WO2018116630A1 - 通気部材とこれを用いた通気筐体及び通気容器 - Google Patents

通気部材とこれを用いた通気筐体及び通気容器 Download PDF

Info

Publication number
WO2018116630A1
WO2018116630A1 PCT/JP2017/038726 JP2017038726W WO2018116630A1 WO 2018116630 A1 WO2018116630 A1 WO 2018116630A1 JP 2017038726 W JP2017038726 W JP 2017038726W WO 2018116630 A1 WO2018116630 A1 WO 2018116630A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation
film
ventilation member
permeable membrane
valve film
Prior art date
Application number
PCT/JP2017/038726
Other languages
English (en)
French (fr)
Inventor
裕貴 木上
了 古山
悠一 阿部
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2018557581A priority Critical patent/JP6990195B2/ja
Publication of WO2018116630A1 publication Critical patent/WO2018116630A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/14Check valves with flexible valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/14Check valves with flexible valve members
    • F16K15/16Check valves with flexible valve members with tongue-shaped laminae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K24/00Devices, e.g. valves, for venting or aerating enclosures
    • F16K24/04Devices, e.g. valves, for venting or aerating enclosures for venting only

Definitions

  • the present invention is a ventilation member that can be fixed to various cases and containers, etc., and can be used to ensure asymmetric air permeability between the inside and outside of the case and the container, and includes a waterproof and dustproof air-permeable membrane.
  • the present invention relates to a ventilation member that can enjoy the function of the ventilation membrane, and a ventilation casing and a ventilation container using the ventilation member.
  • a ventilation member having a waterproof / dustproof functioning ventilation film may be attached to a vehicle electrical component such as a lamp, pressure sensor, ECU (Electronic Control Unit), and various electrical products. .
  • a ventilation member By installing a ventilation member, a ventilation path between the outside and inside of the housing is secured, reducing pressure fluctuations inside the housing due to temperature changes, and releasing gas generated inside the housing to the outside. You can. Further, the waterproof and dustproof air permeable membrane can prevent entry of foreign matters such as water and / or dust from the outside to the inside of the housing through the ventilation path.
  • Ventilation members may be attached to food containers. By attaching the ventilation member, a ventilation path between the outside and the inside of the container can be secured, and the pressure fluctuation inside the container accompanying a temperature change can be alleviated, and the gas generated inside the container can be released to the outside.
  • a ventilation member having symmetrical ventilation for example, when attached to a housing, the air permeability of the member from the inside of the housing to the outside and the air permeability of the member from the outside to the inside are the same.
  • a ventilation member having asymmetric air permeability for example, a ventilation member in which the air permeability of the member from the inside of the housing to the outside differs from the air permeability of the member from the outside to the inside when attached to the housing.
  • the air permeability from the inside to the outside is greater than the air permeability of the member from the outside to the inside of the housing when attached to the housing.
  • ventilation members for example, the pressure rise inside the housing due to the temperature rise associated with the lamp lighting is quickly mitigated, and the intrusion of water vapor from the outside to the inside is suppressed, and the housing due to the temperature drop after the light is turned off. It is expected to suppress the occurrence of condensation inside the body.
  • the ventilation that increases the air permeability from the inside to the outside while minimizing the air permeability of the member from the outside to the inside of the container when attached to the container
  • the gas generated from the food that is the contents of the container can be quickly discharged to the outside of the container, while the intrusion of air (oxygen) from the outside to the inside of the container is suppressed. Therefore, it is expected that the quality of the food in the container is maintained.
  • One of the objects of the present invention is to provide a ventilation member having an asymmetric air permeability, which is provided with a waterproof and dustproof air-permeable membrane, and has a novel structure that has not been heretofore known.
  • the ventilation member of the present invention includes a waterproof and dustproof ventilation film that allows gas passing through the opening to pass through in a state of being fixed to the opening; and a valve film disposed so as to cover the ventilation region of the ventilation film.
  • the gas permeable membrane and the valve film are bonded to each other directly or via an intermediate member at a part of the peripheral edge of the gas permeable membrane.
  • the region of the valve film that is not joined to the gas permeable membrane can be reversibly deformed in the direction away from the gas permeable membrane by the pressure of gas that passes through the gas permeable membrane in the direction of the valve film.
  • the gas that passes through the gas permeable membrane in the direction of the valve film passes between the gas permeable membrane and the valve film deformed in the separating direction, and is joined to the valve film of the gas permeable membrane. Not discharged in the direction of the periphery.
  • the ventilation member of the present invention is fixed to the opening of the casing.
  • the ventilation member has the valve film side facing the outside of the casing and the ventilation membrane side of the ventilation film.
  • the opening is fixed so as to face the inside of the housing.
  • the vent member of the present invention is fixed to the opening of the container, and the vent member has the valve film side facing the outside of the container, and the vent film side is the interior of the container. It is being fixed to the said opening so that it may face.
  • a ventilation member having an asymmetric air permeability provided with a waterproof and dustproof air-permeable membrane and having a novel structure that has not been conventionally achieved is achieved.
  • FIG. 1A is a cross-sectional view schematically showing an example of a ventilation member of the present invention.
  • 1B is a plan view of the ventilation member shown in FIG. 1A as viewed from the waterproof and dustproof ventilation membrane side.
  • FIG. 1C is a cross-sectional view schematically showing an example of the ventilation member of the present invention.
  • FIG. 2A is a schematic diagram for explaining the deformation of the valve film in an example of the ventilation member of the present invention.
  • FIG. 2B is a schematic diagram for explaining the deformation of the valve film in an example of the ventilation member of the present invention.
  • FIG. 3A is a schematic diagram for explaining a state in which the pressure of the gas B that attempts to permeate the waterproof and dustproof breathable membrane from the valve film side is applied in the example of the vent member of the present invention.
  • FIG. 3B is a schematic diagram for explaining a state in which the pressure of the gas A to be transmitted through the waterproof and dustproof breathable membrane in the direction of the valve film is applied, and a ventilation path of the gas A in the state in the example of the ventilation member of the present invention.
  • FIG. FIG. 4 is a schematic view for explaining a joint portion in an example of the ventilation member of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing an example of the ventilation member of the present invention.
  • FIG. 6 is a schematic view for explaining a free end portion of the valve film in an example of the ventilation member of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing an example of the ventilation member of the present invention.
  • FIG. 8 is a schematic diagram for explaining the relationship between the joint portion and the fixing portion in an example of the ventilation member of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing an example of a state in which the ventilation member of the present invention is fixed to the opening.
  • FIG. 10A is a plan view schematically showing an example of the ventilation member of the present invention.
  • 10B is a cross-sectional view schematically showing a cross section II of the ventilation member shown in FIG. 10A.
  • FIG. 11A is a plan view schematically showing an example of the ventilation member of the present invention.
  • FIG. 11B is a cross-sectional view schematically showing a cross section II of the ventilation member shown in FIG. 11A.
  • FIG. 12A is a plan view schematically showing an example of the ventilation member of the present invention.
  • 12B is a cross-sectional view schematically showing a cross section II of the ventilation member shown in FIG. 12A.
  • FIG. 13A is a plan view schematically showing an example of the ventilation member of the present invention.
  • 13B is a cross-sectional view schematically showing a cross section II of the ventilation member shown in FIG. 13A.
  • FIG. 14A is a plan view schematically showing an example of the ventilation member of the present invention.
  • FIG. 14B is a cross-sectional view schematically showing a cross section II of the ventilation member shown in FIG. 14A.
  • FIG. 15A is a plan view schematically showing an example of the ventilation member of the present invention.
  • 15B is a cross-sectional view schematically showing a cross section II of the ventilation member shown in FIG. 15A.
  • FIG. 16A is a plan view schematically showing an example of the ventilation member of the present invention.
  • 16B is a cross-sectional view schematically showing a cross section II of the ventilation member shown in FIG. 16A.
  • FIG. 17 is a schematic view showing an example of a vent container according to the present invention.
  • FIG. 18 is a schematic view showing an example of the ventilation casing of the present invention.
  • FIG. 15A is a plan view schematically showing an example of the ventilation member of the present invention.
  • 15B is a cross-sectional view schematically showing a cross section II of the ventilation member shown in FIG. 15A.
  • FIG. 16A is
  • FIG. 19 is a schematic diagram for explaining a ventilation member manufactured in Example 4.
  • FIG. 20A is a schematic diagram for explaining a ventilation member manufactured in Comparative Example 1.
  • FIG. 20B is a schematic diagram for explaining a ventilation member manufactured in Comparative Example 1.
  • FIG. 21A is a schematic diagram for explaining a ventilation member manufactured in Comparative Example 2.
  • FIG. 21B is a schematic diagram for explaining a ventilation member manufactured in Comparative Example 2.
  • FIG. 22 is a diagram illustrating a relationship between the differential pressure applied to the member and the amount of gas permeating the member per unit time in the ventilation member manufactured in Example 1.
  • FIG. 23A is a schematic diagram for explaining a ventilation member manufactured in Example 13.
  • FIG. 23B is a schematic diagram for explaining a ventilation member manufactured in Example 13.
  • FIG. 23A is a schematic diagram for explaining a ventilation member manufactured in Example 13.
  • FIG. 24A is a schematic diagram for explaining a ventilation member manufactured in Comparative Example 4.
  • FIG. 24B is a schematic diagram for explaining a ventilation member manufactured in Comparative Example 4.
  • FIG. 25 is a diagram for explaining a method of evaluating the characteristics of the ventilation member.
  • the ventilation member according to the first aspect of the present disclosure includes a waterproof and dustproof ventilation film that allows gas passing through the opening to pass therethrough, and a valve film disposed so as to cover a ventilation region of the ventilation film.
  • the gas permeable membrane and the valve film are joined to each other at a part of the peripheral edge of the gas permeable membrane, directly or via an intermediate member, and joined to the gas permeable membrane of the valve film.
  • the non-circular region can be reversibly deformed in a direction away from the gas permeable membrane by the pressure of gas that passes through the gas permeable membrane in the direction of the valve film, and passes through the gas permeable membrane in the direction of the valve film.
  • the gas is a ventilation member that passes between the gas permeable membrane and the valve film that is deformed in the separating direction and is discharged in the direction of the peripheral portion of the gas permeable membrane that is not joined to the valve film. is there.
  • the shape and area of the ventilation film and the valve film are the same in the ventilation member according to the first aspect.
  • the shape of the ventilation film and / or the valve film is a circle, an ellipse, or a polygon.
  • the ventilation film and the valve film are arranged in a circumferential direction of a region located at a peripheral portion of the ventilation film. Some are joined together.
  • the ventilation member of the fifth aspect of the present disclosure in the ventilation member of the fourth aspect, at least one first portion in which the gas permeable membrane is bonded to the valve film in a region located at the peripheral edge, A second portion that is not joined to the valve film in the region, and wherein the ventilation region of the gas permeable membrane is viewed from a direction perpendicular to the main surface of the gas permeable membrane, and the at least one first portion Two end portions of the at least one first portion, and at least one line segment connecting the two end portions adjacent to each other along the circumferential direction with the second portion interposed therebetween.
  • the ventilation member according to the sixth aspect of the present disclosure in the ventilation member according to the fourth or fifth aspect, at least one first portion in which the ventilation film is joined to the valve film in a region located at the peripheral edge. And a second portion that is not joined to the valve film in the region, and the valve film is viewed from a direction perpendicular to the main surface of the valve film, and the at least one first portion And a portion projecting outward with respect to a line segment connecting the two end portions adjacent to each other along the circumferential direction with the second portion interposed therebetween.
  • the valve film has a slightly adhesive layer on the surface of the ventilation film.
  • the slightly adhesive layer includes a urethane adhesive, an acrylic adhesive, or a silicone adhesive.
  • the adhesive force of the slightly adhesive layer at 23 ° C. with respect to a polyethylene terephthalate (PET) film is 0.2 N / 20 mm or less.
  • the ventilation film and the valve film are directly bonded to each other by a double-sided tape.
  • the intermediate member is a film that does not have air permeability in the film thickness direction.
  • the peripheral edge of the surface of the gas permeable membrane opposite to the surface to which the valve film is bonded is provided.
  • a fixing portion for fixing the ventilation member to the opening is further provided.
  • the fixing portion is configured by a double-sided tape.
  • the Gurley number from the valve film side toward the ventilation film is 10 seconds / 100 mL or more.
  • the ventilation film side from the ventilation film side with respect to the Gurley number from the valve film side to the ventilation film direction is 10 or more.
  • the ventilation member according to any one of the first to fifteenth aspects is fixed to an opening of the casing, and the ventilation member has the valve film side of the casing. It faces the outside and is fixed to the opening so that the side of the gas permeable membrane faces the inside of the housing.
  • the vent member according to any one of the first to fifteenth aspects is fixed to an opening of the container, and the vent member faces the valve film side to the outside of the container. And it is being fixed to the said opening so that the side of the said air permeable membrane may face the inside of the said container.
  • the ventilation member 1 shown in FIGS. 1A and 1B includes a waterproof and dustproof ventilation membrane (hereinafter also simply referred to as “aeration membrane”) 2 and a valve film 3 disposed so as to cover the ventilation membrane 2.
  • the gas permeable membrane 2 and the valve film 3 are joined to each other at a joint portion 4 located at a part of the peripheral edge of the gas permeable membrane 2.
  • the shape of the gas permeable membrane 2 and the valve film 3 is a circle.
  • 1B shows the ventilation member 1 as viewed from the side of the gas permeable membrane 2
  • FIG. 1A shows a cross section II shown in FIG. 1B.
  • the region of the valve film 3 that is not joined to the ventilation film 2 is formed by the pressure of the gas A that passes through the ventilation film 2 in the direction of the valve film 3. Reversible deformation is possible in the direction away from the head.
  • the ventilation from the valve film 3 side toward the ventilation film 2 is inhibited by the valve film 3 covering the main surface of the ventilation film 2.
  • the air permeability from the valve film 3 side to the air permeable membrane 2 in the air permeable member 1 becomes relatively small.
  • the region of the valve film 3 that is not joined to the gas permeable membrane 2 is in contact with the gas permeable membrane 2 when the gas permeable member 1 is not vented, or the gas permeable membrane 2 is removed from the valve film 3 side.
  • the gas A that permeates the ventilation film 2 in the direction of the valve film 3 is between the ventilation film 2 and the valve film 3 that is deformed in the separating direction. Then, the air is discharged in the direction of the peripheral edge of the gas permeable membrane 2 that is not joined to the valve film 3 (the air flow path 8). More specifically, the gas A that has permeated through the gas permeable membrane 2 is deformed in the direction away from the peripheral edge 5 that is not joined to the valve film 3 of the gas permeable membrane 2 as shown in FIGS. 2A and 2B. The gap 7 between the film 3 and the free end 6 is discharged in the direction of the peripheral edge of the gas permeable membrane 2.
  • valve film 3 and the gas permeable membrane 2 are joined at the joint 4 is not different from the state shown in FIG. 3A, but in the state shown in FIG. Is more relaxed than the state shown in FIG. 3A. For this reason, the air permeability in the direction of the valve film 3 from the air permeable membrane 2 side in the air permeable member 1 becomes relatively large.
  • the gas A is discharged in a direction different from the direction perpendicular to the main surface of the gas permeable membrane 2. More specifically, the gas A can be discharged to the side of the ventilation member 1, for example, in the direction along the main surface of the ventilation film 2, and the gas A is inclined in the direction inclined from the ventilation shaft of the opening that fixes the ventilation member 1. Can be discharged.
  • the ventilation member 1 can alternately take the state shown in FIG. 3A and the state shown in FIG. 3B.
  • the ventilation member 1 When the ventilation member 1 takes the state shown in FIG. 3A and the state shown in FIG. 3B according to the ventilation direction, it means that the ventilation member 1 is a ventilation member having asymmetric air permeability. Means different ventilation members.
  • this asymmetry can be increased. That is, the ratio of the relatively small air permeability to the relatively large air permeability among the two air permeabilitys that differ depending on the air flow direction can be increased. More specifically, the ratio of the air permeability in the direction from the valve film 3 toward the gas permeable membrane 2 and the air permeability in the direction from the gas permeable membrane 2 toward the valve film 3 can be increased.
  • valve film 3 is disposed so as to cover the ventilation region of the gas permeable membrane 2, the gas permeable membrane 2 and the valve film 3 are joined to each other at a part of the peripheral edge of the gas permeable membrane 2, This is based on the fact that the above-described deformation of the valve film 3 occurs due to the pressure of the gas A that passes through the membrane 2 in the direction of the valve film 3, and that the gas A is discharged through the ventilation path 8.
  • the region of the valve film 3 that is not joined to the ventilation film 2 is in contact with the ventilation film 2 when the ventilation member 1 is not vented.
  • the ventilation member of the present invention is not limited to a member that takes such a state. For example, as shown in FIG. 1C, as long as the above-described asymmetric air permeability by the valve film 3 is realized, the region is not vented. Sometimes it may be away from the gas permeable membrane 2.
  • both the pressure of the gas A that passes through the ventilation film 2 in the direction of the valve film 3 and the pressure of the gas B that tries to pass through the ventilation film 2 from the valve film 3 side This means a state where the ventilation member 1 is not added (steady state).
  • the shape of the joint 4 between the gas permeable membrane 2 and the valve film 3 is not limited as long as the gas permeable membrane 2 and the valve film 3 are joined to each other at a part of the peripheral edge of the gas permeable membrane 2.
  • a part of the ring-shaped region 9 in the circumferential direction, in which the gas permeable membrane 2 and the valve film 3 are located at the peripheral edge of the gas permeable membrane 2. are joined together. That is, the joint portion 4 of the ventilation member 1 according to the present embodiment corresponds to a part in the circumferential direction of the ring-shaped region 9 located at the peripheral edge of the gas permeable membrane 2.
  • the ventilation film 2 and the valve film 3 are joined to each other only at a part of the peripheral edge of the ventilation film 2.
  • the ratio between the air permeability in the direction of the air permeable membrane 2 and the air permeability in the direction of the valve film 3 from the air permeable membrane 2 side can be controlled, and the degree of freedom of the control can be increased.
  • the dependence of the air permeability on the pressure of the gas B trying to permeate the gas permeable membrane 2 from the valve film 3 side is small.
  • the gas permeable membrane 2 from the valve film 3 side is independent of the pressure.
  • the air permeability is low, and in some cases, the air permeability is close to zero.
  • the sensitivity of the air permeability to the pressure of the gas A that passes through the gas permeable membrane 2 in the direction of the valve film 3 is high. It is also possible to make the ventilation member 1 exhibiting an increase in air permeability from the side of the gas permeable membrane 2 to the direction of the valve film 3 even for a small pressure.
  • the return property of the valve film 3 deformed in a direction away from the gas permeable membrane 2 by the pressure of the gas A can be controlled by the shape of the joint portion 4, for example.
  • the return property is a restoring property in which the valve film 3 attempts to return to the state before deformation when the pressure of the gas A is reduced (for example, when it becomes zero) or when the ventilation member 1 is in a steady state.
  • the amount of gas permeation between the surface on the gas permeable membrane 2 side of the member 1 and the surface on the valve film 3 side, for example, the amount of oxygen permeation can be controlled.
  • a state where the region not joined to the gas permeable membrane 2 in the valve film 3 is in contact with the gas permeable membrane 2 when the gas permeable member 1 is not vented (the shape, area, and Area ratio and the like), and thereby the amount of gas permeation can be controlled.
  • An example of control is suppression of the amount of gas permeation in a steady state.
  • the gas permeable membrane 2 and the valve film 3 can be joined by, for example, welding such as heat welding and ultrasonic welding, adhesion with an adhesive or an adhesive, or a joining member such as a double-sided tape. Bonding with a double-sided tape is simple and reliable. When the gas permeable membrane 2 and the valve film 3 are bonded with a double-sided tape, the ventilation member 1 having excellent durability can be manufactured with high productivity.
  • FIG. 5 shows the ventilation member 1 of the present embodiment in which the ventilation film 2 and the valve film 3 are joined by the double-sided tape 10. The one where the thickness of the double-sided tape 10 is smaller is preferable.
  • the specific mode of deformation of the valve film 3 at the time of venting from the side of the gas permeable membrane 2 toward the direction of the valve film 3 is not limited.
  • the region of the valve film 3 that is not joined to the ventilation film 2 is in a direction away from the ventilation film 2 with a joint 4 (for example, a double-sided tape 10) with the ventilation film 2 as a fulcrum. It is deformed to warp.
  • the circumferential region C at the end of the valve film 3 shown in FIG. 6 can be the free end 6 of the deformed region of the valve film. That is, in the ventilation member 1 of the present embodiment, the ventilation path 8 can pass through the entire region C having such a width. This also contributes to an improvement in the degree of freedom of the control.
  • the gas permeable film 2 is a film having air permeability in the film thickness direction in at least a part of the region. The entire region of the gas permeable membrane 2 may have air permeability in the film thickness direction.
  • the gas permeable membrane 2 is a waterproof and dustproof membrane, and is, for example, a gas permeable membrane having a water pressure resistance of 1 kPa or more measured according to JIS L1092.
  • the water pressure resistance of the gas permeable membrane may be 2 kPa or more and 3 kPa or more.
  • the air permeable membrane having such a water pressure resistance usually has a dustproof property.
  • the method for measuring the water pressure resistance is specifically as follows.
  • the water pressure resistance of the gas permeable membrane is measured in accordance with method A (low water pressure method) or method B (high water pressure method) described in JIS L1092, using the disc on which the gas permeable membrane is fixed as a test piece.
  • the water pressure is applied to the test piece from the surface opposite to the surface on which the gas permeable membrane is fixed.
  • the test apparatus an apparatus having the same configuration as the test apparatus exemplified in JIS L1092 can be used, except that it has a structure capable of measuring the water pressure resistance of the test piece (test piece mounting structure).
  • the gas permeable membrane 2 is, for example, a polyethylene terephthalate (PET) film having a plurality of through holes in the film thickness direction and a stretched porous film of polytetrafluoroethylene (PTFE).
  • PET film can be formed by, for example, forming a through hole in a PET film, for example, a non-porous PET film, by, for example, drilling with a laser or the like, or ion beam irradiation and subsequent chemical etching.
  • the PTFE stretched porous membrane is typically a porous membrane having innumerable fine fibrils of PTFE and innumerable pores between the fibrils. For example, the method described in JP-B-42-13560 Can be formed.
  • the ventilation member 1 that is a waterproof and dustproof ventilation membrane can prevent the liquid and solid from moving through the member in the ventilation member 1.
  • the ventilation member 1 may be a dustproof and / or waterproof ventilation member.
  • the ventilation member 1 having such characteristics can be obtained by using, for example, the above-described asymmetric air permeability by using the electrical component and the electrical product in the housing, and further, collecting dust and / or the inside of the housing. Alternatively, entry of foreign matter such as water can be suppressed.
  • the air-permeable membrane 2 may be subjected to liquid repellent treatment such as water repellent treatment and oil repellent treatment. These treatment methods are not limited, and known methods can be applied.
  • the gas permeable membrane 2 can be transparent.
  • the gas permeable membrane 2 is transparent, for example, printing or the like applied to the surface of the container that fixes the gas permeable member 1 can be visually recognized through the gas permeable member 1.
  • the valve film 3 that can be modified may not necessarily be transparent. However, the valve film 3 can also be transparent.
  • the gas permeable membrane 2 may be colored and / or printed.
  • the thickness of the gas permeable membrane 2 is, for example, 10 to 500 ⁇ m.
  • the ventilation region of the ventilation membrane 2 is a region in which ventilation is possible in the film thickness direction of the membrane 2 in a state of being incorporated in the ventilation member 1.
  • a region where the valve film 3 is joined (joint portion 4) and a region where a member having no air permeability such as the double-sided tape 10 is disposed are not included in the ventilation region.
  • a reinforcing layer may be laminated on the gas permeable membrane 2, and the strength of the gas permeable membrane 2 can be improved by the lamination of the reinforcing layer, and the effect becomes greater as the thickness of the gas permeable membrane 2 is smaller.
  • the material and structure of the reinforcing layer are not limited, but a reinforcing layer that is more breathable than the breathable membrane 2 is preferable.
  • the reinforcing layer is, for example, a woven fabric, a nonwoven fabric, a mesh, a net, a sponge, a foam, a foam, or a porous film made of resin or metal.
  • the reinforcing layer may be bonded to the gas permeable membrane 2, and the bonding can be performed by a technique such as adhesive lamination, thermal lamination, heat welding, ultrasonic welding, or the like.
  • the gas permeable membrane 2 may be a single membrane that does not have a reinforcing layer.
  • the valve film 3 may be any film that can be deformed as described above.
  • the valve film 3 is a film that does not have air permeability in the film thickness direction.
  • the valve film 3 may be a film that does not have a through hole and / or a slit that penetrates in the film thickness direction and can serve as a gas ventilation path, and may be a non-porous non-porous film.
  • the valve film 3 is, for example, a polymer film, and a more specific example is a non-porous PET film.
  • the valve film 3 has a shape that covers at least the ventilation region of the ventilation membrane 2.
  • the valve film 3 may have a shape that covers the entire area of the gas permeable membrane 2.
  • the valve film 3 can be transparent. When the valve film 3 is transparent, for example, the state of the gas permeable membrane 2 can be visually recognized through the valve film 3. When the ventilation film 2 is further transparent, for example, printing or the like applied to the surface of the container that fixes the ventilation member 1 can be visually recognized through the ventilation member 1.
  • the valve film 3 may be colored and / or printed.
