WO2018116611A1 - 故障予測素子及びこれを用いた回路基板 - Google Patents

故障予測素子及びこれを用いた回路基板 Download PDF

Info

Publication number
WO2018116611A1
WO2018116611A1 PCT/JP2017/037965 JP2017037965W WO2018116611A1 WO 2018116611 A1 WO2018116611 A1 WO 2018116611A1 JP 2017037965 W JP2017037965 W JP 2017037965W WO 2018116611 A1 WO2018116611 A1 WO 2018116611A1
Authority
WO
WIPO (PCT)
Prior art keywords
sacrificial
substrate
sacrificial fracture
failure prediction
fracture
Prior art date
Application number
PCT/JP2017/037965
Other languages
English (en)
French (fr)
Inventor
順昭 安藤
博夫 坂本
大介 越前谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112017006427.9T priority Critical patent/DE112017006427T5/de
Priority to US16/346,164 priority patent/US10837997B2/en
Priority to CN201780077820.2A priority patent/CN110089203B/zh
Priority to JP2018557575A priority patent/JP6573039B2/ja
Publication of WO2018116611A1 publication Critical patent/WO2018116611A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/281Specific types of tests or tests for a specific type of fault, e.g. thermal mapping, shorts testing
    • G01R31/2817Environmental-, stress-, or burn-in tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/281Specific types of tests or tests for a specific type of fault, e.g. thermal mapping, shorts testing
    • G01R31/2812Checking for open circuits or shorts, e.g. solder bridges; Testing conductivity, resistivity or impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/2818Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP] using test structures on, or modifications of, the card under test, made for the purpose of testing, e.g. additional components or connectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0268Marks, test patterns or identification means for electrical inspection or testing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/30Details of processes not otherwise provided for in H05K2203/01 - H05K2203/17
    • H05K2203/308Sacrificial means, e.g. for temporarily filling a space for making a via or a cavity or for making rigid-flexible PCBs

Definitions

  • the present invention relates to a failure prediction element having a failure prediction structure and a circuit board using the failure prediction element.
  • solder connection part the part where the mounting component and the substrate are solder-connected
  • breakage If the solder connection breaks, the electrical product stops and malfunctions unexpectedly. If the breakage can be predicted before the solder connection break occurs, Since it is possible to use electrical products efficiently by clarifying the time of inspection and parts replacement, a technology for predicting failure of solder joints is required.
  • Patent Document 1 discloses a configuration in which a circuit board and an arch-like elongated package are solder-connected (sacrificial fracture portion). With this configuration, a sacrificial fracture is formed in a high strain region where strain is concentrated when thermal stress occurs, so that the sacrificial fracture is broken earlier than the solder connection between the circuit board and the mounted component. Based on the change in the electrical characteristics caused by the fracture of the fractured portion, the failure prediction of the solder connection portion has been performed.
  • Patent Document 2 discloses that a dummy joint portion is provided on the outer peripheral edge of a package where stress is concentrated, among solder connection portions of a BGA (Ball Grid Array) type or QFP (Quad Flat Package) type package mounted on a circuit board. A configuration in which at least one is provided is disclosed. When an acceleration of a certain value or more is applied by the vibration source, the degree of damage of the solder joint is predicted based on the measured electric characteristic by measuring the electric characteristic of the dummy junction.
  • Patent Document 3 discloses a circuit board on which a BGA type package is mounted, and first and second wirings having a low-strength structure are provided in four corner regions where stress is most concentrated in the package. Thereby, the low-strength structure in the first and second wirings is configured to break before the solder connection portion. Furthermore, the failure of the solder joint in the package is predicted from the change in the electrical characteristics of the first and second wirings.
  • JP 2016-1003001 A International Publication No. 2011/036751 International Publication No. 2011/036766
  • Patent Document 1 uses a difference in thermal expansion coefficient between members for thermal stress, so failure prediction can be performed, but failure prediction for vibration stress is not considered. Therefore, there is a problem that it cannot cope with vibration stress.
  • Patent document 2 it was necessary to arrange
  • Patent Document 3 also has a problem that it is necessary to dispose one end portion of the wiring on the outer peripheral edge of the package, where stress is concentrated, and the installation location is limited.
  • the present invention has been made in view of the above-described circumstances, and provides a failure prediction element that performs failure prediction of a solder connection portion caused by vibration stress by a structure having a high degree of design freedom, and a circuit board using the failure prediction element.
  • the purpose is that.
  • a failure prediction element is a failure prediction element provided on a substrate on which a soldered mounting component is mounted, and a pair of support legs each having one end fixed to the substrate or the mounting component, and a pair of It has a sacrificial fracture portion supported by each of the other ends of the support legs, and includes a load amplification section that transmits vibration applied to the substrate to the sacrificial fracture portion via a pair of support legs.
  • each embodiment described later is used to reduce the life of the sacrificial fracture portion.
  • the connection part By designing the connection part to be shorter than the life of the connection part, it is possible to predict the failure of the solder connection part with a high degree of design freedom.
  • FIG. 1 is a perspective view showing a circuit board according to Embodiment 1 of the present invention. It is a side view which shows the load amplification part of the circuit board concerning Embodiment 1 of this invention. It is a perspective view which shows an example of the dimension of the load amplification part of the circuit board concerning Embodiment 1 of this invention. It is a schematic diagram which shows a deformation
  • FIG. 1 is an overall view of an analysis model simulating a solder connection portion between a QFP type package and a substrate according to Embodiment 1 of the present invention. It is an enlarged view of the analysis model which simulated the solder connection part of the QFP type package and board
  • FIG. 4 is an overall view of an analysis model that is modeled in order to perform numerical analysis with the shape of the load amplification section of FIG. 3 according to Embodiment 1 of the present invention.
  • FIG. 1 is a perspective view showing a circuit board 100 according to the first embodiment.
  • FIG. 2 is a side view of FIG.
  • the circuit board 100 includes a board 2 on which the soldered mounting component 1 is mounted, a load amplifying part 60 that is arranged on the board 2 or the mounting part 1 and amplifies a load applied to the board 2, and electrical characteristics of the load amplifying part 60 And a failure prediction unit (not shown) for predicting a failure due to breakage of the solder connection portion based on the measurement result of the measurement unit 5.
  • the failure prediction element includes the measurement unit 5, the load amplification unit 60, and the failure prediction unit.
  • the X direction, the Y direction, and the Z direction perpendicular to each other are defined as a depth direction, a lateral direction, and a height direction (out-of-plane direction), respectively.
  • the description has been made by setting the coordinate system as described above, but it is needless to say that the X direction, the Y direction, and the Z direction may be appropriately set depending on the arrangement of the load amplifying unit 60.
  • the mounting component 1 may be a package called a BGA type or a QFP type, or an electronic component such as a capacitor or a chip resistor, and may be any electronic component that can be mounted on the substrate 2.
  • sacrificial fracture portion 4 is disposed away from the substrate 2 or the mounting component 1 in the out-of-plane direction (Z direction) of the substrate 2.
  • the sacrificial rupture 4 of this embodiment and the sacrificial rupture portions 4A to 4F described in the second and subsequent embodiments correspond to the first sacrificial rupture portion.
  • One end of the support leg 3 is fixed to the substrate 2.
  • the other end of the pair of support legs 3 is fixed to the end of the sacrificial fracture 4.
  • the load amplifying unit 60 includes the pair of support legs 3 each having one end fixed to the substrate 2 or the mounting component 1, and the sacrificial fracture part 4 supported by each of the other ends of the pair of support legs 3. Have. It is necessary to design the sacrificial fracture portion 4 so that the lifetime is shorter than the solder connection portion on the substrate 2. A specific example of the design method will be described later.
  • the supporting leg 3 has a leg 31 and a bridge connecting part 32.
  • the leg 31 is an outer portion in the Y direction from the dotted line.
  • crosslinking connection part 32 is an inner part in a Y direction rather than a dotted line.
  • the bridging portion 6 is configured by connecting one bridging connecting portion 32 to both ends of the sacrificial fracture portion 4.
  • the support leg 3 is not limited to the L-shape, and may have a shape in which one end is curved with respect to the other end, and can be supported by sandwiching both ends of the sacrificial fracture portion 4. The shape may be any.
  • the legs 31 and the substrate 2 are fixed mechanically with screws, bolts or the like. As a result, before the sacrificial rupture portion 4 breaks, the load amplification portion 60 and the substrate 2 are not released from being fixed. If the fixing between the load amplification section 60 and the substrate 2 is not released before the sacrificial fracture section 4 is fractured, in addition to mechanical connection, it may be performed via an adhesive or solder connection may be performed. Needless to say, it is good.
  • the inner peripheral surface of the load amplifying unit 60 shows an example in which the cross-sectional shape in the YZ cross section is a rectangle, but it may be a part of a circle or a part of an ellipse. Further, as long as the load is amplified in the load amplifying unit 60, the cross-sectional shape of the inner peripheral surface of the load amplifying unit 60 may be any shape.
  • the support leg 3 and the sacrificial fracture portion 4 are configured by different members.
  • the support leg 3 and the sacrificial fracture portion 4 may be configured by the same member, and load amplification. Any part may be used as long as part of the part 60 is broken earlier than the solder connection part by the load applied to the substrate 2.
