WO2018119897A1 - 具有光子晶体结构的转印膜及其制备方法 - Google Patents

具有光子晶体结构的转印膜及其制备方法 Download PDF

Info

Publication number
WO2018119897A1
WO2018119897A1 PCT/CN2016/113077 CN2016113077W WO2018119897A1 WO 2018119897 A1 WO2018119897 A1 WO 2018119897A1 CN 2016113077 W CN2016113077 W CN 2016113077W WO 2018119897 A1 WO2018119897 A1 WO 2018119897A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
photonic crystal
layer
transfer
crystal layer
Prior art date
Application number
PCT/CN2016/113077
Other languages
English (en)
French (fr)
Inventor
叶常青
温强
窦仁美
徐厚广
宋延林
Original Assignee
苏州中科纳福材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州中科纳福材料科技有限公司 filed Critical 苏州中科纳福材料科技有限公司
Priority to CN201680042165.2A priority Critical patent/CN109071856A/zh
Priority to PCT/CN2016/113077 priority patent/WO2018119897A1/zh
Publication of WO2018119897A1 publication Critical patent/WO2018119897A1/zh
Priority to US16/450,015 priority patent/US20190317245A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00788Producing optical films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/30Particles characterised by physical dimension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/40Pretreated particles
    • B32B2264/403Pretreated particles coated or encapsulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/50Particles characterised by their position or distribution in a layer
    • B32B2264/504Particles characterised by their position or distribution in a layer distributed in a predetermined pattern in a direction perpendicular to the thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the present invention relates to a transfer film, and more particularly to a transfer film having a photonic crystal structure and a method of manufacturing the same.
  • Photonic crystals are novel optical materials with different dielectric constants and periodic distribution. Due to their special light control properties, photonic crystals have broad application prospects in the fields of optics, electronics, chemistry and biochemistry.
  • the principle of photonic crystal coloring is that the light is modulated by the Bragg diffraction of the periodic structure, and the corresponding structural color can be obtained by reflecting the forbidden light of the photonic crystal itself.
  • This color developing process is simple, stable, inexpensive, environmentally friendly and non-polluting, and has The color changes with the viewing angle, the control range is wide and convenient, and the color is durable. It is a powerful substitute for traditional chemical pigments and dyes. Its special spectral characteristics, such as high saturation, angular light change, and intelligent response, make it more suitable. It has broad application prospects in the fields of intelligent packaging, anti-counterfeiting and traceability.
  • the colloidal self-assembly method is to disperse the photo-crystal colloidal particles in the continuous phase of the solvent to form a colloidal dispersion system, and then apply the colloidal dispersion system to the assembled substrate by appropriate technical means under appropriate external conditions. For example, temperature control, humidity control, low pressure and other conditions remove the continuous phase in the colloidal dispersion system.
  • the dispersed phase in the colloidal dispersion system self-assembles to form a regular ordered arrangement pattern, which in turn produces different periodic distributions.
  • the optical structure of the electrical constant produces a structural color
  • the photonic crystal prepared by the colloid self-assembly method has a structure similar to that of the natural gemstone, and is also called an opal-type photonic crystal.
  • the self-assembly of the photonic crystal material is directly performed on the substrate.
  • it is often necessary to control external conditions such as temperature and humidity, and the assembly process is slow and time consuming, and the substrate is printed.
  • the requirements are also very high.
  • the roughness, wettability, water resistance and solvent resistance of the substrate surface need to be matched with the assembly conditions of the colloidal photonic crystal emulsion to obtain an acceptable assembly effect.
  • Even The need for graphical impregnation control of the substrate can be achieved, which severely limits the choice of substrate, greatly increasing the process difficulty and thus increasing the cost.
  • the prior art colloidal self-assembly method still has the following problems to be overcome, due to the assembly environment (eg, constant temperature, constant pressure, constant humidity, etc.) The requirements are higher, so the colloidal microspheres are slow to self-assemble. Furthermore, the assembly substrate has poor selectivity and is usually not available on porous substrates (such as fiber paper) or curved substrates (such as packaging bottles).
  • the surface composition shows a structural color, which can only be assembled on the surface of some smooth rigid substrates, and can be applied to the preparation methods such as gravity deposition, vertical deposition, pulling, and spin coating.
  • the adhesion between the photonic crystal layer formed by the colloidal microspheres and the substrate is poor and easily peeled off, and the structural strength is also poor and is not scratch resistant.
  • the assembly effect of the colloidal microspheres is sensitive to the emulsion component, making it difficult to add additional auxiliaries in the emulsion, and the viscosity of the emulsion itself is difficult to adjust, which makes the emulsion less suitable for printing and coating. This makes it difficult to balance the assembly results with the print quality.
  • the technical problem to be solved by the present invention is how to provide a photonic crystal layer on a flexible substrate.
  • an aspect of the present invention provides a A transfer film having a photonic crystal structure, comprising: an assembly substrate, a photonic crystal layer, a transfer layer, and a substrate.
  • the step of coating the photonic crystal emulsion on the surface of the assembly substrate comprises: coating the photonic crystal emulsion on the surface of the assembly substrate in a roll-to-roll coating manner to obtain a continuous photonic crystal layer .
  • the step of bonding the photonic crystal layer to the substrate by transfer and forming the transfer layer comprises: drying the surface of the photonic crystal layer or the surface of the substrate to be coated with a hot melt solvent, and then drying A three-dimensional structural surface of the stamping die is embossed on the substrate or the assembly substrate to form an appearance three-dimensional pattern surface, thereby bonding the photonic crystal layer to the substrate and forming the transfer layer.
  • the step of coating the photonic crystal emulsion on the surface of the assembly substrate comprises: coating the photonic crystal emulsion on the surface of the assembly substrate in a roll-to-roll coating manner to obtain a continuous photonic crystal layer .
  • a bonding force between the release layer and the photonic crystal layer is greater than a bonding force between the assembly substrate and the release layer.
  • the step of bonding the photonic crystal layer to the substrate by transfer and forming the transfer layer comprises: drying the surface of the photonic crystal layer or the surface of the substrate to be coated with a hot melt solvent, and then drying A three-dimensional structural surface of the stamping die is embossed on the substrate or the assembly substrate to form an appearance three-dimensional pattern surface, thereby bonding the photonic crystal layer to the substrate and forming the transfer layer.
  • the release layer on the film can be used as a primer for the photonic crystal emulsion, and the interface property of the surface of the release layer is controlled, or the photonic crystal emulsion is prepared according to the surface tension coefficient of the assembled substrate to obtain a photonic crystal.
  • the emulsion can be uniformly coated on the surface of the release layer or directly coated on the surface of the assembly substrate to achieve large-area and defect-free coating efficiency and increase coating speed, thereby reducing the time and cost.
  • a viscous transfer layer may be formed on the surface of the photonic crystal layer, and the surface of the transfer layer may be formed with an external three-dimensional pattern surface by hot embossing or ultraviolet crosslinking.
  • the adhesive layer has a good adhesion between the photonic crystal layer and the substrate, and the cured three-dimensional pattern of the transfer layer has good wear resistance and scratch resistance.
  • a transfer film having a photonic crystal structure was obtained.
  • the main component of the silicone release agent selected in the present invention comprises a mixture of one or more of a silicone resin, a wax and a matting powder component, and the composition thereof can be controlled to control the release of the release agent on the surface of the assembled substrate to form a continuous continuous formation.
  • the smooth release layer and the control of the surface properties of the release layer ensure that the photonic crystal emulsion can be stably spread on the surface of the release layer and maintain a low bonding force with the release layer after the photonic crystal emulsion is cured into a photonic crystal layer. After the transfer, complete separation of the photonic crystal layer from the release layer without residue can be ensured.
  • the main component of the resin type release agent selected in the present invention comprises one or more kinds of a mixture of a polyurethane resin, an acrylic resin, a matting powder and a cellulose material, and the composition thereof can be adjusted to control the release layer to form a film on the assembled substrate.
  • the adhesion and adhesion ensure that the release layer can be effectively separated from the assembled substrate after transfer, and the trimming is clear and does not remain.
  • it is ensured that the photonic crystal emulsion is stably spread on the release layer and maintains a high bonding force with the release layer after the photonic crystal emulsion is cured into a photonic crystal layer, and the toughness and hardness of the release layer after film formation are ensured.
  • the post-print release layer and the photonic crystal layer are firmly covered on the surface of the transferred photonic crystal layer to function as a protective layer.
  • Step 110 providing an assembly substrate
  • Step 120 forming a release layer on the surface of the assembled substrate, and the release layer is used to adjust the interface performance of the assembled substrate;
  • Step 130 preparing a photonic crystal emulsion according to a surface tension coefficient of the release layer
  • Step 140 Coating the photonic crystal emulsion on the surface of the release layer, and the photonic crystal emulsion is solidified into a photonic crystal layer on the surface of the release layer.
  • Step 110 Providing an assembled substrate.
  • the assembled substrate can be a flexible and rollable substrate for roll to roll
  • the coating method is used.
  • the assembled substrate can be, but is not limited to, Poly Ethylene Terephthalate (PET) film, biaxially oriented polypropylene. (Biaxially Oriented Polypropylene, BOPP) Film, Polyethylene (PE) Film, cellulose film, polyvinyl alchohol (PVA) film or paper.
  • the assembled substrate may be polyethylene terephthalate (PET). Film, but not limited to this.
  • Step 120 directly apply the silicone release agent thereto
  • the surface of the substrate is assembled, the silicone release agent is adhered to the surface of the assembly substrate, and then dried, and the release agent is cured on the surface of the assembly substrate to form a release layer on the surface of the assembly substrate.
  • the release agent material is merely illustrative and not limited thereto.
  • the composition of the release layer is used to regulate the interfacial properties of the assembled substrate surface, such as controlling the surface tension coefficient of the release layer. 28 dyn/cm to 35 dyn/cm (dyne per centimeter), but not limited to this.
  • Step 130 Preparation of a polystyrene microsphere suspension emulsion.
  • a polystyrene microsphere suspension emulsion that is, a photonic crystal emulsion, wherein the particle diameter of the polystyrene microsphere is 215 nm, and the polydispersivity index (PDI) is 0.02.
  • Step 140 Coating the photonic crystal emulsion on the surface of the release layer.
  • Step 110 The biaxially oriented polypropylene (BOPP) film is used as the assembly substrate, but not limited thereto.
  • BOPP biaxially oriented polypropylene
  • Step 120 directly apply the resin type release agent thereto
  • the surface of the substrate is assembled, and the resin type release agent is attached to the surface of the assembly substrate to be dried, and the release agent is cured on the surface of the assembly substrate to form a release layer on the surface of the assembly substrate.
  • the release agent material is merely illustrative and not limited thereto. Adjusting the interfacial properties of the assembled substrate surface by the composition of the release layer, such as controlling the surface tension coefficient of the release layer 28 dyn/cm to 58 dyn/cm, but not limited to this.
  • Step 130 Preparation of a silica microsphere suspension emulsion.
  • PDI deionized water
  • Magenta dye solution, monodisperse silica microsphere suspension emulsion and absolute alcohol by volume ratio 1 : 3 : 2 The preparation was carried out and dispersed by ultrasonic for 10 minutes to obtain a homogeneously mixed magenta silica microsphere suspension emulsion.
  • Step 140 Coating the photonic crystal emulsion on the surface of the release layer.
  • the advantage of the roll-to-roll coating method is that the wettability of the photonic crystal emulsion on the surface of the release layer can be precisely regulated, that is, the surface properties of the surface layer are controlled by the composition of the release layer.
  • the coating suitability of the photonic crystal emulsion is improved, and a large-area and defect-free coated photonic crystal emulsion can be applied on the surface of the release layer to realize high-speed and high-quality photonic crystal coating. the way.
  • the substrate is assembled to facilitate the roll-to-roll continuous assembly operation, the interface properties of the coated substrate are controlled by the release layer, the surface cause value is controlled, and the continuous uniform one is coated on the surface of the assembled substrate by roll-to-roll coating.
  • the photonic crystal emulsion microspheres are induced by weak interaction forces such as capillary force. Self-assembly into an opal structure photonic crystal. Thereby a large area defect-free photonic crystal layer is obtained on the assembled substrate.
  • Step 210 providing an assembly substrate
  • Step 220 forming a release layer on the surface of the assembled substrate, and the release layer is used to adjust the interface performance of the assembled substrate;
  • Step 230 preparing a photonic crystal emulsion according to a surface tension coefficient of the release layer
  • Step 240 coating the photonic crystal emulsion on the surface of the release layer, and the photonic crystal emulsion is solidified into a photonic crystal layer on the surface of the release layer;
  • Step 250 coating/printing the transfer layer on the surface of the photonic crystal layer
  • Step 260 A substrate is provided, the substrate is bonded to the transfer layer, and the assembled substrate and the release layer are optionally removed from the photonic crystal layer.
  • the assembly substrate may be a flexible and windable substrate for Roll-to-roll coating method.
  • the assembled substrate can be, but is not limited to, a polyethylene terephthalate film, a biaxially oriented polypropylene film, a polyethylene film, a cellulose film, a polyvinyl alcohol film, or paper.
  • the assembled substrate may be polyethylene terephthalate. (PET) film, but not limited to this.
  • Step 220 The silicone release agent is directly applied to the surface of the assembled substrate, the release agent is attached to the surface of the assembled substrate, and then dried, and the release agent is cured on the surface of the assembled substrate to form a release layer on the surface of the assembled substrate.
  • the release agent material is merely illustrative and not limited thereto.
  • Controlling the surface of the assembled substrate by the composition of the release layer Interface properties, such as controlling the surface tension coefficient of the release layer, are from 28 dyn/cm to 35 dyn/cm, but are not limited thereto.
  • Step 230 The specific implementation manner is the same as step 130 of the foregoing Embodiment 1, and details are not described herein again.
  • Step 240 The specific implementation manner thereof and the step 140 of the foregoing Embodiment 1 Roughly the same, the following only explains the differences, and the rest will not be repeated.
  • Coat to roll to roll By applying a photonic crystal emulsion on the surface of the release layer, when the photonic crystal emulsion is completely and uniformly covered in the release layer, at 75 ° C Dry down.
  • the polystyrene microspheres are self-assembled into an ordered structure to form a blue-green photonic crystal layer having a thickness of about 5 micrometers to 20 micrometers, thereby obtaining an assembled substrate (PET film)/ Three-layer composite film of release layer / photonic crystal layer.
  • Step 250 Coating a transfer layer on the surface of the photonic crystal layer.
  • a transfer layer is coated on the photonic crystal layer. Firstly coated on the surface of the photonic crystal layer with a hot melt solvent (such as polyurethane), then at 85 ° C Under drying, a transfer layer having a hot melt adhesive is formed on the surface of the photonic crystal layer to form a thermal transfer film of the assembled substrate (PET film) / release layer / photonic crystal layer / transfer layer.
  • a hot melt solvent such as polyurethane
  • Step 260 Attach the substrate to the rubber surface of the transfer layer.
  • the substrate is bonded to the transfer layer and imprinted on the assembly substrate by a stamping die having a three-dimensional structure surface at about 1
  • the three-dimensional structure of the hot stamping die at a temperature of 100 ° C and a pressure of 3 kg in a second time
  • the surface is imprinted on the assembly substrate such that the transfer layer matches the three-dimensional structural surface to form an appearance three-dimensional pattern surface. That is to say, the appearance three-dimensional pattern surface copies the same three-dimensional appearance according to the three-dimensional pattern or the three-dimensional texture of the three-dimensional structure surface.
  • the photonic crystal layer Since the hot melt of the transfer layer is viscous after being subjected to hot pressing, the photonic crystal layer is tightly bonded to the substrate through the transfer layer. Finally, the assembly substrate and the release layer are removed from the surface of the photonic crystal layer to obtain a transfer layer on the substrate. (The appearance of a three-dimensional pattern surface) and the transfer film of the photonic crystal layer.
  • the assembly substrate may be a flexible and windable substrate for Roll-to-roll coating method.
  • the assembled substrate can be, but is not limited to, a polyethylene terephthalate film, a biaxially oriented polypropylene film, a polyethylene film, a cellulose film, a polyvinyl alcohol film, or paper.
  • the assembled substrate can be biaxially oriented polypropylene (BOPP) film, but not limited to this.
  • Step 220 The silicone release agent is directly applied to the surface of the assembled substrate, the release agent is attached to the surface of the assembled substrate, and then dried, and the release agent is cured on the surface of the assembled substrate to form a release layer on the surface of the assembled substrate.
  • the release agent material is merely illustrative and not limited thereto. Adjusting the interfacial properties of the assembled substrate surface by the composition of the release layer, such as controlling the surface tension coefficient of the release layer 28 dyn/cm to 58 dyn/cm, but not limited to this.
  • Step 230 The specific implementation manner is the same as step 130 of the foregoing Embodiment 1, and details are not described herein again.
  • Step 240 The specific implementation manner thereof and the step 140 of the foregoing Embodiment 1 Roughly the same, the following only explains the differences, and the rest will not be described again.
  • the photonic crystal emulsion is coated on the surface of the release layer in a roll-to-roll coating manner, at 75 ° C when the photonic crystal emulsion is completely and uniformly covered in the release layer. Dry down.
  • magenta silica microsphere suspension emulsion ie photonic crystal emulsion
  • the magenta silica microsphere suspension emulsion is promoted in the magenta silica microspheres in the gas -
  • the self-assembly mechanism of the liquid surface allows the magenta silica microspheres to self-assemble into an ordered structure, thereby forming a blue-green photonic crystal layer having a thickness of about 5 micrometers to 20 micrometers, thereby obtaining an assembled substrate.
  • BOPP film release layer / photonic crystal layer of three-layer composite film.
  • Step 250 Coating a transfer layer on the surface of the photonic crystal layer.
  • a transfer layer is formed on the surface of the photonic crystal layer.
  • a resin precursor on the surface of the photonic crystal layer, including but not limited to spin coating (spin coating), slit coating or blade coating.
  • the material of the resin precursor is ultraviolet curing resin, and DIMAX is selected in this embodiment.
  • D8350 UV cold glue is selected in this embodiment.
  • the resin film is formed by irradiating the resin precursor with ultraviolet light. Specifically, when the resin precursor is irradiated with ultraviolet light, the resin precursor undergoes a chemical curing reaction to form a resin film. Control the degree of curing of the resin film by controlling the intensity of the ultraviolet light, the irradiation time, and the wavelength Curing degree, and irradiating ultraviolet light enhances the structural strength of the resin film, and maintains the resin film in a fluid state to have plasticity. In this embodiment, the degree of curing of the resin film is 50. %, but not limited to this.
  • Step 260 Attach the substrate to the rubber surface of the transfer layer.
  • the printing substrate and the semi-cured resin film are adhered to each other, and then imprinted on the printing substrate by an imprinting mold, the imprinting mold has a three-dimensional structural surface, and the resin film is embossed by the three-dimensional structure surface to have a three-dimensional pattern surface, and The three-dimensional pattern surface matches the pattern design of the imprinting mold.
  • the method of forming the resin film into a three-dimensional pattern surface is not limited to embossing, and in other embodiments, a three-dimensional pattern surface may be formed on the resin film by, for example, etching.
  • the resin film is completely cured, so that the resin film is solidified on the surface of the substrate to form a transfer layer, thereby forming an appearance three-dimensional pattern surface on the surface of the transfer layer. Since the transfer layer is viscous after cross-linking via ultraviolet light, the photonic crystal layer can be tightly bonded to the substrate through the transfer layer. Finally, the assembly substrate and the release layer are removed from the surface of the photonic crystal layer to obtain a transfer layer on the substrate. (The appearance of a three-dimensional pattern surface) and the transfer film of the photonic crystal layer.
  • the assembly substrate may be a flexible and windable substrate for Roll-to-roll coating method.
  • the assembled substrate can be, but is not limited to, a polyethylene terephthalate film, a biaxially oriented polypropylene film, a polyethylene film, a cellulose film, a polyvinyl alcohol film, or paper.
  • the assembled substrate can be biaxially oriented polypropylene (BOPP) film, but not limited to this.
  • Step 220 The silicone release agent is directly applied to the surface of the assembled substrate, the release agent is attached to the surface of the assembled substrate, and then dried, and the release agent is cured on the surface of the assembled substrate to form a release layer on the surface of the assembled substrate.
  • the release agent material is merely illustrative and not limited thereto. Adjusting the interfacial properties of the assembled substrate surface by the composition of the release layer, such as controlling the surface tension coefficient of the release layer 28 dyn/cm to 58 dyn/cm, but not limited to this.
  • Step 230 The specific implementation manner is the same as step 130 of the foregoing Embodiment 1, and details are not described herein again.
  • Step 240 The specific implementation manner thereof and the step 140 of the foregoing Embodiment 1 Roughly the same, the following only explains the differences, and the rest will not be described again.
  • the photonic crystal emulsion is coated on the surface of the release layer in a roll-to-roll coating manner, at 75 ° C when the photonic crystal emulsion is completely and uniformly covered in the release layer. Dry down.
  • magenta silica microsphere suspension emulsion ie photonic crystal emulsion
  • the magenta silica microsphere suspension emulsion is promoted in the magenta silica microspheres in the gas -
  • the self-assembly mechanism of the liquid surface allows the magenta silica microspheres to self-assemble into an ordered structure, thereby forming a blue-green photonic crystal layer having a thickness of about 5 micrometers to 20 micrometers, thereby obtaining an assembled substrate.
  • BOPP film release layer / photonic crystal layer of three-layer composite film.
  • Step 250 Printing a transfer layer on the surface of the photonic crystal layer.
  • a transfer layer is formed on the surface of the photonic crystal layer.
  • the resin precursor is first printed on the surface of the photonic crystal layer to form a three-dimensional pattern surface based on the printing plate pattern, and the printing method includes, but is not limited to, flexo printing and offset printing.
  • the material of the resin precursor is an ultraviolet curing resin, which is selected in this embodiment. DIMAX D8350 UV cold glue, but not limited to this.
  • the resin film is formed by irradiating the resin precursor with ultraviolet light.
  • the tree is illuminated by ultraviolet light.
  • the resin precursor undergoes a chemical curing reaction to form a resin film.
  • the curing degree of the resin film can be controlled.
  • irradiating ultraviolet light enhances the structural strength of the resin film, and maintains the resin film in a fluid state to have plasticity.
  • the degree of curing of the resin film is 50%, but is not limited thereto.
  • Step 260 Attach the substrate to the rubber surface of the transfer layer.
  • the substrate and the semi-cured resin film are bonded to each other, and then the resin film is completely cured, so that the resin film is solidified on the surface of the substrate to form a transfer layer, thereby forming an appearance three-dimensional pattern surface on the surface of the transfer layer. Since the transfer layer is viscous after cross-linking via ultraviolet light, the photonic crystal layer can be tightly bonded to the substrate through the transfer layer. Finally, the assembly substrate and the release layer are removed from the surface of the photonic crystal layer to obtain a transfer layer on the substrate. (The appearance of a three-dimensional pattern surface) and the transfer film of the photonic crystal layer.
