一生物正交连接反应,从而使得第三化合物携带荧光基团。此外,(i)可通过使R 6a与携带淬灭基团的第二结合配对的另一个成员(在本文中表示为“R 6c-L'-Que”,其中R 6c为所述结合配对的另一个成员,L'为连接基团或不存在;Que表示能够淬灭Dye发出的荧光信号的淬灭基团)特异性相互作用/特异性结合,从而使得第四化合物所发出的荧光信号被淬灭;或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生第二正交连接反应,从而淬灭第四化合物中的荧光基团发出的荧光信号。在此类示例性实施方案中,特别优选地,所述R 5a和携带荧光基团的试剂与第二结合配对的两个成员(R 6a和R 6b)之间不存在相互作用。此外,特别优选地,所述R 5a和携带荧光基团的试剂不影响R 6a和R 6b之间的特异性相互作用,并且R 6a和R 6b不影响所述R 5a和携带荧光基团的试剂之间的生物正交连接反应。
因此,在某些优选的实施方案中,在步骤(6)中,使所述双链体或所述生长的核酸链经历处理, 所述处理对第一化合物和第二化合物没有影响,但是能够使R 5a与携带荧光基团(例如与第二化合物相同的荧光基团,或者与第二化合物的荧光基团结构不同但具有相同或实质相同的发射光谱)的试剂发生第一生物正交连接反应(从而将所述试剂中携带的荧光基团引入第三化合物,使其携带荧光基团,并发出荧光信号),并且能够使R 6a与携带淬灭基团的所述结合配对的另一个成员(R 6b-L'-Que)发生特异性相互作用/特异性结合(从而淬灭第四化合物中的荧光基团发出的荧光信号),或者能够使第四化合物中的R 8与携带淬灭基团的化合物发生第二正交连接反应(从而淬灭第四化合物中的荧光基团发出的荧光信号)。在此类示例性实施方案中,在步骤(6)的处理之前,第一化合物和第三化合物(如果存在的话)不发出荧光,且第二化合物和第四化合物(如果存在的话)发出荧光;并且,在步骤(6)的处理之后,第一化合物(如果存在的话)仍然不发出荧光,第二化合物(如果存在的话)仍然发出荧光,第三化合物(如果存在的话)改变为发出荧光,且第四化合物(如果存在的话)改变为不发出荧光。因此,可通过两次荧光信号检测的结果来确定并入生长的核酸链3'端的化合物的类型。
在本发明的方法中,可根据所使用的荧光基团,选择合适的淬灭基团。各种荧光基团的淬灭基团是本领域熟知的,其典型实例包括但不限于,DABCYL、BHQ类淬灭剂(如BHQ-1或BHQ-2)、ECLIPSE和/或TAMRA。
进一步,在此类示例性实施方案中,可通过使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物中的核糖或脱氧核糖的3'位置处的保护基团被去除,以及所述双链体或生长的核酸链上的荧光基团(如果存在的话)被去除。因此,在某些优选的实施方案中,在步骤(8)中,使所述双链体或所述生长的核酸链经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应。在此类示例性实施方案中,在步骤(8)的处理之后,生长的核酸链将不具有任何荧光基团,并且其3'端核苷酸的核糖或脱氧核糖的3'位置处将具有游离的羟基,所述游离的羟基能够用于起始下一轮的聚合反应。
因此,在某些优选的实施方案中,本发明的方法包括下述步骤:
在某些优选的实施方案中,本发明的方法包括下述步骤:
(1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
(2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
Figure PCTCN2017118928-appb-000130
Figure PCTCN2017118928-appb-000131
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为能够进行第一生物正交连接反应的反应性基团;
R 6a(i)是第一结合配对的一个成员,同时是第二结合配对的一个成员;或者
(ii)只是第二结合配对的一个成员,并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye表示能够发出荧光信号的荧光基团;Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
(3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
(4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
(5)(i)第四化合物不能发出荧光信号,R 6a为第一结合配对的一个成员,同时是第二结合配对的一个成员,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 6a与携带荧光基团(例如,与第二化合物结构同的荧光基团,或者与第二化合物的荧光基团的结构不同但发射光谱相同或实质相同的荧光基团)的试剂(例如第一结合配对的另一个成员)发生特异性相互作用/特异性结合;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 6b-L4-Dye 2;其中,R 6b为第一结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
(ii)第四化合物能够发出与第二化合物相同的荧光信号,R 6a只是第二结合配对的一个成员,并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
(6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团(例如,与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂发生第一生物正交连接反应,从而将所述试剂中的荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使第四化合物中的R 6a与携带淬灭基团的第二结合配对的另一个成员特异性结合,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生第二正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号;其中,
所述携带淬灭基团的第二结合配对的另一个成员具有下述结构:R 6c-L'-Que;其中,R 6c为第二结合配对的另一个成员,L'独立地为连接基团或不存在;Que表示能够淬灭Dye1或Dye2发出的荧光信号的淬灭基团;和
(7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号。
在某些优选的实施方案中,所述方法还包括下述步骤:
(8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a、R 4b或R 4c连接的荧光基团),如果存在的话;
(9)移除前一步骤的反应体系的溶液相;
(10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(11)重复进行步骤(8)-(10)一次或多次。
在某些示例性实施方案中,如果在步骤(4)中,式(I)化合物被并入生长的核酸链的3'端,那么,由于式(I)化合物本身不携带荧光基团,并且其在步骤(6)未发生任何反应,因此,在步骤(5)和(7)中将检测不到荧光信号。也即,如果在步骤(5)和(7)中都检测不到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(I)化合物。
如果在步骤(4)中,式(II)化合物被并入生长的核酸链的3'端,那么,由于式(II)化合物本身携带荧光基团,并且其在步骤(6)未发生任何反应,因此,在步骤(5)和(7)中将都检测到荧光信号。也即,如果在步骤(5)和(7)中都检测到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(II)化合物。
如果在步骤(4)中,式(III)化合物被并入生长的核酸链的3'端,那么,(i)由于式(III)化合物本身不携带荧光基团,因此,在步骤(5)中将检测不到荧光信号;并且(ii)由于式(III)化合物在步骤(6)中与携带荧光基团的试剂发生了生物正交连接反应,导致荧光基团被引入生长的核酸链,因此,在步骤(7)中将检测到荧光信号。也即,如果在步骤(5)中检测不到荧光信号且在步骤(7)中检测到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(III)化合物。
如果在步骤(4)中,式(IV)化合物被并入生长的核酸链的3'端,那么,(i)由于式(IV)化合物本身携带荧光基团或在步骤(5)中经过处理而携带荧光基团,因此,在步骤(5)中将检测到荧光信号;并且(ii)由于式(IV)化合物在步骤(6)中与携带淬灭基团的所述结合配对的另一个成员(R 6b-L'-Que)特异性结合或发生第三正交连接反应,导致淬灭基团被引入生长的核酸链,淬灭了荧光基团发出的荧光信号,因此,在步骤(7)中将检测不到荧光信号。也即,如果在步骤(5)中检测到荧光信号且在步骤(7)中检测不到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(IV)化合物。
因此,在某些优选的实施方案中,本发明的方法还包括,在步骤(7)之后,根据步骤(5)和(7)的检测结果来确定在步骤(4)中并入生长的核酸链的3'端的化合物的类型,其中,
当步骤(5)和(7)的检测结果均为,所述双链体或所述生长的核酸链不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(I)化合物;
当步骤(5)和(7)的检测结果均为,所述双链体或所述生长的核酸链发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(II)化合物;
当步骤(5)的检测结果为所述双链体或所述生长的核酸链不发出所述荧光信号,且步骤(7)的检测结果为所述双链体或所述生长的核酸链发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(III)化合物;并且
当步骤(5)的检测结果为所述双链体或所述生长的核酸链发出所述荧光信号,且步骤(7)的检测结果为所述双链体或所述生长的核酸链不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(IV)化合物。
在某些优选的实施方案中,本发明的方法还包括,在步骤(7)之后,基于碱基互补配对原则,根据步骤(4)中并入生长的核酸链的3'端的化合物的类型,确定待测序的核酸分子中相应位置处的碱基类型。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物在核苷酸聚合反应过程中,彼此之间不会发生化学反应。
在某些优选的实施方案中,Base1和Base2为嘌呤碱基,并且Base3和Base4为嘧啶碱基。在某些优选的实施方案中,Base1为碱基G,Base2为碱基A,Base3为碱基C,Base4为碱基T或U。在某些优选的实施方案中,Base1为碱基G,Base2为碱基A,Base3为碱基T或U,Base4为碱基C。在某些优选的实施方案中,Base1为碱基A,Base2为碱基G,Base3为碱基C,Base4为碱基T或U。在某些优选的实施方案中,Base1为碱基A,Base2为碱基G,Base3为碱基T或U,Base4为碱基C。
在某些优选的实施方案中,Base1和Base2为嘧啶碱基,并且Base3和Base4为嘌呤碱基。在某些优选的实施方案中,Base1为碱基C,Base2为碱基T或U,Base3为碱基G,Base4为碱基A。在某些优选的实施方案中,Base1为碱基C,Base2为碱基T或U,Base3为碱基A,Base4为碱基G。在某些优选的实施方案中,Base1为碱基T或U,Base2为碱基C,Base3为碱基G,Base4为碱基A。在某些优选的实施方案中,Base1为碱基T或U,Base2为碱基C,Base3为碱基A,Base4为碱基G。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物具有相同的R 1。在某些优选的实施方案中,R 1各自独立地为-H。在某些优选的实施方案中,R 1各自独立地为单磷酸基团(-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为二磷酸基团(-PO 3H-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为三磷酸基团(-PO 3H-PO 3H-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2)。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物具有相同的R 2。在某些优选的实施方案中,R 2各自独立地为-H。在某些优选的实施方案中,R 2各自独立地为-OH。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地能够发生生物正交切割反应。如本文中所使用的,表述“各自独立地能够发生生物正交切割反应”意指,所提及的反应性基团、试剂、或分子等各自都能够进行生物正交切割反应,而在彼此之间不互相干扰或影响。例如,表述“R 3a和R 3b各自独立地能够发生生物正交切割反应”意指,R 3a和R 3b均能够发生生物正交切割反应,并且R 3a不影响R 3b的生物正交切割反应的进行,R 3b不影响R 3a的生物正交切割反应的进行。
在某些示例性实施方案中,R 3a为能够在第一试剂存在的条件下发生生物正交切割反应的第一反应性基团;R 3b为能够在第二试剂存在的条件下发生生物正交切割反应的第二反应性基团;R 3c为能够在第三试剂存在的条件下发生生物正交切割反应的第三反应性基团;R 3d为能够在第四试剂存在的条件下发生生物正交切割反应的第四反应性基团;R 4a为能够在第五试剂存在的条件下发生生物正交切割反应的第五反应性基团;R 4b为能够在第六试剂存在的条件下发生生物正交切割反应的第六反应性基团;R 4c为能够在第七试剂存在的条件下发生生物正交切割反应的第七反应性基团;且,R 5a为能够在第八试剂存在的条件下发生生物正交连接反应的第八反应性基团。
优选地,在此类实施方案中,在步骤(8)中,可添加第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂,从而使得R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c(如果存在的话)各自发生生物正交切割反应。由此,R 3a、R 3b、R 3c、R 3d(如果存在的话)将被从核糖或脱氧核糖的3'位置去除(换言之,-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)将被转变为游离的羟基),并且R 4a和与其相连接的荧光基团(如果存在的话),R 4b和与其相连接的荧光基团(如果存在的话),以及R 4c和与其相连接的荧光基团(如果存在的话)也将被去除。由此,在步骤(8)之后,所述生长的核酸链将不携带所述荧光基团,并且在3'端具有游离的羟基,能够用于进行下一轮的聚合反应。因此,在某些优选实施方案中,在步骤(8)中,添加第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂,从而形成含有溶液相和固相的反应体系,并在允许R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自发生生物正交切割反应的条件下,将所述双链体与所述第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂进行温育。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂和第四试剂是相同的试剂。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d是相同的反应性基团。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂和第四试剂是相同的试剂。也即,在步骤(8)中,在所述相同的试剂(即,第一试剂)的存在下,所述相同的R 3a、R 3b、R 3c、R 3d(如果存在的话)将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些优选的实施方案中R 4a、R 4b、R 4c能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第五试剂、第六试剂和第七试剂是相同的试剂。
在某些优选的实施方案中,R 4a、R 4b、R 4c是相同的反应性基团。在这种情况下,优选地,在步骤(8)中,第五试剂、第六试剂和第七试剂是相同的试剂。也即,在步骤(8)中,在所述相同的试剂(即,第五试剂)的存在下,所述相同的R 4a、R 4b、R 4c(如果存在的话)将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂。也即,在步骤(8)中,仅需添加所述相同 的试剂(即,第一试剂),并且在所述相同的试剂(即,第一试剂)的存在下,所述R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c(如果存在的话),将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些示例性实施方案中,特别优选地,所述R 5a和携带荧光基团的试剂与第二结合配对的两个成员(R 6a和R 6b)之间不存在相互作用。此外,特别优选地,所述R 5a和携带荧光基团的试剂不影响R 6a和R 6b之间的特异性相互作用,并且R 6a和R 6b不影响所述R 5a和携带荧光基团的试剂之间的生物正交连接反应。
在此类实施方案中,优选地,在步骤(6)中,可添加第八试剂和R 6c-L'-Que,从而使得式(III)化合物中的R 5a(如果存在的话)发生生物正交连接反应,并且使得式(IV)化合物中的R 6a(如果存在的话)与R 6c-L'-Que中的R 6b特异性结合。例如,第八试剂可以包含化合物M,所述化合物M携带与第二化合物和第四化合物相同(或者结构不同但具有相同或实质相同的发射光谱)的荧光基团,并且所述化合物M能够与R 5a发生生物正交连接反应,并由此将化合物M中的荧光基团引入式(III)化合物,使得式(III)化合物发出荧光信号。此外,通过所述结合配对的两个成员(R 6a和R 6c)之间的特异性相互作用,与R 6c相连接的淬灭基团Que被引入式(IV)化合物,使得式(IV)化合物中发出的荧光信号被淬灭,式(IV)化合物不再发出荧光。在此类实施方案中,还特别优选地,在步骤(6)中,第八试剂不与第一化合物和第二化合物发生化学反应,并且进一步优选地,R 6c-L'-Que不与第一化合物和第二化合物发生化学反应。因此,在某些优选实施方案中,在步骤(6)中,可添加第八试剂和R 6c-L'-Que,从而形成含有溶液相和固相的反应体系,其中,第八试剂包含化合物M,所述化合物M携带与第二化合物和第四化合物相同(或者结构不同但具有相同或实质相同的发射光谱)的荧光基团,并且所述化合物M能够与R 5a发生生物正交连接反应,从而将化合物M中的荧光基团引入第三化合物;并且R 6c为第二结合配对的另一个成员,L'为连接基团或不存在;Que表示能够淬灭Dye发出的荧光信号的淬灭基团;然后,在允许化合物M与R 5a发生生物正交连接反应,且允许R 6a和R 6c特异性结合的条件下,将所述双链体与第八试剂和R 6c-L'-Que剂进行温育。
在某些示例性实施方案中,R 6a为能够发出荧光信号的荧光基团Dye 1,Dye 1具有与Dye相同的结构,或者结构不同但具有相同的发射光谱,因此第四化合物本身能够发出与第二化合物相同的荧光信号。
在某些示例性实施方案中,第四化合物本身不携带荧光基团,R 7a为第一结合配对的一个成员。在此类实施方案中,步骤(5)包括,添加第九试剂,从而使得式(IV)化合物中的R 6a(如果存在的话)与所述结合配对的另一个成员发生特异性作用和/或特异性结合。例如,第九试剂可以包含化合物M’,其结构为R 6b-L4-Dye 2,其中,R 6b为第一结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱。
在某些示例性实施方案中,第四化合物的R 4c与R 6a之间还存在能够进行第三生物正交连接反应的反应性基团R 8。在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 5a、R 8各自独立地能够发生生物正交切割或连接反应。在某些示例性实施方案中,R 8a能够在第十试剂存在的条件下发生第二生物正交连接反应。
优选地,在此类实施方案中,在步骤(6)中,可添加第七试剂和第十试剂,从而使得式(III)化合物中的R 5a(如果存在的话)发生第一生物正交连接反应,并且使得式(IV)化合物中的R 8(如果存在的话)发生第二生物正交连接反应。例如,第七试剂可以包含化合物M,所述化合物M携带与第二化合物和第四化合物相同的荧光基团(或者结构不同但发光光谱相同或实质相同的荧光基团),并且所述化合物M能够与R 5a发生第一生物正交连接反应,并由此将化合物M中的荧光基团引入式(III)化合物。此外,第十试剂能够使式(IV)化合物中的R 8发生第二生物正交连接反应,并由此将式(IV)化合物中的荧光信号淬灭。在此类实施方案中,还特别优选地,在步骤(6)中,第七试剂不与第一化合物和第二化合物发生化学反应,并且进一步优选地,第十试剂不与第一化合物和第二化合物发生化学反应。因此,在某些优选实施方案中,在步骤(6)中,可添加第七试剂和第十试剂,从而形成含有溶液相和固相的反应体系,其中,第七试剂包含化合物M,所述化合物M携带与第二化合物和第四化合物相同的荧光基团(或结构不同但发射光谱相同或实质相同),并且所述化合物M能够与R 5a发生第一生物正交连接反应,从而将化合物M中的荧光基团引入第三化合物;第十试剂包含化合物M”,所述化合物M”携带淬灭剂,并且所述化合物M”能够与R 8发生第二生物正交连接反应,从而将化合物M”中的淬灭剂引入第四化合物;然后,在允许化合物M”与R 5a发生第一生物正交连接反应,且允许M”与R 8发生第二生物正交连接反应的条件下,将所述双链体与第七试剂和第十试剂进 行温育。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d各自独立地选自下列基团:-CH 2CH=CH 2、-CH 2N 3、-C 3-8环烯基(例如-C 3环烯基、-C 4环烯基、-C 5元环烯基、-C 6环烯基、-C 7环烯基或-C 8环烯基)。在某些优选的实施方案中,所述-C 3-8环烯基选自-C 3环烯基和-C 8环烯基。在某些优选的实施方案中,所述-C 3-8环烯基为
Figure PCTCN2017118928-appb-000132
在某些优选的实施方案中,所述-C 3-8环烯基为
Figure PCTCN2017118928-appb-000133
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是相同的反应性基团,并且选自下列基团:-CH 2CH=CH 2、-CH 2N 3、C 3-8环烯基(例如C 3环烯基、C 4环烯基、C 5元环烯基、C 6环烯基、C 7环烯基或C 8环烯基)。在某些优选的实施方案中,所述C 3-8环烯基选自C 3环烯基和C 8环烯基。在某些优选的实施方案中,所述C 3-8环烯基为
Figure PCTCN2017118928-appb-000134
在某些优选的实施方案中,所述C 3-8环烯基为
Figure PCTCN2017118928-appb-000135
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是相同的反应性基团,并且均为-CH 2N 3
在某些优选的实施方案中,R 4a、R 4b和R 4c各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000136
-O-C 3-8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”选自-O-C 3环烯亚基,-O-C 4环烯亚基,-O-C 5环烯亚基,-O-C 6环烯亚基,-O-C 7环烯亚基,和-O-C 8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000137
在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000138
在某些优选的实施方案中,R 4a、R 4b和R 4c是相同的反应性基团,并且选自下列基团:
Figure PCTCN2017118928-appb-000139
Figure PCTCN2017118928-appb-000140
-O-C 3-8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”选自-O-C 3环烯亚基,-O-C 4环烯亚基,-O-C 5环烯亚基,-O-C 6环烯亚基,-O-C 7环烯亚基,和-O-C 8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000141
在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000142
在某些优选的实施方案中,R 4a、R 4b和R 4c均为
Figure PCTCN2017118928-appb-000143
在某些优选的实施方案中,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂各自独立地包含选自下列的物质:
钯的配合物(例如钯和4个三苯基膦三间磺酸的配合物);
钌的配合物(例如钌和喹啉羧酸酯(或其衍生物)、烯丙基或环戊二烯的配合物);
膦化物(例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3);以及
化合物Q,其具有结构式
Figure PCTCN2017118928-appb-000144
其中,Z 1和Z 2各自独立地选自修饰或未经修饰的烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和修饰或未经修饰的芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基或吡啶基)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2。在这种情况下,优选地,R 4a、 R 4b和R 4c
Figure PCTCN2017118928-appb-000145
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含钯的配合物或钌的配合物。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3。在这种情况下,优选地,R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000146
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000147
在这种情况下,优选地,R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000148
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含如上所定义的化合物Q。进一步优选地,在化合物Q中,Z 1为甲基;Z 2为修饰或未经修饰的吡啶基。更优选地,化合物Q为
Figure PCTCN2017118928-appb-000149
其中,W为氢或修饰基团。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,且包含如上所定义的化合物Q。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的连接基团L1、L2和L3,R 6b-L4-Dye 2中的L4以及R 6b-L'-Que中的连接基团L'是各自独立的,并且不受特别的限制。本领域技术人员可以根据化合物中所使用的碱基(Base1、Base2、Base3和Base4)、反应性基团(R 4a、R 4b、R 4c和R 5a)、以及所述结合配对的成员(R 6a和R 6b),选择合适的连接基团L1、L2、L3、L4和L'。
在某些示例性实施方案中,连接基团L1、L2、L3、L4和L'各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000150
其中,m1、m2、m3、m4、n1、n2、n3、n4、p1、p2、p3、a、b、c、d、e和f各自独立地选自0、1、2、3、4、5或6。
在某些示例性实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L1各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000151
其中,m1、m2、m3和m4各自独立地选自0、1、2、3、4、5或6。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L1各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000152
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独 立地选自下列基团:
Figure PCTCN2017118928-appb-000153
Figure PCTCN2017118928-appb-000154
其中,n1、n2、n3、n4、p1、p2、p3、a、b、c、d、e和f各自独立地选自0、1、2、3、4、5或6。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000155
其中,n1、n2、n3、n4、p1、p2、p3各自独立地选自0、1、2、3、4、5或6。。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000156
在某些优选的实施方案中,R 5a选自下列基团:
Figure PCTCN2017118928-appb-000157
在某些优选的实施方案中,第八试剂包含的化合物M选自以下化合物:
化合物M1,其具有结构式
Figure PCTCN2017118928-appb-000158
其中,Y选自烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基),L0不存在或者为连接基团,Dye为荧光基团,所述荧光基团与第二化合物和第四化合物包含的荧光基团相同(或结构不同但发射光谱相同或实质相同);
化合物M2,其具有结构式
Figure PCTCN2017118928-appb-000159
其中,Dye为荧光基团,所述荧光基团与第二化合物和第四化合物包含的荧光基团相同(或结构不同但发射光谱相同或实质相同);
化合物M3,其具有结构式
Figure PCTCN2017118928-appb-000160
其中,Z 3各自独立地选自烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基),Dye为荧光基团,所述荧光基团与第二化合物和第四化合物包含的荧光基团相同(或结构不同但发射光谱相同或实质相同)。
在本发明的实施方案中,连接基团L0不受特别的限制。本领域技术人员可以根据实际需要,选择合适的连接基团L0。例如,在某些优选的实施方案中,L0可以为
Figure PCTCN2017118928-appb-000161
其中,q1、q2、q3、q4各自独立地选自0、1、2、3、4、5或6。
在某些优选的实施方案中,第八试剂包含化合物M1,并且其中,Y为C 1-C 6烷基,例如甲基。在某些优选的实施方案中,化合物M1中的L0为
Figure PCTCN2017118928-appb-000162
在某些优选的实施方案中,化合物M1中的Dye为AF532。在某些优选的实施方案中,化合物M1具有以下结构:
Figure PCTCN2017118928-appb-000163
在某些优选的实施方案中,除了化合物M,所述第八试剂还包含钌的配合物。在某些优选的实施方案中,所述第八试剂包含化合物M2和钌的配合物。
在某些优选的实施方案中,R 5a
Figure PCTCN2017118928-appb-000164
在这种情况下,优选地,第八试剂包含化合物M1。
在某些优选的实施方案中,R 5a
Figure PCTCN2017118928-appb-000165
在这种情况下,优选地,第八试剂包含化合物M2。更优选地,第八试剂均包含化合物M2和钌的配合物。
在某些优选的实施方案中,R 5a
Figure PCTCN2017118928-appb-000166
在这种情况下,优选地,第八试剂包含化合物M3。
在某些优选的实施方案中,R 6a和R 6b为第一结合配对的两个成员。在某些优选的实施方案中,R 6a和R 6c为第二结合配对的两个成员。在某些优选的实施方案中,所述第一结合配对和第二结合配对各自独立地选自:抗原(例如小分子抗原)-抗体、半抗原-抗体、激素-受体、配体-受体、核酸链-互补核酸链、底物-酶、底物类似物-酶、抑制剂-酶、糖-植物凝集素、生物素-抗生物素蛋白(例如,亲和素和链酶亲和素)、地高辛和地高辛抗体,以及5位溴代去氧鸟苷和其抗体。
在某些优选的实施方案中,所述第一结合配对的两个成员选自下述组合:(a)生物素和亲和素(例如链霉亲和素),(b)脱硫生物素和亲和素(例如链霉亲和素)和(c)地高辛和地高辛抗体。在某些优选的实施方案中,所述第二结合配对的两个成员选自下述组合(a)生物素和亲和素(例如链霉亲和素),(b)脱硫生物素和亲和素(例如链霉亲和素)和(c)地高辛和地高辛抗体。在某些优选的实施方案中,R 6a为生物素或脱硫生物素,并且R 6b为亲和素(例如链霉亲和素)。某些优选的实施方案中,R 6a为地高辛,并且R 6b为地高辛抗体。
特别优选的是,所述R 5a和携带荧光基团的试剂与第二结合配对的两个成员(R 6a和R 6c)之间不存在相互作用。此外,特别优选地,所述R 5a和携带荧光基团的试剂不影响R 6a和R 6c之间的特异性相互作用,并且R 6a和R 6c不影响所述R 5a和携带荧光基团的试剂之间的生物正交连接反应。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000167
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含钯的配合物或钌的配合物;R 5a
Figure PCTCN2017118928-appb-000168
第八试剂包含化合物M1;R 6a是生物素;R 6b是亲和素(例如链霉亲和素)。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000169
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3;R 5a
Figure PCTCN2017118928-appb-000170
第八试剂包含化合物M1;R 6a是生物素;R 6b是亲和素(例如链霉亲和素)。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000171
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3;R 5a
Figure PCTCN2017118928-appb-000172
第八试剂包 含化合物M2和钌的配合物;R 6a是生物素;R 6b是亲和素(例如链霉亲和素)。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000173
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含钯的配合物或钌的配合物;R 5a
Figure PCTCN2017118928-appb-000174
第八试剂包含化合物M3;R 6a是生物素;R 6b是亲和素(例如链霉亲和素)。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000175
R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000176
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a
Figure PCTCN2017118928-appb-000177
第八试剂包含化合物M2和钌的配合物;R 6a是生物素;R 6b是亲和素(例如链霉亲和素)。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000178
R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000179
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a
Figure PCTCN2017118928-appb-000180
第八试剂包含化合物M3;R 6a是生物素;R 6b是亲和素(例如链霉亲和素)。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。
另外,如上文所描述的,在本发明的方法中,可根据需要,增加洗涤步骤。可在任何期望的阶段,增加所述洗涤步骤,并且任选地,所述洗涤步骤可进行一次或多次。
例如,在步骤(5)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除游离的(即,未并入生长的核酸链的)携带荧光基团的化合物(例如式(II)化合物和式(IV)化合物),从而尽可能减少非特异性的荧光信号。