  • the support leg 3 and the sacrificial fracture 4 are made of copper and solder (for example, lead-free solder Sn-3Ag-0.5Cu), respectively.
  • the support leg portion 3 and the sacrificial fracture portion 4 may be made of members different from those described above as long as they are made of a conductive material, such as a solder material, an Ag paste, a conductive resin, or a surface.
  • a non-conductive material having a metallized layer and having conductivity may be used.
  • FIG. 3 is a perspective view showing an example of the dimensions of the load amplifying unit 60 according to Embodiment 1 of the present invention.
  • the lateral width L1, depth L2, height L3, and width L4 of the load amplifying unit 60 are 25 millimeters (hereinafter “mm”), 1.0 mm, 6.0 mm, and 0.10 mm, respectively.
  • the width L5 of the sacrificial fracture portion 4 is 2.0 mm.
  • the sacrificial fracture 4 can be more easily broken.
  • the shape of the load amplifier 60 can be designed more freely. Thereby, the early fracture
  • the sacrificial fracture portion 4 changes its electrical characteristics, for example, the direct current resistance value, as the crack progresses or breaks.
  • the electrical characteristic to be measured may be an impedance or the like instead of the DC resistance value, and may be a capacitor or an inductance value for a capacitor, a coil, or the like.
  • Vibration stress, thermal stress, etc. repeatedly act on the substrate 2 mounted on electronic devices, particularly servo motors, inverters and the like. These stresses are caused by the operating state of the device on which the substrate 2 is mounted and the usage environment (ambient temperature, humidity, vibration state, etc.). Hereinafter, the influence of vibration stress and thermal stress on the substrate 2 and the electronic components mounted on the substrate 2 will be described.
  • FIG. 4 is a schematic diagram of a deformation of the load amplifying unit 60 including the support leg 3 and the sacrificial fracture 4 when vibration stress is applied to the substrate 2. Due to the deformation in the out-of-plane direction (Z direction), tensile stress is applied to one surface of the sacrificial fracture 4 in the out-of-plane direction (Z direction), and compressive stress is applied to the other surface. While vibration stress acts on the substrate 2, these stresses repeatedly act on the sacrificial rupture portion 4, so that a crack is generated and propagates in the sacrificial rupture portion 4 and finally breaks.
  • the load amplifying unit 60 is deformed in the out-of-plane direction (Z direction) with respect to the substrate 2 when vibration stress acts on the substrate 2. Since the gap 6a is formed below the sacrificial fracture portion 4, the sacrificial fracture portion 4 is deformed in the out-of-plane direction (Z direction) without being limited to the substrate 2. As a result, the vibration of the substrate 2 is amplified by the load amplification unit 60 as will be described later, and the sacrificial fracture 4 is broken by the repeated application of vibration stress.
  • the load amplifying part 60 of the present embodiment has a structure in which the sacrificial fracture part 4 is supported by the pair of support legs 3, the vibration transmitted to each of the legs 31 of the pair of support legs 3 is It is transmitted to the sacrificial fracture portion 4 via the bridging connection portion 32 corresponding to each of the pair of legs 31.
  • the vibrations intensify at the central portion of the load amplifying unit 60, for example, and deformation in the out-of-plane direction (Z direction). (Stress) becomes larger than vibration on the substrate 2.
  • the sacrificial fracture portion 4 breaks earlier than the solder connection portion of the substrate 2 by disposing the sacrificial fracture portion 4 at a location where the deformation (stress) in the out-of-plane direction (Z direction) increases. It becomes possible to design at the lifetime.
  • the position at which the sacrificial fracture portion 4 is disposed is not limited to the central portion of the load amplifying unit 60, and may be any location as long as vibration is strengthened on the load amplifying unit 60.
  • the position where the vibration strengthens differs depending on the vibration characteristics (frequency, phase) generated on the substrate 2 and the physical properties of the load amplifying unit 60. Therefore, the position of the sacrificial fracture portion 4 is determined by the shape and physical properties of the load amplifying unit 60. Needless to say, it may be set appropriately.
  • the solder connection portion is not provided as a sacrificial fracture portion between the load amplification portion 60 and the substrate 2, but the sacrifice fracture portion 4 is provided in the load amplification portion 60. Therefore, the sacrificial fracture portion 4 is provided at a location where the deformation is increased with respect to the vibration stress, instead of arranging the sacrificial fracture portion in the solder connection portion that is transmitted as it is without being amplified on the substrate 2.
  • vibration stress is applied to the substrate, failure prediction of the solder connection portion between the mounting component 1 and the substrate 2 can be performed with a high degree of design freedom.
  • the load amplifying part 60 of the present embodiment has a structure in which a gap 6a is formed under the sacrificial fracture part 4. Therefore, the load amplifying unit 60 according to the present embodiment is different from the configuration in which the sacrificial fracture portion 4 is arranged on the substrate 2 without providing the gap 6a, and the sacrificial fracture portion 4 is deformed in the out-of-plane direction (Z direction). Since there is nothing to prevent, the sacrificial fracture portion 4 can be more reliably broken earlier than the solder connection portion.
  • FIG. 5 is a schematic diagram of the deformation of the load amplification unit 60 including the support leg 3 and the sacrificial fracture 4 when thermal stress is applied to the substrate 2.
  • the substrate 2 is thermally deformed in the direction of the arrow in FIG. 5, that is, the in-plane direction (Y direction). Due to the thermal deformation of the substrate 2, the support leg 3 and the sacrificial fracture portion 4 are deformed so as to be stretched in the in-plane direction (Y direction) of the substrate 2 by tensile stress.
  • the load amplifying unit 60 can be used when thermal stress is applied. Therefore, the load amplifying part 60 having a sacrificial fracture part that has a shorter life than the solder connection part can be configured even with respect to thermal stress.
  • the apparent linear expansion coefficient is a linear expansion coefficient when the support leg portion 3 and the sacrificial fracture portion 4 are regarded as an integral member.
  • the difference between the linear expansion coefficient of the mounting component 1 or the substrate 2 on which the load amplifying unit 60 is mounted and the apparent linear expansion coefficient of the load amplifying unit 60 can be more effectively predicted for the failure of the solder connection unit.
  • the linear expansion coefficient is 14 to 16 (ppm / K)
  • the apparent linear expansion coefficient is 19 to 21 (ppm / K). What is necessary is just to comprise the load amplification part 60 with the member used as.
  • the configuration (shape and material) of the sacrificial fracture 4 is determined based on the result of life prediction at the solder joint.
  • the sacrificial fracture portion 4 is designed so that the life of the sacrificial fracture portion 4 is shorter than the lifetime of the solder joint by a preset cycle.
  • the sacrificial fracture portion 4 is designed from the life of the solder joint portion, but it goes without saying that the configuration (shape and material) of the solder joint portion may be designed based on the configuration of the sacrificial fracture portion 4. .
  • the design of the solder joint portion and the sacrificial fracture portion 4 requires accurate prediction of the lifetime of each member. Is described below.
  • a method for predicting the lifetime against thermal or vibration stress is as follows. First, (1) data (equivalent strain range ⁇ eqv0 ) by numerical analysis by the finite element method is calculated, and then (2) a fatigue life formula of the solder joint obtained in the durability test is calculated. Finally, the lifetime is predicted using the data and fatigue life formula obtained in the above processes (1) and (2).
  • the equivalent strain range ⁇ eqv is a parameter representing the difference between the maximum value and the minimum value of the equivalent strain ⁇ eqv acting on the object during one cycle of thermal or vibration stress.
  • the above-described equivalent strain ⁇ eqv is a parameter expressed by the following Equation 1 using three main strains generated in the object in the triaxial stress state from the Mises condition.
  • ⁇ 1 , ⁇ 2 , and ⁇ 3 in Equation 1 below indicate main strains in the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively, in the coordinate system of FIG.
  • represents the Poisson's ratio.
  • ⁇ eqv0 is a value obtained by the process (1)
  • ⁇ eqv is a value obtained by the process (2).
  • FIG. 6 is a schematic diagram showing a fatigue life formula, which is an approximate formula calculated based on fatigue life data obtained in a durability test for a metal material containing solder.
  • the equivalent strain range ⁇ eqv is shown on the vertical axis, and the number of repetitions (lifetime) N f is shown on the horizontal axis.
  • the line segment in the figure shows the fatigue life equation, and this fatigue life equation is an approximate expression obtained by approximating the fatigue life data in the form of Equation 2 below.
  • ⁇ and ⁇ in Equation 2 are parameters of an approximate expression, and take different values corresponding to the material and fracture mode of the solder joint.
  • the fatigue life data described above is data having a plurality of data sets composed of the equivalent strain range ⁇ eqv and the number of repetitions (life) N f , but in FIG. 6, the illustration of each data set is omitted, and the fatigue life formula ( Only the approximate expression) is shown.
  • N f N 0 .
  • This N 0 is the predicted life of the solder joint.
  • FIG. 7 shows an overall view of an analysis model simulating the solder connection portion between the QFP type package and the substrate 2
  • FIG. 8 shows an enlarged view of the solder connection portion of the analysis model of FIG.
  • calculation is performed by numerical analysis simulating a heat cycle in the temperature range of ⁇ 65 ° C. to 95 ° C. to estimate the equivalent strain range ⁇ eqv0 acting on the solder joint .
  • a package such as a BGA type or a QFP type has a plurality of solder connection portions as shown in FIG.
