WO2018120969A1 - 含有香豆素类绿光染料的光转换膜 - Google Patents

含有香豆素类绿光染料的光转换膜 Download PDF

Info

Publication number
WO2018120969A1
WO2018120969A1 PCT/CN2017/105308 CN2017105308W WO2018120969A1 WO 2018120969 A1 WO2018120969 A1 WO 2018120969A1 CN 2017105308 W CN2017105308 W CN 2017105308W WO 2018120969 A1 WO2018120969 A1 WO 2018120969A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
conversion film
light
light conversion
green light
Prior art date
Application number
PCT/CN2017/105308
Other languages
English (en)
French (fr)
Inventor
周鹏程
戴雷
蔡丽菲
Original Assignee
广东阿格蕾雅光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东阿格蕾雅光电材料有限公司 filed Critical 广东阿格蕾雅光电材料有限公司
Publication of WO2018120969A1 publication Critical patent/WO2018120969A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/02Coumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0097Dye preparations of special physical nature; Tablets, films, extrusion, microcapsules, sheets, pads, bags with dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom

Definitions

  • the invention relates to a novel organic color conversion film for flat display, in particular to a kind of coumarin green light dye conversion film, the green light dye and the cured polymer resin are formed into a film by solution spin coating, and can be applied to a flat display. .
  • flat panel displays With the continuous breakthrough of the display industry technology and the increasing market demand, flat panel displays have emerged rapidly with a series of advantages such as small size, light weight, low power consumption, low radiation, and good electromagnetic compatibility, becoming the mainstream of display technology in the 21st century. .
  • the coloring method of flat panel display plays a very important role in its production process. Its quality directly determines the color rendering effect, production cost and service life of flat panel display.
  • the mainstream technology for color display of flat panel display is to print red, green and blue fluorescent material preparation devices.
  • the mainstream technology for color display of flat panel display is to print red, green and blue fluorescent material preparation devices.
  • due to the large difference in lifetime and attenuation of the three primary color fluorescent materials it is easy to cause color cast of color display, and the three primary colors
  • the manufacturing process of the device is complicated and the cost is high.
  • people have proposed a new idea of color conversion, namely "blue source into color”.
  • the "Blue Source into Color” technology uses a blue phosphor with a single high brightness as the backlight.
  • the blue light emitted by the backlight is converted into red and green light after passing through the color conversion film, thereby realizing RGB full color display.
  • This technology not only greatly simplifies the production process of electroluminescent flat panel display, improves the color stability and uniformity of the display, but also significantly reduces the production cost of the display.
  • Materials for color conversion films can be classified into inorganic and organic materials. It has been found that, compared with inorganic phosphors, organic conversion materials not only have higher color conversion efficiency, but also have more saturated colors, so that a wider color gamut can be realized, and raw materials are cheap and easy to obtain, and molecular cutting and modification are easier. For better display.
  • the Leising team used the coumarin dye Coumarin 102 as the green light material, and Lumogen F300 used the red dye to disperse in the PMMA to prepare a green and red light conversion film, which achieved a red light conversion efficiency of more than 10%.