  • Step 310 providing an assembly substrate
  • Step 320 forming a release layer on the surface of the assembled substrate, and the release layer is used to adjust the interface performance of the assembled substrate;
  • Step 330 preparing a photonic crystal emulsion according to a surface tension coefficient of the release layer
  • Step 340 coating a photonic crystal emulsion on the surface of the release layer, and the photonic crystal emulsion is solidified into a photonic crystal layer on the surface of the release layer;
  • Step 350 providing a printing substrate, applying a transfer layer on a surface of the printing substrate;
  • Step 360 The transfer layer on the substrate is bonded to the surface of the photonic crystal layer, and the assembled substrate and the release layer are optionally removed from the photonic crystal layer.
  • the assembly substrate may be a flexible and windable substrate for Roll-to-roll coating method.
  • the assembled substrate can be, but is not limited to, a polyethylene terephthalate film, a biaxially oriented polypropylene film, a polyethylene film, a cellulose film, a polyvinyl alcohol film, or paper.
  • the assembled substrate may be a polyethylene terephthalate film. (PET) film, but not limited to this.
  • Step 320 The silicone release agent is directly applied to the surface of the assembled substrate, the release agent is attached to the surface of the assembled substrate, and then dried, and the release agent is cured on the surface of the assembled substrate to form a release layer on the surface of the assembled substrate.
  • the release agent material is merely illustrative and not limited thereto. Adjusting the interfacial properties of the assembled substrate surface by the composition of the release layer, such as controlling the surface tension coefficient of the release layer 28 dyn/cm to 35 dyn/cm, but not limited to this.
  • Step 330 The specific implementation manner is the same as step 130 of the foregoing Embodiment 1, and details are not described herein again.
  • Step 340 The specific implementation manner and the step 140 of the foregoing Embodiment 1 Roughly the same, the following only explains the differences, and the rest will not be described again.
  • Coat to roll to roll By applying a photonic crystal emulsion on the surface of the release layer, when the photonic crystal emulsion is completely and uniformly covered in the release layer, at 75 ° C Dry down.
  • the polystyrene microspheres are self-assembled into an ordered structure to form a blue-green photonic crystal layer having a thickness of about 5 micrometers to 20 micrometers, thereby obtaining an assembled substrate (PET film)/ Three-layer composite film of release layer / photonic crystal layer.
  • Step 350 Apply a transfer layer on the surface of the substrate.
  • Hot melt adhesive embodiment to select Shanghai Wanhan Industrial Youlida 909W transfer glue
  • it is not uniformly coated on the surface of the substrate, and then dried at 85 ° C to form a transfer layer with hot melt adhesive on the surface of the substrate to form an assembly substrate (PET film) / Thermal transfer film of the transfer layer.
  • Step 360 bonding the surface of the photonic crystal layer with a transfer layer on the substrate.
  • the transfer layer of the surface of the substrate is attached to the surface of the photonic crystal layer, and is imprinted on the printing substrate by a hot stamping mold.
  • the hot stamping mold has a three-dimensional structure surface.
  • the solid structure of the hot stamping die is embossed at a temperature of 100 ° C and a pressure of 3 kg in 1 second.
  • the transfer layer is matched to the three-dimensional structure surface to form an appearance three-dimensional pattern surface. That is to say, the appearance three-dimensional pattern surface copies the same three-dimensional appearance according to the three-dimensional pattern or the three-dimensional texture of the three-dimensional structure surface.
  • the photonic crystal layer Since the hot melt of the transfer layer is viscous after being subjected to hot pressing, the photonic crystal layer is tightly bonded to the substrate through the transfer layer. Finally, the assembly substrate and the release layer are removed from the surface of the photonic crystal layer to obtain a transfer layer on the substrate. (The appearance of a three-dimensional pattern surface) and the transfer film of the photonic crystal layer.
  • the assembly substrate may be a flexible and windable substrate for Roll-to-roll coating method.
  • the assembled substrate can be, but is not limited to, a polyethylene terephthalate film, a biaxially oriented polypropylene film, a polyethylene film, a cellulose film, a polyvinyl alcohol film, or paper.
  • the assembled substrate can be biaxially oriented polypropylene (BOPP) film, but not limited to this.
  • Step 320 The silicone release agent is directly applied to the surface of the assembled substrate, the release agent is attached to the surface of the assembled substrate, and then dried, and the release agent is cured on the surface of the assembled substrate to form a release layer on the surface of the assembled substrate.
  • the release agent material is merely illustrative and not limited thereto.
  • Controlling the surface of the assembled substrate by the composition of the release layer Interface properties, such as controlling the surface tension coefficient of the release layer, are from 28 dyn/cm to 58 dyn/cm, but are not limited thereto.
  • Step 330 The specific implementation manner is the same as step 130 of the foregoing Embodiment 2, and details are not described herein again.
  • Step 340 The specific implementation manner thereof and the step 140 of the foregoing Embodiment 2 Roughly the same, the following only explains the differences, and the rest will not be described again.
  • the photonic crystal emulsion is coated on the surface of the release layer in a roll-to-roll coating manner, at 75 ° C when the photonic crystal emulsion is completely and uniformly covered in the release layer. Dry down.
  • magenta silica microsphere suspension emulsion ie photonic crystal emulsion
  • the magenta silica microsphere suspension emulsion is promoted in the magenta silica microspheres in the gas -
  • the self-assembly mechanism of the liquid surface allows the magenta silica microspheres to self-assemble into an ordered structure, thereby forming a blue-green photonic crystal layer having a thickness of about 5 micrometers to 20 micrometers, thereby obtaining an assembled substrate.
  • BOPP film release layer / photonic crystal layer of three-layer composite film.
  • Step 350 Apply a transfer layer on the surface of the substrate.
  • a transfer layer is formed on the surface of the substrate.
  • First coated with a resin precursor on the surface of the substrate including but not limited to spin coating (spin coating), slit coating or blade coating.
  • the material of the resin precursor is ultraviolet curing resin, and DIMAX is selected in this embodiment.
  • D8350 UV cold glue is selected in this embodiment.
  • the resin film is formed by irradiating the resin precursor with ultraviolet light. Specifically, when the resin precursor is irradiated with ultraviolet light, the resin precursor undergoes a chemical curing reaction to form a resin film. Control the degree of curing of the resin film by controlling the intensity of the ultraviolet light, the irradiation time, and the wavelength Curing degree, and irradiating ultraviolet light enhances the structural strength of the resin film, and maintains the resin film in a fluid state to have plasticity. In this embodiment, the degree of curing of the resin film is 50. %, but not limited to this.
  • Step 360 bonding the surface of the photonic crystal layer with a transfer layer on the substrate.
  • the semi-cured resin film on the substrate is attached to the surface of the photonic crystal layer, and then imprinted on the substrate by an imprinting mold.
  • the imprinting mold has a three-dimensional structure surface, and the resin film is embossed by the three-dimensional structure surface.
  • the three-dimensional pattern surface matches the pattern design of the imprinting mold.
  • the method of forming the resin film into a three-dimensional structure surface is not limited to embossing, and in other embodiments, a three-dimensional pattern surface may be formed on the resin film by, for example, etching.
  • the resin film is completely cured, so that the resin film is solidified between the substrate and the photonic crystal layer to form a transfer layer, thereby forming an appearance three-dimensional pattern surface on the surface of the transfer layer. Since the transfer layer is viscous after cross-linking via ultraviolet light, the photonic crystal layer can be tightly bonded to the substrate through the transfer layer. Finally, the assembly substrate and the release layer are removed from the surface of the photonic crystal layer to obtain a transfer layer on the substrate. (The appearance of a three-dimensional pattern surface) and the transfer film of the photonic crystal layer.
  • the composition of the release layer is controlled by the composition of the release layer to improve the coating suitability of the photonic crystal emulsion, and the photonic crystal emulsion can be closely adhered to the release layer after drying, so that the release layer and the photonic crystal
  • the bonding force between the layers is greater than the bonding force between the assembled substrate and the release layer.
  • the adhesive layer has adhesive properties, and the bonding force between the substrate and the photonic crystal layer is greater than the bonding force between the assembled substrate and the release layer. Therefore, to pre
  • the advantage of forming a photonic crystal layer as a consumable on the surface of the assembled substrate is that the photonic crystal layer is transferred to the surface of the substrate to be directly assembled by transfer.
  • the substrate can be, but is not limited to, a porous substrate, a curved substrate or a low surface energy material substrate.
  • the substrate can be made of paper, plastic, glass, ceramic, leather, wood or metal, but not limited thereto.
  • the transfer layer has adhesive property to obtain high adhesion of the substrate, and then the stamping effect of the photonic crystal layer is achieved by stamping the stamping die or the shapeable ultraviolet resin.
  • Step 410 providing an assembly substrate
  • Step 420 forming a release layer on the surface of the assembled substrate, and the release layer is used to adjust the interface performance of the assembled substrate;
  • Step 430 preparing a photonic crystal emulsion according to a surface tension coefficient of the release layer
  • Step 440 coating a photonic crystal emulsion on the surface of the release layer, and the photonic crystal emulsion is solidified into a photonic crystal layer on the surface of the release layer;
  • Step 450 providing a printing substrate, coating or printing a transfer layer on a surface of the printing substrate or a surface of the photonic crystal layer;
  • Step 460 The transfer layer on the substrate is bonded to the surface of the photonic crystal layer and the assembled substrate is optionally removed from the release layer.
  • the assembly substrate may be a flexible and windable substrate for Roll-to-roll coating method.
  • the assembled substrate can be, but is not limited to, a polyethylene terephthalate film, a biaxially oriented polypropylene film, a polyethylene film, a cellulose film, a polyvinyl alcohol film, or paper.
  • the assembled substrate may be a polyethylene terephthalate film. (PET) film, but not limited to this.
  • Step 420 The resin type release agent is directly applied to the surface of the assembled substrate, the release agent is adhered to the surface of the assembly substrate, and then dried, and the release agent is cured on the surface of the assembly substrate to form a release layer on the surface of the assembly substrate.
  • the release agent material is merely illustrative and not limited thereto. Adjusting the interfacial properties of the assembled substrate surface by the composition of the release layer, such as controlling the surface tension coefficient of the release layer 34 dyn/cm to 58 dyn/cm, but not limited to this.
  • Step 430 The specific implementation manner is the same as step 130 of the foregoing Embodiment 1, and details are not described herein again.
  • Step 440 The specific implementation manner thereof and the step 140 of the foregoing Embodiment 1 Roughly the same, the following only explains the differences, and the rest will not be described again.
  • Coat to roll to roll By coating the surface of the release layer with a polystyrene nanosphere emulsion, when the polystyrene nanosphere emulsion is completely and uniformly covered in the release layer, at 75 ° C Dry down.
  • the polystyrene microspheres are self-assembled into an ordered structure to form a blue-green photonic crystal layer having a thickness of about 5 micrometers to 20 micrometers, thereby obtaining an assembled substrate (PET film)/ Three-layer composite film of release layer / photonic crystal layer.
  • Step 450 Apply a transfer layer on the surface of the photonic crystal layer.
  • Step 460 bonding the transfer layer on the surface of the photonic crystal layer to the surface of the substrate.
  • the transfer layer on the surface of the photonic crystal layer is attached to the surface of the printing substrate, and is imprinted on the assembly substrate by a hot stamping mold having a three-dimensional structural surface.
  • the three-dimensional structural surface of the hot stamping die is embossed on the assembled substrate at a temperature of 100 ° C and a pressure of 3 kg, so that the transfer layer matches the three-dimensional structural surface to form an external three-dimensional patterned surface. That is to say, the appearance three-dimensional pattern surface copies the same three-dimensional appearance according to the three-dimensional pattern or the three-dimensional texture of the three-dimensional structure surface.
  • the photonic crystal layer Since the hot melt of the transfer layer is viscous after being subjected to hot pressing, the photonic crystal layer is tightly bonded to the substrate through the transfer layer. Finally, the assembly substrate is removed from the surface of the release layer to obtain a transfer layer on the substrate ( A transfer film having an appearance of a three-dimensional pattern surface and a photonic crystal layer. At this time, the resin type release agent retains the outside of the photonic crystal layer, and functions as a photoprotective layer on the surface of the photonic crystal layer.
  • the assembly substrate may be a flexible and windable substrate for Roll-to-roll coating method.
  • the assembled substrate can be, but is not limited to, a polyethylene terephthalate film, a biaxially oriented polypropylene film, a polyethylene film, a cellulose film, a polyvinyl alcohol film, or paper.
  • the assembled substrate can be PET film, but not limited to this.
  • Step 420 The resin type release agent is directly applied to the surface of the assembled substrate, the release agent is adhered to the surface of the assembly substrate, and then dried, and the release agent is cured on the surface of the assembly substrate to form a release layer on the surface of the assembly substrate.
  • the release agent material is merely illustrative and not limited thereto.
  • Controlling the surface of the assembled substrate by the composition of the release layer Interface properties, such as controlling the surface tension coefficient of the release layer, are from 34 dyn/cm to 58 dyn/cm, but are not limited thereto.
  • Step 430 The specific implementation manner is the same as step 130 of the foregoing Embodiment 2, and details are not described herein again.
  • Step 440 The specific implementation manner and the step 140 of the foregoing Embodiment 2 Roughly the same, the following only explains the differences, and the rest will not be described again. Coiled to roll In a manner, a silica nanosphere emulsion is coated on the surface of the release layer, and the silica nanosphere emulsion is completely and uniformly covered in the release layer at 75 ° C. Dry down.
  • magenta silica microsphere suspension emulsion ie photonic crystal emulsion
  • the self-assembly mechanism of the liquid surface allows the magenta silica microspheres to self-assemble into an ordered structure, thereby forming a blue-green photonic crystal layer having a thickness of about 5 micrometers to 20 micrometers, thereby obtaining an assembled substrate (PET).
  • PET substrate
  • Thin film) / release layer / photonic crystal layer of three-layer composite film is
  • Step 450 Apply a transfer layer on the surface of the photonic crystal layer.
  • a transfer layer is formed on the surface of the photonic crystal layer.
  • a resin precursor on the surface of the photonic crystal layer, including but not limited to spin coating (spin coating), slit coating or blade coating.
  • the material of the resin precursor is ultraviolet curing resin, and DIMAX is selected in this embodiment.
  • D8350 UV cold glue is selected in this embodiment.
  • the resin film is formed by irradiating the resin precursor with ultraviolet light. Specifically, when the resin precursor is irradiated with ultraviolet light, the resin precursor undergoes a chemical curing reaction to form a resin film. Control the degree of curing of the resin film by controlling the intensity of the ultraviolet light, the irradiation time, and the wavelength Curing degree, and irradiating ultraviolet light enhances the structural strength of the resin film, and maintains the resin film in a fluid state to have plasticity. In this embodiment, the degree of curing of the resin film is 50. %, but not limited to this.
  • Step 460 bonding the transfer layer on the photonic crystal layer to the surface of the substrate.
  • the semi-cured resin film on the photonic crystal layer is attached to the surface of the printing substrate, and then imprinted on the printing substrate by an imprinting mold, the imprinting mold has a three-dimensional structural surface, and the resin film is embossed by the three-dimensional structure surface.
  • the three-dimensional pattern surface matches the pattern design of the imprinting mold.
  • the method of forming the resin film into a three-dimensional structure surface is not limited to embossing, and in other embodiments, a three-dimensional pattern surface may be formed on the resin film by, for example, etching.
  • the resin film is completely cured, so that the resin film is solidified between the substrate and the photonic crystal layer to form a transfer layer, thereby forming an appearance three-dimensional pattern surface on the surface of the transfer layer. Since the transfer layer is viscous after cross-linking via ultraviolet light, the photonic crystal layer can be tightly bonded to the substrate through the transfer layer. Finally, the assembly substrate is removed from the surface of the release layer to obtain a transfer layer on the substrate. (The appearance of a three-dimensional pattern surface) and the transfer film of the photonic crystal layer.
  • the assembly substrate may be a flexible and windable substrate for Roll-to-roll coating method.
  • the assembled substrate can be, but is not limited to, a polyethylene terephthalate film, a biaxially oriented polypropylene film, a polyethylene film, a cellulose film, a polyvinyl alcohol film, or paper.
  • the assembled substrate can be PET film, but not limited to this.
  • Step 420 The resin type release agent is directly applied to the surface of the assembled substrate, the release agent is adhered to the surface of the assembly substrate, and then dried, and the release agent is cured on the surface of the assembly substrate to form a release layer on the surface of the assembly substrate.
  • the release agent material is merely illustrative and not limited thereto.
  • Controlling the surface of the assembled substrate by the composition of the release layer Interface properties, such as controlling the surface tension coefficient of the release layer, are from 34 dyn/cm to 58 dyn/cm, but are not limited thereto.
  • Step 430 The specific implementation manner is the same as step 130 of the foregoing Embodiment 2, and details are not described herein again.
  • Step 440 The specific implementation manner and the step 140 of the foregoing Embodiment 2 Roughly the same, the following only explains the differences, and the rest will not be described again. Coiled to roll In a manner, a silica nanosphere emulsion is coated on the surface of the release layer, and the silica nanosphere emulsion is completely and uniformly covered in the release layer at 75 ° C. Dry down.
  • magenta silica microsphere suspension emulsion ie photonic crystal emulsion
  • the self-assembly mechanism of the liquid surface allows the magenta silica microspheres to self-assemble into an ordered structure, thereby forming a blue-green photonic crystal layer having a thickness of about 5 micrometers to 20 micrometers, thereby obtaining an assembled substrate (PET).
  • PET substrate
  • Thin film) / release layer / photonic crystal layer of three-layer composite film is
  • Step 450 Printing a transfer layer on the surface of the substrate.
  • the surface of the substrate is formed with a transfer layer.
  • the resin precursor is first printed on the surface of the substrate, including but not limited to offset printing and flexo printing.
  • the material of the resin precursor is ultraviolet curing resin, and DIMAX is selected in this embodiment.
  • D8350 UV cold glue but not limited to this.
  • the resin film is formed by irradiating the resin precursor with ultraviolet light. Specifically, when the resin precursor is irradiated with ultraviolet light, the resin precursor undergoes a chemical curing reaction to form a resin film. Control the degree of curing of the resin film by controlling the intensity of the ultraviolet light, the irradiation time, and the wavelength Curing degree, and irradiating ultraviolet light enhances the structural strength of the resin film, and maintains the resin film in a fluid state to have plasticity. In this embodiment, the degree of curing of the resin film is 50. %, but not limited to this.
  • Step 460 bonding the transfer layer on the photonic crystal layer to the surface of the substrate.
  • the semi-cured resin film on the substrate is attached to the surface of the photonic crystal layer, and the resin film is completely cured, so that the resin film is solidified between the substrate and the photonic crystal layer to form a transfer layer, thereby forming a surface on the transfer layer.
  • Appearance three-dimensional pattern surface Since the transfer layer is viscous after cross-linking via ultraviolet light, the photonic crystal layer can be tightly bonded to the substrate through the transfer layer.
  • the assembly substrate is removed from the surface of the release layer to obtain a transfer layer on the substrate. (The appearance of a three-dimensional pattern surface) and the transfer film of the photonic crystal layer.
  • the composition of the release layer is controlled by the composition of the release layer to improve the coating suitability of the photonic crystal emulsion, and the photonic crystal emulsion can be closely adhered to the release layer after drying, so that the release layer and the photonic crystal
  • the bonding force between the layers is greater than the bonding force between the assembled substrate and the release layer.
  • the adhesive layer has adhesive properties, and the bonding force between the substrate and the photonic crystal layer is greater than the bonding force between the assembled substrate and the release layer. Therefore, the advantage of forming a photonic crystal layer as a consumable material on the surface of the pre-assembled substrate is that the photonic crystal layer is transferred to a surface of the substrate which is difficult to directly assemble by transfer. .
  • the substrate can be, but is not limited to, a porous substrate, a curved substrate or a low surface energy material substrate.
  • the substrate can be made of paper, plastic, glass, ceramic, leather, wood or metal, but not limited thereto.
  • the transfer layer has adhesive property to obtain high adhesion of the substrate, and then the stamping effect of the photonic crystal layer is achieved by stamping the stamping die or the shapeable ultraviolet resin.
  • Step 510 providing an assembly substrate
  • Step 520 preparing a photonic crystal emulsion according to a surface tension coefficient of the assembled substrate
  • Step 530 Coating the photonic crystal emulsion on the surface of the assembled substrate, and the photonic crystal emulsion is solidified into a photonic crystal layer on the surface of the assembled substrate.
  • the assembled substrate may be a flexible and windable substrate for roll to roll
  • the coating method is used.
  • the assembled substrate can be, but is not limited to, Poly Ethylene Terephthalate (PET) film, biaxially oriented polypropylene. (Biaxially Oriented Polypropylene, BOPP) Film, Polyethylene (PE) Film, cellulose film, polyvinyl alchohol (PVA) film or paper.
  • the assembled substrate may be polyethylene terephthalate (PET). Film, but not limited to this.
  • PET Polyethylene terephthalate
  • the surface tension coefficient of the assembled substrate ranges from 28 dyn/cm to 58 dyn/cm (dyne per centimeter). , but not limited to this.
  • Step 520 preparing polystyrene nanospheres for synthesizing a polystyrene microsphere suspension emulsion.
  • a polystyrene microsphere suspension emulsion that is, a photonic crystal emulsion, wherein the particle diameter of the polystyrene microsphere is 215 nm, and the polydispersivity index (PDI) is 0.02.
  • Step 530 coating the surface of the assembled substrate with a photonic crystal emulsion.
  • Coat to roll to roll By applying a photonic crystal emulsion to the surface of the assembled substrate, when the photonic crystal emulsion is completely and uniformly covered on the assembled substrate, at 75 ° C Dry down.
  • the polystyrene microspheres are self-assembled into an ordered structure to form a blue-green photonic crystal layer having a thickness of about 5 micrometers to 20 micrometers, thereby obtaining an assembled substrate (PET film)/ A two-layer composite film of a photonic crystal layer.
  • the assembled substrate can be a flexible and rollable substrate for use in a roll-to-roll coating process.
  • the assembled substrate can be, but is not limited to, a polyethylene terephthalate film, a biaxially oriented polypropylene film, a polyethylene film, a cellulose film, a polyvinyl alcohol film, or paper.
  • the assembled substrate can be biaxially oriented polypropylene (BOPP) film, but not limited to this.
  • the surface tension coefficient of the assembled substrate ranges from 28 dyn/cm to 58 dyn/cm (dyne per centimeter, dyne value) ), but not limited to this.
  • Step 520 Preparation of a silica microsphere suspension emulsion.
  • PDI deionized water
  • Magenta dye solution, monodisperse silica microsphere suspension emulsion and absolute alcohol by volume ratio 1 : 3 : 2 The preparation was carried out and dispersed by ultrasonic for 10 minutes to obtain a homogeneously mixed magenta silica microsphere suspension emulsion.
  • Step 530 coating the surface of the assembled substrate with a photonic crystal emulsion.