  • the equivalent strain range ⁇ eqv0 obtained by the process of (1) above and the above-described processing are focused on the solder connection portion having the shortest lifetime (the equivalent strain range is the largest) among the plurality of solder joint portions. Life prediction is performed using the fatigue life formula obtained by the process (2).
  • the lead solder connection portion at the corner of the package (the portion located on the front side in the figure) has an equivalent strain range of ⁇ eqv0 Is 8.8 ⁇ 10 ⁇ 3 , and has the maximum equivalent strain range ⁇ eqv0 . Therefore, the life prediction is performed for this solder connection portion.
  • fatigue life data is obtained by performing a thermal cycle test on the eutectic solder. From the acquired fatigue life data, the coefficients ⁇ and ⁇ of the above formula 2 are calculated as 0.38 and 0.44, respectively, and the calculated coefficient values are substituted into the above formula 2 to obtain the following formula 3 (Fatigue life formula) is derived.
  • the equivalent strain range ⁇ eqv0 is 8.8 ⁇ 10 ⁇ 3 as described above. Therefore, when this value is substituted into the left side of the above equation 3, the life N f (N 0 ) of the solder joint is 5207. It can be estimated as a cycle.
  • the life of the sacrificial fracture portion 4 can be estimated similarly to the solder connection portion.
  • the equivalent strain range ⁇ eqv0 acting on the sacrificial fracture 4 is estimated as described in (1) above.
  • the shape of the load amplifying unit 60 is the shape shown in FIG.
  • FIG. 9 shows an analysis model modeled to perform numerical analysis with the shape of the load amplification unit 60 of FIG.
  • the sacrificial fracture 4 is made of the same eutectic solder as the solder joint, the support leg 3 is made of oxygen-free copper, and the substrate is made of FR-4.
  • the temperature range is the same as the numerical analysis of the solder joint.
  • the equivalent strain range ⁇ eqv0 of the sacrificial fracture 4 was 9.6 ⁇ 10 ⁇ 3 .
  • the lifetime N f sacrificial breaks 4 can be estimated to 4273 cycles.
  • the life of the sacrificial fracture portion 4 can be designed to be shorter than the solder connection portion. That is, since the sacrificial fracture portion 4 can be broken earlier than the solder connection portion, the failure prediction element can predict a failure before the solder connection portion breaks.
  • the load amplification unit 60 illustrated in FIG. 3 is described as an example.
  • the configuration of the load amplifying unit 60 is not limited to the example of FIG. 3, and any configuration may be used as long as the configuration (shape, material) can shorten the life compared to the solder joint.
  • the fatigue life formula is You may use the formula calculated by the solder joint part. Of course, even in the case described above, fatigue life data obtained by an endurance test may be used for the sacrificial fracture portion 4 similarly to the solder connection portion.
  • each of the sacrificial fracture portion 4 and the solder connection portion Fatigue life data is acquired by performing a durability test on the, and a fatigue life formula is calculated from the acquired fatigue life data.
  • the method for designing the life of the solder connection portion and the sacrificial fracture portion 4 has been described by taking as an example the case where thermal stress acts on the substrate 2. However, the life design can be similarly performed when vibration stress acts on the substrate 2. . Moreover, in order to shorten the life of the sacrificial fracture portion 4, there are two methods of increasing the strain (stress) acting on the sacrificial fracture portion 4 and reducing the strength of the sacrificial fracture portion 4. This method will be described in detail in an embodiment described later.
  • FIG. 10 is a flowchart showing an operation at the time of failure prediction in Embodiment 1 of the present invention.
  • the load amplifying unit 60 is connected to the measuring unit 5, and the measuring unit 5 measures the electrical resistance value of the load amplifying unit 60 regularly or irregularly (step S1).
  • the failure prediction unit determines that disconnection has occurred when the electrical resistance value exceeds a predetermined threshold (step S2), and outputs a disconnection signal (step S3).
  • the timing for measuring (monitoring) the electrical resistance value is, for example, when the power is turned on with a large temperature fluctuation. When the power-on state continues, monitoring may be performed at regular time intervals. If the disconnection signal that is output when the disconnection is determined based on the change in the electrical resistance value is displayed as an alarm on an indicator or the like, the user knows in advance that the damage value of the joint is high and that the fracture is near Can do. It is also preferable to provide means for acquiring a data backup simultaneously with the occurrence of the disconnection signal. In this case, it is possible to avoid the risk of data loss due to the occurrence of a failure (step S4).
  • the failure prediction unit obtains the degree of damage of the solder connection portion according to the electrical characteristics of the load amplification unit 60 measured by the measurement unit 5 and the damage / electrical property database.
  • the damage / electrical property database is created by associating the electrical characteristics of the load amplifying unit 60 with the damage of the solder joints and storing the results derived from experiments in advance. It has been done.
  • FIG. 11 is a side view showing a modification in which the load amplifying unit 60 according to Embodiment 1 of the present invention is arranged on a mounted component.
  • the load amplification unit 60 may be provided on the mounting component 1 mounted on the substrate 2.
  • substrate 2 can be reduced, the man-hour for mounting a component can be reduced, and it leads to a cost reduction.
  • high-density mounting on the substrate 2 can be realized.
  • FIG. 12 is a side view showing a modification of the load amplifying unit 60 according to Embodiment 1 of the present invention.
  • the sacrificial fracture 4 is arranged in contact with the substrate 2 (mounting component 1). More specifically, the thickness (Z direction) of the bridge connecting portion 32 is configured to be the same as or longer than the length of the leg 31 (Z direction).
  • the sacrificial fracture portion 4 may be prevented from being deformed in the out-of-plane direction (Z direction) due to vibration stress.
  • the life of the sacrificial fracture portion 4 is made shorter than the life of the solder connection portion by using a method of reducing the strength of the sacrificial fracture portion 4 instead of increasing the strain of the sacrificial fracture portion 4. do it.
  • the substrate 2 and the sacrificial fracture portion 4 are in contact with each other means that the height of the solder connection portion (in addition to the case where the sacrificial fracture portion 4 and the substrate 2 (mounting component 1) are in close contact with each other). This includes a case where a gap corresponding to, for example, 2 to 3 millimeters or less) is provided between the sacrificial fracture 4 and the substrate 2 (mounting component 1).
  • the sacrificial fracture portion 4 is provided at a location where the deformation is increased with respect to the vibration stress, the failure prediction of the solder connection portion caused by the vibration stress is performed with a structure having a high degree of freedom in design. be able to.
  • FIG. FIG. 13 schematically shows the shape of the load amplification section 60A of the circuit board according to the second embodiment.
  • the support leg portion 3 and the sacrificial fracture portion 4 have the same thickness in the Z direction.
  • the thickness in the Z direction of the sacrificial fracture 4A of the present embodiment is formed smaller than that of the support leg 3. Note that in this embodiment, only a configuration different from that in Embodiment 1 will be described, and description of the same or corresponding configuration will not be repeated.
  • the circuit board according to the present embodiment has a configuration in which the thickness in the out-of-plane direction (Z direction) of the sacrificial fracture portion 4A is made smaller than the thickness of the support leg portion 3.
  • the deformation (stress) of the sacrificial fracture portion 4A can be increased, and the propagation distance of the crack in the sacrificial fracture portion 4A can be shortened.
  • the structure can be more easily broken.
  • the sacrificial fracture portion 4A can be designed with a desired life.
  • rupture part 4A is previously acquired about the solder connection part of each mounting component 1, the remaining life of a solder connection part can be estimated more correctly.
  • the sacrificial fracture portion 4A and the support leg portion 3 are configured to have different shapes. Thereby, in addition to the first embodiment, there is an effect that the sacrificial fracture portion 4A can be easily designed to have a desired fracture life.
  • FIG. 14 schematically illustrates an example of the shape of the load amplification unit 60B of the circuit board according to the third embodiment
  • FIG. 15 illustrates a load amplification unit that is a modification of the load amplification unit 60B illustrated in FIG. It is a figure which shows the shape of 60C.
  • the sacrificial fractures 4B and 4C in the third embodiment are different from those in the first embodiment in that they have notches. In the present embodiment, only the configuration different from that of the first embodiment will be described, and the description of the same or corresponding configuration will not be repeated.
  • the load amplifying parts 60B and 60C of the present embodiment include a sacrificial fracture part 4B having a rectangular notch 7A (shown in FIG. 14) and a sacrificial fracture part 4C having a triangular notch 7B (shown in FIG. 15). Is provided.
  • the shape of the notch may be any.
  • notches are provided symmetrically with respect to both side surfaces in the out-of-plane direction (Z direction) of the substrate 2, but the notches 7A or 7B may be provided only on one side surface. .
  • the location of the notch is not limited to the out-of-plane direction (Z direction), and a notch may be similarly provided in the X direction or the Y direction to support the load amplifying units 60B and 60C. What is necessary is just to be comprised so that the intensity
  • rupture part may become low intensity
  • the load amplifying unit 60 of the present embodiment has a shape whose natural frequency is the same as the frequency of the vibration stress acting on the substrate 2.
  • a method of changing the natural frequency of the load amplification unit 60 there is a method of changing the length, width, and thickness of the load amplification unit 60 in the longitudinal direction.