类似地,在步骤(7)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除步骤(6)中应用的携带荧光的试剂,从而尽可能减少非特异性的荧光信号。
类似地,在步骤(9)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除步骤(8)中应用的试剂以及产生的产物(其可能携带荧光),从而尽可能减少非特异性的荧光信号,并且尽可能避免对后续的聚合反应造成不利的影响。
可使用各种合适的洗涤溶液来进行洗涤步骤。此类洗涤溶液的实例包括但不限于,磷酸盐缓冲液,柠檬酸盐缓冲液,Tris-HCl缓冲液,醋酸盐缓冲液,碳酸盐缓冲液等等。可根据实际需要来选择合适的洗涤溶液(包括合适的成分,浓度,离子强度,pH值等),这在本领域技术人员的能力范围之内。
示例性实施方案4
在某些示例性实施方案中,可通过使用能够进行生物正交切割反应的反应性基团以及结合配对(其包含能够通过特异性非共价作用而相互作用的两个成员),在步骤(6)中控制(例如,维持或改变)所述四种化合物发出荧光信号的能力;并且优选地,可通过使用能够进行生物正交切割反应的 反应性基团,在步骤(8)中实现所述保护基团和荧光信号的去除。例如,在某些示例性实施方案中,所述第一、第二、第三和第四化合物可分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
Figure PCTCN2017118928-appb-000181
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 6各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为第一结合配对的一个成员;
R 6a为能够发出荧光信号的荧光基团(Dye 1),能够进行第一生物正交连接反应的反应性基团,和/或第二结合配对的一个成员;
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;任选地,R 4c和R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
在此类示例性实施方案中,第四化合物本身可以携带与第二化合物能够发出相同荧光信号的荧光基团,也可以不携带荧光基团,而是在步骤(5)中,通过与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂(例如第二结合配对的另一个成员,或者能够与R 6a进行第一生物正交连接反应的化合物)发生特异性相互作用/特异性结合或者发生第一生物正交连接反应,而将荧光基团引入化合物四,并能够发出与第二化合物相同的荧光信号。进一步地,可通过使R 5a与携带荧光基团的第一结合配对的另一个成员(在本文中表示为“R 5b-L-Dye 2”,其中R 5b为所述结合配对的另一个成员,L为连接基团或不存 在;Dye 2表示能够发出荧光信号的荧光基团,其优选地为与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)特异性相互作用/特异性结合,从而使得第三化合物携带荧光基团。此外,(i)使第四化合物中的R 4c发生生物正交切割反应,从而去除第四化合物中的荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生第二正交连接反应,从而淬灭第四化合物中的荧光基团发出的荧光信号;。在此类示例性实施方案中,特别优选地,第一结合配对的两个成员(R 5a和R 5b)与R 4c之间不存在相互作用。此外,特别优选地,R 5a和R 5b不影响R 4c的生物正交切割反应,并且R 4c不影响R 5a和R 5b之间的特异性相互作用。特别优选地,第一结合配对的两个成员(R 5a和R 5b)与R 8之间不存在相互作用。此外,特别优选地,R 5a和R 5b不影响R 8的生物正交连接反应,并且R 8不影响R 5a和R 5b之间的特异性相互作用。
因此,在某些优选的实施方案中,在步骤(6)中,使所述双链体或所述生长的核酸链经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使R 5a与携带荧光基团的所述结合配对的另一个成员(R 5b-L-Dye 2)发生特异性相互作用/特异性结合(从而将所述荧光基团引入第三化合物,使其携带荧光基团,并发出荧光信号),并且能够使R 4c发生生物正交切割反应(从而去除第四化合物中的荧光基团,使其不再发出荧光信号),或者能够使第四化合物中的R 8与携带淬灭基团的化合物发生第二正交连接反应(从而淬灭第四化合物中的荧光基团发出的荧光信号)。在此类示例性实施方案中,在步骤(6)的处理之前,第一化合物和第三化合物(如果存在的话)不发出荧光,且第二化合物和第四化合物(如果存在的话)发出荧光;并且,在步骤(6)的处理之后,第一化合物(如果存在的话)仍然不发出荧光,第二化合物(如果存在的话)仍然发出荧光,第三化合物(如果存在的话)改变为发出荧光,且第四化合物(如果存在的话)改变为不发出荧光。因此,可通过两次荧光信号检测的结果来确定并入生长的核酸链3'端的化合物的类型。
进一步,在此类示例性实施方案中,可通过使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物中的核糖或脱氧核糖的3'位置处的保护基团被去除,以及所述双链体或生长的核酸链上的荧光基团(如果存在的话)被去除。因此,在某些优选的实施方案中,在步骤(8)中,使所述双链体或所述生长的核酸链经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b发生生物正交切割反应。在此类示例性实施方案中,在步骤(8)的处理之后,生长的核酸链将不具有任何荧光基团,并且其3'端核苷酸的核糖或脱氧核糖的3'位置处将具有游离的羟基,所述游离的羟基能够用于起始下一轮的聚合反应。
因此,在某些优选的实施方案中,本发明的方法包括下述步骤:
在某些优选的实施方案中,本发明的方法包括下述步骤:
(1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
(2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
Figure PCTCN2017118928-appb-000182
Figure PCTCN2017118928-appb-000183
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为第一结合配对的一个成员;
R 6a为能够发出荧光信号的荧光基团(Dye 1),能够进行第一生物正交连接反应的反应性基团,和/或第二结合配对的一个成员;
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c和R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
(3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
(4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
(5)(i)第四化合物能够发出与第二化合物相同的荧光信号,R 6a为Dye 1,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
(ii)第四化合物不能发出荧光信号,R 6a为能够进行第一生物正交连接反应的反应性基团,或者第二结合配对的一个成员,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 6a与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂(例如第二结合配对的另一个成员,或者能够与R 6a进行第一生物正交连接反应的化合物)发生特异性相互作用/特异性结合或者发生第一生物正交连接反应;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
所述携带荧光基团的第二结合配对的另一个成员具有下述结构:R 6b-L’-Dye 1;其中,R 6b为第二结合配对的另一个成员,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;或者
所述携带荧光基团的能够与R 6a进行第一生物正交连接反应的化合物具有下述结构:R 6b-L’-Dye 1;其中,R 6b为能够与R 6a进行第一生物正交连接反应的基团,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
(6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团的第一结合配对的另一个成员特异性结合,从而将所述荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使第四化合物中的R 4c发生生物正交切割反应,从而去除第四化合物中的荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生第二正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1发出的荧光信号;其中,
所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 5b-L-Dye 2;其中,R 5b为第一结合配对的另一个成员,L独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且与第二化合物包含的荧光基团相同,或者与第二化合物的荧光基团的发射光谱相同或实质相同;和
(7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号。
在某些优选的实施方案中,所述方法还包括下述步骤:
(8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a或R 4b连接的荧光基团),如果存在的话;
(9)移除前一步骤的反应体系的溶液相;
(10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(11)重复进行步骤(8)-(10)一次或多次。
在某些示例性实施方案中,如果在步骤(4)中,式(I)化合物被并入生长的核酸链的3'端,那么,由于式(I)化合物本身不携带荧光基团,并且其在步骤(6)未发生任何反应,因此,在步骤(5)和(7)中将检测不到荧光信号。也即,如果在步骤(5)和(7)中都检测不到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(I)化合物。
如果在步骤(4)中,式(II)化合物被并入生长的核酸链的3'端,那么,由于式(II)化合物本身携带荧光基团,并且其在步骤(6)未发生任何反应,因此,在步骤(5)和(7)中将都检测到荧光信号。也即,如果在步骤(5)和(7)中都检测到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(II)化合物。
如果在步骤(4)中,式(III)化合物被并入生长的核酸链的3'端,那么,(i)由于式(III)化合物本身不携带荧光基团,因此,在步骤(5)中将检测不到荧光信号;并且(ii)由于式(III)化合物在步骤(6)中与携带荧光基团的所述结合配对的另一个成员(R 5b-L-Dye 2)特异性结合,导致荧光基团被引入生长的核酸链,因此,在步骤(7)中将检测到荧光信号。也即,如果在步骤(5)中检测不到荧光信号且在步骤(7)中检测到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(III)化合物。
如果在步骤(4)中,式(IV)化合物被并入生长的核酸链的3'端,那么,(i)由于式(IV)化合物本身携带荧光基团或在步骤(5)中经过处理而携带荧光基团,因此,在步骤(5)中将检测到荧光信号;并且(ii)由于式(IV)化合物在步骤(6)中发生了生物正交切割反应或发生第二正交连接反应,而丧失了荧光基团或者荧光信号被淬灭,因此,在步骤(7)中将检测不到荧光信号。也即,如果在步骤(5)中检测到荧光信号且在步骤(7)中检测不到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(IV)化合物。
因此,在某些优选的实施方案中,本发明的方法还包括,在步骤(7)之后,根据步骤(5)和(7)的检测结果来确定在步骤(4)中并入生长的核酸链的3'端的化合物的类型,其中,
当步骤(5)和(7)的检测结果均为,所述双链体或所述生长的核酸链不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(I)化合物;
当步骤(5)和(7)的检测结果均为,所述双链体或所述生长的核酸链发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(II)化合物;
当步骤(5)的检测结果为所述双链体或所述生长的核酸链不发出所述荧光信号,且步骤(7)的检测结果为所述双链体或所述生长的核酸链发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(III)化合物;并且
当步骤(5)的检测结果为所述双链体或所述生长的核酸链发出所述荧光信号,且步骤(7)的检测结果为所述双链体或所述生长的核酸链不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(IV)化合物。
在某些优选的实施方案中,本发明的方法还包括,在步骤(7)之后,基于碱基互补配对原则,根据步骤(4)中并入生长的核酸链的3'端的化合物的类型,确定待测序的核酸分子中相应位置处的碱基类型。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物在核苷酸聚合反应过程中,彼此之间不会发生化学反应。
在某些优选的实施方案中,Base1和Base2为嘌呤碱基,并且Base3和Base4为嘧啶碱基。在某些优选的实施方案中,Base1为碱基G,Base2为碱基A,Base3为碱基C,Base4为碱基T或U。在某些优选的实施方案中,Base1为碱基G,Base2为碱基A,Base3为碱基T或U,Base4为碱基C。在某些优选的实施方案中,Base1为碱基A,Base2为碱基G,Base3为碱基C,Base4为碱基T或U。在某些优选的实施方案中,Base1为碱基A,Base2为碱基G,Base3为碱基T或U,Base4为碱基C。
在某些优选的实施方案中,Base1和Base2为嘧啶碱基,并且Base3和Base4为嘌呤碱基。在某些优选的实施方案中,Base1为碱基C,Base2为碱基T或U,Base3为碱基G,Base4为碱基A。在某些优选的实施方案中,Base1为碱基C,Base2为碱基T或U,Base3为碱基A,Base4为碱基G。在某些优选的实施方案中,Base1为碱基T或U,Base2为碱基C,Base3为碱基G,Base4为碱基A。在某些优选的实施方案中,Base1为碱基T或U,Base2为碱基C,Base3为碱基A,Base4为碱基G。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物具有相同的R 1。在某些优选的实施方案中,R 1各自独立地为-H。在某些优选的实施方案中,R 1各自独立地为单磷酸基团(-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为二磷酸基团(-PO 3H-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为三磷酸基团(-PO 3H-PO 3H-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2)。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物具有相同的R 2。在某些优选的实施方案中,R 2各自独立地为-H。在某些优选的实施方案中,R 2各自独立地为-OH。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b各自独立地能够发生生物正交切割反应。如本文中所使用的,表述“各自独立地能够发生生物正交切割反应”意指,所提及的反应性基团、试剂、或分子等各自都能够进行生物正交切割反应,而在彼此之间不互相干扰或影响。例如,表述“R 3a和R 3b各自独立地能够发生生物正交切割反应”意指,R 3a和R 3b均能够发生生物正交切割反应,并且R 3a不影响R 3b的生物正交切割反应的进行,R 3b不影响R 3a的生物正交切割反应的进行。
在某些示例性实施方案中,R 3a为能够在第一试剂存在的条件下发生生物正交切割反应的第一反应性基团;R 3b为能够在第二试剂存在的条件下发生生物正交切割反应的第二反应性基团;R 3c为能够在第三试剂存在的条件下发生生物正交切割反应的第三反应性基团;R 3d为能够在第四试剂存在的条件下发生生物正交切割反应的第四反应性基团;R 4a为能够在第五试剂存在的条件下发生生物正交切割反应的第五反应性基团;R 4b为能够在第六试剂存在的条件下发生生物正交切割反应的第六反应性基团;且,R 4c为能够在第七试剂存在的条件下发生生物正交切割反应的第七反应性基团。
在某些示例性实施方案中,特别优选地,所述第一结合配对的两个成员(R 5a和R 5b)与R 4c之间不存在相互作用。此外,特别优选地,R 5a和R 5b不影响R 4c的生物正交切割反应,并且R 4c不影响R 5a和R 5b之间的特异性相互作用。优选地,在此类实施方案中,在步骤(6)中,可添加R 5b-L-Dye 2和第七试剂,从而使得式(III)化合物中的R 5a(如果存在的话)与R 5b-L-Dye 2中的R 5b特异性结合,并且使得式(IV)化合物中的R 4c(如果存在的话)发生生物正交切割反应。由此,通过所述结合配对的两个成员(R 5a和R 5b)之间的特异性相互作用,与R 5b相连接的荧光基团Dye 2被引入式(III)化合物,使得式(III)化合物发出荧光信号。同时,第七试剂能够使式(IV)化合物中的R 4c发生生物正交切割反应,并由此将式(IV)化合物中的R 6以及与其相连接的荧光基团去除。在此类实施方案中,还特别优 选地,在步骤(6)中,R 5b-L-Dye 2不与第一化合物和第二化合物发生化学反应,并且进一步优选地,第七试剂不与第一化合物和第二化合物发生化学反应。因此,在某些优选实施方案中,在步骤(6)中,可添加R 5b-L-Dye 2和第七试剂,从而形成含有溶液相和固相的反应体系,其中,R 5b为第一结合配对的另一个成员,L为连接基团或不存在;Dye表示能够发出荧光信号的荧光基团;然后,在允许允许R 5a和R 5b特异性结合且允许R 4c生生物正交切割反应的条件下,将所述双链体与R 5b-L-Dye 2和第七试剂进行温育。
在某些示例性实施方案中,第四化合物的R 5b与R 7a之间还存在能够进行第二生物正交连接反应的反应性基团R 8。在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 5a、R 8各自独立地能够发生生物正交切割或连接反应。在某些示例性实施方案中,R 8a能够在第八试剂存在的条件下发生第三生物正交连接反应。
在此类实施方案中,特别优选地,所述第一结合配对的两个成员(R 5a和R 5b)与R 8之间不存在相互作用。此外,特别优选地,R 5a和R 5b不影响R 8的生物正交连接反应,并且R 8不影响R 5a和R 5b之间的特异性相互作用。优选地,在此类实施方案中,在步骤(6)中,可添加R 5b-L-Dye 2和第八试剂,从而使得式(III)化合物中的R 5a(如果存在的话)与R 5b-L-Dye 2中的R 5b特异性结合,并且使得式(IV)化合物中的R 8(如果存在的话)发生生物正交连接反应。由此,通过所述结合配对的两个成员(R 5a和R 5b)之间的特异性相互作用,与R 5b相连接的荧光基团Dye 2被引入式(III)化合物,使得式(III)化合物发出荧光信号。同时,第八试剂能够使式(IV)化合物中的R 4c发生生物正交连接反应,并由此将式(IV)化合物中的荧光信号淬灭。在此类实施方案中,还特别优选地,在步骤(6)中,R 5b-L-Dye 2不与第一化合物和第二化合物发生化学反应,并且进一步优选地,第八试剂不与第一化合物和第二化合物发生化学反应。因此,在某些优选实施方案中,在步骤(6)中,可添加R 5b-L-Dye 2和第八试剂,从而形成含有溶液相和固相的反应体系,其中,R 5b为第一结合配对的另一个成员,L为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团;然后,在允许允许R 5a和R 5b特异性结合且允许R 8生生物正交连接反应的条件下,将所述双链体与R 5b-L-Dye 2和第八试剂进行温育。
还优选地,在此类实施方案中,在步骤(8)中,可添加第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂,从而使得R 3a、R 3b、R 3c、R 3d、R 4a、R 4b(如果存在的话)各自发生生物正交切割反应。由此,R 3a、R 3b、R 3c、R 3d(如果存在的话)将被从核糖或脱氧核糖的3'位置去除(换言之,-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)将被转变为游离的羟基),并且R 4a和与其相连接的荧光基团(如果存在的话)以及R 4b和与其相连接的荧光基团(如果存在的话)也将被去除。由此,在步骤(8)之后,所述生长的核酸链将不携带所述荧光基团,并且在3'端具有游离的羟基,能够用于进行下一轮的聚合反应。因此,在某些优选实施方案中,在步骤(8)中,添加第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂,从而形成含有溶液相和固相的反应体系,并在允许R 3a、R 3b、R 3c、R 3d、R 4a、R 4b各自发生生物正交切割反应的条件下,将所述双链体与所述第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂进行温育。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂和第四试剂是相同的试剂。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是相同的反应性基团。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂和第四试剂是相同的试剂。也即,在步骤(8)中,在所述相同的试剂(即,第一试剂)的存在下,所述相同的R 3a、R 3b、R 3c和R 3d(如果存在的话)将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些优选的实施方案中,R 4a和R 4b能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第五试剂和第六试剂是相同的试剂。
在某些优选的实施方案中,R 4a和R 4b是相同的反应性基团。在这种情况下,优选地,在步骤(8)中,第五试剂和第六试剂是相同的试剂。也即,在步骤(8)中,在所述相同的试剂(即,第五试剂)的存在下,所述相同的R 4a和R 4b(如果存在的话)将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a和R 4b能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂。也即,在步骤(8)中,仅需添加所述相同的试剂(即,第一试剂),并且在所述相同的试剂(即,第一试剂)的存在下,所述R 3a、R 3b、R 3c、R 3d、R 4a和R 4b(如果存在的话),将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些示例性实施方案中,R 6a为能够发出荧光信号的荧光基团Dye 1,Dye 1具有与Dye相同的结构,或者结构不同但具有相同的发射光谱,因此第四化合物本身能够发出与第二化合物相同的荧光信号。
在某些示例性实施方案中,第四化合物本身不携带荧光基团,R 6a为能够发生第一生物正交连接反应的反应性基团。在此类实施方案中,步骤(5)包括,添加第九试剂,从而使得式(IV)化合物中的R 6a(如果存在的话)发生第一生物正交连接反应。例如,第九试剂可以包含化合物M’,其结构为R 6b-L’-Dye 1,其中,R 6b为能够与R 6a进行第一生物正交连接反应的基团,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同的发射光谱。
在某些示例性实施方案中,第四化合物本身不携带荧光基团,R 6a为第二结合配对的一个成员。在此类实施方案中,步骤(5)包括,添加第九试剂,从而使得式(IV)化合物中的R 6a(如果存在的话)与第二结合配对的另一个成员发生特异性作用和/或特异性结合。例如,第九试剂可以包含化合物M”,其结构为R 6b-L’-Dye 1,其中,R 6b为第二结合配对的另一个成员,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同的发射光谱。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d各自独立地选自下列基团:-CH 2CH=CH 2、-CH 2N 3、-C 3-8环烯基(例如-C 3环烯基、-C 4环烯基、-C 5元环烯基、-C 6环烯基、-C 7环烯基或-C 8环烯基)。在某些优选的实施方案中,所述-C 3-8环烯基选自-C 3环烯基和-C 8环烯基。在某些优选的实施方案中,所述-C 3-8环烯基为
Figure PCTCN2017118928-appb-000184
在某些优选的实施方案中,所述-C 3-8环烯基为
Figure PCTCN2017118928-appb-000185
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是相同的反应性基团,并且选自下列基团:-CH 2CH=CH 2、-CH 2N 3、C 3-8环烯基(例如C 3环烯基、C 4环烯基、C 5元环烯基、C 6环烯基、C 7环烯基或C 8环烯基)。在某些优选的实施方案中,所述C 3-8环烯基选自C 3环烯基和C 8环烯基。在某些优选的实施方案中,所述C 3-8环烯基为
Figure PCTCN2017118928-appb-000186
在某些优选的实施方案中,所述C 3-8环烯基为
Figure PCTCN2017118928-appb-000187
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是相同的反应性基团,并且均为-CH 2N 3
在某些优选的实施方案中,R 4a和R 4b各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000188
-O-C 3-8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”选自-O-C 3环烯亚基,-O-C 4环烯亚基,-O-C 5环烯亚基,-O-C 6环烯亚基,-O-C 7环烯亚基,和-O-C 8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000189
在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000190
在某些优选的实施方案中,R 4a和R 4b是相同的反应性基团,并且选自下列基团:
Figure PCTCN2017118928-appb-000191
Figure PCTCN2017118928-appb-000192
-O-C 3-8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”选自-O-C 3环烯亚基,-O-C 4环烯亚基,-O-C 5环烯亚基,-O-C 6环烯亚基,-O-C 7环烯亚基,和-O-C 8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000193
在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000194
在某些优选的实施方案中,R 4a和R 4b均为
Figure PCTCN2017118928-appb-000195
在某些优选的实施方案中,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂各自独立地包含选自下列的物质:
钯的配合物(例如钯和4个三苯基膦三间磺酸的配合物);
钌的配合物(例如钌和喹啉羧酸酯(或其衍生物)、烯丙基或环戊二烯的配合物);
膦化物(例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3);以及
化合物Q,其具有结构式
Figure PCTCN2017118928-appb-000196
其中,Z 1和Z 2各自独立地选自修饰或未经修饰的烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和修饰或未经修饰的芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基或吡啶基)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2。在这种情况下,优选地,R 4a和R 4b
Figure PCTCN2017118928-appb-000197
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含钯的配合物或钌的配合物。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3。在这种情况下,优选地,R 4a和R 4b
Figure PCTCN2017118928-appb-000198
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000199
在这种情况下,优选地,R 4a和R 4b
Figure PCTCN2017118928-appb-000200
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含如上所定义的化合物Q。进一步优选地,在化合物Q中,Z 1为甲基;Z 2为修饰或未经修饰的吡啶基。更优选地,化合物Q为
Figure PCTCN2017118928-appb-000201
其中,W为氢或修饰基团。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,且包含如上所定义的化合物Q。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的连接基团L1和L2,R 5b-L-Dye中的连接基团L以及R 6b-L’-Dye 1中的连接基团L’是各自独立的,并且不受特别的限制。本领域技术人员可以根据化合物中所使用的碱基(Base1、Base2、Base3和Base4)、反应性基团(R 4a、R 4b和R 6)、以及所述结合配对的成员(R 5a和R 5b),选择合适的连接基团L1、L2、L和L’。
在某些示例性实施方案中,连接基团L1、L2、L和L’各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000202
其中,m1、m2、m3、m4、n1、n2、n3、n4、p1、p2、p3、a、b、c、d、e和f各自独立地选自0、1、2、3、4、5或6。
在某些示例性实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L1各自独 立地选自下列基团:
Figure PCTCN2017118928-appb-000203
其中,m1、m2、m3和m4各自独立地选自0、1、2、3、4、5或6。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L1各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000204
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000205
Figure PCTCN2017118928-appb-000206
其中,n1、n2、n3、n4、p1、p2、p3、a、b、c、d、e和f各自独立地选自0、1、2、3、4、5或6。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000207
其中,n1、n2、n3、n4、p1、p2、p3各自独立地选自0、1、2、3、4、5或6。。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000208
在某些优选的实施方案中,R 5a和R 5b为第一结合配对的两个成员。在某些优选的实施方案中,R 6a和R 6b为第二结合配对的两个成员。在某些优选的实施方案中,所述结合配对选自:抗原(例如小分子抗原)-抗体、半抗原-抗体、激素-受体、配体-受体、核酸链-互补核酸链、底物-酶、底物类似物-酶、抑制剂-酶、糖-植物凝集素、生物素-抗生物素蛋白(例如,亲和素和链酶亲和素)、地高辛和地高辛抗体,以及5位溴代去氧鸟苷和其抗体。
在某些优选的实施方案中,第一结合配对的两个成员选自下述组合:(a)生物素和亲和素(例如链霉亲和素),(b)脱硫生物素和亲和素(例如链霉亲和素)和(c)地高辛和地高辛抗体。在某些优选的实施方案中,第二结合配对的两个成员选自下述组合:(a)生物素和亲和素(例如链霉亲和素),(b)脱硫生物素和亲和素(例如链霉亲和素)和(c)地高辛和地高辛抗体。在某些优选的实施方案中,R 5a为生物素或脱硫生物素,并且R 5b为亲和素(例如链霉亲和素)。某些优选的实施方案中,R 5a为地高辛,并且R 5b为地高辛抗体。在某些优选的实施方案中,R 4c选自下列基团:
Figure PCTCN2017118928-appb-000209
Figure PCTCN2017118928-appb-000210
在某些优选的实施方案中,第七试剂包含选自以下化合物的化合物M:
化合物M1,其具有结构式
Figure PCTCN2017118928-appb-000211
其中,Y选自烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基),L0不存在或者为连接基团,Dye为荧光基团,所述荧光基团与第二化合物和第四化合物包含的荧光基团相同(或结构不同但发射光谱相同或实质相同);
化合物M2,其具有结构式
Figure PCTCN2017118928-appb-000212
其中,Dye为荧光基团,所述荧光基团与第二化合物和第四化合物包含的荧光基团相同(或结构不同但发射光谱相同或实质相同);
化合物M3,其具有结构式
Figure PCTCN2017118928-appb-000213
其中,Z 3各自独立地选自烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基),Dye为荧光基团,所述荧光基团与第二化合物和第四化合物包含的荧光基团相同(或结构不同但发射光谱相同或实质相同)。
在本发明的实施方案中,连接基团L0不受特别的限制。本领域技术人员可以根据实际需要,选择合适的连接基团L0。例如,在某些优选的实施方案中,L0可以为
Figure PCTCN2017118928-appb-000214
其中,q1、q2、q3、q4各自独立地选自0、1、2、3、4、5或6。
在某些优选的实施方案中,第七试剂包含化合物M1,并且其中,Y为C 1-C 6烷基,例如甲基。在某些优选的实施方案中,化合物M1中的L0为
Figure PCTCN2017118928-appb-000215
在某些优选的实施方案中,化合物M1中的Dye为AF532。在某些优选的实施方案中,化合物M1具有以下结构:
在某些优选的实施方案中,除了化合物M,所述第七试剂还包含钌的配合物。在某些优选的实施方案中,所述第七试剂包含化合物M2和钌的配合物。
在某些优选的实施方案中,R 4c
Figure PCTCN2017118928-appb-000217
在这种情况下,优选地,第七试剂包含化合物M1。
在某些优选的实施方案中,R 4c
Figure PCTCN2017118928-appb-000218
在这种情况下,优选地,第七试剂包含化合物M2。更优选地,第七试剂均包含化合物M2和钌的配合物。
在某些优选的实施方案中,R 4c
Figure PCTCN2017118928-appb-000219
在这种情况下,优选地,第七试剂包含化合物M3。
特别优选地,所述结合配对的两个成员(R 5a和R 5b)与R 4c之间不存在相互作用。此外,特别优选地,R 5a和R 5b不影响R 4c的生物正交切割反应,并且R 4c不影响R 5a和R 5b之间的特异性相互作用。在某些示例性实施方案中,第四化合物包含能够发生第二生物正交连接反应的反应性基团R 8。在某些优选的实施方案中,R 8选自下列基团:
Figure PCTCN2017118928-appb-000220
在某些示例性实施方案中,能够与R 8发生第二生物正交连接反应的化合物为N,N包含下列基团:
Figure PCTCN2017118928-appb-000221
在某些优选的实施方案中,化合物N选自以下化合物:
化合物N1,其具有结构式
Figure PCTCN2017118928-appb-000222
其中,Y选自烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基),L0不存在或者为连接基团,Que为淬灭剂,能够使第四化合物上的荧光信号淬灭;
