WO2018116641A1 - ガスセンサ - Google Patents

ガスセンサ Download PDF

Info

Publication number
WO2018116641A1
WO2018116641A1 PCT/JP2017/039262 JP2017039262W WO2018116641A1 WO 2018116641 A1 WO2018116641 A1 WO 2018116641A1 JP 2017039262 W JP2017039262 W JP 2017039262W WO 2018116641 A1 WO2018116641 A1 WO 2018116641A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sensor element
casing
sensor
wiring board
Prior art date
Application number
PCT/JP2017/039262
Other languages
English (en)
French (fr)
Inventor
井上 剛
上木 正聡
七田 貴史
賢治 西尾
青山 惠哉
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to CN201780078881.0A priority Critical patent/CN110114661A/zh
Priority to US16/346,758 priority patent/US20190265180A1/en
Priority to EP17883903.1A priority patent/EP3561497A4/en
Publication of WO2018116641A1 publication Critical patent/WO2018116641A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0016Sample conditioning by regulating a physical variable, e.g. pressure or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0037NOx
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0059Avoiding interference of a gas with the gas to be measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4044Concentrating samples by chemical techniques; Digestion; Chemical decomposition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a gas sensor that detects the concentration of a specific gas component contained in a gas to be measured.
  • Patent Document 1 a gas sensor that detects the concentration of a specific gas component contained in a gas to be measured has been known.
  • This gas sensor is configured so that a certain amount of atmospheric air as a gas to be measured is supplied into the chamber, and after performing a pretreatment for burning and removing a combustible gas such as CO in the chamber, the gas to be measured is used as a sensor element. And NOx concentration is detected.
  • an object of the present invention is to provide a gas sensor in which the gas replacement around the sensor element in the casing is promoted to improve the response of specific gas detection.
  • a gas sensor of the present invention is a wiring board extending in the longitudinal direction and a sensor element that detects a specific gas contained in a gas to be measured, and is located inside the outer periphery of one surface of the wiring board.
  • a casing in which an introduction port to be introduced and a discharge port for discharging the gas to be measured from the accommodation space are formed, and a pretreatment unit for performing a pretreatment for adjusting a concentration of a specific gas in the gas to be measured.
  • a pretreatment unit for circulating the gas to be measured pretreated toward the introduction port wherein the direction of the sensor element facing the wiring board is defined as a downward direction
  • the introduction port and the discharge port are located outside the outer periphery of the sensor element, and are positioned upward from the sensor element, and the housing space that extends from the introduction port toward the discharge port.
  • a protrusion that protrudes toward the inside of the casing is provided so as to narrow the flow path, and the wiring from the sensor element to the tip of the protrusion
  • the height in the direction perpendicular to the longitudinal direction of the substrate is lower than each height in the direction perpendicular to the longitudinal direction of the wiring board from the sensor element to the introduction port and the discharge port, and the protrusion is
  • Each of the plurality of conductive members is arranged in a non-contact manner with the conductive member on the inner side of the top portion positioned above the sensor element.
  • the protruding portion is provided so as to narrow the flow path of the accommodating space from the inlet to the outlet, the flow rate of the gas to be measured in the flow path at the position facing the sensor element is increased by the venturi effect.
  • the gas replacement around the sensor element can be promoted to improve the response of the specific gas detection.
  • the projecting portion is disposed in non-contact with the conductive member 28, it is possible to suppress problems such as contact between the two and disconnection of the conductive member.
  • a clearance is formed between the protrusion and the conductive member, it is possible to suppress the flow of the gas to be measured in the vicinity of the protrusion.
  • the casing may be made of a metal plate, and the protrusion may be formed integrally with the casing.
  • This gas sensor is excellent in heat resistance of the casing, improves productivity and reduces the number of parts compared to the case where the protrusion is attached to the casing as a separate part. Furthermore, in the case of press molding or the like, it can be easily formed into a smooth shape with chamfered corners of the protruding portion, and it is possible to further suppress obstructing the flow of the gas to be measured in the vicinity of the protruding portion.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. It is a disassembled perspective view which shows the modification of the gas sensor which concerns on embodiment of this invention. It is a disassembled perspective view which shows another modification of the gas sensor which concerns on embodiment of this invention.
  • FIG. 1 is a block diagram showing an overall configuration of a gas sensor 1 according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the gas sensor 1
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • the gas sensor 1 includes a pretreatment unit 10, a sensor unit 20, and a gas circulation pipe (not shown) that connects the pretreatment unit 10 and the sensor unit 20.
  • a gas to be measured G for example, human exhalation
  • the preprocessing unit 10 adjusts the concentration of a specific gas (for example, NO 2 ) in the gas to be measured G, and then the sensor unit.
