WO2018116888A1 - 表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー - Google Patents

表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー Download PDF

Info

Publication number
WO2018116888A1
WO2018116888A1 PCT/JP2017/044424 JP2017044424W WO2018116888A1 WO 2018116888 A1 WO2018116888 A1 WO 2018116888A1 JP 2017044424 W JP2017044424 W JP 2017044424W WO 2018116888 A1 WO2018116888 A1 WO 2018116888A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystalline
structural unit
mol
resin composition
crystalline resin
Prior art date
Application number
PCT/JP2017/044424
Other languages
English (en)
French (fr)
Inventor
博樹 深津
智弘 瀧
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to JP2018520208A priority Critical patent/JP6416442B1/ja
Priority to KR1020197008423A priority patent/KR102020634B1/ko
Priority to CN201780064384.5A priority patent/CN109844028B/zh
Publication of WO2018116888A1 publication Critical patent/WO2018116888A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/12Polyester-amides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H45/00Details of relays
    • H01H45/02Bases; Casings; Covers

Definitions

  • the present invention relates to a liquid crystalline resin composition for surface-mounting relays and a surface-mounting relay using the same.
  • an insertion mounting type (through-hole type) relay is known as a relay used by being mounted on a printed circuit board.
  • the insertion mounting relay includes a terminal protruding vertically from the relay body, and is first placed on one surface of the printed board by inserting the terminal into a hole of the printed board. Thereafter, by soldering the terminals on the other surface of the printed board, the insertion mounting relay is fixed to the printed board so as to be electrically conductive.
  • a surface mount type relay has been developed as a new relay to be used by mounting on a printed circuit board (for example, Patent Document 1).
  • the terminal protruding vertically from the relay body is bent at a right angle so that the soldering surface is parallel to the relay body.
  • surface mount relays can be electrically connected by placing the above terminals on the solder pads provided on the conductor pattern on the surface of the printed circuit board and performing solder reflow processing without providing holes in the printed circuit board. Fixed to the printed circuit board.
  • the surface mount relay is fixed to the printed circuit board by the solder reflow process
  • the molded product constituting the surface mount relay for example, the base, the case, the bobbin, etc. is excellent so that it can withstand the solder reflow process. Heat resistance is required. Further, the surface mount relay is also required to maintain airtightness even after the solder reflow process.
  • the molded product, in particular, the base and the case are required to be bonded with high adhesive strength by an adhesive.
  • liquid crystalline polymer compositions are attracting attention in terms of excellent heat resistance, dimensional accuracy, fluidity, and the like.
  • the liquid crystal polymer composition may have a problem of blistering. That is, liquid crystalline polyesteramide, which is a liquid crystalline polymer, is often used as a material that requires heat treatment at a high temperature because it has good high-temperature thermal stability.
  • liquid crystalline polyesteramide which is a liquid crystalline polymer
  • the molded product is left in high temperature air and liquid for a long time, there arises a problem that fine blisters called blisters are generated on the surface. This phenomenon is caused by the fact that the decomposition gas generated when the liquid crystalline polyesteramide is in a molten state is brought into the molded product, and then the gas expands when the high-temperature heat treatment is performed.
  • the generation of blisters can be reduced by sufficiently degassing the vent hole during melt extrusion of the material, or by not allowing the material to stay in the molding machine for a long time during molding.
  • the range of conditions is very narrow, and it is not sufficient to obtain a molded product in which generation of blisters is suppressed, that is, a molded product having blister resistance.
  • the fundamental solution to blister generation requires improvement of the quality of the liquid crystalline polyester amide itself, and the known liquid crystalline polyester amide and methods using it are insufficient to solve the problem of blister generation.
  • the liquid crystalline polymer composition may have a problem that the filler protrudes from the surface of the molded article of the composition and further desorbs, thereby causing a functional disorder such as poor conduction of the product.
  • the present invention has been made in view of such circumstances, and is surface mounted that provides a molded product that has excellent heat resistance, suppresses the generation of blisters and fillers, and can be bonded with high adhesive strength by an adhesive. It is an object of the present invention to provide a liquid crystalline resin composition for relay, a surface mount relay component comprising the composition, and a surface mount relay including the component.
  • the inventors of the present invention combined a liquid crystalline polymer containing a predetermined amount of a specific structural unit and a fibrous filler so that the weight average fiber length of the fibrous filler is 50 to 170 ⁇ m. It has been found that the above problem can be solved by setting the content of a fraction having a length of 20 to 200 ⁇ m to 70% by mass or more. Specifically, the present invention provides the following.
  • a liquid crystalline resin composition for a surface mount relay comprising (A) a liquid crystalline polymer and (B) a fibrous filler,
  • the (A) liquid crystalline polymer is composed of the following structural units (I) to (VI) as essential structural components:
  • the content of the structural unit (I) is 50 to 70 mol% with respect to all the structural units,
  • the content of the structural unit (II) is 0.5 mol% or more and less than 4.5 mol% with respect to all the structural units
  • the content of the structural unit (III) is 10.25 to 22.25 mol% with respect to all the structural units,
  • the content of the structural unit (IV) is 0.5 mol% or more and less than 4.5 mol% with respect to all the structural units,
  • the content of the structural unit (V) with respect to all the structural units is 5.75 to 23.75 mol%
  • the content of the structural unit (VI) is 1 to 7 mol% with respect to all the structural units,
  • the (B) fibrous filler has a weight average fiber length of 50 to 170 ⁇ m, In the (B) fibrous filler, the content of the fraction having a fiber length of 20 to 200 ⁇ m is 70% by mass or more,
  • the (A) liquid crystalline polymer is 50 to 70% by mass with respect to the entire liquid crystalline resin composition,
  • the (B) fibrous filler is 30 to 50% by mass with respect to the entire liquid crystalline resin composition,
  • the surface mount relay includes a base and a terminal protruding from the base, and is a liquid crystalline resin composition that is a surface mount relay in which the terminal is soldered to a printed board.
  • the total number of moles of the structural unit (III) and the structural unit (IV) is 1 to 1.1 times the total number of moles of the structural unit (V) and the structural unit (VI), or The total number of moles of the structural unit (V) and the structural unit (VI) is 1 to 1.1 times the total number of moles of the structural unit (III) and the structural unit (IV).
  • Liquid crystalline resin composition Liquid crystalline resin composition.
  • a component for surface mount relay comprising the composition according to any one of (1) to (3).
  • the liquid crystalline resin composition for surface-mounting relays which has excellent heat resistance, suppresses generation of blisters and detachment of filler, and gives a molded product that can be bonded with high adhesive strength by an adhesive, It is possible to provide a surface mount relay component made of the composition, and a surface mount relay including the component.
  • FIG. 1A is a perspective view schematically showing an embodiment of a surface mount relay according to the present invention
  • FIG. 1B is a partial cross-sectional view showing an AA cross section of FIG.
  • FIG. 2A and FIG. 2B are side views schematically showing a state where the embodiment of the surface mount relay according to the present invention is mounted on a printed board.
  • FIG. 3A is a diagram for explaining a method for producing a sample for evaluating the adhesive strength
  • FIG. 3B is a diagram for explaining a method for evaluating the adhesive strength.
  • the liquid crystalline resin composition for a surface-mount relay contains a predetermined amount of a specific liquid crystalline polymer and a fibrous filler, and the fibrous filler has a weight average fiber length of 50 to 170 ⁇ m.
  • the content of the fraction having a fiber length of 20 to 200 ⁇ m is 70% by mass or more
  • the surface mount relay includes a base and a terminal protruding from the base, and the terminal is attached to the printed circuit board.
  • This is a surface mount relay that is soldered.
  • the component which comprises the liquid crystalline resin composition which concerns on this invention is demonstrated.
  • the liquid crystalline resin composition according to the present invention includes a liquid crystalline polymer that is the above-mentioned wholly aromatic polyester amide. Since the wholly aromatic polyester amide has a low melting point, the processing temperature can be lowered and the generation of decomposition gas during melting is suppressed. As a result, in the molded product obtained by molding the liquid crystalline resin composition containing the wholly aromatic polyester amide, blistering is suppressed and blister resistance is improved.
  • a liquid crystalline polymer can be used individually by 1 type or in combination of 2 or more types.
  • the wholly aromatic polyester amide in the present invention comprises the following structural unit (I), the following structural unit (II), the following structural unit (III), the following structural unit (IV), the following structural unit (V), and the following structural unit ( VI).
  • the structural unit (I) is derived from 4-hydroxybenzoic acid (hereinafter also referred to as “HBA”).
  • HBA 4-hydroxybenzoic acid
  • the wholly aromatic polyester amide in the present invention contains 50 to 70 mol% of the structural unit (I) with respect to all the structural units.
  • the content of the structural unit (I) is less than 50 mol% or exceeds 70 mol%, at least one of lowering the melting point and heat resistance tends to be insufficient.
  • the content of the structural unit (I) is preferably 54 to 67 mol%, more preferably 58 to 64 mol%.
  • the structural unit (II) is derived from 6-hydroxy-2-naphthoic acid (hereinafter also referred to as “HNA”).
  • the wholly aromatic polyester amide in the present invention contains 0.5 to 4.5 mol% of the structural unit (II) with respect to all the structural units.
  • the content of the structural unit (II) is less than 0.5 mol% or 4.5 mol% or more, at least one of lowering the melting point and heat resistance tends to be insufficient.
  • the content of the structural unit (II) is preferably 0.75 to 3.75 mol%, more preferably 1 to 3 mol%.
  • the structural unit (III) is derived from 1,4-phenylenedicarboxylic acid (hereinafter also referred to as “TA”).
  • the wholly aromatic polyester amide in the present invention contains 10.25 to 22.25 mol% of the structural unit (III) with respect to all the structural units.
  • the content of the structural unit (III) is less than 10.25 mol% or exceeds 22.25 mol%, at least one of lowering the melting point and heat resistance tends to be insufficient.
  • the content of the structural unit (III) is preferably 12.963 to 20.75 mol%, more preferably 15.675 to 19.25 mol%.
  • the structural unit (IV) is derived from 1,3-phenylenedicarboxylic acid (hereinafter also referred to as “IA”).
  • the wholly aromatic polyester amide in the present invention contains 0.5 mol% or more and less than 4.5 mol% of the structural unit (IV) with respect to all the structural units.
  • the content of the structural unit (IV) is less than 0.5 mol% or 4.5 mol% or more, at least one of low melting point and heat resistance tends to be insufficient.
  • the content of the structural unit (IV) is preferably 0.5 to 3.75 mol%, more preferably 0.5 to 3 mol%.
  • the structural unit (V) is derived from 4,4′-dihydroxybiphenyl (hereinafter also referred to as “BP”).
  • the wholly aromatic polyester amide in the present invention contains 5.75 to 23.75 mol% of the structural unit (V) with respect to all the structural units.
  • the content of the structural unit (V) is less than 5.75 mol% or exceeds 23.75 mol%, at least one of the low melting point and the heat resistance tends to be insufficient.
  • the content of the structural unit (V) is preferably 8.5 to 20.375 mol%, more preferably 11.25 to 17 mol% (for example, 11. 675 to 17 mol%).
  • the structural unit (VI) is derived from N-acetyl-p-aminophenol (hereinafter also referred to as “APAP”).
  • the wholly aromatic polyester amide in the present invention contains 1 to 7 mol% of the structural unit (VI) with respect to all the structural units.
  • the content of the structural unit (VI) is less than 1 mol% or exceeds 7 mol%, at least one of lowering the melting point and heat resistance tends to be insufficient.
  • the content of the structural unit (VI) is preferably 1.5 to 7 mol%, more preferably 2 to 7 mol%.
  • the wholly aromatic polyester amide in the present invention contains 1 mol% or more and less than 5 mol% of the total of the structural unit (II) and the structural unit (IV) with respect to all the structural units.
  • the lower melting point can be obtained by coexisting the flexible structural unit (II) having a naphthalene skeleton and the flexible structural unit (IV) having a benzene skeleton in a total amount within the above range. Coexistence with heat resistance is likely to be sufficient. If the total content is less than 1 mol%, the proportion of the flexural constituent unit is too small, and the lowering of the melting point tends to be insufficient.
  • the total content is 5 mol% or more, the proportion of the flexible structural unit is excessively increased, and thus the heat resistance tends to be insufficient.
  • the total content is preferably 1.75 to 4.75 mol%, more preferably 2.5 to 4.5 mol%.