  • the organic fluorescent color conversion film generally disperses an organic fluorescent dye having different colors uniformly in a polymer solid film by ultraviolet curing or thermal curing, and then excites the organic fluorescent color conversion film with a high-brightness blue backlight.
  • the dye molecules realize the color transition, and the converted red, green and background blue light form three primary colors of light, and finally the full color display of the electroluminescent element can be realized.
  • the present invention provides a light conversion film prepared by dispersing a coumarin-based green light dye in a polymer resin such as methyl methacrylate (PMMA), and the green light dye has strong light emission, and the preparation process is the same. Insensitive, its emission spectrum is stable over a wide range of concentrations and temperatures.
  • PMMA methyl methacrylate
  • a light conversion film containing a coumarin-based green light dye comprising a green light dye and a cured polymer resin, wherein the molecular structure of the green light dye is as described in the formula (I),
  • R1, R2 and R3 are independently represented by hydrogen, substituted or unsubstituted C1-C8 alkyl, C1-C8 alkoxy or halogen.
  • R1, R2 and R3 are independently represented by hydrogen, substituted or unsubstituted C1-C4 alkyl or alkoxy.
  • R1 and R2 are independently represented by hydrogen, a C1-C4 alkoxy group, and R3 is independently represented by a substituted or unsubstituted C1-C4 alkyl group.
  • R1 and R2 are the same.
  • R1 and R2 are preferably represented by hydrogen or methoxy, and R3 is independently represented by methyl.
  • the compound of the formula (I) is preferably a compound having the following structure:
  • the light conversion film is composed of the above green light dye and a cured polymer resin.
  • the cured polymer resin is an acrylate, an epoxy resin or a polyurethane.
  • the light conversion film has a total thickness of from 1 to 100 ⁇ m.
  • the green light dye and the cured polymer resin are dissolved in toluene, and then spin-coated to form a film, which is dried and solidified to prepare an organic light conversion film, which is fixed on a backlight.
  • the curing preparation method is heat curing or ultraviolet curing.
  • the backlight is a blue light source
  • the cured polymer resin is a methyl methacrylate (PMMA) polymer resin.
  • the blue light source is a liquid crystal panel, an OLED or an inorganic LED light source.
  • the light conversion film of the present invention since the molecule represented by the formula (I) has a high fluorescence quantum yield and the material emits light and is insensitive to the preparation process, the light conversion film has a large impurity concentration in the formula (I) and The emission spectrum is stable over the temperature range.
  • FIG. 1 is a schematic diagram of the synthetic route of the green dye GT1 of the present invention
  • FIG. 2 is a schematic view showing a synthetic route of the green light dye GT2 of the present invention.
  • Figure 3 is an ultraviolet-visible absorption spectrum of the green light dye GT1 of the present invention in a toluene, dichloromethane, and PMMA film and a solid state;
  • Figure 4 is a fluorescence emission spectrum of the green light dye GT1 of the present invention in a toluene, dichloromethane, and PMMA film and a solid state
  • Figure 5 is an ultraviolet-visible absorption spectrum of the green light dye GT2 of the present invention in a toluene, dichloromethane, and PMMA film and a solid state;
  • Figure 6 is a fluorescence emission spectrum of the green dye GT2 of the present invention in a toluene, dichloromethane, and PMMA film and a solid state.