化合物N2,其具有结构式
Figure PCTCN2017118928-appb-000223
其中,Que为淬灭剂,能够使第四化合物上的荧光信号淬灭;
化合物N3,其具有结构式
Figure PCTCN2017118928-appb-000224
其中,Z 3各自独立地选自烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基),Que为淬灭剂,能够使第四化合物上的荧光信号淬灭。
在本发明的实施方案中,连接基团L0不受特别的限制。本领域技术人员可以根据实际需要,选择合适的连接基团L0。例如,在某些优选的实施方案中,L0可以为
Figure PCTCN2017118928-appb-000225
其中,q1、q2、q3、q4各自独立地选自0、1、2、3、4、5或6。
在某些实施方案中,化合物N为1,2,4,5-四嗪BHQ2,其结构如下:
Figure PCTCN2017118928-appb-000226
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2;R 4a和R 4b
Figure PCTCN2017118928-appb-000227
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含钯的配合物或钌的配合物;R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 4c
Figure PCTCN2017118928-appb-000228
第七试剂包含化合物M1。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,并且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3;R 4a和R 4b
Figure PCTCN2017118928-appb-000229
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3;R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6
Figure PCTCN2017118928-appb-000230
第七试剂包含化合物M1。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,并且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3;R 4a和R 4b
Figure PCTCN2017118928-appb-000231
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含膦化物,例如羧基膦化物或羟基膦化物, 例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3;R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6
Figure PCTCN2017118928-appb-000232
第七试剂包含化合物M2和钌的配合物。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,并且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2;R 4a和R 4b
Figure PCTCN2017118928-appb-000233
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含钯的配合物或钌的配合物;R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6
Figure PCTCN2017118928-appb-000234
第七试剂包含化合物M3。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,并且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000235
R 4a和R 4b
Figure PCTCN2017118928-appb-000236
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含化合物Q(例如,上文定义的化合物Q);R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6
Figure PCTCN2017118928-appb-000237
第七试剂包含化合物M2和钌的配合物。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,并且包含化合物Q(例如,上文定义的化合物Q)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000238
R 4a和R 4b
Figure PCTCN2017118928-appb-000239
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂包含化合物Q(例如,上文定义的化合物Q);R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6
Figure PCTCN2017118928-appb-000240
第七试剂包含化合物M3。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂和第六试剂是相同的试剂,并且包含化合物Q(例如,上文定义的化合物Q)。
在某些优选的实施方案中,第三化合物中的Dye是Cy3或AF532。
在某些优选的实施方案中,第四化合物中的R 6a为Dye 1。在某些优选的实施方案中,Dye 1为Cy3或AF532。
在某些优选的实施方案中,第三化合物中的Dye是AF532,第四化合物中的R 6a为AF532。
在某些示例性实施方案中,第四化合物本身不携带荧光基团,R 6a为能够发生第二生物正交连接反应的反应性基团。在某些优选的实施方案中,R 6a选自下列基团:
Figure PCTCN2017118928-appb-000241
Figure PCTCN2017118928-appb-000242
在某些示例性实施方案中,能够与R 7a发生第二生物正交连接反应的化合物N选自如上定义的化合物N1、N2、N3。
在某些示例性实施方案中,第四化合物本身不携带荧光基团,R 7a为第二结合配对的一个成员。在某些优选的实施方案中,第二结合配选自:抗原(例如小分子抗原)-抗体、半抗原-抗体、激素-受体、配体-受体、核酸链-互补核酸链、底物-酶、底物类似物-酶、抑制剂-酶、糖-植物凝集素、生物素-抗生物素蛋白(例如,亲和素和链酶亲和素)、地高辛和地高辛抗体,以及5位溴代去氧鸟苷和其抗体。在某些优选的实施方案中,所述结合配对的两个成员选自下述组合:(a)生物素和亲和素(例如链霉亲和素),(b)脱硫生物素和亲和素(例如链霉亲和素)和(c)地高辛和地高辛抗体。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000243
R 5a 是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是AF532,R 8
Figure PCTCN2017118928-appb-000244
第八试剂包含化合物N,所述化合物N为1,2,4,5-四嗪BHQ2。
在某些优选的实施方案中,第一化合物具有式(Ic)所示的结构:
Figure PCTCN2017118928-appb-000245
在某些优选的实施方案中,第二化合物具有式(IIc)所示的结构:
Figure PCTCN2017118928-appb-000246
在某些优选的实施方案中,第三化合物具有式(IIIc)所示的结构:
Figure PCTCN2017118928-appb-000247
在某些优选的实施方案中,第四化合物具有式(IVc)所示的结构:
Figure PCTCN2017118928-appb-000248
另外,如上文所描述的,在本发明的方法中,可根据需要,增加洗涤步骤。可在任何期望的阶段,增加所述洗涤步骤,并且任选地,所述洗涤步骤可进行一次或多次。
例如,在步骤(5)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除游离的(即,未并入生长的核酸链的) 携带荧光基团的化合物(例如式(II)化合物和式(IV)化合物),从而尽可能减少非特异性的荧光信号。
类似地,在步骤(7)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除步骤(6)中应用的携带荧光的试剂,从而尽可能减少非特异性的荧光信号。
类似地,在步骤(9)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除步骤(8)中应用的试剂以及产生的产物(其可能携带荧光),从而尽可能减少非特异性的荧光信号,并且尽可能避免对后续的聚合反应造成不利的影响。
可使用各种合适的洗涤溶液来进行洗涤步骤。此类洗涤溶液的实例包括但不限于,磷酸盐缓冲液,柠檬酸盐缓冲液,Tris-HCl缓冲液,醋酸盐缓冲液,碳酸盐缓冲液等等。可根据实际需要来选择合适的洗涤溶液(包括合适的成分,浓度,离子强度,pH值等),这在本领域技术人员的能力范围之内。
示例性实施方案5
在某些示例性实施方案中,可通过使用结合配对(其包含能够通过特异性非共价作用而相互作用的两个成员),在步骤(6)中控制(例如,维持或改变)所述四种化合物发出荧光信号的能力;并且优选地,可通过使用能够进行生物正交切割反应的反应性基团,在步骤(8)中实现所述保护基团和荧光信号的去除。例如,在某些示例性实施方案中,所述第一、第二、第三和第四化合物可分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
Figure PCTCN2017118928-appb-000249
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为第一结合配对的一个成员;
R 6a为第二结合配对的一个成员,任选地,R 6a为Dye 1或者还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,二者具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行生物正交连接反应的反应性基团R 8
在此类示例性实施方案中,第四化合物本身可以携带能够发出与第二化合物相同荧光信号的荧光基团,也可以不携带荧光基团,而是在步骤(5)中,通过与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂(例如第二结合配对的另一个成员,在本文中表示为“R 6b-L4-Dye 2”)发生特异性相互作用/特异性结合,而将荧光基团引入化合物四,并能够发出与第二化合物相同的荧光信号。
进一步地,可通过使R 5a与携带荧光基团的第一结合配对的另一个成员(在本文中表示为“R 5b-L5-Dye 3”,其中R 5b为第一结合配对的另一个成员,L5为连接基团或不存在;Dye 3表示能够发出荧光信号的荧光基团,其优选地为与第二化合物相同的荧光基团(或者结构不同但具有相同或实质相同的发射光谱的荧光基团)特异性相互作用/特异性结合,从而使得第三化合物携带荧光基团。此外,并且(i)能够使R 6b与第三结合配对的另一成员R 6c之间发生特异性相互作用/特异性结合,使R 6b与R 6a的结合物解离,从而使第四化合物失去荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号。在此类示例性实施方案中,R 6b可以是两个结合配对的成员(第二结合配对R 6a和R 6b,第三结合配对R 6b和R 6c)。特别优选地,第一结合配对的两个成员(R 5a和R 5b)与第三结合配对的两个成员(R 6b和R 6c)之间不存在相互作用。此外,特别优选地,R 5a和R 5b不影响R 6b和R 6c之间的特异性相互作用,并且R 6b和R 6c不影响R 5a和R 5b之间的特异性相互作用。
因此,在某些优选的实施方案中,在步骤(6)中,使所述双链体或所述生长的核酸链经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使R 5a与携带荧光基团的第一结合配对的另一个成员(R 5b-L5-Dye 3)发生特异性相互作用/特异性结合(从而将所述荧光基团引入第三化合物,使其携带荧光基团,并发出荧光信号),并且能够使R 6b与第三结合配对的另一个成员(R 6c)发生特异性相互作用/特异性结合(从而使第四化合物失去荧光基团),或者使第四化合物中的R 8与携带淬灭基团的化合物发生正交连接反应(从而淬灭第四化合物中的荧光基团发出的荧光信号)。在此类示例性实施方案中,在步骤(6)的处理之前,第一化合物和第三化合物(如果存在的话)不发出荧光,且第二化合物和第四化合物(如果存在的话)发出荧光;并且,在步骤(6)的处理之后,第一化合物(如果存在的话)仍然不发出荧光,第二化合物(如果存在的话)仍然发出荧光,第三化合物(如果存在的话)改变为发出荧光,且第四化合物(如果存在的话)改变为不发出荧光。因此,可通过两次荧光信号检测的结果来确定并入生长的核酸链3'端的化合物的类型。
进一步,在此类示例性实施方案中,可通过使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物中的核糖或脱氧核糖的3'位置处的保护基团被去除,以及所述双链体或生长的核酸链上的荧光基团(如果存在的话)被去除。因此,在某些优选的实施方案中,在步骤(8)中,使所述双链体或所述生长的核酸链经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应。在此类示例性实施方案中,在步骤(8)的处理之后,生长的核酸链将不具有任何荧光基团,并且其3'端核苷酸的核糖或脱氧核糖的3'位置处将具有游离的羟基,所述游离的羟基能够用于起始下一轮的聚合反应。
因此,在某些优选的实施方案中,本发明的方法包括下述步骤:
(1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
(2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
Figure PCTCN2017118928-appb-000250
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为第一结合配对的一个成员;
R 6a为第二结合配对的一个成员,任选地,R 6a为Dye 1或者还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,二者具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行生物正交连接反应的反应性基团R 8
(3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
(4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
(5)(i)第四化合物不能发出荧光信号,则使所述双链体或所述生长的核酸链在含有溶液相和 固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 6a与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的结构不同但发射光谱相同或实质相同的荧光基团)的试剂(例如第二结合配对的另一个成员)发生特异性相互作用/特异性结合;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
所述携带荧光基团的第二结合配对的另一个成员具有下述结构:R 6b-L4-Dye 2;其中,R 6b为第二结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;同时,R 6b是第三结合配对的一个成员;
(ii)第四化合物能够发出与第二化合物相同的荧光信号,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
(6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团的第一结合配对的另一个成员特异性结合,从而将所述荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使R 6b与第三结合配对的另一成员R 6c之间发生特异性相互作用/特异性结合,使R 6b与R 6a的结合物解离,从而使第四化合物失去荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号其中,
所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 5b-L5-Dye 3;其中,R 5b为第一结合配对的另一个成员,L5独立地为连接基团或不存在;Dye 3表示能够发出荧光信号的荧光基团,并且与第二化合物包含的荧光基团结构相同,或者结构不同但具有相同或实质相同的发射光谱;和
(7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号。
在某些优选的实施方案中,所述方法还包括下述步骤:
(8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a、R 4b或R 4c连接的荧光基团),如果存在的话;
(9)移除前一步骤的反应体系的溶液相;
(10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(11)重复进行步骤(8)-(10)一次或多次。
在某些示例性实施方案中,如果在步骤(4)中,式(I)化合物被并入生长的核酸链的3'端,那么,由于式(I)化合物本身不携带荧光基团,并且其在步骤(6)未发生任何反应,因此,在步骤(5)和(7)中将检测不到荧光信号。也即,如果在步骤(5)和(7)中都检测不到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(I)化合物。
如果在步骤(4)中,式(II)化合物被并入生长的核酸链的3'端,那么,由于式(II)化合物本身携带荧光基团,并且其在步骤(6)未发生任何反应,因此,在步骤(5)和(7)中将都检测到荧光信号。也即,如果在步骤(5)和(7)中都检测到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(II)化合物。
如果在步骤(4)中,式(III)化合物被并入生长的核酸链的3'端,那么,(i)由于式(III)化合物本身不携带荧光基团,因此,在步骤(5)中将检测不到荧光信号;并且(ii)由于式(III)化合物在步骤(6)中与携带荧光基团的第一结合配对的另一个成员(R 5b-L-Dye 3)特异性结合,导致荧光基团被引入生长的核酸链,因此,在步骤(7)中将检测到荧光信号。也即,如果在步骤(5)中检测不到荧光信号且在步骤(7)中检测到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(III)化合物。
如果在步骤(4)中,式(IV)化合物被并入生长的核酸链的3'端,那么,(i)由于式(IV)化合物本身携 带荧光基团或在步骤(5)中经过处理而携带荧光基团,因此,在步骤(5)中将检测到荧光信号;并且(ii)由于式(IV)化合物在步骤(6)中由于R 6a与R 6b的结合物发生解离而失去荧光基团,或者发生生物正交连接反应,导致淬灭基团被引入生长的核酸链,淬灭了荧光基团发出的荧光信号,因此,在步骤(7)中将检测不到荧光信号。也即,如果在步骤(5)中检测到荧光信号且在步骤(7)中检测不到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(IV)化合物。
因此,在某些优选的实施方案中,本发明的方法还包括,在步骤(7)之后,根据步骤(5)和(7)的检测结果来确定在步骤(4)中并入生长的核酸链的3'端的化合物的类型,其中,
当步骤(5)和(7)的检测结果均为,所述双链体或所述生长的核酸链不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(I)化合物;
当步骤(5)和(7)的检测结果均为,所述双链体或所述生长的核酸链发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(II)化合物;
当步骤(5)的检测结果为所述双链体或所述生长的核酸链不发出所述荧光信号,且步骤(7)的检测结果为所述双链体或所述生长的核酸链发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(III)化合物;并且
当步骤(5)的检测结果为所述双链体或所述生长的核酸链发出所述荧光信号,且步骤(7)的检测结果为所述双链体或所述生长的核酸链不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(IV)化合物。
在某些优选的实施方案中,本发明的方法还包括,在步骤(7)之后,基于碱基互补配对原则,根据步骤(4)中并入生长的核酸链的3'端的化合物的类型,确定待测序的核酸分子中相应位置处的碱基类型。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物在核苷酸聚合反应过程中,彼此之间不会发生化学反应。
在某些优选的实施方案中,Base1和Base2为嘌呤碱基,并且Base3和Base4为嘧啶碱基。在某些优选的实施方案中,Base1为碱基G,Base2为碱基A,Base3为碱基C,Base4为碱基T或U。在某些优选的实施方案中,Base1为碱基G,Base2为碱基A,Base3为碱基T或U,Base4为碱基C。在某些优选的实施方案中,Base1为碱基A,Base2为碱基G,Base3为碱基C,Base4为碱基T或U。在某些优选的实施方案中,Base1为碱基A,Base2为碱基G,Base3为碱基T或U,Base4为碱基C。
在某些优选的实施方案中,Base1和Base2为嘧啶碱基,并且Base3和Base4为嘌呤碱基。在某些优选的实施方案中,Base1为碱基C,Base2为碱基T或U,Base3为碱基G,Base4为碱基A。在某些优选的实施方案中,Base1为碱基C,Base2为碱基T或U,Base3为碱基A,Base4为碱基G。在某些优选的实施方案中,Base1为碱基T或U,Base2为碱基C,Base3为碱基G,Base4为碱基A。在某些优选的实施方案中,Base1为碱基T或U,Base2为碱基C,Base3为碱基A,Base4为碱基G。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物具有相同的R 1。在某些优选的实施方案中,R 1各自独立地为-H。在某些优选的实施方案中,R 1各自独立地为单磷酸基团(-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为二磷酸基团(-PO 3H-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为三磷酸基团(-PO 3H-PO 3H-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2)。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物具有相同的R 2。在某些优选的实施方案中,R 2各自独立地为-H。在某些优选的实施方案中,R 2各自独立地为-OH。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地能够发生生物正交切割反应。如本文中所使用的,表述“各自独立地能够发生生物正交切割反应”意指,所提及的反应性基团、试剂、或分子等各自都能够进行生物正交切割反应,而在彼此之间不互相干扰或影响。例如,表述“R 3a和R 3b各自独立地能够发生生物正交切割反应”意指,R 3a和R 3b均能够发生生物正交切割反应,并且R 3a不影响R 3b的生物正交切割反应的进行,R 3b不影响R 3a的生物正交切割反应的进行。
在某些示例性实施方案中,R 3a为能够在第一试剂存在的条件下发生生物正交切割反应的第一反应性基团;R 3b为能够在第二试剂存在的条件下发生生物正交切割反应的第二反应性基团;R 3c为能够在第三试剂存在的条件下发生生物正交切割反应的第三反应性基团;R 3d为能够在第四试剂存在的条件下发生生物正交切割反应的第四反应性基团;R 4a为能够在第五试剂存在的条件下发生生物正交切割反应的第五反应性基团;R 4b为能够在第六试剂存在的条件下发生生物正交切割反应的第六反应性基团;且,R 4c为能够在第七试剂存在的条件下发生生物正交切割反应的第七反应性基团。
优选地,在此类实施方案中,在步骤(8)中,可添加第一试剂、第二试剂、第三试剂、第四试剂、 第五试剂、第六试剂和第七试剂,从而使得R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c(如果存在的话)各自发生生物正交切割反应。由此,R 3a、R 3b、R 3c、R 3d(如果存在的话)将被从核糖或脱氧核糖的3'位置去除(换言之,-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)将被转变为游离的羟基),并且R 4a和与其相连接的荧光基团(如果存在的话),R 4b和与其相连接的荧光基团(如果存在的话),以及R 4c和与其相连接的荧光基团(如果存在的话)也将被去除。由此,在步骤(8)之后,所述生长的核酸链将不携带所述荧光基团,并且在3'端具有游离的羟基,能够用于进行下一轮的聚合反应。因此,在某些优选实施方案中,在步骤(8)中,添加第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂,从而形成含有溶液相和固相的反应体系,并在允许R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自发生生物正交切割反应的条件下,将所述双链体与所述第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂进行温育。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂和第四试剂是相同的试剂。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d是相同的反应性基团。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂和第四试剂是相同的试剂。也即,在步骤(8)中,在所述相同的试剂(即,第一试剂)的存在下,所述相同的R 3a、R 3b、R 3c、R 3d(如果存在的话)将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些优选的实施方案中R 4a、R 4b、R 4c能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第五试剂、第六试剂和第七试剂是相同的试剂。
在某些优选的实施方案中,R 4a、R 4b、R 4c是相同的反应性基团。在这种情况下,优选地,在步骤(8)中,第五试剂、第六试剂和第七试剂是相同的试剂。也即,在步骤(8)中,在所述相同的试剂(即,第五试剂)的存在下,所述相同的R 4a、R 4b、R 4c(如果存在的话)将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂。也即,在步骤(8)中,仅需添加所述相同的试剂(即,第一试剂),并且在所述相同的试剂(即,第一试剂)的存在下,所述R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c(如果存在的话),将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些示例性实施方案中,特别优选地,第一结合配对的两个成员(R 5a和R 5b)与第三结合配对的两个成员(R 6b和R 6c)之间不存在相互作用。此外,特别优选地,R 5a和R 5b不影响R 6b和R 6c之间的特异性相互作用,并且R 6b和R 6c不影响R 5a和R 5b之间的特异性相互作用。在此类实施方案中,优选地,在步骤(6)中,可添加R 5b-L5-Dye 3和R 6c,从而使得式(III)化合物中的R 5a(如果存在的话)与R 5b-L5-Dye 3中的R 5b特异性结合,并且使得式(IV)化合物中的R 6a(如果存在的话)与R 6b的结合物解离。由此,通过第一结合配对的两个成员(R 5a和R 5b)之间的特异性相互作用,与R 5b相连接的荧光基团Dye3被引入式(III)化合物,使得式(III)化合物发出荧光信号。同时,通过第三结合配对的两个成员(R 6b和R 6c)之间的特异性相互作用,使R 6a与R 6b的结合物解离,使得式(IV)化合物失去荧光基团,式(IV)化合物不再发出荧光。在此类实施方案中,还特别优选地,在步骤(6)中,R 5b-L5-Dye 3不与第一化合物和第二化合物发生化学反应,并且进一步优选地,R 6c不与第一化合物和第二化合物发生化学反应。因此,在某些优选实施方案中,在步骤(6)中,可添加R 5b-L5-Dye 3和R 6c,从而形成含有溶液相和固相的反应体系,其中,R 5b为第一结合配对的另一个成员,L5为连接基团或不存在;Dye 3表示能够发出荧光信号的荧光基团,并且R 6c为第三结合配对的另一个成员;然后,在允许R 5a和R 5b特异性结合且允许R 6b和R 6c特异性结合的条件下,将所述双链体与R 5b-L5-Dye 3和R 6c-L6-Que进行温育。
在某些示例性实施方案中,第四化合物本身不携带荧光基团,R 6a是第二结合配对的一个成员。在此类实施方案中,步骤(5)包括,添加第九试剂,从而使得式(IV)化合物中的R 6a(如果存在的话)与第二结合配对的另一个成员发生特异性作用和/或特异性结合。例如,第九试剂可以包含携带荧光基团的第二结合配对的另一个成员,其结构为R 6b-L4-Dye 2,其中,R 6b为第二结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同的发射光谱。在此类实施方案中,步骤(6)包括,添加第十试剂,从而使得式(IV)化合物中的R 6a(如果存在的话)与R 6b形成的结合物解离。例如,第十试剂可以包含 第三结合配对的另一个成员R 6c,其可以与R 6b发生特异性结合而取代R 6a,使R 6a与R 6b形成的结合物解离。
优选地,在此类实施方案中,在步骤(6)中,可添加第八试剂和第九试剂,从而使得式(III)化合物中的R 5a(如果存在的话)与第一结合配对的另一成员发生特异性作用和/或特异性结合,并且使得式(IV)化合物中的R 6a与R6b形成的结合物解离。例如,第八试剂可以包含第一结合配对的另一个成员,所述第一结合配对的另一个成员携带与第二化合物和第四化合物相同的荧光基团(或者结构不同但发光光谱相同或实质相同的荧光基团),并且所述第一结合配对的另一个成员能够与R 5a发生特异性结合,并由此将所携带的荧光基团引入式(III)化合物。此外,第九试剂包含第三结合配对的另一个成员,并且能够与R 6b发生特异性作用和/或特异性结合,使得式(IV)化合物中的R 6a与R6b形成的结合物解离,并由此使式(IV)化合物中失去荧光基团。在此类实施方案中,还特别优选地,在步骤(6)中,第八试剂不与第一化合物和第二化合物发生化学反应,并且进一步优选地,第九试剂不与第一化合物和第二化合物发生化学反应。因此,在某些优选实施方案中,在步骤(6)中,可添加第八试剂和第九试剂,从而形成含有溶液相和固相的反应体系,其中,第八试剂包含第一结合配对的另一个成员,所述第一结合配对的另一个成员能够携带与第二化合物和第四化合物相同的荧光基团(或者结构不同但发光光谱相同或实质相同的荧光基团),并且所述第一结合配对的另一个成员能够能够与R 5a发生特异性作用和/或特异性结合,从而将所携带的荧光基团引入第三化合物;第九试剂包含第三结合配对的另一成员,并且所述第三结合配对的另一成员能够与R 6b发生特异性作用和/或特异性结合,并且使得式(IV)化合物中的R 6a与R6b形成的结合物解离;然后,在允许R 5a与第一结合配对的另一成员发生特异性作用和/或特异性结合,且允许R 6b与第三结合配对的另一成员发生特异性作用和/或特异性结合的条件下,将所述双链体与第七试剂和第九试剂进行温育。
在某些示例性实施方案中,第四化合物的R 5b与R 7a之间还存在能够进行第三生物正交连接反应的反应性基团R 8。在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 5a、R 8各自独立地能够发生生物正交切割或连接反应。在某些示例性实施方案中,R 8a能够在第十试剂存在的条件下发生生物正交连接反应。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d各自独立地选自下列基团:-CH 2CH=CH 2、-CH 2N 3、-C 3-8环烯基(例如-C 3环烯基、-C 4环烯基、-C 5元环烯基、-C 6环烯基、-C 7环烯基或-C 8环烯基)。在某些优选的实施方案中,所述-C 3-8环烯基选自-C 3环烯基和-C 8环烯基。在某些优选的实施方案中,所述-C 3-8环烯基为
Figure PCTCN2017118928-appb-000251
在某些优选的实施方案中,所述-C 3-8环烯基为
Figure PCTCN2017118928-appb-000252
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是相同的反应性基团,并且选自下列基团:-CH 2CH=CH 2、-CH 2N 3、C 3-8环烯基(例如C 3环烯基、C 4环烯基、C 5元环烯基、C 6环烯基、C 7环烯基或C 8环烯基)。在某些优选的实施方案中,所述C 3-8环烯基选自C 3环烯基和C 8环烯基。在某些优选的实施方案中,所述C 3-8环烯基为
Figure PCTCN2017118928-appb-000253
在某些优选的实施方案中,所述C 3-8环烯基为
Figure PCTCN2017118928-appb-000254
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是相同的反应性基团,并且均为-CH 2N 3
在某些优选的实施方案中,R 4a、R 4b和R 4c各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000255
-O-C 3-8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”选自-O-C 3环烯亚基,-O-C 4环烯亚基,-O-C 5环烯亚基,-O-C 6环烯亚基,-O-C 7环烯亚基,和-O-C 8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000256
在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000257
在某些优选的实施方案中,R 4a、R 4b和R 4c是相同的反应性基团,并且选自下列基团:
Figure PCTCN2017118928-appb-000258
Figure PCTCN2017118928-appb-000259
-O-C 3-8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”选自-O-C 3环烯亚基,-O-C 4环烯亚基,-O-C 5环烯亚基,-O-C 6环烯亚基,-O-C 7环烯亚基,和-O-C 8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000260
在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000261
在某些优选的实施方案中,R 4a、R 4b和R 4c均为
Figure PCTCN2017118928-appb-000262
在某些优选的实施方案中,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂各自独立地包含选自下列的物质:
钯的配合物(例如钯和4个三苯基膦三间磺酸的配合物);
钌的配合物(例如钌和喹啉羧酸酯(或其衍生物)、烯丙基或环戊二烯的配合物);
膦化物(例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3);以及
化合物Q,其具有结构式
Figure PCTCN2017118928-appb-000263
其中,Z 1和Z 2各自独立地选自修饰或未经修饰的烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和修饰或未经修饰的芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基或吡啶基)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2。在这种情况下,优选地,R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000264
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含钯的配合物或钌的配合物。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3。在这种情况下,优选地,R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000265