  • the molar ratio of the structural unit (VI) to the total of the structural unit (V) and the structural unit (VI) is 0.04 to 0.37. If the molar ratio is less than 0.04, the proportion of structural units having a biphenyl skeleton increases, so that the crystallinity of the wholly aromatic polyester amide is lowered, and it is insufficient to achieve both low melting point and heat resistance. Cheap. Further, when the molar ratio exceeds 0.37, heterogeneous bonds other than ester bonds increase, so that the crystallinity of the wholly aromatic polyester amide is lowered, and the compatibility between the low melting point and the heat resistance tends to be insufficient. . From the viewpoint of achieving both low melting point and heat resistance, the molar ratio is preferably 0.07 to 0.36, more preferably 0.11 to 0.35.
  • the total number of moles of the structural unit (III) and the structural unit (IV) (hereinafter also referred to as “number of moles 1A”) is the same as that of the structural unit (V). 1 to 1.1 times the total number of moles of the structural unit (VI) (hereinafter also referred to as “number of moles 2A”), or the number of moles 2A is 1 to 1.1 times the number of moles 1A. It is preferable that The number of moles 1A is 1.02 to 1.06 times the number of moles 2A, or the number of moles 2A is more preferably 1.02 to 1.06 times the number of moles 1A. More preferably, the mole number 1A is 1.024 to 1.056 times the mole number 2A, or the mole number 2A is 1.024 to 1.056 times the mole number 1A.
  • the wholly aromatic polyester amide according to the present invention includes the specific structural units (I) to (VI) and the total of the structural units (II) and (IV) as the total structural units. In contrast, it has a specific amount, and the molar ratio of the structural unit (VI) to the total of the structural unit (V) and the structural unit (VI) is in a specific range. Is enough. Note that the wholly aromatic polyester amide of the present invention contains 100 mol% of the structural units (I) to (VI) in total with respect to the total structural units.
  • DTUL deflection temperature under load
  • DTUL is a deflection temperature under load
  • the heat resistance tends to be high, which is preferable.
  • DTUL is obtained by melt-kneading 60% by mass of the wholly aromatic polyester amide and 40% by mass of milled fiber having an average fiber diameter of 11 ⁇ m and an average fiber length of 75 ⁇ m at the melting point of the wholly aromatic polyester amide + 20 ° C. It is a value measured in the state of the liquid crystalline resin composition, and can be measured according to ISO75-1,2. From the viewpoint of achieving both low melting point and heat resistance, DTUL is preferably 265 ° C. or higher and 310 ° C. or lower, more preferably 267 to 300 ° C.
  • the wholly aromatic polyester amide in the present invention is polymerized using a direct polymerization method, a transesterification method or the like.
  • a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method, etc., or a combination of two or more of these are used, and a melt polymerization method or a combination of a melt polymerization method and a solid phase polymerization method is used. Is preferably used.
  • an acylating agent for the polymerization monomer or a monomer having an activated terminal as an acid chloride derivative can be used.
  • the acylating agent include fatty acid anhydrides such as acetic anhydride.
  • various catalysts can be used. Typical examples include dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium silicates, titanium alcoholates, fatty acid metal salts, BF 3 Lewis acid salts such as are mentioned, and fatty acid metal salts are preferred.
  • the amount of the catalyst used is generally about 0.001 to 1% by weight, particularly about 0.003 to 0.2% by weight, based on the total weight of the monomers.
  • liquid paraffin high heat resistant synthetic oil, inert mineral oil, or the like is used as a solvent.
  • the reaction conditions are, for example, a reaction temperature of 200 to 380 ° C. and a final ultimate pressure of 0.1 to 760 Torr (that is, 13 to 101,080 Pa). Particularly in a melt reaction, for example, a reaction temperature of 260 to 380 ° C., preferably 300 to 360 ° C., a final ultimate pressure of 1 to 100 Torr (ie, 133 to 13,300 Pa), preferably 1 to 50 Torr (ie, 133 to 6,670 Pa). ).
  • all the raw material monomers HBA, HNA, TA, IA, BP, and APAP
  • the acylating agent can be charged into the same reaction vessel to start the reaction (one-stage system)
  • the raw material monomer HBA. , HNA, BP, and APAP hydroxyl groups can be acylated with an acylating agent and then reacted with TA and IA carboxyl groups (two-stage system).
  • the melt polymerization is performed after the inside of the reaction system has reached a predetermined temperature, and the pressure reduction is started to a predetermined degree of pressure reduction. After the torque of the stirrer reaches a predetermined value, an inert gas is introduced, and the total aromatic polyester amide is discharged from the reaction system through a normal pressure from a reduced pressure state to a predetermined pressure state.
  • the wholly aromatic polyester amide produced by the above polymerization method can further increase the molecular weight by solid-phase polymerization that is heated in an inert gas at normal pressure or reduced pressure.
  • Preferred conditions for the solid phase polymerization reaction are a reaction temperature of 230 to 350 ° C., preferably 260 to 330 ° C., and a final ultimate pressure of 10 to 760 Torr (ie 1,330 to 101,080 Pa).
  • the process for producing a wholly aromatic polyester amide according to the present invention comprises 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4,4′-dihydroxybiphenyl, and N-acetyl-p- in the presence of a fatty acid metal salt.
  • the method comprises acylating aminophenol with a fatty acid anhydride and transesterifying with 1,4-phenylenedicarboxylic acid and 1,3-phenylenedicarboxylic acid, Consists of 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 1,4-phenylenedicarboxylic acid, 1,3-phenylenedicarboxylic acid, 4,4'-dihydroxybiphenyl, and N-acetyl-p-aminophenol
  • 4-hydroxybenzoic acid is used in an amount of 50 to 70 mol%, preferably 54 to 67 mol%, more preferably 58 to 64 mol%, from the viewpoint of achieving both low melting point and heat resistance.
  • the amount of 6-hydroxy-2-naphthoic acid used is 0.5 mol% or more and less than 4.5 mol%, preferably from 0.75 to 3.75 mol% from the viewpoint of achieving both low melting point and heat resistance. More preferably 1 to 3 mol%, The amount of 1,4-phenylenedicarboxylic acid used is from 10.25 to 22.25 mol%, and preferably from 12.963 to 20.75 mol%, more preferably from the viewpoint of achieving both low melting point and heat resistance.
  • the amount of 1,3-phenylenedicarboxylic acid used is 0.5 mol% or more and less than 4.5 mol%, and preferably 0.5 to 3.75 mol% from the viewpoint of achieving both low melting point and heat resistance.
  • the amount of 4,4′-dihydroxybiphenyl used is 5.75 to 23.75 mol%, and from the viewpoint of achieving both low melting point and heat resistance, preferably 8.5 to 20.375 mol%, more preferably 11 25-17 mol% (eg, 11.675-17 mol%), N-acetyl-p-aminophenol is used in an amount of 1 to 7 mol%, preferably 1.5 to 7 mol%, more preferably 2 to 7 mol%, from the viewpoint of achieving both low melting point and heat resistance.
  • the total amount of 6-hydroxy-2-naphthoic acid and 1,3-phenylenedicarboxylic acid is 1 mol% or more and less than 5 mol%, and preferably 1.75 from the viewpoint of achieving both low melting point and heat resistance.
  • Sum of 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 1,4-phenylenedicarboxylic acid, 1,3-phenylenedicarboxylic acid, 4,4'-dihydroxybiphenyl, and N-acetyl-p-aminophenol Is 100 mol% It is preferable that The molar ratio of the amount of N-acetyl-p-aminophenol used to the total amount of 4,4′-dihydroxybiphenyl and N-acetyl-p-aminophenol used is 0.04 to 0.37, and the melting point is lowered.
  • the amount of the fatty acid anhydride used is 1.02 of the total hydroxyl equivalent of 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4,4′-dihydroxybiphenyl, and N-acetyl-p-aminophenol. It is preferably ⁇ 1.04 times. More preferably, the fatty acid metal salt is an acetic acid metal salt and the fatty acid anhydride is acetic anhydride.
  • the total number of moles of 1,4-phenylene dicarboxylic acid and 1,3-phenylene dicarboxylic acid (hereinafter also referred to as “number of moles 1B”) is 4,4′-dihydroxybiphenyl and N-acetyl-p. -1 to 1.1 times the total number of moles with aminophenol (hereinafter also referred to as “number of moles 2B"), or the number of moles 2B is 1 to 1.1 times the number of moles 1B. It is more preferable. More preferably, the mole number 1B is 1.02 to 1.06 times the mole number 2B, or the mole number 2B is 1.02 to 1.06 times the mole number 1B.
  • the number of moles 1B is 1.024 to 1.056 times the number of moles 2B, or the number of moles 2B is particularly preferably 1.024 to 1.056 times the number of moles 1B.
  • the wholly aromatic polyester amide in the present invention exhibits optical anisotropy when melted.
  • An optical anisotropy when melted means that the wholly aromatic polyester amide in the present invention is a liquid crystalline polymer.
  • the fact that the wholly aromatic polyester amide is a liquid crystalline polymer is an essential element for the wholly aromatic polyester amide to have both heat stability and easy processability.
  • the wholly aromatic polyester amide composed of the structural units (I) to (VI) may not form an anisotropic molten phase depending on the constituent components and the sequence distribution in the polymer. Is limited to wholly aromatic polyester amides exhibiting optical anisotropy when melted.
  • melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the melting anisotropy can be confirmed by melting a sample placed on a hot stage manufactured by Linkham Co., Ltd. using a polarizing microscope manufactured by Olympus and observing it at a magnification of 150 times in a nitrogen atmosphere.
  • the liquid crystalline polymer is optically anisotropic and transmits light when inserted between crossed polarizers. If the sample is optically anisotropic, for example, polarized light is transmitted even in a molten stationary liquid state.
  • a nematic liquid crystalline polymer causes a significant decrease in viscosity at a melting point or higher, generally exhibiting liquid crystallinity at a melting point or higher is an index of workability.
  • the melting point is preferably as high as possible from the viewpoint of heat resistance, but is preferably 360 ° C. or lower in consideration of heat deterioration during the melt processing of the polymer, the heating ability of the molding machine, and the like.
  • the temperature is more preferably 300 to 360 ° C, and still more preferably 340 to 358 ° C.
  • melt viscosity of the wholly aromatic polyester amide at a temperature 10 to 30 ° C. higher than the melting point of the wholly aromatic polyester amide in the present invention and a shear rate of 1000 / sec is preferably 500 Pa ⁇ s or less, more preferably 0. 5 to 300 Pa ⁇ s, and even more preferably 1 to 100 Pa ⁇ s.
  • melt viscosity means the melt viscosity measured based on ISO11443.
  • the difference between the melting point and DTUL can also be cited as an index representing the above heat resistance. If this difference is 90 ° C. or less, the heat resistance tends to increase, which is preferable. From the viewpoint of achieving both low melting point and heat resistance, the above difference is preferably more than 0 ° C. and 85 ° C. or less (eg, 50 ° C. or more and 85 ° C. or less), more preferably 55 to 79 ° C.
  • the liquid crystalline resin composition according to the present invention contains the above liquid crystalline polymer in the liquid crystalline resin composition in an amount of 50 to 70% by mass with respect to the entire liquid crystalline resin composition.
  • the content of the liquid crystalline polymer is less than 50% by mass with respect to the entire liquid crystalline resin composition, the fluidity of the liquid crystalline resin composition is likely to deteriorate, and the surface mount relay obtained from the liquid crystalline resin composition This is not preferable because warpage deformation of a molded product such as an automotive part may increase.
  • the liquid crystalline resin composition according to the present invention preferably contains the liquid crystalline polymer in the liquid crystalline resin composition in an amount of 55 to 65% by mass, and 58 to 62% by mass with respect to the entire liquid crystalline resin composition. More preferably.
  • the liquid crystalline resin composition according to the present invention includes the above liquid crystalline polymer and a fibrous filler, and the fibrous filler has a weight average fiber length of 50 to 170 ⁇ m.
  • the fibrous filler Since the content of the fraction having a length of 20 to 200 ⁇ m is 70% by mass or more, the molded product obtained by molding the liquid crystalline resin composition has excellent heat resistance, generation of blisters and elimination of fillers. Is suppressed, and the adhesive can be bonded with high adhesive strength.
  • a fibrous filler can be used individually by 1 type or in combination of 2 or more types.
  • the fibrous filler in the present invention is not particularly limited, and is glass fiber, milled fiber, carbon fiber, asbestos fiber, silica fiber, silica / alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, titanium. A potassium acid fiber etc. are mentioned. Milled fiber is preferred as the fibrous filler in the present invention because it is easy to suppress the detachment of the filler from the molded product while maintaining a high adhesive strength between the molded products obtained from the liquid crystalline resin composition.
  • the weight average fiber length of the fibrous filler is 50 to 170 ⁇ m, preferably 70 to 150 ⁇ m, more preferably 80 to 140 ⁇ m, and more preferably 100 to 140 ⁇ m. Even more preferably.
  • the weight average fiber length is less than 50 ⁇ m, the molded article obtained from the liquid crystalline resin composition is not sufficiently high in rigidity at high temperatures, and warpage deformation of the molded article may be increased.
  • the weight average fiber length is more than 170 ⁇ m, it is difficult to suppress the detachment of the filler from the molded product of the obtained liquid crystalline resin composition, which is not preferable.