  • the thickness of the valve film 3 is, for example, 10 to 500 ⁇ m, preferably 25 to 100 ⁇ m.
  • the shapes of the ventilation film 2 and the valve film 3 are both circles (circles as viewed from the direction perpendicular to the main surface of each film / film). Moreover, in the said ventilation member 1, the shape and area (The shape and area seen from the direction perpendicular
  • the ventilation member 1 including the ventilation film 2 and the valve film 3 having the same shape and area has high durability and excellent productivity.
  • the circle includes a substantial circle.
  • the shapes of the gas permeable membrane 2 and the valve film 3 are not limited.
  • the shape of the gas permeable membrane 2 and / or the valve film 3 may be an ellipse.
  • the ellipse includes a substantially ellipse.
  • the shape of the gas permeable membrane 2 and / or the valve film 3 may be a polygon such as a quadrangle, a pentagon, or a hexagon.
  • the corners of the polygon may be rounded. By rounding the corners, there are advantages such as improved handling and prevention of damage to the container due to sharp corners when attached to a soft container or the like.
  • an example in which the shapes of the gas permeable membrane 2 and the valve film 3 are quadrangular will be described.
  • the ventilation member 1 may have a laminated structure including only a ventilation film 2 and a valve film 3 and, if necessary, a film-like member such as a double-sided tape 10. For this reason, the thickness of the ventilation member 1 (thickness in the film thickness direction of the ventilation film 2 and the valve film 3) can be reduced, and the thickness is, for example, 1 mm or less, and can be 100 ⁇ m or less. . Moreover, the ventilation member 1 having the above-described laminated structure has high productivity, for example, production by roll-to-roll is possible. Furthermore, in this ventilation member, it is possible to omit the use of a sealing agent such as oil, which is necessary for securing the sealing function in the conventional ventilation member consisting only of a film-like member. By omitting the use of the sealant, for example, adhesion of the sealant to food can be prevented when a ventilation member is used in a food packaging container.
  • a sealing agent such as oil
  • the air permeability in the direction from the valve film 3 to the air permeable membrane 2 in the air permeable member 1 is expressed by air resistance (Gurley number), for example, 10 seconds / 100 mL or more, and 50 seconds / 100 mL or more. You can also.
  • Gurley number can be evaluated in accordance with JIS P8117.
  • the ratio of the Gurley number from the side of the valve film 3 to the direction of the ventilation film 2 to the Gurley number from the side of the ventilation film 2 toward the valve film 3 in the ventilation member 1 is, for example, 10 or more, 30 or more, 100 In addition, it may be 200 or more. In addition, the value of a Gurley number becomes so small that air permeability is high so that it may be clear from the unit.
  • the Gurley number is the air resistance when the differential pressure applied to the evaluation object is 1.22 kPa.
  • the pressure of the gas A (valve opening pressure) that deforms the valve film 3 in the direction away from the ventilation film 2 may exceed 1.2 kPa.
  • the differential pressure is set to a pressure that can be sufficiently deformed in the direction in which the valve film 3 is separated from the gas permeable membrane 2 to measure the air permeability resistance, and the measured value is converted to a pressure difference of about 1.22 kPa.
  • the ventilation member 1 is used by being fixed to the opening.
  • An article having an opening for fixing the ventilation member 1 is not limited.
  • the article having the opening is, for example, a housing for various electrical components and electrical products, a container for food, and a member fixed to the opening of the housing and the container, and a gas passing through the opening passes therethrough. It is a member which has an opening to do.
  • the direction of the ventilation member 1 when it is fixed to the opening is not limited.
  • the ventilation member 2 has the ventilation film 2 side facing the inside of the article and the valve film 3 side facing the outside of the article. 1 is fixed to the opening.
  • the method of fixing the ventilation member 1 to the opening is not limited, and the ventilation member 1 can be fixed to the opening by welding such as heat welding and ultrasonic welding, bonding with an adhesive or an adhesive, or a bonding member such as a double-sided tape.
  • the fixing portion that fixes the ventilation member 1 to the opening can be provided, for example, on the surface of the gas permeable membrane 2 opposite to the surface to which the valve film 3 is bonded.
  • the position where the fixing portion is provided and the shape of the fixing portion are not particularly limited.
  • the fixing portion is provided at the peripheral edge of the opposite surface of the gas permeable membrane 2.
  • the ventilation member 1 further includes a fixing portion that fixes the ventilation member 1 to the opening at the peripheral portion of the surface of the gas permeable membrane 2 opposite to the surface to which the valve film 3 is bonded.
  • the shape of the fixed part may be a frame shape.
  • the fixing portion is provided on the surface of the gas permeable membrane 2, the air permeability in the film thickness direction is usually lost in the region of the gas permeable membrane 2 corresponding to the fixing portion, and therefore the portion is not the gas permeable region of the gas permeable membrane 2.
  • the fixing portion is a double-sided tape disposed on the surface of the gas permeable membrane 2, the region of the gas permeable membrane 2 corresponding to the double-sided tape is not included in the gas permeable region.
  • FIG. 7 shows an example of the ventilation member 1 further including such a fixing portion.
  • the ventilation member 1 shown in FIG. 7 is the same as the ventilation member 1 shown in FIG.
  • the ventilation member 1 shown in FIG. 7 further includes a fixing portion 11 that fixes the ventilation member 1 to the opening on the peripheral edge of the surface of the gas permeable membrane 2 opposite to the surface to which the valve film 3 is bonded.
  • the shape of the fixing portion 11 is a ring shape which is a kind of frame shape. With such a fixing portion 11, the ventilation member 1 can be fixed to the opening more stably and reliably.
  • the circumferential direction of the ring-shaped region 9 which is a region where the gas permeable membrane 2 and the valve film 3 are located at the peripheral edge of the gas permeable membrane 2.
  • the gas permeable membrane 2 is bonded to each other at the portion, and the gas permeable membrane 2 and the valve film 3 are bonded to each other when the outer periphery and inner periphery of the fixing portion 11 are viewed from the direction perpendicular to the main surface of the gas permeable membrane 2.
  • the outer circumference and the inner circumference of the region 9 located at the peripheral edge respectively coincide with each other.
  • the ventilation member 1 can be more stably and reliably fixed to the opening, and at the time of ventilation of the ventilation member 1 (at the time of ventilation from the ventilation film 2 side to the valve film 3). Moreover, peeling of the ventilation member 1 from the opening can be suppressed.
  • FIG. 9 shows an example of a state in which the ventilation member 1 shown in FIG. 7 is fixed to the opening 12.
  • the ventilation member 1 is fixed to the opening 12 so as to cover the opening 12. More specifically, the ventilation member 1 is fixed to the surface 14 of the wall 13 constituting the opening 12 and is fixed via the fixing portion 11.
  • the surface 14 may be an outer surface of a housing having a wall 13 and a housing.
  • the ventilation member 1 of this embodiment shown in FIGS. 10A and 10B is similar to that of FIG. 1A to FIG. 1 except that the shape of the ventilation film 2 and the valve film 3 is a square, more specifically, a square. It has the same structure as the ventilation member 1 shown in FIG. 1C.
  • 10A shows the ventilation member 1 as viewed from the side of the gas permeable membrane 2
  • FIG. 10B shows a cross section II shown in FIG. 10A.
  • the ventilation film 2 and the valve film 3 are first extended along the three sides of the rectangle in the region located at the peripheral edge of the square ventilation film 2. Are joined to each other.
  • the joint portion 4 of the ventilation member 1 of the present embodiment corresponds to the first portion that is a part in the circumferential direction of a region located at the peripheral edge portion of the gas permeable membrane 2.
  • the joint portion 4 has a U shape when viewed from a direction perpendicular to the main surface of the gas permeable membrane 2, more specifically, a U shape having corners at right angles.
  • the ventilation member 1 of the present embodiment has one joint 4.
  • the gas permeable membrane 2 is bonded to the valve film 3 in the region located at the peripheral portion of the gas permeable membrane 2, A second portion that is not joined to the valve film 3 and the ventilation region of the gas permeable membrane 2 is viewed from a direction perpendicular to the main surface of the gas permeable membrane 2, and the first portion and the second portion And a line segment L connecting the end portions 15A and 15B of the first portions adjacent to each other along the circumferential direction.
  • the same effect as the effect demonstrated in Embodiment 1 can be acquired according to the structure.
  • the ventilation member 1 shown in FIGS. 10A and 10B when the ventilation member 1 is in a steady state, the ventilation member 1 side of the ventilation member 1 through a slight gap between the ventilation membrane 2 and the valve film 3 is used.
  • the amount of gas permeation between the surface of the valve film 3 and the surface on the valve film 3 side for example, the amount of permeation of oxygen, can be suppressed as compared with the ventilation member 1 shown in FIGS.
  • the amount of permeation is simply referred to as “the amount of gas (oxygen) permeation”).
  • the oxygen concentration in the container over time is increased. Increase can be suppressed.
  • the effect of suppressing the gas permeation amount in the steady state is that the air permeability of the region in the vicinity of the free end of the valve film 3 depends on the relationship between the ventilation region of the ventilation membrane 2 and the first portion corresponding to the joint portion 4. This is based on the fact that the overlap with the ventilation region of the membrane 2 is suppressed. Further, in the ventilation member 1 shown in FIGS.
  • the effect is that the valve film 3 does not have an “externally protruding portion” to be described later, so that the surface of the container to which the member 1 is fixed is It is soft and can be held more reliably even when deformation such as undulation is likely to occur on the surface.
  • 11A and 11B show a modification of the ventilation member 1 of the present embodiment.
  • 11A shows the ventilation member 1 viewed from the side of the ventilation membrane 2, and
  • FIG. 11B shows a cross section II shown in FIG. 11A.
  • one end 15A and the other end 15B of the joint portion 4 (extending along the three sides of the quadrilateral in the region located at the peripheral edge of the quadrilateral vent film 2). Both ends 15A, 15B) of the first part are set back from the remaining side 16 of the square.
  • the valve film 3 protrudes outward with respect to the line segment L connecting the end portions 15A and 15B (from the line segment L in FIG. 11A). Side 16 side portion).
  • the part is easily reversibly deformed as compared with other parts. For this reason, in the ventilation member 1 shown in FIGS. 11A and 11B, the return property of the valve film 3 deformed in the direction away from the gas permeable membrane 2 by the pressure of the gas A can be improved.
  • FIG. 12A and 12B show a further modification of the ventilation member 1 of the present embodiment.
  • 12A shows the ventilation member 1 viewed from the side of the gas permeable membrane 2, and
  • FIG. 12B shows a cross section II shown in FIG. 12A.
  • the ventilation member 1 shown in FIG. 12A and FIG. 12B has the ventilation shown in FIG. 11A and FIG. 11B, except that a fixing part 11 is provided on the peripheral edge of the surface opposite to the surface to which the valve film 3 is bonded. It has the same structure as the member 1.
  • the ventilation region 17 of the ventilation membrane 2 defined by the fixing portion 11 is joined to the valve film 3 in the region located at the peripheral edge of the ventilation membrane 2.
  • a line segment L connecting the end portions 15A and 15B of the first portion adjacent to each other along the circumferential direction across the first portion and the second portion not joined to the valve film 3 in the region; Surrounded by For this reason, in the ventilation member 1 shown to FIG. 12A and FIG. 12B, balance with suppression of the permeation
  • the center of the ventilation region 17 of the ventilation film 2 and the center of the valve film 3 coincide.
  • the gas permeation amount in the steady state can be more reliably suppressed.
  • the ventilation member 1 of the present embodiment can be used in the same manner as the ventilation member 1 of the first embodiment.
  • the ventilation member 1 of the present embodiment shown in FIGS. 13A and 13B is similar to that shown in FIGS. 1A to 1B except that the shape of the gas permeable membrane 2 and the valve film 3 is square, more specifically square, and the shape of the joint 4 is different. It has the same structure as the ventilation member 1 shown in FIG. 1C. 13A shows the ventilation member 1 viewed from the side of the ventilation membrane 2, and FIG. 13B shows a cross section II shown in FIG. 13A.
  • the ventilation film 2 and the valve film 3 are respectively formed on two sides of the square that face each other in a region located at the peripheral edge of the square ventilation film 2.
  • the two first portions along each other are joined to each other.
  • the joint portion 4 of the ventilation member 1 of the present embodiment corresponds to the first portion that is a part in the circumferential direction of a region located at the peripheral edge portion of the gas permeable membrane 2.
  • the ventilation member 1 of the present embodiment has two joint portions 4 (4A, 4B).
  • the joints 4A and 4B have a Roman numeral “II” shape.
  • the gas permeable membrane 2 is joined to the valve film 3 in the region located in the peripheral portion of the gas permeable membrane 2, and the first portion in the region.
  • a second portion that is not joined to the valve film 3, and the ventilation region of the gas permeable membrane 2 is viewed from a direction perpendicular to the main surface of the gas permeable membrane 2.
  • the line segment L1 is a line segment that connects the end portion 18A and the end portion 18C adjacent to each other along the circumferential direction with the second portion along the side 19A interposed therebetween.
  • the line segment L2 is a line segment that connects the end portion 18B and the end portion 18D adjacent to each other along the circumferential direction with the second portion along the side 19B interposed therebetween.
  • the same effect as the effect demonstrated in Embodiment 1 can be acquired according to the structure.
  • the gas permeation amount in a steady state for example, the oxygen permeation amount
  • FIGS. 1A to 1C the gas permeation amount in a steady state
  • the effect is that the valve film 3 does not have the above “part protruding outward”, and thus the surface of the container to which the member 1 is fixed is soft, Even when deformation such as undulation is likely to occur on the surface, the surface can be held more reliably.
  • FIG. 14A and 14B show a modification of the ventilation member 1 of the present embodiment.
  • 14A shows the ventilation member 1 viewed from the side of the gas permeable membrane 2, and
  • FIG. 14B shows a cross section II shown in FIG. 14A.
  • the end portions 18A and 18C of the joint portion 4 (4A and 4B) (the second along the two opposite sides of the square in the region located at the peripheral edge of the square ventilation membrane 2).
  • the end of one portion which is the end of one side 19A selected from the remaining two sides, is set back from the side 19A.
  • the end portions 18B and 18D (the end portion of the first portion and the end portion on the other side 19B selected from the remaining two sides) of the joint portion 4 (4A and 4B) are the side 19B. Have retreated from.
  • valve film 3 is outward from the line segment L1 connecting the end portions 18A and 18C and the line segment L2 connecting the end portions 18B and 18D when viewed from the direction perpendicular to the main surface of the valve film 3.
  • Projecting portions a portion on the side 19A side from the line segment L1 and a portion on the side 19B side from the line segment L2 in FIG. 14A.
  • the part is easily reversibly deformed as compared with other parts. For this reason, in the ventilation member 1 shown in FIGS. 14A and 14B, the return property of the valve film 3 deformed in the direction away from the gas permeable membrane 2 by the pressure of the gas A can be improved.
  • At least one end portion selected from the end portions 18A to 18D of the joint portion 4 may be in the retracted state.
  • side 19B in joining part 4A and 4B may be in the said retracted state.
  • the ventilation region 17 of the ventilation membrane 2 defined by the fixing portion 11 is joined to the valve film 3 in the region located at the peripheral portion of the ventilation membrane 2.
  • the first portions and the line segments L1 and L2 connecting the end portions 18 of the first portions adjacent to each other along the circumferential direction across the second portion not joined to the valve film 3 in the region. being surrounded.
  • the center of the ventilation region 17 of the ventilation film 2 and the center of the valve film 3 coincide. In this case, the gas permeation amount in the steady state can be more reliably suppressed.
  • the ventilation member 1 of the present embodiment can be used in the same manner as the ventilation member 1 of the first embodiment.
  • the ventilation member 1 of the present embodiment has a fine adhesive layer 20 formed on the surface of the valve film 3 on the side of the gas permeable membrane 2 (the valve film 3 is finely formed on the surface of the gas permeable membrane 2 side. Except for having the adhesive layer 20, it has the same structure as the ventilation member 1 shown in FIGS. 12A and 12B.
  • 15A shows the ventilation member 1 viewed from the side of the ventilation membrane 2
  • FIG. 15B shows a cross section II shown in FIG. 15A.
  • the same effect as the effect demonstrated in Embodiment 1 or 2 can be acquired according to the structure.
  • the gas permeation amount in a steady state for example, the oxygen permeation amount
  • the effect of further suppressing the gas permeation amount in the steady state is based on the fact that the valve film 3 can be more closely adhered to the gas permeable membrane 2 by the slightly adhesive layer 20 when the gas permeable member 1 is in the steady state.
  • the pressure of the gas A that begins to deform in the direction in which the valve film 3 is separated from the gas permeable membrane 2 can be adjusted by the slightly adhesive layer 20. That is, the valve opening pressure (valve opening pressure) in the ventilation member 1 can be adjusted.
  • the valve opening pressure in the ventilation member 1 in which the valve film 3 has the slight adhesion layer 20 is, for example, 10 kPa or less.
  • the valve opening pressure may be 8 kPa or less, 6 kPa or less, 5 kPa or less, 4 kPa or less, or 3 kPa or less.
  • the lower limit of the valve opening pressure can be 0.3 kPa or more, 0.5 kPa or more, and further 1 kPa or more.
  • the slightly adhesive layer 20 is a layer composed of, for example, an adhesive.
  • the kind of adhesive is not limited.
  • a well-known adhesive can be used for an adhesive.
  • the pressure-sensitive adhesive is, for example, a urethane-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, or a silicone-based pressure-sensitive adhesive.
  • the pressure-sensitive adhesive may be a urethane pressure-sensitive adhesive or an acrylic pressure-sensitive adhesive.
  • Urethane pressure-sensitive adhesives and silicone-based pressure-sensitive adhesives, particularly urethane-based pressure-sensitive adhesives have high wettability with respect to the gas permeable membrane 2.
  • adherence of the valve film 3 with respect to the ventilation film 2 when the ventilation member 1 will be in a steady state after valve opening can be improved, for example.
  • the acrylic adhesive has high adhesiveness to the gas permeable membrane 2. For this reason, in the fine adhesion layer 20 comprised from an acrylic adhesive, the adhesive force of the valve film 3 with respect to the ventilation film 2 can be improved, for example.
  • the adhesive strength of the slightly adhesive layer 20 is, for example, 0.2 N / 20 mm or less, 0.15 N / 20 mm or less, and 0.15 N / 20 mm or less in terms of adhesive strength at normal temperature (23 ° C.) to a PET film (non-porous PET film). It may be 13 N / 20 mm or less, and further 0.11 N / 20 mm or less.
  • the slightly adhesive layer 20 may be formed on the entire surface of the valve film 3 on the side of the gas permeable membrane 2 or may be formed on a part thereof.
  • the formation method of the valve film 3 which has the slightly adhesion layer 20 is not limited.
  • the valve film 3 having the slightly adhesive layer 20 can be formed by applying an adhesive to the surface of the film used as the valve film 3 by a known method.
  • the slightly adhesive layer 20 can be applied to the ventilation member 1 of other embodiments.
  • the ventilation member 1 of the present embodiment can be used in the same manner as the ventilation member 1 of the first embodiment.
  • the ventilation member 1 of the present embodiment has an intermediate film 31 as an intermediate member in a part of a region where the ventilation film 2 and the valve film 3 are located at the peripheral edge of the ventilation film 2.
  • the ventilation member 1 has the same structure as the ventilation member 1 shown in FIGS. 15A and 15B except that they are joined together.
  • 16A shows the ventilation member 1 viewed from the side of the ventilation membrane 2
  • FIG. 16B shows a cross section II shown in FIG. 16A.
  • the gas permeable membrane 2 and the valve film 3 are directly bonded to each other (directly bonded via the bonding portion 4 such as the double-sided tape 10).
  • the same effect as that described in the first, second, or fourth embodiment can be obtained according to the configuration.
  • the gas permeation amount in a steady state for example, the oxygen permeation amount
  • the effect of further suppressing the gas permeation amount in the steady state is more certain when the valve film 3 has the slightly adhesive layer 20.
  • the rigidity of the ventilation member 1 which can be a laminated body of a film can be improved by the intermediate film 31.
  • the joining portion 4 is formed on the intermediate film 31 disposed on the ventilation membrane 2 via the fixing portion 32.
  • the configuration such as the shape of the joint 4 may be the same as the configuration of the joint 4 in each of the embodiments described so far.
  • the intermediate member is typically a film (intermediate film 31) that does not have air permeability in the film thickness direction.
  • the intermediate film 31 may be a nonporous nonporous film.
  • the intermediate film 31 that does not have air permeability in the film thickness direction does not have a gas ventilation path on the surface. For this reason, the smoothness of the surface can be improved as compared with the gas permeable membrane 2, and the degree of adhesion when the valve film 3 is in contact with the surface can be improved. By this improvement, the gas permeation amount in the steady state can be more reliably suppressed.
  • the material constituting the intermediate film 31 is not limited, and may be a polymer, a metal, and a composite material thereof.
  • the intermediate film 31 is, for example, a polymer film, and a more specific example is a non-porous PET film.
  • the intermediate film 31 that is a polymer film for example, when the valve film 3 has the slight adhesion layer 20, it is possible to prevent the valve opening pressure of the ventilation member 1 from becoming excessively high. This is because polymer films generally tend to have lower adhesive strength than metal films.
  • the thickness of the intermediate film 31 is, for example, 3 to 200 ⁇ m, and may be 25 to 100 ⁇ m.
  • the shape of the intermediate film 31 is not limited.
  • the intermediate film 31 can have the shape of the peripheral edge of the gas permeable membrane 2.
  • the shape of the intermediate film 31 is the same as the shape of the fixed portion 11.
  • the gas permeable membrane 2 and the intermediate film 31 can be bonded by, for example, welding such as heat welding and ultrasonic welding, bonding with an adhesive or an adhesive, or a bonding member such as a double-sided tape.
  • the fixing part 32 may have the same configuration as the fixing part 11.
  • the fixed portion 32 of the ventilation member 1 shown in FIGS. 16A and 16B is configured by a double-sided tape.
  • the shape of the fixing part 32 is not limited.
  • the shape of the fixing part 32 may be the shape of the peripheral part of the gas permeable membrane 2.
  • the shape of the fixing part 32 may be the same as the shape of the intermediate film 31 and / or the fixing part 11.
  • the shape of the fixing portion 32 is the same as the shape of the intermediate film 31 and the fixing portion 11.
  • the intermediate member 31 can also be applied to the ventilation member 1 of other embodiments.
  • the ventilation member 1 of the present embodiment can be used in the same manner as the ventilation member 1 of the first embodiment.
  • the ventilation member of the present invention can be supplied, for example, in a form arranged on a sheet-like base film or in a form placed on a belt-like base film and wound on a roll or a reel.
  • the fixing part 11 can be used for arranging the ventilation member on the base film.
  • a release layer that facilitates peeling of the member from the base film may be formed on the surface of the base film on which the ventilation member is disposed when the ventilation member is used.
  • the base film for example, a polymer film, paper, a metal film, and a composite film thereof can be used.
  • Ventilated housing, vented container The use of the ventilation member of the present invention is not limited.
  • the ventilation member of the present invention can be used, for example, by being fixed to openings of various cases and containers that require air permeability. Since the ventilation member of the present invention has asymmetric air permeability, it can be suitably used for various housings and containers that require asymmetric air permeability.
  • the ventilation member of the present invention can also be used for various cases and containers that require unsteady ventilation. Note that the requirement of unsteady air permeability means that air permeability is required only during a specific period, for example, during heating.
  • FIG. 17 shows an example of a ventilation container provided with the ventilation member of the present invention.
  • a ventilation container 21 shown in FIG. 17 is a food container that generates gas during storage, and the ventilation member 1 is fixed to the opening thereof.
  • the ventilation member 1 is fixed to the outer surface side of the opening of the container 21 so that the valve film 3 side faces the outside of the container 21 and the ventilation film 2 side faces the inside of the container 21.
  • the introduction of air (oxygen) from the outside to the inside of the container 21 can be suppressed while the gas generated from the food is discharged to the outside by the ventilation member 1.
  • FIG. 18 shows an example of a ventilation casing provided with the ventilation member of the present invention.
  • a ventilation housing 22 shown in FIG. 18 is a lamp housing, and the ventilation member 1 is fixed to the opening thereof.
  • the ventilation member 1 is fixed to the outer surface side of the opening of the casing 22 so that the valve film 3 side faces the outside of the casing 22 and the ventilation membrane 2 side faces the inside of the casing 22.
  • the pressure decreased due to the temperature decrease after the lamp was extinguished while the gas inside the casing 22 whose pressure was increased by the heat at the time of lamp lighting was discharged to the outside of the casing 22 by the ventilation member 1.
  • Invasion of water vapor from the outside to the inside of the housing 22 can be suppressed. Since water vapor that has entered the inside of the housing 22 causes condensation, the ventilation member 1 suppresses the occurrence of condensation within the housing 22.
  • entry of foreign matter such as dust and water from the outside to the inside of the housing 22 can be suppressed.
  • the air permeability (air permeability resistance) of the ventilation member was evaluated based on the Gurley number (unit: second / 100 mL) measured in accordance with JIS P8117. At this time, a stainless steel disc having a diameter of 47 mm provided with an opening having a diameter of 2 mm is prepared, and the ventilation member which is an evaluation object is made to coincide with each other so as to cover the opening, and the double-sided tape of the fixing portion 11
  • the Gurley number was measured in a state of being attached to the disk by the above method.
  • the Gurley number finally obtained for each ventilation member sample (Gurley number shown in Table 1) is the same as the area of the ventilation region of the ventilation member sample evaluated as described above, and the Gurley number actually measured as described above. Based on the air passage area of 642 mm 2 which is the reference of the upper Gurley number, the value was converted per air passage area (642 mm 2 ) of the latter. All the Gurley numbers of the ventilation members described in this specification are the converted values.
  • a stainless steel disc having a diameter of 47 mm provided with an opening having a diameter of 2 mm at the center (having a thickness that does not deform during water pressure resistance measurement) was prepared.
  • a ventilation member as a measurement target was fixed to one surface of the disk so as to cover the opening.
  • the ventilation member was fixed by the fixing portion 11 or the fixing portion 105 so that the center of the ventilation film included in the member coincided with the center of the opening.
  • the water pressure resistance of the ventilation member was measured in accordance with method A (low water pressure method) or method B (high water pressure method) described in JIS L1092, using the disc on which the ventilation member was fixed as a test piece. The water pressure was applied to the test piece from the surface opposite to the surface on which the ventilation member was fixed.
  • the water pressure when water droplets were observed even at one place on the gas permeable membrane or the fixing portion as viewed from the side of the surface of the test piece where the gas permeable member was fixed was defined as the water pressure resistance of the gas permeable member.