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000266
在这种情况下,优选地,R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000267
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含如上所定义的化合物Q。进一步优选地,在化合物Q中,Z 1为甲基;Z 2为修饰或未经修饰的吡啶基。更优选地,化合物Q为
Figure PCTCN2017118928-appb-000268
其中,W为氢或修饰基团。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,且包含如上所定义的化合物Q。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的连接基团L1、L2和L3以及R 6b-L4-Dye 2、R 5b-L5-Dye 3和R 6c-L6-Que中的连接基团L4、L5和L6是各自独立的,并且不受特别的限制。本领域技术人员可以根据化合物中所使用的碱基(Base1、Base2、Base3和Base4)、反应性基团(R 4a、R 4b和R 4c)、以及第一和第二结合配对的成员(R 5a、R 5b、R 6a和R 6b),选择合适的连接基团L1、L2、L3、L4、L5和L6。
在某些示例性实施方案中,连接基团L1、L2、L3、L4、L5和L6各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000269
其中,m1、m2、m3、m4、n1、n2、n3、n4、p1、p2、p3、a、b、c、d、e和f各自独立地选自0、1、2、3、4、5或6。
在某些示例性实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L1各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000270
其中,m1、m2、m3和m4各自独立地选自0、1、2、3、4、5或6。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L1各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000271
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000272
Figure PCTCN2017118928-appb-000273
其中,n1、n2、n3、n4、p1、p2、p3、a、b、c、d、e和f各自独立地选自0、1、2、3、4、5或6。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000274
其中,n1、n2、n3、n4、p1、p2、p3各自独立地选自0、1、2、3、4、5或6。。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000275
在某些优选的实施方案中,R 5a和R 5b为第一结合配对的两个成员,R 6a和R 6b为第二结合配对的两个成员,R 6b和R 6c为第三结合配对的两个成员。在某些优选的实施方案中,第一结合配对和第二结合配对各自独立地选自:抗原(例如小分子抗原)-抗体、半抗原-抗体、激素-受体、配体-受体、核酸链-互补核酸链、底物-酶、底物类似物-酶、抑制剂-酶、糖-植物凝集素、生物素-抗生物素蛋白(例如,亲和素和链酶亲和素)、地高辛和地高辛抗体,以及5位溴代去氧鸟苷和其抗体。
在某些优选的实施方案中,第一结合配对的两个成员选自下述组合:(a)生物素和亲和素(例如 链霉亲和素);(b)地高辛和地高辛抗体;(c)脱硫生物素和链霉亲和素。
在某些优选的实施方案中,第二结合配对的两个成员选自下述组合:(a)生物素和亲和素(例如链霉亲和素);(b)地高辛和地高辛抗体;(c)脱硫生物素和链霉亲和素。
在某些优选的实施方案中,第三结合配对的两个成员选自下述组合:(a)生物素和亲和素(例如链霉亲和素);(b)地高辛和地高辛抗体;(c)脱硫生物素和链霉亲和素。
特别优选的是,第一结合配对的两个成员(R 5a和R 5b)与第三结合配对的两个成员(R 6b和R 6c)之间不存在相互作用。此外,特别优选地,R 5a和R 5b不影响R 6b和R 6c之间的特异性相互作用,并且R 6b和R 6c不影响R 5a和R 5b之间的特异性相互作用。因此,在某些优选的实施方案中,第一结合配对的两个成员分别为地高辛和地高辛抗体,且第三结合配对的两个成员分别为链霉亲和素和生物素。在某些优选的实施方案中,第二节和配对的两个成员分别为脱硫生物素和链霉亲和素。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000276
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含钯的配合物或钌的配合物;R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是地高辛;R 6b是地高辛抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000277
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3;R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是地高辛;R 6b是地高辛抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000278
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3;R 5a是地高辛;R 5b是地高辛抗体;R 6a是生物素;R 6b是亲和素(例如链霉亲和素)。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000279
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含钯的配合物或钌的配合物;R 5a是地高辛;R 5b是地高辛抗体;R 6a是生物素;R 6b是亲和素(例如链霉亲和素)。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000280
R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000281
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是地高辛;R 6b是地高辛抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000282
R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000283
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a是地高辛;R 5b是地高辛抗体;R 6a是生物素;R 6b是亲和素(例如链霉 亲和素)。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000284
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含钯的配合物或钌的配合物;R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是Cy3;R 6b是Cy3抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000285
R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000286
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是Cy3;R 6b是Cy3抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000287
R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000288
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是Cy3;R 6b是Cy3抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000289
R 5a是地高辛;R 5b是地高辛抗体;R 6a是脱硫生物素;R 6b是链霉亲和素亲和素(例如链霉亲和素);R 6c是生物素。
在某些优选的实施方案中,第一化合物具有式(Id)所示的结构:
Figure PCTCN2017118928-appb-000290
在某些优选的实施方案中,第二化合物具有式(IId)所示的结构:
Figure PCTCN2017118928-appb-000291
在某些优选的实施方案中,第三化合物具有式(IIId)所示的结构:
Figure PCTCN2017118928-appb-000292
在某些优选的实施方案中,第四化合物具有式(IVd)所示的结构:
Figure PCTCN2017118928-appb-000293
另外,如上文所描述的,在本发明的方法中,可根据需要,增加洗涤步骤。可在任何期望的阶段,增加所述洗涤步骤,并且任选地,所述洗涤步骤可进行一次或多次。
例如,在步骤(5)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除游离的(即,未并入生长的核酸链的)携带荧光基团的化合物(例如式(II)化合物和式(IV)化合物),从而尽可能减少非特异性的荧光信号。
类似地,在步骤(7)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除步骤(6)中应用的携带荧光的试剂,从而尽可能减少非特异性的荧光信号。
类似地,在步骤(9)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除步骤(8)中应用的试剂以及产生的产物(其可能携带荧光),从而尽可能减少非特异性的荧光信号,并且尽可能避免对后续的聚合反应造成不利的影响。
可使用各种合适的洗涤溶液来进行洗涤步骤。此类洗涤溶液的实例包括但不限于,磷酸盐缓冲液,柠檬酸盐缓冲液,Tris-HCl缓冲液,醋酸盐缓冲液,碳酸盐缓冲液等等。可根据实际需要来选择合适的洗涤溶液(包括合适的成分,浓度,离子强度,pH值等),这在本领域技术人员的能力范围之内。
示例性实施方案6
在某些示例性实施方案中,可通过使用结合配对(其包含能够通过特异性非共价作用而相互作用的两个成员),在步骤(6)中控制(例如,维持或改变)所述四种化合物发出荧光信号的能力;并且优选地,可通过使用能够进行生物正交切割反应的反应性基团,在步骤(8)中实现所述保护基团和荧光信号的去除。例如,在某些示例性实施方案中,所述第一、第二、第三和第四化合物可分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
Figure PCTCN2017118928-appb-000294
Figure PCTCN2017118928-appb-000295
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为能够进行第一生物正交连接反应的反应性基团;
R 6a为第一结合配对的一个成员,任选地,R 6a为Dye 1或者还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,二者具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行生物正交连接反应的反应性基团R 8
在此类示例性实施方案中,第四化合物本身可以携带能够发出与第二化合物相同荧光信号的荧光基团,也可以不携带荧光基团,而是在步骤(5)中,通过与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂(例如第一结合配对的另一个成员,在本文中表示为“R 6b-L4-Dye 2”)发生特异性相互作用/特异性结合,而将荧光基团引入化合物四,并能够发出与第二化合物相同的荧光信号。
进一步地,可通过使R 5a与携带荧光基团的化合物(在本文中表示为M)发生正交连接反应,从而使得第三化合物携带荧光基团。此外,并且(i)能够使R 6b与第二结合配对的另一成员R 6c之间发生特异性相互作用/特异性结合,使R 6b与R 6a的结合物解离,从而使第四化合物失去荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号。在此类示例性实施方案中,R 6b可以是两个结合配对的成员(第一结合配对R 6a和R 6b,第二结合配对R 6b和R 6c)。特别优选地,第一结合配对的两个成员(R 5a和R 5b)与第三结合配对的两个成员(R 6b和R 6c)之间不存在相互作用。此外,特别优选地,M不影响R 6b和R 6c之间的特异性相互作用,并且R 6b和R 6c不影响R 5a与M之间的正交连接反应。
因此,在某些优选的实施方案中,在步骤(6)中,使所述双链体或所述生长的核酸链经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使R 5a与携带荧光基团的化合物M发生正 交连接反应(从而将所述荧光基团引入第三化合物,使其携带荧光基团,并发出荧光信号),并且能够使R 6b与第二结合配对的另一个成员(R 6c)发生特异性相互作用/特异性结合(从而使第四化合物失去荧光基团),或者使第四化合物中的R 8与携带淬灭基团的化合物发生正交连接反应(从而淬灭第四化合物中的荧光基团发出的荧光信号)。在此类示例性实施方案中,在步骤(6)的处理之前,第一化合物和第三化合物(如果存在的话)不发出荧光,且第二化合物和第四化合物(如果存在的话)发出荧光;并且,在步骤(6)的处理之后,第一化合物(如果存在的话)仍然不发出荧光,第二化合物(如果存在的话)仍然发出荧光,第三化合物(如果存在的话)改变为发出荧光,且第四化合物(如果存在的话)改变为不发出荧光。因此,可通过两次荧光信号检测的结果来确定并入生长的核酸链3'端的化合物的类型。
进一步,在此类示例性实施方案中,可通过使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物中的核糖或脱氧核糖的3'位置处的保护基团被去除,以及所述双链体或生长的核酸链上的荧光基团(如果存在的话)被去除。因此,在某些优选的实施方案中,在步骤(8)中,使所述双链体或所述生长的核酸链经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应。在此类示例性实施方案中,在步骤(8)的处理之后,生长的核酸链将不具有任何荧光基团,并且其3'端核苷酸的核糖或脱氧核糖的3'位置处将具有游离的羟基,所述游离的羟基能够用于起始下一轮的聚合反应。
因此,在某些优选的实施方案中,本发明的方法包括下述步骤:
(1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
(2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
Figure PCTCN2017118928-appb-000296
Figure PCTCN2017118928-appb-000297
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为能够进行第一生物正交连接反应的反应性基团;
R 6a为第一结合配对的一个成员,任选地,R 6a为Dye 1或者还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,二者具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行生物正交连接反应的反应性基团R 8
(3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
(4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
(5)(i)第四化合物不能发出荧光信号,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 6a与携带荧光基团(例如,与第二化合物结构同的荧光基团,或者与第二化合物的荧光基团的结构不同但发射光谱相同或实质相同的荧光基团)的试剂(例如第一结合配对的另一个成员)发生特异性相互作用/特异性结合;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 6b-L4-Dye 2;其中,R 6b为第一结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;同时,R 6b是第二结合配对的一个成员;
(ii)第四化合物能够发出与第二化合物相同的荧光信号,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
(6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团(例如,与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂发生第一生物正交连接反应,从而将所述试剂中的荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使R 6b与第二结合配对的另一成员R 6c之间发生特异性相互作用/特异性结合,使R 6b与R 6a的结合物解离,从而使第四化合物失去荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生第二正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号;其中,
所述携带淬灭基团的第二结合配对的另一个成员具有下述结构:R 6c-L'-Que;其中,R 6c为第二 结合配对的另一个成员,L'独立地为连接基团或不存在;Que表示能够淬灭Dye 1或Dye 2发出的荧光信号的淬灭基团;和
(7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号。
在某些优选的实施方案中,所述方法还包括下述步骤:
(8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a、R 4b或R 4c连接的荧光基团),如果存在的话;
(9)移除前一步骤的反应体系的溶液相;
(10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(11)重复进行步骤(8)-(10)一次或多次。
在某些示例性实施方案中,如果在步骤(4)中,式(I)化合物被并入生长的核酸链的3'端,那么,由于式(I)化合物本身不携带荧光基团,并且其在步骤(6)未发生任何反应,因此,在步骤(5)和(7)中将检测不到荧光信号。也即,如果在步骤(5)和(7)中都检测不到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(I)化合物。
如果在步骤(4)中,式(II)化合物被并入生长的核酸链的3'端,那么,由于式(II)化合物本身携带荧光基团,并且其在步骤(6)未发生任何反应,因此,在步骤(5)和(7)中将都检测到荧光信号。也即,如果在步骤(5)和(7)中都检测到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(II)化合物。
如果在步骤(4)中,式(III)化合物被并入生长的核酸链的3'端,那么,(i)由于式(III)化合物本身不携带荧光基团,因此,在步骤(5)中将检测不到荧光信号;并且(ii)由于式(III)化合物在步骤(6)中与携带荧光基团的化合物M发生正交连接反应,导致荧光基团被引入生长的核酸链,因此,在步骤(7)中将检测到荧光信号。也即,如果在步骤(5)中检测不到荧光信号且在步骤(7)中检测到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(III)化合物。
如果在步骤(4)中,式(IV)化合物被并入生长的核酸链的3'端,那么,(i)由于式(IV)化合物本身携带荧光基团或在步骤(5)中经过处理而携带荧光基团,因此,在步骤(5)中将检测到荧光信号;并且(ii)由于式(IV)化合物在步骤(6)中由于R 6a与R 6b的结合物发生解离而失去荧光基团,或者发生生物正交连接反应,导致淬灭基团被引入生长的核酸链,淬灭了荧光基团发出的荧光信号,因此,在步骤(7)中将检测不到荧光信号。也即,如果在步骤(5)中检测到荧光信号且在步骤(7)中检测不到荧光信号,那么可以确定并入生长的核酸链的3'端的化合物为式(IV)化合物。
因此,在某些优选的实施方案中,本发明的方法还包括,在步骤(7)之后,根据步骤(5)和(7)的检测结果来确定在步骤(4)中并入生长的核酸链的3'端的化合物的类型,其中,
当步骤(5)和(7)的检测结果均为,所述双链体或所述生长的核酸链不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(I)化合物;
当步骤(5)和(7)的检测结果均为,所述双链体或所述生长的核酸链发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(II)化合物;
当步骤(5)的检测结果为所述双链体或所述生长的核酸链不发出所述荧光信号,且步骤(7)的检测结果为所述双链体或所述生长的核酸链发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(III)化合物;并且
当步骤(5)的检测结果为所述双链体或所述生长的核酸链发出所述荧光信号,且步骤(7)的检测结果为所述双链体或所述生长的核酸链不发出所述荧光信号时,确定在步骤(4)中并入生长的核酸链的3'端的化合物为式(IV)化合物。
在某些优选的实施方案中,本发明的方法还包括,在步骤(7)之后,基于碱基互补配对原则,根据步骤(4)中并入生长的核酸链的3'端的化合物的类型,确定待测序的核酸分子中相应位置处的碱基 类型。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物在核苷酸聚合反应过程中,彼此之间不会发生化学反应。
在某些优选的实施方案中,Base1和Base2为嘌呤碱基,并且Base3和Base4为嘧啶碱基。在某些优选的实施方案中,Base1为碱基G,Base2为碱基A,Base3为碱基C,Base4为碱基T或U。在某些优选的实施方案中,Base1为碱基G,Base2为碱基A,Base3为碱基T或U,Base4为碱基C。在某些优选的实施方案中,Base1为碱基A,Base2为碱基G,Base3为碱基C,Base4为碱基T或U。在某些优选的实施方案中,Base1为碱基A,Base2为碱基G,Base3为碱基T或U,Base4为碱基C。
在某些优选的实施方案中,Base1和Base2为嘧啶碱基,并且Base3和Base4为嘌呤碱基。在某些优选的实施方案中,Base1为碱基C,Base2为碱基T或U,Base3为碱基G,Base4为碱基A。在某些优选的实施方案中,Base1为碱基C,Base2为碱基T或U,Base3为碱基A,Base4为碱基G。在某些优选的实施方案中,Base1为碱基T或U,Base2为碱基C,Base3为碱基G,Base4为碱基A。在某些优选的实施方案中,Base1为碱基T或U,Base2为碱基C,Base3为碱基A,Base4为碱基G。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物具有相同的R 1。在某些优选的实施方案中,R 1各自独立地为-H。在某些优选的实施方案中,R 1各自独立地为单磷酸基团(-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为二磷酸基团(-PO 3H-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为三磷酸基团(-PO 3H-PO 3H-PO 3H 2)。在某些优选的实施方案中,R 1各自独立地为四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2)。
在某些优选的实施方案中,式(I)化合物、式(II)化合物、式(III)化合物和式(IV)化合物具有相同的R 2。在某些优选的实施方案中,R 2各自独立地为-H。在某些优选的实施方案中,R 2各自独立地为-OH。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地能够发生生物正交切割反应。如本文中所使用的,表述“各自独立地能够发生生物正交切割反应”意指,所提及的反应性基团、试剂、或分子等各自都能够进行生物正交切割反应,而在彼此之间不互相干扰或影响。例如,表述“R 3a和R 3b各自独立地能够发生生物正交切割反应”意指,R 3a和R 3b均能够发生生物正交切割反应,并且R 3a不影响R 3b的生物正交切割反应的进行,R 3b不影响R 3a的生物正交切割反应的进行。
在某些示例性实施方案中,R 3a为能够在第一试剂存在的条件下发生生物正交切割反应的第一反应性基团;R 3b为能够在第二试剂存在的条件下发生生物正交切割反应的第二反应性基团;R 3c为能够在第三试剂存在的条件下发生生物正交切割反应的第三反应性基团;R 3d为能够在第四试剂存在的条件下发生生物正交切割反应的第四反应性基团;R 4a为能够在第五试剂存在的条件下发生生物正交切割反应的第五反应性基团;R 4b为能够在第六试剂存在的条件下发生生物正交切割反应的第六反应性基团;且,R 4c为能够在第七试剂存在的条件下发生生物正交切割反应的第七反应性基团。
优选地,在此类实施方案中,在步骤(8)中,可添加第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂,从而使得R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c(如果存在的话)各自发生生物正交切割反应。由此,R 3a、R 3b、R 3c、R 3d(如果存在的话)将被从核糖或脱氧核糖的3'位置去除(换言之,-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)将被转变为游离的羟基),并且R 4a和与其相连接的荧光基团(如果存在的话),R 4b和与其相连接的荧光基团(如果存在的话),以及R 4c和与其相连接的荧光基团(如果存在的话)也将被去除。由此,在步骤(8)之后,所述生长的核酸链将不携带所述荧光基团,并且在3'端具有游离的羟基,能够用于进行下一轮的聚合反应。因此,在某些优选实施方案中,在步骤(8)中,添加第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂,从而形成含有溶液相和固相的反应体系,并在允许R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自发生生物正交切割反应的条件下,将所述双链体与所述第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂进行温育。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂和第四试剂是相同的试剂。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d是相同的反应性基团。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂和第四试剂是相同的试剂。也即,在步骤(8)中,在所述相同的试剂(即,第一试剂)的存在下,所述相同的R 3a、R 3b、R 3c、R 3d(如果存在的话)将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些优选的实施方案中R 4a、R 4b、R 4c能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第五试剂、第六试剂和第七试剂是相同的试剂。
在某些优选的实施方案中,R 4a、R 4b、R 4c是相同的反应性基团。在这种情况下,优选地,在步骤(8)中,第五试剂、第六试剂和第七试剂是相同的试剂。也即,在步骤(8)中,在所述相同的试剂(即,第五试剂)的存在下,所述相同的R 4a、R 4b、R 4c(如果存在的话)将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c能够在相同的试剂存在下,各自发生生物正交切割反应。在这种情况下,优选地,在步骤(8)中,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂。也即,在步骤(8)中,仅需添加所述相同的试剂(即,第一试剂),并且在所述相同的试剂(即,第一试剂)的存在下,所述R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c(如果存在的话),将各自进行生物正交切割反应,并从所述生长的核酸链上切除。
在某些示例性实施方案中,特别优选地,R 5a与第二结合配对的两个成员(R 6b和R 6c)之间不存在相互作用。此外,特别优选地,R 5a不影响R 6b和R 6c之间的特异性相互作用,并且R 6b和R 6c不影响R 5a和M之间的正交连接反应。在此类实施方案中,优选地,在步骤(6)中,可添加M和R 6c,所述化合物M携带与第二化合物和第四化合物相同的荧光基团(或者结构不同但发光光谱相同或实质相同的荧光基团),从而使得式(III)化合物中的R 5a(如果存在的话)与M发生正交连接反应,并且使得式(IV)化合物中的R 6a(如果存在的话)与R 6b的结合物解离。由此,通过化合物中的R 5a与M发生正交连接反应,使荧光基团Dye3被引入式(III)化合物,使得式(III)化合物发出荧光信号。同时,通过第二结合配对的两个成员(R 6b和R 6c)之间的特异性相互作用,使R 6a与R 6b的结合物解离,使得式(IV)化合物失去荧光基团,式(IV)化合物不再发出荧光。在此类实施方案中,还特别优选地,在步骤(6)中,M不与第一化合物和第二化合物发生化学反应,并且进一步优选地,R 6c不与第一化合物和第二化合物发生化学反应。因此,在某些优选实施方案中,在步骤(6)中,可添加M和R 6c,从而形成含有溶液相和固相的反应体系;然后,在允许R 5a和R 5b特异性结合且允许R 6b和R 6c特异性结合的条件下,将所述双链体与M和R 6c-L6-Que进行温育。
在某些示例性实施方案中,第四化合物本身不携带荧光基团,R 6a是第一结合配对的一个成员。在此类实施方案中,步骤(5)包括,添加第九试剂,从而使得式(IV)化合物中的R 6a(如果存在的话)与第一结合配对的另一个成员发生特异性作用和/或特异性结合。例如,第九试剂可以包含携带荧光基团的第一结合配对的另一个成员,其结构为R 6b-L4-Dye 2,其中,R 6b为第一结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同的发射光谱。在此类实施方案中,步骤(6)包括,添加第十试剂,从而使得式(IV)化合物中的R 6a(如果存在的话)与R 6b形成的结合物解离。例如,第十试剂可以包含第二结合配对的另一个成员R 6c,其可以与R 6b发生特异性结合而取代R 6a,使R 6a与R 6b形成的结合物解离。
优选地,在此类实施方案中,在步骤(6)中,可添加第八试剂和第九试剂,从而使得式(III)化合物中的R 5a(如果存在的话)与M发生生物正交连接反应,并且使得式(IV)化合物中的R 6a与R6b形成的结合物解离。例如,第八试剂可以包含化合物M,所述化合物M携带与第二化合物和第四化合物相同的荧光基团(或者结构不同但发光光谱相同或实质相同的荧光基团),并且所述M能够与R 5a发生生物正交连接反应,并由此将所携带的荧光基团引入式(III)化合物。此外,第九试剂包含第二结合配对的另一个成员,并且能够与R 6b发生特异性作用和/或特异性结合,使得式(IV)化合物中的R 6a与R6b形成的结合物解离,并由此使式(IV)化合物中失去荧光基团。在此类实施方案中,还特别优选地,在步骤(6)中,第八试剂不与第一化合物和第二化合物发生化学反应,并且进一步优选地,第九试剂不与第一化合物和第二化合物发生化学反应。因此,在某些优选实施方案中,在步骤(6)中,可添加第八试剂和第九试剂,从而形成含有溶液相和固相的反应体系,其中,第八试剂包含化合物M,所述M能够携带与第二化合物和第四化合物相同的荧光基团(或者结构不同但发光光谱相同或实质相同的荧光基团),并且M能够与R 5a发生生物正交连接反应,从而将所携带的荧光基团引入第三化合物;第九试剂包含第二结合配对的另一成员,并且所述第二结合配对的另一成员能够与R 6b发生特异性作用和/或特异性结合,并且使得式(IV)化合物中的R 6a与R6b形成的结合物解离;然后,在允许R 5a与第一结合配对的另一成员发生特异性作用和/或特异性结合,且允许R 6b与第二结合配对的另一成员发生特异性作用和/或特异性结合的条件下,将所述双链体与第八试剂和第九试剂进行温育。
在某些示例性实施方案中,第四化合物的R 5b与R 7a之间还存在能够进行第二生物正交连接反应的反应性基团R 8。在某些优选的实施方案中,R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 5a、R 8各自独立地能够发生生物正交切割或连接反应。在某些示例性实施方案中,R 8a能够在第十试剂存在的条件下发生 生物正交连接反应。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d各自独立地选自下列基团:-CH 2CH=CH 2、-CH 2N 3、-C 3-8环烯基(例如-C 3环烯基、-C 4环烯基、-C 5元环烯基、-C 6环烯基、-C 7环烯基或-C 8环烯基)。在某些优选的实施方案中,所述-C 3-8环烯基选自-C 3环烯基和-C 8环烯基。在某些优选的实施方案中,所述-C 3-8环烯基为
Figure PCTCN2017118928-appb-000298
在某些优选的实施方案中,所述-C 3-8环烯基为
Figure PCTCN2017118928-appb-000299
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是相同的反应性基团,并且选自下列基团:-CH 2CH=CH 2、-CH 2N 3、C 3-8环烯基(例如C 3环烯基、C 4环烯基、C 5元环烯基、C 6环烯基、C 7环烯基或C 8环烯基)。在某些优选的实施方案中,所述C 3-8环烯基选自C 3环烯基和C 8环烯基。在某些优选的实施方案中,所述C 3-8环烯基为
Figure PCTCN2017118928-appb-000300
在某些优选的实施方案中,所述C 3-8环烯基为
Figure PCTCN2017118928-appb-000301
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是相同的反应性基团,并且均为-CH 2N 3
在某些优选的实施方案中,R 4a、R 4b和R 4c各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000302
-O-C 3-8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”选自-O-C 3环烯亚基,-O-C 4环烯亚基,-O-C 5环烯亚基,-O-C 6环烯亚基,-O-C 7环烯亚基,和-O-C 8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000303
在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000304
在某些优选的实施方案中,R 4a、R 4b和R 4c是相同的反应性基团,并且选自下列基团:
Figure PCTCN2017118928-appb-000305
-O-C 3-8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”选自-O-C 3环烯亚基,-O-C 4环烯亚基,-O-C 5环烯亚基,-O-C 6环烯亚基,-O-C 7环烯亚基,和-O-C 8环烯亚基。在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000306
在某些优选的实施方案中,所述“-O-C 3-8环烯亚基”为
Figure PCTCN2017118928-appb-000307
在某些优选的实施方案中,R 4a、R 4b和R 4c均为
Figure PCTCN2017118928-appb-000308
在某些优选的实施方案中,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂各自独立地包含选自下列的物质:
钯的配合物(例如钯和4个三苯基膦三间磺酸的配合物);
钌的配合物(例如钌和喹啉羧酸酯(或其衍生物)、烯丙基或环戊二烯的配合物);
膦化物(例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3);以及
化合物Q,其具有结构式
Figure PCTCN2017118928-appb-000309