  • the weight average fiber length of the fibrous filler means that the liquid crystalline resin composition is heated and ashed at 600 ° C. for 2 hours to obtain an ashing residue, and the ashing residue is converted to 5% by mass of polyethylene.
  • a dispersion liquid is obtained by dispersing in an aqueous glycol solution, and the weight average fiber length measured with an image measuring device is used for this dispersion liquid.
  • the fiber length 20 The content of the fraction having ⁇ 200 ⁇ m is 70% by mass or more, preferably 75% by mass or more, more preferably 80% by mass or more.
  • the upper limit of the said content rate is not specifically limited, It is 100 mass% or less, and 95 mass% or less may be sufficient.
  • the content is determined by heating the liquid crystalline resin composition at 600 ° C. for 2 hours to ash to obtain an ash residue, and dispersing the ash residue in a 5% by mass polyethylene glycol aqueous solution. A liquid is obtained, and this dispersion is measured from the fiber length distribution measured using an image measuring device.
  • the fiber diameter of the fibrous filler in the present invention is not particularly limited, and generally about 5 to 15 ⁇ m is used.
  • the liquid crystalline resin composition according to the present invention contains a fibrous filler in an amount of 30 to 50% by mass with respect to the entire liquid crystalline resin composition in the liquid crystalline resin composition.
  • the molded article such as a surface mount relay component obtained from the liquid crystalline resin composition has a low deflection temperature under load. This is not preferable because the high-temperature rigidity is not sufficient.
  • the content of the fibrous filler is more than 50% by mass with respect to the entire liquid crystalline resin composition, the fluidity of the liquid crystalline resin composition is deteriorated, and warpage deformation of the molded product may be increased. It is not preferable.
  • the fibrous filler in the present invention is preferably contained in the liquid crystalline resin composition in an amount of 35 to 45% by mass and more preferably in an amount of 38 to 42% by mass with respect to the entire liquid crystalline resin composition.
  • the liquid crystalline resin composition according to the present invention includes a plate-like filler, a nucleating agent, carbon black, a pigment such as an inorganic fired pigment, an antioxidant, a stabilizer, a plasticizer, a lubricant, a release agent. You may mix
  • the components in the liquid crystalline resin composition can be uniformly mixed, and the weight average fiber length of the fibrous filler is 50 to 170 ⁇ m.
  • the content is not particularly limited as long as the content of the fraction having a length of 20 to 200 ⁇ m can be 70% by mass or more, and can be appropriately selected from conventionally known methods for producing resin compositions.
  • each component is melt-kneaded and extruded using a melt-kneader such as a single-screw or twin-screw extruder, and then the obtained liquid crystalline resin composition is processed into a desired form such as powder, flakes, pellets, etc. The method of doing is mentioned.
  • liquid crystalline resin composition according to the present invention is excellent in fluidity, the minimum filling pressure at the time of molding is hardly excessive, and a surface mount relay component or the like can be preferably molded.
  • the melt viscosity of the liquid crystalline resin composition measured in accordance with ISO 11443 at a temperature 10 to 30 ° C. higher than the melting point of the liquid crystalline polymer at a shear rate of 1000 / second is more preferably 1 ⁇ 10 5 Pa ⁇ s or less (more preferably 5 Pa ⁇ s or more and 1 ⁇ 10 2 Pa ⁇ s or less) is preferable in terms of ensuring the fluidity of the liquid crystalline resin composition and preventing the filling pressure from becoming excessive at the time of molding of the surface mount relay component.
  • the surface mount relay component according to the present invention By molding the liquid crystalline resin composition according to the present invention, the surface mount relay component according to the present invention can be obtained.
  • the surface mount relay component according to the present invention is excellent in heat resistance, suppresses generation of blisters and detachment of filler, and can be bonded with high adhesive strength by an adhesive. Since the surface mount relay according to the present invention includes the above components, (1) it has excellent heat resistance and can withstand solder reflow processing, and (2) it can bond the base and the case with high adhesive strength, particularly with an adhesive. It is possible to maintain the properties even after the solder reflow treatment, and (3) the occurrence of blisters and the detachment of fillers are suppressed, and functional failures such as poor conduction are unlikely to occur.
  • FIG. 1A is a perspective view schematically showing an embodiment of a surface mount relay according to the present invention
  • FIG. 1B is a partial cross-sectional view showing an AA cross section of FIG.
  • the surface mount relay 1 includes a base 2, a case 3, a coil block 4, an armature block 5, and a terminal 6.
  • the base 2 includes a terminal 6 protruding from the base 2.
  • a case 3 is disposed on the outer peripheral portion of the upper surface of the base 2.
  • a coil block 4 and an armature block 5 are arranged in this order at the center of the upper surface of the base 2.
  • the case 3 is disposed so as to cover the outer peripheral portion of the upper surface of the base 2 and the coil block 4 and the armature block 5.
  • a coil block 4 and an armature block 5 are accommodated in a hollow container-like space formed by the base 2 and the case 3.
  • the coil block 4 includes a bobbin 41, a coil 42, and an iron core 43, and is arranged at the center of the upper surface of the base 2.
  • the bobbin 41 has a cylindrical portion penetrating in the long axis direction.
  • a coil 42 electrically connected to one end of a part of the terminal 6 is wound around the outer periphery of the bobbin 41, and the cylindrical portion of the bobbin 41 The iron core 43 is inserted into the.
  • the armature block 5 includes an armature connecting portion 51 and an armature 52 extending from the armature connecting portion 51 in opposite directions along the major axis direction of the bobbin 41 and disposed on the coil block 4.
  • the armature 52 is electrically connected to one end of another part of the terminal 6.
  • the terminal 6 has one end electrically connected to the coil 42 or the armature 52, and the other end connected to a printed circuit board 7 described later so as to be electrically conductive.
  • the terminal 6 protrudes from the base 2 and is soldered to the printed circuit board 7 as will be described later.
  • the base 2, the case 3, and the bobbin 41 are excellent in heat resistance, can be formed as a molded product that is prevented from generating blisters and detaching filler, and can be bonded with an adhesive with high adhesive strength.
  • the liquid crystalline resin composition according to the present invention is preferably used. That is, examples of the surface mount relay component according to the present invention include a base, a case, and a bobbin.
  • the coil block 4 and the armature block 5 are arranged in this order at the center of the upper surface of the base 2, and then the case 3 is arranged on the outer peripheral portion of the upper surface of the base 2. 3 can be manufactured by bonding them with an adhesive.
  • a method for mounting the surface mount relay 1 on the printed circuit board 7 will be described.
  • the terminal 6 protruding perpendicularly from the surface mount relay 1 is bent at a right angle so that the soldering surface is parallel to the surface mount relay 1. Therefore, the surface mount relay 1 places the terminal 6 on a solder pad (not shown) provided on the conductor pattern 8 on the surface of the printed circuit board 7 without providing a hole in the printed circuit board 7, and performs solder reflow processing. By performing, it is fixed to the printed circuit board 7 so as to be electrically conductive.
  • the tip of the terminal 6 protruding perpendicularly from the surface mount relay 1 is bent at right angles to the outside of the surface mount relay 1 has been shown.
  • the tip of the terminal 6 protruding perpendicularly from the surface mount relay 1 may be bent at a right angle toward the inside of the surface mount relay 1.
  • the liquid crystalline resin composition pellets were molded under the following molding conditions using a molding machine (“SE100DU” manufactured by Sumitomo Heavy Industries, Ltd.) to obtain test specimens (4 mm ⁇ 10 mm ⁇ 80 mm). .
  • the liquid crystalline polymer 1 is the liquid crystalline polymer obtained in Synthesis Example 16. Moreover, the liquid crystalline polymer 2 was manufactured as follows.
  • the melting point and melt viscosity of the pellet were measured under the following conditions.
  • Method for producing liquid crystalline polymer 2 A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomers, a metal catalyst, and an acylating agent, and nitrogen substitution was started.
  • the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 1 hour. Thereafter, the temperature is further increased to 360 ° C. over 5.5 hours, and then the pressure is reduced to 5 Torr (ie, 667 Pa) over 20 minutes, while acetic acid, excess acetic anhydride, and other low boiling points are distilled off. Melt polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced to change from a reduced pressure state to a normal pressure through a normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strand was pelletized to pelletize. The obtained pellet had a melting point of 355 ° C. and a melt viscosity of 10 Pa ⁇ s.
  • said manufacturer's nominal value differs from the value in Table 4 which is an actual measurement value in a composition.
  • extrusion conditions at the time of obtaining a liquid crystalline resin composition are as follows.
  • Extrusion conditions [Examples 1 and 2, Comparative Examples 1 and 3]
  • the temperature of the cylinder provided at the main feed port was 250 ° C., and the temperatures of the other cylinders were all 360 ° C. All liquid crystalline polymers were supplied from the main feed port.
  • the filler was supplied from the side feed port.
  • Comparative Example 2 The temperature of the cylinder provided at the main feed port was 250 ° C., and the temperatures of the other cylinders were all 380 ° C. All liquid crystalline polymers were supplied from the main feed port.
  • the filler was supplied from the side feed port.
  • the weight average fiber length of the fibrous filler in the liquid crystalline resin composition was measured by the following method. [Measurement of weight average fiber length] 5 g of liquid crystal resin composition pellets were heated at 600 ° C. for 2 hours to be incinerated. The ashing residue was sufficiently dispersed in a 5% by mass polyethylene glycol aqueous solution, then transferred to a petri dish with a dropper, and the fibrous filler was observed with a microscope. At the same time, the weight average fiber length of the fibrous filler was measured using an image measuring device (LUZEXFS manufactured by Nireco Corporation).
  • the content of the fraction having a fiber length of 20 to 200 ⁇ m was measured by the following method. [Measurement of content of fraction having fiber length of 20 to 200 ⁇ m] 5 g of liquid crystal resin composition pellets were heated at 600 ° C. for 2 hours to be incinerated. The ashing residue was sufficiently dispersed in a 5% by mass polyethylene glycol aqueous solution, transferred to a petri dish with a dropper, and the fiber length distribution of the fibrous filler was measured using an image measuring device (LUZEXFS manufactured by Nireco Corporation). In the fiber length distribution, the ratio of the fraction having a fiber length of 20 to 200 ⁇ m was read and used as the content.
  • the liquid crystalline resin composition was injection molded under the following molding conditions to obtain a molded product of 12.5 mm ⁇ 120 mm ⁇ 0.8 mm having a weld portion. A fragment obtained by dividing the molded product into two parts at the weld part was used as one specimen, and was sandwiched in a hot press at a predetermined temperature for 5 minutes. Thereafter, it was visually examined whether blisters were generated on the surface of the specimen.
  • the blister temperature was the maximum temperature at which the number of blisters generated was zero.
  • the predetermined temperature was set in increments of 10 ° C. in the range of 250 to 300 ° C.
  • Molding machine Sumitomo Heavy Industries, SE100DU Cylinder temperature: 360 ° C. (Examples 1 and 2, Comparative Examples 1 and 3) 370 ° C. (Comparative Example 2) Mold temperature: 90 °C Injection speed: 33mm / sec
  • the liquid crystalline resin composition was injection molded under the following molding conditions to obtain a molded product of 12.5 mm ⁇ 120 mm ⁇ 0.8 mm having a weld portion.
  • the molded product obtained by dividing the molded product in two at the weld part was subjected to IR reflow under the following conditions, and then the detachment state of the fibrous filler was observed and evaluated according to the following criteria.
  • X (defect) The fibrous filler was detached. [Molding condition] Molding machine: Sumitomo Heavy Industries, SE100DU Cylinder temperature: 360 ° C.
  • the liquid crystalline resin composition was injection molded under the following molding conditions to obtain a test piece (ISO test piece Type 1A, thickness 4 mm). This test piece was divided into two parts and bonded together with an epoxy adhesive (Loctite 3128NH manufactured by Henkel) as shown in FIG. 3A (curing conditions: 80 ° C. ⁇ 30 minutes). Then, as shown in FIG.3 (b), the bonded test piece was installed, the load was applied in the arrow direction using the tensile tester, and adhesive strength was evaluated from the load when it peeled off. [Molding condition] Molding machine: Sumitomo Heavy Industries, SE100DU Cylinder temperature: 360 ° C.
  • the molded product molded from the liquid crystalline resin composition for surface mount relay according to the present invention is excellent in heat resistance, the generation of blister and the detachment of filler are suppressed, and the adhesive is highly bonded. We were able to bond with strength. Therefore, the liquid crystalline resin composition can be suitably used for the production of surface mount relay components and surface mount relays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyamides (AREA)