  • a specific gas for example, NO 2
  • the gas to be measured pretreated toward the 20 inlets 22a is circulated.
  • concentration of the specific gas in to-be-measured gas should just be employ
  • the sensor unit 20 detects a specific gas contained in the preprocessed gas to be measured (specifically, detects the concentration of the specific gas), and discharges the gas G to be measured from the discharge port 22b.
  • the configuration of the sensor unit 20 will be described in detail with reference to FIGS. 2 to 3, the direction of the sensor element 24 facing the wiring substrate 50 is a downward direction D.
  • the sensor unit 20 has a substantially rectangular box shape with a flange having a flange and a lower surface facing downward D, and a rectangular frame-shaped seal bonded to the flange of the casing 22.
  • a material (packing) 23, a sensor element 24 accommodated in the casing 22, an adhesive layer 26, and a ceramic wiring board 50 are provided.
  • the flange of the casing 22 and the outer peripheral portion of the upper surface of the wiring board 50 are fixed to the frame of the sealing material 23 via an adhesive (not shown), so that the wiring board 50 closes the opening of the casing 22.
  • the internal space of the casing 22 forms an accommodation space (chamber) C1.
  • the pipe-like introduction port 22a and the discharge port 22b protrude from the upper surface of the casing 22 so as to be separated from each other, and one ends of the introduction port 22a and the discharge port 22b communicate with the accommodation space C1.
  • the introduction port 22a introduces the measurement gas G
  • the discharge port 22b discharges the measurement gas G from the accommodation space C1.
  • a portion between the inlet 22a and the outlet 22b on the upper surface of the casing 22 is recessed in a substantially rectangular box shape by press molding, and this recessed portion has a protruding portion 22p that protrudes inward on the inner surface of the casing 22. (See FIG. 3). *
  • the sensor element 24 has a substantially rectangular plate shape, and as shown in FIG. 3, a detector 24a is disposed on the upper surface (surface facing upward in FIG. 2) of the base 24c, and the heater 24b is disposed on the lower surface of the base 24c. Is arranged, and the detection part 24a and the heater 24b are integrated with each other on the top and bottom of the base part 24c.
  • a recess 50r is formed in the center of the upper surface of the wiring board 50, and the sensor element 24 is arranged so that the heater 24b side is in contact with the recess 50r through the adhesive layer 26. That is, the sensor element 24 is disposed inside the outer periphery of the upper surface of the wiring board 50.
  • the upper surface of the wiring board 50 corresponds to “one surface” in the claims. *
  • the wiring board 50 extends in the longitudinal direction (left-right direction in FIG. 2), and the end 50e (left side in FIG. 2) of the wiring board 50 is narrower than the casing 22 and extends outward (left side in FIG. 2). .
  • a plurality of electrode pads 50p are arranged on the upper and lower surfaces of the end portion 50e, and each electrode pad 50p is electrically connected to a wiring (lead conductor) 50L formed on the upper and lower surfaces of the wiring substrate 50. Furthermore, one end of the wiring 50L is connected to a plurality of element peripheral pads 50s surrounding the recess 50r. As shown in FIG.
  • the wiring 50L formed on the lower surface of the wiring board 50 is routed to the upper surface side of the wiring board 50 at the front end of the wiring board 50 (the other end of the end portion 50e). Is connected to the element peripheral pad 50s on the upper surface side.
  • the output terminal of the detection unit 24a and the energization terminal of the heater 24b are joined to the element peripheral pad 50s of the wiring board 50 by a conductive member (specifically, a wire 28 and electrically connected to each other). That is, each of the output terminal of the detection unit 24a and the energization terminal 50 of the heater 24b is wire-bonded to the corresponding element peripheral pad 50s, whereby the electric signal output from the detection unit 24 is wired.
  • the heater 24b is energized and heated by the electric power supplied to the outside through the wiring 50L and the electrode pad 50p of the substrate 50 and supplied from the outside through the electrode pad 50p and the wiring 50L.
  • the detection unit 24a detects the concentration of the specific gas by detecting an electrical signal that changes in electrical characteristics according to the concentration of the specific gas.
  • the heater 24b heats the detection unit 24a to a desired operating temperature by energization heating.
  • the base portion 24c can be configured using, for example, an insulating wiring board.
  • the detection part 24a can be comprised using a metal oxide semiconductor, for example.
  • the heater 24b has, for example, a meandering pattern formed on the surface of the base portion 24c, and can be configured by a heating resistor made of platinum or the like.
  • the detection unit 24a may adopt a known mixed potential type sensor configuration in which a pair of electrodes is provided on a solid electrolyte body. *
  • the introduction port 22 a and the discharge port 22 b are located outside the outer periphery 24 e of the sensor element 24 and are located above the sensor element 24.
  • the protruding portion 22p has the flow path F in the middle of the flow path F of the accommodation space C1 from the introduction port 22a to the discharge port 22b and at a position facing the sensor element 24 (a position inside the outer periphery 24e). It protrudes toward the inside of the casing 22 so as to narrow.