  • Fig. 7 shows the fluorescence emission spectrum of the light conversion film formed by the classical green dye C545T mixed in PMMA at different ratios.
  • Fig. 8 is a fluorescence emission spectrum of a light conversion film prepared by the green dye GT2 of the present invention.
  • the dye molecules are all prepared by Heck coupling reaction:
  • Synthesis step To a 250 mL reaction flask was added compound 1a (commercially available) (6.48 g, 20 mmol), potassium fluoroborate (3.22 g, 24 mmol), tetratriphenylphosphine palladium (8.3 g, 5%), K 2 CO 3 (6.48 g, 60 mmol), toluene (70 mL) and water (14 mL). The nitrogen gas was evacuated 3 times, and the temperature was raised to 80 ° C by heating. The temperature was maintained for 8 hours, and the reaction of Compound 1a was completely confirmed by TLC.
  • compound 1a commercially available
  • potassium fluoroborate 3.22 g, 24 mmol
  • tetratriphenylphosphine palladium 8.3 g, 5%
  • K 2 CO 3 6.48 g, 60 mmol
  • toluene 70 mL
  • water 14 mL
  • Synthesis step To a 250 mL reaction flask was added compound 3a (commercially available) (7 g, 30 mmol), NBS (5.9 g, 39 mmol) and chloroform (50 mL). The reaction was carried out for 2 hours at room temperature, and the compound 3a was completely reacted by TLC.
  • compound 3a commercially available
  • NBS 5.9 g, 39 mmol
  • chloroform 50 mL
  • Synthesis step Compound 4a (0.31 g, 1 mmol), compound 2a (0.352 g, 1.3 mmol) Pd 2 (dba) 3 (15 mg, 5%), tri-tert-butylphosphine (30 mg, 10%) was added to a 250 mL reaction flask. ), triethylamine (0.6 mL) and DMF (5 mL). The nitrogen gas was evacuated 3 times, and the temperature was raised to 100 ° C by heating. The temperature was maintained for 12 hours, and the compound 4a was completely reacted by TLC.
  • Synthesis step To a 250 mL reaction flask was added compound 1b (commercially available) (4.58 g, 20 mmol), compound 2b (commercially available) (8.5 g, 30 mmol), Pd 2 (dba) 3 (920 mg, 5%), three uncle Butylphosphine (400 mg, 10%), sodium tert-butoxide (4.58 g, 40 mmol) and toluene (100 mL). The nitrogen gas was evacuated 3 times, and the temperature was raised to 110 ° C by heating. The temperature was maintained for 12 hours, and the reaction of Compound 1b was completely confirmed by TLC.
  • the photophysical properties of the green dyes GT1 and GT2 in solution are determined by dissolving the corresponding dye in toluene or dichloromethane at a concentration of 1 ⁇ 10 -5 mol/L.
  • the dye-based CCF film is the dye and corresponding The proportion of PMMA is dissolved in toluene, spin-coated and then dried.
  • the photophysical properties of the dye film are determined by dissolving the dye in THF and spin-coating to prepare a film.
  • the CCF film prepared with GT1 and GT2 has good absorption of background blue light ( ⁇ max ⁇ 450 nm). See Fig. 3 and Fig. 5, the emitted light is green light, see Fig. 4 and Fig. 6.
  • GT1 and GT2 have strong luminescence (quantum yield QY close to 70%), are not sensitive to the preparation process, and their emission spectra are stable over a large concentration and temperature range.
  • Figure 7 is the fluorescence emission spectrum of the classic green dye C545T mixed in PMMA to form a light conversion film. It can be seen that small changes in the proportion of the impurities will cause a large change in the luminescence spectrum, and its luminescence stability. Very poor, Fig. 8 is the fluorescence emission light of the light conversion film prepared by the green dye GT2 of the present invention, and it can be seen that it is dispersed in PMMA at different concentrations, and its spectrum is very stable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明含有香豆素类绿光染料的光转换膜,包含绿光染料和固化的高分子树脂,所述绿光染料的分子结构如式(I)所述,其中,R1、R2和R3独立地表示为氢、C1-C8取代或者未取代的烷基、烷氧基或卤素。对其的光物理性质测试表明,由于具有式(I)所示的分子具有高的荧光量子产率,且发光强,对制备工艺不敏感,因此本发明光转换膜在式(I)较大参杂浓度和温度范围内其发射光谱都很稳定。