  • the amplitude of the load amplification unit 60 varies depending on the frequency of vibration input to the substrate 2. Generally, when a vibration close to the natural frequency of a member is input, the member starts to resonate and the stress acting on the member increases. For example, when the load amplification unit 60 is configured with the dimensions shown in FIG. 3, the natural frequency of the load amplification unit 60 is 490 hertz.
  • the elastic modulus is 123 and 42 (gigapascal)
  • the Poisson's ratio is 0.33 and 0.36
  • the densities are 8880 and 7400, respectively. (Kilogram / cubic meter). In FIG.
  • the support leg 3 (copper) and the sacrificial fracture 4 (lead-free solder) are made of different materials, but the support leg 3 and the sacrificial fracture 4 are made of the same material, that is, copper.
  • the natural frequency of the load amplification unit 60 is 525 Hz.
  • the load amplification unit 60 can be configured to have an arbitrary natural frequency by changing the material and shape. With this configuration, the natural frequency of the load amplifying unit 60 can be matched with the frequency of vibration input to the substrate 2, so that the vibration applied to the substrate 2 is effectively amplified in the load amplifying unit 60, and the sacrificial fracture portion There is an effect that 4 can be reliably broken.
  • the load amplification unit 60 when vibration stress over a band including the natural frequency of the load amplification unit 60 acts on the substrate 2, the load amplification unit 60 resonates to greatly increase the deformation (stress) that acts on the sacrificial fracture portion 4. it can.
  • the sacrificial fracture portion 4 can be designed to have a target life against vibration stress, and in addition to the effects of the first embodiment, the life of the joint between the substrate 2 and the mounting component 1 against vibration stress can be accurately predicted. Can do.
  • FIG. 16 schematically shows the shape of the load amplification section 60D of the circuit board according to the fifth embodiment.
  • the load amplifying unit 60D in the fifth embodiment is different from the first embodiment in that the mounting body 8 is mounted on the upper surface of the sacrificial fracture portion.
  • the present embodiment only the configuration different from that of the first embodiment will be described, and the description of the same or corresponding configuration will not be repeated.
  • the mass of the sacrificial fracture portion 4 can be increased. Therefore, when vibration stress acts on the substrate 2, the out-of-plane direction (Z direction) acting on the sacrificial fracture portion 4 The deformation (stress) of can be increased. As a result, the sacrificial rupture portion 4 can be ruptured earlier with respect to vibration stress, and the sacrificial rupture can be more reliably performed before the solder connection portion between the mounting component 1 and the substrate 2 breaks. The part 4 can be broken. Accordingly, the possibility that the solder connection portion is broken before the sacrificial fracture portion 4 is broken and the breakage of the solder connection portion cannot be detected can be further reduced.
  • the natural frequency of the bridging portion 6D or the load amplification portion 60D can be reduced.
  • the target natural frequency can be easily adjusted.
  • the mounting body 8 attached to the sacrificial fracture 4 is preferably a non-conductive material.
  • the sacrificial fracture portion 4 In the case of a conductive material, even if the sacrificial fracture portion 4 is fractured, it can be a current path, so that it is difficult to detect a change in electrical characteristics, that is, to detect a fracture of the sacrificial fracture portion 4. Therefore, in the case of using a conductive material, if the periphery of the insulating material is covered with an insulating member such as an insulating resin, the mounting body 8 does not become an energizing path, and the sacrificial fracture portion 4 is reliably broken. Can be detected.
  • the mounting body 8 is provided on the upper surface of the sacrificial fracture portion 4.
  • FIG. 17 schematically shows the shape of the load amplifier 60E of the circuit board according to the sixth embodiment.
  • the bridge connecting part 32A when configuring the load amplifying part 60E, the bridge connecting part 32A is moved from the position indicated by the solid line to the position indicated by the broken line and fixed to both ends of the sacrificial fracture part 4.
  • the load amplifying unit 60E in the sixth embodiment is different from the first embodiment in that the pair of support legs 3A in a state in which an elastic force is applied is fixed to the sacrificial fracture portion 4.
  • the sacrificial fracture portion 4 is fixed in a state of being sandwiched between the pair of cross-linking portions 32A in a state where an elastic force is applied.
  • the support leg portion 3A of the present embodiment is configured by an elastic member having elasticity such as a spring.
  • the support leg portion 3A made of an elastic member has a configuration in which the support leg portion 3A is joined to the sacrificial fracture portion in a state where the support leg portion 3A is extended or compressed more than the natural length.
  • the support leg 3 ⁇ / b> A is fixed to the sacrificial fracture 4 in a state of receiving stress in the in-plane direction (Y direction) from the sacrificial fracture 4.
  • Y direction in-plane direction
  • the support leg portion 3A of the present embodiment has a shape in which the cross-linking connection portion 32A of the cross-linking portion 6E is bent in the out-of-plane direction (Z direction) rather than horizontally with respect to the substrate 2 as in the first embodiment.
  • the structure is connected to both ends of the sacrificial fracture 4 while applying an elastic force to the support leg 3A. According to this configuration, when one or both of vibration stress and thermal stress act on the substrate 2 and a crack occurs in the sacrificial fracture portion 4, the sacrificial fracture portion 4 is affected by the elastic force acting on the support leg 3 ⁇ / b> A. The crack progresses to break.
  • the sacrificial fracture portion 4 joined by the support leg portion 3A in a state where an elastic force is applied is provided.
  • the load amplification portion 60 of the sacrificial fracture portion 4 is fractured. It has an effect that changes in electrical characteristics can be easily detected.
  • FIG. FIG. 18 schematically shows the shape of the load amplification section 60F of the circuit board according to the seventh embodiment.
  • the load amplifying unit 60F in the seventh embodiment is different from the first embodiment in that the load amplifying unit 60F includes a plurality of sacrifice fracture portions 40A to 40C provided in the out-of-plane direction (Z direction).
  • Z direction the out-of-plane direction
  • the plurality of sacrificial fracture portions 40A to 40C are arranged in the out-of-plane direction (Z direction) of the substrate 2 so as to form a layered structure.
  • the plurality of sacrificial fractures are arranged with a predetermined distance apart from each other in the out-of-plane direction (Z direction), and in the figure, between the sacrificial fractures 40A and 40B and between the sacrificial fractures 40B and 40C.
  • a void is formed.
  • the same effect can be obtained even if a plurality of sacrificial fracture sections 40A to 40C are arranged without providing a gap.
  • the sacrificial fracture portion 40A, the sacrificial fracture portion 40B, and the sacrificial fracture portion 40C are arranged on the front side, the center side, and the back side of the load amplification unit 60F, respectively.
  • the sacrificial fracture portion may be arbitrarily arranged as long as the available sacrificial fracture portion can be increased.
  • FIG. 18 shows a configuration in which three sacrificial fractures 40A to 40C are provided, but even when there are two sacrificial fractures, it is possible to confirm the cause of the failure by adjusting the arrangement location. That is, one layer of the sacrificial fracture portion may be disposed at the center portion of the bridge connecting portion 32 in the height direction (Z direction), and the other layer of the sacrificial fracture portion may be disposed on the front surface side or the back surface side.
  • the stress factor is determined according to the arrangement position of the fractured sacrificial fracture portion. However, the stress factor may be determined according to the number of fractured sacrificial fracture portions.
  • the load amplifying unit includes a plurality of sacrificial fractures arranged in layers in the out-of-plane direction (Z direction).
  • FIG. 19 schematically illustrates the configuration of the load amplification unit 60 and the measurement unit 5 of the circuit board according to the eighth embodiment.
  • the circuit board according to the eighth embodiment is different from the first embodiment in that a plurality of load amplifying units 60 are provided. In the present embodiment, only the configuration different from that of the first embodiment will be described, and the description of the same or corresponding configuration will not be repeated.
  • the circuit board of the present embodiment has a plurality of load amplifying units 60 and measuring units 5, it is possible to take into account variations in the life of the sacrificial fractured part 4.
  • the failure prediction accuracy of the joint portion with the mounting component 1 can be improved.
  • two sets of the load amplification unit 60 and the measurement unit 5 are provided.
  • the number of the load amplification units 60 and the measurement units 5 is not limited to two, and the failure prediction accuracy increases as the number of the load amplification units 60 and the measurement units 5 increases. improves.
  • the measurement unit is provided in each of the load amplification units 60, a configuration in which one measurement unit measures the respective electrical characteristics with respect to the plurality of load amplification units 60 may be employed.
  • FIG. 19 A modification of the eighth embodiment will be described below.
  • a plurality of load amplifying units 60 having the same rupture life are arranged, but a configuration in which the remaining life of the solder connection portion is predicted using a plurality of load amplifying units each having a different rupture life may be used.
  • the remaining life can be predicted by the presence or absence. Specifically, when the third load amplification unit is broken and the first and second load amplification units are not broken, the life is longer than the third load amplification unit than the second load amplification unit. Compared with the case where only one load amplifying part is provided, it is possible to accurately predict the time until the breakage occurs in the solder connection part, that is, the remaining life.
  • FIG. 19 shows an example in which the plurality of load amplification units 60 are arranged so that their longitudinal directions are parallel to each other.
  • the plurality of load amplifying units 60 may be arranged so that their longitudinal directions are perpendicular to or intersecting with each other. Thereby, it is possible to appropriately cope with the case where stress anisotropy occurs due to the direction of vibration applied to the substrate 2 or the temperature gradient on the substrate 2.