  • Coat to roll to roll By applying a photonic crystal emulsion to the surface of the assembled substrate, when the photonic crystal emulsion is completely and uniformly covered on the assembled substrate, at 75 ° C Dry down. Promote self-assembly of magenta silica microspheres of magenta silica microsphere suspension emulsion (ie photonic crystal emulsion) on gas-liquid surface by temperature and solvent evaporation control (Self-Assembly) mechanism, which allows the magenta silica microspheres to self-assemble into an ordered structure, thereby forming a blue-green photonic crystal layer with a thickness of about 5 microns to 20 microns.
  • a two-layer composite film of a substrate (BOPP film) / photonic crystal layer is assembled.
  • the advantage of the roll-to-roll coating method is that the surface tension coefficient of the assembled substrate is used to precisely control the wettability of the photonic crystal emulsion on the surface of the assembled substrate, and the coating of the photonic crystal emulsion is improved in the case of reducing the addition of the auxiliary agent.
  • Sexuality and can be The surface of the substrate is assembled to carry out a large-area and defect-free coated photonic crystal emulsion to achieve a high-speed, high-quality photonic crystal coating method.
  • Step 610 providing an assembly substrate
  • Step 620 preparing a photonic crystal emulsion according to a surface tension coefficient of the assembled substrate
  • Step 630 coating the photonic crystal emulsion on the surface of the assembled substrate, and the photonic crystal emulsion is solidified into a photonic crystal layer on the surface of the assembled substrate;
  • Step 640 coating the transfer layer on the surface of the photonic crystal layer
  • Step 650 A substrate is provided, the substrate is bonded to the transfer layer, and the assembled substrate is optionally removed from the photonic crystal layer.
  • the assembly substrate may be a flexible and windable substrate for Roll-to-roll coating method.
  • the assembled substrate can be, but is not limited to, a polyethylene terephthalate film, a biaxially oriented polypropylene film, a polyethylene film, a cellulose film, a polyvinyl alcohol film, or paper.
  • the assembled substrate may be polyethylene terephthalate. (PET) film, but not limited to this.
  • PET polyethylene terephthalate.
  • the surface tension coefficient of the assembled substrate ranges from 28 dyn/cm to 58 dyn/cm (dyne per centimeter). , but not limited to this.
  • Step 620 The specific implementation manner is the same as step 420 of the foregoing Embodiment 4, and details are not described herein again.
  • Step 630 The specific implementation manner and the step 430 of the foregoing Embodiment 4 Roughly the same, the following only explains the differences, and the rest will not be described again.
  • Coat to roll to roll By applying a photonic crystal emulsion to the surface of the assembled substrate, when the photonic crystal emulsion is completely and uniformly covered on the assembled substrate, at 75 ° C Dry down.
  • the polystyrene microspheres are self-assembled into an ordered structure to form a blue-green photonic crystal layer having a thickness of about 5 micrometers to 20 micrometers, thereby obtaining an assembled substrate (PET film)/ A two-layer composite film of a photonic crystal layer.
  • Step 640 Coating a transfer layer on the surface of the photonic crystal layer.
  • a transfer layer is coated on the photonic crystal layer.
  • Step 650 Attach the substrate to the rubber surface of the transfer layer.
  • the substrate is bonded to the transfer layer and imprinted on the assembly substrate by a stamping die having a three-dimensional structure surface at about 1
  • the three-dimensional structural surface of the hot stamping die is embossed on the assembled substrate at a temperature of 100 ° C and a pressure of 3 kg, so that the transfer layer matches the three-dimensional structural surface to form an appearance three-dimensional pattern surface. That is to say, the appearance three-dimensional pattern surface copies the same three-dimensional appearance according to the three-dimensional pattern or the three-dimensional texture of the three-dimensional structure surface.
  • the photonic crystal layer Since the hot melt of the transfer layer is viscous after being subjected to hot pressing, the photonic crystal layer is tightly bonded to the substrate through the transfer layer. Finally, the assembly substrate is removed from the surface of the photonic crystal layer to obtain a transfer layer on the substrate. (The appearance of a three-dimensional pattern surface) and the transfer film of the photonic crystal layer.
  • the assembly substrate may be a flexible and windable substrate for Roll-to-roll coating method.
  • the assembled substrate can be, but is not limited to, a polyethylene terephthalate film, a biaxially oriented polypropylene film, a polyethylene film, a cellulose film, a polyvinyl alcohol film, or a paper.
  • the assembled substrate can be biaxially oriented polypropylene (BOPP) film, but not limited to this.
  • the surface tension coefficient of the assembled substrate ranges from 28 dyn/cm to 58 dyn/cm (dyne per centimeter, dyne value) ), but not limited to this.
  • Step 620 The specific implementation manner is the same as step 420 of the foregoing Embodiment 1, and details are not described herein again.
  • Step 630 The specific implementation manner is the same as the step 430 of the foregoing Embodiment 1 Roughly the same, the following only explains the differences, and the rest will not be described again.
  • the photonic crystal emulsion is applied to the surface of the assembled substrate in a roll-to-roll coating manner, and the photonic crystal emulsion is completely and uniformly covered in the release layer at 75 ° C. Dry down.
  • magenta silica microsphere suspension emulsion ie photonic crystal emulsion
  • the magenta silica microsphere suspension emulsion is promoted in the magenta silica microspheres in the gas -
  • the self-assembly mechanism of the liquid surface allows the magenta silica microspheres to self-assemble into an ordered structure, thereby forming a blue-green photonic crystal layer having a thickness of about 5 micrometers to 20 micrometers, thereby obtaining an assembled substrate.
  • BOPP film Two-layer composite film of photonic crystal layer.
  • Step 640 Coating a transfer layer on the surface of the photonic crystal layer.
  • a transfer layer is formed on the photonic crystal layer.
  • a resin precursor on the surface of the photonic crystal layer, including but not limited to spin coating (spin coating), slit coating or blade coating.
  • the material of the resin precursor is ultraviolet curing resin, and DIMAX is selected in this embodiment.
  • D8350 UV cold glue is selected in this embodiment.
  • the resin film is formed by irradiating the resin precursor with ultraviolet light. Specifically, when the resin precursor is irradiated with ultraviolet light, the resin precursor undergoes a chemical curing reaction to form a resin film. Control the degree of curing of the resin film by controlling the intensity of the ultraviolet light, the irradiation time, and the wavelength Curing degree, and irradiating ultraviolet light enhances the structural strength of the resin film, and maintains the resin film in a fluid state to have plasticity. In this embodiment, the degree of curing of the resin film is 50. %, but not limited to this.
  • Step 650 Attach the substrate to the rubber surface of the transfer layer.
  • the printing substrate and the semi-cured resin film are adhered to each other, and then imprinted on the printing substrate by an imprinting mold, the imprinting mold has a three-dimensional structural surface, and the resin film is embossed by the three-dimensional structure surface to have a three-dimensional pattern surface, and The three-dimensional pattern surface matches the pattern design of the imprinting mold.
  • the method of forming the resin film into a three-dimensional pattern surface is not limited to embossing, and in other embodiments, a three-dimensional pattern surface may be formed on the resin film by, for example, etching.
  • the resin film is completely cured, so that the resin film is solidified on the surface of the substrate to form a transfer layer, thereby forming an appearance three-dimensional pattern surface on the surface of the transfer layer. Since the transfer layer is viscous after cross-linking via ultraviolet light, the photonic crystal layer can be tightly bonded to the substrate through the transfer layer. Finally, the assembly substrate is removed from the surface of the photonic crystal layer to obtain a transfer layer on the substrate. (The appearance of a three-dimensional pattern surface) and the transfer film of the photonic crystal layer.
  • Step 710 providing an assembly substrate
  • Step 720 preparing a photonic crystal emulsion according to a surface tension coefficient of the assembled substrate
  • Step 730 coating the photonic crystal emulsion on the surface of the assembled substrate, and the photonic crystal emulsion is solidified into a photonic crystal layer on the surface of the assembled substrate;
  • Step 740 providing a substrate on which the transfer layer is coated on the surface of the substrate; step 750: The transfer layer on the substrate is bonded to the surface of the photonic crystal layer, and the assembled substrate is optionally removed from the photonic crystal layer.
  • the assembly substrate may be a flexible and windable substrate for Roll-to-roll coating method.
  • the assembled substrate can be, but is not limited to, a polyethylene terephthalate film, a biaxially oriented polypropylene film, a polyethylene film, a cellulose film, a polyvinyl alcohol film, or paper.
  • the assembled substrate may be a polyethylene terephthalate film. (PET) film, but not limited to this.
  • PET polyethylene terephthalate film, but not limited to this.
  • the surface tension coefficient of the assembled substrate ranges from 28 dyn/cm to 58 dyn/cm (dyne per centimeter). , but not limited to this.
  • Step 720 The specific implementation manner is the same as step 420 of the foregoing Embodiment 4, and details are not described herein again.
  • Step 730 The specific implementation manner thereof and the step 430 of the foregoing Embodiment 4 Roughly the same, the following only explains the differences, and the rest will not be described again.
  • Coat to roll to roll By applying a photonic crystal emulsion to the surface of the assembled substrate, when the photonic crystal emulsion is completely and uniformly covered on the assembled substrate, at 75 ° C Dry down.
  • the polystyrene microspheres are self-assembled into an ordered structure to form a blue-green photonic crystal layer having a thickness of about 5 micrometers to 20 micrometers, thereby obtaining an assembled substrate (PET film)/ A two-layer composite film of a photonic crystal layer.
  • Step 740 Apply a transfer layer on the surface of the substrate.
  • the transfer layer is coated on the substrate.
  • a hot melt solvent such as polyurethane
  • a transfer layer having a hot melt adhesive is formed on the surface of the substrate to form a thermal transfer film for assembling the substrate (PET film) / transfer layer.
  • Step 750 bonding to the surface of the photonic crystal layer with a transfer layer on the substrate.
  • the transfer layer of the surface of the substrate is attached to the surface of the photonic crystal layer and imprinted on the substrate or the assembly substrate by a stamping die.
  • the stamping die has a three-dimensional structure surface, and the temperature is 100 in about 1 second. °C and 3kg
  • the pressure embosses the three-dimensional structural surface of the hot stamping mold on the assembled substrate such that the transfer layer matches the three-dimensional structural surface to form an appearance three-dimensional pattern surface. That is to say, the appearance three-dimensional pattern surface copies the same three-dimensional appearance according to the three-dimensional pattern or the three-dimensional texture of the three-dimensional structure surface.
  • the photonic crystal layer Since the hot melt of the transfer layer is viscous after being subjected to hot pressing, the photonic crystal layer is tightly bonded to the substrate through the transfer layer. Finally, the assembly substrate is removed from the surface of the photonic crystal layer to obtain a transfer layer on the substrate. (The appearance of a three-dimensional pattern surface) and the transfer film of the photonic crystal layer.
  • the assembly substrate may be a flexible and windable substrate for Roll-to-roll coating method.
  • the assembled substrate can be, but is not limited to, a polyethylene terephthalate film, a biaxially oriented polypropylene film, a polyethylene film, a cellulose film, a polyvinyl alcohol film, or paper.
  • the assembled substrate can be biaxially oriented polypropylene (BOPP) film, but not limited to this.
  • the surface tension coefficient of the assembled substrate ranges from 28 dyn/cm to 58 dyn/cm (dyne per centimeter, dyne value) ), but not limited to this.
  • Step 720 The specific implementation manner is the same as step 420 of the foregoing Embodiment 4, and details are not described herein again.
  • Step 730 The specific implementation manner thereof and the step 430 of the foregoing Embodiment 4 Roughly the same, the following only explains the differences, and the rest will not be described again.
  • the photonic crystal emulsion is coated on the surface of the release layer in a roll-to-roll coating manner, at 75 ° C when the photonic crystal emulsion is completely and uniformly covered in the release layer. Dry down.
  • magenta silica microsphere suspension emulsion ie photonic crystal emulsion
  • the magenta silica microsphere suspension emulsion is promoted in the magenta silica microspheres in the gas -
  • the self-assembly mechanism of the liquid surface allows the magenta silica microspheres to self-assemble into an ordered structure, thereby forming a blue-green photonic crystal layer having a thickness of about 5 micrometers to 20 micrometers, thereby obtaining an assembled substrate.
  • BOPP film Two-layer composite film of photonic crystal layer.
  • Step 740 Apply a transfer layer on the surface of the substrate.
  • a transfer layer is formed on the surface of the substrate.
  • First coated with a resin precursor on the surface of the substrate including but not limited to spin coating (spin coating), slit coating or blade coating.
  • the material of the resin precursor is ultraviolet curing resin, and DIMAX is selected in this embodiment.
  • D8350 UV cold glue is selected in this embodiment.
  • the resin film is formed by irradiating the resin precursor with ultraviolet light. Specifically, when the resin precursor is irradiated with ultraviolet light, the resin precursor undergoes a chemical curing reaction to form a resin film. Control the degree of curing of the resin film by controlling the intensity of the ultraviolet light, the irradiation time, and the wavelength Curing degree, and irradiating ultraviolet light enhances the structural strength of the resin film, and maintains the resin film in a fluid state to have plasticity. In this embodiment, the degree of curing of the resin film is 50. %, but not limited to this.
  • Step 760 bonding to the surface of the photonic crystal layer with a transfer layer on the substrate.
  • the semi-cured resin film on the substrate is attached to the surface of the photonic crystal layer, and then imprinted on the substrate by an imprinting mold.
  • the imprinting mold has a three-dimensional structure surface, and the resin film is embossed by the three-dimensional structure surface.
  • the three-dimensional pattern surface matches the pattern design of the imprinting mold.
  • the method of forming the resin film into a three-dimensional structure surface is not limited to embossing, and in other embodiments, a three-dimensional pattern surface may be formed on the resin film by, for example, etching.
  • the resin film is completely cured, so that the resin film is solidified between the substrate and the photonic crystal layer to form a transfer layer, thereby forming an appearance three-dimensional pattern surface on the surface of the transfer layer. Since the transfer layer is viscous after cross-linking via ultraviolet light, the photonic crystal layer can be tightly bonded to the substrate through the transfer layer. Finally, the assembly substrate is removed from the surface of the photonic crystal layer to obtain a transfer layer on the substrate. (The appearance of a three-dimensional pattern surface) and the transfer film of the photonic crystal layer.
  • Step 810 providing an assembly substrate
  • Step 820 preparing a photonic crystal emulsion according to a surface tension coefficient of the assembled substrate
  • Step 830 coating the photonic crystal emulsion on the surface of the assembled substrate, and the photonic crystal emulsion is solidified into a photonic crystal layer on the surface of the assembled substrate;
  • Step 840 providing a substrate on which the transfer layer is coated on the surface of the substrate;
  • Step 850 bonding to the surface of the photonic crystal layer with a transfer layer on the substrate.
  • the assembled substrate may be a flexible and windable substrate for Roll-to-roll coating method.
  • the assembled substrate can be, but is not limited to, a polyethylene terephthalate film, a biaxially oriented polypropylene film, a polyethylene film, a cellulose film, a polyvinyl alcohol film, or paper.
  • the assembled substrate may be a polyethylene terephthalate film. (PET) film, but not limited to this.
  • PET polyethylene terephthalate film.
  • the surface tension coefficient of the assembled substrate ranges from 28 dyn/cm to 58 dyn/cm (dyne per centimeter). , but not limited to this.
  • Step 820 The specific implementation manner is the same as step 420 of the foregoing Embodiment 4, and details are not described herein again.
  • Step 830 The specific implementation manner and the step 430 of the foregoing Embodiment 4 Roughly the same, the following only explains the differences, and the rest will not be described again.
  • Coat to roll to roll By applying a photonic crystal emulsion to the surface of the assembled substrate, when the photonic crystal emulsion is completely and uniformly covered on the assembled substrate, at 75 ° C Dry down.
  • the polystyrene microspheres are self-assembled into an ordered structure to form a blue-green photonic crystal layer having a thickness of about 5 micrometers to 20 micrometers, thereby obtaining an assembled substrate (PET film)/ A two-layer composite film of a photonic crystal layer.
  • Step 840 Applying a transfer layer on the surface of the substrate.
  • the transfer layer is coated on the substrate.
  • First use hot melt adhesive (this example uses Urida 809 hot melt adhesive, but not limited to this) It is uniformly coated on the surface of the substrate, and then dried at 85 ° C to form a transfer layer with a hot melt adhesive on the surface of the substrate to form a heat transfer film for assembling the substrate (PET film) / transfer layer.
  • Step 850 bonding to the surface of the photonic crystal layer with a transfer layer on the substrate.
  • the transfer layer of the surface of the substrate is attached to the surface of the photonic crystal layer and imprinted on the substrate or the assembly substrate by a stamping die.
  • the stamping die has a three-dimensional structure surface, and the temperature is 100 in about 1 second. °C and 3kg
  • the pressure embosses the three-dimensional structural surface of the hot stamping mold on the assembled substrate such that the transfer layer matches the three-dimensional structural surface to form an appearance three-dimensional pattern surface. That is to say, the appearance three-dimensional pattern surface copies the same three-dimensional appearance according to the three-dimensional pattern or the three-dimensional texture of the three-dimensional structure surface.
  • the hot melt adhesive of the transfer layer is viscous after being subjected to hot pressing, so that the photonic crystal layer is tightly bonded to the printing substrate through the transfer layer, a transfer layer, a photonic crystal layer and a transfer layer can be obtained on the substrate.
  • the transfer film of the substrate is assembled.
  • the assembled substrate may be a flexible and windable substrate for Roll-to-roll coating method.
  • the assembled substrate can be, but is not limited to, a polyethylene terephthalate film, a biaxially oriented polypropylene film, a polyethylene film, a cellulose film, a polyvinyl alcohol film, or paper.
  • the assembled substrate can be biaxially oriented polypropylene (BOPP) film, but not limited to this.
  • the surface tension coefficient of the assembled substrate ranges from 28 dyn/cm to 58 dyn/cm (dyne per centimeter, dyne value) ), but not limited to this.
  • Step 820 The specific implementation manner is the same as step 420 of the foregoing Embodiment 4, and details are not described herein again.
  • Step 830 The specific implementation manner and the step 430 of the foregoing Embodiment 4 Roughly the same, the following only explains the differences, and the rest will not be described again.
  • the photonic crystal emulsion is coated on the surface of the release layer in a roll-to-roll coating manner, at 75 ° C when the photonic crystal emulsion is completely and uniformly covered in the release layer. Dry down.
  • magenta silica microsphere suspension emulsion ie photonic crystal emulsion
  • the magenta silica microsphere suspension emulsion is promoted in the magenta silica microspheres in the gas -
  • the self-assembly mechanism of the liquid surface allows the magenta silica microspheres to self-assemble into an ordered structure, thereby forming a blue-green photonic crystal layer having a thickness of about 5 micrometers to 20 micrometers, thereby obtaining an assembled substrate.
  • BOPP film Two-layer composite film of photonic crystal layer.
  • Step 840 Applying a transfer layer on the surface of the substrate.
  • a transfer layer is formed on the surface of the substrate.
  • First coated with a resin precursor on the surface of the substrate including but not limited to spin coating (spin coating), slit coating (Slot DieCoating) or blade coating (blade coating) .
  • the material of the resin precursor is an ultraviolet curing resin.
  • DIMAX D8350 UV cold glue is used, but not limited thereto.
  • the resin film is formed by irradiating the resin precursor with ultraviolet light. Specifically, when the resin precursor is irradiated with ultraviolet light, the resin precursor undergoes a chemical curing reaction to form a resin film. Control the degree of curing of the resin film by controlling the intensity of the ultraviolet light, the irradiation time, and the wavelength Curing degree, and irradiating ultraviolet light enhances the structural strength of the resin film, and maintains the resin film in a fluid state to have plasticity. In this embodiment, the degree of curing of the resin film is 50. %, but not limited to this.
  • Step 860 bonding to the surface of the photonic crystal layer with a transfer layer on the substrate.
  • the semi-cured resin film on the substrate is attached to the surface of the photonic crystal layer, and then imprinted on the substrate by an imprinting mold.
  • the imprinting mold has a three-dimensional structure surface, and the resin film is embossed by the three-dimensional structure surface.
  • the three-dimensional pattern surface matches the pattern design of the imprinting mold.
  • the method of forming the resin film into a three-dimensional structure surface is not limited to embossing, and in other embodiments, a three-dimensional pattern surface may be formed on the resin film by, for example, etching.
  • the resin film is completely cured, so that the resin film is solidified between the substrate and the photonic crystal layer to form a transfer layer, thereby forming an appearance three-dimensional pattern surface. Since the transfer layer is viscous after being cross-linked by ultraviolet light, the photonic crystal layer can be closely adhered to the printing substrate through the transfer layer, and the transfer layer, the photonic crystal layer and the assembly can be obtained on the substrate. The transfer film of the substrate.
  • the wettability and coating suitability of the photonic crystal emulsion on the surface of the assembled substrate can be precisely adjusted, and the photonic crystal emulsion can be closely attached to the assembled substrate after drying.
  • the adhesion property of the transfer layer is such that the bonding force between the substrate and the photonic crystal layer is greater than the bonding force between the assembly substrate and the photonic crystal layer, thereby realizing patterning of the photonic crystal layer on the substrate.
  • the advantage of forming a photonic crystal layer on the surface of the pre-assembled substrate as a consumable is that the adhesion of the high-quality photonic crystal layer is achieved on the surface of the substrate on which the conventional photonic crystal is difficult to directly assemble by a simple and convenient transfer method.
  • the substrate can be, but is not limited to, a porous substrate, a curved substrate, or a low surface energy material substrate
  • the substrate can be made of paper, plastic, glass, ceramic, leather, wood or metal, but not limited to this.
  • the adhesion property of the transfer layer is obtained to obtain a higher adhesion of the substrate substrate, and the photonic crystal layer is realized by the stamping method of the hot stamping die or the ultraviolet resin which can be shaped by printing, etching or the like. The effect of the pattern.
  • the surface tension coefficient of the assembled substrate can be used to precisely adjust the wettability and coating of the photonic crystal emulsion on the surface of the assembled substrate.
  • the suitability of the photonic crystal emulsion can be improved by using the release layer of the assembled substrate surface as the undercoat layer of the photonic crystal emulsion to achieve uniformity of the photonic crystal emulsion with as little additive as possible.
  • the coating is applied to the surface of the assembled substrate, and then the roll-to-roll coating method is adopted, thereby achieving large-area and defect-free coating effect and increasing coating speed, thereby reducing the time and cost.
  • the roll-to-roll coating after the roll-to-roll coating is applied, it can be directly sent to the drying, and the temperature, humidity, time and solvent evaporation degree of the drying are controlled, so that the continuous phase in the photonic crystal emulsion is removed at an optimized rate to promote the photonic crystal.
  • the microspheres of the emulsion are in the gas - Self-assembly behavior of the liquid surface to achieve high-speed and high-quality photonic crystal emulsion assembly on the assembled substrate to obtain a large-area defect-free photonic crystal layer.
  • the photonic crystal emulsion forms a photonic crystal layer on the surface of the assembled substrate, it can be further in the photonic crystal layer
  • the surface is coated with a transfer layer, or a transfer layer is coated on the surface of the substrate, and an appearance three-dimensional pattern surface is formed by hot embossing or ultraviolet crosslinking.
  • the adhesive layer has a good adhesion between the photonic crystal layer and the substrate, and the cured three-dimensional pattern surface has good wear resistance, scratch resistance and hardness, and It is affected by the environment of high temperature and high humidity, and the assembled substrate is removed from the photonic crystal layer to obtain a transfer film having a photonic crystal structure.
  • the assembled substrate of the present invention may also not be removed.