Description

含有香豆素类绿光染料的光转换膜 技术领域
本发明涉及用于平面显示的新型有机色转换膜,具体涉及一类香豆素类绿光染料转换膜,绿光染料与固化的高分子树脂通过溶液旋涂制成薄膜,可应用于平面显示。
背景技术
随着显示行业技术的不断突破和市场需求的日益增加,平板显示器以其体积小、重量轻、耗电省、辐射小、电磁兼容性好等一系列优点迅速崛起,成为21世纪显示技术的主流。平板显示器的成彩方式在其生产过程中起着非常重要的作用,它的好坏直接决定了平板显示器的显色效果,生产成本以及使用寿命。
目前平板显示器实现彩色显示的主流技术是印刷红、绿、蓝三基色荧光材料制备器件,然而,由于三基色荧光材料的寿命和衰减度差异较大,很容易造成彩色显示器的偏色,而且三原色器件的制作工艺比较复杂,成本较高。为了解决这些问题,人们开提出了一种色彩转换的新思路即“蓝源成彩”。“蓝源成彩”技术采用具有单一高亮度的蓝色荧光体作为背光源,背光源发出的蓝光经过色彩转换膜后转变成红光和绿光,从而实现RGB全彩显示。这一技术不仅可以大大简化电致发光平面显示器的生产工艺,提高显示器的色彩稳定性及均匀性,而且还能显著降低显示器的生产成本。用于色彩转换膜的材料可分为无机和有机两大类。经研究发现,相对于无机荧光粉,有机转换材料不仅具有更高的色彩转换效率,颜色也更饱和,从而可以实现更宽的色域,而且原料廉价易得,更容易进行分子的剪裁和修饰以获得更好的显示效果。
20世纪90年代,Leising团队采用香豆素类染料Coumarin 102为绿光材料,Lumogen F300为红光染料分散在PMMA中制备了绿色、红色光转换膜,获得了大于10%的红光转换效率(参考文献:Adv.Mater.,1997,9(1),33-36),韩国三星电子近年来也积极开发光转换膜材料,在相关专利中使用了香豆素以及罗丹明类染料(参考文献:US20160178960)。近年来国内研究团队也对有机光转换膜的制备进行了报道(参考文献:Optoelectronics Letters,2010,6(4),245-248,CN105267059 A,CN103647003 A),得到了色域广,光转化率高的有机光转换膜。然而这些传统的染料分子对加工工艺十分敏感,采用不同温度加工或曝光后其发光颜色会产生很大变化(参考文献:Abstract,2354,218th ECS Meeting),因此开发对环境稳定的光转换材料十分必要。
有机荧光色彩转换膜一般是将具有不同颜色的有机荧光染料通过紫外固化或热固化等方式均匀地分散在高分子固体薄膜中,再以高亮度的蓝色背光源激发有机荧光色彩转换膜中的 染料分子以实现颜色的转变,转换得到的红光、绿光与背景的蓝光形成光的三种基色,最终可以实现电致发光元件的全彩色显示。
发明内容
针对上述光转换膜,本发明提供一种由香豆素类绿光染料分散在甲基丙烯酸甲酯(PMMA)等高分子树脂中固化制备的光转换膜,其绿光染料发光强,对制备工艺不敏感,在较大参杂浓度和温度范围内其发射光谱都很稳定。
含有香豆素类绿光染料的光转换膜,包含绿光染料和固化的高分子树脂,所述绿光染料的分子结构如式(I)所述,
Figure PCTCN2017105308-appb-000001
其中,R1、R2和R3独立地表示为氢、取代或者未取代的C1-C8烷基、C1-C8烷氧基或卤素。
优选:其中,R1、R2和R3独立地表示为氢、取代或者未取代的C1-C4烷基或烷氧基。
优选:其中R1和R2独立地表示为氢、C1-C4的烷氧基,R3独立地表示为取代或者未取代的C1-C4烷基。
优选:R1、R2相同。
优选:其中,R1和R2优选表示为氢、甲氧基,R3独立地表示为甲基。
式(I)所述的化合物优选为具有下列结构的化合物:
Figure PCTCN2017105308-appb-000002
光转换膜,由上述绿光染料与固化的高分子树脂组成。
所述固化的高分子树脂是丙烯酸酯、环氧树脂或聚氨酯。
所述光转换膜总厚度为1-100μm。
光转换膜的制备方法,将所述绿光染料与固化的高分子树脂溶于甲苯后,再旋涂成膜,烘干后固化制备成有机光转换膜,固定在背光源上。
所述固化制备方法是热固化或紫外光固化。
所述背光源为蓝光光源,固化的高分子树脂为甲基丙烯酸甲酯(PMMA)高分子树脂。
所述蓝光光源是液晶面板、OLED或者无机LED光源。