  • the two load amplifying units 60 are arranged so that their longitudinal directions are perpendicular or intersect each other.
  • FIG. 19 illustrates an example in which two load amplifying units 60 are provided, it goes without saying that the number of load amplifying units 60 may be more than two.
  • the circuit board according to the present embodiment has a configuration having a plurality of load amplifying units 60.
  • the number of load amplifying units 60, the arrangement method, or the like, in addition to the effect of the first embodiment there is an effect that the accuracy of failure prediction is improved.
  • FIG. 20 schematically shows the shape of the load amplification section 60G of the circuit board according to the ninth embodiment.
  • the circuit board according to the ninth embodiment is different from the first embodiment in that the circuit board includes a load amplifying unit 60G having a plurality of sacrificial fracture portions 4D to 4F arranged in the X direction or the Y direction.
  • the present embodiment only the configuration different from that of the first embodiment will be described, and the description of the same or corresponding configuration will not be repeated.
  • the circuit board according to the present embodiment is configured to include a load amplification unit 60G having a plurality of sacrificial fracture portions 4D to 4F formed in a comb shape.
  • the load amplification section 60G includes a plurality of sacrificial fracture sections 4D to 4F arranged in the in-plane direction of the substrate 2.
  • FIG. FIG. 21 is a side view of the load amplifying unit 60H according to the tenth embodiment.
  • the load amplification unit 60H according to the tenth embodiment is different from the first embodiment in that the load amplification unit 60H includes sacrificial fracture portions 4G and 4H (second sacrificial fracture portion).
  • the sacrificial fracture portions 4G and 4H are provided at a connection portion where the leg body 31 and the bridge connection portion 32 are connected.
  • the connecting portion between the leg 31 and the bridge connecting portion 32 is shown as being entirely composed of the sacrificial fracture portions 4G and 4H, but only a part of the connecting portion, not the entire sacrificial fracture, is sacrificed. It may be composed of parts 4G and 4H. Note that in this embodiment, only a configuration different from that in Embodiment 1 will be described, and description of the same or corresponding configuration will not be repeated.
  • FIG. 22 is a schematic diagram showing deformation of the load amplifying unit 60H when vibration stress acts on the substrate 2 in the in-plane direction (Y direction).
  • the load amplifying unit 60H is deformed in the direction of the arrow in FIG. 22, that is, in the in-plane direction, and the leg 31 is deformed to bend. It is necessary to design the sacrificial fracture portions 4G and 4H so that the lifetime of the sacrificial fracture portions 4G and 4H is shorter than that of the solder connection portions, similarly to the sacrificial fracture portion 4.
  • the sacrificial fracture portions 4G and 4H are portions formed between the legs 31 and the bridge connection portion 32, tensile stress and compressive stress act repeatedly on this portion. Therefore, cracks propagate at the sacrificial fracture portions 4G and 4H, and finally break.
  • the substrate 2 is subjected to vibration stress in two directions, that is, (a) an out-of-plane direction (Z direction) and (b) an in-plane direction (Y direction or X direction).
  • the configuration is suitable when performing life prediction (solder joint) against the vibration stress (a).
  • the failure prediction element including the load amplifying unit 60H according to the present embodiment can perform life prediction (solder connection) against the vibration stress (b) in addition to (a) above. .
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.
  • the above-described present invention can be implemented by an apparatus having a printed circuit board, for example, inspection of information communication equipment such as servers and storages, industrial equipment such as inverters and programmable logic controllers, electronic microscopes, atomic force microscopes, etc.
  • information communication equipment such as servers and storages
  • industrial equipment such as inverters and programmable logic controllers
  • electronic microscopes atomic force microscopes
  • control devices for devices, medical devices such as proton therapy devices and nuclear magnetic resonance devices, mobile devices such as elevators and escalators, automobiles and railway vehicles.
  • it is not limited to these, It can utilize for the electronic device which has other printed circuit boards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

設計自由度の高い構造により振動ストレスに起因するはんだ接続部の故障予測を行う故障予測素子及びこれを用いた回路基板を提供する。本発明に係る故障予測素子は、はんだ接続された実装部品(1)を搭載した基板(2)に設けられた故障予測素子であって、基板(2)又は実装部品(1)に一端がそれぞれ固定された一対の支持脚部(3)、及び一対の支持脚部(3)の他端の各々により支持される犠牲破断部(4)を有し、一対の支持脚部(3)を介して犠牲破断部(4)に基板(2)にかかる振動を伝達する負荷増幅部(60)を備えたものである。

Description

故障予測素子及びこれを用いた回路基板
 本発明は、故障予測構造を有する故障予測素子及びこれを用いた回路基板に関する。
 電気製品に搭載されている回路基板には多数の実装部品がはんだ接続されている。これらの実装部品は外部から熱、振動等の外力によるストレスにさらされる機会が多い。外力によるストレスは、はんだ接続部(実装部品と基板とがはんだ接続された部分)にき裂を発生及び進展させ、これにより断線が発生する場合がある。はんだ接続部に断線が発生すると、予期せぬ時に電気製品が停止・誤作動などしてしまうため、はんだ接続部の断線が発生する前の段階でその破断を予測することができれば、電気製品の点検や部品交換の時期を明確化し効率良く電気製品を使用できるため、はんだ接続部の故障予測を行う技術が必要とされている。
 例えば、特許文献1は、回路基板とアーチ状の細長いパッケージとがはんだ接続(犠牲破断部)されている構成を開示する。この構成により、熱ストレスが生じた際にひずみが集中する高ひずみ領域に犠牲破断部を形成することで、回路基板と実装部品とのはんだ接続部よりも犠牲破断部を先に破断させ、犠牲破断部の破断により生じた電気的特性の変化に基づき、はんだ接続部の故障予測を行っていた。
 また、特許文献2は、回路基板に実装されたBGA(Ball Grid Array)型やQFP(Quad Flat Package)型のパッケージのはんだ接続部のうち、応力が集中するパッケージの外周縁にダミー接合部を少なくとも一個設ける構成を開示する。加振源により一定値以上の加速度が作用した際に、そのダミー接合部の電気的特性を測定することで、測定された電気的特性に基づいてはんだ接続部の損傷度を予測していた。
 さらに、特許文献3にはBGA型のパッケージを実装する回路基板であって、パッケージで最も応力が集中する四隅の領域に、低強度構造を有する第1及び第2の配線を設けていた。これにより、この第1及び第2の配線における低強度構造が、はんだ接続部よりも先に破断する構成としていた。さらに、第1及び第2の配線の電気的特性の変化からパッケージにおけるはんだ接続部の故障を予測していた。
特開2016-100361号公報 国際公開第2011/036751号 国際公開第2011/036776号
 特許文献1では熱ストレスに対しては、部材間の熱膨張係数の違いを利用しているため、故障予測が行えるものの、振動ストレスに対する故障予測が考慮されていない。従って、振動ストレスに対応できないという問題があった。特許文献2では、振動ストレスが集中する箇所であるパッケージの外周縁に、ダミー接合部を配置する必要があった。同様に、特許文献3も、ストレスが集中する箇所であるパッケージの外周縁に配線の一方の端部を配置する必要があり、設置場所が限定されるという問題があった。
 本発明は、上述のような事情を鑑みてなされたもので、設計自由度の高い構造により振動ストレスに起因するはんだ接続部の故障予測を行う故障予測素子及びこれを用いた回路基板を提供することを目的としている。
 本発明に係る故障予測素子は、はんだ接続された実装部品を搭載した基板に設けられた故障予測素子であって、基板又は実装部品に一端がそれぞれ固定された一対の支持脚部、及び一対の支持脚部の他端の各々により支持される犠牲破断部を有し、一対の支持脚部を介して犠牲破断部に基板にかかる振動を伝達する負荷増幅部を備えたものである。
 本発明に係る故障予測素子及びこれを用いた回路基板にあっては、振動ストレス及び熱ストレスが回路基板に作用した場合に、後述する各実施の形態を利用し、犠牲破断部の寿命をはんだ接続部の寿命より短くなるように設計することではんだ接続部の故障予測を高い設計自由度により行うことが可能になる。
本発明の実施の形態1に係る回路基板を示す斜視図である。 本発明の実施の形態1に係る回路基板の負荷増幅部を示す側面図である。 本発明の実施の形態1に係る回路基板の負荷増幅部の寸法の一例を示す斜視図である。 本発明の実施の形態1に係る回路基板に振動ストレスが作用した場合の負荷増幅部の変形を示す模式図である。 本発明の実施の形態1に係る回路基板が温度上昇した場合の負荷増幅部の変形を示す模式図である。 はんだを含む金属材料に対する耐久試験で得られた疲労寿命データに基づいて算出された近似式である疲労寿命式を示す模式図である。 本発明の実施の形態1に係るQFP型パッケージと基板とのはんだ接続部を模擬した解析モデルの全体図である。 本発明の実施の形態1に係るQFP型パッケージと基板とのはんだ接続部を模擬した解析モデルの拡大図である。 本発明の実施の形態1に係る図3の負荷増幅部の形状で数値解析を行うためにモデル化した解析モデルの全体図である。 本発明の実施の形態1に係る回路基板の故障予測の際の動作を示すフローチャートである。 本発明の実施の形態1に係る回路基板の負荷増幅部を実装部品上に配置した変形例を示す側面図である。 本発明の実施の形態1に係る回路基板の負荷増幅部の変形例を示す側面図である。 本発明の実施の形態2に係る回路基板の負荷増幅部を示す側面図である。 本発明の実施の形態3に係る回路基板の負荷増幅部を示す側面図である。 本発明の実施の形態3に係る回路基板の負荷増幅部の変形例を示す側面図である。 本発明の実施の形態5に係る回路基板の負荷増幅部を示す側面図である。 本発明の実施の形態6に係る回路基板の負荷増幅部を示す側面図である。 本発明の実施の形態7に係る回路基板を示す斜視図である。 本発明の実施の形態8に係る回路基板を示す斜視図である。 本発明の実施の形態9に係る回路基板を示す斜視図である。 本発明の実施の形態10に係る回路基板の負荷増幅部を示す側面図である。 本発明の実施の形態10に係る回路基板に振動ストレスが作用した場合の負荷増幅部の変形を示す模式図である。
実施の形態1.