Abstract

一种具有光子晶体结构的转印膜的制备方法,包括如下步骤:在组装基底上形成光子晶体层,再将组装基底上的光子晶体层转印到承印基底上。还提供了一种用上述制备方法制备的具有光子晶体结构的转印膜。

Description

具有光子晶体结构的转印膜及其制备方法 技术领域
本发明是关于一种转印膜,特别是一种具有光子晶体结构的转印膜及其制造方法。
背景技术
光子晶体是一种介电常数不同且空间呈周期分布的新型光学材料,由于其特殊的光调控性能,在光学、电子学、化学、生物化学等领域有着广泛的应用前景。光子晶体呈色的原理是光线经过周期性结构的布拉格衍射调制,通过反射光子晶体本身的禁带光可以得到对应的结构色,这种显色工艺简单、稳定、廉价、环保无污染,且具有颜色随可视角度变换、调控范围宽且方便、色彩持久等优势,是传统化学颜料、染料有力的替代品,其特殊的光谱特性,如高饱和度、角度光变、智慧响应等特性更使得其在智能包装,防伪溯源等领域有着广阔的应用前景。
迄今为止,有研究公开若干方法用于制备光子晶体,其中一种现有技术制备光子晶体的方法是胶体自组装法。简单地讲,胶体自组装法就是将光晶胶体粒子分散于溶剂连续相中形成胶体分散系,再将该胶体分散系采用相应技术手段涂覆于组装基材之上,在适当的外界条件下,如控温、控湿、低压等条件去除胶体分散系中的连续相,在这个过程中胶体分散系中的分散相进行自组装形成规则有序的排列模式,进而产生周期分布的具有不同介电常数的光学结构,产生结构色,胶体自组装法制备出的光子晶体具有与天然宝石蛋白石类似的结构,又被称为蛋白石型光子晶体。
现有技术中,光子晶体材料的自组装是直接在承印基底之上进行,为了获得较好的光子晶体组装质量,往往需要控制温度、湿度等外界条件,且组装过程缓慢耗时,对承印基底的要求也非常高,承印基底表面的粗糙度,浸润性,耐水、耐溶剂性都需要与胶体光子晶体乳液的组装条件相匹配才能获得可接受的组装效果,对于部分图形化的组装方案,甚至需要对承印基底进行图形化的浸润性调控才能实现,这都严重地限制了承印基底的选择,极大地增加了工艺难度,进而提高了成本。
并且部分方案中为了获得光子晶体与承印基底相适的物理性能,如附着力、光泽度,流平性,成膜性等参数需要加入相应助剂,但是,光子晶体的自组装过程是依靠分子间作用力的弱相互作用实现的,向体系内添加助剂都会间接影响光子晶体的组装质量,甚至无法组装,这些因素都影响了光子晶体产品应用的推广。
是以,现有技术的胶体自组装法仍有以下问题需要克服,由于对组装环境 ( 例如恒温、恒压、恒湿等 ) 要求较高,因此胶体微球自组装速度慢。再者,组装基底选择性差,通常无法在多孔基底 ( 如纤维纸 ) 、曲面基底 ( 如包装瓶 ) 等表面组装呈现结构色,只能在一些光滑刚性基底表面组装,方能适用重力沉积法、竖直沉积法、提拉法、旋涂法等制备方法。并且胶体微球组装后形成的光子晶体层与基底之间附着力较差而容易剥落,且结构强度也较差而不耐刮擦。另外,胶体微球的组装效果有着对乳液成分敏感,使得乳液中难以另添加助剂,再加上乳液自身的粘度,流平性能难以调节,造成乳液较不适宜用于印刷涂布的方式,导致组装效果与印刷质量难以兼顾。在图案化过程中,由于乳液本身印刷适性难以与组装质量兼顾,难以获得高质量的直接组装图案,且图形化过程中,由于咖啡环效应 (coffee ring effect) 的存在,使得影响光子晶体图案边缘组装质量,进而组装形态会与图案中心部分存在显着色差。
发明内容
有鉴于现有技术的缺陷,本发明要解决的技术问题是,如何在柔性基底上提供光子晶体层。
为实现上述目的,本发明一方面提供了一种 具有光子晶体结构的转印膜,包括:组装基底,光子晶体层,转印层,和承印基底。
  1. 进一步地,所述光子晶体层包括由纳米微球周期性排布形成的纳米微球层,所述纳米微球层为密堆积结构,所述密堆积结构使所述光学功能材料具有光泽。
  1. 进一步地,所述纳米微球的原料选自聚苯乙烯、聚丙烯酸酯、聚丙烯酸、二氧化硅、氧化铝、二氧化钛、氧化锆、聚酰亚胺、硅树脂、四氧化三铁和酚醛树脂酯组成的组。
  1. 进一步地,所述光子晶体层的光泽是波长为 200~2000nm 的红外光、可见光或紫外光。
  1. 进一步地,所述纳米微球间填充有填充介质,填充介质的介电常数与纳米微球的介电常数不同。
  1. 进一步地,所述纳米微球粒的 PDI 小于 0.05 。
  1. 优选地,所述组装基底为聚对苯二甲酸乙二酯 (PET) 薄膜、聚丙烯 PP 薄膜、聚乙烯 (PE) 薄膜、纤维素薄膜、聚乙烯醇 (PVA) 薄膜 PVC 薄膜或纸张。
  1. 更优选地,所述承印基底为多孔基底、曲面基底或低表面能材料基底,所述多孔基底包括纤维纸、布料、皮革、木材或表面粗糙多孔且可以吸收光子晶体乳液的基底材料,所述曲面基底包括曲面的纸张、塑料、玻璃、陶瓷、皮革、木材、金属或光子晶体乳液无法在其表面无法铺展组装固化成光子晶体层的基底材料。
  1. 进一步地,所述转印层由热熔胶或 UV 树脂前驱物制成。
  1. 在一个优选地实施方式中,本发明提供的转印膜还包括离型层,所述离型层介于所述组装基底与所述光子晶体层之间。
  1. 进一步地,所述离型层的表面张力系数介于 28 dyn/cm 至 58 dyn/cm ,所述光子晶体层的厚度介于 2 微米 (µm) 至 20 微米。
  1. 另一方面,本发明提供了一种具有光子晶体结构的转印膜的制备方法,包括以下步骤:提供组装基底;制备光子晶体乳液;在组装基底表面涂布所制备的光子晶体乳液,所述光子晶体乳液在组装基底表面固化成光子晶体层;通过转印将光子晶体层与承印基底结合并形成所述转印层,然后可选择的移除所述组装基底。
进一步地,在所述组装基底表面涂布所述光子晶体乳液的步骤包括:以卷对卷涂布方式在所述组装基底表面涂布所述光子晶体乳液,以获得连续的所述光子晶体层。
进一步地,通过转印将光子晶体层与承印基底结合并形成所述转印层的步骤包括:在所述光子晶体层表面或所述承印基底表面涂布热熔胶溶剂后烘干,再以烫印模具的立体结构面压印在所述承印基底或所述组装基底上形成外观立体图案面,从而使所述光子晶体层与所述承印基底结合并形成所述转印层。
  1. 进一步地,通过转印将光子晶体层与承印基底结合并形成所述转印层的步骤包括:涂布 UV 树脂前驱物在所述光子晶体层表面或所述承印基底表面后进行紫外光照射作业,然后以压印模具的立体结构面压印在所述承印基底或所述组装基底上,再完全固化所述树脂薄膜形成外观立体图案面,从而所述光子晶体层与所述承印基底结合并形成所述转印层。
  1. 进一步地,通过转印将光子晶体层与承印基底结合并形成所述转印层的步骤包括:印刷 UV 树脂前驱物在所述光子晶体层表面或所述承印基底表面后进行紫外光照射作业形成一立体图案面,再完全固化所述树脂薄膜形成外观立体图案面,从而所述光子晶体层与所述承印基底结合并形成所述转印层。
  1. 另一方面,本发明还提供了一种具有光子晶体结构的转印膜的制备方法,包括以下步骤:提供组装基底;在所述组装基底表面形成离型层,所述离型层用以调整所述组装基底的界面性能;制备光子晶体乳液;在所述离型层表面涂布所制备的光子晶体乳液,所述光子晶体乳液在所述离型层表面固化成光子晶体层;通过转印将光子晶体层与承印基底结合并形成所述转印层,然后可选择的移除所述组装基底。
进一步地,在所述组装基底表面涂布所述光子晶体乳液的步骤包括:以卷对卷涂布方式在所述组装基底表面涂布所述光子晶体乳液,以获得连续的所述光子晶体层。
进一步地,所述离型层与所述光子晶体层之间的结合力大于所述组装基底与所述离型层之间的结合力。
  1. 进一步地,所述离型层与所述光子晶体层之间的结合力小于所述组装基底与所述离型层之间的结合力。
进一步地,通过转印将光子晶体层与承印基底结合并形成所述转印层的步骤包括:在所述光子晶体层表面或所述承印基底表面涂布热熔胶溶剂后烘干,再以烫印模具的立体结构面压印在所述承印基底或所述组装基底上形成外观立体图案面,从而使所述光子晶体层与所述承印基底结合并形成所述转印层。
  1. 进一步地,通过转印将光子晶体层与承印基底结合并形成所述转印层的步骤包括:涂布 UV 树脂前驱物在所述光子晶体层表面或所述承印基底表面后进行紫外光照射作业,然后以压印模具的立体结构面压印在所述承印基底或所述组装基底上,再完全固化所述树脂薄膜形成外观立体图案面,从而所述光子晶体层与所述承印基底结合并形成所述转印层。
  1. 进一步地,通过转印将光子晶体层与承印基底结合并形成所述转印层的步骤包括:印刷 UV 树脂前驱物在所述光子晶体层表面或所述承印基底表面后进行紫外光照射作业形成一立体图案面,再完全固化所述树脂薄膜形成外观立体图案面,从而所述光子晶体层与所述承印基底结合并形成所述转印层。
本发明中,由于膜片上的离型层可作为光子晶体乳液的底涂,并控制离型层表面的接口性能,或是依据组装基底的表面张力系数对应制备光子晶体乳液,以达到光子晶体乳液可均匀的涂布在离型层表面或直接涂布在组装基底表面,以达到大面积且无缺陷涂布功效及提高涂布速度,进而减少方式时间及成本。当光子晶体乳液在离型层 ( 底涂 ) 表面或组装基底表面形成光子晶体层后,可在光子晶体层表面上形成具有黏性的转印层,并使转印层表面以热压印或紫外线交联方式形成有外观立体图案面。同时,通过具黏性的转印层,使得光子晶体层与承印基底之间具有良好的密着性,且固化后的转印层的外观立体图案面具有良好的耐磨性、抗刮性,进而得到具有光子晶体结构的转印膜。
具体实施方式
本发明中所选用有机硅离型剂主要成分包含有机硅树脂、蜡质及消光粉成分中一种或一种以上的混合,调整其组成可以控制离型剂在组装基底表面有效铺展附着形成连续光滑的离型层,并控制离型层表面界面性能保证光子晶体乳液可以在离型层表面稳定铺展成膜并在光子晶体乳液固化为光子晶体层后与离型层保持较低的结合力,在转印后可以保证光子晶体层与离型层的无残留的完全分离。
本发明中所选用的树脂型离型剂主要成分包含聚氨酯树脂、丙烯酸树脂、消光粉及纤维素材料中一种或者一种以上的混合,调整其组成可以控制离型层在组装基底上成膜性和附着力,保证转印后离型层可以有效地与组装基底分离,并且切边清晰,不残留。同时保证光子晶体乳液在离型层上稳定铺展成膜并在光子晶体乳液固化为光子晶体层后与离型层保持较高的结合力,以及离型层成膜后的韧性和硬度,保证转印后离型层与光子晶体层牢固地覆盖在转印后的光子晶体层表面起到保护层作用。
实施方式一
本发明的一个具体实施方式所揭露的具有光子晶体结构的转印膜的制备方法,包括以下步骤:
步骤 110 : 提供组装基底;
步骤 120 : 形成离型层在组装基底表面,离型层用以调整组装基底的界面性能;
步骤 130 : 依据离型层的表面张力系数对应制备光子晶体乳液;
步骤 140 : 涂布光子晶体乳液在离型层表面,光子晶体乳液在离型层表面固化成光子晶体层。
实施例 1
步骤 110 :提供组装基底。
组装基底可以是柔性且可卷绕的基底,用以供卷对卷 (roll to roll) 涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯 (Poly Ethylene Terephthalate, PET) 薄膜、双向拉伸聚丙烯 (Biaxially Oriented Polypropylene , BOPP) 薄膜、聚乙烯 (Polyethylene , PE) 薄膜、纤维素薄膜、聚乙烯醇 (polyvinyl alchohol , PVA) 薄膜或纸张。 在本步骤的实施例中,组装基底可为聚对苯二甲酸乙二酯 (PET) 薄膜,但不以此为限。
步骤 120 :将有机硅离型剂直接涂布于此 组装基底的表面,使有机硅离型剂附着于组装基底表面后进行烘干,离型剂固化于组装基底表面,从而在组装基底表面形成离型层。在本步骤的实施例中,离型剂材料仅作为举例说明,并不以此为限。由离型层的组成物来调控组装基底表面的界面性能,例如控制离型层的表面张力系数在 28 dyn/cm 至 35 dyn/cm (dyne per centimeter ,达因值 ) ,但不以此为限。
步骤 130 :制备聚苯乙烯微球悬浮乳液。
先将 0.58g 十二烷基硫酸钠 (Sodium dodecyl sulfate , SDS) 溶于 90mL 去离子水 (DI water) 中,在均匀搅拌 300r/min 下通入氮气鼓泡约 30 分钟。接着,以水浴加热方式升温至 85°C ,稳定后,再加入 5g 的苯乙烯 (St) 单体。在均匀搅拌 300r/min 下通入氮气鼓泡约 15 分钟后,加入 0.10g 的过硫酸钾 (Potassium Persulfate) ,在搅拌、氮气保护下及 85°C 下,反应 5 小时,制得固含量为 5% 的聚苯乙烯微球悬浮乳液,即光子晶体乳液,其中聚苯乙烯微球的粒径为 215nm ,多分散指数 (Polydispersivity Index, PDI) 为 0.02 。
需注意的是,上述制备光子晶体乳液的实施例仅是用于说明本发明而不限制本发明的范围,所采用的实施条件可以根据具体的操作条件做进一步调整,未注明的实施条件通常为常规实验中的条件。
步骤 140 : 在离型层表面涂布光子晶体乳液。
以卷对卷 (roll to roll) 涂布 方式,在离型层的表面涂布光子晶体乳液,当光子晶体乳液完整且均匀地覆盖在离型层后,在 75℃ 下进行烘干。聚苯乙烯微球自组装排列成有序结构,形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得具有 组装基底 (PET 薄膜 )/ 离型层 / 光子晶体层的三层复合薄膜,其色泽通过艾丽色 MA-98 分光亮度仪测定,光源选择为 D65/10° ,其结果如表 1 所示。
表 1
测试角度 L* a* b*
45as-15 138.84 27.02 -39.71
45as15 53.26 53.02 -14.78
45as25 51.56 52.04 -9.38
45as45 50.35 51.62 -1.87
45as75 53.94 48.92 0.23
45as110 51.03 43.41 -1.08
实施例 2
步骤 110 :以双向拉伸聚丙烯 (BOPP) 薄膜为 组装基底,但不以此为限。
步骤 120 :将树脂型离型剂直接涂布于此 组装基底的表面,使树脂型离型剂附着于组装基底表面后进行烘干,离型剂固化于组装基底表面,从而在组装基底表面形成离型层。在本步骤的实施例中,离型剂材料仅作为举例说明,并不以此为限。通过离型层的组成物来调控组装基底表面的界面性能,例如控制离型层的表面张力系数在 28 dyn/cm 至 58 dyn/cm ,但不以此为限。
步骤 130 :制备二氧化硅微球悬浮乳液。
先将 0.20g 的碱性品红 (Fuchsin basic) 溶于 20mL 的去离子水 (DI water) 中,并以超声溶解 20 分钟时间,以得到品红色染料溶液。接着,再提供固含量为 10% 、粒径为 195nm 的二氧化硅微球及多分散指数 (PDI) 为 0.02 的单分散二氧化硅微球悬浮乳液。将品红色染料溶液、单分散二氧化硅微球悬浮乳液及无水乙醇 (absolute alcohol) 按体积比 1 : 3 : 2 进行调配,并以超声波分散 10 分钟时间,可得到混合均匀的品红色二氧化硅微球悬浮乳液。
需注意的是,上述制备光子晶体乳液的实施例仅是用于说明本发明而不限制本发明的范围,所采用的实施条件可以根据具体的操作条件做进一步调整,未注明的实施条件通常为常规实验中的条件。
步骤 140 : 在离型层表面涂布光子晶体乳液。
以卷对卷 (roll to roll) 涂布 方式,在离型层的表面涂布光子晶体乳液,当光子晶体乳液完整且均匀地覆盖在离型层后,在 75℃ 下进行烘干。通过温度与溶剂挥发的控制,促使品红色二氧化硅微球悬浮乳液 ( 即光子晶体乳液 ) 的品红色二氧化硅微球在气 - 液表面进行自组装 (Self-Assembly) 机制,使得品红色二氧化硅微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得 组装基底 (BOPP 薄膜 )/ 离型层 / 光子晶体层的三层复合薄膜,其色泽通过艾丽色 MA-98 分光亮度仪测定,光源选择为 D65/10° ,其结果如表 2 所示。
表 2
测试角度 L* a* b*
45as-15 153.81 27.22 -39.80
45as15 73.26 53.54 -14.78
45as25 71.56 52.64 -9.68
45as45 70.35 51.62 -2.04
45as75 74.67 49.17 0.43
45as110 71.03 42.41 -1.78
选用卷对卷涂布方式的优点在于:可以精确调控光子晶体乳液在离型层表面的浸润性,也就是通过离型层的组成物来调控其表面的界面性能。在减少加入助剂的情况下,以提高光子晶体乳液的涂布适性,并且可在离型层表面进行大面积且无缺陷的涂布光子晶体乳液,以实现高速高质量的光子晶体涂布方式。