  • the height h1 in the direction orthogonal to the longitudinal direction of the wiring board 50 from the sensor element 24 (the detection part 24a at the upper end thereof) to the tip of the protruding part 22p is the height of the wiring board 50 from the sensor element 24 to the introduction port 22a.
  • the height h2 in the direction orthogonal to the longitudinal direction and the height h3 in the direction orthogonal to the longitudinal direction of the wiring board 50 from the sensor element 24 to the discharge port 22b are lower.
  • the width dimension of the protrusion 22p (the length from the back of the protrusion 22p to the front of the sheet in FIG. 3) is formed to the same length as the width of the accommodation space C1. .
  • the width dimension of the protruding portion 22p is the same as the dimension between the inner sides of two opposing side surfaces of the substantially rectangular box-shaped casing 22 constituting the accommodation space C1.
  • the measured gas that the projection 22p is positioned so as to be substantially orthogonal to the flow of the measured gas G that flows from the inlet 22a toward the outlet 22b and hits the surface facing the gas inlet 22a side. G is guided toward the sensor element 24.
  • the flow velocity of the gas G to be measured in the flow path F at the position facing the sensor element 24 is increased by the venturi effect, and gas replacement around the sensor element 24 is promoted to improve the response of the specific gas detection. it can.
  • the protruding portion 22p is disposed in contact with each conductive member 28 on the inner side of the top portion 28p positioned above the sensor element 24 in each of the plurality of conductive members 28. Thereby, problems, such as the protrusion 22p contacting the conductive member 28 and the conductive member 28 being disconnected, can be suppressed. In addition, since a clearance is formed between the protruding portion 22p and the conductive member 28, it is possible to suppress the flow of the measurement gas G in the vicinity of the protruding portion 22p.
  • the conductive member 28 is composed of the element peripheral pad 50s And the outer peripheral portion of the sensor element 24 on the inner side of the element peripheral pad 50s, and is formed in an upwardly convex curved shape between the element peripheral pad 50s and the sensor element 24, and has a top portion 28p. ing.
  • the casing 22 is made of a metal plate, and the protruding portion 22p is formed integrally with the casing 22 by press molding.
  • the heat resistance of the casing 22 is excellent, and the productivity is improved and the number of parts is reduced as compared with the case where the protruding portion 22p is attached to the casing 22 as a separate part.
  • press molding or the like it is possible to easily form a smooth shape with chamfered corners of the protruding portion 22p, and hinder the flow of the gas G to be measured in the vicinity of the protruding portion 22p. Can be further suppressed.
  • an introduction port 32a and a discharge port 32b may be protruded from the side surface of the casing 32.
  • the introduction port 32 a and the discharge port 32 b may be arranged in any manner as long as they are located outside the outer periphery 24 e of the sensor element 24 and located above the sensor element 24.
  • the introduction port 32a and the discharge port 32b may be arranged on the opposite side surfaces of the casing 32, respectively.
  • the protrusion 32p faces the inside of the casing 32 so as to narrow the flow path F in the middle of the flow path F of the accommodation space C1 from the introduction port 32a to the discharge port 32b and at a position facing the sensor element 24. Protruding. Further, similarly to the above-described embodiment, the protruding portion 32p is disposed in a non-contact manner with each conductive member 28 on the inner side of the top portion positioned above the sensor element 24 in each of the plurality of conductive members 28. . In FIG. 4, the same components as those of the sensor unit 20 in FIG. *
  • the protrusion 22p is formed to have the same length as the width of the accommodation space C1, but the gas replacement around the sensor element 24 is promoted to detect a specific gas.
  • the protruding portion provided on the casing 22 is arranged at a position facing the sensor element 24 as in the gas sensor 1C of another embodiment shown in FIG.
  • a protrusion 42p having a width shorter than the width of the accommodation space C1 may be provided.
  • the projecting portion 42p is disposed in a non-contact manner with each conductive member 28 on the inner side of the top portion of the plurality of conductive members 28 positioned above the sensor element 24.
  • the shape, material, type, and the like of the gas sensor and the preprocessing portion, casing, sensor element, conductive member, and protruding portion constituting the gas sensor are not limited to the above embodiment.
  • the number of protrusions is not limited.
  • the fixing structure of the wiring board 50 is not limited to this. For example, without using an adhesive, a force (biasing force) is applied to the wiring board 50 from the outside of the casing 22 using other members (for example, bolts and nuts), and the casing 22, the sealing material 23, and the wiring board.
  • the gas sensor 1 may be configured by fixing each of the 50 members so as not to be displaced.
  • the protrusions 22p, 32p, and 42p are integrally formed on the metal casings 22 and 32 by press molding.
  • the structure of the protrusions 22p, 32p, and 42p is not limited to this.
  • a casing having a flat top surface is prepared, and a protruding strip is joined to a predetermined position inside the top surface of the casing ( Specifically, it may be attached by welding) so that the protruding strips function as the protruding portions of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