 図1は実施の形態1に係る回路基板100を示す斜視図である。図2は図1の側面図である。回路基板100は、はんだ接続された実装部品1を搭載した基板2と、基板2又は実装部品1に配置され基板2にかかる負荷を増幅する負荷増幅部60と、負荷増幅部60の電気的特性を測定する測定部5と、測定部5の測定結果に基づき、はんだ接続部の破断による故障を予測する故障予測部(図示省略)を備える。なお、故障予測素子は、測定部5、負荷増幅部60、及び故障予測部を有する。
 本実施の形態における方向を説明する。図1に示す通り、互いに直行するX方向、Y方向、及びZ方向を、それぞれ奥行方向、横方向、及び高さ方向(面外方向)であると定義して説明する。なお、説明の便宜上、上述のような座標系を設定して説明を行ったが、負荷増幅部60の配置によりX方向、Y方向、及びZ方向を適宜設定してもよいことは言うまでもない。
 実装部品1は、BGA型やQFP型といわれるパッケージ、又はコンデンサ、チップ抵抗等の電子部品であってもよく、基板2上に実装可能な電子部品であればよい。
 図1及び図2に示す負荷増幅部60は、一対のL字型の導体からなる支持脚部3と、一対の支持脚部3により支持された犠牲破断部(第1犠牲破断部)4とを有する。図中、犠牲破断部4は、基板2又は実装部品1に対して、基板2の面外方向(Z方向)に離間して配置されている。なお、本実施の形態の犠牲破断4及び実施の形態2以降で説明する犠牲破断部4A~4Fは、第1犠牲破断部に相当する。支持脚部3の一端部は基板2に固定される。一対の支持脚部3の他端部は、犠牲破断部4の端部に固定される。換言すると、負荷増幅部60は、基板2又は実装部品1に一端がそれぞれ固定された一対の支持脚部3、及び一対の支持脚部3の他端の各々により支持される犠牲破断部4を有する。犠牲破断部4は基板2上のはんだ接続部よりも寿命が短くなるように設計する必要がある。設計方法の具体例については、後述することとする。
 支持脚部3は、脚体31及び架橋連結部32を有する。図2中、脚体31は点線よりもY方向において外側の部分である。また架橋連結部32は点線よりもY方向において内側の部分である。また、架橋部6は、犠牲破断部4の両端にそれぞれ1つの架橋連結部32が連結することで構成される。なお、支持脚部3は、L字に限らず、一方の端部が他方の端部に対して湾曲した形状でもよく、犠牲破断部4の両端を挟み込むことで支持する構成とすることができれば、その形状はいずれでもよい。
 脚体31と基板2との固定はネジ、ボルト等で機械的に行われる。これにより犠牲破断部4が破断する前に負荷増幅部60と基板2との固定が解除されない。犠牲破断部4が破断する前に負荷増幅部60と基板2との固定が解除されないのであれば、機械的な接続の他に、接着剤を介して行ってもよく、はんだ接続を行ってもよいことは言うまでもない。
 ここで、負荷増幅部60の形状の変形例について述べる。実施の形態では、負荷増幅部60の内周面は、そのY-Z断面における断面形状が矩形である例を示しているが、円の一部、又は楕円の一部であってもよい。さらに、この負荷増幅部60において負荷が増幅されるものであれば、負荷増幅部60の内周面の断面形状はいずれの形状でもよい。
 さらに負荷増幅部60の部材構成の変形例を説明する。本実施の形態では支持脚部3及び犠牲破断部4を異なる部材で構成する例を挙げて説明するが、支持脚部3及び犠牲破断部4が同一部材で構成されていてもよく、負荷増幅部60の一部が基板2にかかる負荷により、はんだ接続部よりも早く破断される構成であればよい。
 また、支持脚部3及び犠牲破断部4は、それぞれ銅及びはんだ(例えば、鉛フリーはんだSn-3Ag-0.5Cu)で構成される。例えば支持脚部3及び犠牲破断部4は、導電性の材料で構成されていれば上述したものとは異なる部材で構成されていてもよく、はんだ材、Agペースト、導電性樹脂、又は表面にメタライズ層を有し導電性を持たせた非導電性材料等でもよい。
 ここで、インバータ及びサーボモータに用いられる負荷増幅部60の形状の1例を、図3を用いて説明する。図3は、本発明の実施の形態1における負荷増幅部60の寸法の一例を示す斜視図である。図中、負荷増幅部60の横幅L1、奥行きL2、高さL3、及び幅L4が、それぞれ25ミリメートル(以下、「mm」)、1.0mm、6.0mm、及び0.10mmである。また、犠牲破断部4の幅L5は2.0mmである。
 支持脚部3と犠牲破断部4を異なる材料で構成し、支持脚部3に比べて犠牲破断部4を破断強度が低い低強度部材とすれば、犠牲破断部4を一層破断させやすくなり、負荷増幅部60の形状をより自由に設計できる。これにより、基板2に作用する熱ストレス、又は振動ストレスに対してはんだ接続部に対する犠牲破断部4の早期破断を、より高い信頼性をもって実現できる。
 犠牲破断部4はき裂の進展や破断によって、その電気的特性例えば直流抵抗値が変化する。犠牲破断部4、もしくは支持脚部3と犠牲破断部4からなる負荷増幅部60の電気的特性を測定部5で測定することで、後述する方法によりはんだ接続部の故障予測を行う。なお、測定する電気的特性は、直流抵抗値の代わりにインピーダンス等でもよく、コンデンサ、コイル等であればキャパシタ又はインダクタンスの値であってもよい。
 電子機器、特にサーボモータ、インバータ等に搭載される基板2には、振動ストレス、熱ストレス等が繰り返し作用する。これらのストレスは、基板2が搭載された機器の動作状態、及び使用環境(周囲温度、湿度、振動状態等)に起因するものである。以下、振動ストレス及び熱ストレスによる基板2及び基板2に搭載された電子部品に対する影響を説明する。
 まず、図4を用いて振動ストレスによる基板2等に対する影響を説明する。図4は、基板2に振動ストレスが作用した場合の、支持脚部3と犠牲破断部4から構成される負荷増幅部60の変形の模式図である。面外方向(Z方向)における変形により、犠牲破断部4の面外方向(Z方向)に対する一方の表面には引張応力が、もう一方の表面には圧縮応力が作用する。基板2に振動ストレスが作用する間、犠牲破断部4にはこれらの応力が繰り返し作用するため、犠牲破断部4にはき裂が発生及び進展し、最終的に破断に至る。
 ここで、振動ストレスによる負荷増幅部60の変形を説明する。負荷増幅部60は、基板2に振動ストレスが作用した場合、基板2に対して面外方向(Z方向)に変形する。犠牲破断部4の下部に空隙部6aが形成されているため、基板2に制限されることなく犠牲破断部4が面外方向(Z方向)に変形する。これにより基板2の振動は、負荷増幅部60で後述の通り増幅され、振動ストレスが繰り返し作用することで、犠牲破断部4が破断に至る。
 負荷増幅部60における振動ストレスの増幅について以下に説明する。本実施の形態の負荷増幅部60は、犠牲破断部4が一対の支持脚部3により支持される構造であるため、一対の支持脚部3の脚体31のそれぞれに伝達された振動は、一対の脚体31の各々に対応する架橋連結部32を経て犠牲破断部4に伝達される。ここで、一対の脚体31の各々から負荷増幅部60の中央部に向かい振動が伝達されるため、負荷増幅部60の例えば中央部において振動が強め合い、面外方向(Z方向)の変形(応力)が基板2上の振動に比べて大きくなる。本実施の形態では、面外方向(Z方向)の変形(応力)が大きくなる箇所に犠牲破断部4を配置することで、基板2のはんだ接続部よりも犠牲破断部4が早期に破断する寿命に設計可能になる。なお、犠牲破断部4を配置する位置は、負荷増幅部60の中央部に限らず、負荷増幅部60上で振動が強め合う位置であればいずれの箇所でもよい。振動が強め合う位置は、基板2上で発生する振動特性(周波数、位相)及び負荷増幅部60の物性特性により異なるため、負荷増幅部60の形状及び物性特性によって、犠牲破断部4の位置を適宜設定してもよいことは言うまでもない。
 本実施の形態では、負荷増幅部60と基板2との間に犠牲破断部としてはんだ接続部を設ける構成ではなく、負荷増幅部60に犠牲破断部4を設けた構成である。従って、基板2上の振動が増幅されないでそのまま伝達されるはんだ接続部に犠牲破断部を配置するのではなく、振動ストレスに対して変形が大きくなる箇所に犠牲破断部4を設けているため、振動ストレスが基板に負荷された場合において、実装部品1と基板2とのはんだ接続部の故障予測を高い設計自由度により行うことが可能になる。
 また、本実施の形態の負荷増幅部60は、犠牲破断部4の下に空隙部6aが形成された構造である。従って、本実施の形態の負荷増幅部60は、空隙部6aを設けずに基板2上に犠牲破断部4を配置する構成とは異なり面外方向(Z方向)における犠牲破断部4の変形を妨げるものがないため、はんだ接続部よりも犠牲破断部4を早期に破断させることがより確実に行える。