选择柔性可绕的 组装基底以便于卷对卷连续组装操作,通过离型层调控涂布组装基底的界面性能,控制其表面达因值,再通过卷对卷涂布方式,在组装基底表面涂布连续均匀的一层光子晶体乳液,并控制烘干温度及时间,使得光子晶体乳液中的连续相以优化的速率被脱除,溶剂脱除的过程中光子晶体乳液微球在毛细力等弱相互作用力诱导下自组装成为蛋白石结构光子晶体。从而在组装基底上获得大面积无缺陷的光子晶体层。
实施方式二
本发明又一实施例中揭露的具有光子晶体结构的转印膜的制备方法,包括以下步骤:
步骤 210 : 提供组装基底;
步骤 220 : 形成离型层在组装基底表面,离型层用以调整组装基底的界面性能;
步骤 230 : 依据离型层的表面张力系数对应制备光子晶体乳液;
步骤 240 : 涂布光子晶体乳液在离型层表面,光子晶体乳液在离型层表面固化成光子晶体层;
步骤 250 : 涂布 / 印刷转印层在光子晶体层表面;
步骤 260 : 提供承印基底,将承印基底结合在转印层上,并且可选择的将组装基底及离型层自光子晶体层上移除。
实施例 3
步骤 210 :组装基底可以是柔性且可卷绕的基底,用以供 卷对卷涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯薄膜、双向拉伸聚丙烯薄膜、聚乙烯薄膜、纤维素薄膜、聚乙烯醇薄膜或纸张。在本步骤的实施例中,组装基底可为聚对苯二甲酸乙二酯 (PET) 薄膜,但不以此为限。
步骤 220 :将有机硅离型剂直接涂布于此组装基底的表面,使离型剂附着于组装基底表面后进行烘干,离型剂固化于组装基底表面,从而在组装基底表面形成离型层。在本步骤的实施例中,离型剂材料仅作为举例说明,并不以此为限。通过离型层的组成物来调控组装基底表面的 界面性能,例如控制离型层的表面张力系数在 28 dyn/cm 至 35 dyn/cm ,但不以此为限。
步骤 230 :其具体实施方式与前述实施例 1 的步骤 130 相同,不再赘述。
步骤 240 :其具体实施方式与前述实施例 1 的步骤 140 大致相同,以下仅就说明不同之处,其余相同处不再赘述。以卷对卷 (roll to roll) 涂布 方式,在离型层的表面涂布光子晶体乳液,当光子晶体乳液完整且均匀地覆盖在离型层后,在 75℃ 下进行烘干。令聚苯乙烯微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得具有组装基底 (PET 薄膜 )/ 离型层 / 光子晶体层的三层复合薄膜。
步骤 250 : 在光子晶体层表面涂布转印层。
在光子晶体层涂布转印层。先以热熔胶溶剂 ( 如聚胺酯类 ) 均匀涂布在光子晶体层表面,然后在 85℃ 下烘干,在光子晶体层表面形成具热熔胶的转印层,从而形成组装基底 (PET 薄膜 )/ 离型层 / 光子晶体层 / 转印层的热转印膜。
步骤 260 :将 承印基底贴附在转印层的胶面。
将承印基底结合在转印层上,并以烫印模具压印在组装基底上,烫印模具具有立体结构面,在约 1 秒时间内,以温度 100℃ 及 3kg 压力将烫印模具的立体结构 面压印组装基底上,使得转印层匹配立体结构面而形成外观立体图案面。也就是说,外观立体图案面依据立体结构面的立体图案或立体纹路,而复制出相同的立体外观。
由于转印层的热熔胶经由热压后会产生黏性,使得光子晶体层通过转印层而紧密的黏合在承印基底上。最后,再将组装基底及离型层自光子晶体层表面移除,即可在承印基底上得到具转印层 ( 具外观立体图案面 ) 及光子晶体层的转印膜。
实施例 4
步骤 210 :组装基底可以是柔性且可卷绕的基底,用以供 卷对卷涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯薄膜、双向拉伸聚丙烯薄膜、聚乙烯薄膜、纤维素薄膜、聚乙烯醇薄膜或纸张。在本步骤的实施例中,组装基底可为双向拉伸聚丙烯 (BOPP) 薄膜,但不以此为限。
步骤 220 : 将有机硅离型剂直接涂布于此组装基底的表面,使离型剂附着于组装基底表面后进行烘干,离型剂固化于组装基底表面,从而在组装基底表面形成离型层。在本步骤的实施例中,离型剂材料仅作为举例说明,并不以此为限。通过离型层的组成物来调控组装基底表面的界面性能,例如控制离型层的表面张力系数在 28 dyn/cm 至 58 dyn/cm ,但不以此为限。
步骤 230 :其具体实施方式与前述实施例 1 的步骤 130 相同,不再赘述。
步骤 240 :其具体实施方式与前述实施例 1 的步骤 140 大致相同,以下仅说明不同之处,其余相同处不再赘述。以卷对卷涂布 方式,在离型层的表面涂布光子晶体乳液,当光子晶体乳液完整且均匀地覆盖在离型层后,在 75℃ 下进行烘干。通过温度与溶剂挥发的控制,促使品红色二氧化硅微球悬浮乳液 ( 即光子晶体乳液 ) 的品红色二氧化硅微球在气 - 液表面进行自组装机制,使得品红色二氧化硅微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得组装基底 (BOPP 薄膜 )/ 离型层 / 光子晶体层的三层复合薄膜。
步骤 250 : 在光子晶体层表面涂布转印层。
在光子晶体层表面形成转印层 。先以树脂前驱物涂布于光子晶体层表面,涂布方式包括但不局限于旋转涂布 (spin coating) 、狭缝涂布或者是刮板涂布 (blade coating) ,。其中,树脂前驱物的材质为紫外线固化树脂,本实施例选用 DIMAX D8350 UV 冷烫胶,但不以此为限。
以紫外光照射树脂前驱物而形成树脂薄膜。详细来说,以紫外光照射树脂前驱物时,树脂前驱物会进行化学固化反应而形成树脂薄膜。通过控制紫外光的强度、照射时间以及波长,可控制树脂薄膜的固化程度 (curing degree) ,并且照射紫外光可增强树脂薄膜的结构强度,并且使树脂薄膜维持流体的状态而具有可塑性。在本实施例中,树脂薄膜的固化程度是 50 %,但并不以此为限。
步骤 260 :将 承印基底贴附在转印层的胶面。
将承印基底与半固化的树脂薄膜相互贴合,再通过压印模具压印在承印基底上,压印模具具有立体结构面,而使树脂薄膜被立体结构面压印出有立体图案面,而立体图案面匹配于压印模具的图案设计。然而,使树脂薄膜形成立体图案面的方法并不以压印为限,在其他实施例中,可通过例如蚀刻的方法而在树脂薄膜上形成立体图案面。
之后,再完全固化树脂薄膜,使得树脂薄膜在承印基底表面固化形成为转印层,从而在转印层表面形成外观立体图案面。由于转印层经由紫外光交联后会产生黏性,使得光子晶体层可通过转印层而紧密的黏合在承印基底上。最后,再将组装基底及离型层自光子晶体层表面移除,即可在承印基底上得到具转印层 ( 具外观立体图案面 ) 及光子晶体层的转印膜。
实施例 5
步骤 210 :组装基底可以是柔性且可卷绕的基底,用以供 卷对卷涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯薄膜、双向拉伸聚丙烯薄膜、聚乙烯薄膜、纤维素薄膜、聚乙烯醇薄膜或纸张。在本步骤的实施例中,组装基底可为双向拉伸聚丙烯 (BOPP) 薄膜,但不以此为限。
步骤 220 : 将有机硅离型剂直接涂布于此组装基底的表面,使离型剂附着于组装基底表面后进行烘干,离型剂固化于组装基底表面,从而在组装基底表面形成离型层。在本步骤的实施例中,离型剂材料仅作为举例说明,并不以此为限。通过离型层的组成物来调控组装基底表面的界面性能,例如控制离型层的表面张力系数在 28 dyn/cm 至 58 dyn/cm ,但不以此为限。
步骤 230 :其具体实施方式与前述实施例 1 的步骤 130 相同,不再赘述。
步骤 240 :其具体实施方式与前述实施例 1 的步骤 140 大致相同,以下仅说明不同之处,其余相同处不再赘述。以卷对卷涂布 方式,在离型层的表面涂布光子晶体乳液,当光子晶体乳液完整且均匀地覆盖在离型层后,在 75℃ 下进行烘干。通过温度与溶剂挥发的控制,促使品红色二氧化硅微球悬浮乳液 ( 即光子晶体乳液 ) 的品红色二氧化硅微球在气 - 液表面进行自组装机制,使得品红色二氧化硅微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得组装基底 (BOPP 薄膜 )/ 离型层 / 光子晶体层的三层复合薄膜。
步骤 250 :在光子晶体层表面印刷转印层。
在光子晶体层表面形成转印层。先以树脂前驱物印刷于光子晶体层表面,以形成基于印版图案的立体图案面,印刷方式包含但不限于柔印、胶印。其中,树脂前驱物的材质为紫外线固化树脂,本实施例选用 DIMAX D8350 UV 冷烫胶,但不以此为限。
以紫外光照射树脂前驱物而形成树脂薄膜。详细来说,以紫外光照射树 脂前驱物时,树脂前驱物会进行化学固化反应而形成树脂薄膜。通过控制紫外光的强度、照射时间以及波长,可控制树脂薄膜的固化程度 (curing degree) ,并且照射紫外光可增强树脂薄膜的结构强度,并且使树脂薄膜维持流体的状态而具有可塑性。在本实施例中,树脂薄膜的固化程度是 50 %,但并不以此为限。
步骤 260 :将 承印基底贴附在转印层的胶面。
将承印基底与半固化的树脂薄膜相互贴合,之后,再完全固化树脂薄膜,使得树脂薄膜在承印基底表面固化形成为转印层,从而在转印层表面形成外观立体图案面。由于转印层经由紫外光交联后会产生黏性,使得光子晶体层可通过转印层而紧密的黏合在承印基底上。最后,再将组装基底及离型层自光子晶体层表面移除,即可在承印基底上得到具转印层 ( 具外观立体图案面 ) 及光子晶体层的转印膜。
实施方式三
本发明又一实施方式所揭露的具有光子晶体结构的转印膜的制备方法,包括以下步骤:
步骤 310 : 提供组装基底;
步骤 320 : 形成离型层在组装基底表面,离型层用以调整组装基底的界面性能;
步骤 330 : 依据离型层的表面张力系数对应制备光子晶体乳液;
步骤 340 : 在离型层表面涂布光子晶体乳液,光子晶体乳液在离型层表面固化成光子晶体层;
步骤 350 : 提供承印基底,在承印基底的表面涂布转印层;
步骤 360 : 以承印基底上的转印层结合在光子晶体层表面,并且可选择的将组装基底及离型层自光子晶体层上移除。
实施例 6
步骤 310 :组装基底可以是柔性且可卷绕的基底,用以供 卷对卷涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯薄膜、双向拉伸聚丙烯薄膜、聚乙烯薄膜、纤维素薄膜、聚乙烯醇薄膜或纸张。在本步骤的实施例中,组装基底可为聚对苯二甲酸乙二酯薄膜 (PET) 薄膜,但不以此为限。
步骤 320 :将有机硅离型剂直接涂布于此组装基底的表面,使离型剂附着于组装基底表面后进行烘干,离型剂固化于组装基底表面,从而在组装基底表面形成离型层。在本步骤的实施例中,离型剂材料仅作为举例说明,并不以此为限。通过离型层的组成物来调控组装基底表面的界面性能,例如控制离型层的表面张力系数在 28 dyn/cm 至 35 dyn/cm ,但不以此为限。
步骤 330 :其具体实施方式与前述实施例 1 的步骤 130 相同,不再赘述。
步骤 340 :其具体实施方式与前述实施例 1 的步骤 140 大致相同,以下仅说明不同之处,其余相同处不再赘述。以卷对卷 (roll to roll) 涂布 方式,在离型层的表面涂布光子晶体乳液,当光子晶体乳液完整且均匀地覆盖在离型层后,在 75℃ 下进行烘干。令聚苯乙烯微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得具有组装基底 (PET 薄膜 )/ 离型层 / 光子晶体层的三层复合薄膜。
步骤 350 : 在承印基底的表面涂布转印层。
先以热熔胶本实施例选用上海万汉实业优立达 909W 转印胶水 ,但不以此为限均匀涂布在承印基底表面,然后在 85℃ 下烘干,在 承印基底表面形成具热熔胶的转印层,从而形成组装承印基底 (PET 薄膜 )/ 转印层的热转印膜。
步骤 360 : 以承印基底上的转印层结合在光子晶体层表面。
将承印基底表面的转印层贴附在光子晶体层表面,并以烫印模具压印在承印基底上,烫印模具具有立体结构面,在约 1 秒时间内,以温度 100℃ 及 3kg 压力将烫印模具的立体结构面压印在 承印基底上,使得转印层匹配立体结构面而形成外观立体图案面。也就是说,外观立体图案面依据立体结构面的立体图案或立体纹路,而复制出相同的立体外观。
由于转印层的热熔胶经由热压后会产生黏性,使得光子晶体层通过转印层而紧密的黏合在承印基底上。最后,再将组装基底及离型层自光子晶体层表面移除,即可在承印基底上得到具转印层 ( 具外观立体图案面 ) 及光子晶体层的转印膜。
实施例 7
步骤 310 :组装基底可以是柔性且可卷绕的基底,用以供 卷对卷涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯薄膜、双向拉伸聚丙烯薄膜、聚乙烯薄膜、纤维素薄膜、聚乙烯醇薄膜或纸张。在本步骤的实施例中,组装基底可为双向拉伸聚丙烯 (BOPP) 薄膜,但不以此为限。
步骤 320 :将有机硅离型剂直接涂布于此组装基底的表面,使离型剂附着于组装基底表面后进行烘干,离型剂固化于组装基底表面,从而在组装基底表面形成离型层。在本步骤的实施例中,离型剂材料仅作为举例说明,并不以此为限。通过离型层的组成物来调控组装基底表面的 界面性能,例如控制离型层的表面张力系数在 28 dyn/cm 至 58 dyn/cm ,但不以此为限。
步骤 330 :其具体实施方式与前述实施例 2 的步骤 130 相同,不再赘述。
步骤 340 :其具体实施方式与前述实施例 2 的步骤 140 大致相同,以下仅说明不同之处,其余相同处不再赘述。以卷对卷涂布 方式,在离型层的表面涂布光子晶体乳液,当光子晶体乳液完整且均匀地覆盖在离型层后,在 75℃ 下进行烘干。通过温度与溶剂挥发的控制,促使品红色二氧化硅微球悬浮乳液 ( 即光子晶体乳液 ) 的品红色二氧化硅微球在气 - 液表面进行自组装机制,使得品红色二氧化硅微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得组装基底 (BOPP 薄膜 )/ 离型层 / 光子晶体层的三层复合薄膜。
步骤 350 : 在承印基底的表面涂布转印层。
在 承印基底的表面形成转印层。先以树脂前驱物涂布于承印基底表面,涂布方式包括但不局限于旋转涂布 (spin coating) 、狭缝涂布或者是刮板涂布 (blade coating) 。其中,树脂前驱物的材质为紫外线固化树脂,本实施例选用 DIMAX D8350 UV 冷烫胶,但不以此为限。
以紫外光照射树脂前驱物而形成树脂薄膜。详细来说,以紫外光照射树脂前驱物时,树脂前驱物会进行化学固化反应而形成树脂薄膜。通过控制紫外光的强度、照射时间以及波长,可控制树脂薄膜的固化程度 (curing degree) ,并且照射紫外光可增强树脂薄膜的结构强度,并且使树脂薄膜维持流体的状态而具有可塑性。在本实施例中,树脂薄膜的固化程度是 50 %,但并不以此为限。
步骤 360 : 以承印基底上的转印层结合在光子晶体层表面。
以承印基底上的半固化的树脂薄膜贴合在光子晶体层表面,再通过压印模具压印在承印基底上,压印模具具有立体结构面,而使树脂薄膜被立体结构面压印出有立体图案面,而立体图案面匹配于压印模具的图案设计。然而,使树脂薄膜形成立体结构面的方法并不以压印为限,在其他实施例中,可通过例如蚀刻的方法而在树脂薄膜上形成立体图案面。
之后,再完全固化树脂薄膜,使得树脂薄膜在承印基底与光子晶体层之间固化形成为转印层,从而在转印层表面形成外观立体图案面。由于转印层经由紫外光交联后会产生黏性,使得光子晶体层可通过转印层而紧密的黏合在承印基底上。最后,再将组装基底及离型层自光子晶体层表面移除,即可在承印基底上得到具转印层 ( 具外观立体图案面 ) 及光子晶体层的转印膜。
通过离型层的组成物来调控组装基底表面的界面性能,以提高光子晶体乳液的涂布适性,在光子晶体乳液烘干后可紧密附着在离型层上,使得离型层与光子晶体层之间的结合力大于组装基底与离型层之间的结合力。通过转印层具有胶黏特性,也使得承印基底与光子晶体层之间的结合力大于组装基底与离型层之间的结合力。因此,以预 组装基底表面形成有光子晶体层为耗材的优点在于:通过转印的方式,将光子晶体层转印到难以直接组装的承印基底表面。承印基底可以是但不局限为多孔基底、曲面基底或低表面能材料基底,例如承印基底可选用纸张、塑料、玻璃、陶瓷、皮革、木材或金属等材料,但不以此为限。并辅以转印层具胶黏性特性而获得较高的承印基底附着力,再通过烫印模具压印或是可塑形的紫外线树脂来实现光子晶体层具有图案化的效果。
实施方式四
本发明又一实施方式所揭露的具有光子晶体结构的转印膜的制备方法,包括以下步骤:
步骤 410 : 提供组装基底;
步骤 420 : 形成离型层在组装基底表面,离型层用以调整组装基底的界面性能;
步骤 430 : 依据离型层的表面张力系数对应制备光子晶体乳液;
步骤 440 : 在离型层表面涂布光子晶体乳液,光子晶体乳液在离型层表面固化成光子晶体层;
步骤 450 : 提供承印基底,在承印基底的表面或光子晶体层表面涂布或者印刷转印层;