Abstract

耐熱性に優れ、ブリスターの発生及びフィラーの脱離が抑制され、接着剤により高い接着強度で接着することができる成形品を与える表面実装リレー用液晶性樹脂組成物、並びにそれを用いた表面実装リレー用部品及び表面実装リレーを提供する。 本発明に係る表面実装リレー用液晶性樹脂組成物は、(A)液晶性ポリマーと、(B)繊維状充填剤と、を含み、上記(A)液晶性ポリマーは、必須の構成成分として、所定量の下記構成単位(I)~(VI)からなる、溶融時に光学的異方性を示す全芳香族ポリエステルアミドであり、前記(B)繊維状充填剤は、重量平均繊維長が50~170μm、繊維長20~200μmの画分の含有率が70質量%以上であり、前記表面実装リレーは、ベースと、前記ベースから突出する端子とを備え、前記端子をプリント基板に半田付けするようにした表面実装リレーである液晶性樹脂組成物。

Description

表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー
 本発明は、表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレーに関する。
 リレーは、エレクトロニクス産業の発展とともに、その生産量も順調に伸びており、通信機器、OA機器、家電機器、自販機等使用される分野も多岐にわたっている。従来、プリント基板に実装して使用するリレーとして、挿入実装型(スルーホールタイプ)のリレーが知られている。挿入実装リレーは、リレー本体より垂直に突き出した端子を備え、まず、プリント基板の孔にこの端子を挿入することでプリント基板の一方の面に載置される。その後、上記プリント基板の他方の面において上記端子を半田付けすることにより、挿入実装リレーは、電気的に導通可能にプリント基板に固定される。
 近年、プリント基板に実装して使用する新たなリレーとして、表面実装型(サーフェースアマウントタイプ)のリレーが開発されている(例えば、特許文献1)。表面実装リレーでは、半田付け面がリレー本体と平行になるように、リレー本体より垂直に突き出した端子が直角に曲げられている。そのため、表面実装リレーは、プリント基板に孔を設けることなく、プリント基板表面の導体パターン上に設けられた半田パッドに上記端子を載置し、半田リフロー処理を行うことにより、電気的に導通可能にプリント基板に固定される。
特許第3463310号公報
 上述の通り、表面実装リレーは、半田リフロー処理によりプリント基板に固定されるため、表面実装リレーを構成する成形品、例えば、ベース、ケース、ボビン等は、半田リフロー処理に耐えられるよう、優れた耐熱性が求められる。また、表面実装リレーは、半田リフロー処理後でも気密性を保持できることも求められる。そのためには、上記成形品、特に、ベースとケースとは、接着剤により高い接着強度で接着できることが要求される。
 ところで、耐熱性、寸法精度、流動性等に優れる点で、液晶性ポリマー組成物が注目されている。しかし、液晶性ポリマー組成物には、ブリスター発生の問題が生じ得る。即ち、液晶性ポリマーである液晶性ポリエステルアミドは、高温熱安定性が良いため、高温での熱処理を要する材料に使用される場合が多い。しかし、成形品を高温の空気中及び液体中に長時間放置すると、表面にブリスターと呼ばれる細かい膨れが生じるという問題が起こる。この現象は、液晶性ポリエステルアミドが溶融状態にある時に発生する分解ガス等が成形品内部に持ち込まれ、その後、高温の熱処理を行う際にそのガスが膨張し、加熱で軟化した成形品表面を押し上げ、押し上げられた部分がブリスターとして現れることによる。ブリスターの発生は、材料の溶融押出し時にベント孔から充分脱気することや成形する際に成形機内に長く滞留させないこと等によって、少なくすることもできる。しかし、非常に条件範囲が狭く、ブリスターの発生を抑えた成形品、即ち、耐ブリスター性を有する成形品を得るには充分ではない。ブリスター発生の根本的な解決には、液晶性ポリエステルアミドそのものの品質の向上を要し、公知の液晶性ポリエステルアミドやそれを用いた方法では、ブリスター発生の問題を解決するには不充分である。また、液晶性ポリマー組成物には、当該組成物の成形品表面からフィラーが突出し、更に脱離して、製品の導通不良等の機能障害を発生させる問題も生じ得る。
 本発明は、かかる事情に鑑みてなされたものであり、耐熱性に優れ、ブリスターの発生及びフィラーの脱離が抑制され、接着剤により高い接着強度で接着することができる成形品を与える表面実装リレー用液晶性樹脂組成物、前記組成物からなる表面実装リレー用部品、及び前記部品を備える表面実装リレーを提供することを目的とする。
 本発明者らは、特定の構成単位を所定量含む液晶性ポリマーと、繊維状充填剤と、を組み合わせ、繊維状充填剤の重量平均繊維長を50~170μmとし、繊維状充填剤において、繊維長20~200μmを有する画分の含有率を70質量%以上とすることで上記の課題を解決できることを見出した。具体的には、本発明は、以下のようなものを提供する。
 (1) (A)液晶性ポリマーと、(B)繊維状充填剤と、を含む表面実装リレー用液晶性樹脂組成物であって、
 前記(A)液晶性ポリマーは、必須の構成成分として、下記構成単位(I)~(VI)からなり、
 全構成単位に対して構成単位(I)の含有量は50~70モル%であり、
 全構成単位に対して構成単位(II)の含有量は0.5モル%以上4.5モル%未満であり、
 全構成単位に対して構成単位(III)の含有量は10.25~22.25モル%であり、
 全構成単位に対して構成単位(IV)の含有量は0.5モル%以上4.5モル%未満であり、
 全構成単位に対して構成単位(V)の含有量は5.75~23.75モル%であり、
 全構成単位に対して構成単位(VI)の含有量は1~7モル%であり、
 全構成単位に対して構成単位(II)と構成単位(IV)との合計の含有量は1モル%以上5モル%未満であり、
 全構成単位に対して構成単位(I)~(VI)の合計の含有量は100モル%であり、
 構成単位(V)と構成単位(VI)との合計に対する構成単位(VI)のモル比が0.04~0.37である、溶融時に光学的異方性を示す全芳香族ポリエステルアミドであり、
 前記(B)繊維状充填剤の重量平均繊維長は、50~170μmであり、
 前記(B)繊維状充填剤において、繊維長20~200μmを有する画分の含有率は、70質量%以上であり、
 前記(A)液晶性ポリマーは、液晶性樹脂組成物全体に対して50~70質量%であり、
 前記(B)繊維状充填剤は、液晶性樹脂組成物全体に対して30~50質量%であり、
 前記表面実装リレーは、ベースと、前記ベースから突出する端子とを備え、前記端子をプリント基板に半田付けするようにした表面実装リレーである液晶性樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
 (2) 構成単位(III)と構成単位(IV)との合計のモル数が構成単位(V)と構成単位(VI)との合計のモル数の1~1.1倍であり、又は、構成単位(V)と構成単位(VI)との合計のモル数が構成単位(III)と構成単位(IV)との合計のモル数の1~1.1倍である(1)に記載の液晶性樹脂組成物。
 (3) 前記(B)繊維状充填剤は、ミルドファイバーである(1)又は(2)に記載の液晶性樹脂組成物。
 (4) (1)~(3)のいずれかに記載の組成物からなる表面実装リレー用部品。
 (5) (4)に記載の部品を備える表面実装リレー。
 本発明によれば、耐熱性に優れ、ブリスターの発生及びフィラーの脱離が抑制され、接着剤により高い接着強度で接着することができる成形品を与える表面実装リレー用液晶性樹脂組成物、前記組成物からなる表面実装リレー用部品、及び前記部品を備える表面実装リレーを提供することができる。
図1(a)は、本発明に係る表面実装リレーの実施形態を模式的に示す斜視図であり、図1(b)は、図1(a)のAA断面を示す部分断面図である。 図2(a)及び図2(b)は、本発明に係る表面実装リレーの実施形態をプリント基板に実装した状態を模式的に示す側面図である。 図3(a)は、接着強度評価のためのサンプルの製造方法を説明するための図であり、図3(b)は、接着強度評価の方法を説明するための図である。
 以下、本発明の実施形態について具体的に説明する。
 [表面実装リレー用液晶性樹脂組成物]
 本発明に係る表面実装リレー用液晶性樹脂組成物は、特定の液晶性ポリマーと、繊維状充填剤とを所定量ずつ含み、繊維状充填剤の重量平均繊維長は50~170μmであり、繊維状充填剤において、繊維長20~200μmを有する画分の含有率は70質量%以上であり、前記表面実装リレーは、ベースと、前記ベースから突出する端子とを備え、前記端子をプリント基板に半田付けするようにした表面実装リレーである。以下、本発明に係る液晶性樹脂組成物を構成する成分について説明する。
 (液晶性ポリマー)
 本発明に係る液晶性樹脂組成物には、上記全芳香族ポリエステルアミドである液晶性ポリマーが含まれる。上記全芳香族ポリエステルアミドは、融点が低いため、加工温度を低くすることができ、溶融時の分解ガスの発生が抑制される。その結果、上記全芳香族ポリエステルアミドを含む液晶性樹脂組成物を成形して得られた成形品は、ブリスター発生が抑制されて、耐ブリスター性が向上する。液晶性ポリマーは、1種単独で又は2種以上組み合わせて使用することができる。
 本発明における全芳香族ポリエステルアミドは、下記構成単位(I)、下記構成単位(II)、下記構成単位(III)、下記構成単位(IV)、下記構成単位(V)、及び下記構成単位(VI)からなる。
Figure JPOXMLDOC01-appb-C000003
 構成単位(I)は、4-ヒドロキシ安息香酸(以下、「HBA」ともいう。)から誘導される。本発明における全芳香族ポリエステルアミドは、全構成単位に対して構成単位(I)を50~70モル%含む。構成単位(I)の含有量が50モル%未満、又は70モル%を超えると、低融点化及び耐熱性の少なくとも一方が不十分となりやすい。低融点化と耐熱性との両立の観点から、構成単位(I)の含有量は、好ましくは54~67モル%、より好ましくは58~64モル%である。
 構成単位(II)は、6-ヒドロキシ-2-ナフトエ酸(以下、「HNA」ともいう。)から誘導される。本発明における全芳香族ポリエステルアミドは、全構成単位に対して構成単位(II)を0.5モル%以上4.5モル%未満含む。構成単位(II)の含有量が0.5モル%未満、又は4.5モル%以上であると、低融点化及び耐熱性の少なくとも一方が不十分となりやすい。低融点化と耐熱性との両立の観点から、構成単位(II)の含有量は、好ましくは0.75~3.75モル%、より好ましくは1~3モル%である。
 構成単位(III)は、1,4-フェニレンジカルボン酸(以下、「TA」ともいう。)から誘導される。本発明における全芳香族ポリエステルアミドは、全構成単位に対して構成単位(III)を10.25~22.25モル%含む。構成単位(III)の含有量が10.25モル%未満、又は22.25モル%を超えると、低融点化及び耐熱性の少なくとも一方が不十分となりやすい。低融点化と耐熱性との両立の観点から、構成単位(III)の含有量は、好ましくは12.963~20.75モル%、より好ましくは15.675~19.25モル%である。
 構成単位(IV)は、1,3-フェニレンジカルボン酸(以下、「IA」ともいう。)から誘導される。本発明における全芳香族ポリエステルアミドは、全構成単位に対して構成単位(IV)を0.5モル%以上4.5モル%未満含む。構成単位(IV)の含有量が0.5モル%未満、又は4.5モル%以上であると、低融点化及び耐熱性の少なくとも一方が不十分となりやすい。低融点化と耐熱性との両立の観点から、構成単位(IV)の含有量は、好ましくは0.5~3.75モル%、より好ましくは0.5~3モル%である。
 構成単位(V)は、4,4’-ジヒドロキシビフェニル(以下、「BP」ともいう。)から誘導される。本発明における全芳香族ポリエステルアミドには、全構成単位に対して構成単位(V)を5.75~23.75モル%含む。構成単位(V)の含有量が5.75モル%未満、又は23.75モル%を超えると、低融点化及び耐熱性の少なくとも一方が不十分となりやすい。低融点化と耐熱性との両立の観点から、構成単位(V)の含有量は、好ましくは8.5~20.375モル%、より好ましくは11.25~17モル%(例えば、11.675~17モル%)である。