 次に、図5を用いて熱ストレスによる基板2等に対する影響を説明する。また図5は、基板2に熱ストレスが作用した場合の、支持脚部3と犠牲破断部4から構成される負荷増幅部60の変形の模式図である。基板2に熱ストレスが作用して基板2の温度が上昇した場合、基板2は図5の矢印の方向すなわち面内方向(Y方向)に熱変形する。この基板2の熱変形によって、支持脚部3と犠牲破断部4は、引張応力により基板2の面内方向(Y方向)に引き伸ばされるように変形する。一方、基板2の温度が低下した場合は、圧縮応力により図5の矢印と逆の方向に変形することになる。このような、熱ストレスが繰り返し作用すると、犠牲破断部4には面内方向(Y方向)に一様に引張及び圧縮応力が繰り返し作用するため、犠牲破断部4にき裂が発生及び進展し、最終的には犠牲破断部4の破断に至る。
 支持脚部3と犠牲破断部4からなる負荷増幅部60の見かけの線膨張係数と回路基板の見かけの線膨張係数の値が異なる材料とすれば、熱ストレスが作用した場合に負荷増幅部60は自由膨張による変形よりも大きく変形するため、これにより、熱ストレスに対しても、はんだ接続部よりも寿命が短い犠牲破断部を有する負荷増幅部60を構成することができる。なお、見かけの線膨張係数とは、支持脚部3及び犠牲破断部4を一体の部材とみなした場合の線膨張係数である。また、負荷増幅部60を搭載する実装部品1又は基板2の線膨張係数と負荷増幅部60の見かけの線膨張係数との差を、はんだ接続部の故障予測をより効果的に行うことができる。例えば、基板2としてFR-4基板(Flame Retardant Type 4)を用いた場合、その線膨張係数が14~16(ppm/K)であるので、見かけの線膨張係数が19~21(ppm/K)となる部材で負荷増幅部60を構成すればよい。
 はんだ接合部の故障を予測するためには、熱又は振動ストレスが基板2に作用したときの犠牲破断部4の寿命を、はんだ接続部の寿命に比べて短くなるように設計することが必要である。このような観点に基づいて、はんだ接続部および犠牲破断部4の寿命の設計方法の一例を述べる。
 まず、基板2上のはんだ接合部における寿命予測を行う(詳細は後述)。次に、はんだ接合部における寿命予測の結果に基づいて、犠牲破断部4の構成(形状及び材料)を決定する。例えば、犠牲破断部4の寿命がはんだ接合部の寿命よりも予め設定されたサイクルだけ短くなるよう、犠牲破断部4を設計する。上述した設計方法でははんだ接合部の寿命から犠牲破断部4を設計したが、犠牲破断部4の構成に基づいて、はんだ接合部の構成(形状及び材料)を設計してもよいことは言うまでもない。
 上述のとおり、はんだ接合部と犠牲破断部4との設計には、それぞれの部材の寿命を正確に予測することが必要になることから、はんだ接合部および犠牲破断部4の寿命を予測する方法を以下に説明する。
 熱又は振動ストレスに対する寿命を予測する方法は以下のとおりである。まず(1)有限要素法による数値解析によるデータ(相当ひずみ範囲Δεeqv0)を算出し、次に(2)耐久試験で得られたはんだ接続部の疲労寿命式を算出する。最後に、上記(1)及び(2)の処理で得られたデータ及び疲労寿命式を用いて、寿命の予測を行う。
 ここで、相当ひずみ範囲Δεeqvは、熱又は振動ストレスの1サイクル中に物体に作用する相当ひずみεeqvの最大値と最小値の差を表すパラメータである。上述した相当ひずみεeqvはミーゼス(Mises)の条件より3軸応力状態において物体に生じる3つの主ひずみを用いて下記数式1で表されるパラメータである。なお、下記数式1におけるε1、ε2、及びε3は、例えば図3等の座標系では、それぞれX軸方向、Y軸方向、及びZ軸方向における主ひずみを示す。またνはポアソン比を示す。以下、Δεeqv0は上記(1)の処理で得られた値であるとし、Δεeqvは上記(2)の処理で得られた値であるとする。
Figure JPOXMLDOC01-appb-M000001
 まず、上記(1)数値解析によるデータ(相当ひずみ範囲Δεeqv0)について、その算出方法を説明する。実装部品1、基板2、及び、基板2と実装部品1とを接続するはんだ接続部について、解析モデルを作成する。次に、作成した解析モデルを用いて、基板2に作用する熱や振動等のストレスを作用させた場合を模擬したシミュレーションを行う。このシミュレーションを行うことにより、はんだ接続部に実際に作用する相当ひずみ範囲Δεeqv0が算出できる。
 次に、上記(2)疲労寿命式の算出方法を、以下に説明する。図6は、はんだを含む金属材料に対する耐久試験で得られた疲労寿命データに基づいて算出された近似式である、疲労寿命式を示す模式図である。図中、相当ひずみ範囲Δεeqvが縦軸に、そして繰り返し数(寿命)Nfが横軸に示されている。図中の線分は、疲労寿命式を図示したものであり、この疲労寿命式は、疲労寿命データを下記数式2の形式で近似した近似式である。この数式2におけるα及びβは、近似式のパラメータであり、はんだ接合部の材料及び破壊モードに対応して異なる値を取る。なお、上述した疲労寿命データは、相当ひずみ範囲Δεeqvと繰り返し数(寿命)Nfからなるデータセットを複数有するデータであるが、図6では各データセットの図示を省略し、疲労寿命式(近似式)のみを図示している。
Figure JPOXMLDOC01-appb-M000002
 最後に、相当ひずみ範囲Δεeqv0を上記数式2の左辺に代入し、繰り返し数(寿命)Nfについて解くと、Nf=N0が導出される。このN0がはんだ接続部の予測寿命となる。
 ここで、はんだ接続部及び犠牲破断部4の設計方法を具体的に説明する。破壊モードを熱ストレスによるものとし、熱ストレスは、ヒートサイクル(温度範囲-65℃~95℃)で作用させる。また、はんだ接続部は、QFP型パッケージと基板2を接続するものとし、はんだ接続部は共晶はんだ(鉛Pb:37%、スズSn:63%)により構成されているとする。図7はQFP型パッケージと基板2とのはんだ接続部を模擬した解析モデルの全体図を表しており、図8は図7の解析モデルのはんだ接続部の拡大図を表している。
 まず、上記(1)の処理において、温度範囲-65℃~95℃のヒートサイクルを模擬した数値解析による計算を行い、はんだ接続部に作用する相当ひずみ範囲Δεeqv0を推定する。
 なお、BGA型やQFP型といったパッケージ等では、図8で図示したとおり、複数のはんだ接続部を有する。このような複数のはんだ接合部において、複数のはんだ接合部が互いに異なる形状を有する場合は、はんだ接合部ごとに異なる方向の応力が発生し、はんだ接合部ごとの破壊モードが異なることがある。この場合は、複数のはんだ接合部のうち例えば最も寿命が短くなる(相当ひずみ範囲が最も大きくなる)はんだ接続部に着目して上記(1)の処理で得られた相当ひずみ範囲Δεeqv0および上記(2)の処理で得られた疲労寿命式を用いて、寿命予測を行う。
 QFP型パッケージの複数のはんだ接続部(図8に図示)のうち、このパッケージの角部(図中、最も手前側に位置する部分)のリードのはんだ接続部は、その相当ひずみ範囲がΔεeqv0が8.8×10-3となり、最大の相当ひずみ範囲Δεeqv0を有するため、このはんだ接続部について、寿命予測を行う。
 また、上記(2)疲労寿命式の算出については、共晶はんだに対する熱サイクル試験を実施することで、疲労寿命データを取得する。取得した疲労寿命データから、上記数式2の係数α、βが、それぞれ0.38、0.44と算出され、この算出された係数の値を上記の数式2に代入することにより、下記数式3(疲労寿命式)が導出される。
Figure JPOXMLDOC01-appb-M000003
 以上のことから、上述のとおり相当ひずみ範囲Δεeqv0は8.8×10-3であるので、この値を上記数式3の左辺に代入すると、はんだ接続部の寿命Nf(N0)は5207サイクルと推定できる。
 犠牲破断部4についても、はんだ接続部と同様に寿命を推定することができる。まず、上記(1)のとおり犠牲破断部4に作用する相当ひずみ範囲Δεeqv0を推定する。ここで負荷増幅部60の形状は図3に示した形状とする。図9は、図3の負荷増幅部60の形状で数値解析を行うためにモデル化した解析モデルを表している。
 犠牲破断部4の材料をはんだ接続部と同じ共晶はんだとし、支持脚部3は無酸素銅、基板はFR―4で構成されているとし、はんだ接続部の数値解析と同様に温度範囲-65℃~95℃のヒートサイクルを模擬した計算を行うと、犠牲破断部4の相当ひずみ範囲Δεeqv0は、9.6×10-3となった。この導出された値を上記数式3に代入すると、犠牲破断部4の寿命Nfは4273サイクルと推定できる。