本发明的光转换膜,由于式(I)所示的分子具有高的荧光量子产率,且材料发光强,对制备工艺不敏感,因此光转换膜在式(I)较大参杂浓度和温度范围内其发射光谱都很稳定。
附图说明
图1本发明所述绿光染料GT1的合成路线示意图
图2本发明所述绿光染料GT2的合成路线示意图;
图3本发明所述绿光染料GT1在甲苯、二氯甲烷以及PMMA薄膜和固态时的紫外-可见吸收光谱;
图4本发明所述绿光染料GT1在甲苯、二氯甲烷以及PMMA薄膜和固态时的荧光发射光谱,
图5本发明所述绿光染料GT2在甲苯、二氯甲烷以及PMMA薄膜和固态时的紫外-可见吸收光谱;
图6本发明所述绿光染料GT2在甲苯、二氯甲烷以及PMMA薄膜和固态时的荧光发射光谱。
图7经典绿光染料C545T以不同比例参杂在PMMA中制成光转换膜薄膜的荧光发射光谱。
图8以本发明中的绿光染料GT2制备的光转换膜的荧光发射光谱。
具体实施方式
为了更详细叙述本发明,特举以下例子,但是不限于此。
染料分子均通过Heck偶联反应制备:
Figure PCTCN2017105308-appb-000003
实施例1绿光染料GT1的合成:
其合成路线见图1所示。
(1)化合物2a的合成
Figure PCTCN2017105308-appb-000004
合成步骤:向250mL反应烧瓶中加入化合物1a(市售)(6.48g,20mmol),乙烯基氟硼酸钾(3.22g,24mmol),四三苯基膦钯(8.3g,5%),K2CO3(6.48g,60mmol),甲苯(70mL)和水(14mL)。氮气排空3次,加热升温至80℃,保持此温度,反应8小时,TLC检测化合物1a反应完全。
反应后处理:停止加热,降温至20℃,将反应液倒入水中,EA(100mL*3)萃取分液,合并有机层,用无水硫酸钠干燥后减压蒸干。粗品柱层析得到白色的化合物2a(4g,产率73.7%)。1H NMR(400 MHz,CHLOROFORM-d)ppm 5.15(d,J=10.88Hz,1H)5.63(d,J=17.61Hz,1H)6.66(dd,J=17.48,10.88Hz,1H)6.92-7.05(m,4H)7.09(d,J=8.19Hz,4H)7.19-7.38(m,6H)。
(2)化合物4a的合成
Figure PCTCN2017105308-appb-000005
合成步骤:向250mL反应烧瓶中加入化合物3a(市售)(7g,30mmol),NBS(5.9g,39mmol)和氯仿(50mL)。室温反应2小时,TLC检测化合物3a反应完全。
反应后处理:停止反应,将反应液倒入水中,二氯甲烷(100mL*2)萃取分液,合并有机层,用无水硫酸钠干燥后减压蒸干。粗品柱层析得到浅黄色的化合物4a(5g,产率53.7%)。1HNMR(400 MHz,CHLOROFORM-d)ppm1.21(t,J=7.09Hz,6H)2.45-2.62(m,3H)3.32-3.50(m,4H)6.49(d,J=2.57Hz,1H)6.60(dd,J=9.05,2.57Hz,1H)7.43(d,J=9.05Hz,1H)。
(3)GT1的合成
Figure PCTCN2017105308-appb-000006
合成步骤:向250mL反应烧瓶中加入化合物4a(0.31g,1mmol),化合物2a(0.352g,1.3mmol)Pd2(dba)3(15mg,5%),三叔丁基膦(30mg,10%),三乙胺(0.6mL)和DMF(5mL)。氮气排空3次,加热升温至100℃,保持此温度,反应12小时,TLC检测化合物4a反应完全。
反应后处理:停止加热,降温至20℃,将反应液倒入水中,乙酸乙酯(50mL*2)萃取分液,合并有机层,用无水硫酸钠干燥后减压蒸干。粗品柱层析得到浅黄色的化合物GT1(0.15g,产率30%)。
1H NMR(400 MHz,CHLOROFORM-d)ppm 1.22(t,J=7.03Hz,7H)2.50(s,3H)3.42(q,J=7.05Hz,4H)6.51(s,1H)6.61(d,J=9.17Hz,1H)6.97-7.07(m,6H)7.11(d,J=7.95Hz,4H)7.23(br.s.,2H)7.27(s,1H)7.40(d,J=8.31Hz,2H)7.47(d,J=8.93Hz,1H)7.56(d,J=16.14Hz,1H)。
实施例2绿光染料GT2的合成:
其合成路线见图2所示。