 構成単位(VI)は、N-アセチル-p-アミノフェノール(以下、「APAP」ともいう。)から誘導される。本発明における全芳香族ポリエステルアミドには、全構成単位に対して構成単位(VI)を1~7モル%含む。構成単位(VI)の含有量が1モル%未満、又は7モル%を超えると、低融点化及び耐熱性の少なくとも一方が不十分となりやすい。低融点化と耐熱性との両立の観点から、構成単位(VI)の含有量は、好ましくは1.5~7モル%、より好ましくは2~7モル%である。
 本発明における全芳香族ポリエステルアミドは、全構成単位に対して構成単位(II)と構成単位(IV)との合計を1モル%以上5モル%未満含む。上記全芳香族ポリエステルアミドにおいては、ナフタレン骨格を有する屈曲性の構成単位(II)とベンゼン骨格を有する屈曲性の構成単位(IV)とが上記範囲の合計量で並存することで低融点化と耐熱性との両立が十分となりやすい。上記合計の含有量が1モル%未満であると、屈曲性の構成単位の割合が少なくなり過ぎるため、低融点化は不十分となりやすい。上記合計の含有量が5モル%以上であると、屈曲性の構成単位の割合が多くなり過ぎるため、耐熱性は不十分となりやすい。低融点化と耐熱性との両立の観点から、上記合計の含有量は、好ましくは1.75~4.75モル%、より好ましくは2.5~4.5モル%である。
 本発明における全芳香族ポリエステルアミドにおいては、構成単位(V)と構成単位(VI)との合計に対する構成単位(VI)のモル比が0.04~0.37である。上記モル比が0.04未満であると、ビフェニル骨格を有する構成単位の割合が多くなるため、全芳香族ポリエステルアミドの結晶性が低くなり、低融点化と耐熱性との両立が不十分となりやすい。また、上記モル比が0.37を超えると、エステル結合以外の異種結合が増加するため、全芳香族ポリエステルアミドの結晶性が低くなり、低融点化と耐熱性との両立が不十分となりやすい。低融点化と耐熱性との両立の観点から、上記モル比は、好ましくは0.07~0.36、より好ましくは0.11~0.35である。
 低融点化と耐熱性との両立の観点から、構成単位(III)と構成単位(IV)との合計のモル数(以下、「モル数1A」ともいう。)は、構成単位(V)と構成単位(VI)との合計のモル数(以下、「モル数2A」ともいう。)の1~1.1倍であり、又は、モル数2Aは、モル数1Aの1~1.1倍であることが好ましい。モル数1Aは、モル数2Aの1.02~1.06倍であり、又は、モル数2Aは、モル数1Aの1.02~1.06倍であることがより好ましい。モル数1Aは、モル数2Aの1.024~1.056倍であり、又は、モル数2Aは、モル数1Aの1.024~1.056倍であることが更により好ましい。
 以上の通り、本発明における全芳香族ポリエステルアミドは、特定の構成単位である(I)~(VI)及び構成単位(II)と構成単位(IV)との合計のそれぞれを、全構成単位に対して特定の量含有し、かつ、構成単位(V)と構成単位(VI)との合計に対する構成単位(VI)のモル比が特定の範囲であるため、低融点化と耐熱性との両立が十分である。なお、本発明の全芳香族ポリエステルアミドは、全構成単位に対して構成単位(I)~(VI)を合計で100モル%含む。
 上記の耐熱性を表す指標として、荷重たわみ温度(以下、「DTUL」ともいう。)が挙げられる。DTULが、260℃以上であると耐熱性が高くなる傾向にあり好ましい。DTULは、前記全芳香族ポリエステルアミド60質量%と、平均繊維径11μm、平均繊維長75μmのミルドファイバー40質量%とを、前記全芳香族ポリエステルアミドの融点+20℃にて溶融混練して得られる液晶性樹脂組成物の状態で測定される値であり、ISO75-1,2に準拠して測定することができる。低融点化と耐熱性との両立の観点から、DTULは、好ましくは265℃以上310℃以下、より好ましくは267~300℃である。
 次いで、本発明における全芳香族ポリエステルアミドの製造方法について説明する。本発明における全芳香族ポリエステルアミドは、直接重合法やエステル交換法等を用いて重合される。重合に際しては、溶融重合法、溶液重合法、スラリー重合法、固相重合法等、又はこれらの2種以上の組み合わせが用いられ、溶融重合法、又は溶融重合法と固相重合法との組み合わせが好ましく用いられる。
 本発明では、重合に際し、重合モノマーに対するアシル化剤や、酸塩化物誘導体として末端を活性化したモノマーを使用できる。アシル化剤としては、無水酢酸等の脂肪酸無水物等が挙げられる。
 これらの重合に際しては種々の触媒の使用が可能であり、代表的なものとしては、ジアルキル錫酸化物、ジアリール錫酸化物、二酸化チタン、アルコキシチタン珪酸塩類、チタンアルコラート類、脂肪酸金属塩、BFの如きルイス酸塩等が挙げられ、脂肪酸金属塩が好ましい。触媒の使用量は一般にはモノマーの全質量に基づいて約0.001~1質量%、特に約0.003~0.2質量%が好ましい。
 また、溶液重合又はスラリー重合を行う場合、溶媒としては流動パラフィン、高耐熱性合成油、不活性鉱物油等が用いられる。
 反応条件としては、例えば、反応温度200~380℃、最終到達圧力0.1~760Torr(即ち、13~101,080Pa)である。特に溶融反応では、例えば、反応温度260~380℃、好ましくは300~360℃、最終到達圧力1~100Torr(即ち、133~13,300Pa)、好ましくは1~50Torr(即ち、133~6,670Pa)である。
 反応は、全原料モノマー(HBA、HNA、TA、IA、BP、及びAPAP)、アシル化剤、及び触媒を同一反応容器に仕込んで反応を開始させることもできるし(一段方式)、原料モノマーHBA、HNA、BP、及びAPAPの水酸基をアシル化剤によりアシル化させた後、TA及びIAのカルボキシル基と反応させることもできる(二段方式)。
 溶融重合は、反応系内が所定温度に達した後、減圧を開始して所定の減圧度にして行う。撹拌機のトルクが所定値に達した後、不活性ガスを導入し、減圧状態から常圧を経て、所定の加圧状態にして反応系から全芳香族ポリエステルアミドを排出する。
 上記重合方法により製造された全芳香族ポリエステルアミドは、更に常圧又は減圧、不活性ガス中で加熱する固相重合により分子量の増加を図ることができる。固相重合反応の好ましい条件は、反応温度230~350℃、好ましくは260~330℃、最終到達圧力10~760Torr(即ち、1,330~101,080Pa)である。
 本発明における全芳香族ポリエステルアミドの製造方法は、脂肪酸金属塩の存在下、4-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4,4’-ジヒドロキシビフェニル、及びN-アセチル-p-アミノフェノールを脂肪酸無水物でアシル化して、1,4-フェニレンジカルボン酸及び1,3-フェニレンジカルボン酸とエステル交換する工程を含むことが好ましく、
 4-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、1,4-フェニレンジカルボン酸、1,3-フェニレンジカルボン酸、4,4’-ジヒドロキシビフェニル、及びN-アセチル-p-アミノフェノールからなる全モノマーに対し、
 4-ヒドロキシ安息香酸の使用量が50~70モル%、低融点化と耐熱性との両立の観点から、好ましくは54~67モル%、より好ましくは58~64モル%、
 6-ヒドロキシ-2-ナフトエ酸の使用量が0.5モル%以上4.5モル%未満、低融点化と耐熱性との両立の観点から、好ましくは0.75~3.75モル%、より好ましくは1~3モル%、
 1,4-フェニレンジカルボン酸の使用量が10.25~22.25モル%、低融点化と耐熱性との両立の観点から、好ましくは12.963~20.75モル%、より好ましくは15.675~19.25モル%、
 1,3-フェニレンジカルボン酸の使用量が0.5モル%以上4.5モル%未満、低融点化と耐熱性との両立の観点から、好ましくは0.5~3.75モル%、より好ましくは0.5~3モル%、
 4,4’-ジヒドロキシビフェニルの使用量が5.75~23.75モル%、低融点化と耐熱性との両立の観点から、好ましくは8.5~20.375モル%、より好ましくは11.25~17モル%(例えば、11.675~17モル%)、
 N-アセチル-p-アミノフェノールの使用量が1~7モル%、低融点化と耐熱性との両立の観点から、好ましくは1.5~7モル%、より好ましくは2~7モル%、
 6-ヒドロキシ-2-ナフトエ酸と1,3-フェニレンジカルボン酸との合計の使用量が1モル%以上5モル%未満、低融点化と耐熱性との両立の観点から、好ましくは1.75~4.75モル%、より好ましくは2.5~4.5モル%、
 4-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、1,4-フェニレンジカルボン酸、1,3-フェニレンジカルボン酸、4,4’-ジヒドロキシビフェニル、及びN-アセチル-p-アミノフェノールの合計の使用量が100モル%
であることが好ましく、
 4,4’-ジヒドロキシビフェニルとN-アセチル-p-アミノフェノールとの合計の使用量に対するN-アセチル-p-アミノフェノールの使用量のモル比が0.04~0.37、低融点化と耐熱性との両立の観点から、好ましくは0.07~0.36、より好ましくは0.11~0.35であることが好ましく、
 前記脂肪酸無水物の使用量は、4-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4,4’-ジヒドロキシビフェニル、及びN-アセチル-p-アミノフェノールの合計の水酸基当量の1.02~1.04倍であることが好ましい。上記脂肪酸金属塩が酢酸金属塩であり、上記脂肪酸無水物が無水酢酸であることがより好ましい。また、1,4-フェニレンジカルボン酸と1,3-フェニレンジカルボン酸との合計のモル数(以下、「モル数1B」ともいう。)は、4,4’-ジヒドロキシビフェニルとN-アセチル-p-アミノフェノールとの合計のモル数(以下、「モル数2B」ともいう。)の1~1.1倍であり、又は、モル数2Bは、モル数1Bの1~1.1倍であることがより好ましい。モル数1Bは、モル数2Bの1.02~1.06倍であり、又は、モル数2Bは、モル数1Bの1.02~1.06倍であることが更により好ましい。モル数1Bは、モル数2Bの1.024~1.056倍であり、又は、モル数2Bは、モル数1Bの1.024~1.056倍であることが特に好ましい。
 次いで、全芳香族ポリエステルアミドの性質について説明する。本発明における全芳香族ポリエステルアミドは、溶融時に光学的異方性を示す。溶融時に光学的異方性を示すことは、本発明における全芳香族ポリエステルアミドが液晶性ポリマーであることを意味する。
 本発明において、全芳香族ポリエステルアミドが液晶性ポリマーであることは、全芳香族ポリエステルアミドが熱安定性と易加工性を併せ持つ上で不可欠な要素である。上記構成単位(I)~(VI)から構成される全芳香族ポリエステルアミドは、構成成分及びポリマー中のシーケンス分布によっては、異方性溶融相を形成しないものも存在するが、本発明のポリマーは溶融時に光学的異方性を示す全芳香族ポリエステルアミドに限られる。
 溶融異方性の性質は直交偏光子を利用した慣用の偏光検査方法により確認することができる。より具体的には溶融異方性の確認は、オリンパス社製偏光顕微鏡を使用しリンカム社製ホットステージにのせた試料を溶融し、窒素雰囲気下で150倍の倍率で観察することにより実施できる。液晶性ポリマーは光学的に異方性であり、直交偏光子間に挿入したとき光を透過させる。試料が光学的に異方性であると、例えば溶融静止液状態であっても偏光は透過する。
 ネマチックな液晶性ポリマーは融点以上で著しく粘性低下を生じるので、一般的に融点又はそれ以上の温度で液晶性を示すことが加工性の指標となる。融点は、でき得る限り高い方が耐熱性の観点からは好ましいが、ポリマーの溶融加工時の熱劣化や成形機の加熱能力等を考慮すると、360℃以下であることが好ましい目安となる。なお、より好ましくは300~360℃であり、更により好ましくは340~358℃である。