ケーシング内のセンサ素子の周囲のガス置換を促進して応答性を向上させたガスセンサを提供する。配線基板50と、配線基板に配置されて配線基板と複数の導電部材28で電気的に接続されるセンサ素子24と、センサ素子を収容し、導入口22a及び排出口22bが形成されるケーシング22と、被測定ガスG中の特定ガスの濃度を調整して導入口に流通させる前処理部10と、を備えたガスセンサ1であって、導入口及び排出口は、センサ素子よりも外側かつ上方向に位置し、導入口から排出口へ向かう流路を狭めるようにケーシングの内側に向かって突出する突出部22pが設けられ、センサ素子から突出部の先端までの高さh1が、センサ素子から導入口及び排出口までの各高さh2、h3よりも低く、突出部は、複数の導電部材のそれぞれにおけるセンサ素子よりも上方向に位置する頂部28pよりも内側で、導電部材と非接触に配置されてなる。

Description

ガスセンサ
本発明は、被測定ガスに含まれる特定ガス成分の濃度を検知するガスセンサに関する。
従来から、被測定ガスに含まれる特定ガス成分の濃度を検知するガスセンサが知られている(特許文献1)。 このガスセンサは、チャンバ内に被測定ガスとしての大気が一定量供給されるように構成され、チャンバ内でCO等の可燃性ガスを燃焼除去する前処理を行った後、被測定ガスをセンサ素子に接触させて、NOx濃度を検知している。
特開平10-300702号公報(図2)
特許文献1では、大気導入管と大気導出管を有するチャンバ内にセンサ素子を配置しているが、チャンバ内の被測定ガスの流れが遅くなると、センサ素子周囲のガス置換が不十分になって応答性が低下するおそれがある。 そこで、本発明は、ケーシング内のセンサ素子の周囲のガス置換を促進して特定ガス検出の応答性を向上させたガスセンサを提供することを目的とする。
上記課題を解決するため、本発明のガスセンサは、長手方向に延びる配線基板と、被測定ガスに含まれる特定ガスを検出するセンサ素子であって、前記配線基板の一方の面の外周よりも内側に配置されると共に、前記配線基板と複数の導電部材で電気的に接続されるセンサ素子と、前記センサ素子を収容する収容空間を形成するケーシングであって、前記収容空間に前記被測定ガスを導入する導入口、及び、前記収容空間から前記被測定ガスを排出する排出口が形成されるケーシングと、前記被測定ガス中の特定ガスの濃度を調整する前処理を行う前処理部であって、前記導入口に向けて前処理された前記被測定ガスを流通させる前処理部と、を備えたガスセンサであって、前記センサ素子の前記配線基板に面する方向を下方向と定義したときに、前記導入口及び前記排出口は、前記センサ素子の外周よりも外側に位置すると共に、前記センサ素子よりも上方向に位置しており、前記導入口から前記排出口へ向かう前記収容空間の流路の途中でかつ前記センサ素子に対向する位置に、前記流路を狭めるように前記ケーシングの内側に向かって突出する突出部が設けられ、前記センサ素子から前記突出部の先端までの前記配線基板の長手方向に直交する方向の高さが、前記センサ素子から前記導入口及び前記排出口までの前記配線基板の長手方向に直交する方向における各高さよりも低くなっており、前記突出部は、前記複数の導電部材のそれぞれにおける前記センサ素子よりも上方向に位置する頂部よりも内側で、前記導電部材と非接触に配置されてなることを特徴とする。 
このガスセンサによれば、導入口から排出口へ向かう収容空間の流路を狭めるように突出部が設けられるので、センサ素子に対向する位置の流路における被測定ガスの流速がベンチュリ効果によって速くなり、センサ素子周囲のガス置換を促進して特定ガス検出の応答性を向上させることができる。 また、突出部が導電部材と28と非接触に配置されているので、両者が接触して導電部材が断線する等の不具合を抑制することができる。さらに、突出部と導電部材との間にクリアランスが形成されるので、突出部近傍における被測定ガスの流れを妨げることも抑制できる。 
本発明のガスセンサであって、前記ケーシングは金属板からなり、前記突出部は前記ケーシングに一体に形成されてなっていてもよい。 このガスセンサによれば、ケーシングの耐熱性に優れると共に、ケーシングに突出部を別部品で取付ける場合に比べて生産性が向上し、部品点数も低減する。さらに、プレス成型等の場合は突出部の角部を面取りした滑らかな形状に容易に形成することができ、突出部近傍における被測定ガスの流れを妨げることをより一層抑制できる。
この発明によれば、ケーシング内のセンサ素子の周囲のガス置換を促進して特定ガス検出の応答性を向上させたガスセンサが得られる。
本発明の実施形態に係るガスセンサの全体構成を示すブロック図である。 本発明の実施形態に係るガスセンサの分解斜視図である。 図2のA-A線に沿う断面図である。 本発明の実施形態に係るガスセンサの変形例を示す分解斜視図である。 本発明の実施形態に係るガスセンサの別の変形例を示す分解斜視図である。
以下に、本発明を、図面を参照しながら詳細に説明する。図1は、本発明の実施形態に係るガスセンサ1の全体構成を示すブロック図、図2はガスセンサ1の分解斜視図、図3は図2のA-A線に沿う断面図である。 図1において、ガスセンサ1は、前処理部10と、センサ部20と、前処理部10及びセンサ部20間を繋ぐ図示しないガス流通管と、を備えている。そして、被測定ガスG(例えば、人間の呼気)が前処理部10に導入され、前処理部10は被測定ガスG中の特定ガス(例えば、NO)の濃度を調整した後、センサ部20の導入口22aに向けて前処理された被測定ガスを流通させる。なお、前処理部としては、被測定ガス中の特定ガスの濃度を調整可能な触媒が設置された公知の構成を採用すればよいため、本実施形態の詳細な説明は省略する。 一方、センサ部20は、前処理された被測定ガスに含まれる特定ガスを検出(詳細には、特定ガスの濃度を検出)し、排出口22bから被測定ガスGを排出する。以下、図2~図3を参照し、センサ部20の構成について詳しく説明する。なお、図2~図3において、センサ素子24の配線基板50に面する方向を下方向Dとする。 