(1)化合物3b的合成
Figure PCTCN2017105308-appb-000007
合成步骤:向250mL反应烧瓶中加入化合物1b(市售)(4.58g,20mmol),化合物2b(市售)(8.5g,30mmol),Pd2(dba)3(920mg,5%),三叔丁基膦(400mg,10%),叔丁醇钠(4.58g,40mmol)和甲苯(100mL)。氮气排空3次,加热升温至110℃,保持此温度,反应12小时,TLC检测化合物1b反应完全。
反应后处理:停止加热,降温至20℃,将反应液倒入水中,乙酸乙酯(10mL*2)萃取分液,合并有机层,用无水硫酸钠干燥后减压蒸干。粗品经柱层析得到浅黄色的化合物3b(4.3g,产率56.4%)。1H NMR(400 MHz,CHLOROFORM-d)ppm 3.79(s,6H)6.67-6.88(m,6H)7.02(d,J=8.93Hz,4H)7.23(d,J=8.80Hz,2H)。
(2)化合物4b的合成
Figure PCTCN2017105308-appb-000008
合成步骤:向250mL反应烧瓶中加入化合物3b(4g,10.4mmol),乙烯基氟硼酸钾(1.67g,12.5mmol),四三苯基膦钯(580mg,5%),K2CO3(3.24g,30mmol),甲苯(100mL)和水(20mL)。氮气排空3次,加热升温至80℃,保持此温度,反应8小时,TLC检测化合物3b反应完全。反应后处理:停止加热,降温至20℃,将反应液倒入水中,EA(100mL*3)萃取分液,合并有机层,用无水硫酸钠干燥后减压蒸干。粗品柱层析得到白色的化合物4b(2.8g,产率
81.2%)。1H NMR(400 MHz,CHLOROFORM-d)ppm3.79(s,6H)5.09(d,J=10.88Hz,1H)5.58(d,J=17.61Hz,1H)6.51-6.70(m,1H)6.73-6.84(m,5H)6.87(d,J=8.56Hz,1H)6.95-7.09(m,4H)7.14-7.25(m,2H)。
(3)GT2的合成
Figure PCTCN2017105308-appb-000009
合成步骤:向250mL反应烧瓶中加入化合物4b(1g,3.2mmol),化合物4a(1.42g,4.2mmol)Pd2(dba)3(50mg,5%),三叔丁基膦(200mg,10%),三乙胺(5mL)和DMF(10mL)。氮气排空3次,加热升温至100℃,保持此温度,反应12小时,TLC检测化合物4a反应完全。
反应后处理:停止加热,降温至20℃,将反应液倒入水中,乙酸乙酯(50mL*2)萃取分液,合并有机层,用无水硫酸钠干燥后减压蒸干。粗品柱层析得到浅黄色的化合物GT2(0.55g,产率30.7%)。
1H NMR(400 MHz,CHLOROFORM-d)ppm 1.21(t,J=7.03Hz,6H)2.49(s,3H)3.42(q,J=7.01Hz,4H)3.80(s,6H)6.50(d,J=2.45Hz,1H)6.61(dd,J=8.93,2.32Hz,1H)6.83(d,J=8.93Hz,4H)6.90(d,J=8.56Hz,2H)7.00(d,J=16.26Hz,1H)7.06(d,J=8.93Hz,4H)7.34(d,J=8.68Hz,2H)7.46(d,J=9.05Hz,1H)7.49-7.57(m,1H)。
实施例3绿光染料GT1和GT2的光物理性质测试:
绿光染料GT1和GT2在溶液中的光物理性质测试是将相应的染料溶于甲苯或二氯甲烷,溶液的浓度为1×10-5mol/L,基于染料的CCF薄膜是将染料和相应比例的PMMA溶于甲苯,经旋涂然后烘干制备,染料薄膜的光物理性质是将染料溶于THF后旋涂制备薄膜后测得。以GT1和GT2制备的CCF膜对背景蓝光(λmax≈450nm)有很好的吸收,见图3、图5,发射出的光为绿光,见图4、图6。GT1和GT2具有很强的发光(量子产率QY接近70%),对制备工艺不敏感,在较大参杂浓度和温度范围内其发射光谱都很稳定。图7是经典绿光染料C545T以不同比例参杂在PMMA中制成光转换膜薄膜的荧光发射光谱,可以看到参杂比例的微小变化都会导致其发光光谱产生很大改变,其发光稳定性很差,图8是以本发明中的绿光染料GT2制备的光转换膜的荧光发射光,可以看到将其以不同浓度分散在PMMA中,它的光谱十分稳定。