  • the test apparatus an apparatus having the same configuration as the test apparatus exemplified in JIS L1092 can be used except that it has a structure (test piece mounting structure) capable of measuring the water pressure resistance of the test piece.
  • the waterproofness of the ventilation member was evaluated according to the following criteria.
  • ⁇ (possible) The value of the water pressure resistance was 1 kPa or more and less than 3 kPa.
  • Example 1 the ventilation member 1 shown in FIGS. Specifically, a liquid-repellent circular PET film having a plurality of through-holes in the film thickness direction as the gas permeable film 2 (the air permeability in the film thickness direction is the number of fragiles measured in accordance with JIS L1096) Displayed as 12.0 cm 3 / (cm 2 ⁇ sec), water pressure resistant 18 kPa, thickness 45 ⁇ m, diameter 9 mm, transparent), and non-porous PET film (circular, thickness 50 ⁇ m, diameter 9 mm, transparent) as the valve film 3 ) was prepared.
  • a PET film as the gas permeable film 2 was prepared as follows. Non-porous commercially available PET film having a plurality of through holes penetrating in the film thickness direction (it4ip, Track etched membrane; thickness 45 ⁇ m, through hole diameter 5.0 ⁇ m, through hole density 2.3 ⁇ 10 6 Pieces / cm 2 ). Next, after immersing this film in a liquid repellent treatment liquid for 3 seconds, the liquid repellent layer is formed on the surface of the film by removing it from the treatment liquid and allowing it to stand at room temperature for 30 minutes to dry. Processing was carried out. For the liquid repellent treatment solution, a solution obtained by diluting a water and oil repellent “X-70-042” manufactured by Shin-Etsu Chemical Co., Ltd.
  • a PET film (a through hole diameter of 5.0 ⁇ m, a porosity of 45.1%, a through hole density of 2.3 ⁇ 10 6 pieces / cm 2 ), which is the gas permeable membrane 2, was obtained.
  • two double-sided tapes with an outer diameter of 9 mm and an inner diameter of 6 mm are prepared, and one of them is a straight line passing through the center of the ring (ring diameter). A straight line corresponding to) was divided into two as cutting lines.
  • one of the two-sided double-sided tapes is pasted on the surface of the gas permeable membrane 2 so that the outer circumferences coincide with each other, and the valve film 3 is pasted on the pasted double-sided tapes so that the outer circumferences coincide.
  • the gas permeable membrane 2 and the valve film 3 were joined using the double-sided tape 10 as the joint 4. As shown in FIG.
  • the gas permeable membrane 2 and the valve film 3 are part of the circumferential direction of the ring-shaped region 9 located at the peripheral edge of the gas permeable membrane 2 (180 ° as an angle with respect to the center of the ring). In the region).
  • another double-sided tape that is not divided into two parts is bonded as a fixing portion 11 to the surface of the gas permeable membrane 2 opposite to the joint surface of the valve film 3 so that the outer circumferences coincide with each other, as shown in FIGS.
  • the ventilation member 1 shown was obtained.
  • the ventilation region of the ventilation member is a circular region having the inner periphery of the ring-shaped double-sided tape bonded to the opposite surface of the ventilation film 2 as a circumference (in other examples and comparative examples). Is the same).
  • the evaluation results of the ventilation member thus produced are shown in Table 1 below.
  • Example 2 A ventilation member 1 was obtained in the same manner as in Example 1 except that the inner diameter of the ring-shaped double-sided tape used for the joint portion 4 and the fixing portion 11 was changed from 6 mm to 4 mm. The evaluation results of the ventilation member thus produced are shown in Table 1 below.
  • Example 3 A ventilation member in the same manner as in Example 1 except that the inner diameter of the ring-shaped double-sided tape used for the joint portion 4 and the fixing portion 11 was changed from 6 mm to 4 mm and the thickness of the valve film 3 was changed from 50 ⁇ m to 25 ⁇ m. 1 was obtained.
  • the evaluation results of the ventilation member thus produced are shown in Table 1 below.
  • Example 4 When one of two prepared double-sided tapes is divided into two, each of the two straight lines that pass through the center of the ring and whose crossing angle at the center of the ring is 90 ° is cut.
  • a ventilation member 1 was obtained in the same manner as in Example 1 except that a larger piece of the double-coated double-sided tape was used as the joint 4 between the ventilation film 2 and the valve film 3.
  • the gas permeable membrane 2 and the valve film 3 are part of the circumferential direction of the ring-shaped region located at the peripheral edge of the gas permeable membrane 2 (at an angle of 270 ° with respect to the center of the ring). In the region, the portions are joined to each other as the joint portion 4.
  • Table 1 The evaluation results of the ventilation member thus produced are shown in Table 1 below.
  • Venting membrane 2 is changed from the above PET membrane to a circular PTFE porous membrane (manufactured by Nitto Denko, NTF 1133, Gurley number in the film thickness direction 1.8 sec / 100 mL, water pressure resistance 60 kPa, thickness 80 ⁇ m, diameter 9 mm, white)
  • a ventilation member 1 was obtained in the same manner as in Example 1 except that.
  • the PTFE porous film used in Example 5 is a film that has been subjected to a liquid repellent treatment by the same liquid repellent treatment agent and liquid repellent treatment method as in Example 1.
  • the evaluation results of the ventilation member thus produced are shown in Table 1 below.
  • Example 6 The ring-shaped double-sided tape used for the fixing part 11 is not changed, and the ring-shaped double-sided tape used for the joint part 4 is a double-sided tape having a thickness of 100 ⁇ m (Nitto Denko, No. 5610, outer diameter 9 mm and inner diameter 6 mm).
  • the ventilation member 1 was obtained in the same manner as in Example 1 except that the above was changed. The evaluation results of the ventilation member thus produced are shown in Table 1 below.
  • Example 7 A ventilation member in the same manner as in Example 1 except that the inner diameter of the ring-shaped double-sided tape used for the joint portion 4 and the fixing portion 11 was changed from 6 mm to 7 mm, and the thickness of the valve film 3 was changed from 50 ⁇ m to 25 ⁇ m. 1 was obtained.
  • the evaluation results of the ventilation member thus produced are shown in Table 1 below.
  • Comparative Example 1 In Comparative Example 1, the ventilation member 100 shown in FIGS. 20A and 20B was produced. 20B is a view of the ventilation member 100 shown in FIG. 20A as viewed from the slit film 101 side.
  • the gas permeable membrane 103 As the gas permeable membrane 103, the same PET membrane as the PET membrane used in the gas permeable membrane 2 of Example 1 was prepared.
  • the slit film 101 two linear slits (length 3 mm, interval 2 mm between the slits) 102 penetrating in the film thickness direction of the film are provided.
  • a circular PET film (thickness 50 ⁇ m, diameter 9 mm, transparent) was prepared.
  • Comparative Example 2 A PET film (thickness 50 ⁇ m, diameter) having three linear slits (length 3 mm) 102 that penetrates the slit film 101 in the film thickness direction of the film and intersects at an equal angle at the center of the circular film.
  • the ventilation member 110 shown in FIGS. 21A and 21B was obtained in the same manner as in Comparative Example 1 except that the thickness was changed to 9 mm and transparent.
  • 21B is a view of the ventilation member 110 shown in FIG. 21A as viewed from the slit film 101 side. The evaluation results of the ventilation member thus produced are shown in Table 1 below.
  • Comparative Example 3 a ventilation member without the ventilation film 2 was produced. Specifically, the ventilation member was obtained in the same manner as in Example 1 except that a ring-shaped PET film (thickness 50 ⁇ m) having an outer diameter of 9 mm and an inner diameter of 6 mm was used instead of the ventilation film 2. The evaluation results of the ventilation member thus produced are shown in Table 1 below.
  • the ventilation from the valve film 3 side to the ventilation film 2 direction can be more reliably suppressed, and the ventilation film 2 side can also be controlled.
  • the ratio B / A of the Gurley number in the direction of the gas permeable membrane 2 from the valve film 3 side to the Gurley number in the direction of the film 3 can be increased, and the degree of freedom in controlling the ratio is increased.
  • Example 8 About the ventilation member produced in Example 1, when the pressure of the gas A permeate
  • asymmetrical air permeability is realized by a slight differential pressure with the ventilation membrane 2 side being positive, and the asymmetric air permeability is maintained even when the differential pressure is large. I was able to.
  • valve opening pressure which is the pressure of the gas A at which the ventilation member opens.
  • a 47 mm diameter stainless steel disc (having a thickness that does not deform when the valve opening pressure is measured) with an opening having a diameter of 2 mm as the center was prepared.
  • a ventilation member as a measurement target was fixed to one surface of the disk so as to cover the opening.
  • the ventilation member was fixed by the fixing portion 11 or the fixing portion 105 so that the center of the ventilation film included in the member coincided with the center of the opening.
  • the disk which fixed the ventilation member was made into the test piece, and the said test piece was fixed to the fixing jig 204 of the evaluation apparatus shown in FIG.
  • the fixing jig 204 is a bottomed cylindrical body having a circular cross section, and has a structure capable of fixing the test piece 201 to which the ventilation member 203 is fixed to the opening.
  • a pipe 205 to which a flow meter 206, a pressure gauge 207, a regulator 208 and a pump 209 are connected is connected to the bottom of the fixed jig 204.
  • the fixing jig 204 when the test piece 201 is fixed to the opening, the pipe 205 is excluded, and only the opening 202 of the test piece 201 and the ventilation member 203 fixed to the opening 202 are vented from the outside to the inside of the fixing jig 204. It has a route structure.
  • the test piece 201 was fixed to the opening of the jig 204 so that the surface fixing the ventilation member 203 faces the inside of the fixing jig 204.
  • the pump 209 was driven, and pressure reduction inside the fixed jig 204 was started via the pipe 205.
  • the decompression speed was set to 10 kPa / min by the regulator 208.
  • measurement of the flow rate of air passing through the inside of the pipe 205 was started by the flow meter 206.
  • the pressure P in the fixed jig 204 was recorded when the flow rate was 0.01 L / min or more and the flow rate rapidly increased beyond the flow rate calculated from the pressure reduction rate.
  • a value obtained by subtracting the pressure P from the atmospheric pressure at the time of measurement was defined as a valve opening pressure of the ventilation member.
  • the air permeability (air permeability resistance; Gurley number) of the ventilation member was measured by the same method as the air permeability measurement method for the ventilation members produced in Examples 1 to 7 and Comparative Examples 1 to 3.
  • the above-mentioned pressure difference is set to a pressure exceeding the valve opening pressure, and the air resistance is measured.
  • a value obtained by converting the value per differential pressure of 1.22 kPa was defined as the Gurley number of the ventilation member.
  • Airflow per unit time Apart from the air permeability (air resistance), when the pressure difference (gas A pressure) between the air membrane side surface of the ventilation member and the valve film or slit film side surface is 1.5 kPa The flow rate (air flow rate) of air per unit time passing through the member was evaluated. In addition, this value was made into zero in the ventilation member whose valve opening pressure exceeds 1.5 kPa. The air flow rate was measured as follows.
  • a stainless steel disc having a diameter of 47 mm provided with an opening having a diameter of 2 mm as the center (having a thickness that does not deform when measuring the air flow rate) was prepared.
  • a ventilation member as a measurement target was fixed to one surface of the disk so as to cover the opening.
  • the ventilation member was fixed by the fixing portion 11 or the fixing portion 105 so that the center of the ventilation film included in the member coincided with the center of the opening.
  • the disk that fixes the ventilation member is used as a test piece, and the test piece is placed on the fixing jig 204 of the evaluation device (see FIG. 25) used for measuring the valve opening pressure when the valve opening pressure is measured. Fixed in the same manner.
  • the pump 209 was driven and the inside of the fixing jig 204 was depressurized via the pipe 205.
  • the pressure was reduced by the regulator 208 so that the internal pressure of the fixing jig 204 was 1.5 kPa lower than the atmospheric pressure at the time of measurement.
  • the flow rate of the air passing through the inside of the pipe 205 was measured by the flow meter 206, and the air flow per unit time was obtained.
  • the valve opening pressure (initial opening pressure) of the ventilation member to be evaluated was measured by the valve opening pressure measuring method described above.
  • the internal space of the fixing jig 204 was opened through the pipe 205, and the pressure in the fixing jig 204 was returned to atmospheric pressure.
  • the valve opening pressure of the ventilation member was measured again by the above method.
  • the measured value again decreases by 1 kPa or more from the initial opening pressure, “ ⁇ (possible)”, and when it decreases by more than 0.5 kPa and less than 1 kPa, “ ⁇ (good)”, when less than 0.5 kPa When it decreased, it was designated as “ ⁇ (excellent)”.
  • An opening that fits in a range surrounded by the fixing part 11 or the fixing part 125 of each ventilation member when the ventilation member was fixed was provided in an aluminum pouch bag having an internal volume of 2000 mL (manufactured by GL Sciences, AAK-2).
  • the ventilation member was fixed to the outer surface of the bag via the fixing part 11 or the fixing part 125 so as to cover the opening.
  • nitrogen gas was circulated through the cock at a flow rate of 300 mL / min for 5 minutes. After circulation for 5 minutes, the bag containing about 300 mL of nitrogen gas was sealed by heat sealing, and stored at room temperature without applying pressure exceeding the valve opening pressure of the ventilation member to the bag.
  • the oxygen concentration in the bag is measured with an oxygen concentration meter (RO-103S, manufactured by Iijima Denshi Kogyo Co., Ltd.). The oxygen permeation amount of the ventilation member in the state was evaluated.
  • the oxygen concentration immediately after heat sealing was separately measured, the initial oxygen concentration was in the range of 0.01 to 0.03% in any of the ventilation members.
  • Example 9 In Example 9, the shapes of the gas permeable membrane 2 and the valve film 3 were square, and the gas permeable membrane 2 and the valve film 3 extended along the three sides of the square in the region located at the peripheral edge of the gas permeable membrane 2.
  • the ventilation member 1 (refer FIG. 12A and FIG. 12B) mutually joined by the junction part 4 in the part was produced. However, the end portions 15A and 15B of the joint portion 4 of the ventilation member 1 manufactured in Example 9 are in the same position as the remaining one side 16 (side 16), like the ventilation member 1 shown in FIGS. 10A and 10B. Did not retreat from).
  • the width of the joint portion 4 (except for the corner portion, the width in the direction perpendicular to the direction in which the joint portion 4 extends, hereinafter the same) was 2 mm.
  • a square (size 20 mm ⁇ 20 mm) PET film having a plurality of through holes in the film thickness direction was prepared.
  • the air permeability in the film thickness direction of the prepared PET film is 20.0 cm 3 / (cm 2 ⁇ sec) in terms of the number of fragiles measured in accordance with JIS L1096, the water pressure resistance is 2 kPa, and the thickness is 12 ⁇ m.
  • the PET film was transparent.
  • the PET film as the gas permeable film 2 was prepared as follows. A non-porous PET film having a thickness of 12 ⁇ m was prepared. Next, a plurality of through-holes having a hole diameter of 21.5 ⁇ m extending linearly in a direction perpendicular to the main surface of the PET film were formed on the prepared PET film by a through-hole forming process using a laser. The through holes were formed so that the openings were evenly arranged with respect to the surface of the PET film, and the porosity of the surface of the PET film was 6.45%. The porosity of the surface is the ratio of the total value of the areas of the through-holes existing on the surface to the surface area.
  • the same PET film as the valve film 3 used in Example 1 was prepared for the valve film 3 except that it was a square (size 20 mm ⁇ 20 mm).
  • a U-shaped double-sided tape (Nitto Denko, No. 5603, thickness 30 ⁇ m, width 2 mm) having a right-angled corner, which is a joint portion 4, is prepared, Affixed to the surface. Furthermore, the valve film 3 was bonded onto the bonded double-sided tape so that the outer circumferences coincided, and the gas permeable membrane 2 and the valve film 3 were bonded using the double-sided tape as the bonding portion 4.
  • the outer peripheral size is 20 mm ⁇ 20 mm
  • the inner peripheral size is 10 mm ⁇ 10 mm
  • the frame-shaped double-sided tape (Nitto Denko Corporation) having a right-angled corner in which the center of the outer periphery coincides with the center of the inner periphery.
  • Product, No. 5603, thickness 30 ⁇ m was prepared and bonded to the surface of the gas permeable membrane 2 opposite to the joint surface of the valve film 3 as the fixing portion 11 so that the outer peripheries coincided.
  • the ventilation member 1 of Example 9 was obtained.
  • Example 9 in addition to the vent member 1 produced above, two types of vent members using a PET film having a slightly adhesive layer 20 as the valve film 3 were prepared by changing the type of the slightly adhesive layer 20. .
  • a film Nito Denko, AW303, thickness 50 ⁇ m, fine
  • a fine adhesive layer 20 composed of a urethane-based adhesive is formed on one surface of the valve film 3 (size 20 mm ⁇ 20 mm square).
  • valve film 3 was joined to the gas permeable membrane 2 so that the slightly adhesive layer 20 faces the gas permeable membrane 2.
  • the ventilation film and the valve film or slit film are arranged so that the slight adhesion layer faces the ventilation film. Were joined.
  • the adhesive strength of the slightly adhesive layer in the prepared valve film was evaluated as follows at normal temperature (23 ° C.). First, the PET film (width 20 mm, length 150 mm) on which the fine adhesion layer to be evaluated is formed on one surface is passed through the entire surface of the fine adhesion layer of the film, and has a thickness of 100 ⁇ m. To PET film (Toray, Lumirror S10). Next, a roller having a weight of 2 kg was reciprocated once on the valve film, and then the joined body was left for 30 minutes.
  • Table 2 below shows the evaluation results of the three types of ventilation members manufactured in this manner and having different valve films 3 from each other.
  • “PET” in the column of “Type of valve film or slit film” in Table 2 means a valve film or slit film that does not have a slightly adhesive layer.
  • the three types of ventilation members produced in Example 9 all satisfied the same Gurley number B and Gurley number ratio B / A as in Examples 1-7. Further, the Gurley number A when the valve film 3 did not have the slightly adhesive layer 20 was 1.1 seconds / 100 mL.
  • Example 10 In Example 10, the shape of the gas permeable membrane 2 and the valve film 3 is a square, and the gas permeable membrane 2 and the valve film 3 are provided on each of two opposite sides of the square in the region located at the peripheral edge of the gas permeable membrane 2.
  • the ventilation member 1 (refer FIG. 14A and FIG. 14B) mutually joined by the junction part 4 in the part along was produced. However, as in the ventilation member 1 shown in FIGS. 13A and 13B, the end portions 18A to 18D of the joint portion 4 of the ventilation member 1 manufactured in Example 10 are located at the same positions as the sides 19A and 19B (side 19A, I did not retreat from 19B).
  • the width of the joint 4 was 2 mm.
  • the PET membrane and the PET film used in Example 9 were prepared, respectively.
  • a pair of strip-shaped double-sided tapes (No. 5603, manufactured by Nitto Denko, 30 mm thick, 20 mm long, 2 mm wide) as the joints 4 are prepared, and each double-sided tape is placed in the length direction of the double-sided tape.
  • valve film 3 was bonded onto the bonded double-sided tape so that the outer periphery of the gas-permeable film 2 coincided with the outer periphery, and the gas-permeable film 2 and the valve film 3 were bonded using the double-sided tape as the bonding portion 4.
  • Example 9 the same frame-shaped double-sided tape as that prepared in Example 9 was prepared, and the fixing portion 11 was provided on the surface of the gas permeable membrane 2 opposite to the joint surface of the valve film 3 so that the outer periphery coincided. Pasted together. Thus, the ventilation member 1 of Example 10 was obtained.
  • Example 10 in addition to the ventilation member 1 produced above, two types of ventilation members using a PET film having a slight adhesion layer 20 as the valve film 3 were prepared by changing the type of the slight adhesion layer 20. . Specifically, a film (manufactured by Nitto Denko, manufactured by Nitto Denko Co., Ltd.) on the one side of the valve film 3 (size 20 mm ⁇ 20 mm square) used in Example 9 and formed from a urethane adhesive. AW303) and a film (manufactured by Nitto Denko, RP207) having a fine adhesive layer 20 composed of an acrylic adhesive formed on one surface thereof were used.
  • Table 2 below shows the evaluation results of the three types of ventilation members manufactured in this manner and having different valve films 3 from each other.
  • the three types of ventilation members produced in Example 10 all satisfied the same Gurley number B and Gurley number ratio B / A as in Examples 1-7. Further, the Gurley number A when the valve film 3 did not have the slightly adhesive layer 20 was 0.43 sec / 100 mL.
  • Example 11 the ventilation member 1 in which the shape of the ventilation film 2 and the valve film 3 was a circle was produced in the same manner as in Example 1 except that a PET film having the slight adhesion layer 20 was used for the valve film 3.
  • the valve film 3 was a film (Nitto Denko, AW303) used in Example 9, in which a fine adhesive layer 20 composed of a urethane-based adhesive was formed on one surface. However, the film was a circle having a diameter of 9 mm.
  • the evaluation results of the ventilation member produced in this way are shown in Table 2 below together with the evaluation results of the ventilation member produced in Example 1.
  • the ventilation member produced in Example 9 satisfied the same Gurley number B and Gurley number ratio B / A as in Example 1.
  • Example 12 In Example 12, by changing the shape of the double-sided tape used as the joint portion 4, the end portions 15 ⁇ / b> A and 15 ⁇ / b> B of the joint portion 4 are retreated from the side 16 of the gas permeable membrane 2, and the urethane adhesive is used.
  • a ventilation member 1 was produced in the same manner as in Example 9 except that the valve film 3 (AW303, manufactured by Nitto Denko) having the slightly adhesive layer 20 formed on one surface was used (FIGS. 15A and 15B). reference).
  • the end portions 15A and 15B of the joint portion 4 are configured such that the line segment L connecting the end portions 15A and 15B passes through a position 2 mm away from the ventilation region 17 of the ventilation member 1 (ventilation film 2) toward the side 16 side.
  • Example 13 In Example 13, by changing the shape of the double-sided tape used as the fixing portion 11, the shape of the ventilation region 17 of the ventilation film 2 is changed to a 10 mm ⁇ 13 mm rectangle, and the joining portion 4 in the ventilation film 2 is not formed. Except for extending the ventilation region 17 by 3 mm in the direction of the side 16 and using a film (AW303, manufactured by Nitto Denko Corporation) in which the fine adhesive layer 20 made of urethane-based adhesive is formed on one surface for the valve film 3 Produced the ventilation member 1 in the same manner as in Example 9 (see FIGS. 23A and 23B).
  • AW303 manufactured by Nitto Denko Corporation
  • Example 14 In Example 14, a film having an intermediate film 31 and a fixing portion 32 for fixing the intermediate film 31 to the gas permeable membrane 2 and a fine adhesive layer 20 made of a urethane-based adhesive formed on one surface ( A ventilation member 1 shown in FIGS. 16A and 16B was produced in the same manner as in Example 12 except that AW303) manufactured by Nitto Denko Corporation was used for the valve film 3.
  • the fixing film 31 was a non-porous PET film (thickness 50 ⁇ m) having the same shape as the fixing portion 11.
  • the fixing part 32 was the same double-sided tape as the fixing part 11.
  • the fixing portion 32 is bonded to one surface of the gas permeable membrane 2, the intermediate film 31 is bonded to the fixing portion 32, and the bonding portion 4 is further bonded to the intermediate film 31. Then, after the valve film 3 was bonded, the fixing portion 11 was bonded to the surface of the gas permeable membrane 2 opposite to the surface where the fixing portion 32 was bonded. When pasting each member, the outer periphery of each member was made to coincide.
  • Example 14 three kinds of ventilation members 1 in which the kind of the slightly adhesive layer 20 was changed were prepared separately from the produced ventilation member 1.
  • Table 2 below shows the evaluation results of the four types of ventilation members manufactured in this manner and having different valve films 3. All of the four types of ventilation members produced in Example 14 satisfied the same Gurley number B and Gurley number ratio B / A as in Examples 1-7.
  • FIG. 24B is a cross-sectional view taken along section II of the ventilation member 120 shown in FIG. 24A.
  • the same PET membrane as the PET membrane used in the gas permeable membrane 2 of Example 9 was prepared.
  • As the slit film 121 as shown in FIGS. 24A and 24B, a square PET film (size 20 mm ⁇ 20 mm) having one linear slit (length 5 mm) 122 that penetrates in the film thickness direction of the film. , Thickness 50 ⁇ m, transparent). The position of the slit 122 was set to 4 mm from the side 127 closest to the slit 122 in the slit film 121.
  • a frame-shaped double-sided tape having a right-angled corner (the outer peripheral size is 20 mm ⁇ 20 mm, the inner peripheral size is 10 mm ⁇ 10 mm, and the center of the outer periphery coincides with the center of the inner periphery) Nitto Denko, No. 5603, 30 ⁇ m thick) was prepared, and was bonded to one surface of the gas permeable membrane 123 as a fixing portion 125 so that the outer periphery matched.
  • a frame-shaped double-sided tape having a right-angled corner (the outer periphery size is 20 mm ⁇ 20 mm, the inner periphery size is 18 mm ⁇ 18 mm, and the center of the outer periphery coincides with the center of the inner periphery) Nitto Denko, No. 5603, 30 ⁇ m in thickness) was prepared, and bonded to the other surface of the gas permeable membrane 123 as a bonding portion 124 so that the outer circumferences matched.
  • the slit film 121 was joined on the gas permeable membrane 123 with the double-sided tape as the joining portion 124 so that the outer periphery coincided.
  • the gas permeable membrane 123 and the slit film 121 were joined to each other in the entire circumferential direction of the region located at the peripheral edge of the gas permeable membrane 123.
  • the slit film 121 does not have a ventilation path in the film thickness direction other than the slit 122.
  • the slit 122 When viewed from a direction perpendicular to the main surface of the gas permeable membrane 2, the slit 122 does not overlap with the gas permeable region 126 of the gas permeable membrane 123 defined by the fixing portion 125.
  • Comparative Example 4 two types of ventilation members using PET films having a slightly adhesive layer as the slit film 121 were prepared separately from the above-prepared ventilation members by changing the type of the slightly adhesive layer. Specifically, a film (Nitto Denko, AW303) in which a fine adhesive layer composed of the urethane-based adhesive used in Example 9 is formed on one surface, except that the slit film 121 has a slit 122, and A film (manufactured by Nitto Denko, RP207) in which a slightly adhesive layer composed of an acrylic adhesive was formed on one surface was used.
  • a film Nitto Denko, RP207
  • Table 2 below shows the evaluation results of the three types of ventilation members having different slit films 121 produced as described above.
  • the Gurley number B and the Gurley number ratio B / A of the three types of ventilation members produced in Comparative Example 4 were all the same as those of the ventilation member produced in Comparative Example 1 or 2.
  • Comparative Example 5 a ventilation member without the ventilation film 2 was produced. Specifically, a ventilation member was obtained in the same manner as in Example 14 except that the same PET film as the intermediate film 31 was used instead of the ventilation film 2. The evaluation results of the ventilation member thus produced are shown in Table 2 below.
  • the waterproofness of the ventilation member produced in Comparative Example 5 was “ ⁇ (impossible): water pressure resistance value of less than 1 kPa” based on the above-mentioned criteria.
  • the oxygen permeation amount in the steady state could be reduced as compared with the ventilation member of Comparative Example 4.
  • transmission amount of the said oxygen could be reduced more because a valve film has a slightly adhesion layer.
  • Example 14 having an intermediate film, it was possible to suppress the oxygen permeation amount at a high level for a longer period of time.
  • the valve opening pressure could be adjusted depending on the presence and type of the slightly adhesive layer in the valve film.
  • the ventilation member of Comparative Example 5 was not provided with a gas permeable membrane, and the waterproof evaluation result of the ventilation member was not possible.
  • the ventilation member of the present invention can be used for the same use as that of a conventional ventilation member, for example, a housing and a container that require air permeability.
  • the ventilation member of the present invention can be used particularly for a housing and a container that require asymmetric air permeability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Check Valves (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本開示は、開口に固定された状態で、該開口を通過する気体が透過する防水防塵通気膜と、当該通気膜の通気領域を覆うように配置された弁フィルムとを備え、通気膜と弁フィルムとは、通気膜の周縁部の一部において、直接、又は中間部材を介して、互いに接合されており、弁フィルムの通気膜と接合していない領域は、通気膜を弁フィルムの方向へ透過する気体の圧力によって該通気膜から離間する方向に可逆的な変形が可能であり、通気膜を弁フィルムの方向へ透過する上記気体は、通気膜と、上記離間する方向に変形している弁フィルムとの間を通って、通気膜の弁フィルムと接合されていない周縁部の方向に排出される通気部材を提供する。本開示の通気部材は、防水防塵通気膜を備えた非対称の通気性を有する通気部材であって、従来にない新規な構成を有する。