其中,Z 1和Z 2各自独立地选自修饰或未经修饰的烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和修饰或未经修饰的芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基或吡啶基)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2。在这种情况下,优选地,R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000310
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试 剂、第六试剂和第七试剂包含钯的配合物或钌的配合物。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3。在这种情况下,优选地,R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000311
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000312
在这种情况下,优选地,R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000313
还进一步优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含如上所定义的化合物Q。进一步优选地,在化合物Q中,Z 1为甲基;Z 2为修饰或未经修饰的吡啶基。更优选地,化合物Q为
Figure PCTCN2017118928-appb-000314
其中,W为氢或修饰基团。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,且包含如上所定义的化合物Q。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的连接基团L1、L2和L3以及R 6b-L4-Dye 2和R 6c-L6-Que中的连接基团L4和L6是各自独立的,并且不受特别的限制。本领域技术人员可以根据化合物中所使用的碱基(Base1、Base2、Base3和Base4)、反应性基团(R 4a、R 4b和R 4c)、以及第一和第二结合配对的成员(R 5a、R 5b、R 6a和R 6b),选择合适的连接基团L1、L2、L3、L4和L6。
在某些示例性实施方案中,连接基团L1、L2、L3、L4和L6各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000315
其中,m1、m2、m3、m4、n1、n2、n3、n4、p1、p2、p3、a、b、c、d、e和f各自独立地选自0、1、2、3、4、5或6。
在某些示例性实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L1各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000316
其中,m1、m2、m3和m4各自独立地选自0、1、2、3、4、5或6。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L1各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000317
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独 立地选自下列基团:
Figure PCTCN2017118928-appb-000318
Figure PCTCN2017118928-appb-000319
其中,n1、n2、n3、n4、p1、p2、p3、a、b、c、d、e和f各自独立地选自0、1、2、3、4、5或6。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000320
其中,n1、n2、n3、n4、p1、p2、p3各自独立地选自0、1、2、3、4、5或6。。
在某些优选的实施方案中,第一化合物、第二化合物、第三化合物和第四化合物中的L2各自独立地选自下列基团:
Figure PCTCN2017118928-appb-000321
在某些优选的实施方案中,R 6a和R 6b为第一结合配对的两个成员,R 6b和R 6c为第二结合配对的两个成员。在某些优选的实施方案中,第一结合配对和第二结合配对各自独立地选自:抗原(例如小分子抗原)-抗体、半抗原-抗体、激素-受体、配体-受体、核酸链-互补核酸链、底物-酶、底物类似物-酶、抑制剂-酶、糖-植物凝集素、生物素-抗生物素蛋白(例如,亲和素和链酶亲和素)、地高辛和地高辛抗体,以及5位溴代去氧鸟苷和其抗体。
在某些优选的实施方案中,第一结合配对的两个成员选自下述组合:(a)生物素和亲和素(例如链霉亲和素);(b)地高辛和地高辛抗体;(c)脱硫生物素和链霉亲和素。
在某些优选的实施方案中,第二结合配对的两个成员选自下述组合:(a)生物素和亲和素(例如链霉亲和素);(b)地高辛和地高辛抗体;(c)脱硫生物素和链霉亲和素。
特别优选的是,R 5a与第二结合配对的两个成员(R 6b和R 6c)之间不存在相互作用。此外,特别优选地,R 5a不影响R 6b和R 6c之间的特异性相互作用,并且R 6b和R 6c不影响R 5a和M之间的正交连接反应。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000322
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含钯的配合物或钌的配合物;R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是地高辛;R 6b是地高辛抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000323
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3;R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是地高辛;R 6b是地高辛抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2-N 3;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000324
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含膦化物,例如羧基膦化物或羟基膦化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3;R 5a是地高辛;R 5b是地高辛抗体;R 6a是生物素;R 6b是亲和素(例如链霉亲和素)。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含膦化物,例如羧基膦化物或羟基膦 化物,例如P(CH 2CH 2COOH) 3或P(CH 2CH 2OH) 3
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000325
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含钯的配合物或钌的配合物;R 5a是地高辛;R 5b是地高辛抗体;R 6a是生物素;R 6b是亲和素(例如链霉亲和素)。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000326
R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000327
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是地高辛;R 6b是地高辛抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000328
R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000329
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a是地高辛;R 5b是地高辛抗体;R 6a是生物素;R 6b是亲和素(例如链霉亲和素)。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d是-CH 2CH=CH 2;R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000330
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含钯的配合物或钌的配合物;R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是Cy3;R 6b是Cy3抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含钯的配合物或钌的配合物。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000331
R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000332
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是Cy3;R 6b是Cy3抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。
在某些优选的实施方案中,R 3a、R 3b、R 3c和R 3d
Figure PCTCN2017118928-appb-000333
R 4a、R 4b和R 4c
Figure PCTCN2017118928-appb-000334
第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂包含化合物Q(例如,上文所定义的化合物Q);R 5a是生物素;R 5b是亲和素(例如链霉亲和素);R 6a是Cy3;R 6b是Cy3抗体。优选地,第一试剂、第二试剂、第三试剂、第四试剂、第五试剂、第六试剂和第七试剂是相同的试剂,并且包含化合物Q(例如,上文所定义的化合物Q)。
在某些实施方案中,化合物M选自以下化合物:
化合物M1,其具有结构式
Figure PCTCN2017118928-appb-000335
其中,Y选自烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基),L0不存在或者为连接基团,Dye为荧光基团,所述荧光基团与第二化合物和第四化合物包含的荧光基团相同(或结构不同但 发射光谱相同或实质相同);
化合物M2,其具有结构式
Figure PCTCN2017118928-appb-000336
其中,Dye为荧光基团,所述荧光基团与第二化合物和第四化合物包含的荧光基团相同(或结构不同但发射光谱相同或实质相同);
化合物M3,其具有结构式
Figure PCTCN2017118928-appb-000337
其中,Z 3各自独立地选自烷基(例如C 1-C 6烷基,例如C 1烷基、C 2烷基、C 3烷基、C 4烷基、C 5烷基或C 6烷基)和芳香基(例如6-10元芳香基,例如6元芳香基、7元芳香基、8元芳香基、9元芳香基或10元芳香基,例如苯基),Dye为荧光基团,所述荧光基团与第二化合物和第四化合物包含的荧光基团相同(或结构不同但发射光谱相同或实质相同)。
在本发明的实施方案中,连接基团L0不受特别的限制。本领域技术人员可以根据实际需要,选择合适的连接基团L0。例如,在某些优选的实施方案中,L0可以为
Figure PCTCN2017118928-appb-000338
其中,q1、q2、q3、q4各自独立地选自0、1、2、3、4、5或6。
另外,如上文所描述的,在本发明的方法中,可根据需要,增加洗涤步骤。可在任何期望的阶段,增加所述洗涤步骤,并且任选地,所述洗涤步骤可进行一次或多次。
例如,在步骤(5)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除游离的(即,未并入生长的核酸链的)携带荧光基团的化合物(例如式(II)化合物和式(IV)化合物),从而尽可能减少非特异性的荧光信号。
类似地,在步骤(7)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除步骤(6)中应用的携带荧光的试剂,从而尽可能减少非特异性的荧光信号。
类似地,在步骤(9)中,在移除反应体系的溶液相之后,可进行一次或多次洗涤,以充分除去残留的溶液相。此类洗涤步骤可能是有利的,其可用于充分去除步骤(8)中应用的试剂以及产生的产物(其可能携带荧光),从而尽可能减少非特异性的荧光信号,并且尽可能避免对后续的聚合反应造成不利的影响。
可使用各种合适的洗涤溶液来进行洗涤步骤。此类洗涤溶液的实例包括但不限于,磷酸盐缓冲液,柠檬酸盐缓冲液,Tris-HCl缓冲液,醋酸盐缓冲液,碳酸盐缓冲液等等。可根据实际需要来选择合适的洗涤溶液(包括合适的成分,浓度,离子强度,pH值等),这在本领域技术人员的能力范围之内。
(二)试剂盒
在一个方面,本发明提供了一种用于对核酸分子进行测序的试剂盒,其包括如上文所定义的四种化合物。在某些优选的实施方案中,本发明的试剂盒包含四种化合物(即,第一、第二、第三和第四化合物),其中:
所述四种化合物分别为核苷酸A、(T/U)、C和G的衍生物,且具有碱基互补配对能力;并且,
所述四种化合物的核糖或脱氧核糖的3'位置处的羟基(-OH)被保护基团保护;并且,所述保护基团能够被去除;
所述第一化合物和第三化合物不能发出荧光信号(例如不携带荧光基团),所述第二化合物能够发出荧光信号(例如携带荧光基团),所述第四化合物不能发出荧光信号,或者能够发出与第二化合物相同的荧光信号(例如,携带荧光基团,所述荧光基团与第二化合物中的荧光基团相同,或所述荧光基团与第二化合物中的荧光基团结构不同,但二者具有相同或实质相同的发射光谱);并且,
所述第三化合物经处理后能够发出与第二化合物相同的荧光信号(例如,携带与第二化合物相同的荧光基团,或者携带与第二化合物结构不同但发射光谱相同或实质相同的荧光基团),且,(i)所述第四化合物本身能够发出与第二化合物相同的荧光信号,则经处理后能够去除自身的荧光信号(例如,去除自身的荧光基团,或者淬灭由自身的荧光基团发出的荧光信号),或者(ii)所述第四 化合物本身不能发出荧光信号,则经第一处理后能够发出与第二化合物相同的荧光信号(例如,携带与第二化合物相同的荧光基团,或者携带与第二化合物结构不同但发射光谱相同或实质相同的荧光基团),并且经第二处理后能够去除自身的荧光信号(例如,去除自身的荧光基团,或者淬灭由自身的荧光基团发出的荧光信号)。
在某些优选的实施方案中,所述四种化合物的核糖或脱氧核糖的3'位置处的所述保护基团可通过生物正交切割反应去除。例如,所述保护基团是能够发生生物正交切割反应的反应性基团。由此,可通过使所述四种化合物进行生物正交切割反应,去除所述保护基团。
在某些优选的实施方案中,第三化合物包含能够发生生物正交连接反应的反应性基团。由此,可通过使该反应性基团发生生物正交连接反应,在第三化合物中引入荧光基团,使其具有发出荧光信号的能力。因此,在此类实施方案中,可通过使所述第三化合物进行生物正交连接反应,从而使其发出与第二化合物相同的荧光信号。
在某些优选的实施方案中,第三化合物包含结合配对的一个成员。由此,可通过所述成员与该结合配对的另一个成员(其携带荧光基团)之间的特异性相互作用来在第三化合物中引入荧光基团,使其具有发出荧光信号的能力。因此,在此类实施方案中,可通过使所述第三化合物与携带荧光基团的该结合配对的另一个成员相接触,从而在第三化合物中引入荧光基团,使其发出与第二化合物相同的荧光信号。
在某些优选的实施方案中,第四化合物包含能够发生生物正交切割反应的反应性基团。由此,可通过使该反应性基团发生生物正交切割反应,将第四化合物中的荧光基团切除,使其丧失发出荧光信号的能力。因此,在此类实施方案中,可通过使所述第四化合物进行生物正交切割反应,从而去除第四化合物中的荧光基团,使第四化合物不再发出荧光信号。
在某些优选的实施方案中,第四化合物包含结合配对的一个成员。由此,可通过所述成员与该结合配对的另一个成员(其携带淬灭基团)之间的特异性相互作用,在第四化合物中引入能够淬灭荧光的淬灭基团,使其丧失发出荧光信号的能力。因此,在此类实施方案中,可通过使所述第四化合物与携带淬灭基团的该结合配对的另一个成员相接触,从而在第四化合物中引入淬灭基团,使其不再发出荧光信号。
在某些优选的实施方案中,第四化合物包含能够发生生物正交连接反应的反应性基团。由此,可通过使该反应性基团发生生物正交连接反应,在第四化合物中引入能够淬灭荧光的淬灭基团,使其丧失发出荧光信号的能力。因此,在此类实施方案中,可通过使所述第四化合物进行生物正交连接反应,从而在第四化合物中引入淬灭基团,使其不再发出荧光信号。
在某些优选的实施方案中,第四化合物本身不携带荧光基团,但其包含能够发生生物正交连接反应的反应性基团。由此,可通过使该反应性基团发生生物正交连接反应,在第四化合物中引入荧光基团,使其具有发出荧光信号的能力。因此,在此类实施方案中,可通过使所述第四化合物进行生物正交连接反应,从而使其发出与第二化合物相同的荧光信号。
在某些优选的实施方案中,第四化合物本身不携带荧光基团,但其包含结合配对的一个成员。由此,可通过所述成员与该结合配对的另一个成员(其携带荧光基团)之间的特异性相互作用来在第四化合物中引入荧光基团,使其具有发出荧光信号的能力。因此,在此类实施方案中,可通过使所述第四化合物与携带荧光基团的该结合配对的另一个成员相接触,从而在第四化合物中引入荧光基团,使其发出与第二化合物相同的荧光信号。
在某些优选的实施方案中,第四化合物包含第一结合配对的一个成员,所述第一结合配对的另一成员同时是第二结合配对的一个成员。由此,可通过第一结合配对的成员与该结合配对的另一个成员(其携带荧光基团)之间的特异性相互作用,在第四化合物中引入荧光基团,使其具有发出荧光信号的能力;并且,可通过第二结合配对的成员与第二结合配对的另一个成员之间的特异性相互作用,使第一结合配对的结合物解离,使所述第四化合物失去荧光基团,因而丧失发出荧光信号的能力。
在某些示例性实施方案中,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
Figure PCTCN2017118928-appb-000339
Figure PCTCN2017118928-appb-000340
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 5b各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为能够进行第一生物正交连接反应的反应性基团;
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
R 7a为能够发出荧光信号的荧光基团(Dye 1),或者能够进行第二生物正交连接反应的反应性基团,或者结合配对的一个成员;
并且,Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 5b与R 7a之间还存在能够进行第三生物正交连接反应的反应性基团R 8
在某些优选的实施方案中,所述四种化合物如上文的示例性实施方案1中所定义。在某些优选的实施方案中,所述试剂盒还包括,携带荧光基团(例如,与第二化合物相同的荧光基团,或者结构不同但发射光谱相同或实质相同的荧光基团)的试剂,其能够与第三化合物中的R 5a发生第一生物正交连接反应,从而将所述荧光基团引入第三化合物,使之发出荧光信号。
在某些优选的实施方案中,所述试剂盒还包括,能够使第四化合物中的R 5b发生生物正交切割反应,从而去除第四化合物中的荧光基团的试剂。
在某些优选的实施方案中,所述试剂盒还包括,携带荧光基团(例如,与第二化合物相同的荧光基团,或者结构不同但发射光谱相同或实质相同的荧光基团)的试剂,其能够与第四化合物中的R 7a发生第二生物正交连接反应,或者能够与R 7a特异性结合,从而将所述荧光基团引入第四化合物,使之发出荧光信号。
在某些优选的实施方案中,所述试剂盒还包括,携带淬灭剂的试剂,其能够与第四化合物中的R 8发生第三生物正交连接反应,从而淬灭第四化合物发出的荧光信号。
在某些优选的实施方案中,除了所述的四种化合物之外,所述试剂盒还包含示例性实施方案1中所描述的任一种或多种试剂。
在某些示例性实施方案中,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
Figure PCTCN2017118928-appb-000341
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为第一结合配对的一个成员;
R 6a(i)是第二结合配对的一个成员,同时是第三结合配对的一个成员;或者
(ii)只是第三结合配对的一个成员;并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,二者具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行生物正交连接反应的反应性基团R 8
在某些优选的实施方案中,所述四种化合物如上文的示例性实施方案2中所定义。
在某些优选的实施方案中,所述试剂盒还包括R 6b-L4-Dye 2;其中,R 6b为第二结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱。所述R 6b-L4-Dye 2中的R 6b能够与第四化合物中的R 6a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye 2)引入第四化合物,使之发出荧光信号。
在某些优选的实施方案中,所述试剂盒还包括R 5b-L5-Dye 3,其中R 5b为第一结合配对的另一个成员,L5为连接基团或不存在;Dye 3表示能够发出荧光信号的荧光基团,其优选地为与第二化合物相同的荧光基团(或者与第二化合物的荧光基团结构不同但发射光谱相同或实质相同的荧光基团)。所述R 5b-L5-Dye 3中的R 5b能够与第三化合物中的R 5a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye)引入第三化合物,使之发出荧光信号。
在某些优选的实施方案中,所述试剂盒还包括R 6b-L6-Que,其中R 6b为第二结合配对的另一个成员,L6为连接基团或不存在;Que表示能够淬灭Dye发出的荧光信号的淬灭基团。所述R 6b-L6-Que中的R 6b能够与第四化合物中的R 6a发生特异性相互作用/特异性结合,从而将所述淬灭基团(Que)引入第四化合物,并淬灭第四化合物中的荧光基团(Dye)发出的荧光信号。
在某些优选的实施方案中,所述试剂盒还包括,携带淬灭剂的试剂,其能够与第四化合物中的R 8发生第三生物正交连接反应,从而淬灭第四化合物发出的荧光信号。
在某些优选的实施方案中,除了所述的四种化合物之外,所述试剂盒还包含示例性实施方案2中所描述的任一种或多种试剂。
在某些示例性实施方案中,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
Figure PCTCN2017118928-appb-000342
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为能够进行第一生物正交连接反应的反应性基团;
R 6a(i)是第一结合配对的一个成员,同时是第二结合配对的一个成员;或者
(ii)只是第二结合配对的一个成员,并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye表示能够发出荧光信号的荧光基团;Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
在某些优选的实施方案中,所述四种化合物如上文的示例性实施方案3中所定义。
在某些优选的实施方案中,所述试剂盒还包括R 6b-L4-Dye 2;其中,R 6b为第一结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱。所述R 6b-L4-Dye 2中的R 6b能够与第四化合物中的R 6a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye 2)引入第四化合物,使之发出荧光信号。
在某些优选的实施方案中,所述试剂盒还包括,携带荧光基团(例如,与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂,其能够与第三化合物中的R 5a发生生物正交连接反应,从而将所述荧光基团引入第三化合物,使之发出荧光信号。
在某些优选的实施方案中,所述试剂盒还包括R 6c-L'-Que,其中R 6c为第二结合配对的另一个成员,L'为连接基团或不存在;Que表示能够淬灭Dye发出的荧光信号的淬灭基团。所述R 6c-L'-Que中的R 6b能够与第四化合物中的R 6a发生特异性相互作用/特异性结合,从而将所述淬灭基团(Que)引入第四化合物,并淬灭第四化合物中的荧光基团(Dye)发出的荧光信号。
在某些优选的实施方案中,所述试剂盒还包括,携带淬灭剂的试剂,其能够与第四化合物中的R 8发生第三生物正交连接反应,从而淬灭第四化合物发出的荧光信号。
在某些优选的实施方案中,除了所述的四种化合物之外,所述试剂盒还包含示例性实施方案3中所描述的任一种或多种试剂。
在某些示例性实施方案中,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
Figure PCTCN2017118928-appb-000343
Figure PCTCN2017118928-appb-000344
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 6各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为第一结合配对的一个成员;
R 6a为能够发出荧光信号的荧光基团(Dye 1),能够进行第一生物正交连接反应的反应性基团,和/或第二结合配对的一个成员;
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱。
任选地,R 4c和R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
在某些优选的实施方案中,所述四种化合物如上文的示例性实施方案4中所定义。
在某些优选的实施方案中,所述试剂盒还包括R 6b-L-Dye 1;其中,R 6b为第二结合配对的另一个成员,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱。所述R 6b-L-Dye 1中的R 6b能够与第四化合物中的R 6a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye 1)引入第四化合物,使之发出荧光信号。
在某些优选的实施方案中,所述试剂盒还包括,携带荧光基团(例如,与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂,其能够与第四化合物中的R 6a发生第一生物正交连接反应,从而将所述荧光基团引入第三化合物,使之发出荧光信号。
在某些优选的实施方案中,所述试剂盒还包括R 5b-L-Dye 2,其中R 5b为第一结合配对的另一个成员,L为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,其优选地为与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团。所述R 5b-L-Dye 2中的R 5b能够与第三化合物中的R 5a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye 2)引入第三化合物,使之发出荧光信号。
在某些优选的实施方案中,所述试剂盒还包括,携带淬灭剂的试剂,其能够与第四化合物中的R 8发生第二生物正交连接反应,从而淬灭第四化合物发出的荧光信号。
在某些优选的实施方案中,所述试剂盒还包括,能够使第四化合物中的R 4c发生生物正交切割反应,从而去除第四化合物中的荧光基团的试剂。
在某些优选的实施方案中,除了所述的四种化合物之外,所述试剂盒还包含示例性实施方案4中所描述的任一种或多种试剂。
在某些示例性实施方案中,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
Figure PCTCN2017118928-appb-000345
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为第一结合配对的一个成员;
R 6a为第二结合配对的一个成员,任选地,R 6a为Dye 1或者还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,二者具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行生物正交连接反应的反应性基团R 8
在某些优选的实施方案中,所述四种化合物如上文的示例性实施方案5中所定义。
在某些优选的实施方案中,所述试剂盒还包括R 6b-L4-Dye 2;其中,R 6b为第二结合配对的另一个 成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱。所述R 6b-L4-Dye 2中的R 6b能够与第四化合物中的R 6a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye 1)引入第四化合物,使之发出荧光信号。
在某些优选的实施方案中,所述试剂盒还包括,第二结合配对的另一个成员,其能够与R 6b发生特异性相互作用/特异性结合,使R 6a与R 6b形成的结合物解离,从而使第四化合物失去荧光基团。
在某些优选的实施方案中,所述试剂盒还包括R 5b-L5-Dye 3,其中R 5b为第一结合配对的另一个成员,L5为连接基团或不存在;Dye 3表示能够发出荧光信号的荧光基团,其优选地为与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团。所述R 5b-L5-Dye 3中的R 5b能够与第三化合物中的R 5a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye 3)引入第三化合物,使之发出荧光信号。
在某些优选的实施方案中,所述试剂盒还包括,携带淬灭剂的试剂,其能够与第四化合物中的R 8发生第二生物正交连接反应,从而淬灭第四化合物发出的荧光信号。
在某些优选的实施方案中,所述试剂盒还包括,能够使第四化合物中的R 4c发生生物正交切割反应,从而去除第四化合物中的荧光基团的试剂。
在某些优选的实施方案中,除了所述的四种化合物之外,所述试剂盒还包含示例性实施方案5中所描述的任一种或多种试剂。
在某些示例性实施方案中,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
Figure PCTCN2017118928-appb-000346
其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
R 2各自独立地选自-H和-OH;
R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
R 5a为能够进行第一生物正交连接反应的反应性基团;
R 6a为第一结合配对的一个成员,任选地,R 6a为Dye 1或者还连接有-L3-Dye 1
L1各自独立地为连接基团或不存在;
L2各自独立地为连接基团或不存在;
L3为连接基团或不存在;
Dye表示能够发出荧光信号的荧光基团;Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
任选地,R 4c与R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
在某些优选的实施方案中,所述四种化合物如上文的示例性实施方案6中所定义。
在某些优选的实施方案中,所述试剂盒还包括R 6b-L4-Dye 2;其中,R 6b为第一结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱。所述R 6b-L4-Dye 2中的R 6b能够与第四化合物中的R 6a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye 1)引入第四化合物,使之发出荧光信号。
在某些优选的实施方案中,所述试剂盒还包括,第二结合配对的另一个成员,其能够与R 6b发生特异性相互作用/特异性结合,使R 6a与R 6b形成的结合物解离,从而使第四化合物失去荧光基团。
在某些优选的实施方案中,所述试剂盒还包括,携带荧光基团(例如,与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂,其能够与第三化合物中的R 5a发生第一生物正交连接反应,从而将所述荧光基团引入第三化合物,使之发出荧光信号。
在某些优选的实施方案中,所述试剂盒还包括,携带淬灭剂的试剂,其能够与第四化合物中的R 8发生第二生物正交连接反应,从而淬灭第四化合物发出的荧光信号。
在某些优选的实施方案中,所述试剂盒还包括,能够使第四化合物中的R 4c发生生物正交切割反应,从而去除第四化合物中的荧光基团的试剂。
在某些优选的实施方案中,除了所述的四种化合物之外,所述试剂盒还包含示例性实施方案6中所描述的任一种或多种试剂。
在某些优选的实施方案中,本发明的试剂盒还包含:用于从样品中提取核酸分子的试剂和/或装置;用于预处理核酸分子的试剂;用于连接待测序的核酸分子的支持物;用于将待测序的核酸分子与支持物连接(例如,共价或非共价连接)的试剂;用于起始核苷酸聚合反应的引物;用于进行核苷酸聚合反应的聚合酶;一种或多种缓冲溶液;一种或多种洗涤溶液;或其任何组合。
在某些优选的实施方案中,本发明的试剂盒还包含,用于从样品中提取核酸分子的试剂和/或装置。用于从样品中提取核酸分子的方法是本领域熟知的。因此,可根据需要,在本发明的试剂盒中配置各种用于提取核酸分子的试剂和/或装置,例如用于破碎细胞的试剂,用于沉淀DNA的试剂,用于洗涤DNA的试剂,用于溶解DNA的试剂,用于沉淀RNA的试剂,用于洗涤RNA的试剂,用于溶解RNA的试剂,用于去除蛋白的试剂,用于去除DNA的试剂(例如当目的核酸分子为RNA时),用于去除RNA的试剂(例如当目的核酸分子为DNA时),及其任何组合。
在某些优选的实施方案中,本发明的试剂盒还包含,用于预处理核酸分子的试剂。在本发明的试剂盒中,用于预处理核酸分子的试剂不受额外限制,并且可根据实际需要选择。所述用于预处理核酸分子的试剂包括例如,用于核酸分子片段化的试剂(例如DNA酶I),用于补齐核酸分子末端的试剂(例如DNA聚合酶,例如T4DNA聚合酶,Pfu DNA聚合酶,Klenow DNA聚合酶),接头分子,标签分子,用于将接头分子与目的核酸分子相连接的试剂(例如连接酶,例如T4DNA连接酶),用于修复核酸切口的试剂(例如,丧失3'-5'核酸外切酶活性但显示5'-3'核酸外切酶活性的DNA 聚合酶),用于扩增核酸分子的试剂(例如,DNA聚合酶,引物,dNTP),用于分离和纯化核酸分子的试剂(例如层析柱),以及其任何组合。
在某些优选的实施方案中,本发明的试剂盒还包含用于连接待测序的核酸分子的支持物。所述支持物可以具有上文中针对支持物所详细描述的任何技术特征以及其任何组合。
例如,在本发明中,所述支持物可以由各种合适的材料制成。此类材料包括例如:无机物、天然聚合物、合成聚合物,以及其任何组合。具体的例子包括但不限于:纤维素、纤维素衍生物(例如硝化纤维素)、丙烯酸树脂、玻璃、硅胶、聚苯乙烯、明胶、聚乙烯吡咯烷酮、乙烯基和丙烯酰胺的共聚物、与二乙烯基苯等交联的聚苯乙缔(参见例如,Merrifield Biochemistry 1964,3,1385-1390)、聚丙烯酰胺、乳胶、葡聚糖、橡胶、硅、塑料、天然海绵、金属塑料、交联的葡聚糖(例如,Sephadex TM)、琼脂糖凝胶(Sepharose TM),以及本领域技术人员已知的其他支持物。
在某些优选的实施方案中,用于连接待测序的核酸分子的支持物可以是包括惰性基底或基质(例如,载玻片、聚合物珠等)的固体支持物,所述惰性基底或基质已例如通过应用含有活性基团的中间材料而被功能化,所述活性基团允许共价连接诸如多核苷酸的生物分子。此类支持物的实例包括但不限于,负载于诸如玻璃的惰性基底上的聚丙酰胺水凝胶,特别是WO 2005/065814和US 2008/0280773中描述的聚丙烯酰胺水凝胶,其中,所述专利申请的内容通过引用以其全文并入本文。在此类实施方案中,生物分子(例如多核苷酸)可被直接地共价地连接至中间材料(例如水凝胶),而中间材料其自身可被非共价地连接至基底或基质(例如,玻璃基底)。在某些优选的实施方案中,所述支持物为表面修饰了一层亲和素、氨基、丙烯酰胺硅烷或醛基化学基团的玻片或硅片。
在本发明中,支持物或固体支持物不受限于其大小、形状和构造。在一些实施方案中,支持物或固体支持物是平面结构,例如载片、芯片、微芯片和/或阵列。此类支持物的表面可以是平面层的形式。在一些实施方案中,支持物或其表面是非平面的,例如管或容器的内表面或外表面。在一些实施方案中,支持物或固体支持物包括微球或珠。在某些优选的实施方案中,用于连接待测序的核酸分子的支持物为珠或孔的阵列。
在某些优选的实施方案中,本发明的试剂盒还包含用于将待测序的核酸分子与支持物连接(例如,共价或非共价连接)的试剂。此类试剂包括例如对核酸分子(例如其5'端)进行活化或修饰的试剂,例如磷酸、硫醇、胺、羧酸或醛;对支持物的表面进行活化或修饰的试剂,例如氨基-烷氧基硅烷(例如氨基丙基三甲氧基硅烷、氨基丙基三乙氧基硅烷、4-氨基丁基三乙氧基硅烷等);交联剂,例如琥珀酰酐、苯基二异硫氰酸盐(Guo等人,1994)、马来酸酐(Yang等人,1998)、1-乙基-3-(3-二甲基氨基丙基)-碳二亚胺盐酸盐(EDC)、间-马来酰亚胺基苯甲酸-N-羟基琥珀酰亚胺酯(MBS)、N-琥珀酰亚胺基[4-碘代乙酰基]氨基苯甲酸(SIAB)、4-(N-马来酰亚胺基甲基)环己烷-1-羧酸琥珀酰亚胺(SMCC)、N-γ-马来酰亚胺基丁酰氧基-琥珀酰亚胺酯(GMBS)、4-(p-马来酰亚胺基苯基)丁酸琥珀酰亚胺(SMPB);以及其任何组合。