Claims (10)

  1. 含有香豆素类绿光染料的光转换膜,包含绿光染料和固化的高分子树脂,所述绿光染料的分子结构如式(I)所述,
    Figure PCTCN2017105308-appb-100001
    其中,R1、R2和R3独立地表示为氢、取代或者未取代的C1-C8烷基、C1-C8烷氧基或卤素。
  2. 根据权利要求1所述的光转换膜,其中,R1、R2和R3独立地表示为氢、取代或者未取代的C1-C4烷基、C1-C4烷氧基。
  3. 根据权利要求2所述的光转换膜,其中R1和R2独立地表示为氢、C1-C4的烷氧基,R3独立地表示为取代或者未取代的C1-C4烷基。
  4. 根据权利要求3所述的光转换膜,其中R1、R2相同。
  5. 根据权利要求4所述的光转换膜,其中R1和R2表示为氢、C1-C4的烷氧基,R3独立地表示为C1-C4烷基。
  6. 根据权利要求5所述的光转换膜,所述绿光染料具有下列结构式:
    Figure PCTCN2017105308-appb-100002
  7. 根据权利要求1所述的光转换膜,所述固化的高分子树脂是丙烯酸酯、环氧树脂或聚氨酯,所述光转换膜总厚度为1-100μm。
  8. 根据权利要求1-7任一所述的光转换膜的制备方法,将所述绿光染料与固化的高分子树脂溶于甲苯后,再旋涂成膜,烘干后固化制备成有机光转换膜,固定在背光源上。
  9. 根据权利要求8所述的制备方法,所述固化制备方法是热固化或紫外光固化,所述背光源为蓝光光源。
  10. 根据权利要求9所述的制备方法,所述固化的高分子树脂为甲基丙烯酸甲酯高分子树脂,所述蓝光光源是液晶面板、OLED或者无机LED光源。
PCT/CN2017/105308 2016-12-27 2017-10-09 含有香豆素类绿光染料的光转换膜 WO2018120969A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611224431.1 2016-12-27
CN201611224431.1A CN106833608B (zh) 2016-12-27 2016-12-27 含有香豆素类绿光染料的光转换膜

Publications (1)

Publication Number Publication Date
WO2018120969A1 true WO2018120969A1 (zh) 2018-07-05

Family

ID=59136360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105308 WO2018120969A1 (zh) 2016-12-27 2017-10-09 含有香豆素类绿光染料的光转换膜

Country Status (3)

Country Link
CN (1) CN106833608B (zh)
TW (1) TWI640602B (zh)
WO (1) WO2018120969A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106833608B (zh) * 2016-12-27 2019-02-15 广东阿格蕾雅光电材料有限公司 含有香豆素类绿光染料的光转换膜
CN106833009B (zh) * 2016-12-27 2019-03-22 广东阿格蕾雅光电材料有限公司 含有三苯胺乙烯侧链的香豆素类绿光染料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101121712A (zh) * 2007-09-24 2008-02-13 淮海工学院 含杂环苯乙烯基香豆素衍生物和合成方法
KR20130078286A (ko) * 2011-12-30 2013-07-10 (주)솔라시스 염료감응 태양전지용 페노티아진 함유 염료 및 이를 함유하는 태양전지
CN106833009A (zh) * 2016-12-27 2017-06-13 广东阿格蕾雅光电材料有限公司 含有三苯胺乙烯侧链的香豆素类绿光染料
CN106833608A (zh) * 2016-12-27 2017-06-13 广东阿格蕾雅光电材料有限公司 含有香豆素类绿光染料的光转换膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8715944B2 (en) * 2008-09-08 2014-05-06 Enzo Life Sciences, Inc. Fluorochromes for organelle tracing and multi-color imaging
CN102101852B (zh) * 2009-12-21 2013-03-20 中国科学院理化技术研究所 香豆素衍生物及其制备方法和在白光有机电致发光器件中的应用
TWI523293B (zh) * 2013-05-21 2016-02-21 長興材料工業股份有限公司 光色轉換膜及其製造方法
KR20160076406A (ko) * 2014-12-22 2016-06-30 삼성디스플레이 주식회사 디스플레이 장치, 색변환 필름 및 그들의 제조방법
CN105694859B (zh) * 2015-06-10 2018-06-08 广东阿格蕾雅光电材料有限公司 有机电子发光材料
CN105374949A (zh) * 2015-11-26 2016-03-02 电子科技大学 一种有机电致发光器件及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101121712A (zh) * 2007-09-24 2008-02-13 淮海工学院 含杂环苯乙烯基香豆素衍生物和合成方法
KR20130078286A (ko) * 2011-12-30 2013-07-10 (주)솔라시스 염료감응 태양전지용 페노티아진 함유 염료 및 이를 함유하는 태양전지
CN106833009A (zh) * 2016-12-27 2017-06-13 广东阿格蕾雅光电材料有限公司 含有三苯胺乙烯侧链的香豆素类绿光染料
CN106833608A (zh) * 2016-12-27 2017-06-13 广东阿格蕾雅光电材料有限公司 含有香豆素类绿光染料的光转换膜