Description

通気部材とこれを用いた通気筐体及び通気容器
 本発明は、各種の筐体及び容器等に固定できる通気部材であって、その使用によって筐体及び容器の内部と外部との間で非対称の通気性を確保できるとともに、防水防塵通気膜を備え、当該通気膜による機能を享受できる通気部材と、この通気部材を用いた通気筐体及び通気容器とに関する。
 ランプ、圧力センサー、ECU(Electronic Control Unit)等の車両用電装部品及び各種電気製品の筐体に、防水・防塵機能を有する通気膜(防水防塵通気膜)を備える通気部材が取り付けられることがある。通気部材の取り付けによって、筐体の外部と内部との間の通気経路が確保され、温度変化に伴う筐体内部の圧力変動を緩和したり、筐体の内部で発生したガスを外部に放出したりできる。また、防水防塵通気膜によって、当該通気経路を介した筐体の外部から内部への水及び/又は塵芥等の異物の侵入を防ぐことができる。
 食品等の容器にも通気部材が取り付けられることがある。通気部材の取り付けによって、容器の外部と内部との間の通気経路が確保され、温度変化に伴う容器内部の圧力変動を緩和したり、容器の内部で発生したガスを外部に放出したりできる。
 対称的な通気性を有する通気部材では、例えば筐体に取り付けたときに、筐体の内部から外部への当該部材の通気度と、外部から内部への当該部材の通気度とは同一である。しかし、非対称の通気性を有する通気部材、例えば筐体に取り付けたときに、筐体の内部から外部への当該部材の通気度と、外部から内部への当該部材の通気度とが異なる通気部材が知られており、その一例が特許文献1に開示されている。
特開2006-324086号公報
 近年、非対称の通気性を有する通気部材のニーズが拡大している。
 一例として、ランプ等の電装部品の筐体に取り付ける通気部材について、筐体に取り付けたときに筐体の外部から内部への当該部材の通気度に比して内部から外部への通気度が大きい通気部材のニーズがある。このような通気部材の採用により、例えば、ランプ点灯に伴う温度上昇による筐体内部の圧力上昇を速やかに緩和するとともに、外部から内部への水蒸気の侵入が抑制され、消灯後の温度低下による筐体内部での結露発生の抑制が期待される。
 別の一例として、食品等の容器に取り付ける通気部材について、容器に取り付けたときに容器の外部から内部への当該部材の通気度をできるだけ小さくしながら、内部から外部への通気度を大きくした通気部材のニーズがある。このような通気部材の採用により、例えば、容器の内容物である食品から生じたガスを速やかに容器の外部へ排出できる一方で、容器の外部から内部への空気(酸素)の侵入が抑制されることで、容器内の食品の品質の保持が期待される。
 本発明の目的の一つは、防水防塵通気膜を備えた、非対称の通気性を有する通気部材であって、従来にない新規な構成を有する通気部材の提供にある。
 本発明の通気部材は、開口に固定された状態で、前記開口を通過する気体が透過する防水防塵通気膜と;前記通気膜の通気領域を覆うように配置された弁フィルムと;を備える。前記通気膜と前記弁フィルムとは、前記通気膜の周縁部の一部において、直接、又は中間部材を介して、互いに接合されている。前記弁フィルムの前記通気膜と接合していない領域は、前記通気膜を前記弁フィルムの方向へ透過する気体の圧力によって前記通気膜から離間する方向に可逆的な変形が可能である。前記通気膜を前記弁フィルムの方向へ透過する前記気体は、前記通気膜と、前記離間する方向に変形している弁フィルムとの間を通って、前記通気膜の前記弁フィルムと接合されていない周縁部の方向に排出される。
 本発明の通気筐体では、上記本発明の通気部材が筐体の開口に固定されており、前記通気部材は、前記弁フィルムの側が前記筐体の外部に面し、前記通気膜の側が前記筐体の内部に面するように、前記開口に固定されている。
 本発明の通気容器では、上記本発明の通気部材が容器の開口に固定されており、前記通気部材は、前記弁フィルムの側が前記容器の外部に面し、前記通気膜の側が前記容器の内部に面するように、前記開口に固定されている。
 本発明によれば、防水防塵通気膜を備えた非対称の通気性を有する通気部材であって、従来にない新規な構成を有する通気部材が達成される。
図1Aは、本発明の通気部材の一例を模式的に示す断面図である。 図1Bは、図1Aに示す通気部材を防水防塵通気膜の側から見た平面図である。 図1Cは、本発明の通気部材の一例を模式的に示す断面図である。 図2Aは、本発明の通気部材の一例における弁フィルムの変形を説明するための模式図である。 図2Bは、本発明の通気部材の一例における弁フィルムの変形を説明するための模式図である。 図3Aは、本発明の通気部材の一例における、防水防塵通気膜を弁フィルムの側から透過しようとする気体Bの圧力が加わった状態を説明するための模式図である。 図3Bは、本発明の通気部材の一例における、防水防塵通気膜を弁フィルムの方向へ透過しようとする気体Aの圧力が加わった状態及び当該状態における気体Aの通気経路を説明するための模式図である。 図4は、本発明の通気部材の一例における接合部を説明するための模式図である。 図5は、本発明の通気部材の一例を模式的に示す断面図である。 図6は、本発明の通気部材の一例における弁フィルムの自由端部を説明するための模式図である。 図7は、本発明の通気部材の一例を模式的に示す断面図である。 図8は、本発明の通気部材の一例における接合部と固定部との関係を説明するための模式図である。 図9は、本発明の通気部材の開口への固定状態の一例を模式的に示す断面図である。 図10Aは、本発明の通気部材の一例を模式的に示す平面図である。 図10Bは、図10Aに示す通気部材の断面I-Iを模式的に示す断面図である。 図11Aは、本発明の通気部材の一例を模式的に示す平面図である。 図11Bは、図11Aに示す通気部材の断面I-Iを模式的に示す断面図である。 図12Aは、本発明の通気部材の一例を模式的に示す平面図である。 図12Bは、図12Aに示す通気部材の断面I-Iを模式的に示す断面図である。 図13Aは、本発明の通気部材の一例を模式的に示す平面図である。 図13Bは、図13Aに示す通気部材の断面I-Iを模式的に示す断面図である。 図14Aは、本発明の通気部材の一例を模式的に示す平面図である。 図14Bは、図14Aに示す通気部材の断面I-Iを模式的に示す断面図である。 図15Aは、本発明の通気部材の一例を模式的に示す平面図である。 図15Bは、図15Aに示す通気部材の断面I-Iを模式的に示す断面図である。 図16Aは、本発明の通気部材の一例を模式的に示す平面図である。 図16Bは、図16Aに示す通気部材の断面I-Iを模式的に示す断面図である。 図17は、本発明の通気容器の一例を示す模式図である。 図18は、本発明の通気筐体の一例を示す模式図である。 図19は、実施例4において作製した通気部材を説明するための模式図である。 図20Aは、比較例1において作製した通気部材を説明するための模式図である。 図20Bは、比較例1において作製した通気部材を説明するための模式図である。 図21Aは、比較例2において作製した通気部材を説明するための模式図である。 図21Bは、比較例2において作製した通気部材を説明するための模式図である。 図22は、実施例1において作製した通気部材における、当該部材に加わる差圧と当該部材を単位時間あたりに透過する気体の量との関係を示す図である。 図23Aは、実施例13において作製した通気部材を説明するための模式図である。 図23Bは、実施例13において作製した通気部材を説明するための模式図である。 図24Aは、比較例4において作製した通気部材を説明するための模式図である。 図24Bは、比較例4において作製した通気部材を説明するための模式図である。 図25は、通気部材の特性を評価する方法を説明するための図である。
 本開示の第1態様の通気部材は、開口に固定された状態で、前記開口を通過する気体が透過する防水防塵通気膜と、前記通気膜の通気領域を覆うように配置された弁フィルムと、を備え、前記通気膜と前記弁フィルムとは、前記通気膜の周縁部の一部において、直接、又は中間部材を介して、互いに接合されており、前記弁フィルムの前記通気膜と接合していない領域は、前記通気膜を前記弁フィルムの方向へ透過する気体の圧力によって前記通気膜から離間する方向に可逆的な変形が可能であり、前記通気膜を前記弁フィルムの方向へ透過する前記気体は、前記通気膜と、前記離間する方向に変形している弁フィルムとの間を通って、前記通気膜の前記弁フィルムと接合されていない周縁部の方向に排出される通気部材である。
 本開示の第2態様の通気部材では、第1態様の通気部材において、前記通気膜及び前記弁フィルムの形状及び面積が同一である。
 本開示の第3態様の通気部材では、第1又は第2態様の通気部材において、前記通気膜及び/又は前記弁フィルムの形状が円、楕円、又は多角形である。
 本開示の第4態様の通気部材では、第1から第3のいずれかの態様の通気部材において、前記通気膜と前記弁フィルムとが、前記通気膜の周縁部に位置する領域の周方向の一部において互いに接合されている。
 本開示の第5態様の通気部材では、第4態様の通気部材において、前記通気膜が、前記周縁部に位置する領域における前記弁フィルムと接合している少なくとも1つの第1の部分と、当該領域における前記弁フィルムと接合していない第2の部分と、を有し、前記通気膜の通気領域が、前記通気膜の主面に垂直な方向から見て、前記少なくとも1つの第1の部分と、前記少なくとも1つの第1の部分の2つの端部であって、前記第2の部分を挟んで前記周方向に沿って隣接する前記2つの端部の間を結ぶ少なくとも1つの線分と、によって囲まれている。
 本開示の第6態様の通気部材では、第4又は第5態様の通気部材において、前記通気膜が、前記周縁部に位置する領域における前記弁フィルムと接合している少なくとも1つの第1の部分と、当該領域における前記弁フィルムと接合していない第2の部分と、を有し、前記弁フィルムが、前記弁フィルムの主面に垂直な方向から見て、前記少なくとも1つの第1の部分の2つの端部であって、前記第2の部分を挟んで前記周方向に沿って隣接する前記2つの端部の間を結ぶ線分に対して外方に突出した部分を有する。
 本開示の第7態様の通気部材では、第1から第6のいずれかの態様の通気部材において、前記弁フィルムが、前記通気膜側の面に微粘着層を有する。
 本開示の第8態様の通気部材では、第7態様の通気部材において、前記微粘着層が、ウレタン系粘着剤、アクリル系粘着剤、又はシリコーン系粘着剤から構成される。
 本開示の第9態様の通気部材では、第7又は第8態様の通気部材において、ポリエチレンテレフタレート(PET)フィルムに対する23℃での前記微粘着層の粘着力が、0.2N/20mm以下である。
 本開示の第10態様の通気部材では、第1から第9のいずれかの態様の通気部材において、前記通気膜と前記弁フィルムとが両面テープによって直接接合されている。
 本開示の第11態様の通気部材では、第1から第10のいずれかの態様の通気部材において、前記中間部材が、膜厚方向に通気性を有さないフィルムである。
 本開示の第12態様の通気部材では、第1から第11のいずれかの態様の通気部材において、前記通気膜における前記弁フィルムが接合された面とは反対側の面の周縁部に、前記通気部材を前記開口に固定する固定部をさらに備える。
 本開示の第13態様の通気部材では、第12態様の通気部材において、前記固定部が両面テープにより構成される。
 本開示の第14態様の通気部材では、第1から第13のいずれかの態様の通気部材において、前記弁フィルムの側から前記通気膜の方向へのガーレー数が10秒/100mL以上である。
 本開示の第15態様の通気部材では、第1から第14のいずれかの態様の通気部材において、前記弁フィルムの側から前記通気膜の方向へのガーレー数に対する、前記通気膜の側から前記弁フィルムの方向へのガーレー数の比が10以上である。
 本開示の第16態様の通気筐体では、第1から第15のいずれかの態様の通気部材が筐体の開口に固定されており、前記通気部材は、前記弁フィルムの側が前記筐体の外部に面し、前記通気膜の側が前記筐体の内部に面するように、前記開口に固定されている。
 本開示の第17態様の通気容器では、第1から第15のいずれかの態様の通気部材が容器の開口に固定されており、前記通気部材は、前記弁フィルムの側が前記容器の外部に面し、前記通気膜の側が前記容器の内部に面するように、前記開口に固定されている。
 以下、本発明の実施形態について、図面を参照しながら説明する。以下は本発明の通気部材の一例に関する説明であり、本発明はこの例が示す範囲に限定されない。
 (実施形態1)
 図1A及び図1Bに示す通気部材1は、防水防塵通気膜(以下、単に「通気膜」ともいう)2と、通気膜2を覆うように配置された弁フィルム3とを備えている。通気膜2と弁フィルム3とは、通気膜2の周縁部の一部に位置する接合部4において互いに接合されている。通気膜2及び弁フィルム3の形状は円である。なお、図1Bには、通気膜2の側から見た通気部材1が示されており、図1Aには、図1Bに示す断面I-Iが示されている。
 図2A及び図2Bに示すように、通気部材1において、弁フィルム3の通気膜2と接合していない領域は、通気膜2を弁フィルム3の方向へ透過する気体Aの圧力によって通気膜2から離間する方向に可逆的な変形が可能である。
 図3Aに示すように、通気部材1では、弁フィルム3の側から通気膜2の方向への通気は、通気膜2の主面を覆う弁フィルム3により阻害される。このため、通気部材1における弁フィルム3の側から通気膜2の方向への通気度は、相対的に小さくなる。図1Aに示すように、弁フィルム3の通気膜2と接合していない領域が通気部材1の非通気時に通気膜2と接した状態にある、或いは、通気膜2を弁フィルム3の側から透過しようとする気体Bの圧力(当該方向への通気の圧力)が加わったときに通気膜2と接した状態に変化する場合には、弁フィルム3による当該通気の阻害がより確実となり、通気部材1における弁フィルム3の側から通気膜2の方向への通気度はより小さくなる。
 一方、図3Bに示すように、通気部材1では、通気膜2を弁フィルム3の方向へ透過する気体Aは、通気膜2と、上記離間する方向に変形している弁フィルム3との間を通って、通気膜2の弁フィルム3と接合されていない周縁部の方向に排出される(通気経路8)。より具体的に、通気膜2を透過した気体Aは、図2A及び図2Bにも示す、通気膜2の弁フィルム3と接合されていない周縁部5と上記離間する方向に変形している弁フィルム3の自由端部6との間の間隙7を、通気膜2の周縁部の方向に排出される。弁フィルム3と通気膜2とが接合部4において接合されていることは図3Aに示す状態と変わらないが、通気経路8を有する図3Bに示す状態では、弁フィルム3による通気の阻害の程度が図3Aに示す状態よりも緩和される。このため、通気部材1における通気膜2の側から弁フィルム3の方向への通気度は、相対的に大きくなる。
 図3Bに示すように、通気部材1では、通気膜2の主面に垂直な方向とは異なる方向に気体Aが排出される。より具体的に、通気部材1の側方、一例として通気膜2の主面に沿う方向、に気体Aが排出されうるし、通気部材1を固定する開口の通気軸から傾いた方向に気体Aが排出されうる。
 弁フィルム3の上記可逆的な変形により、通気部材1は、図3Aに示す状態と図3Bに示す状態とを交互にとりうる。
 通気部材1が通気方向に応じて図3Aに示す状態と図3Bに示す状態とをとることは、通気部材1が非対称の通気性を有する通気部材であることを、即ち、通気方向により通気度が異なる通気部材であることを、意味する。
 通気部材1では、この非対称性を大きくできる。即ち、通気方向により異なる2つの通気度のうち、相対的に小さな通気度と相対的に大きな通気度との比を大きくできる。より具体的に、弁フィルム3の側から通気膜2の方向への通気度と、通気膜2の側から弁フィルム3の方向への通気度との比を大きくできる。これは、弁フィルム3が通気膜2の通気領域を覆うように配置されていること、通気膜2と弁フィルム3とが通気膜2の周縁部の一部において互いに接合されていること、通気膜2を弁フィルム3の方向へ透過する気体Aの圧力によって上述した弁フィルム3の変形が生じること、通気経路8により気体Aが排出されること、に基づく。
 図1A及び図1Bに示す本実施形態の通気部材において、弁フィルム3の通気膜2と接合していない領域は通気部材1の非通気時に通気膜2と接した状態にある。本発明の通気部材はこのような状態をとる部材に限定されず、例えば図1Cに示すように、弁フィルム3による上述した非対称の通気性が実現する限り、当該領域は通気部材1の非通気時に通気膜2から離れていてもよい。通気部材1の「非通気時」は、通気膜2を弁フィルム3の方向へ透過する気体Aの圧力、及び通気膜2を弁フィルム3の側から透過しようとする気体Bの圧力のいずれも通気部材1に加わっていない状態(定常状態)を意味する。
 通気膜2と弁フィルム3との接合部4の形状は、通気膜2と弁フィルム3とが通気膜2の周縁部の一部において互いに接合されている限り、限定されない。本実施形態の通気部材1では、図4に示すように、通気膜2と弁フィルム3とが、通気膜2の周縁部に位置する領域である、リング状の領域9の周方向の一部において互いに接合されている。即ち、本実施形態の通気部材1の接合部4は、通気膜2の周縁部に位置するリング状の領域9の周方向の一部に対応する。なお、各図に示す本実施形態の通気部材1では、通気膜2と弁フィルム3とは通気膜2の周縁部の一部のみにおいて互いに接合されている。
 通気部材1では、通気膜2の周縁部の一部に位置する接合部4の形状により、例えば、通気膜2の側から弁フィルム3の方向への通気度、及び、弁フィルム3の側から通気膜2の方向への通気度と、通気膜2の側から弁フィルム3の方向への通気度との比を制御でき、また、その制御の自由度を大きくすることも可能である。例えば、通気膜2を弁フィルム3の側から透過しようとする気体Bの圧力に対する通気度の依存性が小さく、より具体的な例として、当該圧力に依らず弁フィルム3の側から通気膜2の方向への低い通気度、場合によってはゼロに近い通気度を示す一方で、通気膜2を弁フィルム3の方向へ透過する気体Aの圧力に対する通気度の感度が高く、より具体的な例として、小さい当該圧力に対しても通気膜2の側から弁フィルム3の方向への通気度の増加を示す通気部材1とすることも可能である。
 また、接合部4の形状により、例えば、気体Aの圧力によって通気膜2から離間する方向に変形した弁フィルム3の戻り性を制御できる。戻り性は、気体Aの圧力が減じたとき(例えばゼロとなったとき)又は通気部材1が定常状態となったときに、弁フィルム3が変形前の状態に戻ろうとする復元性である。
 さらに、接合部4の形状により、例えば、通気部材1が定常状態であるときに、上述した通気とは異なる現象である、通気膜2と弁フィルム3との間の僅かな空隙を介した通気部材1の通気膜2側の面と弁フィルム3側の面との間の気体の透過量、例えば酸素の透過量、を制御できる。より具体的な例として、接合部4の形状により、弁フィルム3における通気膜2と接合していない領域が通気部材1の非通気時に通気膜2と接する状態(接する領域の形状、面積、及び面積比等)を制御し、これにより、気体の透過量を制御できる。制御の一例は、定常状態における気体の透過量の抑制である。
 接合部4において通気膜2と弁フィルム3とは、例えば、加熱溶着及び超音波溶着等の溶着、接着剤若しくは粘着剤による接着、又は両面テープ等の接合部材によって接合されうる。両面テープによる接合は簡便かつ確実であり、通気膜2と弁フィルム3とが両面テープによって接合されている場合、耐久性に優れる通気部材1を生産性よく製造できる。通気膜2と弁フィルム3とが両面テープ10により接合されている本実施形態の通気部材1を図5に示す。両面テープ10の厚さは小さい方が好ましい。
 通気膜2の側から弁フィルム3の方向への通気時における弁フィルム3の変形の具体的な態様は限定されない。本実施形態の通気部材1では、弁フィルム3における通気膜2と接合していない領域が、通気膜2との接合部4(例えば両面テープ10)を支点として、通気膜2から離間する方向に反るように変形している。
 このような弁フィルム3の変形では、図6に示す、弁フィルム3の端部における周方向の領域Cが、弁フィルムの変形した領域の自由端部6となりうる。即ち、本実施形態の通気部材1では、このような幅を持った領域Cの全域を通気経路8が通過しうる。このことも、上記制御の自由度の向上に寄与する。
 通気膜2は、少なくとも一部の領域において、膜厚方向に通気性を有する膜である。通気膜2の全領域が膜厚方向に通気性を有していてもよい。また、通気膜2は、防水性及び防塵性を有する膜であり、例えば、JIS L1092の規定に準拠して測定した耐水圧が1kPa以上の通気膜である。通気膜の耐水圧は、2kPa以上、3kPa以上でありうる。また、このような耐水圧を有する通気膜は、通常、防塵性を有する。耐水圧の測定方法は、具体的に次のとおりである。