在某些优选的实施方案中,本发明的试剂盒还包含用于起始核苷酸聚合反应的引物。在本发明中,引物不受额外的限制,只要它能够特异性地退火到目标核酸分子的一个区域上。在一些示例性实施方案中,所述引物的长度可以为5-50bp,例如5-10、10-15、15-20、20-25、25-30、30-35、35-40、40-45、45-50bp。在一些示例性实施方案中,所述引物可包含天然存在或非天然存在的核苷酸。在一些示例性实施方案中,所述引物包含天然存在的核苷酸或者由天然存在的核苷酸组成。在一些示例性实施方案中,所述引物包含经修饰的核苷酸,例如锁核酸(LNA)。在某些优选的实施方案中,所述引物包含通用引物序列。
在某些优选的实施方案中,本发明的试剂盒还包含用于进行核苷酸聚合反应的聚合酶。在本发明中,可使用各种合适的聚合酶。在一些示例性实施方案中,所述聚合酶能够以DNA为模板合成新的DNA链(例如DNA聚合酶)。在一些示例性实施方案中,所述聚合酶能够以RNA为模板合成新的DNA链(例如反转录酶)。在一些示例性实施方案中,所述聚合酶能够以DNA或RNA为模板合成新的RNA链(例如RNA聚合酶)。因此,在某些优选的实施方案中,所述聚合酶选自DNA聚合酶,RNA聚合酶,和反转录酶。
在某些优选的实施方案中,本发明的试剂盒还包含一种或多种缓冲溶液。此类缓冲液包括但不限于,用于DNA酶I的缓冲溶液,用于DNA聚合酶的缓冲溶液,用于连接酶的缓冲溶液,用于洗脱核酸分子的缓冲溶液,用于溶解核酸分子的缓冲溶液,用于进行核苷酸聚合反应(例如PCR)的缓冲溶液,和用于进行连接反应的缓冲溶液。本发明的试剂盒可包含上述缓冲溶液的任一种或多种。
在某些优选的实施方案中,本发明的试剂盒还包含一种或多种洗涤溶液。此类洗涤溶液的实例包括但不限于,磷酸盐缓冲液,柠檬酸盐缓冲液,Tris-HCl缓冲液,醋酸盐缓冲液,碳酸盐缓冲液等 等。本发明的试剂盒可包含上述洗涤溶液的任一种或多种。
发明的有益效果
与现有技术相比,本发明的技术方案具有以下有益效果:
(1)本发明的方法仅使用了一种荧光染料,或者使用能够发出相同荧光信号的两种荧光染料。因此,用于本发明测序方法的测序装置仅需配备一个激发光源和一个相机。这一方面大大降低了测序装置的制造成本,有助于测序装置和测序方法的推广和应用;另一方面显著减小了测序装置的体积,使测序装置更加轻便,便于携带。
(2)本发明的方法通过荧光的存在或不存在来区分碱基。与通过不同波长的荧光来区分碱基的方法相比,本发明的方法具有更高的灵敏度和更高的准确性。
下面将结合附图和实施例对本发明的实施方案进行详细描述,但是本领域技术人员将理解,下列附图和实施例仅用于说明本发明,而不是对本发明的范围的限定。根据附图和优选实施方案的下列详细描述,本发明的各种目的和有利方面对于本领域技术人员来说将变得显然。
具体实施方式
现参照下列意在举例说明本发明(而非限定本发明)的实施例来描述本发明。本领域技术人员知晓,实施例以举例方式描述本发明,且不意欲限制本发明所要求保护的范围。
具体实施方式1
制备例1.dGTP的衍生物的制备
dGTP衍生物由合亚医药科技(上海)有限公司合成获得,合成方法参考文献(US20130189743A1)。该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 11H 17N 8O 13P 3[M],分子量:562.01(calc),561.00[M-H]-(found)。化合物结构如式1所示。
Figure PCTCN2017118928-appb-000347
合成路线:
Figure PCTCN2017118928-appb-000348
制备例2.dATP的衍生物的制备
dATP衍生物由合亚医药科技(上海)有限公司合成得到,合成方法参考文献(US20130189743A1),该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 60H 68N 15O 25P 3S 2[M],分子量1555.31(calc),1554.25[M-H]-(found)。化合物结构如式2所示。
Figure PCTCN2017118928-appb-000349
合成路线包括下述阶段1和2的路线:
阶段1:
Figure PCTCN2017118928-appb-000350
阶段2:
Figure PCTCN2017118928-appb-000351
制备例3.dTTP的衍生物的制备
dTTP衍生物由合亚医药科技(上海)有限公司合成得到,合成方法参考文献US20130189743A1和Bioconjugate Chem.2014,25,1730-1738。该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 37H 50N 11O 20P 3[M],分子量1061.25(calc),1060.11[M-H]-(found)。化合物结构如式(3)所示。
Figure PCTCN2017118928-appb-000352
合成路线:
Figure PCTCN2017118928-appb-000353
制备例4.dCTP的衍生物的制备
dCTP衍生物由合亚医药科技(上海)有限公司,合成方法参考文献US20130189743A1和Bioconjug Chem.2016;27(7):1697-16706。该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 54H 64N 11O 24P 3S 2[M],分子量1406.27(calc),1405.26[M-H]-(found)。化合物结构如式4所示。
Figure PCTCN2017118928-appb-000354
合成路线:
Figure PCTCN2017118928-appb-000355
Figure PCTCN2017118928-appb-000356
制备例5.1,2,4,5-四嗪衍生物的合成
用于生物正交性反应的化合物1,2,4,5-四嗪衍生物由合亚医药科技(上海)有限公司合成,方法参考文献Bioconjugate Chem.2014,25,1730-1738,得到红色固体。ESI:计算得到分子式C42H42N8O9S2[M],分子量866.25(calc),865.24[M-H]-(found)。
合成路线:
Figure PCTCN2017118928-appb-000357
在本实验例中,用四种核苷酸衍生物(即,制备例1获得的dGTP的衍生物,制备例2获得的dATP的衍生物,制备例3获得的dTTP的衍生物1和制备例4获得的dCTP的衍生物)来对模板核 酸进行测序反应。简言之,本实验例所使用的测序方法涉及下述步骤:
(1)将模板核酸固定至芯片上,各待测核酸分子的序列见表1,通过BGISEQ-500建库试剂盒构建和DNB装载试剂盒固定于BGISEQ-500测序芯片上。
(2)添加测序引物,引物为BGISEQ-500常规测序引物,引物退火至模板核酸分子上,与模板核酸分子一起形成连接于芯片上的双链体。
(3)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;使用的DNA聚合酶和缓冲液均与BGISEQ-500测序试剂一样,其中使用的核苷酸替换成这里合成的四种核苷酸,在本实验中的试剂除切除试剂不同以外均保持与BGISEQ-500试剂相同。
(4)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,加入扫描缓冲液,之后检测所述双链体或所述生长的核酸链是否发出所述荧光信号,拍照,存储照片(即,实验照片1);(5)移除溶液相,洗涤,加入生物正交性试剂反应液,使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对G和A碱基没有影响,但是能够使C碱基的
Figure PCTCN2017118928-appb-000358
与携带AF532的试剂
Figure PCTCN2017118928-appb-000359
发生生物正交切割反应,从而去除C碱基化合物中的荧光基团,并且能够使T碱基中的
Figure PCTCN2017118928-appb-000360
发生生物正交连接反应,从而将所述试剂中的荧光基团引入T碱基,使其发出荧光信号;
其中使用的生物正交性反应试剂为含有1mM的1,2,4,5,-四嗪衍生物的1X磷酸盐缓冲液,反应温度为35度,反应时间1-5分钟。
(6)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,加入BGISEQ-500扫描缓冲液,之后检测所述双链体或所述生长的核酸链是否发出所述荧光信号,拍照,存储照片(即,实验照片2)。
(7)移除溶液相,洗涤,并对芯片进行处理,以去除所述四种核苷酸衍生物中的保护基团,即,使叠氮亚甲基、叠氮次甲基发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在脱氧核糖的3'位置具有游离的羟基(换言之,将-OCH 2N 3(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团AF532,如果存在的话;
用于切除叠氮亚甲基、叠氮次甲基的反应试剂中包含:1M氯化钠,0.1M tris,pH=9,10mM thpp。
(8)移除前一步骤的反应体系的溶液相;
(9)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(3)-(6)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(10)重复进行步骤(7)-(9)一次或多次。
在取得两次拍照的照片(即,实验照片1和2)之后,对同一个位置的信号进行比较。图1显示了实验照片1和2的比较结果,其中:
三角形区域表示,该位置(核酸分子)在照片1和2中均无荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基G被并入引物中,因此,可确定该核酸分子的对应位置上的碱基为C。
椭圆区域表示,该位置(核酸分子)在照片1中有荧光信号,但在照片2中无荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基C被并入引物中,因此,可确定该核酸分子的对应位置上的碱基为G。
正方形区域表示,该位置(核酸分子)在照片1和2中均有荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基A被并入引物中,因此,可确定该核酸分子的对应位置上的 碱基为T。
圆形区域表示,该位置(核酸分子)在照片1中无荧光信号,但在照片2中有荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基T被并入引物中,因此,可确定该核酸分子的对应位置上的碱基为A。
使用上述方法进行10个循环的测序验证,测试样本为36个不同序列混合样品,测序之后对比序列到36个序列中,达到完全匹配和允许一个错误的比例是94.65%。
结果表明:本实施方案中的方法能够在仅使用一种荧光基团的情况下,对模板核酸进行精确测序。
表1
Figure PCTCN2017118928-appb-000361
*能够与特定编号的序列相匹配(包括完全匹配和允许一个错误)的样品数与所有样品总数之间的比例
具体实施方式2
制备例1.dGTP的衍生物的制备
dGTP衍生物由合亚医药科技(上海)有限公司合成获得,合成方法参考文献US20130189743A1。该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 11H 17N 8O 13P 3[M],分子量:562.01(calc),561.00[M-H]-(found)。化合物结构如式1所示。
Figure PCTCN2017118928-appb-000362
合成路线:
Figure PCTCN2017118928-appb-000363
制备例2.dATP的衍生物的制备
dATP衍生物由合亚医药科技(上海)有限公司合成得到,合成方法参考文献US20130189743A1,该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 60H 68N 15O 25P 3S 2[M],分子量1555.31(calc),1554.25[M-H]-(found)。化合物结构如式2所示。
Figure PCTCN2017118928-appb-000364
合成路线:
Figure PCTCN2017118928-appb-000365
Figure PCTCN2017118928-appb-000366
制备例3.dTTP的衍生物的制备
dTTP衍生物由合亚医药科技(上海)有限公司合成得到,合成方法参考文献US20130189743A1和ucleic Acids Res.,15,4513–4534,该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 37H 50N 11O 20P 3[M],分子量1061.25(calc),1060.11[M-H]-(found)。化合物结构如式(3)所示。
Figure PCTCN2017118928-appb-000367
Figure PCTCN2017118928-appb-000368
制备例4.dCTP的衍生物的制备
dCTP衍生物由合亚医药科技(上海)有限公司合成(合成方法参考文献US20130189743A1和Nucleic Acids Res.,15,4513–4534)。该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 38H 55N 14O 20P 3[M],分子量1120.29(calc),1119.35[M-H]-(found)。化合物结构如式(4)所示。
Figure PCTCN2017118928-appb-000369
合成路线:
Figure PCTCN2017118928-appb-000370
Figure PCTCN2017118928-appb-000371
第一结合配对:digoxingenin与digoxigenin抗体。可通过使dTTP衍生物上的digoxingenin与修饰有Cy3的digoxigenin抗体(digoxigenin抗体-cy3)结合,使dTTP衍生物带上Cy3。digoxingenin和digoxigenin抗体-cy3由antibody online购买(货号:ABIN739187)。
第二结合配对:desthiobiotin与链酶亲和素。可通过使dCTP衍生物上的desthiobiotin与修饰有Cy3(与AF532吸收激发波长相同)的链酶亲和素结合,使dCTP衍生物带上Cy3。修饰有Cy3的链酶亲和素由sigma购买(货号:S6402-1ML)。
第三结合配对:链霉亲和素与生物素。可通过链霉素与生物素之间的特异性结合,使desthiobiotin-链酶亲和素结合物解离,从而使dCTP失去荧光基团。
实验例2
在本实验例中,用四种核苷酸衍生物(即,制备例1获得的dGTP的衍生物,制备例2获得的dATP的衍生物,制备例3获得的dTTP的衍生物1和制备例4获得的dCTP的衍生物)来对模板核酸进行测序反应。简言之,本实验例所使用的测序方法涉及下述步骤:
(1)将模板核酸固定至芯片上,各待测核酸分子的序列见表2,通过BGISEQ-500建库试剂盒构建和DNB装载试剂盒固定于BGISEQ-500测序芯片上。
(2)添加测序引物,引物为BGISEQ-500常规测序引物,引物退火至模板核酸分子上,与模板核酸分子一起形成连接于芯片上的双链体。
(3)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;使用的DNA聚合酶和缓冲液均与BGISEQ-500测序试剂一样,其中使用的核苷酸替换成这里合成的四种核苷酸,在本实验中的试剂除切除试剂不同以外均保持与BGISEQ-500试剂相同。
(4)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,加入特异性结合试剂1,35℃下反应1分钟。
特异性结合试剂1包含:1X磷酸盐缓冲液,1μg/ml BSA,10ng/ml链酶亲和素-cy3。
(5)加入扫描缓冲液,之后检测所述双链体或所述生长的核酸链是否发出所述荧光信号,拍照,存储照片(即,实验照片1);
(6)移除溶液相,洗涤,加入特异性结合试剂2,35℃反应1-5分钟,使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对G和A碱基没有影响,但是试剂中的生物素能够与C碱基携带的desthiobiotin-链酶亲和素结合物作用,取代掉desthiobiotin,形成biotin-链酶亲和素结合物,使链酶亲和素-cy3从C碱基上脱离开来,从而使C碱基失去荧光基团;而试剂中的digoxigenin抗体-cy3能够特异性地与T碱基中的digoxigenin结合,从而将荧光基团Cy3引入T碱基,使其发出荧光信号。
染色试剂2包含:1X磷酸盐缓冲液,1μg/ml BSA,10ng/ml digoxigenin抗体-cy3和10μM生物素。
(7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,加入BGISEQ-500扫描缓冲液,之后检测所述双链体或所述生长的核酸链是否发出所述荧光信号,拍照,存储照片(即,实验照片2)。
(8)移除溶液相,洗涤,并对芯片进行处理,以去除所述四种核苷酸衍生物中的保护基团,即,使叠氮亚甲基、叠氮次甲基发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在脱氧核糖的3'位置具有游离的羟基(换言之,将-OCH 2N 3(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团Cy3,如果存在的话;
用于去切除叠氮亚甲基、叠氮次甲基的反应试剂中包含;1M氯化钠,0.1M tris,pH=9,10mM thpp。
(9)移除前一步骤的反应体系的溶液相;
(10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(11)重复进行步骤(8)-(10)一次或多次。
在取得两次拍照的照片(即,实验照片1和2)之后,对同一个位置的信号进行比较。图2显示了实验照片1和2的比较结果,其中:
三角形区域表示,该位置(核酸分子)在照片1和2中均无荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基G被并入引物中,因此,可确定该核酸分子的对应位置上的碱基为C。
椭圆区域表示,该位置(核酸分子)在照片1中有荧光信号,但在照片2中无荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基C被并入引物中,因此,可确定该核酸分子的对应位置上的碱基为G。
正方形区域表示,该位置(核酸分子)在照片1和2中均有荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基A被并入引物中,因此,可确定该核酸分子的对应位置上的碱基为T。
圆形区域表示,该位置(核酸分子)在照片1中无荧光信号,但在照片2中有荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基T被并入引物中,因此,可确定该核酸分子的对应位置上的碱基为A。
使用上述方法进行10个循环的测序验证,测试样本为36个不同序列混合样品,测序之后对比序列到36个序列中,达到完全匹配和允许一个错误的比例是92.85%。
结果表明:本实施方案中的方法能够在仅使用一种荧光基团的情况下,对模板核酸进行精确测序。
表2
Figure PCTCN2017118928-appb-000372
Figure PCTCN2017118928-appb-000373
*能够与特定编号的序列相匹配(包括完全匹配和允许一个错误)的样品数与所有样品总数之间的比例
具体实施方式3
制备例1.dGTP衍生物的合成
dGTP衍生物由合亚医药科技(上海)有限公司合成获得,合成方法参考文献(US20130189743A1)。该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 11H 17N 8O 13P 3[M],分子量:562.01(calc),561.00[M-H]-(found)。化合物结构如式(1)所示。
Figure PCTCN2017118928-appb-000374
合成路线:
Figure PCTCN2017118928-appb-000375
制备例2.dATP衍生物的合成
dATP衍生物由合亚医药科技(上海)有限公司合成得到,合成方法参考文献(US20130189743A1),该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 60H 68N 15O 25P 3S 2[M],分子量1555.31(calc),1554.25[M-H]-(found)。化合物结构如式(2)所示。
Figure PCTCN2017118928-appb-000376
合成路线:
Figure PCTCN2017118928-appb-000377
Figure PCTCN2017118928-appb-000378
制备例3 dTTP衍生物的制备
dTTP衍生物由合亚医药科技(上海)有限公司合成得到,合成方法参考文献US20130189743A1和ucleic Acids Res.,15,4513–4534,该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 38H 52N 13O 21P 3S[M],分子量:1151.23(calc),1150.21[M-H]-(found)。化合物结构如式(3)所示。
Figure PCTCN2017118928-appb-000379
Figure PCTCN2017118928-appb-000380
合成路线:
Figure PCTCN2017118928-appb-000381
制备例4.dCTP衍生物的制备
dCTP衍生物由上海合亚医药科技(上海)有限公司合成(合成方法参考文献US20130189743A1和Nucleic Acids Res.,15,4513–4534)。该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 59H 76ClN 14O 19P 3[M],分子量1412.43(calc.),1411.33[M-H]-(found)。化合物结构如式(4)所示。
Figure PCTCN2017118928-appb-000382
合成路线:
Figure PCTCN2017118928-appb-000383
Figure PCTCN2017118928-appb-000384
第一结合配对:生物素与链酶亲和素-AF532(thermofisher货号:S11224)。可以通过使dTTP衍生物上的生物素与修饰有AF532的链酶亲和素结合,使dTTP衍生物带上AF532。链酶亲和素-AF532由thermofisher购买,货号:S11224。
第二结合配对:Cy3与cy3抗体。可以通过使dCTP衍生物上的Cy3与带有淬灭剂BHQ2的cy3抗体(Cy3抗体-BHQ2)特异性结合,使cy3被BHQ2Quencher猝灭掉。Cy3抗体-BHQ2由santa cruz biotech购买,货号:sc-166894。
染色试剂:1XPBS缓冲液,1ug/ml BSA,10ng/ml链酶亲和素-AF532和10ng/ml cy3抗体-BHQ2(black hole quencher).染色时间温度:30秒,35℃。
实验例3
在本实验例中,用四种核苷酸衍生物(即,制备例1获得的dGTP的衍生物,制备例2获得的dATP的衍生物,制备例3获得的dTTP的衍生物1和制备例4获得的dCTP的衍生物)来对模板核酸进行测序反应。简言之,本实验例所使用的测序方法涉及下述步骤:
(1)将模板核酸固定至芯片上,各待测核酸分子的序列见表3,通过BGISEQ-500建库试剂盒构建和DNB装载试剂盒固定于BGISEQ-500测序芯片上。
(2)添加测序引物,引物为BGISEQ-500常规测序引物,引物退火至模板核酸分子上,与模板核酸分子一起形成连接于芯片上的双链体。
(3)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;使用的DNA聚合酶和缓冲液均与BGISEQ-500测序试剂一样,其中使用的核苷酸替换成这里合成的四种核苷酸,在本实验中的试剂除切除试剂不同以外均保持与BGISEQ-500试剂相同。
(4)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,加入扫描缓冲液,之后检测所述双链体或所述生长的核酸链是否发出所述荧光信号,拍照,存储照片(即,实验照片1)。
(5)移除溶液相,洗涤,加入特异性结合试剂,35℃反应1-5分钟。使所述双链体或所述生长的 核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对G和A碱基没有影响,但是试剂中的cy3抗体-BHQ2能够使C碱基携带的cy3染料与cy3抗体结合,从而使cy3染料被BHQ2 Quencher特异性的猝灭掉,从而失去荧光的性质;而试剂中的链酶亲和素-AF532能够特异性地与T碱基中的生物素结合,从而将所述试剂中的荧光基团引入T碱基,使其发出荧光信号;由于cy3的激发和发射光谱和AF532几乎相同,而BHQ2能够完全猝灭Cy3的信号,因此cy3的抗体连接上BHQ2能够完全猝灭cy3的信号,因此在染色试剂中加入cy3抗体-BHQ2,能够实现1到0的信号转换,而AF532则不受影响。
特异性结合试剂包含:1X磷酸盐缓冲液,1μg/ml BSA,10ng/ml cy3抗体-BHQ2和10ng/ml链酶亲和素-AF532.
(6)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,加入BGISEQ-500扫描缓冲液,之后检测所述双链体或所述生长的核酸链是否发出所述荧光信号,拍照,存储照片(即,实验照片2)。
(7)移除溶液相,洗涤,并对芯片进行处理,以去除所述四种核苷酸衍生物中的保护基团,即,使叠氮亚甲基、叠氮次甲基发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OCH 2N 3(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与-OCHN 3-R连接的荧光基团),如果存在的话;
用于切除叠氮亚甲基、叠氮次甲基的反应试剂包含:1M氯化钠,0.1M tris,pH=9,10mM thpp。
(8)移除前一步骤的反应体系的溶液相;
(9)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(3)-(6)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(10)重复进行步骤(7)-(9)一次或多次。
在取得两次拍照的照片(即,实验照片1和2)之后,对同一个位置的信号进行比较。图1显示了实验照片1和2的比较结果,其中:
三角形区域表示,该位置(核酸分子)在照片1和2中均无荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基G被并入引物中,因此,可确定该核酸分子的对应位置上的碱基为C。
椭圆区域表示,该位置(核酸分子)在照片1中有荧光信号,但在照片2中无荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基C被并入引物中,因此,可确定该核酸分子的对应位置上的碱基为G。
正方形区域表示,该位置(核酸分子)在照片1和2中均有荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基A被并入引物中,因此,可确定该核酸分子的对应位置上的碱基为T。
圆形区域表示,该位置(核酸分子)在照片1中无荧光信号,但在照片2中有荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基T被并入引物中,因此,可确定该核酸分子的对应位置上的碱基为A。
使用上述方法进行10个循环的测序验证,测试样本为36个不同序列混合样品,测序之后对比序列到36个序列中,达到完全匹配和允许一个错误的比例是97.3%。
结果表明:本实施方案中的方法能够在仅使用一种荧光基团的情况下,对模板核酸进行精确测序。
表3
Figure PCTCN2017118928-appb-000385
Figure PCTCN2017118928-appb-000386
*能够与特定编号的序列相匹配(包括完全匹配和允许一个错误)的样品数与所有样品总数之间的比例
具体实施方式4
制备例1 dGTP衍生物的制备
dGTP衍生物由合亚医药科技(上海)有限公司合成获得,合成方法参考文献(US20130189743A1)该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 11H 17N 8O 13P 3[M],分子量:562.01(calc),561.00[M-H]-(found)。化合物结构如式(1)所示。
Figure PCTCN2017118928-appb-000387
合成路线
Figure PCTCN2017118928-appb-000388
制备例2.dATP的衍生物的制备
dATP衍生物由合亚医药科技(上海)有限公司合成得到,合成方法参考文献US20130189743A1,该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 60H 68N 15O 25P 3S 2[M],分子量1555.31(calc),1554.25[M-H]-(found)。化合物结构如式(2)所示。
Figure PCTCN2017118928-appb-000389
合成路线:
Figure PCTCN2017118928-appb-000390
Figure PCTCN2017118928-appb-000391
制备例3.dTTP衍生物的制备
d,dTTP衍生物由合亚医药科技(上海)有限公司合成得到,合成方法参考文献US20130189743A1和Nucleic Acids Res.,15,4513–4534。该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 38H 52N 13O 21P 3S[M],分子量1151.23(calc.),1150.21[M-H]-(found)。化合物结构如式(3)所示。
Figure PCTCN2017118928-appb-000392
Figure PCTCN2017118928-appb-000393
合成路线:
Figure PCTCN2017118928-appb-000394
制备例4.dCTP的衍生物的制备
dCTP衍生物由合亚医药科技(上海)有限公司服务合成(合成方法参考文献US20130189743A1和Nucleic Acids Res.,15,4513–4534和Bioconjug Chem.2016;27(7):1697-16706))。该化合物通过分析型HPLC纯化,得到纯度大于95%产物。MALDI-TOF:计算得到分子式C 74H 93N 16O 28P 3S 2[M],分子量1810.50(calc),1809.43[M-H]-(found)。化合物结构如式(4)所示。
Figure PCTCN2017118928-appb-000395
合成路线:
Figure PCTCN2017118928-appb-000396
Figure PCTCN2017118928-appb-000397
制备例5 1,2,4,5-四嗪BHQ2的制备
用于生物正交性反应的化合物1,2,4,5-四嗪BHQ2由合亚医药科技(上海)有限公司合成。方法参考文献Bioconjugate Chem.2014,25,1730-1738。ESI:计算得到分子式C 37H 38N 12O 6[M],分子量746.30(calc.),747.29[M+H]+(found)。
合成路线:
Figure PCTCN2017118928-appb-000398
结合配对:生物素可以与链酶亲和素特异性结合。可通过使dTTP衍生物上的生物素与修饰有AF532的链酶亲和素结合,使dTTP衍生物带上AF532。修饰有AF532的链酶亲和素(链酶亲和素-AF532)由thermofisher购买,货号:S11224)。
实验例4
在本实验例中,用四种核苷酸衍生物(即,制备例1获得的dGTP的衍生物,制备例2获得的dATP的衍生物,制备例3获得的dTTP的衍生物和制备例4获得的dCTP的衍生物)来对模板核酸进行测序反应。简言之,本实验例所使用的测序方法涉及下述步骤:
(1)将模板核酸固定至芯片上,各待测核酸分子的序列见表4,通过BGISEQ-500建库试剂盒构建和DNB装载试剂盒固定于BGISEQ-500测序芯片上。
(2)添加测序引物,引物为BGISEQ-500常规测序引物,引物退火至模板核酸分子上,与模板核酸分子一起形成连接于芯片上的双链体。
(3)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;使用的DNA聚合酶和缓冲液均与BGISEQ-500测序试剂一样,其中使用的核苷酸替换成这里合成的四种核苷酸,在本实验中的试剂除切除试剂不同以外均保持与BGISEQ-500试剂相同。
(4)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,加入扫描缓冲液,之后检测所述双链体或所述生长的核酸链是否发出所述荧光信号,拍照,存储照片(即,实验照片1);
(5)移除溶液相,洗涤,加入特异性结合试剂,35℃反应1-5分钟。使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对G和A碱基没有影响,但是试剂中的1,2,4,5四嗪BHQ2能够与C碱基携带的反式环辛烯烃发生生物正交连接反应,从而使AF532染料被BHQ2Quencher特异性的猝灭掉,使C碱基失去荧光信号;而试剂中的链酶亲和素-AF532能够特异性的与T碱基中的生物素结合,从而将所述试剂中的荧光基团引入T碱基,使其发出荧光信号。
由于cy3的激发和发射光谱和AF532几乎相同,而BHQ2能够完全猝灭Cy3的信号,因此cy3抗体-BHQ2能够完全猝灭cy3的信号,因此在染色试剂中加入cy3抗体-BHQ2,能够实现1到0的信号转换,而AF532则不受影响。
特异性结合试剂包含:1X磷酸盐缓冲液,1μg/ml BSA,1Um 1,2,4,5四嗪-BHQ2和10ng/ml链酶亲和素-AF532。
(6)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,加入BGISEQ-500扫描缓冲液,之后检测所述双链体或所述生长的核酸链是否发出所述荧光信号,拍照,存储照片(即,实验照片2)。
(7)移除溶液相,洗涤,并对芯片进行处理,以去除所述四种核苷酸衍生物中的保护基团,即处理能够使叠氮亚甲基、叠氮次甲基发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OCH 2N 3、(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与-OCHN 3-R连接的荧光基团),如果存在的话。
用于切除叠氮亚甲基、叠氮次甲基的反应试剂中包含:1M氯化钠,0.1M tris,pH=9,10mM thpp。
(8)移除前一步骤的反应体系的溶液相;
(9)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(3)-(6)。
在某些优选的实施方案中,所述方法还包括下述步骤:
(10)重复进行步骤(7)-(9)一次或多次。
在取得两次拍照的照片(即,实验照片1和2)之后,对同一个位置的信号进行比较。图1显示了实验照片1和2的比较结果,其中:
三角形区域表示,该位置(核酸分子)在照片1和2中均无荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基G被并入引物中,因此,可确定该核酸分子的对应位置上的碱基为C。
椭圆区域表示,该位置(核酸分子)在照片1中有荧光信号,但在照片2中无荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基C被并入引物中,因此,可确定该核酸分子的对应位置上的碱基为G。
正方形区域表示,该位置(核酸分子)在照片1和2中均有荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基A被并入引物中,因此,可确定该核酸分子的对应位置上的碱基为T。
圆形区域表示,该位置(核酸分子)在照片1中无荧光信号,但在照片2中有荧光信号;相应地,根据所使用的4种核苷酸衍生物的结构,可以确定碱基T被并入引物中,因此,可确定该核酸分子的对应位置上的碱基为A。
使用上述方法进行10个循环的测序验证,测试样本为36个不同序列混合样品,测序之后对比序列到36个序列中,达到完全匹配和允许一个错误的比例是94.93%。
结果表明:本实施方案中的方法能够在仅使用一种荧光基团的情况下,对模板核酸进行精确测序。
表4
Figure PCTCN2017118928-appb-000399
*能够与特定编号的序列相匹配(包括完全匹配和允许一个错误)的样品数与所有样品总数之间的比例
尽管本发明的具体实施方式已经得到详细的描述,但本领域技术人员将理解:根据已经公开的 所有教导,可以对细节进行各种修改和变动,并且这些改变均在本发明的保护范围之内。本发明的全部范围由所附权利要求及其任何等同物给出。