図2に示すように、センサ部20は、略矩形箱状でフランジを有し下方向Dに向く下面が開口する金属製のケーシング22と、ケーシング22のフランジに接着される矩形枠状のシール材(パッキン)23と、ケーシング22内に収容されるセンサ素子24と、接着層26と、セラミック製の配線基板50と、を有している。そして、シール材23の枠体にケーシング22のフランジ及び配線基板50の上面の外周部分が接着剤(図示せず)を介して固着されることで、ケーシング22の開口を配線基板50が閉塞し、ケーシング22の内部空間が収容空間(チャンバ)C1を形成する。 ケーシング22の上面には、パイプ状の導入口22a及び排出口22bがそれぞれ離間して突出しており、導入口22a及び排出口22bの一端は収容空間C1に連通している。導入口22aは被測定ガスGを導入し、排出口22bは収容空間C1から被測定ガスGを排出する。 さらに、ケーシング22の上面における導入口22aと排出口22bの間の部位がプレス成型により略矩形箱状に凹んでおり、この凹部はケーシング22の内面では内側にて向かって突出する突出部22pを形成している(図3参照)。 
センサ素子24は略矩形板状をなし、図3に示すように、ベース部24cの上面(図2の上方に向く面)側に検知部24aが配置され、ベース部24cの下面側にヒータ24bが配置されており、検知部24aとヒータ24bがベース部24cの上下に積層された一体構造となっている。 また、配線基板50の上面の中央には凹部50rが形成され、凹部50rに接着層26を介してヒータ24b側が接するようにしてセンサ素子24が配置されている。つまり、センサ素子24は配線基板50の上面の外周よりも内側に配置されている。ここで、配線基板50の上面が特許請求の範囲の「一方の面」に相当する。 
配線基板50は長手方向(図2の左右方向)に延び、配線基板50の端部50e(図2の左側)はケーシング22よりも狭幅とされて外側(図2の左側)へ延びている。そして、端部50eの上面及び下面には電極パッド50pが複数配置され、各電極パッド50pは配線基板50の上面及び下面に形成された配線(リード導体)50Lに電気的に接続されている。さらに、配線50Lの一端は、凹部50rを囲む複数の素子周辺パッド50sに接続されている。 なお、配線基板50の下面に形成された配線50Lは、図2に示すように、配線基板50の先端(端部50eの他端)で配線基板50の上面側に引き回され、配線基板50の上面側の素子周辺パッド50sに接続されている。 そして、検知部24aの出力端子、及びヒータ24bの通電端子は配線基板50の素子周辺パッド50sに対して、導電部材(具体的には、ワイヤ28で接合され、それぞれ電気的に接続されている。つまり、検知部24aの出力端子、及びヒータ24bの通電端子50のそれぞれは、対応する素子周辺パッド50sに対してワイヤボンディングされている。これにより、検知部24から出力された電気信号は配線基板50の配線50L、電極パッド50pを介して外部に出力され、電極パッド50p、配線50Lを介して外部から供給された電力によりヒータ24bが通電加熱する。 
このようにして、前処理部10を通過して特定ガスの濃度が調整された被測定ガスGは、検知部24aに接触して特定ガスの濃度が測定される。検知部24aは特定ガスの濃度に応じて電気的特性が変化し、その変化した電気信号を検知することで特定ガスの濃度を検出する。又、ヒータ24bは通電加熱により、検知部24aを所望の動作温度に加熱する。 ベース部24cは例えば絶縁性の配線基板を用いて構成することができる。又、検知部24aは例えば金属酸化物半導体を用いて構成することができる。ヒータ24bは、例えばベース部24cの表面に形成されたミアンダ状のパターンを有し、白金等からなる発熱抵抗体によって構成することができる。なお、検知部24aは、固体電解質体に一対の電極を設けた、公知の混成電位式のセンサ構成を採用してもよい。 
ここで、図3に示すように、導入口22a及び排出口22bは、センサ素子24の外周24eよりも外側に位置すると共に、センサ素子24よりも上方向に位置している。 また、突出部22pは、導入口22aから排出口22bへ向かう収容空間C1の流路Fの途中で、かつセンサ素子24に対向する位置(外周24eよりも内側の位置)に、流路Fを狭めるようにケーシング22の内側に向かって突出している。 さらに、センサ素子24(の上端の検知部24a)から突出部22pの先端までの配線基板50の長手方向に直交する方向の高さh1が、センサ素子24から導入口22aまでの配線基板50の長手方向に直交する方向における高さh2、及びセンサ素子24から排出口22bまでの配線基板50の長手方向に直交する方向における高さh3よりも低くなっている。 