步骤 460 : 以承印基底上的转印层结合在光子晶体层表面,并且可选择的将组装基底自离型层上移除。
实施例 8
步骤 410 :组装基底可以是柔性且可卷绕的基底,用以供 卷对卷涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯薄膜、双向拉伸聚丙烯薄膜、聚乙烯薄膜、纤维素薄膜、聚乙烯醇薄膜或纸张。在本步骤的实施例中,组装基底可为聚对苯二甲酸乙二酯薄膜 (PET) 薄膜,但不以此为限。
步骤 420 :将树脂型离型剂直接涂布于此组装基底的表面,使离型剂附着于组装基底表面后进行烘干,离型剂固化于组装基底表面,从而在组装基底表面形成离型层。在本步骤的实施例中,离型剂材料仅作为举例说明,并不以此为限。通过离型层的组成物来调控组装基底表面的界面性能,例如控制离型层的表面张力系数在 34 dyn/cm 至 58 dyn/cm ,但不以此为限。
步骤 430 :其具体实施方式与前述实施例 1 的步骤 130 相同,不再赘述。
步骤 440 :其具体实施方式与前述实施例 1 的步骤 140 大致相同,以下仅说明不同之处,其余相同处不再赘述。以卷对卷 (roll to roll) 涂布 方式,在离型层的表面涂布聚苯乙烯纳米微球乳液,当聚苯乙烯纳米微球乳液完整且均匀地覆盖在离型层后,在 75℃ 下进行烘干。令聚苯乙烯微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得具有组装基底 (PET 薄膜 )/ 离型层 / 光子晶体层的三层复合薄膜。
步骤 450 : 在光子晶体层的表面涂布转印层。
先以热熔胶本实施例选用上海万汉实业优立达 909W 转印胶水 ,均匀涂布在光子晶体层的表面,然后在 85℃ 下烘干,在 光子晶体层表面形成具热熔胶的转印层,从而形成组装基底基底 (PET 薄膜 )/ 离型层 / 光子晶体层 / 转印层的热转印膜。
步骤 460 : 以光子晶体层表面上的转印层结合在承印基底表面。
将光子晶体层表面的转印层贴附在承印基底表面,并以烫印模具压印在组装基底上,烫印模具具有立体结构面,在约 1 秒时间内,以温度 100℃ 及 3kg 压力将烫印模具的立体结构面压印在组装基底上,使得转印层匹配立体结构面而形成外观立体图案面。 也就是说,外观立体图案面依据立体结构面的立体图案或立体纹路,而复制出相同的立体外观。
由于转印层的热熔胶经由热压后会产生黏性,使得光子晶体层通过转印层而紧密的黏合在承印基底上。最后,再将组装基底自离型层表面移除,即可在承印基底上得到具转印层 ( 具外观立体图案面 ) 及光子晶体层的转印膜。此时树脂型离型剂保留光子晶体层外侧,起到光子晶体层表面罩光保护的作用。
实施例 8
步骤 410 :组装基底可以是柔性且可卷绕的基底,用以供 卷对卷涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯薄膜、双向拉伸聚丙烯薄膜、聚乙烯薄膜、纤维素薄膜、聚乙烯醇薄膜或纸张。在本步骤的实施例中,组装基底可为 PET 薄膜,但不以此为限。
步骤 420 :将树脂型离型剂直接涂布于此组装基底的表面,使离型剂附着于组装基底表面后进行烘干,离型剂固化于组装基底表面,从而在组装基底表面形成离型层。在本步骤的实施例中,离型剂材料仅作为举例说明,并不以此为限。通过离型层的组成物来调控组装基底表面的 界面性能,例如控制离型层的表面张力系数在 34 dyn/cm 至 58 dyn/cm ,但不以此为限。
步骤 430 :其具体实施方式与前述实施例 2 的步骤 130 相同,不再赘述。
步骤 440 :其具体实施方式与前述实施例 2 的步骤 140 大致相同,以下仅说明不同之处,其余相同处不再赘述。以卷对卷涂布 方式,在离型层的表面涂布二氧化硅纳米微球乳液,当二氧化硅纳米微球乳液完整且均匀地覆盖在离型层后,在 75℃ 下进行烘干。通过温度与溶剂挥发的控制,促使品红色二氧化硅微球悬浮乳液 ( 即光子晶体乳液 ) 的品红色二氧化硅微球在气 - 液表面进行自组装机制,使得品红色二氧化硅微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得组装基底 (PET 薄膜 )/ 离型层 / 光子晶体层的三层复合薄膜。
步骤 450 : 在光子晶体层的表面涂布转印层。
在 光子晶体层的表面形成转印层。先以树脂前驱物涂布于光子晶体层表面,涂布方式包括但不局限于旋转涂布 (spin coating) 、狭缝涂布或者是刮板涂布 (blade coating) 。其中,树脂前驱物的材质为紫外线固化树脂,本实施例选用 DIMAX D8350 UV 冷烫胶,但不以此为限。
以紫外光照射树脂前驱物而形成树脂薄膜。详细来说,以紫外光照射树脂前驱物时,树脂前驱物会进行化学固化反应而形成树脂薄膜。通过控制紫外光的强度、照射时间以及波长,可控制树脂薄膜的固化程度 (curing degree) ,并且照射紫外光可增强树脂薄膜的结构强度,并且使树脂薄膜维持流体的状态而具有可塑性。在本实施例中,树脂薄膜的固化程度是 50 %,但并不以此为限。
步骤 460 : 以光子晶体层上的转印层结合在承印基底表面。
以光子晶体层上的半固化的树脂薄膜贴合在承印基底表面,再通过压印模具压印在承印基底上,压印模具具有立体结构面,而使树脂薄膜被立体结构面压印出有立体图案面,而立体图案面匹配于压印模具的图案设计。然而,使树脂薄膜形成立体结构面的方法并不以压印为限,在其他实施例中,可通过例如蚀刻的方法而在树脂薄膜上形成立体图案面。
之后,再完全固化树脂薄膜,使得树脂薄膜在承印基底与光子晶体层之间固化形成为转印层,从而在转印层表面形成外观立体图案面。由于转印层经由紫外光交联后会产生黏性,使得光子晶体层可通过转印层而紧密的黏合在承印基底上。最后,再将组装基底自离型层表面移除,即可在承印基底上得到具转印层 ( 具外观立体图案面 ) 及光子晶体层的转印膜。
实施例 9
步骤 410 :组装基底可以是柔性且可卷绕的基底,用以供 卷对卷涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯薄膜、双向拉伸聚丙烯薄膜、聚乙烯薄膜、纤维素薄膜、聚乙烯醇薄膜或纸张。在本步骤的实施例中,组装基底可为 PET 薄膜,但不以此为限。
步骤 420 :将树脂型离型剂直接涂布于此组装基底的表面,使离型剂附着于组装基底表面后进行烘干,离型剂固化于组装基底表面,从而在组装基底表面形成离型层。在本步骤的实施例中,离型剂材料仅作为举例说明,并不以此为限。通过离型层的组成物来调控组装基底表面的 界面性能,例如控制离型层的表面张力系数在 34 dyn/cm 至 58 dyn/cm ,但不以此为限。
步骤 430 :其具体实施方式与前述实施例 2 的步骤 130 相同,不再赘述。
步骤 440 :其具体实施方式与前述实施例 2 的步骤 140 大致相同,以下仅说明不同之处,其余相同处不再赘述。以卷对卷涂布 方式,在离型层的表面涂布二氧化硅纳米微球乳液,当二氧化硅纳米微球乳液完整且均匀地覆盖在离型层后,在 75℃ 下进行烘干。通过温度与溶剂挥发的控制,促使品红色二氧化硅微球悬浮乳液 ( 即光子晶体乳液 ) 的品红色二氧化硅微球在气 - 液表面进行自组装机制,使得品红色二氧化硅微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得组装基底 (PET 薄膜 )/ 离型层 / 光子晶体层的三层复合薄膜。
步骤 450 : 在承印基底的表面印刷转印层。
在 承印基底的表面形成转印层。先以树脂前驱物印刷于承印基底表面,印刷方式包含但不限于胶印、柔印。其中,树脂前驱物的材质为紫外线固化树脂,本实施例选用 DIMAX D8350 UV 冷烫胶,但不以此为限。
以紫外光照射树脂前驱物而形成树脂薄膜。详细来说,以紫外光照射树脂前驱物时,树脂前驱物会进行化学固化反应而形成树脂薄膜。通过控制紫外光的强度、照射时间以及波长,可控制树脂薄膜的固化程度 (curing degree) ,并且照射紫外光可增强树脂薄膜的结构强度,并且使树脂薄膜维持流体的状态而具有可塑性。在本实施例中,树脂薄膜的固化程度是 50 %,但并不以此为限。
步骤 460 : 以光子晶体层上的转印层结合在承印基底表面。
以承印基底上的半固化的树脂薄膜贴合在光子晶体层表面,再完全固化树脂薄膜,使得树脂薄膜在承印基底与光子晶体层之间固化形成为转印层,从而在转印层表面形成外观立体图案面。由于转印层经由紫外光交联后会产生黏性,使得光子晶体层可通过转印层而紧密的黏合在承印基底上。最后,再将组装基底自离型层表面移除,即可在承印基底上得到具转印层 ( 具外观立体图案面 ) 及光子晶体层的转印膜。
通过离型层的组成物来调控组装基底表面的界面性能,以提高光子晶体乳液的涂布适性,在光子晶体乳液烘干后可紧密附着在离型层上,使得离型层与光子晶体层之间的结合力大于组装基底与离型层之间的结合力。通过转印层具有胶黏特性,也使得承印基底与光子晶体层之间的结合力大于组装基底与离型层之间的结合力。因此,以预组装基底表面形成有光子晶体层为耗材的优点在于:通过转印的方式,将光子晶体层转印到难以直接组装的承印基底表面 。承印基底可以是但不局限为多孔基底、曲面基底或低表面能材料基底,例如承印基底可选用纸张、塑料、玻璃、陶瓷、皮革、木材或金属等材料,但不以此为限。并辅以转印层具胶黏性特性而获得较高的承印基底附着力,再通过烫印模具压印或是可塑形的紫外线树脂来实现光子晶体层具有图案化的效果。
实施方式五
本发明又一实施例所揭露的具有光子晶体结构的转印膜的制备方法,包括以下步骤:
步骤 510 : 提供组装基底;
步骤 520 : 依据组装基底的表面张力系数对应制备光子晶体乳液;以及
步骤 530 : 涂布光子晶体乳液在组装基底表面,光子晶体乳液在组装基底表面固化成光子晶体层。
实施例 11
步骤 510 : 组装基底可以是柔性且可卷绕的基底,用以供卷对卷 (roll to roll) 涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯 (Poly Ethylene Terephthalate, PET) 薄膜、双向拉伸聚丙烯 (Biaxially Oriented Polypropylene , BOPP) 薄膜、聚乙烯 (Polyethylene , PE) 薄膜、纤维素薄膜、聚乙烯醇 (polyvinyl alchohol , PVA) 薄膜或纸张。 在本步骤的实施例中,组装基底可为聚对苯二甲酸乙二酯 (PET) 薄膜,但不以此为限。 组装基底的表面张力系数在 28 dyn/cm 至 58 dyn/cm (dyne per centimeter ,达因值 ) ,但不以此为限。
步骤 520 :制备聚苯乙烯纳米微球,用以合成出聚苯乙烯微球悬浮乳液。
先将 0.58g 十二烷基硫酸钠 (Sodium dodecyl sulfate , SDS) 溶于 90mL 去离子水 (DI water) 中,在均匀搅拌 300r/min 下通入氮气鼓泡约 30 分钟。接着,以水浴加热方式升温至 85°C ,稳定后,再加入 5g 的苯乙烯 (St) 单体。在均匀搅拌 300r/min 下通入氮气鼓泡约 15 分钟后,加入 0.10g 的过硫酸钾 (Potassium Persulfate) ,在搅拌、氮气保护下及 85°C 下,反应 5 小时,制得固含量为 5% 的聚苯乙烯微球悬浮乳液,即光子晶体乳液,其中聚苯乙烯微球的粒径为 215nm ,多分散指数 (Polydispersivity Index, PDI) 为 0.02 。
需注意的是,上述制备光子晶体乳液的实施例仅是用于说明本发明而不限制本发明的范围,所采用的实施条件可以根据具体的操作条件做进一步调整,未注明的实施条件通常为常规实验中的条件。
步骤 530 : 在组装基底表面涂布光子晶体乳液。
以卷对卷 (roll to roll) 涂布 方式,将光子晶体乳液涂布在组装基底的表面,当光子晶体乳液完整且均匀地覆盖在组装基底后,在 75℃ 下进行烘干。令聚苯乙烯微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得具有 组装基底 (PET 薄膜 )/ 光子晶体层的二层复合薄膜。
实施例 12
步骤 510 : 组装基底可以是柔性且可卷绕的基底,用以供卷对卷涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯薄膜、双向拉伸聚丙烯薄膜、聚乙烯薄膜、纤维素薄膜、聚乙烯醇薄膜或纸张。在本步骤的实施例中,组装基底可为双向拉伸聚丙烯 (BOPP) 薄膜,但不以此为限。 组装基底的表面张力系数在 28 dyn/cm 至 58 dyn/cm (dyne per centimeter ,达因值 ) ,但不以此为限。
步骤 520 :制备二氧化硅微球悬浮乳液。
先将 0.20g 的碱性品红 (Fuchsin basic) 溶于 20mL 的去离子水 (DI water) 中,并以超声溶解 20 分钟时间,以得到品红色染料溶液。接着,再提供固含量为 10% 、粒径为 195nm 的二氧化硅微球及多分散指数 (PDI) 为 0.02 的单分散二氧化硅微球悬浮乳液。将品红色染料溶液、单分散二氧化硅微球悬浮乳液及无水乙醇 (absolute alcohol) 按体积比 1 : 3 : 2 进行调配,并以超声波分散 10 分钟时间,可得到混合均匀的品红色二氧化硅微球悬浮乳液。
需注意的是,上述制备光子晶体乳液的实施例仅是用于说明本发明而不限制本发明的范围,所采用的实施条件可以根据具体的操作条件做进一步调整,未注明的实施条件通常为常规实验中的条件。
步骤 530 : 在组装基底表面涂布光子晶体乳液。
以卷对卷 (roll to roll) 涂布 方式,将光子晶体乳液涂布在组装基底的表面,当光子晶体乳液完整且均匀地覆盖在组装基底后,在 75℃ 下进行烘干。通过温度与溶剂挥发的控制,促使品红色二氧化硅微球悬浮乳液 ( 即光子晶体乳液 ) 的品红色二氧化硅微球在气 - 液表面进行自组装 (Self-Assembly) 机制,使得品红色二氧化硅微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得 组装基底 (BOPP 薄膜 )/ 光子晶体层的二层复合薄膜。
选用卷对卷涂布方式的优点在于:依据组装基底的表面张力系数来精确调控光子晶体乳液在组装基底表面的浸润性,在减少加入助剂的情况下,以提高光子晶体乳液的涂布适性,并且可在 组装基底表面进行大面积且无缺陷的涂布光子晶体乳液,以实现高速高质量的光子晶体涂布方式。
选择柔性可绕的 组装基底以便于卷对卷连续组装操作,通过组装基底控制其表面达因值,再通过卷对卷涂布方式,在组装基底表面涂布连续均匀的一层光子晶体乳液,并控制烘干温度及时间,使得光子晶体乳液中的连续相以优化的速率被脱除,溶剂脱除的过程中光子晶体乳液微球在毛细力等弱相互作用力诱导下自组装成为蛋白石结构光子晶体。从而在组装基底上获得大面积无缺陷的光子晶体层。
实施方式六
本发明又一实施例所揭露的具有光子晶体结构的转印膜的制备方法,包括以下步骤:
步骤 610 : 提供组装基底;
步骤 620 : 依据组装基底的表面张力系数对应制备光子晶体乳液;
步骤 630 : 涂布光子晶体乳液在组装基底表面,光子晶体乳液在组装基底表面固化成光子晶体层;
步骤 640 : 涂布转印层在光子晶体层表面;以及
步骤 650 : 提供承印基底,将承印基底结合在转印层上,并且可选择的将组装基底自光子晶体层上移除。
实施例 13
步骤 610 :组装基底可以是柔性且可卷绕的基底,用以供 卷对卷涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯薄膜、双向拉伸聚丙烯薄膜、聚乙烯薄膜、纤维素薄膜、聚乙烯醇薄膜或纸张。在本步骤的实施例中,组装基底可为聚对苯二甲酸乙二酯 (PET) 薄膜,但不以此为限。 组装基底的表面张力系数在 28 dyn/cm 至 58 dyn/cm (dyne per centimeter ,达因值 ) ,但不以此为限。
步骤 620 :其具体实施方式与前述实施例 4 的步骤 420 相同,不再赘述。
步骤 630 :其具体实施方式与前述实施例 4 的步骤 430 大致相同,以下仅说明不同之处,其余相同处不再赘述。以卷对卷 (roll to roll) 涂布 方式,将光子晶体乳液涂布在组装基底的表面,当光子晶体乳液完整且均匀地覆盖在组装基底后,在 75℃ 下进行烘干。令聚苯乙烯微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得具有组装基底 (PET 薄膜 )/ 光子晶体层的二层复合薄膜。
步骤 640 : 在光子晶体层表面涂布转印层。
在光子晶体层涂布转印层。先以热熔胶本实施例选用上海万汉实业优立达 909W 热熔胶,但不以此为限,均匀涂布在光子晶体层表面,然后在 85℃ 下烘干,在光子晶体层表面形成具热熔胶的转印层,从而形成组装基底 (PET 薄膜 )/ 光子晶体层 / 转印层的热转印膜。