 本発明における全芳香族ポリエステルアミドの融点より10~30℃高い温度、かつ、剪断速度1000/秒における前記全芳香族ポリエステルアミドの溶融粘度は、好ましくは500Pa・s以下であり、より好ましくは0.5~300Pa・sであり、更により好ましくは1~100Pa・sである。上記溶融粘度が上記範囲内であると、前記全芳香族ポリエステルアミドそのもの、又は、前記全芳香族ポリエステルアミドを含有する組成物は、その成形時において、流動性が確保されやすく、充填圧力が過度になりにくい。なお、本明細書において、溶融粘度とは、ISO11443に準拠して測定した溶融粘度をいう。
 上記の耐熱性を表す指標として、融点とDTULとの差も挙げられる。この差が、90℃以下であると耐熱性が高くなる傾向にあり好ましい。低融点化と耐熱性との両立の観点から、上記差は、好ましくは0℃超85℃以下(例えば、50℃以上85℃以下)、より好ましくは55~79℃である。
 本発明に係る液晶性樹脂組成物は、上記の液晶性ポリマーを、液晶性樹脂組成物中に、液晶性樹脂組成物全体に対して50~70質量%含む。液晶性ポリマーの含有量が、液晶性樹脂組成物全体に対し50質量%未満であると、液晶性樹脂組成物の流動性が悪化しやすく、また、液晶性樹脂組成物から得られる表面実装リレー用部品等の成形品のそり変形が大きくなる恐れがあるため好ましくない。液晶性ポリマーの含有量が、液晶性樹脂組成物全体に対して70質量%超であると、液晶性樹脂組成物から得られる表面実装リレー用部品等の成形品の曲げ弾性率及び耐クラック性が低下するため好ましくない。本発明に係る液晶性樹脂組成物は、上記の液晶性ポリマーを、液晶性樹脂組成物中に、液晶性樹脂組成物全体に対して55~65質量%含むことが好ましく、58~62質量%含むことがより好ましい。
 (繊維状充填剤)
 本発明に係る液晶性樹脂組成物は、上記の液晶性ポリマーと、繊維状充填剤と、を含み、繊維状充填剤の重量平均繊維長は50~170μmであり、繊維状充填剤において、繊維長20~200μmを有する画分の含有率が70質量%以上であるため、当該液晶性樹脂組成物を成形して得られた成形品は、耐熱性に優れ、ブリスターの発生及びフィラーの脱離が抑制され、接着剤により高い接着強度で接着することができる。繊維状充填剤は、1種単独で又は2種以上組み合わせて使用することができる。本発明における繊維状充填剤としては、特に限定されず、ガラス繊維、ミルドファイバー、カーボン繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維、硼素繊維、チタン酸カリウム繊維等が挙げられる。液晶性樹脂組成物から得られる成形品同士の接着強度を高く維持しつつ、上記成形品からのフィラーの脱離を抑制しやすいため、本発明における繊維状充填剤としては、ミルドファイバーが好ましい。
 本発明の液晶性樹脂組成物において、繊維状充填剤の重量平均繊維長は、50~170μmであり、70~150μmであることが好ましく、80~140μmであることがより好ましく、100~140μmであることが更により好ましい。上記重量平均繊維長が50μm未満であると、液晶性樹脂組成物から得られる成形品の高温剛性が十分となりにくく、成形品のそり変形が大きくなる恐れがあるため好ましくない。上記重量平均繊維長が170μm超であると、得られる液晶性樹脂組成物の成形品からのフィラーの脱離を抑制しにくいため好ましくない。上記重量平均繊維長が50~170μmの範囲内であると、得られる液晶性樹脂組成物の成形品の表面粗さ(Ra)を適度に向上させて、上記成形品同士の接着強度を適切な範囲で高く維持しやすい。なお、本明細書において、繊維状充填剤の重量平均繊維長とは、液晶性樹脂組成物を600℃で2時間加熱し灰化して灰化残渣を得、この灰化残渣を5質量%ポリエチレングリコール水溶液に分散させて分散液を得、この分散液について画像測定器を用いて測定した重量平均繊維長をいう。
 液晶性樹脂組成物の成形品からのフィラーの脱離を抑制するとともに、上記成形品のウェルド強度や高温剛性等の機械強度を高位でバランス化するために、繊維状充填剤において、繊維長20~200μmを有する画分の含有率は、70質量%以上であり、好ましくは75質量%以上であり、より好ましくは80質量%以上である。上記含有率の上限は、特に限定されず、100質量%以下であり、95質量%以下でもよい。なお、本明細書において、上記含有率は、液晶性樹脂組成物を600℃で2時間加熱し灰化して灰化残渣を得、この灰化残渣を5質量%ポリエチレングリコール水溶液に分散させて分散液を得、この分散液について画像測定器を用いて測定した繊維長分布から測定される。
 また、本発明における繊維状充填剤の繊維径は、特に制限されず、一般的に5~15μm程度のものが使用される。
 本発明に係る液晶性樹脂組成物は、繊維状充填剤を、液晶性樹脂組成物中に、液晶性樹脂組成物全体に対して30~50質量%含む。繊維状充填剤の含有量が、液晶性樹脂組成物全体に対して30質量%未満であると、液晶性樹脂組成物から得られる表面実装リレー用部品等の成形品は、荷重たわみ温度が低く、高温剛性が十分ではないため好ましくない。繊維状充填剤の含有量が、液晶性樹脂組成物全体に対して50質量%超であると、液晶性樹脂組成物の流動性が悪化し、成形品のそり変形が大きくなる恐れがあるため好ましくない。本発明における繊維状充填剤は、液晶性樹脂組成物中に、液晶性樹脂組成物全体に対して35~45質量%含まれることが好ましく、38~42質量%含まれることがより好ましい。
 (その他の成分)
 本発明に係る液晶性樹脂組成物には、上記の成分の他に、板状充填剤、核剤、カーボンブラック、無機焼成顔料等の顔料、酸化防止剤、安定剤、可塑剤、滑剤、離型剤、難燃剤、及び公知の無機充填剤のうちの1種以上を配合してもよい。
 本発明に係る液晶性樹脂組成物の製造方法は、液晶性樹脂組成物中の成分を均一に混合でき、繊維状充填剤の重量平均繊維長を50~170μmにし、繊維状充填剤において、繊維長20~200μmを有する画分の含有率を70質量%以上にすることができれば特に限定されず、従来知られる樹脂組成物の製造方法から適宜選択することができる。例えば、1軸又は2軸押出機等の溶融混練装置を用いて、各成分を溶融混練して押出した後、得られた液晶性樹脂組成物を粉末、フレーク、ペレット等の所望の形態に加工する方法が挙げられる。
 本発明に係る液晶性樹脂組成物は流動性に優れるため、成形時の最小充填圧力が過度になりにくく、表面実装リレー用部品等を好ましく成形できる。
 液晶性ポリマーの融点より10~30℃高い温度で、剪断速度1000/秒で、ISO11443に準拠して測定した液晶性樹脂組成物の溶融粘度が1×10Pa・s以下(より好ましくは、5Pa・s以上1×10Pa・s以下)であることが、表面実装リレー用部品の成形時において、液晶性樹脂組成物の流動性を確保し、充填圧力が過度にならない点で好ましい。
 (表面実装リレー用部品及び表面実装リレー)
 本発明に係る液晶性樹脂組成物を成形することにより、本発明に係る表面実装リレー用部品を得ることができる。本発明に係る表面実装リレー用部品は、耐熱性に優れ、ブリスターの発生及びフィラーの脱離が抑制され、接着剤により高い接着強度で接着することができる。本発明に係る表面実装リレーは、上記部品を備えるため、(1)耐熱性に優れ、半田リフロー処理に耐えることができ、(2)特にベースとケースとを接着剤により高い接着強度で接着でき、半田リフロー処理後でも性を保持することができ、(3)ブリスターの発生及びフィラーの脱離が抑制され、導通不良等の機能障害が発生しにくい。
 本発明に係る表面実装リレー用部品及び本発明に係る表面実装リレーについて説明する。図1(a)は、本発明に係る表面実装リレーの実施形態を模式的に示す斜視図であり、図1(b)は、図1(a)のAA断面を示す部分断面図である。表面実装リレー1は、ベース2と、ケース3と、コイルブロック4と、接極子ブロック5と、端子6とを備える。
 ベース2は、ベース2から突出する端子6を備える。ベース2の上面の外周部には、ケース3が配置される。ベース2の上面の中央部には、コイルブロック4及び接極子ブロック5がこの順に配置される。
 ケース3は、ベース2の上面の外周部と、コイルブロック4及び接極子ブロック5とを覆うように配置される。ベース2とケース3とで形成される中空容器状の空間内部にコイルブロック4及び接極子ブロック5が収容される。
 コイルブロック4は、ボビン41と、コイル42と、鉄心43とを備え、ベース2の上面の中央部に配置される。ボビン41は、長軸方向に貫通した円筒部を有し、ボビン41の外周には、端子6の一部の一端と電気的に接続されているコイル42が巻かれ、ボビン41の上記円筒部には、鉄心43が挿入されている。
 接極子ブロック5は、接極子連結部51と、接極子連結部51からボビン41の長軸方向に沿って互いに逆向きに延びる接極子52とを備え、コイルブロック4上に配置される。接極子52は、端子6の別の一部の一端と電気的に接続されている。コイル42への導通により電磁石が形成されると、磁力により、接極子52の先端は、コイルブロック4側に移動する。その結果、コイル42を含む入力側からの信号が、接極子52を含む出力側へと伝達される。
 端子6は、一端がコイル42又は接極子52と電気的に接続されており、他端が後述のプリント基板7に電気的に導通可能に接続されている。端子6は、ベース2から突出しており、後述の通り、プリント基板7に半田付けするようになっている。
 上述の部品のうち、ベース2、ケース3、ボビン41は、耐熱性に優れ、ブリスターの発生及びフィラーの脱離が抑制され、接着剤により高い接着強度で接着することができる成形品として形成できる点等を考慮し、本発明に係る液晶性樹脂組成物からなることが好ましい。即ち、本発明に係る表面実装リレー用部品としては、例えば、ベース、ケース、ボビン等が挙げられる。
 表面実装リレー1は、例えば、ベース2の上面の中央部にコイルブロック4及び接極子ブロック5をこの順に配置し、その後、ベース2の上面の外周部にケース3を配置し、ベース2とケース3とを接着剤により接着することにより、製造することができる。
 表面実装リレー1をプリント基板7に実装する方法について説明する。図2(a)に示す通り、表面実装リレー1では、半田付け面が表面実装リレー1と平行になるように、表面実装リレー1より垂直に突き出した端子6が直角に曲げられている。そのため、表面実装リレー1は、プリント基板7に孔を設けることなく、プリント基板7表面の導体パターン8上に設けられた半田パッド(図示せず)に端子6を載置し、半田リフロー処理を行うことにより、電気的に導通可能にプリント基板7に固定される。
 なお、上述の説明では、図2(a)に示す通り、表面実装リレー1より垂直に突き出した端子6の先端が表面実装リレー1の外側へ直角に曲げられている場合を示した。一方、図2(b)に示す通り、表面実装リレー1より垂直に突き出した端子6の先端が表面実装リレー1の内側へ直角に曲げられていてもよい。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
<合成例1>
 撹拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、脂肪酸金属塩触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)4-ヒドロキシ安息香酸9.7モル(58モル%)(HBA)
(II)6-ヒドロキシ-2-ナフトエ酸0.17モル(1モル%)(HNA)
(III)テレフタル酸3.2モル(19.25モル%)(TA)
(IV)イソフタル酸0.25モル(1.5モル%)(IA)
(V)4,4’-ジヒドロキシビフェニル2.5モル(15.25モル%)(BP)
(VI)N-アセチル-p-アミノフェノール0.83モル(5モル%)(APAP)
酢酸カリウム触媒110mg
無水酢酸1734g(HBAとHNAとBPとAPAPとの合計の水酸基当量の1.03倍)