また、本実施形態では、突出部22pの幅寸法(図3における突出部22pの紙面奥から紙面手前に向けての長さ)が、収容空間C1の幅寸法と同じ長さに形成されている。言い換えると、突出部22pの幅寸法は、収容空間C1を構成する略矩形箱状のケーシング22における対向する2つの側面の内側間の寸法と同じ長さとなっている。これにより、導入口22aから排出口22bに向けて流れる被測定ガスGの流れに対して、略直交するように突出部22pが位置し、ガス導入口22a側に向く面に当たった被測定ガスGはセンサ素子24に向けて誘導されることになる。その結果、センサ素子24に対向する位置の流路Fにおける被測定ガスGの流速がベンチュリ効果によって速くなり、センサ素子24周囲のガス置換を促進して特定ガス検出の応答性を向上させることができる。 
さらに、突出部22pは、複数の導電部材28のそれぞれにおけるセンサ素子24よりも上方向に位置する頂部28pよりも内側で、各導電部材28と非接触に配置されている。 これにより、突出部22pが導電部材28と接触して導電部材28が断線する等の不具合を抑制することができる。又、突出部22pと導電部材28との間にクリアランスが形成されるので、突出部22p近傍における被測定ガスGの流れを妨げることも抑制できる。 なお、導電部材28は、素子周辺パッド50s
と、素子周辺パッド50sより内側のセンサ素子24の外周部との間を跨いで延び、かつ素子周辺パッド50sとセンサ素子24の間で上に凸の曲線状に形成され、頂部28pを有している。 
なお、本実施形態においては、ケーシング22は金属板からなり、突出部22pはケーシング22にプレス成型により一体に形成されてなる。 これにより、ケーシング22の耐熱性に優れると共に、ケーシング22に突出部22pを別部品で取付ける場合に比べて生産性が向上し、部品点数も低減する。さらに、本実施形態のようにプレス成型等の場合は、突出部22pの角部を面取りした滑らかな形状に容易に形成することができ、突出部22p近傍における被測定ガスGの流れを妨げることをより一層抑制できる。 
本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。 例えば、図4に示すように、ガスセンサ1Bのセンサ部30として、ケーシング32の側面に導入口32a及び排出口32bを突出させてもよい。つまり、導入口32a及び排出口32bは、センサ素子24の外周24eよりも外側に位置すると共に、センサ素子24よりも上方向に位置していればどのように配置されていてもよい。例えば、導入口32aと排出口32bとを、ケーシング32の対向する側面にそれぞれ配置してもよい。また、突出部32pは、導入口32aから排出口32bへ向かう収容空間C1の流路Fの途中で、かつセンサ素子24に対向する位置に、流路Fを狭めるようにケーシング32の内側に向かって突出している。さらに、突出部32pは、上記実施形態と同様に、複数の導電部材28のそれぞれにおけるセンサ素子24よりも上方向に位置する頂部よりも内側で、各導電部材28と非接触に配置されている。 なお、図4において、図2のセンサ部20と同一構成部分は同一符号を付している。 
また、上記図2、図4の実施形態のガスセンサ1では、突出部22pを収容空間C1の幅寸法と同じ長さに形成したが、センサ素子24周囲のガス置換を促進して特定ガス検出の応答性を向上できる効果が発揮される範囲内であれば、図5に示す別実施形態のガスセンサ1Cのように、ケーシング22に設ける突出部としては、センサ素子24に対向する位置に配置されると共に、収容空間C1の幅寸法よりも短い幅寸法の突出部42pを設けるようにしてもよい。この突出部42pについても、上記実施形態と同様に、複数の導電部材28のそれぞれにおけるセンサ素子24よりも上方向に位置する頂部よりも内側で、各導電部材28と非接触に配置されている。なお、図5のガスセンサ1Cにおいて、図2のガスセンサ1と同一構成部分は同一符号を付している。 
ガスセンサ、及びそれを構成する前処理部、ケーシング、センサ素子、導電部材、突出部の形状、材質、種類等は上記実施形態に限定されない。突出部の個数も限定されない。 また、上記実施形態では、シール材23の枠体にケーシング22のフランジ及び配線基板50の上面の外周部分を接着剤を介して固着させる構成を採ったが、ケーシング22、及び、シール材23、配線基板50の固着構造はこれに限定されない。例えば、接着剤を用いずに、ケーシング22の外側から他部材(例えば、ボルトとナット)を用いて配線基板50に向けて力(付勢力)を付与し、ケーシング22、シール材23、配線基板50の各部材が位置ずれしないよう固定してガスセンサ1を構成するようにしてもよい。 さらに、上記の各実施形態では、突出部22p、32p、42pを金属製のケーシング22、32にプレス成形により一体に形成するようにした。しかし、突出部22p、32p、42pの構成はこれに限定されず、例えば、天面がフラット形状にされたケーシングを準備し、このケーシングの天面の内側の所定位置に凸条片を接合(具体的には溶接)して取り付け、この凸条片を本発明の突出部として機能させるようにしてもよい。
1、1B、1C  ガスセンサ 10  前処理部 22、32  ケーシング 22a、32a  導入口 22b、32b  排出口 22p、32p、42p  突出部 24  センサ素子 24e  センサ素子の外周 28  導電部材 28p  導電部材のセンサ素子よりも上方向に位置する頂部 50  配線基板 C1  収容空間 D  下方向 F  流路 G  被測定ガス h1  センサ素子から突出部の先端までの高さ h2  センサ素子から導入口までの高さ h3  センサ素子から排出口までの高さ