 直径2mmの開口を中心に設けた直径47mmのステンレス製円板(耐水圧測定時に変形しない厚さを有する)を準備する。次に、円板の一方の面に、測定対象である通気膜を、上記開口を覆うように固定する。通気膜は、通気膜の中心と開口の中心とが一致するように両面テープにより固定する。固定は、耐水圧の測定時に円板と通気膜との固定部分から水が漏れないように行う。次に、通気膜を固定している円板を試験片として、JIS L1092に記載のA法(低水圧法)又はB法(高水圧法)に従って通気膜の耐水圧を測定する。なお、水圧は、通気膜を固定している面とは反対側の面から試験片に印加する。試験装置には、上記試験片の耐水圧を測定可能な構造(試験片取付構造)を有する以外は、JIS L1092に例示されている試験装置と同様の構成を持つ装置を使用できる。
 通気膜2は、例えば、膜厚方向に複数の貫通孔を有するポリエチレンテレフタレート(PET)膜、及びポリテトラフルオロエチレン(PTFE)の延伸多孔質膜である。上記PET膜は、例えば、レーザー等による孔開け加工、又はイオンビーム照射及びその後の化学エッチング処理等による上記貫通孔の形成をPET膜、例えば無孔のPET膜、に実施して形成できる。PTFE延伸多孔質膜は、典型的には、PTFEの無数の微細なフィブリルと当該フィブリル間の無数の細孔とを有する多孔質膜であり、例えば、特公昭42-13560号公報に記載の方法により形成できる。
 防水防塵通気膜である通気膜2によって、通気部材1では、当該部材を介した液体及び固体の移動を防ぐことができる。通気部材1は、防塵及び/又は防水の通気部材でありうる。このような特性を有する通気部材1は、電装部品及び電気製品等の筐体への使用により、例えば、上述した非対称の通気性による効果を得ながら、さらに、筐体の内部への塵芥及び/又は水等の異物の侵入を抑制できる。また、食品等の容器への使用により、例えば、上述した非対称の通気性による効果を得ながら、さらに、容器内部への塵芥及び又は水等の異物の侵入を抑制できるとともに、内容物に含まれる液体及び/又は固体の当該通気部材1を介した容器外部への漏出を抑制できる。
 液体の移動をより確実に防ぐ観点からは、通気膜2には撥水処理、撥油処理等の撥液処理がなされていてもよい。これら処理の方法は限定されず、公知の方法を適用できる。
 通気膜2は透明でありうる。通気膜2が透明である場合、例えば、通気部材1を固定する容器の表面に施された印刷等を通気部材1を通して視認可能となる。この効果を得るためには、上記変形が可能である弁フィルム3は必ずしも透明でなくてもよい。ただし、弁フィルム3も併せて透明でありうる。通気膜2に着色及び/又は印刷が施されていてもよい。
 通気膜2の厚さは、例えば、10~500μmである。
 通気膜2の通気領域は、通気部材1に組み込まれた状態で当該膜2の膜厚方向に通気が可能な領域である。例えば、弁フィルム3と接合された領域(接合部4)、及び両面テープ10等の通気性を有さない部材が配置された領域は通気領域に含まれない。
 通気膜2に補強層が積層されていてもよく、補強層の積層によって通気膜2の強度を向上でき、その効果は、通気膜2の厚さが小さいときほど大きくなる。補強層の材料及び構造は限定されないが、通気膜2よりも通気性に優れる補強層が好ましい。補強層は、例えば、樹脂又は金属からなる、織布、不織布、メッシュ、ネット、スポンジ、フォーム、発泡体、多孔質膜である。補強層は、通気膜2と接合されていてもよく、接合は、接着剤ラミネート、熱ラミネート、加熱溶着、超音波溶着等の手法により実施できる。通気膜2は、補強層を有さない単膜でありうる。
 弁フィルム3は、上述した変形が可能なフィルムであればよい。
 弁フィルム3は、膜厚方向の通気性を有さないフィルムである。弁フィルム3は、膜厚方向に貫通し、気体の通気経路となりうる貫通孔及び/又はスリットを有さないフィルムでありうるし、非多孔質の無孔のフィルムでありうる。
 弁フィルム3は、例えば高分子フィルムであり、より具体的な例は無孔のPETフィルムである。
 弁フィルム3は、少なくとも通気膜2の通気領域を覆う形状を有する。弁フィルム3は、通気膜2の全領域を覆う形状を有していてもよい。
 弁フィルム3は透明でありうる。弁フィルム3が透明である場合、例えば、弁フィルム3を通して通気膜2の状態を視認できる。通気膜2もさらに透明である場合、例えば、通気部材1を固定する容器の表面に施された印刷等を通気部材1を通して視認可能となる。弁フィルム3に着色及び/又は印刷が施されていてもよい。
 弁フィルム3の厚さは、例えば、10~500μmであり、好ましくは25~100μmである。
 本実施形態の通気部材1では、通気膜2及び弁フィルム3の形状は、ともに円(各膜・フィルムの主面に垂直な方向から見て円)である。また、当該通気部材1では、通気膜2及び弁フィルム3の形状及び面積(各膜・フィルムの主面に垂直な方向から見た形状及び面積)が同一である。形状及び面積が同一である通気膜2及び弁フィルム3を備える通気部材1は、耐久性が高く、生産性にも優れる。
 通気膜2及び弁フィルム3の形状が円である場合、図6に示す領域Cが通気膜2の中心から等距離にあるため、上記通気度及び通気度の比の制御の自由度がより向上する。なお、円には略円が含まれる。
 本発明の効果が得られる限り、通気膜2及び弁フィルム3の形状は限定されない。通気膜2及び/又は弁フィルム3の形状は、楕円であってもよい。楕円には、略楕円が含まれる。通気膜2及び/又は弁フィルム3の形状は、四角形、五角形、六角形等の多角形であってもよい。多角形の角は丸められていてもよい。角を丸めることによって、取り扱い性が向上する、柔らかい容器等への取り付け時に尖った角によって容器が損傷することを防ぐことができる等のメリットがある。実施形態2以降では、通気膜2及び弁フィルム3の形状が四角形である形態について、例示する。
 通気部材1は、通気膜2及び弁フィルム3、並びに必要に応じて両面テープ10というフィルム状の部材のみからなる積層構造を有しうる。このため、通気部材1の厚さ(通気膜2及び弁フィルム3の膜厚方向の厚さ)を小さくすることができ、当該厚さは、例えば1mm以下であり、100μm以下とすることもできる。また、上記積層構造を有する通気部材1は、例えばロールtoロールによる生産も可能である等、生産性が高い。さらに、この通気部材では、フィルム状の部材のみからなる従来の通気部材において封止機能を確保するために必要であった、オイル等の封止剤の使用を省略可能である。封止剤の使用の省略により、例えば、食品の包装容器に通気部材を使用した場合における食品への封止剤の付着を防止できる。
 通気部材1における弁フィルム3の側から通気膜2の方向への通気度は、透気抵抗度(ガーレー数)で表示して、例えば10秒/100mL以上であり、50秒/100mL以上とすることもできる。ガーレー数は、JIS P8117の規定に準拠して評価できる。
 通気部材1における通気膜2の側から弁フィルム3の方向へのガーレー数に対する弁フィルム3の側から通気膜2の方向へのガーレー数の比は、例えば、10以上であり、30以上、100以上、さらには200以上とすることもできる。なお、ガーレー数の値は、その単位から明らかであるように、通気度が高いほど小さくなる。
 上記規格においてガーレー数は、評価対象物に加える差圧を1.22kPaとしたときの透気抵抗度である。通気部材1の構成によっては、弁フィルム3が通気膜2から離間する方向に変形する気体Aの圧力(弁開放圧)が1.2kPaを超えることがある。この場合、上記差圧を、弁フィルム3が通気膜2から離間する方向に十分に変形できる圧力に設定して透気抵抗度を測定し、測定値を差圧1.22kPaあたりに換算した値を、通気部材1における通気膜2の側から弁フィルム3の方向へのガーレー数とすることができる。
 通気部材1は、開口に固定して使用される。通気部材1を固定する開口を有する物品は限定されない。当該開口を有する物品は、例えば、各種の電装部品及び電気製品の筐体、食品等の容器、並びにこれら筐体及び容器の開口に固定される部材であって、当該開口を通過する気体が通過する開口を有する部材である。開口に固定される際の通気部材1の向きは限定されないが、典型的には、通気膜2の側が物品の内部に面し、弁フィルム3の側が物品の外部に面するように、通気部材1は開口に固定される。
 通気部材1の開口への固定方法は限定されず、通気部材1は、加熱溶着及び超音波溶着等の溶着、接着剤若しくは粘着剤による接着、又は両面テープ等の接合部材によって開口に固定されうる。通気部材1を開口へ固定する固定部は、例えば、通気膜2における弁フィルム3が接合された面とは反対側の面に設けることができる。固定部を設ける位置及び固定部の形状は特に限定されないが、一例として固定部は、通気膜2における当該反対側の面の周縁部に設けられる。このとき通気部材1は、通気膜2における弁フィルム3が接合された面とは反対側の面の周縁部に、通気部材1を開口に固定する固定部をさらに備える。固定部の形状は額縁状でありうる。なお、通気膜2の面に固定部を設ける場合、通常、当該固定部に対応する通気膜2の領域において膜厚方向の通気性が失われるため、当該部分は通気膜2の通気領域ではなくなる。より具体的な例として、固定部が通気膜2の面に配置された両面テープである場合、この両面テープに対応する通気膜2の領域は通気領域に含まれない。
 図7に、このような固定部をさらに備える通気部材1の一例を示す。図7に示す通気部材1は、固定部11をさらに備える以外は、図5に示す通気部材1と同様である。図7に示す通気部材1の固定部11は、両面テープ10により構成されている。
 図7に示す通気部材1は、通気膜2における弁フィルム3が接合された面とは反対側の面の周縁部に、通気部材1を開口に固定する固定部11をさらに備える。固定部11の形状は額縁状の一種であるリング状である。このような固定部11により、通気部材1をより安定かつ確実に開口に固定できる。
 また、図7に示す通気部材1では、図8にさらに示すように、通気膜2と弁フィルム3とが通気膜2の周縁部に位置する領域であるリング状の領域9の周方向の一部において互いに接合されており、固定部11の外周及び内周が、通気膜2の主面に垂直な方向から見て、通気膜2と弁フィルム3とが接合されている、通気膜2の周縁部に位置する当該領域9の外周及び内周と、それぞれ一致している。このような接合部4及び固定部11により、通気部材1をより安定かつ確実に開口に固定できるとともに、通気部材1の通気時(通気膜2の側から弁フィルム3の方向への通気時)にも、開口からの通気部材1の剥離を抑制できる。
 図7に示す通気部材1を開口12に固定した状態の一例を図9に示す。通気部材1は、開口12を覆うように当該開口12に固定されている。より具体的に、通気部材1は、開口12を構成する壁13の表面14に固定されており、また、固定部11を介して固定されている。表面14は、壁13を有する筐体及び筐体等の外面でありうる。
 (実施形態2)
 図10A及び図10Bに示す本実施形態の通気部材1は、通気膜2及び弁フィルム3の形状が四角形、より具体的に正方形、であり、接合部4の形状が異なる以外は、図1A~図1Cに示す通気部材1と同様の構造を有している。なお、図10Aには、通気膜2の側から見た通気部材1が示されており、図10Bには、図10Aに示す断面I-Iが示されている。
 本実施形態の通気部材1では、図10Aに示すように、通気膜2と弁フィルム3とが、四角形の通気膜2の周縁部に位置する領域における当該四角形の三辺に沿って延びる第1の部分において互いに接合されている。本実施形態の通気部材1の接合部4は、通気膜2の周縁部に位置する領域の周方向の一部である上記第1の部分に対応する。接合部4は、通気膜2の主面に垂直な方向から見てU字状、より具体的にコーナーが直角であるU字状、である。本実施形態の通気部材1は、1つの接合部4を有する。
 また、図10A及び図10Bに示す通気部材1では、通気膜2が、通気膜2の周縁部に位置する領域における弁フィルム3と接合している1つの上記第1の部分と、当該領域における弁フィルム3と接合していない第2の部分とを有し、通気膜2の通気領域が、通気膜2の主面に垂直な方向から見て、上記第1の部分と、第2の部分を挟んで上記周方向に沿って隣接する第1の部分の端部15A,15B間を結ぶ線分Lと、によって囲まれている。
 本実施形態の通気部材1においても、その構成に応じて、実施形態1で説明した効果と同様の効果を得ることができる。また、図10A及び図10Bに示す通気部材1では、通気部材1が定常状態であるときに、通気膜2と弁フィルム3との間の僅かな空隙を介した通気部材1の通気膜2側の面と弁フィルム3側の面との間の気体の透過量、例えば酸素の透過量、を、図1A~図1Cに示す通気部材1に比べて抑制できる(以下、上記気体(酸素)の透過量を、単に「気体(酸素)の透過量」という)。より具体的な例として、図10A及び図10Bに示す通気部材1を、内部の酸素濃度が外部空間に比べて低減された通気容器の開口に固定することで、容器内の酸素濃度の経時的な上昇を抑制できる。定常状態における気体の透過量を抑制する効果は、通気膜2の通気領域と、接合部4に対応する第1の部分との上記関係によって、弁フィルム3の自由端部の近傍の領域と通気膜2の通気領域との重複が抑制されることに基づく。また、図10A及び図10Bに示す通気部材1において当該効果は、弁フィルム3が、後述する「外方に突出した部分」を有さないことから、当該部材1が固定された容器の表面が柔らかく、当該表面にうねり等の変形が生じやすい場合にもより確実に保持できる。
 本実施形態の通気部材1の変形例を図11A及び図11Bに示す。なお、図11Aには、通気膜2の側から見た通気部材1が示されており、図11Bには、図11Aに示す断面I-Iが示されている。
 図11A及び図11Bに示す通気部材1では、接合部4の一方の端部15Aと他方の端部15B(四角形の通気膜2の周縁部に位置する領域における当該四角形の三辺に沿って延びる第1の部分の双方の端部15A,15B)が、当該四角形の残る一つの辺16から後退している。このとき、弁フィルム3は、弁フィルム3の主面に垂直な方向から見て、端部15A,15B間を結ぶ線分Lに対して外方に突出した部分(図11Aにおける線分Lより辺16側の部分)を有する。弁フィルム3において当該部分は、他の部分に比べて、可逆的に変形しやすい。このため、図11A及び図11Bに示す通気部材1では、気体Aの圧力によって通気膜2から離間する方向に変形した弁フィルム3の戻り性を向上できる。
 本実施形態の通気部材1のさらなる変形例を図12A及び図12Bに示す。なお、図12Aには、通気膜2の側から見た通気部材1が示されており、図12Bには、図12Aに示す断面I-Iが示されている。
 図12A及び図12Bに示す通気部材1は、通気膜2における弁フィルム3が接合された面とは反対側の面の周縁部に固定部11を備える以外は、図11A及び図11Bに示す通気部材1と同様の構造を有している。また、図12A及び図12Bに示す通気部材1では、固定部11により定められた通気膜2の通気領域17が、通気膜2の周縁部に位置する領域における弁フィルム3と接合している上記第1の部分と、当該領域における弁フィルム3と接合していない第2の部分を挟んで上記周方向に沿って隣接する当該第1の部分の端部15A,15B間を結ぶ線分Lと、によって囲まれている。このため、図12A及び図12Bに示す通気部材1では、定常状態における気体の透過量の抑制と、弁フィルム3の戻り性の向上とのバランスを図ることができる。
 さらに、図12A及び図12Bに示す通気部材1では、通気膜2の通気領域17の中心と、弁フィルム3の中心とが一致している。この場合、定常状態における気体の透過量をより確実に抑制できる。これにより、例えば、当該通気部材1を内部の酸素濃度が外部空間に比べて低減された通気容器の開口に固定したときに、より長期にわたり、容器内の酸素濃度の経時的な上昇を抑制できる。なお、一致の程度は厳密である必要がなく、ある程度の「遊び」を有しうることは明らかである。
 本実施形態の通気部材1は、実施形態1の通気部材1と同様に使用できる。
 (実施形態3)
 図13A及び図13Bに示す本実施形態の通気部材1は、通気膜2及び弁フィルム3の形状が四角形、より具体的に正方形、であり、接合部4の形状が異なる以外は、図1A~図1Cに示す通気部材1と同様の構造を有している。なお、図13Aには、通気膜2の側から見た通気部材1が示されており、図13Bには、図13Aに示す断面I-Iが示されている。
 本実施形態の通気部材1では、図13Aに示すように、通気膜2と弁フィルム3とが、四角形の通気膜2の周縁部に位置する領域における、当該四角形の互いに対向する二辺に各々沿う2つの第1の部分において互いに接合されている。本実施形態の通気部材1の接合部4は、通気膜2の周縁部に位置する領域の周方向の一部である上記第1の部分に対応する。本実施形態の通気部材1は、2つの接合部4(4A,4B)を有する。接合部4A,4Bは、ローマ数字の「II」状である。
 また、図13A及び図13Bに示す通気部材1では、通気膜2が、通気膜2の周縁部に位置する領域における弁フィルム3と接合している2つの上記第1の部分と、当該領域における弁フィルム3と接合していない第2の部分とを有し、通気膜2の通気領域が、通気膜2の主面に垂直な方向から見て、上記2つの第1の部分と、第2の部分を挟んで上記周方向に沿って隣接する各第1の部分の端部18間を結ぶ線分L1及びL2と、によって囲まれている。線分L1は、辺19Aに沿う第2の部分を挟んで上記周方向に沿って隣接する端部18Aと端部18Cとを結ぶ線分である。線分L2は、辺19Bに沿う第2の部分を挟んで上記周方向に沿って隣接する端部18Bと端部18Dとを結ぶ線分である。
 本実施形態の通気部材1においても、その構成に応じて、実施形態1で説明した効果と同様の効果を得ることができる。また、図13A及び図13Bに示す通気部材1では、図10A及び図10Bに示す通気部材1と同様に、定常状態における気体の透過量、例えば酸素の透過量、を、図1A~図1Cに示す通気部材1に比べて抑制できる。また、図13A及び図13Bに示す通気部材1において当該効果は、弁フィルム3が上記「外方に突出した部分」を有さないことから、当該部材1が固定された容器の表面が柔らかく、当該表面にうねり等の変形が生じやすい場合にもより確実に保持できる。
 本実施形態の通気部材1の変形例を図14A及び図14Bに示す。なお、図14Aには、通気膜2の側から見た通気部材1が示されており、図14Bには、図14Aに示す断面I-Iが示されている。
 図14A及び図14Bに示す通気部材1では、接合部4(4A,4B)の端部18A,18C(四角形の通気膜2の周縁部に位置する領域における当該四角形の対向する二辺に沿う第1の部分の端部であって、残る二つの辺から選ばれる一方の辺19A側の端部)が、当該辺19Aから後退している。また、接合部4(4A,4B)の端部18B,18D(上記第1の部分の端部であって、残る二つの辺から選ばれる他方の辺19B側の端部)が、当該辺19Bから後退している。このとき、弁フィルム3は、弁フィルム3の主面に垂直な方向から見て、端部18A,18C間を結ぶ線分L1及び端部18B,18D間を結ぶ線分L2に対して外方に突出した部分(図14Aにおける線分L1より辺19A側の部分、及び線分L2より辺19B側の部分)を有する。弁フィルム3において当該部分は、他の部分に比べて、可逆的に変形しやすい。このため、図14A及び図14Bに示す通気部材1では、気体Aの圧力によって通気膜2から離間する方向に変形した弁フィルム3の戻り性を向上できる。
 本実施形態の通気部材1では、接合部4の端部18A~18Dから選ばれる少なくとも1つの端部が、上記後退した状態でありうる。また、本実施形態の通気部材1では、接合部4A及び4Bにおける辺19A及び辺19Bから選ばれる一方の辺側の端部が、上記後退した状態でありうる。
 また、図14A及び図14Bに示す通気部材1では、固定部11により定められた通気膜2の通気領域17が、通気膜2の周縁部に位置する領域における弁フィルム3と接合している上記第1の部分と、当該領域における弁フィルム3と接合していない第2の部分を挟んで上記周方向に沿って隣接する第1の部分の端部18間を結ぶ線分L1及びL2とによって囲まれている。このため、図14A及び図14Bに示す通気部材1では、定常状態における気体の透過量の抑制と、弁フィルム3の戻り性の向上とのバランスを図ることができる。
 さらに、図14A及び図14Bに示す通気部材1では、通気膜2の通気領域17の中心と弁フィルム3の中心とが一致している。この場合、定常状態における気体の透過量をより確実に抑制できる。
 本実施形態の通気部材1は、実施形態1の通気部材1と同様に使用できる。
 (実施形態4)