步骤 650 :将 承印基底贴附在转印层的胶面。
将承印基底结合在转印层上,并以烫印模具压印在组装基底上,烫印模具具有立体结构面,在约 1 秒时间内,以温度 100℃ 及 3kg 压力将烫印模具的立体结构面压印在组装基底上,使得转印层匹配立体结构面而形成外观立体图案面。 也就是说,外观立体图案面依据立体结构面的立体图案或立体纹路,而复制出相同的立体外观。
由于转印层的热熔胶经由热压后会产生黏性,使得光子晶体层通过转印层而紧密的黏合在承印基底上。最后,再将组装基底自光子晶体层表面移除,即可在承印基底上得到具转印层 ( 具外观立体图案面 ) 及光子晶体层的转印膜。
实施例 14
步骤 610 :组装基底可以是柔性且可卷绕的基底,用以供 卷对卷涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯薄膜、双向拉伸聚丙烯薄膜、聚乙烯薄膜、纤维素薄膜、聚乙烯醇薄膜或一纸张。在本步骤的实施例中,组装基底可为双向拉伸聚丙烯 (BOPP) 薄膜,但不以此为限。 组装基底的表面张力系数在 28 dyn/cm 至 58 dyn/cm (dyne per centimeter ,达因值 ) ,但不以此为限。
步骤 620 :其具体实施方式与前述实施例 1 的步骤 420 相同,不再赘述。
步骤 630 :其具体实施方式与前述实施例 1 的步骤 430 大致相同,以下仅说明不同之处,其余相同处不再赘述。以卷对卷涂布 方式,将光子晶体乳液涂布在组装基底的表面,当光子晶体乳液完整且均匀地覆盖在离型层后,在 75℃ 下进行烘干。通过温度与溶剂挥发的控制,促使品红色二氧化硅微球悬浮乳液 ( 即光子晶体乳液 ) 的品红色二氧化硅微球在气 - 液表面进行自组装机制,使得品红色二氧化硅微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得组装基底 (BOPP 薄膜 )/ 光子晶体层的二层复合薄膜。
步骤 640 : 在光子晶体层表面涂布转印层。
在光子晶体层形成转印层 。先以一树脂前驱物涂布于光子晶体层表面,涂布方式包括但不局限于旋转涂布 (spin coating) 、狭缝涂布或者是刮板涂布 (blade coating) 。其中,树脂前驱物的材质为紫外线固化树脂,本实施例选用 DIMAX D8350 UV 冷烫胶,但不以此为限。
以紫外光照射树脂前驱物而形成树脂薄膜。详细来说,以紫外光照射树脂前驱物时,树脂前驱物会进行化学固化反应而形成树脂薄膜。通过控制紫外光的强度、照射时间以及波长,可控制树脂薄膜的固化程度 (curing degree) ,并且照射紫外光可增强树脂薄膜的结构强度,并且使树脂薄膜维持流体的状态而具有可塑性。在本实施例中,树脂薄膜的固化程度是 50 %,但并不以此为限。
步骤 650 :将 承印基底贴附在转印层的胶面。
将承印基底与半固化的树脂薄膜相互贴合,再通过压印模具压印在承印基底上,压印模具具有立体结构面,而使树脂薄膜被立体结构面压印出有立体图案面,而立体图案面匹配于压印模具的图案设计。然而,使树脂薄膜形成立体图案面的方法并不以压印为限,在其他实施例中,可通过例如蚀刻的方法而在树脂薄膜上形成立体图案面。
再完全固化树脂薄膜,使得树脂薄膜在承印基底表面固化形成为转印层,从而在转印层表面形成外观立体图案面。由于转印层经由紫外光交联后会产生黏性,使得光子晶体层可通过转印层而紧密的黏合在承印基底上。最后,再将组装基底自光子晶体层表面移除,即可在承印基底上得到具转印层 ( 具外观立体图案面 ) 及光子晶体层的转印膜。
实施方式七
以下为本发明又一实施方式所揭露的具有光子晶体结构的转印膜的制备方法,包括以下步骤:
步骤 710 : 提供组装基底;
步骤 720 : 依据组装基底的表面张力系数对应制备光子晶体乳液;
步骤 730 : 涂布光子晶体乳液在组装基底表面,光子晶体乳液在组装基底表面固化成光子晶体层;
步骤 740 : 提供承印基底,涂布转印层在承印基底的表面;步骤 750 : 以承印基底上的转印层结合在光子晶体层表面,并且可选择的将组装基底自光子晶体层上移除。
实施例 15
步骤 710 :组装基底可以是柔性且可卷绕的基底,用以供 卷对卷涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯薄膜、双向拉伸聚丙烯薄膜、聚乙烯薄膜、纤维素薄膜、聚乙烯醇薄膜或纸张。在本步骤的实施例中,组装基底可为聚对苯二甲酸乙二酯薄膜 (PET) 薄膜,但不以此为限。 组装基底的表面张力系数在 28 dyn/cm 至 58 dyn/cm (dyne per centimeter ,达因值 ) ,但不以此为限。
步骤 720 :其具体实施方式与前述实施例 4 的步骤 420 相同,不再赘述。
步骤 730 :其具体实施方式与前述实施例 4 的步骤 430 大致相同,以下仅说明不同之处,其余相同处不再赘述。以卷对卷 (roll to roll) 涂布 方式,将光子晶体乳液涂布在组装基底的表面,当光子晶体乳液完整且均匀地覆盖在组装基底后,在 75℃ 下进行烘干。令聚苯乙烯微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得具有组装基底 (PET 薄膜 )/ 光子晶体层的二层复合薄膜。
步骤 740 : 在承印基底的表面涂布转印层。
在 承印基底涂布转印层。先以热熔胶溶剂 ( 如聚胺酯类 ) 均匀涂布在 承印基底表面,然后在 85℃ 下烘干,在 承印基底表面形成具热熔胶的转印层,从而形成组装承印基底 (PET 薄膜 )/ 转印层的热转印膜。
步骤 750 : 以承印基底上的转印层结合在光子晶体层表面。
将承印基底表面的转印层贴附在光子晶体层表面,并以烫印模具压印在承印基底或是组装基底上,烫印模具具有立体结构面,在约 1 秒时间内,以温度 100℃ 及 3kg 压力将烫印模具的立体结构面压印在组装基底上,使得转印层匹配立体结构面而形成外观立体图案面。 也就是说,外观立体图案面依据立体结构面的立体图案或立体纹路,而复制出相同的立体外观。
由于转印层的热熔胶经由热压后会产生黏性,使得光子晶体层通过转印层而紧密的黏合在承印基底上。最后,再将组装基底自光子晶体层表面移除,即可在承印基底上得到具转印层 ( 具外观立体图案面 ) 及光子晶体层的转印膜。
实施例 16
步骤 710 :组装基底可以是柔性且可卷绕的基底,用以供 卷对卷涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯薄膜、双向拉伸聚丙烯薄膜、聚乙烯薄膜、纤维素薄膜、聚乙烯醇薄膜或纸张。在本步骤的实施例中,组装基底可为双向拉伸聚丙烯 (BOPP) 薄膜,但不以此为限。 组装基底的表面张力系数在 28 dyn/cm 至 58 dyn/cm (dyne per centimeter ,达因值 ) ,但不以此为限。
步骤 720 :其具体实施方式与前述实施例 4 的步骤 420 相同,不再赘述。
步骤 730 :其具体实施方式与前述实施例 4 的步骤 430 大致相同,以下仅说明不同之处,其余相同处不再赘述。以卷对卷涂布 方式,在离型层的表面涂布光子晶体乳液,当光子晶体乳液完整且均匀地覆盖在离型层后,在 75℃ 下进行烘干。通过温度与溶剂挥发的控制,促使品红色二氧化硅微球悬浮乳液 ( 即光子晶体乳液 ) 的品红色二氧化硅微球在气 - 液表面进行自组装机制,使得品红色二氧化硅微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得组装基底 (BOPP 薄膜 )/ 光子晶体层的二层复合薄膜。
步骤 740 : 在承印基底的表面涂布转印层。
在 承印基底的表面形成转印层。先以树脂前驱物涂布于承印基底表面,涂布方式包括但不局限于旋转涂布 (spin coating) 、狭缝涂布或者是刮板涂布 (blade coating) 。其中,树脂前驱物的材质为紫外线固化树脂,本实施例选用 DIMAX D8350 UV 冷烫胶,但不以此为限。
以紫外光照射树脂前驱物而形成树脂薄膜。详细来说,以紫外光照射树脂前驱物时,树脂前驱物会进行化学固化反应而形成树脂薄膜。通过控制紫外光的强度、照射时间以及波长,可控制树脂薄膜的固化程度 (curing degree) ,并且照射紫外光可增强树脂薄膜的结构强度,并且使树脂薄膜维持流体的状态而具有可塑性。在本实施例中,树脂薄膜的固化程度是 50 %,但并不以此为限。
步骤 760 : 以承印基底上的转印层结合在光子晶体层表面。
以承印基底上的半固化的树脂薄膜贴合在光子晶体层表面,再通过压印模具压印在承印基底上,压印模具具有立体结构面,而使树脂薄膜被立体结构面压印出有立体图案面,而立体图案面匹配于压印模具的图案设计。然而,使树脂薄膜形成立体结构面的方法并不以压印为限,在其他实施例中,可通过例如蚀刻的方法而在树脂薄膜上形成立体图案面。
之后,再完全固化树脂薄膜,使得树脂薄膜在承印基底与光子晶体层之间固化形成为转印层,从而在转印层表面形成外观立体图案面。由于转印层经由紫外光交联后会产生黏性,使得光子晶体层可通过转印层而紧密的黏合在承印基底上。最后,再将组装基底自光子晶体层表面移除,即可在承印基底上得到具转印层 ( 具外观立体图案面 ) 及光子晶体层的转印膜。
实施方式八
以下为本发明又一实施方式所揭露的具有光子晶体结构的转印膜的制备方法,包括以下步骤:
步骤 810 : 提供组装基底;
步骤 820 : 依据组装基底的表面张力系数对应制备光子晶体乳液;
步骤 830 : 涂布光子晶体乳液在组装基底表面,光子晶体乳液在组装基底表面固化成光子晶体层;
步骤 840 : 提供承印基底,涂布转印层在承印基底的表面;
步骤 850 : 以承印基底上的转印层结合在光子晶体层表面。
实施例 17
步骤 810 :组装基底可以是柔性且可卷绕的基底,用以供 卷对卷涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯薄膜、双向拉伸聚丙烯薄膜、聚乙烯薄膜、纤维素薄膜、聚乙烯醇薄膜或纸张。在本步骤的实施例中,组装基底可为聚对苯二甲酸乙二酯薄膜 (PET) 薄膜,但不以此为限。 组装基底的表面张力系数在 28 dyn/cm 至 58 dyn/cm (dyne per centimeter ,达因值 ) ,但不以此为限。
步骤 820 :其具体实施方式与前述实施例 4 的步骤 420 相同,不再赘述。
步骤 830 :其具体实施方式与前述实施例 4 的步骤 430 大致相同,以下仅说明不同之处,其余相同处不再赘述。以卷对卷 (roll to roll) 涂布 方式,将光子晶体乳液涂布在组装基底的表面,当光子晶体乳液完整且均匀地覆盖在组装基底后,在 75℃ 下进行烘干。令聚苯乙烯微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得具有组装基底 (PET 薄膜 )/ 光子晶体层的二层复合薄膜。
步骤 840 : 在承印基底的表面涂布转印层。
在 承印基底涂布转印层。先以热熔胶 ( 本实施例选用优立达 809 热熔胶,但不以此为限 ) 均匀涂布在 承印基底表面,然后在 85℃ 下烘干,在 承印基底表面形成具热熔胶的转印层,从而形成组装承印基底 (PET 薄膜 )/ 转印层的热转印膜。
步骤 850 : 以承印基底上的转印层结合在光子晶体层表面。
将承印基底表面的转印层贴附在光子晶体层表面,并以烫印模具压印在承印基底或是组装基底上,烫印模具具有立体结构面,在约 1 秒时间内,以温度 100℃ 及 3kg 压力将烫印模具的立体结构面压印在组装基底上,使得转印层匹配立体结构面而形成外观立体图案面。 也就是说,外观立体图案面依据立体结构面的立体图案或立体纹路,而复制出相同的立体外观。
由于转印层的热熔胶经由热压后会产生黏性,使得光子晶体层通过转印层而紧密的黏合在承印基底上,即可在承印基底上得到具转印层、光子晶体层和组装基底的转印膜。
实施例 18
步骤 810 :组装基底可以是柔性且可卷绕的基底,用以供 卷对卷涂布方式使用。组装基底可以是但不局限为聚对苯二甲酸乙二酯薄膜、双向拉伸聚丙烯薄膜、聚乙烯薄膜、纤维素薄膜、聚乙烯醇薄膜或纸张。在本步骤的实施例中,组装基底可为双向拉伸聚丙烯 (BOPP) 薄膜,但不以此为限。 组装基底的表面张力系数在 28 dyn/cm 至 58 dyn/cm (dyne per centimeter ,达因值 ) ,但不以此为限。
步骤 820 :其具体实施方式与前述实施例 4 的步骤 420 相同,不再赘述。
步骤 830 :其具体实施方式与前述实施例 4 的步骤 430 大致相同,以下仅说明不同之处,其余相同处不再赘述。以卷对卷涂布 方式,在离型层的表面涂布光子晶体乳液,当光子晶体乳液完整且均匀地覆盖在离型层后,在 75℃ 下进行烘干。通过温度与溶剂挥发的控制,促使品红色二氧化硅微球悬浮乳液 ( 即光子晶体乳液 ) 的品红色二氧化硅微球在气 - 液表面进行自组装机制,使得品红色二氧化硅微球自组装排列成有序结构,进而形成一层蓝绿色泽的光子晶体层,厚度约 5 微米至 20 微米,从而获得组装基底 (BOPP 薄膜 )/ 光子晶体层的二层复合薄膜。
步骤 840 : 在承印基底的表面涂布转印层。
在 承印基底的表面形成转印层。先以树脂前驱物涂布于承印基底表面,涂布方式包括但不局限于旋转涂布 (spin coating) 、狭缝涂布( (Slot DieCoating )或者是刮板涂布 (blade coating) 。其中,树脂前驱物的材质为紫外线固化树脂,本实施例选用 DIMAX D8350 UV 冷烫胶,但不以此为限。
以紫外光照射树脂前驱物而形成树脂薄膜。详细来说,以紫外光照射树脂前驱物时,树脂前驱物会进行化学固化反应而形成树脂薄膜。通过控制紫外光的强度、照射时间以及波长,可控制树脂薄膜的固化程度 (curing degree) ,并且照射紫外光可增强树脂薄膜的结构强度,并且使树脂薄膜维持流体的状态而具有可塑性。在本实施例中,树脂薄膜的固化程度是 50 %,但并不以此为限。
步骤 860 : 以承印基底上的转印层结合在光子晶体层表面。
以承印基底上的半固化的树脂薄膜贴合在光子晶体层表面,再通过压印模具压印在承印基底上,压印模具具有立体结构面,而使树脂薄膜被立体结构面压印出有立体图案面,而立体图案面匹配于压印模具的图案设计。然而,使树脂薄膜形成立体结构面的方法并不以压印为限,在其他实施例中,可通过例如蚀刻的方法而在树脂薄膜上形成立体图案面。
之后,再完全固化树脂薄膜,使得树脂薄膜在承印基底与光子晶体层之间固化形成为转印层,从而形成外观立体图案面。由于转印层经由紫外光交联后会产生黏性,使得光子晶体层可通过转印层而紧密的黏合在承印基底上,即可在承印基底上得到具转印层、光子晶体层和组装基底的转印膜。
依据组装基底的表面张力系数来精确调控光子晶体乳液在组装基底表面的浸润性及涂布适性,在光子晶体乳液烘干后可紧密附着在组装基底上。再通过转印层所具有的粘附特性,使得承印基底与光子晶体层之间的结合力大于组装基底与光子晶体层之间的结合力,实现在承印基底上的光子晶体层图案化。故,以预组装基底表面形成有光子晶体层为耗材的优点在于:通过简单便捷的转印方式,在常规光子晶体难直接组装的承印基底表面上实现高质量光子晶体层的附着。承印基底可以是但不局限为多孔基底、曲面基底或低表面能材料基底 ,例如承印基底可选用纸张、塑料、玻璃、陶瓷、皮革、木材或金属等材料,但不以此为限。并辅以转印层具有的粘附特性而获得较高的承印基底附着力,再通过烫印模具压印方式或是可通过印刷,刻蚀等方式塑形的紫外线树脂来实现光子晶体层具有图案化的效果。
综上所述,根据上述本发明所有实施例揭露的具有光子晶体结构的转印膜及其制造方法,可通过组装基底的表面张力系数来精确调控光子晶体乳液在组装基底表面的浸润性及涂布适性,或利用组装基底表面的离型层作为光子晶体乳液的下涂层,实现在尽可能少加入助剂的情况下提高光子晶体乳液的涂布适性,以达到光子晶体乳液可均匀的涂布在组装基底表面,再辅以卷对卷涂布方式,从而达到大面积且无缺陷涂布功效及提高涂布速度,进而减少方式时间及成本。而且卷对卷涂布涂布后,可直接送入烘干,并控制烘干的温湿度、时间与溶剂挥发程度,使得光子晶体乳液中的连续相以优化的速率被脱除,促使光子晶体乳液的微球在气 - 液表面进行自组装行为,实现在组装基底上高速高质量的光子晶体乳液组装制备获得大面积无缺陷的光子晶体层。
当光子晶体乳液在组装基底表面形成光子晶体层后,可进一步在光子晶体层 表面涂布有转印层,或是在承印基底表面涂布有转印层,并使以热压印或紫外线交联方式形成有外观立体图案面。同时,通过具黏性的转印层,使得光子晶体层与承印基底之间具有良好的密着性,且固化后的外观立体图案面具有良好的耐磨性、抗刮性与硬度佳,以及不会受到高温、高湿的环境所影响,再将组装基底自光子晶体层上移除,进而得到具有光子晶体结构的转印膜。当然,本发明的组装基底也可以不移除。