Claims (2)

  1. 長手方向に延びる配線基板と、



     被測定ガスに含まれる特定ガスを検出するセンサ素子であって、前記配線基板の一方の面の外周よりも内側に配置されると共に、前記配線基板と複数の導電部材で電気的に接続されるセンサ素子と、



     前記センサ素子を収容する収容空間を形成するケーシングであって、前記収容空間に前記被測定ガスを導入する導入口、及び、前記収容空間から前記被測定ガスを排出する排出口が形成されるケーシングと、



     前記被測定ガス中の特定ガスの濃度を調整する前処理を行う前処理部であって、前記導入口に向けて前処理された前記被測定ガスを流通させる前処理部と、



    を備えたガスセンサであって、



     前記センサ素子の前記配線基板に面する方向を下方向と定義したときに、前記導入口及び前記排出口は、前記センサ素子の外周よりも外側に位置すると共に、前記センサ素子よりも上方向に位置しており、



     前記導入口から前記排出口へ向かう前記収容空間の流路の途中でかつ前記センサ素子に対向する位置に、前記流路を狭めるように前記ケーシングの内側に向かって突出する突出部が設けられ、



     前記センサ素子から前記突出部の先端までの前記配線基板の長手方向に直交する方向の高さが、前記センサ素子から前記導入口及び前記排出口までの前記配線基板の長手方向に直交する方向における各高さよりも低くなっており、



     前記突出部は、前記複数の導電部材のそれぞれにおける前記センサ素子よりも上方向に位置する頂部よりも内側で、前記導電部材と非接触に配置されてなることを特徴とするガスセンサ。
  2. 請求項1に記載のガスセンサであって、



     前記ケーシングは金属板からなり、前記突出部は前記ケーシングに一体に形成されてなるガスセンサ。
PCT/JP2017/039262 2016-12-20 2017-10-31 ガスセンサ WO2018116641A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780078881.0A CN110114661A (zh) 2016-12-20 2017-10-31 气体传感器
US16/346,758 US20190265180A1 (en) 2016-12-20 2017-10-31 Gas sensor
EP17883903.1A EP3561497A4 (en) 2016-12-20 2017-10-31 GAS SENSOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-246257 2016-12-20
JP2016246257A JP2018100868A (ja) 2016-12-20 2016-12-20 ガスセンサ