 図15A及び図15Bに示す本実施形態の通気部材1は、弁フィルム3における通気膜2側の面に微粘着層20が形成されている(弁フィルム3が、通気膜2側の面に微粘着層20を有する)以外は、図12A及び図12Bに示す通気部材1と同様の構造を有している。なお、図15Aには、通気膜2の側から見た通気部材1が示されており、図15Bには、図15Aに示す断面I-Iが示されている。
 本実施形態の通気部材1においても、その構成に応じて、実施形態1又は2で説明した効果と同様の効果を得ることができる。また、本実施形態の通気部材1では、定常状態における気体の透過量、例えば酸素の透過量、をさらに抑制できる。定常状態における気体の透過量をさらに抑制する効果は、通気部材1が定常状態にあるときに、微粘着層20により、弁フィルム3が通気膜2に対してより確実に密着できることに基づく。
 微粘着層20によって、弁フィルム3が通気膜2から離間する方向に変形を始める気体Aの圧力を調整できる。即ち、通気部材1における開弁の圧力(弁開放圧)を調整できる。弁フィルム3が微粘着層20を有する通気部材1における弁開放圧は、例えば、10kPa以下である。微粘着層20の構成、及び通気部材1の構成によっては、弁開放圧は、8kPa以下、6kPa以下、5kPa以下、4kPa以下、さらには3kPa以下でありうる。弁開放圧の下限は、0.3kPa以上でありうるし、0.5kPa以上、さらには1kPa以上でありうる。
 微粘着層20は、例えば、粘着剤により構成される層である。粘着剤の種類は限定されない。粘着剤には、公知の粘着剤を使用できる。粘着剤は、例えば、ウレタン系粘着剤、アクリル系粘着剤、又はシリコーン系粘着剤である。粘着剤は、ウレタン系粘着剤、又はアクリル系粘着剤でありうる。ウレタン系粘着剤及びシリコーン系粘着剤、特にウレタン系粘着剤、は通気膜2に対する濡れ性が高い。このため、これらの粘着剤から構成される微粘着層20では、例えば、開弁後、通気部材1が定常状態となったときの通気膜2に対する弁フィルム3の密着の速度を向上できる。アクリル系粘着剤は通気膜2に対する粘着性が高い。このため、アクリル系粘着剤から構成される微粘着層20では、例えば、通気膜2に対する弁フィルム3の粘着力を向上できる。
 微粘着層20の粘着力は、PETフィルム(無孔のPETフィルム)に対する常温(23℃)での粘着力にして、例えば0.2N/20mm以下であり、0.15N/20mm以下、0.13N/20mm以下、さらには0.11N/20mm以下でありうる。
 微粘着層20は、弁フィルム3の通気膜2側の面の全体に形成されていても、一部に形成されていてもよい。微粘着層20を有する弁フィルム3の形成方法は限定されない。例えば、弁フィルム3として使用するフィルムの表面に公知の手法により粘着剤を塗布して、微粘着層20を有する弁フィルム3を形成できる。
 微粘着層20は、他の実施形態の通気部材1に対しても適用可能である。
 本実施形態の通気部材1は、実施形態1の通気部材1と同様に使用できる。
 (実施形態5)
 図16A及び図16Bに示す本実施形態の通気部材1は、通気膜2と弁フィルム3とが、通気膜2の周縁部に位置する領域の一部において、中間部材である中間フィルム31を介して互いに接合されている以外は、図15A及び図15Bに示す通気部材1と同様の構造を有している。なお、図16Aには、通気膜2の側から見た通気部材1が示されており、図16Bには、図16Aに示す断面I-Iが示されている。なお、実施形態1~4において説明した通気部材1では、通気膜2と弁フィルム3とは、互いに直接接合されている(両面テープ10等の接合部4を介して直接接合されている)。
 本実施形態の通気部材1においても、その構成に応じて、実施形態1,2又は4で説明した効果と同様の効果を得ることができる。また、本実施形態の通気部材1では、定常状態における気体の透過量、例えば酸素の透過量、をさらに抑制できる。定常状態における気体の透過量をさらに抑制する効果は、弁フィルム3が微粘着層20を有する場合に、より確実となる。また、中間フィルム31によって、フィルムの積層体でありうる通気部材1の剛性を向上できる。
 本実施形態の通気部材1では、通気膜2の上に固定部32を介して配置された中間フィルム31の上に接合部4が形成されている。接合部4の形状等の構成は、これまでに説明した各実施形態における接合部4の構成と同様でありうる。
 中間部材は、典型的には、膜厚方向の通気性を有さないフィルム(中間フィルム31)である。中間フィルム31は、非多孔質の無孔のフィルムでありうる。膜厚方向の通気性を有さない中間フィルム31は、表面に気体の通気経路を有さない。このため、表面の平滑性を通気膜2よりも向上でき、弁フィルム3が当該表面に接した場合の密着度を向上できる。この向上により、定常状態における気体の透過量をより確実に抑制できる。
 中間フィルム31を構成する材料は限定されず、高分子、金属、及びこれらの複合材料でありうる。中間フィルム31は、例えば高分子フィルムであり、より具体的な例は無孔のPETフィルムである。高分子フィルムである中間フィルム31の使用により、例えば、弁フィルム3が微粘着層20を有する場合に、通気部材1の弁開放圧が過度に高くなることを防止できる。金属フィルムに比べて高分子フィルムの方が、一般に、粘着剤の粘着力が低くなる傾向にあるためである。
 中間フィルム31の厚さは、例えば3~200μmであり、25~100μmでありうる。
 中間フィルム31の形状は限定されない。中間フィルム31は、通気膜2の周縁部の形状を有しうる。図16A及び図16Bに示す例において、中間フィルム31の形状は、固定部11の形状と同じである。
 固定部32において通気膜2と中間フィルム31とは、例えば、加熱溶着及び超音波溶着等の溶着、接着剤若しくは粘着剤による接着、又は両面テープ等の接合部材によって接合されうる。また、固定部32は、固定部11と同様の構成を有しうる。図16A及び図16Bに示す通気部材1の固定部32は、両面テープにより構成される。
 固定部32の形状は限定されない。固定部32の形状は、通気膜2の周縁部の形状でありうる。固定部32の形状は、中間フィルム31及び/又は固定部11の形状と同一でありうる。図16A及び図16Bに示す例において、固定部32の形状は、中間フィルム31及び固定部11の形状と同じである。
 中間部材31は、他の実施形態の通気部材1に対しても適用可能である。
 本実施形態の通気部材1は、実施形態1の通気部材1と同様に使用できる。
 本発明の通気部材は、例えば、枚葉状のベースフィルム上に配置した形態、帯状のベースフィルム上に配置し、ロール又はリールに巻回した形態で供給できる。ベースフィルムへの通気部材の配置には、固定部11を利用できる。ベースフィルムにおける通気部材が配置される面には、通気部材の使用時にベースフィルムからの当該部材の剥離を容易とする剥離層が形成されていてもよい。ベースフィルムには、例えば、高分子フィルム、紙、金属フィルム、及びこれらの複合フィルム等を使用できる。
 (通気筐体、通気容器)
 本発明の通気部材の用途は限定されない。本発明の通気部材は、例えば、通気性が要求される各種の筐体及び容器の開口に固定して使用できる。本発明の通気部材は非対称の通気性を有しているため、非対称の通気性が要求される各種の筐体及び容器に対して好適に使用できる。また、本発明の通気部材は、非定常の通気性が要求される各種の筐体及び容器に対しても使用できる。なお、非定常の通気性が要求されるとは、特定の期間、例えば加熱時、にのみ通気性が要求されることをいう。
 本発明の通気部材を備える通気容器の一例を図17に示す。図17に示す通気容器21は、保存時に気体を発生する食品の容器であり、その開口に通気部材1が固定されている。通気部材1は、弁フィルム3の側が容器21の外部に面し、通気膜2の側が容器21の内部に面するように容器21の開口の外面側に固定されている。通気容器21では、通気部材1によって、食品から発生した気体を容器21の外部に排出しながら、容器21の外部から内部への空気(酸素)の導入を抑制できる。また、容器21の外部から内部への塵芥及び水等の異物の侵入を抑制できるとともに、通気膜2の構成によっては、容器21の内容物である食品に由来する液体及び破片等の固体の容器21の外部への漏出を抑制できる。
 本発明の通気部材を備える通気筐体の一例を図18に示す。図18に示す通気筐体22は、ランプの筐体であり、その開口に通気部材1が固定されている。通気部材1は、弁フィルム3の側が筐体22の外部に面し、通気膜2の側が筐体22の内部に面するように筐体22の開口の外面側に固定されている。通気筐体22では、通気部材1により、ランプ点灯時の熱により圧力が上昇した筐体22の内部の気体を筐体22の外部に排出しながら、ランプ消灯後の温度低下により圧力が低下した筐体22の内部への外部からの水蒸気の侵入を抑制できる。筐体22の内部に侵入した水蒸気は結露の原因となるため、通気部材1により、筐体22の内部における結露の発生が抑制される。また、筐体22の外部から内部への塵芥及び水等の異物の侵入を抑制できる。
 以下、実施例により本発明をより詳細に説明する。本発明は、以下の実施例に限定されない。
 最初に、実施例1~7及び比較例1~3において作製した通気部材の評価方法を示す。
 [通気度]
 通気部材の通気度(透気抵抗度)は、JIS P8117の規定に準拠して測定したガーレー数(単位:秒/100mL)により評価した。このとき、直径2mmの開口を中心に設けた直径47mmのステンレス製円板を準備し、当該開口を覆うように各々の中心を一致させて評価対象物である通気部材を固定部11の両面テープにより円板に貼付した状態で、ガーレー数の測定を実施した。なお、各通気部材サンプルについて最終的に求めたガーレー数(表1に示すガーレー数)は、上記のようにして実際に測定したガーレー数を、評価した通気部材サンプルの通気領域の面積と上記規定上のガーレー数の基準となる通気面積642mm2とに基づいて、後者の通気面積(642mm2)あたりに換算した値とした。本明細書に記載されている通気部材のガーレー数は、全て、この換算値である。
 [防水性]
 通気部材の防水性は、JIS L1092の規定に準拠して測定した耐水圧により評価した。具体的に、次のとおりである。
 直径2mmの開口を中心に設けた直径47mmのステンレス製円板(耐水圧測定時に変形しない厚さを有する)を準備した。次に、円板の一方の面に、測定対象である通気部材を、上記開口を覆うように固定した。通気部材は、当該部材が有する通気膜の中心と開口の中心とが一致するように固定部11又は固定部105により固定した。次に、通気部材を固定している円板を試験片として、JIS L1092に記載のA法(低水圧法)又はB法(高水圧法)に従って通気部材の耐水圧を測定した。なお、水圧は、通気部材を固定している面とは反対側の面から試験片に印加した。また、試験片における通気部材を固定している面の側から見て、通気膜又は固定部に1か所でも水滴が観察された時の水圧を、通気部材の耐水圧とした。試験装置には、上記試験片の耐水圧を測定可能な構造(試験片取付構造)を有する以外は、JIS L1092に例示されている試験装置と同様の構成を持つ装置を使用できる。測定された耐水圧に基づいて、以下の基準により、通気部材の防水性を評価した。
 ◎(優):耐水圧の値が50kPa以上であった。
 ○(良):耐水圧の値が3kPa以上50kPa未満であった。
 △(可):耐水圧の値が1kPa以上3kPa未満であった。
 ×(不可):耐水圧の値が1kPa未満であった。
 (実施例1)
 実施例1では、図7,8に示す通気部材1を作製した。具体的に、通気膜2として膜厚方向に複数の貫通孔を有する、撥液処理された円形のPET膜(膜厚方向の通気度は、JIS L1096の規定に準拠して測定したフラジール数で表示して12.0cm3/(cm2・秒)、耐水圧18kPa、厚さ45μm、直径9mm、透明)を、弁フィルム3として無孔のPETフィルム(円形、厚さ50μm、直径9mm、透明)を準備した。
 通気膜2であるPET膜は、以下のように準備した。膜厚方向に貫通する複数の貫通孔を有する非多孔質の市販のPET膜(it4ip製、Track etched membrane;厚さ45μm、貫通孔の径5.0μm、貫通孔の密度2.3×106個/cm2)を用意した。次に、この膜を、撥液処理液中に3秒間浸漬した後、当該処理液から取り出して常温で30分間放置して乾燥させることで、当該膜の表面に撥液層を形成する撥液処理を実施した。撥液処理液には、信越化学製の撥水撥油剤「X-70-042」を0.1重量%の濃度となるように希釈剤(旭硝子製、アサヒクリン AE-3000)で希釈した溶液を用いた。なお、「X-70-042」は、以下の化学式により示される、直鎖状フルオロアルキル基を有する化合物を単量体として重合した重合体を構成成分とする撥水撥油剤である:CH2=CHCOOCH2CH2510CH249。このようにして、通気膜2であるPET膜(貫通孔の径5.0μm、気孔率45.1%、貫通孔の密度2.3×106個/cm2)を得た。
 次に、外径9mm及び内径6mmのリング状の両面テープ(日東電工製、No.5603、厚さ30μm)を2枚用意し、そのうちの1枚について、リングの中心を通る直線(リングの直径に相当する直線)を切断線として2分割した。次に、2分割した両面テープの一つを外周が一致するように通気膜2の表面に貼り合わせ、さらに、貼り合わせた両面テープの上に外周が一致するように弁フィルム3を貼り合わせて、当該両面テープ10を接合部4として、通気膜2と弁フィルム3とを接合した。図4に示すように、通気膜2と弁フィルム3とは、通気膜2の周縁部に位置するリング状の領域9の周方向の一部(リングの中心を基準とする角度にして180°の領域)において互いに接合されていた。次に、2分割していないもう一枚の両面テープを外周が一致するように通気膜2における弁フィルム3の接合面とは反対側の面に固定部11として貼り合わせ、図7,8に示す通気部材1を得た。なお、この通気部材の通気領域は、通気膜2の上記反対側の面に貼り合わせたリング状の両面テープの内周を円周とする円の領域である(他の実施例及び比較例においても同じである)。このようにして作製した通気部材の評価結果を、以下の表1に示す。
 (実施例2)
 接合部4及び固定部11に使用したリング状の両面テープの内径を6mmから4mmに変更した以外は実施例1と同様にして、通気部材1を得た。このようにして作製した通気部材の評価結果を、以下の表1に示す。
 (実施例3)
 接合部4及び固定部11に使用したリング状の両面テープの内径を6mmから4mmに変更し、弁フィルム3の厚さを50μmから25μmに変更した以外は実施例1と同様にして、通気部材1を得た。このようにして作製した通気部材の評価結果を、以下の表1に示す。
 (実施例4)
 準備した2枚の両面テープのうちの1枚を2分割する際に、リングの中心を通る2本の直線であって、リングの中心における互いの交差角度が90°である直線のそれぞれを切断線とし、2分割された両面テープのうち大きな方の一片を通気膜2と弁フィルム3との接合部4に使用した以外は、実施例1と同様にして通気部材1を得た。図19に示すように、通気膜2と弁フィルム3とは、通気膜2の周縁部に位置するリング状の領域の周方向の一部(リングの中心を基準とする角度にして270°の領域)において、当該部分を接合部4として互いに接合されていた。このようにして作製した通気部材の評価結果を、以下の表1に示す。
 (実施例5)
 通気膜2を上記PET膜から、円形のPTFE多孔質膜(日東電工製、NTF1133、膜厚方向のガーレー数1.8秒/100mL、耐水圧60kPa、厚さ80μm、直径9mm、白色)に変更した以外は実施例1と同様にして、通気部材1を得た。実施例5で使用したPTFE多孔質膜は、実施例1と同様の撥液処理剤及び撥液処理方法により撥液処理された膜である。このようにして作製した通気部材の評価結果を、以下の表1に示す。
 (実施例6)
 固定部11に使用したリング状の両面テープは変更することなく、接合部4に使用したリング状の両面テープを厚さ100μmの両面テープ(日東電工製、No.5610、外径9mm及び内径6mm)に変更した以外は実施例1と同様にして、通気部材1を得た。このようにして作製した通気部材の評価結果を、以下の表1に示す。
 (実施例7)
 接合部4及び固定部11に使用したリング状の両面テープの内径を6mmから7mmに変更し、弁フィルム3の厚さを50μmから25μmに変更した以外は実施例1と同様にして、通気部材1を得た。このようにして作製した通気部材の評価結果を、以下の表1に示す。
 (比較例1)
 比較例1では、図20A及び図20Bに示す通気部材100を作製した。図20Bは、図20Aに示す通気部材100をスリットフィルム101側から見た図である。通気膜103として、実施例1の通気膜2で使用したPET膜と同じPET膜を準備した。また、スリットフィルム101として、図20A及び図20Bに示すように、当該フィルムの膜厚方向に貫通する、互いに平行な2本の直線状のスリット(長さ3mm、スリット間の間隔2mm)102を有する円形のPETフィルム(厚さ50μm、直径9mm、透明)を準備した。次に、外径9mm及び内径6mmのリング状の両面テープ(日東電工製、No.5603、厚さ30μm)を2枚用意し、それぞれの両面テープを、外周が一致するように通気膜103のそれぞれの表面に貼り合わせた。次に、一方の両面テープを接合部104として、通気膜103とスリットフィルム101とを接合した。通気膜103とスリットフィルム101とは、通気膜103の周縁部に位置するリング状の領域の周方向の全部において互いに接合されていた。なお、スリットフィルム101は、上記スリット以外に膜厚方向の通気経路を有さない。通気膜103に貼り合わせた他方の両面テープは固定部105とした。このようにして作製した通気部材の評価結果を、以下の表1に示す。
 (比較例2)
 スリットフィルム101を、当該フィルムの膜厚方向に貫通する、円形の当該フィルムの中心において等角度で交差する3本の直線状のスリット(長さ3mm)102を有するPETフィルム(厚さ50μm、直径9mm、透明)に変更した以外は比較例1と同様にして、図21A及び図21Bに示す通気部材110を得た。なお、図21Bは、図21Aに示す通気部材110をスリットフィルム101の側から見た図である。このようにして作製した通気部材の評価結果を以下の表1に示す。
 (比較例3)
 比較例3では、通気膜2を備えない通気部材を作製した。具体的に、通気膜2の代わりに、外径9mm及び内径6mmのリング状のPETフィルム(厚さ50μm)を用いた以外は実施例1と同様にして、当該通気部材を得た。このようにして作製した通気部材の評価結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の各通気部材では、防水性を確保しながら弁フィルム3の側から通気膜2の方向への通気をより確実に抑制できるとともに、通気膜2の側から弁フィルム3の方向へのガーレー数に対する弁フィルム3の側から通気膜2の方向へのガーレー数の比B/Aを大きくすることができ、また、当該比の制御の自由度が大きくなった。
 (実施例8)
 実施例1で作製した通気部材について、通気膜2の側から弁フィルム3の方向へ透過する気体Aの圧力(通気部材に加わる、通気膜2の側が正の差圧)を増加させたときの通気膜2及び通気部材を透過する単位時間あたりの気体の量(mL/分)の変化と、弁フィルム3の側から通気膜2の方向へ透過しようとする気体Bの圧力(通気部材に加わる、弁フィルム3の側が正の差圧)を増加させたときの通気膜2及び通気部材を透過する単位時間あたりの気体の量の変化とを評価した。評価結果を図22に示す。なお、図22では、前者の場合を「(通気部材の)通気側」、後者の場合を「(通気部材の)封止側」としている。
 図22に示すように、当該通気部材では、通気膜2の側を正とする僅かな差圧によって非対称の通気性が実現するとともに、差圧が大きい場合にも非対称の通気性を維持することができた。
 実施例9~14及び比較例4において作製した通気部材の評価方法を示す。
 [弁開放圧]
 通気部材が開弁する気体Aの圧力である弁開放圧は、次のように測定した。
 直径2mmの開口を中心に設けた直径47mmのステンレス製円板(弁開放圧の測定時に変形しない厚さを有する)を準備した。次に、円板の一方の面に、測定対象である通気部材を、上記開口を覆うように固定した。通気部材は、当該部材が有する通気膜の中心と開口の中心とが一致するように固定部11又は固定部105により固定した。次に、通気部材を固定している円板を試験片として、当該試験片を図25に示す評価装置の固定冶具204に固定した。
 固定冶具204は、円形の断面を有する有底筒体であり、通気部材203が固定された試験片201を開口に固定できる構造を有する。固定冶具204の底部には、流量計206、圧力計207、レギュレータ208及びポンプ209が接続された配管205が接続されている。固定冶具204は、開口に試験片201を固定したときに、配管205を除き、試験片201の開口202及び当該開口202に固定された通気部材203のみが外部から固定冶具204の内部への通気経路となる構造を有している。試験片201は、通気部材203を固定している面が固定冶具204の内部に面するように、当該冶具204の開口に固定した。