 原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから20分かけて10Torr(即ち1330Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出した。
<評価>
 合成例1の全芳香族ポリエステルアミドについて、融点、溶融粘度、及びDTULの評価を以下の方法で行った。評価結果を表1に示す。
[融点]
 DSC(TAインスツルメント社製)にて、ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で室温まで一旦冷却した後、再度、20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度を測定した。
[DTUL]
 ポリマー60質量%とガラス繊維(セントラル硝子(株)製EFH75-01、ミルドファイバー、平均繊維径11μm、平均繊維長75μm)40質量%を二軸押出機((株)日本製鋼所製TEX30α型)を用いて、ポリマーの融点+20℃のシリンダー温度にて溶融混練し、液晶性樹脂組成物ペレットを得た。
 上記液晶性樹脂組成物ペレットを、成形機(住友重機械工業(株)製「SE100DU」)を用いて、以下の成形条件で成形し、測定用試験片(4mm×10mm×80mm)を得た。この試験片を用いて、ISO75-1,2に準拠した方法で荷重たわみ温度を測定した。なお、曲げ応力としては、1.8MPaを用いた。結果を表1に示す。
〔成形条件〕
シリンダー温度:ポリマーの融点+15℃
金型温度:80℃
背圧:2MPa
射出速度:33mm/sec
[溶融粘度]
 (株)東洋精機製作所製キャピログラフを使用し、液晶性ポリマーの融点よりも10~30℃高い温度で、内径1mm、長さ20mmのオリフィスを用いて、剪断速度1000/秒で、ISO11443に準拠して、液晶性ポリマーの溶融粘度を測定した。なお、測定温度は、表1に記載の通りであった。
<合成例2~18、比較合成例1~10>
 原料モノマーの種類、仕込み比率(モル%)を表1~3に示す通りとした以外は、合成例1と同様にしてポリマーを得た。また、合成例1と同様の評価を行った。評価結果を表1~3に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
<実施例1及び2、比較例1~3>
 下記の実施例及び比較例において、液晶性ポリマー1は、合成例16で得た液晶性ポリマーである。また、液晶性ポリマー2は、以下の通りにして製造した。
 なお、本実施例において、ペレットの融点及び溶融粘度の測定は、それぞれ下記の条件で行った。
 [融点の測定]
 TAインスツルメント社製DSCにて、液晶性ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で室温まで一旦冷却した後、再度、20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度を測定した。
 [溶融粘度の測定]
 (株)東洋精機製作所製キャピログラフ1B型を使用し、液晶性ポリマーの融点よりも10~30℃高い温度で、内径1mm、長さ20mmのオリフィスを用いて、剪断速度1000/秒で、ISO11443に準拠して、液晶性ポリマーの溶融粘度を測定した。なお、測定温度は、液晶性ポリマー1については360℃、液晶性ポリマー2については380℃であった。
 (液晶性ポリマー2の製造方法)
 撹拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
 (I)4-ヒドロキシ安息香酸:1040g(48モル%)(HBA)
 (II)6-ヒドロキシ-2-ナフトエ酸:89g(3モル%)(HNA)
 (III)テレフタル酸:547g(21モル%)(TA)
 (IV)イソフタル酸:91g(3.5モル%)(IA)
 (V)4,4’-ジヒドロキシビフェニル:716g(24.5モル%)(BP)
 酢酸カリウム触媒:110mg
 無水酢酸:1644g
 重合容器に原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから20分かけて5Torr(即ち、667Pa)まで減圧して、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレット化した。得られたペレットの融点は355℃、溶融粘度は10Pa・sであった。
 (液晶性ポリマー以外の成分)
 上記で得られた各液晶性ポリマーと、下記の成分とを二軸押出機を使用して混合し、液晶性樹脂組成物を得た。各成分の配合量は表4に示した通りである。なお、以下、表中の「%」は質量%を示す。
(B)繊維状充填剤
 ガラス繊維:日本電気硝子(株)製ECS03T-786H、繊維径10μm、長さ3mmのチョプドストランド
 ミルドファイバー1:日東紡(株)製PF70E001、繊維径10μm、平均繊維長70μm(メーカー公称値)
 ミルドファイバー2:日本電気ガラス(株)製EPH-80M、繊維径10.5μm、平均繊維長80μm(メーカー公称値)
 なお、上記のメーカー公称値は、組成物中での実測値である表4中の値とは異なっている。
 また、液晶性樹脂組成物を得る際の押出条件は下記の通りである。
 [押出条件]
 〔実施例1及び2、比較例1及び3〕
 メインフィード口に設けられたシリンダーの温度を250℃とし、他のシリンダーの温度はすべて360℃とした。液晶性ポリマーはすべてをメインフィード口から供給した。また、充填剤はサイドフィード口から供給した。
 〔比較例2〕
 メインフィード口に設けられたシリンダーの温度を250℃とし、他のシリンダーの温度はすべて380℃とした。液晶性ポリマーはすべてをメインフィード口から供給した。また、充填剤はサイドフィード口から供給した。
 なお、液晶性樹脂組成物中の繊維状充填剤の重量平均繊維長は下記の方法で測定した。
 [重量平均繊維長の測定]
 液晶性樹脂組成物ペレット5gを600℃で2時間加熱し灰化した。灰化残渣を5質量%ポリエチレングリコール水溶液に十分分散させた後、スポイトでシャーレに移し、顕微鏡で繊維状充填剤を観察した。同時に画像測定器((株)ニレコ製LUZEXFS)を用いて繊維状充填剤の重量平均繊維長を測定した。
 また、液晶性樹脂組成物中の繊維状充填剤において、繊維長20~200μmを有する画分の含有率は下記の方法で測定した。
 [繊維長20~200μmを有する画分の含有率の測定]
 液晶性樹脂組成物ペレット5gを600℃で2時間加熱し灰化した。灰化残渣を5質量%ポリエチレングリコール水溶液に十分分散させた後、スポイトでシャーレに移し、画像測定器((株)ニレコ製LUZEXFS)を用いて繊維状充填剤の繊維長分布を測定した。上記繊維長分布において、繊維長20~200μmを有する画分の割合を読み取り、上記含有率とした。
 (液晶性樹脂組成物の溶融粘度の測定)
 (株)東洋精機製作所製キャピログラフ1B型を使用し、液晶性ポリマーの融点よりも10~30℃高い温度で、内径1mm、長さ20mmのオリフィスを用いて、剪断速度1000/秒で、ISO11443に準拠して、液晶性樹脂組成物の溶融粘度を測定した。なお、測定温度は、液晶性ポリマー1を使用した液晶性樹脂組成物については360℃、液晶性ポリマー2を使用した液晶性樹脂組成物については380℃であった。結果を表4に示す。
 下記の方法に基づき、液晶性樹脂組成物から成形した成形品の物性を測定した。各評価結果を表4に示す。
 (曲げ試験)
 下記成形条件で、液晶性樹脂組成物を射出成形して0.8mm厚の成形品を得、ASTM D790に準拠し、曲げ強度、破断歪、及び曲げ弾性率を測定した。
 [成形条件]
 成形機:住友重機械工業、SE100DU
 シリンダー温度:
     360℃(実施例1及び2、比較例1及び3)
     370℃(比較例2)
 金型温度:80℃
 射出速度:33mm/sec
 (荷重たわみ温度)
 下記成形条件で、液晶性樹脂組成物を射出成形して成形品を得、ISO75-1,2に準拠して荷重たわみ温度を測定した。
 [成形条件]
 成形機:住友重機械工業、SE100DU
 シリンダー温度:
     360℃(実施例1及び2、比較例1及び3)
     370℃(比較例2)
 金型温度:80℃
 射出速度:33mm/sec
 (ブリスター温度)
 下記成形条件で、液晶性樹脂組成物を射出成形して、ウェルド部を有する12.5mm×120mm×0.8mmの成形品を得た。この成形品を上記ウェルド部で二分割して得た断片を1検体とし、所定温度のホットプレスに5分間挟んだ。その後、目視にて上記検体の表面にブリスターが発生しているかどうかを調べた。ブリスター温度は、ブリスターの発生個数がゼロとなる最高温度とした。なお、上記所定温度は250~300℃の範囲において10℃刻みで設定した。
 [成形条件]
 成形機:住友重機械工業、SE100DU
 シリンダー温度:
     360℃(実施例1及び2、比較例1及び3)
     370℃(比較例2)
 金型温度:90℃
 射出速度:33mm/sec
 (フィラー脱離性)
 下記成形条件で、液晶性樹脂組成物を射出成形して、ウェルド部を有する12.5mm×120mm×0.8mmの成形品を得た。この成形品を上記ウェルド部で二分割して得た成形品を下記条件でIRリフローを行った後、繊維状充填材の脱離状況を観察し、以下の基準に従って評価した。
 ○(良好):変化がなく、繊維状充填剤の脱離が抑制されていた。
 ×(不良):繊維状充填剤が脱離していた。
[成形条件]
 成形機:住友重機械工業、SE100DU
 シリンダー温度:
     360℃(実施例1及び2、比較例1及び3)
     370℃(比較例2)
 金型温度:90℃
 射出速度:33mm/sec
 [IRリフロー条件]
 測定機:日本パルス技術研究所製大型卓上リフローハンダ付け装置RF-300(遠赤外線ヒーター使用)
 試料送り速度:140mm/sec
 リフロー炉通過時間:5分
 プレヒートゾーンの温度条件:150℃
 リフローゾーンの温度条件:190℃
 ピーク温度:251℃
 (表面粗さ(Ra))
 下記成形条件で、液晶性樹脂組成物を射出成形して、試験片(ISO試験片Type1A、厚み4mm)を得た。この成形品の中央部分について、超深度カラー3D形状測定顕微鏡VK-9500(キーエンス社製)を用いて表面粗さRaを測定した。
 [成形条件]
 成形機:住友重機械工業、SE100DU
 シリンダー温度:
     360℃(実施例1及び2、比較例1及び3)
     370℃(比較例2)
 金型温度:90℃
 射出速度:33mm/sec
 (接着強度)
 下記成形条件で、液晶性樹脂組成物を射出成形して、試験片(ISO試験片Type1A、厚み4mm)を得た。この試験片を2分割して、図3(a)に示すように、エポキシ系接着剤(ヘンケル社製ロックタイト3128NH)で貼り合わせた(硬化条件:80℃×30分)。その後、図3(b)に示すように、貼り合わされた試験片を設置して、引張試験機を用いて、矢印方向に荷重を加えて、剥がれたときの荷重から、接着強度を評価した。
 [成形条件]
 成形機:住友重機械工業、SE100DU
 シリンダー温度:
     360℃(実施例1及び2、比較例1及び3)
     370℃(比較例2)
 金型温度:90℃
 射出速度:33mm/sec
 [引張試験条件]
 試験機:オリエンテック、テンシロンRTC-1325A
 試験速度:10mm/min
Figure JPOXMLDOC01-appb-T000007
※特定画分:繊維状充填剤において、繊維長20~200μmを有する画分
 表4に示される通り、本発明に係る表面実装リレー用液晶性樹脂組成物から成形された成形品は、耐熱性に優れ、ブリスターの発生及びフィラーの脱離が抑制され、接着剤により高い接着強度で接着することができた。したがって、上記液晶性樹脂組成物は、表面実装リレー用部品及び表面実装リレーの製造に好適に用いることができる。
 1 表面実装リレー
 2 ベース
 3 ケース
 4 コイルブロック
 41 ボビン
 42 コイル
 43 鉄心
 5 接極子ブロック
 51 接極子連結部
 52 接極子
 6 端子
 7 プリント基板
 8 導体パターン