Claims (25)

  1. 一种对核酸分子进行测序的方法,其包括以下步骤:
    (1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
    (2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及四种化合物,从而形成含有溶液相和固相的反应体系;其中,所述四种化合物分别为核苷酸A、(T/U)、C和G的衍生物,并且具有碱基互补配对能力;并且,所述四种化合物的核糖或脱氧核糖的3'位置处的羟基(-OH)被保护基团保护;并且,第一化合物和第三化合物不能发出荧光信号(例如不携带荧光基团),第二化合物能够发出荧光信号(例如携带荧光基团),第四化合物不能发出荧光信号,或者能够发出与第二化合物相同的荧光信号(例如,携带荧光基团,所述荧光基团与第二化合物中的荧光基团相同,或所述荧光基团与第二化合物中的荧光基团结构不同,但二者具有相同或实质相同的发射光谱);
    (3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
    (4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
    (5)(i)若第四化合物能够发出与第二化合物相同的荧光信号,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    (ii)若第四化合物不能发出荧光信号,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物发出与第二化合物相同的荧光信号(例如,对第四化合物进行修饰,使之携带荧光基团,所述荧光基团与第二化合物的荧光基团相同,或者与第二化合物的荧光基团相比具有相同的发射光谱);之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    (6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物发出与第二化合物相同的荧光信号(例如,对第三化合物进行修饰,使之携带荧光基团,所述荧光基团与第二化合物的荧光基团相同,或者与第二化合物的荧光基团相比具有相同的发射光谱),并且能够去除第四化合物的荧光信号(例如,去除第四化合物上的荧光基团,或者淬灭由第四化合物上的荧光基团发出的荧光信号);和
    (7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    优选地,所述方法还包括下述步骤:
    (8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够去除并入生长的核酸链3'端的化合物中的核糖或脱氧核糖的3'位置处的保护基团,以及所述双链体或生长的核酸链上的荧光信号,如果存在的话;和
    (9)移除前一步骤的反应体系的溶液相;
    (10)添加用于进行核苷酸聚合反应的聚合酶,以及所述四种化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7);
    任选地,所述方法还包括下述步骤(11):
    (11)重复进行步骤(8)-(10)一次或多次。
  2. 权利要求1的方法,其包括下述步骤:
    (1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
    (2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
    Figure PCTCN2017118928-appb-100001
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 5b各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为能够进行第一生物正交连接反应的反应性基团;
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    Dye表示能够发出荧光信号的荧光基团;
    R 7a为能够发出荧光信号的荧光基团(Dye 1),或者能够进行第二生物正交连接反应的反应性基团,或者结合配对的一个成员;
    并且,Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
    任选地,R 5b与R 7a之间还存在能够进行第三生物正交连接反应的反应性基团R 8
    (3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
    (4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
    (5)(i)第四化合物能够发出与第二化合物相同的荧光信号,R 7a为Dye 1,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    (ii)第四化合物不能发出荧光信号,R 7a为能够进行第二生物正交连接反应的反应性基团,或者结合配对的一个成员,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 7a与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的发 射光谱相同的荧光基团)的试剂(例如结合配对的另一个成员,或者能够与R 7a进行第二生物正交连接反应的化合物)发生特异性相互作用/特异性结合或者发生第二生物正交连接反应;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    所述携带荧光基团的结合配对的另一个成员具有下述结构:R 7b-L-Dye 1;其中,R 7b为结合配对的另一个成员,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同的发射光谱;或者
    所述携带荧光基团的能够与R 7a进行第二生物正交连接反应的化合物具有下述结构:R 7b-L-Dye 1;其中,R 7b为能够与R 7a进行第二生物正交连接反应的基团,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同的发射光谱;
    (6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的结构不同但发射光谱相同的荧光基团)的试剂发生第一生物正交连接反应,从而将所述试剂中的荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使第四化合物中的R 5b发生生物正交切割反应,从而去除第四化合物中的荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生第三正交连接反应,从而淬灭第四化合物中的荧光基团Dye1发出的荧光信号;和
    (7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    优选地,所述方法还包括下述步骤:
    (8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a或R 4b连接的荧光基团),如果存在的话;
    (9)移除前一步骤的反应体系的溶液相;
    (10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7);
    优选地,所述方法还包括下述步骤:
    (11)重复进行步骤(8)-(10)一次或多次。
  3. 权利要求1的方法,其包括下述步骤:
    (1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
    (2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
    Figure PCTCN2017118928-appb-100002
    Figure PCTCN2017118928-appb-100003
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为第一结合配对的一个成员;
    R 6a(i)是第二结合配对的一个成员,同时是第三结合配对的一个成员;或者
    (ii)只是第三结合配对的一个成员;并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    L3为连接基团或不存在;
    Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,二者具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
    任选地,R 4c与R 6a之间还存在能够进行生物正交连接反应的反应性基团R 8
    (3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
    (4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
    (5)(i)第四化合物不能发出荧光信号,R 6a为第二结合配对的一个成员,同时是第三结合配对的一个成员,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 6a与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的结构不同但发射光谱相同或实质相同的荧光基团)的试剂(例如第二结合配对的另一个成员)发生特异性相互作用/特异性结合;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    所述携带荧光基团的第二结合配对的另一个成员具有下述结构:R 6b-L4-Dye 2;其中,R 6b为第二结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;(ii)第四化合物能够发出与第二化合物相同的荧光信号,R 6a只是第三结合配对的一个成员,并且R 6a为Dye 1或还连接有-L3-Dye 1,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    (6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团的第一结合配对的另一个成员特异性结合,从而将所述荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使第四化合物中的R 6a与携带淬灭基团的第三结合配对的另一个成员特异性结合,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号其中,
    所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 5b-L5-Dye 3;其中,R 5b为第一结合配对的另一个成员,L5独立地为连接基团或不存在;Dye 3表示能够发出荧光信号的荧光基团,并且与第二化合物包含的荧光基团结构相同,或者结构不同但具有相同的发射光谱;并且
    所述携带淬灭基团的第三结合配对的另一个成员具有下述结构:R 6c-L6-Que;其中,R 6c为第二结合配对的另一个成员,L6独立地为连接基团或不存在;Que表示能够淬灭Dye 1或Dye 2发出的荧光信号的淬灭基团;和
    (7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    优选地,所述方法还包括下述步骤:
    (8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a、R 4b或R 4c连接的荧光基团),如果存在的话;
    (9)移除前一步骤的反应体系的溶液相;
    (10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7);
    优选地,所述方法还包括下述步骤:
    (11)重复进行步骤(8)-(10)一次或多次。
  4. 权利要求1的方法,其包括下述步骤:
    (1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
    (2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
    Figure PCTCN2017118928-appb-100004
    Figure PCTCN2017118928-appb-100005
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为能够进行第一生物正交连接反应的反应性基团;
    R 6a(i)是第一结合配对的一个成员,同时是第二结合配对的一个成员;或者
    (ii)只是第二结合配对的一个成员,并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    L3为连接基团或不存在;
    Dye表示能够发出荧光信号的荧光基团;Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
    任选地,R 4c与R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
    (3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
    (4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
    (5)(i)第四化合物不能发出荧光信号,R 6a为第一结合配对的一个成员,同时是第二结合配对的一个成员,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 6a与携带荧光基团(例如,与第二化合物结构同的荧光基团,或者与第二化合物的荧光基团的结构不同但发射光谱相同或实质相同的荧光基团)的试剂(例如第一结合配对的另一个成员)发生特异性相互作用/特异性结合;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 6b-L4-Dye 2;其中,R 6b为第一结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;(ii)第四化合物能够发出与第二化合物相同的荧光信号,R 6a只是第二结合配对的一个成员,并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    (6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团(例如,与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂发生第一生物正交连接反应,从而将所述试剂中的荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使第四化合物中的R 6a与携带淬灭基团的第二结合配对的另一个成员特异性结合,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生第二正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号;其中,
    所述携带淬灭基团的第二结合配对的另一个成员具有下述结构:R 6c-L'-Que;其中,R 6c为第二结合配对的另一个成员,L'独立地为连接基团或不存在;Que表示能够淬灭Dye1或Dye2发出的荧光信号的淬灭基团;和
    (7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    优选地,所述方法还包括下述步骤:
    (8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a、R 4b或R 4c连接的荧光基团),如果存在的话;
    (9)移除前一步骤的反应体系的溶液相;
    (10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7);
    优选地,所述方法还包括下述步骤:
    (11)重复进行步骤(8)-(10)一次或多次。
  5. 权利要求1的方法,其包括下述步骤:
    (1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
    (2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
    Figure PCTCN2017118928-appb-100006
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为第一结合配对的一个成员;
    R 6a为能够发出荧光信号的荧光基团(Dye 1),能够进行第一生物正交连接反应的反应性基团,和/或第二结合配对的一个成员;
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
    任选地,R 4c和R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
    (3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核 酸分子一起形成连接于支持物上的双链体;
    (4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
    (5)(i)第四化合物能够发出与第二化合物相同的荧光信号,R 6a为Dye 1,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    (ii)第四化合物不能发出荧光信号,R 6a为能够进行第一生物正交连接反应的反应性基团,或者第二结合配对的一个成员,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 6a与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂(例如第二结合配对的另一个成员,或者能够与R 6a进行第一生物正交连接反应的化合物)发生特异性相互作用/特异性结合或者发生第一生物正交连接反应;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    所述携带荧光基团的第二结合配对的另一个成员具有下述结构:R 6b-L’-Dye 1;其中,R 6b为第二结合配对的另一个成员,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;或者
    所述携带荧光基团的能够与R 6a进行第一生物正交连接反应的化合物具有下述结构:R 6b-L’-Dye 1;其中,R 6b为能够与R 6a进行第一生物正交连接反应的基团,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
    (6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团的第一结合配对的另一个成员特异性结合,从而将所述荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使第四化合物中的R 4c发生生物正交切割反应,从而去除第四化合物中的荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生第二正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1发出的荧光信号;其中,
    所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 5b-L-Dye 2;其中,R 5b为第一结合配对的另一个成员,L独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且与第二化合物包含的荧光基团相同,或者与第二化合物的荧光基团的发射光谱相同或实质相同;和
    (7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    优选地,所述方法还包括下述步骤:
    (8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a或R 4b连接的荧光基团),如果存在的话;
    (9)移除前一步骤的反应体系的溶液相;
    (10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7);
    优选地,所述方法还包括下述步骤:
    (11)重复进行步骤(8)-(10)一次或多次。
  6. 权利要求1的方法,其包括下述步骤:
    (1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
    (2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
    Figure PCTCN2017118928-appb-100007
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为第一结合配对的一个成员;
    R 6a为第二结合配对的一个成员,任选地,R 6a为Dye 1或者还连接有-L3-Dye 1
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    L3为连接基团或不存在;
    Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,二者具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
    任选地,R 4c与R 6a之间还存在能够进行生物正交连接反应的反应性基团R 8
    (3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
    (4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
    (5)(i)第四化合物不能发出荧光信号,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 6a与携带荧光基团(例如,与第二化合物结构相同的荧光基团,或者与第二化合物的荧光基团的结构不同但发射光谱相同或实质相同的荧光基团)的试剂(例如第二结合配对的另一个成员)发生特异性相互作用/特异性结合;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    所述携带荧光基团的第二结合配对的另一个成员具有下述结构:R 6b-L4-Dye 2;其中,R 6b为第二结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团, 并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;同时,R 6b是第三结合配对的一个成员;
    (ii)第四化合物能够发出与第二化合物相同的荧光信号,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    (6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团的第一结合配对的另一个成员特异性结合,从而将所述荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使R 6b与第三结合配对的另一成员R 6c之间发生特异性相互作用/特异性结合,使R 6b与R 6a的结合物解离,从而使第四化合物失去荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号;其中,所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 5b-L5-Dye 3;其中,R 5b为第一结合配对的另一个成员,L5独立地为连接基团或不存在;Dye 3表示能够发出荧光信号的荧光基团,并且与第二化合物包含的荧光基团结构相同,或者结构不同但具有相同或实质相同的发射光谱;和
    (7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    优选地,所述方法还包括下述步骤:
    (8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a、R 4b或R 4c连接的荧光基团),如果存在的话;
    (9)移除前一步骤的反应体系的溶液相;
    (10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7);
    优选地,所述方法还包括下述步骤:
    (11)重复进行步骤(8)-(10)一次或多次。
  7. 权利要求1的方法,其包括下述步骤:
    (1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
    (2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
    Figure PCTCN2017118928-appb-100008
    Figure PCTCN2017118928-appb-100009
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为能够进行第一生物正交连接反应的反应性基团;
    R 6a为第一结合配对的一个成员,任选地,R 6a为Dye 1或者还连接有-L3-Dye 1
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    L3为连接基团或不存在;
    Dye表示能够发出荧光信号的荧光基团;Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
    任选地,R 4c与R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
    (3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
    (4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
    (5)(i)第四化合物不能发出荧光信号,则使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物、第二化合物和第三化合物没有影响,但是能够使第四化合物中的R 6a与携带荧光基团(例如,与第二化合物结构同的荧光基团,或者与第二化合物的荧光基团的结构不同但发射光谱相同或实质相同的荧光基团)的试剂(例如第一结合配对的另一个成员)发生特异性相互作用/特异性结合;之后,移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 6b-L4-Dye 2;其中,R 6b为第一结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;同时,R 6b是第二结合配对的一个成员;
    (ii)第四化合物能够发出与第二化合物相同的荧光信号,则移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    (6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团(例如,与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂发生第一生物正交连接反应,从而将所述试剂中的荧光基团引入第三化合物,使其发出荧光信号;并且(i)能够使R 6b与第二结合配对的另一成员R 6c之间发生特异性相互作用/特异性结合,使R 6b与R 6a的结合物解离,从而使第四化合物失去荧光基团,或者(ii)能够使第四化合物中的R 8与携带淬灭基团的化合物发生第二正交连接反应,从而淬灭第四化合物中的荧光基团Dye 1或Dye 2发出的荧光信号;其中,
    所述携带淬灭基团的第二结合配对的另一个成员具有下述结构:R 6c-L'-Que;其中,R 6c为第二 结合配对的另一个成员,L'独立地为连接基团或不存在;Que表示能够淬灭Dye 1或Dye 2发出的荧光信号的淬灭基团;和
    (7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    优选地,所述方法还包括下述步骤:
    (8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a、R 4b或R 4c连接的荧光基团),如果存在的话;
    (9)移除前一步骤的反应体系的溶液相;
    (10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7);
    优选地,所述方法还包括下述步骤:
    (11)重复进行步骤(8)-(10)一次或多次。
  8. 一种试剂盒,其包含四种化合物(即,第一、第二、第三和第四化合物),其中:
    所述四种化合物分别为核苷酸A、(T/U)、C和G的衍生物,且具有碱基互补配对能力;并且,
    所述四种化合物的核糖或脱氧核糖的3'位置处的羟基(-OH)被保护基团保护;并且,所述保护基团能够被去除;
    所述第一化合物和第三化合物不能发出荧光信号(例如不携带荧光基团),所述第二化合物能够发出荧光信号,所述第四化合物不能发出荧光信号,或者能够发出与第二化合物相同的荧光信号(例如,携带荧光基团,所述荧光基团与第二化合物中的荧光基团相同,或所述荧光基团与第二化合物中的荧光基团结构不同,但二者具有相同或实质相同的发射光谱);并且,
    所述第三化合物经处理后能够发出与第二化合物相同的荧光信号(例如,使第三化合物携带与第二化合物相同的荧光基团,或者或者使第三化合物携带与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团);
    若所述第四化合物能够发出与第二化合物相同的荧光信号,所述第四化合物经处理后能够去除自身的荧光信号(例如,去除自身的荧光基团,或者淬灭由自身的荧光基团发出的荧光信号);
    若所述第四化合物不能发出荧光信号,则所述第四化合物经第一处理后能够发出与第二化合物相同的荧光信号(例如,使第四化合物携带与第二化合物相同的荧光基团,或者使第四化合物携带与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团);并且,所述第四化合物经第二处理后能够去除自身的荧光信号(例如,去除自身的荧光基团,或者淬灭由自身的荧光基团发出的荧光信号)。
  9. 权利要求8的试剂盒,其中,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
    Figure PCTCN2017118928-appb-100010
    Figure PCTCN2017118928-appb-100011
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 5b各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为能够进行第一生物正交连接反应的反应性基团;
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    R 7a为能够发出荧光信号的荧光基团(Dye 1),或者能够进行第二生物正交连接反应的反应性基团,或者结合配对的一个成员;
    并且,Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
    任选地,R 5b与R 7a之间还存在能够进行第三生物正交连接反应的反应性基团R 8
    优选地,所述试剂盒还包括,携带荧光基团(例如,与第二化合物相同的荧光基团,或者结构不同但发射光谱相同或实质相同的荧光基团)的试剂,其能够与第三化合物中的R 5a发生第一生物正交连接反应,从而将所述荧光基团引入第三化合物,使之发出荧光信号;
    优选地,所述试剂盒还包括,能够使第四化合物中的R 5b发生生物正交切割反应,从而去除第四化合物中的荧光基团的试剂;
    优选地,所述试剂盒还包括,携带荧光基团(例如,与第二化合物相同的荧光基团,或者结构不同但发射光谱相同或实质相同的荧光基团)的试剂,其能够与第四化合物中的R 7a发生第二生物正交连接反应,或者能够与R 7a特异性结合,从而将所述荧光基团引入第四化合物,使之发出荧光信号;
    优选地,所述试剂盒还包括,携带淬灭剂的试剂,其能够与第四化合物中的R 8发生第三生物正交连接反应,从而淬灭第四化合物发出的荧光信号。
  10. 权利要求8的试剂盒,其中,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
    Figure PCTCN2017118928-appb-100012
    Figure PCTCN2017118928-appb-100013
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为第一结合配对的一个成员;
    R 6a(i)是第二结合配对的一个成员,同时是第三结合配对的一个成员;或者
    (ii)只是第三结合配对的一个成员;并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    L3为连接基团或不存在;
    Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,二者具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
    任选地,R 4c与R 6a之间还存在能够进行生物正交连接反应的反应性基团R 8
    优选地,所述试剂盒还包括R 6b-L4-Dye 2;其中,R 6b为第二结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;所述R 6b-L4-Dye 2中的R 6b能够与第四化合物中的R 6a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye 2)引入第四化合物,使之发出荧光信号;
    优选地,所述试剂盒还包括R 5b-L5-Dye 3,其中R 5b为第一结合配对的另一个成员,L5为连接基团或不存在;Dye 3表示能够发出荧光信号的荧光基团,其优选地为与第二化合物相同的荧光基团(或者与第二化合物的荧光基团结构不同但发射光谱相同或实质相同的荧光基团);所述R 5b-L5-Dye 3中的R 5b能够与第三化合物中的R 5a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye)引入第三化合物,使之发出荧光信号;
    优选地,所述试剂盒还包括R 6b-L6-Que,其中R 6b为第二结合配对的另一个成员,L6为连接基团或不存在;Que表示能够淬灭Dye发出的荧光信号的淬灭基团;所述R 6b-L6-Que中的R 6b能够与第四化合物中的R 6a发生特异性相互作用/特异性结合,从而将所述淬灭基团(Que)引入第四化合物, 并淬灭第四化合物中的荧光基团(Dye)发出的荧光信号;
    优选地,所述试剂盒还包括,携带淬灭剂的试剂,其能够与第四化合物中的R 8发生第三生物正交连接反应,从而淬灭第四化合物发出的荧光信号。
  11. 权利要求8的试剂盒,其中,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
    Figure PCTCN2017118928-appb-100014
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为能够进行第一生物正交连接反应的反应性基团;
    R 6a(i)是第一结合配对的一个成员,同时是第二结合配对的一个成员;或者
    (ii)只是第二结合配对的一个成员,并且R 6a为Dye 1,或者R 6a还连接有-L3-Dye 1
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    L3为连接基团或不存在;
    Dye表示能够发出荧光信号的荧光基团;Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
    任选地,R 4c与R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
    优选地,所述试剂盒还包括R 6b-L4-Dye 2;其中,R 6b为第一结合配对的另一个成员,L4独立地 为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;所述R 6b-L4-Dye 2中的R 6b能够与第四化合物中的R 6a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye 2)引入第四化合物,使之发出荧光信号;
    优选地,所述试剂盒还包括,携带荧光基团(例如,与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂,其能够与第三化合物中的R 5a发生生物正交连接反应,从而将所述荧光基团引入第三化合物,使之发出荧光信号;
    优选地,所述试剂盒还包括R 6c-L'-Que,其中R 6c为第二结合配对的另一个成员,L'为连接基团或不存在;Que表示能够淬灭Dye发出的荧光信号的淬灭基团;所述R 6c-L'-Que中的R 6b能够与第四化合物中的R 6a发生特异性相互作用/特异性结合,从而将所述淬灭基团(Que)引入第四化合物,并淬灭第四化合物中的荧光基团(Dye)发出的荧光信号;
    优选地,所述试剂盒还包括,携带淬灭剂的试剂,其能够与第四化合物中的R 8发生第三生物正交连接反应,从而淬灭第四化合物发出的荧光信号。
  12. 权利要求8的试剂盒,其中,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
    Figure PCTCN2017118928-appb-100015
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 6各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为第一结合配对的一个成员;
    R 6a为能够发出荧光信号的荧光基团(Dye 1),能够进行第一生物正交连接反应的反应性基团,和/或第二结合配对的一个成员;
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
    任选地,R 4c和R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
    优选地,所述试剂盒还包括R 6b-L-Dye 1;其中,R 6b为第二结合配对的另一个成员,L独立地为连接基团或不存在;Dye 1表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;所述R 6b-L-Dye 1中的R 6b能够与第四化合物中的R 6a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye 1)引入第四化合物,使之发出荧光信号;
    优选地,所述试剂盒还包括,携带荧光基团(例如,与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂,其能够与第四化合物中的R 6a发生第一生物正交连接反应,从而将所述荧光基团引入第三化合物,使之发出荧光信号;
    优选地,所述试剂盒还包括R 5b-L-Dye 2,其中R 5b为第一结合配对的另一个成员,L为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,其优选地为与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团;所述R 5b-L-Dye 2中的R 5b能够与第三化合物中的R 5a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye 2)引入第三化合物,使之发出荧光信号;
    优选地,所述试剂盒还包括,携带淬灭剂的试剂,其能够与第四化合物中的R 8发生第二生物正交连接反应,从而淬灭第四化合物发出的荧光信号;
    优选地,所述试剂盒还包括,能够使第四化合物中的R 4c发生生物正交切割反应,从而去除第四化合物中的荧光基团的试剂。
  13. 权利要求8的试剂盒,其中,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
    Figure PCTCN2017118928-appb-100016
    Figure PCTCN2017118928-appb-100017
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为第一结合配对的一个成员;
    R 6a为第二结合配对的一个成员,任选地,R 6a为Dye 1或者还连接有-L3-Dye 1
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    L3为连接基团或不存在;
    Dye和Dye 1表示能够发出荧光信号的荧光基团;并且,二者具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
    任选地,R 4c与R 6a之间还存在能够进行生物正交连接反应的反应性基团R 8
    优选地,所述试剂盒还包括R 6b-L4-Dye 2;其中,R 6b为第二结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;所述R 6b-L4-Dye 2中的R 6b能够与第四化合物中的R 6a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye 1)引入第四化合物,使之发出荧光信号;
    优选地,所述试剂盒还包括,第二结合配对的另一个成员,其能够与R 6b发生特异性相互作用/特异性结合,使R 6a与R 6b形成的结合物解离,从而使第四化合物失去荧光基团;
    优选地,所述试剂盒还包括R 5b-L5-Dye 3,其中R 5b为第一结合配对的另一个成员,L5为连接基团或不存在;Dye 3表示能够发出荧光信号的荧光基团,其优选地为与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团;所述R 5b-L5-Dye 3中的R 5b能够与第三化合物中的R 5a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye 3)引入第三化合物,使之发出荧光信号;
    优选地,所述试剂盒还包括,携带淬灭剂的试剂,其能够与第四化合物中的R 8发生第二生物正交连接反应,从而淬灭第四化合物发出的荧光信号;
    优选地,所述试剂盒还包括,能够使第四化合物中的R 4c发生生物正交切割反应,从而去除第四化合物中的荧光基团的试剂。
  14. 权利要求8的试剂盒,其中,,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
    Figure PCTCN2017118928-appb-100018
    Figure PCTCN2017118928-appb-100019
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为能够进行第一生物正交连接反应的反应性基团;
    R 6a为第一结合配对的一个成员,任选地,R 6a为Dye 1或者还连接有-L3-Dye 1
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    L3为连接基团或不存在;
    Dye表示能够发出荧光信号的荧光基团;Dye和Dye 1具有相同的结构,或者结构不同但具有相同或实质相同的发射光谱;
    任选地,R 4c与R 6a之间还存在能够进行第二生物正交连接反应的反应性基团R 8
    优选地,所述试剂盒还包括R 6b-L4-Dye 2;其中,R 6b为第一结合配对的另一个成员,L4独立地为连接基团或不存在;Dye 2表示能够发出荧光信号的荧光基团,并且具有与Dye相同的结构,或者结构不同但具有相同或实质相同的发射光谱;所述R 6b-L4-Dye 2中的R 6b能够与第四化合物中的R 6a发生特异性相互作用/特异性结合,从而将所述荧光基团(Dye 1)引入第四化合物,使之发出荧光信号;
    优选地,所述试剂盒还包括,第二结合配对的另一个成员,其能够与R 6b发生特异性相互作用/特异性结合,使R 6a与R 6b形成的结合物解离,从而使第四化合物失去荧光基团;
    优选地,所述试剂盒还包括,携带荧光基团(例如,与第二化合物相同的荧光基团,或者与第二化合物的荧光基团的发射光谱相同或实质相同的荧光基团)的试剂,其能够与第三化合物中的R 5a发生第一生物正交连接反应,从而将所述荧光基团引入第三化合物,使之发出荧光信号;
    优选地,所述试剂盒还包括,携带淬灭剂的试剂,其能够与第四化合物中的R 8发生第二生物正 交连接反应,从而淬灭第四化合物发出的荧光信号;
    优选地,所述试剂盒还包括,能够使第四化合物中的R 4c发生生物正交切割反应,从而去除第四化合物中的荧光基团的试剂。
  15. 一种对核酸分子进行测序的方法,其包括以下步骤:
    (1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
    (2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及四种化合物,从而形成含有溶液相和固相的反应体系;其中,所述四种化合物分别为核苷酸A、(T/U)、C和G的衍生物,并且具有碱基互补配对能力;并且,所述四种化合物的核糖或脱氧核糖的3'位置处的羟基(-OH)被保护基团保护;并且,第一化合物和第三化合物不能发出荧光信号(例如不携带荧光基团),且第二化合物和第四化合物能够发出相同的荧光信号(例如,携带相同的荧光基团);
    (3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
    (4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
    (5)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    (6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物发出与第二化合物相同的荧光信号(例如,对第三化合物进行修饰,使之携带与第二化合物相同的荧光基团),并且能够去除第四化合物的荧光信号(例如,去除第四化合物上的荧光基团,或者淬灭由第四化合物上的荧光基团发出的荧光信号);和
    (7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    优选地,所述方法还包括下述步骤:
    (8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够去除并入生长的核酸链3'端的化合物中的核糖或脱氧核糖的3'位置处的保护基团,以及所述双链体或生长的核酸链上的荧光信号,如果存在的话;和
    (9)移除前一步骤的反应体系的溶液相;
    (10)添加用于进行核苷酸聚合反应的聚合酶,以及所述四种化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7);
    优选地,所述方法还包括下述步骤(11):
    (11)重复进行步骤(8)-(10)一次或多次。
  16. 权利要求15的方法,其包括下述步骤:
    (1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
    (2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
    Figure PCTCN2017118928-appb-100020
    Figure PCTCN2017118928-appb-100021
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 5b各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为能够进行生物正交连接反应的反应性基团;
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    Dye表示能够发出荧光信号的荧光基团;并且,第二化合物与第四化合物包含相同的荧光基团;
    (3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
    (4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
    (5)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    (6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团(例如,与第二化合物相同的荧光基团)的试剂发生生物正交连接反应,从而将所述试剂中的荧光基团引入第三化合物,使其发出荧光信号,并且能够使第四化合物中的R 5b发生生物正交切割反应,从而去除第四化合物中的荧光基团;和
    (7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    优选地,所述方法还包括下述步骤:
    (8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a或R 4b连接的荧光基团),如果存在的话;
    (9)移除前一步骤的反应体系的溶液相;
    (10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7);
    优选地,所述方法还包括下述步骤:
    (11)重复进行步骤(8)-(10)一次或多次。
  17. 权利要求15的方法,其包括下述步骤:
    (1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
    (2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
    Figure PCTCN2017118928-appb-100022
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为第一结合配对的一个成员;
    R 6a为第二结合配对的一个成员;
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    L3各自独立地为连接基团或不存在;
    Dye表示能够发出荧光信号的荧光基团;并且,第二化合物与第四化合物包含相同的荧光基团;
    (3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
    (4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
    (5)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    (6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团的第一结合配对的另一个成员特异性结合,从而将所述荧光基团引入第三化合物,使其发出荧光信号;并且能够使 第四化合物中的R 6a与携带淬灭基团的第二结合配对的另一个成员特异性结合,从而淬灭第四化合物中的荧光基团Dye发出的荧光信号;其中,
    所述携带荧光基团的第一结合配对的另一个成员具有下述结构:R 5b-L-Dye;其中,R 5b为第一结合配对的另一个成员,L独立地为连接基团或不存在;Dye表示能够发出荧光信号的荧光基团,并且与第二化合物包含的荧光基团相同;并且
    所述携带淬灭基团的第二结合配对的另一个成员具有下述结构:R 6b-L'-Que;其中,R 6b为第二结合配对的另一个成员,L'独立地为连接基团或不存在;Que表示能够淬灭Dye发出的荧光信号的淬灭基团;和
    (7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    优选地,所述方法还包括下述步骤:
    (8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a、R 4b或R 4c连接的荧光基团),如果存在的话;
    (9)移除前一步骤的反应体系的溶液相;
    (10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7);
    优选地,所述方法还包括下述步骤:
    (11)重复进行步骤(8)-(10)一次或多次。
  18. 权利要求15的方法,其包括下述步骤:
    (1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
    (2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
    Figure PCTCN2017118928-appb-100023
    Figure PCTCN2017118928-appb-100024
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为能够进行生物正交连接反应的反应性基团;
    R 6a为结合配对的一个成员;
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    L3各自独立地为连接基团或不存在;
    Dye表示能够发出荧光信号的荧光基团;并且,第二化合物与第四化合物包含相同的荧光基团;
    (3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
    (4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
    (5)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    (6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团(例如,与第二化合物相同的荧光基团)的试剂发生生物正交连接反应,从而将所述试剂中的荧光基团引入第三化合物,使其发出荧光信号;并且能够使第四化合物中的R 6a与携带淬灭基团的所述结合配对的另一个成员特异性结合,从而淬灭第四化合物中的荧光基团Dye发出的荧光信号;其中,
    所述携带淬灭基团的所述结合配对的另一个成员具有下述结构:R 6b-L'-Que;其中,R 6b为所述结合配对的另一个成员,L'独立地为连接基团或不存在;Que表示能够淬灭Dye发出的荧光信号的淬灭基团;和
    (7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    优选地,所述方法还包括下述步骤:
    (8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a、R 4b或R 4c连接的荧光基团),如果存在的话;
    (9)移除前一步骤的反应体系的溶液相;
    (10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7);
    优选地,所述方法还包括下述步骤:
    (11)重复进行步骤(8)-(10)一次或多次。
  19. 权利要求15的方法,其包括下述步骤:
    (1)提供连接于支持物上的待测序的核酸分子,或者将待测序的核酸分子连接于支持物上;
    (2)添加用于起始核苷酸聚合反应的引物,用于进行核苷酸聚合反应的聚合酶,以及分别具有式(I)、式(II)、式(III)和式(IV)所示结构的第一、第二、第三和第四化合物,从而形成含有溶液相和固相的反应体系:
    Figure PCTCN2017118928-appb-100025
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 6各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为结合配对的一个成员;
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    Dye表示能够发出荧光信号的荧光基团;并且,第二化合物与第四化合物包含相同的荧光基团;
    (3)使引物退火至待测序的核酸分子上,所述引物作为起始的生长的核酸链,与所述待测序的核酸分子一起形成连接于支持物上的双链体;
    (4)在允许聚合酶进行核苷酸聚合反应的条件下,使用聚合酶进行核苷酸聚合反应,从而将所述四种化合物中的一种并入生长的核酸链的3'端;
    (5)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所述生长的核酸链是否发出所述荧光信号;
    (6)使所述双链体或所述生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理对第一化合物和第二化合物没有影响,但是能够使第三化合物中的R 5a与携带荧光基团的所述结合配对的另一个成员特异性结合,从而将所述荧光基团引入第三化合物,使其发出荧光信号;并且能够使第四化合物中的R 6发生生物正交切割反应,从而去除第四化合物中的荧光基团;其中,
    所述携带荧光基团的所述结合配对的另一个成员具有下述结构:R 5b-L-Dye;其中,R 5b为第一结合配对的另一个成员,L独立地为连接基团或不存在;Dye表示能够发出荧光信号的荧光基团,并且与第二化合物包含的荧光基团相同;和
    (7)移除前一步骤的反应体系的溶液相,保留连接于支持物上的双链体,并检测所述双链体或所 述生长的核酸链是否发出所述荧光信号;
    优选地,所述方法还包括下述步骤:
    (8)使前一步骤的双链体或生长的核酸链在含有溶液相和固相的反应体系中经历处理,所述处理能够使R 3a、R 3b、R 3c、R 3d、R 4a、R 4b发生生物正交切割反应,从而使得并入生长的核酸链3'端的化合物在核糖或脱氧核糖的3'位置具有游离的羟基(换言之,将-OR 3a、-OR 3b、-OR 3c或-OR 3d(如果存在的话)转变为游离的羟基),并且去除所述双链体或生长的核酸链上的荧光基团(换言之,去除与R 4a或R 4b连接的荧光基团),如果存在的话;
    (9)移除前一步骤的反应体系的溶液相;
    (10)添加用于进行核苷酸聚合反应的聚合酶,以及所述第一化合物、第二化合物、第三化合物和第四化合物,从而形成含有溶液相和固相的反应体系,然后进行步骤(4)-(7);
    优选地,所述方法还包括下述步骤:
    (11)重复进行步骤(8)-(10)一次或多次。
  20. 一种试剂盒,其包含四种化合物(即,第一、第二、第三和第四化合物),其中:
    所述四种化合物分别为核苷酸A、(T/U)、C和G的衍生物,且具有碱基互补配对能力;并且,
    所述四种化合物的核糖或脱氧核糖的3'位置处的羟基(-OH)被保护基团保护;并且,所述保护基团能够被去除;
    所述第一化合物和第三化合物不能发出荧光信号(例如不携带荧光基团),且所述第二化合物和第四化合物能够发出相同的荧光信号(例如,携带相同的荧光基团);并且,
    所述第三化合物经处理后能够发出与第二化合物相同的荧光信号(例如,携带与第二化合物相同的荧光基团),且所述第四化合物经处理后能够去除自身的荧光信号(例如,去除自身的荧光基团,或者淬灭由自身的荧光基团发出的荧光信号)。
  21. 权利要求20的试剂盒,其中,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
    Figure PCTCN2017118928-appb-100026
    Figure PCTCN2017118928-appb-100027
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 5b各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为能够进行生物正交连接反应的反应性基团;
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    Dye表示能够发出荧光信号的荧光基团;并且,第二化合物与第四化合物包含相同的荧光基团;
    优选地,所述试剂盒还包括:携带荧光基团(例如,与第二化合物相同的荧光基团)的试剂,其能够与第三化合物中的R 5a发生生物正交连接反应,从而将所述荧光基团引入第三化合物,使之发出荧光信号;和/或,能够使第四化合物中的R 5b发生生物正交切割反应,从而去除第四化合物中的荧光基团的试剂。
  22. 权利要求20的试剂盒,其中,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
    Figure PCTCN2017118928-appb-100028
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为第一结合配对的一个成员;
    R 6a为第二结合配对的一个成员;
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    L3各自独立地为连接基团或不存在;
    Dye表示能够发出荧光信号的荧光基团;并且,第二化合物与第四化合物包含相同的荧光基团;
    优选地,所述试剂盒还包括:R 5b-L-Dye,其中R 5b为第一结合配对的另一个成员,L为连接基团或不存在;Dye表示能够发出荧光信号的荧光基团,其优选地为与第二化合物相同的荧光基团;和/或,R 6b-L'-Que,其中R 6b为第二结合配对的另一个成员,L'为连接基团或不存在;Que表示能够淬灭Dye发出的荧光信号的淬灭基团。
  23. 权利要求20的试剂盒,其中,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
    Figure PCTCN2017118928-appb-100029
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 4c各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为能够进行生物正交连接反应的反应性基团;
    R 6a为结合配对的一个成员;
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    L3各自独立地为连接基团或不存在;
    Dye表示能够发出荧光信号的荧光基团;并且,第二化合物与第四化合物包含相同的荧光基团;
    优选地,所述试剂盒还包括:携带荧光基团(例如,与第二化合物相同的荧光基团)的试剂, 其能够与第三化合物中的R 5a发生生物正交连接反应,从而将所述荧光基团引入第三化合物,使之发出荧光信号;和/或,R 6b-L'-Que,其中R 6b为所述结合配对的另一个成员,L'为连接基团或不存在;Que表示能够淬灭Dye发出的荧光信号的淬灭基团。
  24. 权利要求20的试剂盒,其中,第一、第二、第三和第四化合物分别具有式(I)、式(II)、式(III)和式(IV)所示的结构:
    Figure PCTCN2017118928-appb-100030
    其中,Base1、Base2、Base3和Base4代表4种不同的碱基,并且选自A、(T/U)、C和G;
    R 1各自独立地选自-H,单磷酸基团(-PO 3H 2),二磷酸基团(-PO 3H-PO 3H 2),三磷酸基团(-PO 3H-PO 3H-PO 3H 2)和四磷酸基团(-PO 3H-PO 3H-PO 3H-PO 3H 2);
    R 2各自独立地选自-H和-OH;
    R 3a、R 3b、R 3c、R 3d、R 4a、R 4b、R 6各自独立地为能够进行生物正交切割反应的反应性基团;
    R 5a为结合配对的一个成员;
    L1各自独立地为连接基团或不存在;
    L2各自独立地为连接基团或不存在;
    Dye表示能够发出荧光信号的荧光基团;并且,第二化合物与第四化合物包含相同的荧光基团;
    优选地,所述试剂盒还包括:R 5b-L-Dye,其中R 5b为所述结合配对的另一个成员,L为连接基团或不存在;Dye表示能够发出荧光信号的荧光基团,其优选地为与第二化合物相同的荧光基团;和/或,能够使第四化合物中的R 6发生生物正交切割反应,从而去除第四化合物中的荧光基团的试剂。
  25. 权利要求8-14或20-24任一项的试剂盒,其还包括:用于从样品中提取核酸分子的试剂和/或装置;用于预处理核酸分子的试剂;用于连接待测序的核酸分子的支持物;用于将待测序的核酸分子与支持物连接(例如,共价或非共价连接)的试剂;用于起始核苷酸聚合反应的引物;用于进行核苷酸聚合反应的聚合酶;一种或多种缓冲溶液;一种或多种洗涤溶液;或其任何组合。
PCT/CN2017/118928 2016-12-27 2017-12-27 一种基于单荧光染料的测序方法 WO2018121587A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3049667A CA3049667A1 (en) 2016-12-27 2017-12-27 Single fluorescent dye-based sequencing method
EP17886309.8A EP3564387A4 (en) 2016-12-27 2017-12-27 SINGLE FLUORESCENT DYE BASED SEQUENCING METHOD
RU2019123609A RU2760737C2 (ru) 2016-12-27 2017-12-27 Способ секвенирования на основе одного флуоресцентного красителя
AU2017385424A AU2017385424A1 (en) 2016-12-27 2017-12-27 Single fluorescent dye based sequencing method
US16/474,030 US11466318B2 (en) 2016-12-27 2017-12-27 Single fluorescent dye-based sequencing method
CN201780080605.8A CN110114476B (zh) 2016-12-27 2017-12-27 一种基于单荧光染料的测序方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2016/112402 2016-12-27
CN2016112402 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018121587A1 true WO2018121587A1 (zh) 2018-07-05