 次に、ポンプ209を駆動し、配管205を介して固定冶具204の内部の減圧を開始した。減圧速度は、レギュレータ208により、10kPa/分とした。減圧の開始とともに、流量計206により、配管205の内部を通過する空気の流量の測定を開始した。そして、0.01L/分以上の流量であって、減圧速度から算出される流量を超えて急激に流量が増加したときの固定冶具204内の圧力Pを記録した。測定時の大気圧から圧力Pを引いた値を、通気部材の弁開放圧とした。
 [通気度]
 通気部材の通気度(透気抵抗度;ガーレー数)は、実施例1~7及び比較例1~3において作製した通気部材に対する通気度の測定方法と同じ方法により測定した。なお、弁開放圧が、JIS P8117において定められた、評価対象物に対する差圧1.22kPaを超える場合、弁開放圧を超える圧力に上記差圧を設定して透気抵抗度を測定し、測定値を差圧1.22kPaあたりに換算した値を、当該通気部材のガーレー数とした。
 [単位時間あたりの通気量]
 通気度(透気抵抗度)とは別に、通気部材の通気膜側の面と、弁フィルム又はスリットフィルム側の面との間の差圧(気体Aの圧力)を1.5kPaとしたときに当該部材を通過する単位時間あたりの空気の流量(通気量)を評価した。なお、弁開放圧が1.5kPaを超える通気部材では、この値をゼロとした。当該通気量は、次のように測定した。
 直径2mmの開口を中心に設けた直径47mmのステンレス製円板(通気量の測定時に変形しない厚さを有する)を準備した。次に、円板の一方の面に、測定対象である通気部材を、上記開口を覆うように固定した。通気部材は、当該部材が有する通気膜の中心と開口の中心とが一致するように固定部11又は固定部105により固定した。次に、通気部材を固定している円板を試験片として、当該試験片を、弁開放圧の測定に使用した評価装置(図25参照)の固定冶具204に、弁開放圧の測定時と同様に固定した。
 次に、ポンプ209を駆動し、配管205を介して固定冶具204の内部を減圧した。減圧は、レギュレータ208により、固定冶具204の内圧が測定時の大気圧より1.5kPa低くなるようにした。固定冶具204の内圧が安定した後、流量計206により、配管205の内部を通過する空気の流量を測定して、上記単位時間あたりの通気量を求めた。
 [戻り性]
 通気部材の戻り性は、以下のように評価した。
 上述した弁開放圧の測定方法により、評価対象である通気部材の弁開放圧(初期開放圧)を測定した。次に、配管205を介して固定冶具204の内部空間を開放し、固定冶具204内の圧力を大気圧に戻した。大気圧に戻しておよそ1分間経過した後、再度、上記方法により通気部材の弁開放圧を測定した。再度の測定値が初期開放圧から1kPa以上低下した場合を「△(可)」、0.5kPaを超え1kPa以下の範囲で低下した場合を「〇(良)」、0.5kPa以下の範囲で低下した場合を「◎(優)」とした。
 [定常状態の酸素透過量]
 通気部材の定常状態における酸素透過量は以下のように測定した。
 コックを備える内容積2000mLのアルミパウチ袋(ジーエルサイエンス製、AAK-2)に、通気部材を固定した時に各通気部材の固定部11又は固定部125により囲まれた範囲に収まる開口を設けた。次に、当該開口を覆うように、固定部11又は固定部125を介して、通気部材を袋の外面に固定した。次に、コックを介して、袋内に窒素ガスを流量300mL/分にて5分間、流通させた。5分間の流通後、300mL程度の窒素ガスが収容された袋をヒートシールにより密閉し、通気部材の弁開放圧を超える圧力を袋にかけないようにして常温で保管した。所定期間(ヒートシール後、1日、5日又は7日)の経過後、酸素濃度計(飯島電子工業製、RO-103S)にて袋内の酸素濃度を測定し、当該酸素濃度により、定常状態における通気部材の酸素透過量を評価した。なお、ヒートシール直後の酸素濃度(初期酸素濃度)を別途、測定したところ、いずれの通気部材においても、初期酸素濃度は0.01~0.03%の範囲にあった。
 (実施例9)
 実施例9では、通気膜2及び弁フィルム3の形状が正方形であり、通気膜2と弁フィルム3とが、通気膜2の周縁部に位置する領域における当該正方形の三辺に沿って延びた部分において接合部4により互いに接合されている通気部材1(図12A及び図12B参照)を作製した。ただし、実施例9において作製した通気部材1の接合部4の端部15A及び15Bは、図10A及び図10Bに示す通気部材1と同様に、残る一つの辺16と同じ位置とした(辺16から後退させなかった)。接合部4の幅(コーナー部を除き、接合部4が延びる方向に垂直な方向の幅、以下同じ)は、2mmとした。
 通気膜2には、膜厚方向に複数の貫通孔を有する、正方形(サイズ20mm×20mm)のPET膜を準備した。準備したPET膜の膜厚方向の通気度は、JIS L1096の規定に準拠して測定したフラジール数で表示して20.0cm3/(cm2・秒)、耐水圧は2kPa、厚さは12μmであり、当該PET膜は透明であった。
 通気膜2であるPET膜は、以下のように準備した。厚さ12μmの無孔のPET膜を用意した。次に、用意したPET膜に対し、レーザーを用いた貫通孔形成加工により、PET膜の主面に垂直な方向に直線状に延びる、孔径21.5μmの貫通孔を複数形成した。貫通孔は、その開口がPET膜の表面に対して均等に配列するように、かつ、PET膜の表面の気孔率が6.45%となるように形成した。なお、表面の気孔率は、表面の面積に対する、当該表面に存在する貫通孔の開口の面積の合計値の割合である。
 弁フィルム3には、正方形(サイズ20mm×20mm)である以外は実施例1で使用した弁フィルム3と同一のPETフィルムを準備した。
 次に、接合部4である、直角のコーナーを有するU字状の両面テープ(日東電工製、No.5603、厚さ30μm、幅2mm)を用意し、外周が一致するように通気膜2の表面に貼り合わせた。さらに、貼り合わせた両面テープの上に外周が一致するように弁フィルム3を貼り合わせて、当該両面テープを接合部4として通気膜2と弁フィルム3とを接合した。
 次に、外周のサイズが20mm×20mm、内周のサイズが10mm×10mmであり、外周の中心と内周の中心とが一致している、直角のコーナーを有する額縁状の両面テープ(日東電工製、No.5603、厚さ30μm)を用意し、外周が一致するように、通気膜2における弁フィルム3の接合面とは反対側の面に固定部11として貼り合わせた。このようにして、実施例9の通気部材1を得た。
 また、実施例9では、上記作製した通気部材1とは別に、微粘着層20を有するPETフィルムを弁フィルム3に使用した通気部材を、微粘着層20の種類を変更して2種類準備した。具体的に、弁フィルム3(サイズ20mm×20mmの正方形)に、ウレタン系粘着剤から構成される微粘着層20が一方の面に形成されたフィルム(日東電工製、AW303、厚さ50μm、微粘着剤層の粘着力0.04N/20mm)と、アクリル系粘着剤から構成される微粘着層20が一方の面に形成されたフィルム(日東電工製、RP207、厚さ60μm、微粘着剤層の粘着力0.11N/20mm)とを使用した。弁フィルム3は、微粘着層20が通気膜2に面するように、通気膜2と接合した。微粘着層を有する弁フィルム又はスリットフィルムを使用した、以降の実施例及び比較例の通気部材においても同様に、微粘着層が通気膜に面するように、通気膜と弁フィルム又はスリットフィルムとを接合した。
 準備した弁フィルムにおける微粘着剤層の粘着力は、常温(23℃)において、次のように評価した。最初に、評価対象である微粘着層が一方の面に形成された上記PETフィルム(幅20mm、長さ150mm)を、当該フィルムが有する微粘着層の全面を介して、厚さ100μmの無孔のPETフィルム(東レ製、ルミラーS10)に接合した。次に、弁フィルムの上に重量2kgのローラを一往復させた後、接合体を30分放置した。次に、300mm/分の引き剥がし速度にて、微粘着層を有するフィルムをPETフィルムから引き剥がす180°ピール試験を実施し、その際に測定された引き剥がし力の最大値を微粘着剤層の粘着力とした。微粘着剤層の粘着力の測定方法は、後述するAW343及びRP109Cにおいても同じである。
 このようにして作製した、弁フィルム3が互いに異なる3種類の通気部材の評価結果を、以下の表2に示す。表2の「弁フィルム又はスリットフィルムの種類」の欄における「PET」は、微粘着層を有さない弁フィルム又はスリットフィルムを意味する。なお、実施例9で作製した3種類の通気部材は、いずれも、実施例1~7と同様のガーレー数B、及びガーレー数の比B/Aを満たしていた。また、弁フィルム3が微粘着層20を有さない場合のガーレー数Aは、1.1秒/100mLであった。
 (実施例10)
 実施例10では、通気膜2及び弁フィルム3の形状が正方形であり、通気膜2と弁フィルム3とが、通気膜2の周縁部に位置する領域における当該正方形の対向する二辺の各々に沿った部分において接合部4により互いに接合されている通気部材1(図14A及び図14B参照)を作製した。ただし、実施例10において作製した通気部材1の接合部4の端部18A~18Dは、図13A及び図13Bに示す通気部材1と同様に、辺19A,19Bと同じ位置とした(辺19A,19Bから後退させなかった)。接合部4の幅は2mmとした。
 通気膜2及び弁フィルム3には、それぞれ、実施例9で使用したPET膜及びPETフィルムを準備した。
 次に、接合部4である一対の帯状の両面テープ(日東電工製、No.5603、厚さ30mm、長さ20mm、幅2mm)を用意し、各両面テープを、当該両面テープの長さ方向の辺が通気膜2の辺に一致するように、かつ、各々の両面テープが通気膜2における対向する二辺の各々に沿うように、通気膜2の表面に貼り合わせた。さらに、貼り合わせた両面テープの上に、通気膜2と外周が一致するように弁フィルム3を貼り合わせて、当該両面テープを接合部4として通気膜2と弁フィルム3とを接合した。
 次に、実施例9で容易したものと同一の額縁状の両面テープを用意し、外周が一致するように、通気膜2における弁フィルム3の接合面とは反対側の面に固定部11として貼り合わせた。このようにして、実施例10の通気部材1を得た。
 また、実施例10では、上記作製した通気部材1とは別に、微粘着層20を有するPETフィルムを弁フィルム3に使用した通気部材を、微粘着層20の種類を変更して2種類準備した。具体的に、弁フィルム3(サイズ20mm×20mmの正方形)に、実施例9で使用した、ウレタン系粘着剤から構成される微粘着層20が一方の面に形成されたフィルム(日東電工製、AW303)と、アクリル系粘着剤から構成される微粘着層20が一方の面に形成されたフィルム(日東電工製、RP207)とを使用した。
 このようにして作製した、弁フィルム3が互いに異なる3種類の通気部材の評価結果を、以下の表2に示す。なお、実施例10で作製した3種類の通気部材は、いずれも、実施例1~7と同様のガーレー数B、及びガーレー数の比B/Aを満たしていた。また、弁フィルム3が微粘着層20を有さない場合のガーレー数Aは0.43秒/100mLであった。
 (実施例11)
 実施例11では、弁フィルム3に微粘着層20を有するPETフィルムを使用した以外は実施例1と同様にして、通気膜2及び弁フィルム3の形状が円である通気部材1を作製した。弁フィルム3には、実施例9で使用した、ウレタン系粘着剤から構成される微粘着層20が一方の面に形成されたフィルム(日東電工製、AW303)を使用した。ただし、当該フィルムは、直径9mmの円形とした。
 このようにして作製した通気部材の評価結果を、実施例1で作製した通気部材の評価結果と併せて、以下の表2に示す。実施例9で作製した通気部材は、実施例1と同様のガーレー数B、及びガーレー数の比B/Aを満たしていた。
 (実施例12)
 実施例12では、接合部4として使用した両面テープの形状を変更することで、接合部4の端部15A及び15Bを通気膜2の辺16から後退させるとともに、ウレタン系粘着剤から構成される微粘着層20が一方の面に形成されたフィルム(日東電工製、AW303)を弁フィルム3に使用した以外は、実施例9と同様にして、通気部材1を作製した(図15A及び図15B参照)。接合部4の端部15A及び15Bは、端部15A,15Bを結ぶ線分Lが通気部材1(通気膜2)の通気領域17から辺16側に2mm離れた位置を通過するようにした。
 このようにして作製した通気部材の評価結果を以下の表2に示す。なお、実施例12で作製した通気部材は、実施例1~7と同様のガーレー数B、及びガーレー数の比B/Aを満たしていた。
 (実施例13)
 実施例13では、固定部11として使用した両面テープの形状を変更することで、通気膜2の通気領域17の形状を10mm×13mmの長方形とし、通気膜2における接合部4が形成されていない辺16の方向に通気領域17を3mm拡張させるとともに、ウレタン系粘着剤から構成される微粘着層20が一方の面に形成されたフィルム(日東電工製、AW303)を弁フィルム3に使用した以外は、実施例9と同様にして、通気部材1を作製した(図23A及び図23B参照)。
 このようにして作製した通気部材の評価結果を以下の表2に示す。なお、実施例13で作製した通気部材は、実施例1~7と同様のガーレー数B、及びガーレー数の比B/Aを満たしていた。
 (実施例14)
 実施例14では、中間フィルム31と、中間フィルム31を通気膜2に固定する固定部32とを有するとともに、ウレタン系粘着剤から構成される微粘着層20が一方の面に形成されたフィルム(日東電工製、AW303)を弁フィルム3に使用した以外は、実施例12と同様にして、図16A及び図16Bに示す通気部材1を作製した。
 固定フィルム31は、固定部11と同一の形状を有する無孔のPETフィルム(厚さ50μm)とした。固定部32は、固定部11と同一の両面テープとした。
 実施例14の通気部材1は、通気膜2の一方の表面に固定部32を貼り合わせ、当該固定部32の上に中間フィルム31を貼り合わせ、さらに、当該中間フィルム31の上に接合部4及び弁フィルム3を貼り合わせた後、通気膜2における固定部32を貼り合わせた面とは反対側の面に固定部11を貼り合わせて作製した。各部材を貼り合わせる際には、それぞれの外周が一致するようにした。
 また、実施例14では、上記作製した通気部材1とは別に、微粘着層20の種類を変更した通気部材1をさらに3種類準備した。具体的に、弁フィルム3(サイズ20mm×20mm)に、上述したRP207、ならびにPETフィルムの一方の面にウレタン系粘着剤から構成される微粘着層20が形成されたフィルム(日東電工製、AW343、厚さ65μm、微粘着剤層の粘着力0.03N/20mm)、及び一方の面にアクリル系粘着剤から構成される微粘着層20が形成されたフィルム(日東電工製、RP109C、厚さ55μm、微粘着剤層の粘着力0.07N/20mm)を使用した。
 このようにして作製した、弁フィルム3が互いに異なる4種類の通気部材の評価結果を、以下の表2に示す。なお、実施例14で作製した4種類の通気部材は、いずれも、実施例1~7と同様のガーレー数B、及びガーレー数の比B/Aを満たしていた。
 (比較例4)
 比較例4では、図24A及び図24Bに示す通気部材120を作製した。図24Bは、図24Aに示す通気部材120の断面I-Iにおける断面図である。
 通気膜123として、実施例9の通気膜2において使用したPET膜と同じPET膜を準備した。また、スリットフィルム121として、図24A及び図24Bに示すように、当該フィルムの膜厚方向に貫通する1本の直線状のスリット(長さ5mm)122を有する正方形のPETフィルム(サイズ20mm×20mm、厚さ50μm、透明)を準備した。スリット122の位置は、スリットフィルム121における当該スリット122に最も近い辺127から4mmとした。
 次に、外周のサイズが20mm×20mmであり、内周のサイズが10mm×10mmであり、外周の中心と内周の中心とが一致している、直角のコーナーを有する額縁状の両面テープ(日東電工製、No.5603、厚さ30μm)を用意し、外周が一致するように、通気膜123における一方の面に固定部125として貼り合わせた。次に、外周のサイズが20mm×20mmであり、内周のサイズが18mm×18mmであり、外周の中心と内周の中心とが一致している、直角のコーナーを有する額縁状の両面テープ(日東電工製、No.5603、厚さ30μm)を用意し、外周が一致するように、通気膜123における他方の面に接合部124として貼り合わせた。次に、接合部124である両面テープにより、通気膜123の上に、外周が一致するようにスリットフィルム121を接合した。通気膜123とスリットフィルム121とは、通気膜123の周縁部に位置する領域の周方向の全部において互いに接合されていた。なお、スリットフィルム121は、上記スリット122以外に膜厚方向の通気経路を有さない。通気膜2の主面に垂直な方向から見て、スリット122は、固定部125により定められた通気膜123の通気領域126と重ならない。
 また、比較例4では、上記作製した通気部材とは別に、微粘着層を有するPETフィルムをスリットフィルム121に使用した通気部材を、微粘着層の種類を変更して2種類準備した。具体的に、スリットフィルム121に、スリット122を有する以外は、実施例9で使用したウレタン系粘着剤から構成される微粘着層が一方の面に形成されたフィルム(日東電工製、AW303)と、アクリル系粘着剤から構成される微粘着層が一方の面に形成されたフィルム(日東電工製、RP207)とを使用した。
 このようにして作製した、スリットフィルム121が互いに異なる3種類の通気部材の評価結果を、以下の表2に示す。比較例4で作製した3種類の通気部材のガーレー数B、及びガーレー数の比B/Aは、いずれも、比較例1又は2で作製した通気部材と同程度であった。
 (比較例5)
 比較例5では、通気膜2を備えない通気部材を作製した。具体的に、通気膜2の代わりに中間フィルム31と同一のPETフィルムを用いた以外は実施例14と同様にして、通気部材を得た。このようにして作製した通気部材の評価結果を、以下の表2に示す。比較例5で作製した通気部材の防水性は、上述の基準にして「×(不可):耐水圧の値が1kPa未満」であった。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例の通気部材について、比較例4の通気部材に比べて定常状態における酸素の透過量を低減できた。また、接合部の形状が同じ場合、弁フィルムが微粘着層を有することによって、当該酸素の透過量をより低減できた。比較例4の通気部材では、スリットフィルムが微粘着層を有するか否かは、定常状態における酸素の透過量に影響を与えなかった。中間フィルムを有する実施例14では、より長期間にわたる、高いレベルでの酸素の透過量の抑制が可能であった。実施例の通気部材では、弁フィルムにおける微粘着層の有無及びその種類によって、弁開放圧の調整が可能であった。比較例5の通気部材は通気膜を備えておらず、当該通気部材の防水性の評価結果は不可であった。
 本発明は、その意図及び本質的な特徴から逸脱しない限り、他の実施形態に適用しうる。この明細書に開示されている実施形態は、あらゆる点で説明的なものであってこれに限定されない。本発明の範囲は、上記説明ではなく添付したクレームによって示されており、クレームと均等な意味及び範囲にあるすべての変更はそれに含まれる。
 本発明の通気部材は、従来の通気部材と同様の用途、例えば、通気性が求められる筐体及び容器に使用できる。本発明の通気部材は、とりわけ、非対称の通気性が求められる筐体及び容器に使用できる。
  1 通気部材
  2 通気膜
  3 弁フィルム
  4 接合部
  5 (通気膜2の弁フィルム3と接合されていない)周縁部
  6 (弁フィルム3の)自由端部
  7 間隙
  8 通気経路
  9 (通気膜2の)周縁部の領域
 10 両面テープ
 11 固定部
 12 開口
 13 壁
 14 表面
 15A,15B 端部
 16 辺
 17 通気領域
 18A,18B,18C,18D 端部
 19A,19B 辺
 20 微粘着層
 31 中間フィルム
 32 固定部
 100,110 通気部材
 101 スリットフィルム
 102 スリット
 103 通気膜
 104 接合部
 105 固定部
 120 通気部材
 121 スリットフィルム
 122 スリット
 123 通気膜
 124 接合部
 125 固定部
 126 通気領域
 127 辺
 201 試験片
 202 開口
 203 通気部材
 204 固定冶具
 205 配管
 206 流量計
 207 圧力計
 208 レギュレータ
 209 ポンプ