Also Published As

Publication number Publication date
CN106833608A (zh) 2017-06-13
TW201823424A (zh) 2018-07-01
TWI640602B (zh) 2018-11-11
CN106833608B (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
TWI676656B (zh) 一種具有聚集誘導發光性質的綠光染料及其用途
CN104498025B (zh) 多苯基苯构筑含氰基发光分子及其制备方法和用途
Tao et al. Synthesis and characterization of efficient luminescent materials based on 2, 1, 3-benzothiadiazole with carbazole moieties
Shao et al. Diphenylethyne based β-diketonate europium (III) complexes as red phosphors applied in LED
US20120308792A1 (en) Red fluorescence conversion composition and red fluorescence conversion film
WO2018120971A1 (zh) 含有三苯胺乙烯侧链的香豆素类绿光染料
Lu et al. Luminescent properties of benzothiazole derivatives and their application in white light emission
TWI642716B (zh) 含有聚集誘導發光性質的綠光染料的光轉換膜
CN103872263A (zh) 有机发光二极管装置和用于其的液晶型发光材料
KR101521483B1 (ko) 유기전계 발광층 재료용 붕소 착화합물, 이의 제조방법 및 이를 포함하는 유기전계 발광다이오드
JP5895297B2 (ja) 蛍光体およびその利用
WO2018120969A1 (zh) 含有香豆素类绿光染料的光转换膜
TWI788483B (zh) 經氰基芳基取代的苯并(硫代)氧雜蒽(benz(othi)oxanthene)化合物
JP6230326B2 (ja) 蛍光体およびその利用
CN112639542B (zh) 颜色转换材料、颜色转换部件、光源单元、显示器、照明装置、颜色转换基板及油墨
CN105085579B (zh) N‑己基咔唑取代苯基苯并噻唑铱(iii)配合物及其制备
TWI692482B (zh) 化合物及包括所述化合物的色轉換膜、背光單元以及顯示裝置
CN108558766B (zh) 化合物、其制备方法、化合物晶体和有机电致发光器件
WO2019044739A1 (ja) 蛍光体及びその利用
KR20170112060A (ko) 색재현 보상필름용 파이렌계 유기닷 및 이를 포함하는 색재현 보상필름
CN115536639A (zh) 一种基于咔唑和菲并咪唑的蓝光材料及制备方法和应用
WO2019216200A1 (ja) 色変換組成物、色変換シート、光源ユニット、ディスプレイおよび照明装置
CN113861150A (zh) 基于香豆素衍生物的有机发光材料及其制备方法和应用
CN118125899A (zh) 一种力致变色聚集诱导发光增强的材料及其制备方法和应用
CN116003476A (zh) 一种环金属钯二聚物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889290

Country of ref document: EP

Kind code of ref document: A1