Publications (1)

Publication Number Publication Date
WO2018116641A1 true WO2018116641A1 (ja) 2018-06-28

Family

ID=62626039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039262 WO2018116641A1 (ja) 2016-12-20 2017-10-31 ガスセンサ

Country Status (5)

Country Link
US (1) US20190265180A1 (ja)
EP (1) EP3561497A4 (ja)
JP (1) JP2018100868A (ja)
CN (1) CN110114661A (ja)
WO (1) WO2018116641A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI635291B (zh) * 2017-12-29 2018-09-11 研能科技股份有限公司 微型丙酮檢測裝置
JPWO2021172592A1 (ja) * 2020-02-28 2021-09-02

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933889U (ja) * 1972-06-26 1974-03-25
JPS61284653A (ja) * 1985-06-12 1986-12-15 Toshiba Corp ガスセンサ
JPH01132956U (ja) * 1988-02-29 1989-09-11
JP2005214933A (ja) * 2004-02-02 2005-08-11 Shimadzu Corp 水素センサ
JP2007298508A (ja) * 2006-04-29 2007-11-15 Paragon Ag センサ
JP2017138303A (ja) * 2016-01-04 2017-08-10 ダニウス・シルカイティス 呼気サンプルを捕集して分析する方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3687631A (en) * 1969-06-03 1972-08-29 Scott Research Lab Inc Method and equipment for catalytic analysis of gases
DE3069012D1 (en) * 1979-06-26 1984-09-27 Ici Plc Pyroelectric device
JPH11118749A (ja) * 1997-10-09 1999-04-30 Yokogawa Electric Corp 熱伝導度検出器
JP5292160B2 (ja) * 2009-03-31 2013-09-18 東京エレクトロン株式会社 ガス流路構造体及び基板処理装置
CN101539633A (zh) * 2009-04-29 2009-09-23 杭州超距科技有限公司 地震前兆氢气在线自动监测装置
WO2013024598A1 (ja) * 2011-08-17 2013-02-21 日本特殊陶業株式会社 ガスセンサ
DE102012211039A1 (de) * 2012-06-27 2014-01-02 Robert Bosch Gmbh Gassensor
JP6099094B2 (ja) * 2013-06-21 2017-03-22 日立オートモティブシステムズ株式会社 ガスセンサ装置およびガスセンサ装置の取付け構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933889U (ja) * 1972-06-26 1974-03-25
JPS61284653A (ja) * 1985-06-12 1986-12-15 Toshiba Corp ガスセンサ
JPH01132956U (ja) * 1988-02-29 1989-09-11
JP2005214933A (ja) * 2004-02-02 2005-08-11 Shimadzu Corp 水素センサ
JP2007298508A (ja) * 2006-04-29 2007-11-15 Paragon Ag センサ
JP2017138303A (ja) * 2016-01-04 2017-08-10 ダニウス・シルカイティス 呼気サンプルを捕集して分析する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3561497A4 *

Also Published As

Publication number Publication date
CN110114661A (zh) 2019-08-09
EP3561497A1 (en) 2019-10-30
EP3561497A4 (en) 2020-08-12
JP2018100868A (ja) 2018-06-28
US20190265180A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
US10670440B2 (en) Thermal airflow measuring device
JP6724772B2 (ja) ガスセンサ
JP6635886B2 (ja) ガスセンサ
WO2018116641A1 (ja) ガスセンサ
JP5971221B2 (ja) 空気流量測定装置
US20180249929A1 (en) Breath sensor
US10388593B2 (en) Sensor
WO2018096892A1 (ja) ガスセンサ
JPH11271262A (ja) センサ素子
JP6433103B2 (ja) ガスセンサ
JP2018013355A (ja) ガスセンサ
US20230143488A1 (en) Temperature sensor, temperature detection device and image formation device
JP6367708B2 (ja) ガスセンサ素子およびガスセンサ
US10983079B2 (en) Process automation technology sensor
US20180252667A1 (en) Gas sensor
US20180275116A1 (en) Gas sensor
US20190178828A1 (en) Gas sensor
JP4625295B2 (ja) センサ素子
JP2019196907A (ja) センサ素子及びガスセンサ
JP6382178B2 (ja) ガスセンサ
JP7225062B2 (ja) センサ装置
JP2018013353A (ja) ガスセンサ
JP2018136163A (ja) ガスセンサ
WO2019163232A1 (ja) ガスセンサ
JP5645719B2 (ja) ガスセンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017883903

Country of ref document: EP

Effective date: 20190722