Claims (26)

  1. 一种具有光子晶体结构的转印膜,包括:
    组装基底,
    光子晶体层,
    转印层,
    和承印基底。
  2. 如权利要求1所述的转印膜,其中,所述光子晶体层包括由纳米微球周期性排布形成的纳米微球层,所述纳米微球层为密堆积结构,所述密堆积结构使所述光学功能材料具有光泽。
  3. 如权利要求2所述的转印膜,其中,所述纳米微球的原料选自聚苯乙烯、聚丙烯酸酯、聚丙烯酸、二氧化硅、氧化铝、二氧化钛、氧化锆、聚酰亚胺、硅树脂、四氧化三铁和酚醛树脂酯组成的组。
  4. 如权利要求2所述的转印膜,其中,所述光子晶体层的光泽是波长为200~2000nm的红外光、可见光或紫外光。
  5. 如权利要求2所述的转印膜,其中,所述纳米微球间填充有填充介质,填充介质的介电常数与纳米微球的介电常数不同。
  6. 如权利要求2所述的转印膜,其中,所述纳米微球粒的PDI 小于0.05。
  7. 如权利要求3所述的转印膜,其中,所述组装基底为聚对苯二甲酸乙二酯(PET)薄膜、聚丙烯PP薄膜、聚乙烯(PE)薄膜、纤维素薄膜、聚乙烯醇(PVA)薄膜PVC薄膜或纸张。
  8. 如权利要求7所述的转印膜,其中,所述承印基底为多孔基底、曲面基底或低表面能材料基底,所述多孔基底包括纤维纸、布料、皮革、木材或表面粗糙多孔且可以吸收光子晶体乳液的基底材料,所述曲面基底包括曲面的纸张、塑料、玻璃、陶瓷、皮革、木材、金属或光子晶体乳液无法在其表面无法铺展组装固化成光子晶体层的基底材料。
  9. 如权利要求8所述的转印膜,其中,所述转印层由热熔胶或UV树脂前驱物制成。
  10. 如权利要求8所述的转印膜,还包括离型层,所述离型层介于所述组装基底与所述光子晶体层之间。
  11. 如权利要求10所述的转印膜,其中,所述离型层的表面张力系数介于28 dyn/cm 至58 dyn/cm,所述光子晶体层的厚度介于2微米(µm)至20微米。
  12. 一种如权利要求1-9任一项所述的转印膜的制备方法,包括以下步骤:
    提供组装基底;
    制备光子晶体乳液;
    在组装基底表面涂布所制备的光子晶体乳液,所述光子晶体乳液在组装基底表面固化成光子晶体层;
    通过转印将光子晶体层与承印基底结合并形成所述转印层,
    然后可选择的移除所述组装基底。
  13. 如权利要求12所述的制备方法,其中,在所述组装基底表面涂布所述光子晶体乳液的步骤包括:以卷对卷涂布方式在所述组装基底表面涂布所述光子晶体乳液,以获得连续的所述光子晶体层。
  14. 如权利要求13所述的制备方法,其中,通过转印将光子晶体层与承印基底结合并形成所述转印层的步骤包括:在所述光子晶体层表面或所述承印基底表面涂布热熔胶后烘干,再以烫印模具的立体结构面压印在所述承印基底或所述组装基底上形成外观立体图案面,从而使所述光子晶体层与所述承印基底结合并形成所述转印层。
  15. 如权利要求13所述的制备方法,其中,通过转印将光子晶体层与承印基底结合并形成所述转印层的步骤包括:涂布UV树脂前驱物在所述光子晶体层表面或所述承印基底表面后进行紫外光照射作业,然后以压印模具的立体结构面压印在所述承印基底或所述组装基底上,再完全固化所述树脂薄膜形成外观立体图案面,从而所述光子晶体层与所述承印基底结合并形成所述转印层。
  16. 如权利要求13所述的制备方法,其中,通过转印将光子晶体层与承印基底结合并形成所述转印层的步骤包括:印刷UV树脂前驱物在所述光子晶体层表面或所述承印基底表面后进行紫外光照射作业以形成一立体图案面,再完全固化所述树脂薄膜形成外观立体图案面,从而所述光子晶体层与所述承印基底结合并形成所述转印层。
  17. 一种如权利要求10或11所述的转印膜的制备方法,包括下步骤:
    提供组装基底;
    在所述组装基底表面形成离型层,所述离型层用以调整所述组装基底的界面性能;
    制备光子晶体乳液;
    在所述离型层表面涂布所制备的光子晶体乳液,所述光子晶体乳液在所述离型层表面固化成光子晶体层;
    通过转印将光子晶体层与承印基底结合并形成所述转印层,
    然后可选择的移除所述组装基底。
  18. 如权利要求17所述的制备方法,其中,在所述组装基底表面涂布所述光子晶体乳液的步骤包括:以卷对卷涂布方式在所述组装基底表面涂布所述光子晶体乳液,以获得连续的所述光子晶体层。
  19. 如权利要求18所述的制备方法,其中,所述离型层与所述光子晶体层之间的结合力大于所述组装基底与所述离型层之间的结合力。
  20. 如权利要求18所述的制备方法,其中,所述离型层与所述光子晶体层之间的结合力小于所述组装基底与所述离型层之间的结合力。
  21. 如权利要求19所述的制备方法,其中,通过转印将光子晶体层与承印基底结合并形成所述转印层的步骤包括:在所述光子晶体层表面或所述承印基底表面涂布热熔胶溶剂后烘干,再以烫印模具的立体结构面压印在所述承印基底或所述组装基底上形成外观立体图案面,从而使所述光子晶体层与所述承印基底结合并形成所述转印层。
  22. 如权利要求19所述的制备方法,其中,通过转印将光子晶体层与承印基底结合并形成所述转印层的步骤包括:涂布UV树脂前驱物在所述光子晶体层表面或所述承印基底表面后进行紫外光照射作业,然后以压印模具的立体结构面压印在所述承印基底或所述组装基底上,再完全固化所述树脂薄膜形成外观立体图案面,从而所述光子晶体层与所述承印基底结合并形成所述转印层。
  23. 如权利要求19所述的制备方法,其中,通过转印将光子晶体层与承印基底结合并形成所述转印层的步骤包括:印刷UV树脂前驱物在所述光子晶体层表面或所述承印基底表面后进行紫外光照射作业以形成以立体图案面,再完全固化所述树脂薄膜形成外观立体图案面,从而所述光子晶体层与所述承印基底结合并形成所述转印层。
  24. 如权利要求20所述的制备方法,其中,通过转印将光子晶体层与承印基底结合并形成所述转印层的步骤包括:在所述光子晶体层表面或所述承印基底表面涂布热熔胶溶剂后烘干,再以烫印模具的立体结构面压印在所述承印基底或所述组装基底上形成外观立体图案面,从而使所述光子晶体层与所述承印基底结合并形成所述转印层。
  25. 如权利要求20所述的制备方法,其中,通过转印将光子晶体层与承印基底结合并形成所述转印层的步骤包括:涂布UV树脂前驱物在所述光子晶体层表面或所述承印基底表面后进行紫外光照射作业,然后以压印模具的立体结构面压印在所述承印基底或所述组装基底上,再完全固化所述树脂薄膜形成外观立体图案面,从而所述光子晶体层与所述承印基底结合并形成所述转印层。
  26. 如权利要求20所述的制备方法,其中,通过转印将光子晶体层与承印基底结合并形成所述转印层的步骤包括:印刷UV树脂前驱物在所述光子晶体层表面或所述承印基底表面后进行紫外光照射作业以形成以立体图案面,再完全固化所述树脂薄膜形成外观立体图案面,从而所述光子晶体层与所述承印基底结合并形成所述转印层。
PCT/CN2016/113077 2016-12-29 2016-12-29 具有光子晶体结构的转印膜及其制备方法 WO2018119897A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680042165.2A CN109071856A (zh) 2016-12-29 2016-12-29 具有光子晶体结构的转印膜及其制备方法
PCT/CN2016/113077 WO2018119897A1 (zh) 2016-12-29 2016-12-29 具有光子晶体结构的转印膜及其制备方法
US16/450,015 US20190317245A1 (en) 2016-12-29 2019-06-24 Transfer film having photonic crystal structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113077 WO2018119897A1 (zh) 2016-12-29 2016-12-29 具有光子晶体结构的转印膜及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/450,015 Continuation US20190317245A1 (en) 2016-12-29 2019-06-24 Transfer film having photonic crystal structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2018119897A1 true WO2018119897A1 (zh) 2018-07-05

Family

ID=62710173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113077 WO2018119897A1 (zh) 2016-12-29 2016-12-29 具有光子晶体结构的转印膜及其制备方法

Country Status (3)

Country Link
US (1) US20190317245A1 (zh)
CN (1) CN109071856A (zh)
WO (1) WO2018119897A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826995A (zh) * 2020-01-20 2020-10-27 北京印刷学院 一种高亮度窄带隙高附着力结构色薄膜的制备方法
CN113117765A (zh) * 2019-12-31 2021-07-16 中国科学院化学研究所 光子晶体编码的检测芯片及其制备方法和应用以及药物筛选系统和药物筛选方法
CN115674943A (zh) * 2021-07-28 2023-02-03 深圳市裕同包装科技股份有限公司 转移膜及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113264499A (zh) * 2021-04-09 2021-08-17 东南大学 一种基于水溶性聚丙烯酸的微纳基底转印方法
CN113831669A (zh) * 2021-08-30 2021-12-24 北京理工大学 一种防伪用一维光子晶体膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102532567A (zh) * 2010-12-23 2012-07-04 成功大学 具有光子晶体结构的高分子膜的制造方法
CN103376646A (zh) * 2012-04-30 2013-10-30 国际商业机器公司 纳米平板印刷方法和装置
CN103698846A (zh) * 2013-11-28 2014-04-02 北京工业大学 一种柔性金属光子晶体的制备方法
WO2014085511A2 (en) * 2012-11-27 2014-06-05 The Regents Of The University Of California Polymerized metal-organic material for printable photonic devices
CN104558662A (zh) * 2014-12-31 2015-04-29 中国科学院深圳先进技术研究院 一种光子晶体纸及其制备方法
CN105118675A (zh) * 2015-09-15 2015-12-02 陕西理工学院 含有二维纳米晶光子晶体散射层的光阳极及其制备方法
CN106226846A (zh) * 2016-09-07 2016-12-14 山东科技大学 一种基于反转压印纳米成型技术的力响应性光子晶体材料的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004077885A (ja) * 2002-08-20 2004-03-11 Fuji Xerox Co Ltd フォトニック結晶及びその製造方法並びに機能性素子
JP4317375B2 (ja) * 2003-03-20 2009-08-19 株式会社日立製作所 ナノプリント装置、及び微細構造転写方法
GB0615919D0 (en) * 2006-08-10 2006-09-20 Rue De Int Ltd Photonic crystal security device
EP2733752B1 (en) * 2011-07-12 2016-10-05 Marubun Corporation Light emitting element and method for manufacturing the same
CN103882393B (zh) * 2013-09-18 2016-08-03 云南大学 转印倒置模板法制备有序锗纳米点阵
CN103868593B (zh) * 2014-03-07 2015-08-19 太原理工大学 基于光子晶体滤波和量子点光谱转换的日盲紫外成像装置
US9472788B2 (en) * 2014-08-27 2016-10-18 3M Innovative Properties Company Thermally-assisted self-assembly method of nanoparticles and nanowires within engineered periodic structures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102532567A (zh) * 2010-12-23 2012-07-04 成功大学 具有光子晶体结构的高分子膜的制造方法
CN103376646A (zh) * 2012-04-30 2013-10-30 国际商业机器公司 纳米平板印刷方法和装置
WO2014085511A2 (en) * 2012-11-27 2014-06-05 The Regents Of The University Of California Polymerized metal-organic material for printable photonic devices
CN103698846A (zh) * 2013-11-28 2014-04-02 北京工业大学 一种柔性金属光子晶体的制备方法
CN104558662A (zh) * 2014-12-31 2015-04-29 中国科学院深圳先进技术研究院 一种光子晶体纸及其制备方法
CN105118675A (zh) * 2015-09-15 2015-12-02 陕西理工学院 含有二维纳米晶光子晶体散射层的光阳极及其制备方法
CN106226846A (zh) * 2016-09-07 2016-12-14 山东科技大学 一种基于反转压印纳米成型技术的力响应性光子晶体材料的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113117765A (zh) * 2019-12-31 2021-07-16 中国科学院化学研究所 光子晶体编码的检测芯片及其制备方法和应用以及药物筛选系统和药物筛选方法
CN111826995A (zh) * 2020-01-20 2020-10-27 北京印刷学院 一种高亮度窄带隙高附着力结构色薄膜的制备方法
CN115674943A (zh) * 2021-07-28 2023-02-03 深圳市裕同包装科技股份有限公司 转移膜及其制造方法

Also Published As

Publication number Publication date
CN109071856A (zh) 2018-12-21
US20190317245A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
WO2018119897A1 (zh) 具有光子晶体结构的转印膜及其制备方法
KR101463954B1 (ko) 직물 또는 피혁 제품의 인쇄 방법 및 이를 이용하여 인쇄된 인쇄물
US4445432A (en) Article decorating
JPH04507386A (ja) プラスチックの基材に着色装飾模様を付与する方法および装置並びに装飾したプラスチック基材
JPS5843517B2 (ja) 熱転写体および転写方法
CN201044988Y (zh) 可作大面积、连续热转印的热转印膜
WO1997038861A1 (en) Printing on a substrate
JPH0835199A (ja) 立体模様化粧紙及びその製造方法
GB9824818D0 (en) Composition,process and use
JPH0238398B2 (zh)
WO1999024657A1 (fr) Papier anti-adherent de traitement et procede de production de cuir synthetique
JP5298739B2 (ja) 感熱転写記録用色素
JP3075057B2 (ja) 被加飾物のホットスタンピング印刷方法およびホットスタンピング印刷が施された被加飾物
KR100694838B1 (ko) 금박층이 형성된 라벨을 전사하는 방법 및 그 라벨전사지
MXPA04011081A (es) Procedimiento de decoracion de piezas metalicas mediante la aplicacion de pintura en polvo.
JP2000301897A (ja) 画像転写方法および画像転写装置
JP2004202807A (ja) 転写シート及びその製造方法
ITMO20000246A1 (it) Dispositivo per decorare oggetti in particolare contenitori e relativo procedimento
CN1623798A (zh) 塑胶制品表面涂饰工艺
KR20050096451A (ko) 장식물이 구성된 라벨 전사지의 제조방법 및 그 라벨전사지.
JPS6059876B2 (ja) 凹凸を有する基材の化粧方法
CN102303440A (zh) 高光泽单面双色热转移电化铝的生产方法
KR20180000164A (ko) 디자인 컷팅 전사용 전사시트의 제조방법
JP2712536B2 (ja) 熱硬化性樹脂化粧板の製造方法
JPH09226225A (ja) 装飾体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925155

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/12/2019)