Claims (17)

  1.  開口に固定された状態で、前記開口を通過する気体が透過する防水防塵通気膜と、
     前記通気膜の通気領域を覆うように配置された弁フィルムと、を備え、
     前記通気膜と前記弁フィルムとは、前記通気膜の周縁部の一部において、直接、又は中間部材を介して、互いに接合されており、
     前記弁フィルムの前記通気膜と接合していない領域は、前記通気膜を前記弁フィルムの方向へ透過する気体の圧力によって前記通気膜から離間する方向に可逆的な変形が可能であり、
     前記通気膜を前記弁フィルムの方向へ透過する前記気体は、前記通気膜と、前記離間する方向に変形している弁フィルムとの間を通って、前記通気膜の前記弁フィルムと接合されていない周縁部の方向に排出される、通気部材。
  2.  前記通気膜及び前記弁フィルムの形状及び面積が同一である請求項1に記載の通気部材。
  3.  前記通気膜及び/又は前記弁フィルムの形状が円、楕円、又は多角形である請求項1に記載の通気部材。
  4.  前記通気膜と前記弁フィルムとが、前記通気膜の周縁部に位置する領域の周方向の一部において互いに接合されている請求項1に記載の通気部材。
  5.  前記通気膜が、前記周縁部に位置する領域における前記弁フィルムと接合している少なくとも1つの第1の部分と、当該領域における前記弁フィルムと接合していない第2の部分と、を有し、
     前記通気膜の通気領域が、前記通気膜の主面に垂直な方向から見て、
      前記少なくとも1つの第1の部分と、
      前記少なくとも1つの第1の部分の2つの端部であって、前記第2の部分を挟んで前記周方向に沿って隣接する前記2つの端部の間を結ぶ少なくとも1つの線分と、
     によって囲まれている請求項4に記載の通気部材。
  6.  前記通気膜が、前記周縁部に位置する領域における前記弁フィルムと接合している少なくとも1つの第1の部分と、当該領域における前記弁フィルムと接合していない第2の部分と、を有し、
     前記弁フィルムが、前記弁フィルムの主面に垂直な方向から見て、前記少なくとも1つの第1の部分の2つの端部であって、前記第2の部分を挟んで前記周方向に沿って隣接する前記2つの端部の間を結ぶ線分に対して外方に突出した部分を有する請求項4に記載の通気部材。
  7.  前記弁フィルムが、前記通気膜側の面に微粘着層を有する請求項1に記載の通気部材。
  8.  前記微粘着層が、ウレタン系粘着剤、アクリル系粘着剤、又はシリコーン系粘着剤から構成される請求項7に記載の通気部材。
  9.  ポリエチレンテレフタレート(PET)フィルムに対する23℃での前記微粘着層の粘着力が、0.2N/20mm以下である請求項7に記載の通気部材。
  10.  前記通気膜と前記弁フィルムとが、両面テープによって直接接合されている請求項1に記載の通気部材。
  11.  前記中間部材が、膜厚方向に通気性を有さないフィルムである請求項1に記載の通気部材。
  12.  前記通気膜における前記弁フィルムが接合された面とは反対側の面の周縁部に、前記通気部材を前記開口に固定する固定部をさらに備える請求項1に記載の通気部材。
  13.  前記固定部が両面テープにより構成される請求項12に記載の通気部材。
  14.  前記弁フィルムの側から前記通気膜の方向へのガーレー数が10秒/100mL以上である請求項1に記載の通気部材。
  15.  前記弁フィルムの側から前記通気膜の方向へのガーレー数に対する、前記通気膜の側から前記弁フィルムの方向へのガーレー数の比が10以上である請求項1に記載の通気部材。
  16.  請求項1~15のいずれかに記載の通気部材が筐体の開口に固定されており、
     前記通気部材は、前記弁フィルムの側が前記筐体の外部に面し、前記通気膜の側が前記筐体の内部に面するように、前記開口に固定されている通気筐体。
  17.  請求項1~15のいずれかに記載の通気部材が容器の開口に固定されており、
     前記通気部材は、前記弁フィルムの側が前記容器の外部に面し、前記通気膜の側が前記容器の内部に面するように、前記開口に固定されている通気容器。
PCT/JP2017/038726 2016-12-22 2017-10-26 通気部材とこれを用いた通気筐体及び通気容器 WO2018116630A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018557581A JP6990195B2 (ja) 2016-12-22 2017-10-26 通気部材とこれを用いた通気筐体及び通気容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662437890P 2016-12-22 2016-12-22
US62/437890 2016-12-22

Publications (1)

Publication Number Publication Date
WO2018116630A1 true WO2018116630A1 (ja) 2018-06-28

Family

ID=62627736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038726 WO2018116630A1 (ja) 2016-12-22 2017-10-26 通気部材とこれを用いた通気筐体及び通気容器

Country Status (2)

Country Link
JP (1) JP6990195B2 (ja)
WO (1) WO2018116630A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152551A (ja) * 1986-12-12 1988-06-25 藤森工業株式会社 ガス抜き用弁のシ−ル方法
JPH05112375A (ja) * 1991-02-16 1993-05-07 Robert Bosch Gmbh 包装容器用の過圧逃がし弁及びその製法
JPH07291306A (ja) * 1994-04-18 1995-11-07 Fujimori Kogyo Kk ガス抜き用弁ラベル
JP2006324086A (ja) * 2005-05-18 2006-11-30 Nitto Denko Corp 通気部材とこれを用いた通気筐体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2601224T3 (es) 2012-10-09 2017-02-14 Plitek, Llc Válvulas de alivio de presión libres de aceite y humedecidas que tienen un filtro integrado

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152551A (ja) * 1986-12-12 1988-06-25 藤森工業株式会社 ガス抜き用弁のシ−ル方法
JPH05112375A (ja) * 1991-02-16 1993-05-07 Robert Bosch Gmbh 包装容器用の過圧逃がし弁及びその製法
JPH07291306A (ja) * 1994-04-18 1995-11-07 Fujimori Kogyo Kk ガス抜き用弁ラベル
JP2006324086A (ja) * 2005-05-18 2006-11-30 Nitto Denko Corp 通気部材とこれを用いた通気筐体

Also Published As

Publication number Publication date
JPWO2018116630A1 (ja) 2019-10-24
JP6990195B2 (ja) 2022-01-12

Similar Documents

Publication Publication Date Title
KR102296699B1 (ko) 방수 부재 및 그 방수 부재를 구비한 전자 기기
TWI789477B (zh) 防水構件及電子機器
JP2012020280A5 (ja)
JP6724231B2 (ja) 防水部材及び電子機器
TW201705770A (zh) 防水透音結構、具備其之電子機器及電子機器用殼
CN102946969A (zh) 防水透气过滤器及其用途
CA2556530A1 (en) Chemical-resistant breathable textile laminate
WO2018116630A1 (ja) 通気部材とこれを用いた通気筐体及び通気容器
EP3726947B1 (en) Internal pressure adjustment member and electrical component for transport device
US9457953B1 (en) Produce bag with selective gas permeability
JP6522039B2 (ja) 保護フィルム付膜片、保護フィルム付膜片の保護フィルム除去方法および電気装置の製造方法
JP4007701B2 (ja) ガス吸着フィルター
WO2020196211A1 (ja) 通気孔用の部材と、通気孔用の部材を備える電子デバイスの製造方法及び部材供給用テープ
JP2002143624A (ja) 通気フィルターおよびフィルター付き容器
JP7016788B2 (ja) 気体処理用部材
JPH10152163A (ja) 両方向通気性ライナー
CN110114212B (zh) 用于挥发性物质的扩散的多层结构
US20220348393A1 (en) Cover member and member supply assembly including same
JPS5831797Y2 (ja) ツウキセイフタ
JP6007202B2 (ja) 通気ラベル
JP2000158674A (ja) インクカートリッジ
JP2006319018A (ja) 電子装置
JP2005112447A (ja) 基板収納用梱包材
CN105684065A (zh) 用于覆盖壁中的开口的标签
JPS60162652A (ja) カセツト用インク袋

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018557581

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884003

Country of ref document: EP

Kind code of ref document: A1