Family

ID=62706885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118928 WO2018121587A1 (zh) 2016-12-27 2017-12-27 一种基于单荧光染料的测序方法

Country Status (7)

Country Link
US (1) US11466318B2 (zh)
EP (1) EP3564387A4 (zh)
CN (1) CN110114476B (zh)
AU (1) AU2017385424A1 (zh)
CA (1) CA3049667A1 (zh)
RU (1) RU2760737C2 (zh)
WO (1) WO2018121587A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748216A (zh) * 2019-05-15 2021-12-03 深圳华大智造极创科技有限公司 一种基于自发光的单通道测序方法
JP2022513574A (ja) * 2018-11-07 2022-02-09 イージーアイ テック (シェン チェン) カンパニー, リミテッド ポリヌクレオチドを配列決定する方法
CN114250282A (zh) * 2020-11-25 2022-03-29 深圳铭毅基因科技有限公司 一种基于pH值敏感染料的基因测序试剂及方法
JP2022545277A (ja) * 2019-08-20 2022-10-26 イージーアイ テック (シェン チェン) カンパニー, リミテッド 発光標識及び二次発光信号の光信号速度論に基づくポリヌクレオチドの配列決定方法
US11512106B2 (en) 2017-11-30 2022-11-29 Genemind Biosciences Company Limited Nucleoside analogue, preparation method and application
CN116854749A (zh) * 2023-09-01 2023-10-10 深圳赛陆医疗科技有限公司 一种合成核苷酸中间体的方法
CN117645636A (zh) * 2024-01-30 2024-03-05 深圳赛陆医疗科技有限公司 一种腺嘌呤叠氮中间体的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114989235A (zh) 2015-09-28 2022-09-02 哥伦比亚大学董事会 用作dna合成测序的可逆终止物的基于新的二硫键接头的核苷酸的设计与合成
WO2021007458A1 (en) * 2019-07-09 2021-01-14 The Trustees Of Columbia University In The City Of New York Novel nucleotide analogues and methods for use
CN113024672B (zh) * 2019-12-24 2022-05-31 深圳华大生命科学研究院 一种抗Dig的抗体及其在测序中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005065814A1 (en) 2004-01-07 2005-07-21 Solexa Limited Modified molecular arrays
CN1771336A (zh) * 2003-02-12 2006-05-10 金尼松斯文斯卡股份公司 用于核酸测序的方法和工具
CN101120098A (zh) * 2004-06-10 2008-02-06 通用电气医疗集团生物科学公司 核酸分析方法
CN101128601A (zh) * 2003-01-29 2008-02-20 454公司 核酸扩增和测序的方法
US20080280773A1 (en) 2004-12-13 2008-11-13 Milan Fedurco Method of Nucleotide Detection
US20130189743A1 (en) 2001-12-04 2013-07-25 Illumina Cambridge Limited Labelled nucleotides
WO2013191793A1 (en) * 2012-06-20 2013-12-27 The Trustees Of Columbia University In The City Of New York Nucleic acid sequencing by nanopore detection of tag molecules

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056661B2 (en) * 1999-05-19 2006-06-06 Cornell Research Foundation, Inc. Method for sequencing nucleic acid molecules
DE60131194T2 (de) * 2000-07-07 2008-08-07 Visigen Biotechnologies, Inc., Bellaire Sequenzbestimmung in echtzeit
US20060147935A1 (en) * 2003-02-12 2006-07-06 Sten Linnarsson Methods and means for nucleic acid sequencing
GB0517097D0 (en) * 2005-08-19 2005-09-28 Solexa Ltd Modified nucleosides and nucleotides and uses thereof
US7973146B2 (en) * 2008-03-26 2011-07-05 Pacific Biosciences Of California, Inc. Engineered fluorescent dye labeled nucleotide analogs for DNA sequencing
CN102409045B (zh) * 2010-09-21 2013-09-18 深圳华大基因科技服务有限公司 一种基于dna接头连接的标签文库构建方法及其所使用标签和标签接头
HRP20211523T1 (hr) * 2011-09-23 2021-12-24 Illumina, Inc. Pripravci za sekvenciranje nukleinske kiseline
WO2015002789A1 (en) * 2013-07-03 2015-01-08 Illumina, Inc. Sequencing by orthogonal synthesis
WO2016154038A1 (en) 2015-03-20 2016-09-29 Illumina, Inc. Fluidics cartridge for use in the vertical or substantially vertical position

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130189743A1 (en) 2001-12-04 2013-07-25 Illumina Cambridge Limited Labelled nucleotides
CN101128601A (zh) * 2003-01-29 2008-02-20 454公司 核酸扩增和测序的方法
CN1771336A (zh) * 2003-02-12 2006-05-10 金尼松斯文斯卡股份公司 用于核酸测序的方法和工具
WO2005065814A1 (en) 2004-01-07 2005-07-21 Solexa Limited Modified molecular arrays
CN101120098A (zh) * 2004-06-10 2008-02-06 通用电气医疗集团生物科学公司 核酸分析方法
US20080280773A1 (en) 2004-12-13 2008-11-13 Milan Fedurco Method of Nucleotide Detection
WO2013191793A1 (en) * 2012-06-20 2013-12-27 The Trustees Of Columbia University In The City Of New York Nucleic acid sequencing by nanopore detection of tag molecules

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
BARANY, PROC. NATL. ACAD. SCI. USA, vol. 88, 1991, pages 189 - 193
BARRINGER ET AL., GENE, vol. 89, 1990, pages 117 - 122
BIOCONJUG CHEM., vol. 27, no. 7, 2016, pages 1697 - 16706
BIOCONJUGATE CHEM., vol. 25, 2014, pages 1730 - 1738
BIOCONJUGATE CHEM., vol. 27, no. 7, 2016, pages 1697 - 16706
COSTA, G. L.M. P. WEINER: "Protocols for cloning and analysis of blunt-ended PCR-generated DNA fragments", PCR METHODS APPL, vol. 3, no. 5, 1994, pages 95, XP002467240
COSTA, G. L.M.P.WEINER: "Polishing with T4 or Pfu polymerase increases the efficiency of cloning of PCR products", NUCLEIC ACIDS RES., vol. 22, no. 12, 1994, pages 2423
COSTA, G. L.T A. GRAFSKYM.P.WEMER: "Cloning and analysis of PCR-generated DNA fragments", PCR METHODS APPL, vol. 3, no. 6, 1994, pages 338
GOODWIN, S.: "Coming of age: ten years of next-generation sequencing technologies", NATURE REVIEWS GENETICS, 17 May 2016 (2016-05-17), pages 333 - 351, XP055544186, ISSN: 1471-0056, DOI: 10.1038/nrg.2016.49 *
GUATELLI ET AL., PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 1874 - 1878
HAMILTON, S.C.J.W.FARCHAUSM.C.DAVIS: "DNA polymerases as engines for biotechnology", BIOTECHNIQUES, vol. 31, 2001, pages 370
KWOH ET AL., PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 6.3.1 - 6.3.6,2.10.3
LIZARDI ET AL., BIOTECHNOLOGY, vol. 6, 1988, pages 1197 - 1202
MELGAR, E.D. A. GOLDTHWAIT: "Deoxyribonucleic acid nucleases. II. The effects of metal on the mechanism of action of deoxyribonuclease I", J. BIOL. CHEM., vol. 243, 1968, pages 4409
MERRIFIELD BIOCHEMISTRY, vol. 3, 1964, pages 1385 - 1390
MERRIFIELD, BIOCHEMISTRY, vol. 3, 1964, pages 1385 - 1390
NUCLEIC ACIDS RES., vol. 15, pages 4513 - 4534
NUCLEIC ACIDS RES., vol. 20, no. 7, 11 April 1992 (1992-04-11), pages 1691 - 6
SAIKI ET AL., SCIENCE, vol. 230, 1995, pages 1350 - 1354
SARA GOODWIN, NATURE REVIEWS GENETICS, vol. 17, 2016, pages 333 - 351
See also references of EP3564387A4
UCLEIC ACIDS RES., vol. 15, pages 4513 - 4534
ZHOU XIAOGUANG ET AL.: "The Next Generation Sequencing Technology. A technology Review and Future Perspective", SCIENCE IN CHINA : LIFE SCIENCES, vol. 40, no. 1, 12 February 2010 (2010-02-12), pages 44 - 57, XP035977675, ISSN: 1674-7305, DOI: 10.1007/s11427-010-0023-6 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512106B2 (en) 2017-11-30 2022-11-29 Genemind Biosciences Company Limited Nucleoside analogue, preparation method and application
JP2022513574A (ja) * 2018-11-07 2022-02-09 イージーアイ テック (シェン チェン) カンパニー, リミテッド ポリヌクレオチドを配列決定する方法
JP7332235B2 (ja) 2018-11-07 2023-08-23 イージーアイ テック (シェン チェン) カンパニー, リミテッド ポリヌクレオチドを配列決定する方法
EP3988670A4 (en) * 2019-05-15 2023-01-25 EGI Tech (Shen Zhen) Co., Limited SINGLE-CHANNEL SEQUENCING METHOD BASED ON SELF-LUMINESCENCE
JP2022533916A (ja) * 2019-05-15 2022-07-27 イージーアイ テック (シェン チェン) カンパニー, リミテッド 自家発光に基づく単一チャネルシーケンシング法
CN113748216A (zh) * 2019-05-15 2021-12-03 深圳华大智造极创科技有限公司 一种基于自发光的单通道测序方法
CN113748216B (zh) * 2019-05-15 2024-04-23 青岛华大智造科技有限责任公司 一种基于自发光的单通道测序方法
JP7485483B2 (ja) 2019-05-15 2024-05-16 チンタオ エムジーアイ テック カンパニー リミテッド 自家発光に基づく単一チャネルシーケンシング法
JP2022545277A (ja) * 2019-08-20 2022-10-26 イージーアイ テック (シェン チェン) カンパニー, リミテッド 発光標識及び二次発光信号の光信号速度論に基づくポリヌクレオチドの配列決定方法
CN114250282A (zh) * 2020-11-25 2022-03-29 深圳铭毅基因科技有限公司 一种基于pH值敏感染料的基因测序试剂及方法
CN116854749A (zh) * 2023-09-01 2023-10-10 深圳赛陆医疗科技有限公司 一种合成核苷酸中间体的方法
CN116854749B (zh) * 2023-09-01 2023-11-21 深圳赛陆医疗科技有限公司 一种合成核苷酸中间体的方法
CN117645636A (zh) * 2024-01-30 2024-03-05 深圳赛陆医疗科技有限公司 一种腺嘌呤叠氮中间体的制备方法
CN117645636B (zh) * 2024-01-30 2024-04-16 深圳赛陆医疗科技有限公司 一种腺嘌呤叠氮中间体的制备方法

Also Published As

Publication number Publication date
EP3564387A1 (en) 2019-11-06
US11466318B2 (en) 2022-10-11
CN110114476A (zh) 2019-08-09
CN110114476B (zh) 2024-04-23
RU2019123609A (ru) 2021-02-01
EP3564387A4 (en) 2020-10-07
US20190330693A1 (en) 2019-10-31
CA3049667A1 (en) 2018-07-05
RU2760737C2 (ru) 2021-11-30
RU2019123609A3 (zh) 2021-05-14
AU2017385424A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
WO2018121587A1 (zh) 一种基于单荧光染料的测序方法
JP7164276B2 (ja) リンカーを用いた固定化トランスポソームを使用するタグメンテーション
CN110650968B (zh) 修饰的核苷或核苷酸
JP7416846B2 (ja) 連結型ライゲーション
JP2007525151A (ja) 一本鎖dnaライブラリーの調製方法
JPH02268683A (ja) 単一プライマーを用いる核酸の増幅
US20230065693A1 (en) Reagents for massively parallel nucleic acid sequencing
US20210087622A1 (en) Methods of sequencing with linked fragments
CN113528628A (zh) 用于基因组应用和治疗应用的核酸分子的克隆复制和扩增的系统和方法
JP7485483B2 (ja) 自家発光に基づく単一チャネルシーケンシング法
EP4153606A2 (en) Methods of sequencing complementary polynucleotides
US11788133B2 (en) Methods and compositions for sequencing complementary polynucleotides
KR20230035237A (ko) 재조합 말단 데옥시뉴클레오티딜 트랜스퍼라제를 사용하여 변형된 염기를 갖는 핵산의 생성
JP2022523362A (ja) 単一分子配列決定における使用のための拡張可能ポリマーの固体合成のための方法、組成物、およびデバイス
US20230392144A1 (en) Compositions and methods for reducing base call errors by removing deaminated nucleotides from a nucleic acid library
US20220235410A1 (en) Nucleic acid amplification methods
US20240093293A1 (en) Methods for increasing monoclonal nucleic acid amplification products
US20230279382A1 (en) Single-stranded splint strands and methods of use
JP2023531386A (ja) ゲノム内の構造再編成を検出するための方法及び組成物
WO2024011145A1 (en) Pcr-free library preparation using double-stranded splint adaptors and methods of use
CN110997932A (zh) 用于甲基化测序的单细胞全基因组文库
WO2004018691A1 (fr) Procede pour adn chromosomique micro-excise d'amplification et son utilisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 3049667

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017385424

Country of ref document: AU

Date of ref document: 20171227

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017886309

Country of ref document: EP

Effective date: 20190729