Claims (5)

  1.  (A)液晶性ポリマーと、(B)繊維状充填剤と、を含む表面実装リレー用液晶性樹脂組成物であって、
     前記(A)液晶性ポリマーは、必須の構成成分として、下記構成単位(I)~(VI)からなり、
     全構成単位に対して構成単位(I)の含有量は50~70モル%であり、
     全構成単位に対して構成単位(II)の含有量は0.5モル%以上4.5モル%未満であり、
     全構成単位に対して構成単位(III)の含有量は10.25~22.25モル%であり、
     全構成単位に対して構成単位(IV)の含有量は0.5モル%以上4.5モル%未満であり、
     全構成単位に対して構成単位(V)の含有量は5.75~23.75モル%であり、
     全構成単位に対して構成単位(VI)の含有量は1~7モル%であり、
     全構成単位に対して構成単位(II)と構成単位(IV)との合計の含有量は1モル%以上5モル%未満であり、
     全構成単位に対して構成単位(I)~(VI)の合計の含有量は100モル%であり、
     構成単位(V)と構成単位(VI)との合計に対する構成単位(VI)のモル比が0.04~0.37である、溶融時に光学的異方性を示す全芳香族ポリエステルアミドであり、
     前記(B)繊維状充填剤の重量平均繊維長は、50~170μmであり、
     前記(B)繊維状充填剤において、繊維長20~200μmを有する画分の含有率は、70質量%以上であり、
     前記(A)液晶性ポリマーは、液晶性樹脂組成物全体に対して50~70質量%であり、
     前記(B)繊維状充填剤は、液晶性樹脂組成物全体に対して30~50質量%であり、
     前記表面実装リレーは、ベースと、前記ベースから突出する端子とを備え、前記端子をプリント基板に半田付けするようにした表面実装リレーである液晶性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
  2.  構成単位(III)と構成単位(IV)との合計のモル数が構成単位(V)と構成単位(VI)との合計のモル数の1~1.1倍であり、又は、構成単位(V)と構成単位(VI)との合計のモル数が構成単位(III)と構成単位(IV)との合計のモル数の1~1.1倍である請求項1に記載の液晶性樹脂組成物。
  3.  前記(B)繊維状充填剤は、ミルドファイバーである請求項1又は2に記載の液晶性樹脂組成物。
  4.  請求項1~3のいずれかに記載の組成物からなる表面実装リレー用部品。
  5.  請求項4に記載の部品を備える表面実装リレー。
PCT/JP2017/044424 2016-12-21 2017-12-11 表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー WO2018116888A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018520208A JP6416442B1 (ja) 2016-12-21 2017-12-11 表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー
KR1020197008423A KR102020634B1 (ko) 2016-12-21 2017-12-11 표면 실장 릴레이용 액정성 수지 조성물 및 이것을 이용한 표면 실장 릴레이
CN201780064384.5A CN109844028B (zh) 2016-12-21 2017-12-11 表面安装继电器用液晶性树脂组合物及使用其的表面安装继电器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-248302 2016-12-21
JP2016248302 2016-12-21

Publications (1)

Publication Number Publication Date
WO2018116888A1 true WO2018116888A1 (ja) 2018-06-28

Family

ID=62627354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044424 WO2018116888A1 (ja) 2016-12-21 2017-12-11 表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー

Country Status (5)

Country Link
JP (1) JP6416442B1 (ja)
KR (1) KR102020634B1 (ja)
CN (1) CN109844028B (ja)
TW (1) TWI716655B (ja)
WO (1) WO2018116888A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229931A1 (ja) * 2020-05-13 2021-11-18 ポリプラスチックス株式会社 表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー
JPWO2022168706A1 (ja) * 2021-02-05 2022-08-11

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022071598A (ja) 2020-10-28 2022-05-16 Eneos株式会社 樹脂成形品の接着剤に対する接着強度の向上方法および接着強度を向上させた複合体

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357634A (ja) * 1986-08-28 1988-03-12 バスフ アクチェンゲゼルシャフト 全芳香族熱互変性ポリエステル
JPH06263857A (ja) * 1993-03-17 1994-09-20 Dainippon Ink & Chem Inc 共重合ポリエステル類およびその製造法
WO1998056578A1 (fr) * 1997-06-13 1998-12-17 Nippon Petrochemicals Company, Limited Composite lie et composition adhesive pour ledit composite
JP2005060455A (ja) * 2003-08-20 2005-03-10 Toray Ind Inc 液晶性ポリエステルアミドおよびその製造方法
JP2010138228A (ja) * 2008-12-09 2010-06-24 Nippon Oil Corp 液晶ポリエステル樹脂組成物
JP2013098313A (ja) * 2011-10-31 2013-05-20 Sumitomo Chemical Co Ltd 高電圧コイル
WO2013115168A1 (ja) * 2012-01-31 2013-08-08 Jx日鉱日石エネルギー株式会社 液晶ポリエステルアミド、液晶ポリエステルアミド樹脂組成物及び成形体
JP2016014137A (ja) * 2014-06-09 2016-01-28 住友化学株式会社 液晶ポリエステル樹脂組成物、コネクターおよび液晶ポリエステル樹脂組成物の製造方法
WO2017068869A1 (ja) * 2015-10-21 2017-04-27 ポリプラスチックス株式会社 全芳香族ポリエステルアミド及びその製造方法
JP6133000B1 (ja) * 2015-10-21 2017-05-24 ポリプラスチックス株式会社 全芳香族ポリエステルアミド及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2010297A6 (es) * 1988-07-27 1989-11-01 Cables Comunicaciones Un procedimiento para la preparacion de nuevas copoliesteramidas termotropas aromaticas.
JP3463310B2 (ja) 1993-03-12 2003-11-05 オムロン株式会社 表面実装リレー
US5798432A (en) * 1996-03-22 1998-08-25 Hoechst Celanese Corp. Method of making thermotropic liquid crystalline polymers containing hydroquinone
JP5165492B2 (ja) * 2008-05-23 2013-03-21 ポリプラスチックス株式会社 平面状コネクター
JP5935288B2 (ja) * 2010-10-29 2016-06-15 住友化学株式会社 液晶ポリエステル組成物
JP5485216B2 (ja) * 2011-04-01 2014-05-07 ポリプラスチックス株式会社 平面状コネクター
JP5885520B2 (ja) * 2012-01-30 2016-03-15 住友化学株式会社 樹脂組成物の製造方法
JP5769888B2 (ja) * 2012-09-26 2015-08-26 ポリプラスチックス株式会社 電子部品用複合樹脂組成物、及び当該複合樹脂組成物から成形された電子部品

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357634A (ja) * 1986-08-28 1988-03-12 バスフ アクチェンゲゼルシャフト 全芳香族熱互変性ポリエステル
JPH06263857A (ja) * 1993-03-17 1994-09-20 Dainippon Ink & Chem Inc 共重合ポリエステル類およびその製造法
WO1998056578A1 (fr) * 1997-06-13 1998-12-17 Nippon Petrochemicals Company, Limited Composite lie et composition adhesive pour ledit composite
JP2005060455A (ja) * 2003-08-20 2005-03-10 Toray Ind Inc 液晶性ポリエステルアミドおよびその製造方法
JP2010138228A (ja) * 2008-12-09 2010-06-24 Nippon Oil Corp 液晶ポリエステル樹脂組成物
JP2013098313A (ja) * 2011-10-31 2013-05-20 Sumitomo Chemical Co Ltd 高電圧コイル
WO2013115168A1 (ja) * 2012-01-31 2013-08-08 Jx日鉱日石エネルギー株式会社 液晶ポリエステルアミド、液晶ポリエステルアミド樹脂組成物及び成形体
JP2016014137A (ja) * 2014-06-09 2016-01-28 住友化学株式会社 液晶ポリエステル樹脂組成物、コネクターおよび液晶ポリエステル樹脂組成物の製造方法
WO2017068869A1 (ja) * 2015-10-21 2017-04-27 ポリプラスチックス株式会社 全芳香族ポリエステルアミド及びその製造方法
JP6133000B1 (ja) * 2015-10-21 2017-05-24 ポリプラスチックス株式会社 全芳香族ポリエステルアミド及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229931A1 (ja) * 2020-05-13 2021-11-18 ポリプラスチックス株式会社 表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー
JP7019110B1 (ja) * 2020-05-13 2022-02-14 ポリプラスチックス株式会社 表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー
KR20220158871A (ko) * 2020-05-13 2022-12-01 포리프라스틱 가부시키가이샤 표면 실장 릴레이용 액정성 수지 조성물 및 이것을 이용한 표면 실장 릴레이
KR102501091B1 (ko) 2020-05-13 2023-02-17 포리프라스틱 가부시키가이샤 표면 실장 릴레이용 액정성 수지 조성물 및 이것을 이용한 표면 실장 릴레이
JPWO2022168706A1 (ja) * 2021-02-05 2022-08-11
JP7281023B2 (ja) 2021-02-05 2023-05-24 ポリプラスチックス株式会社 ファンインペラ用液晶性樹脂組成物及びそれを用いたファンインペラ

Also Published As

Publication number Publication date
KR20190034695A (ko) 2019-04-02
JP6416442B1 (ja) 2018-10-31
TWI716655B (zh) 2021-01-21
TW201840714A (zh) 2018-11-16
JPWO2018116888A1 (ja) 2018-12-20
KR102020634B1 (ko) 2019-09-10
CN109844028A (zh) 2019-06-04
CN109844028B (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
JP5165492B2 (ja) 平面状コネクター
JP6356938B1 (ja) 複合樹脂組成物、及び当該複合樹脂組成物から成形されたコネクター
JP6321899B1 (ja) 複合樹脂組成物、及び当該複合樹脂組成物から成形されたコネクター
JP6157779B1 (ja) 全芳香族ポリエステルアミド及びその製造方法
JP6416442B1 (ja) 表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー
WO2012137637A1 (ja) 平面状コネクター
JP6388749B1 (ja) 全芳香族ポリエステルアミド及びその製造方法
JP6416443B1 (ja) 表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー
JP2018104507A (ja) 表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー
JP2018104506A (ja) 表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー
JP6133000B1 (ja) 全芳香族ポリエステルアミド及びその製造方法
JP2018095684A (ja) 複合樹脂組成物、及び当該複合樹脂組成物から成形されたコネクター
JP2020041006A (ja) 全芳香族ポリエステル
JP6345373B1 (ja) 全芳香族ポリエステルアミド及びその製造方法
JP6189750B2 (ja) 全芳香族ポリエステル、ポリエステル樹脂組成物、及びポリエステル成形品
WO2021229931A1 (ja) 表面実装リレー用液晶性樹脂組成物及びそれを用いた表面実装リレー
JP2024051367A (ja) 樹脂組成物、成形品及びコネクター

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520208

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197008423

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884703

Country of ref document: EP

Kind code of ref document: A1