 この例の構成によれば、犠牲破断部4の寿命がはんだ接続部より短く設計できている。つまり、はんだ接続部よりも犠牲破断部4を早期に破断させることができるため、はんだ接続部が破断する前に故障予測素子が故障を予測することができる。なお、本実施の形態では、一例として図3に示した負荷増幅部60を例に挙げて説明したが。負荷増幅部60の構成は、図3の例に限らず、はんだ接合部よりも寿命を短くできる構成(形状、材料)であればいずれの構成であってもよい。
 上述の例のように、犠牲破断部4がはんだ接続部と同じ材料で構成され、かつ、犠牲破断部4とはんだ接続部に作用する破壊モードが同じである場合には、疲労寿命式は、はんだ接合部で算出された式を用いてもよい。もちろん、上述のような場合であっても犠牲破断部4に対してもはんだ接続部と同様に耐久試験によって得られた疲労寿命データを用いてもよい。
 一方で、犠牲破断部4がはんだ接続部と異なる材料で構成されている場合又は犠牲破断部4とはんだ接続部に作用する破壊モードが互いに異なる場合は、犠牲破断部4とはんだ接続部のそれぞれについて耐久試験を行うことにより疲労寿命データを取得し、取得した疲労寿命データから疲労寿命式を算出する。
 熱ストレスが基板2に作用する場合を例に、はんだ接続部と犠牲破断部4の寿命設計の方法を説明したが、振動ストレスが基板2に作用する場合についても同様に寿命設計が可能である。また、犠牲破断部4の寿命を短くするには、犠牲破断部4に作用する、ひずみ(応力)を増加させる方法と犠牲破断部4の強度を低下させる方法の2通りが存在するが、それらの方法は後述する実施の形態にて詳細に説明する。
 以下では、図10を用いて本実施の形態に係る動作を説明する。図10は、本発明の実施の形態1における故障予測の際の動作を示すフローチャートである。前述の通り、負荷増幅部60は測定部5に接続されており、測定部5は定期的あるいは不定期的に負荷増幅部60の電気抵抗値を測定する(ステップS1)。
 故障予測部は、電気抵抗値が所定のしきい値を超えた時点で断線が発生したものと判断し(ステップS2)、断線信号を出力する(ステップS3)。
 電気抵抗値を測定(監視)するタイミングとしては、例えば温度変動の大きい電源ON時である。電源ON状態が継続している場合には一定時間間隔で監視を行ってもよい。電気抵抗値の変化に基づいて断線が判定された場合に出力される断線信号をアラームとして表示器等に表示すれば、接合部の損傷値が高くなり破断が近いことをユーザが未然に知ることができる。また断線信号の発生と同時にデータのバックアップを取得する手段を設けることも好ましい。この場合、故障発生によりデータが失われるリスクを回避することが可能となる(ステップS4)。
 なお、上述の構成では故障予測を行う動作を説明したが、電気的特性の変化により、以下に示す方法で、はんだ接続部の損傷度を推定してもよい。
 損傷度の推定方法の一例を以下で説明する。図示を省略した故障予測部は、測定部5により測定された負荷増幅部60の電気的特性と、損傷・電気的特性データベースに従って、はんだ接続部の損傷度を求める。なお、損傷・電気的特性データベースは、負荷増幅部60の電気的特性と、はんだ接続部の損傷とを対応づけて保持されたものであり、実験により導出された結果を予め蓄積することで作成されたものである。
 図11は、本発明の実施の形態1における負荷増幅部60を実装部品上に配置した変形例を示す側面図である。上述の説明では基板2上に負荷増幅部60を配置した構成を説明したが、基板2上に実装されている実装部品1の上に負荷増幅部60を設ける構成としてもよい。これにより、基板2上に実装する部品点数を減らすことができ、部品を実装するための工数を削減でき、コスト低減に繋がる。また、負荷増幅部60のために基板上の面積を割当てなくてもよいため、基板2上の高密度実装が実現できる。
 図12は本発明の実施の形態1に係る負荷増幅部60の変形例を示す側面図である。図中、犠牲破断部4は基板2(実装部品1)と接触して配置される。より詳細には、架橋連結部32の厚み(Z方向)は脚体31の長さ(Z方向)と同じ又はこの長さよりも大きくなるように構成されている。
 図12に示すような、犠牲破断部4と基板2が接触している構成では、振動ストレスによる犠牲破断部4の面外方向(Z方向)の変形が妨げられる場合がある。このような場合は、犠牲破断部4のひずみを増加させる方法でなく犠牲破断部4の強度を低下させる方法を用いることで、はんだ接続部の寿命より犠牲破断部4の寿命を短くなるよう構成すればよい。
 なお、上述した「基板2と犠牲破断部4とが接触する」とは、犠牲破断部4と基板2(実装部品1)が隙間なく密着する場合の他にも、はんだ接続部の高さ(例えば2~3ミリメートル以下)に相当する隙間が犠牲破断部4と基板2(実装部品1)の間に設けられる場合を含む。
 本発明の実施の形態1では、振動ストレスに対して変形が大きくなる箇所に犠牲破断部4を設けているため、設計自由度の高い構造により振動ストレスに起因するはんだ接続部の故障予測を行うことができる。
実施の形態2.
 図13は実施の形態2に係る回路基板の負荷増幅部60Aの形状を模式的に表している。実施の形態1では支持脚部3及び犠牲破断部4のZ方向における厚みは同じであった。一方で、本実施の形態の犠牲破断部4AのZ方向の厚みが支持脚部3に比べて小さく形成される。なお、本実施の形態では、実施の形態1とは異なる構成のみ説明を行うこととし、同じ又は対応する構成については説明を繰り返さない。
 本実施の形態に係る回路基板は、犠牲破断部4Aの面外方向(Z方向)における厚みを支持脚部3の厚みよりも小さくする構成である。この構成によれば、振動ストレス、熱ストレスの片方もしくは両方が基板2に作用した場合に犠牲破断部4Aの変形(応力)を大きくでき、犠牲破断部4A内のき裂の進展距離を短くでき、より破断させやすい構造とすることができる。さらに部材の厚み、長さ、断面積等を調整することで、犠牲破断部4Aを目的の寿命に設計できる。また、各実装部品1のはんだ接続部について、犠牲破断部4Aとの寿命の違いに関する情報を予め取得すれば、はんだ接続部の余寿命の予測をより正確に行うことができる。
 本実施の形態では、犠牲破断部4Aと支持脚部3との形状を互いに異なるように構成した。これにより、実施の形態1に加えて、犠牲破断部4Aを目的の破断寿命に設計しやすい構造とすることができるという効果を有する。
実施の形態3.
 図14は、実施の形態3に係る回路基板の負荷増幅部60Bの形状の例を模式的に表しており、図15は、図14に示した負荷増幅部60Bの変形例である負荷増幅部60Cの形状を示す図である。実施の形態3における犠牲破断部4B、4Cは、切り欠きを有する点が実施の形態1と異なる。本実施の形態では、実施の形態1とは異なる構成のみ説明を行うこととし、同じ又は対応する構成については説明を繰り返さない。
 本実施の形態の負荷増幅部60B及び60Cは、それぞれ矩形の切欠き7A(図14に図示)を有する犠牲破断部4B、及び三角形の切欠き7B(図15に図示)を有する犠牲破断部4Cを備える。架橋部6B及び6Cにおいて、犠牲破断部のZ方向の厚みが小さくなるのであれば、切欠きの形状はいずれでもよい。なお、図14及び図15において、基板2の面外方向(Z方向)の両側面に対して対称に切欠きが入っているが、一方の側面のみに切欠き7A又は7Bを設けてもよい。また、切欠きの配置場所は、面外方向(Z方向)のみに限定されるものではなく、X方向又はY方向にも同様に切欠きを設けてもよく、負荷増幅部60B、60Cの支持脚部3の強度よりも、犠牲破断部の強度が低強度となるように構成されていればよい。
 この構成によれば、実施の形態2と同様の効果が得られるだけでなく、実施の形態2に比べて加工の手間を削減することができる。
実施の形態4.
 本実施の負荷増幅部60は、その固有振動数が基板2に作用する振動ストレスの周波数と同じになる形状にする。負荷増幅部60の固有振動数を変更する方法として、負荷増幅部60の長手方向の長さ、幅、及び厚さを変更する方法がある。
 基板2に入力される振動の周波数により負荷増幅部60の振幅が変化する。一般的に、部材の固有振動数に近い振動が入力されると、その部材は共振を始め、部材に作用する応力が大きくなる。例えば、図3に示した寸法により負荷増幅部60を構成した場合、負荷増幅部60の固有振動数は490ヘルツである。ここで、支持脚部3及び犠牲破断部4の物性特性として、弾性係数がそれぞれ123及び42(ギガパスカル)であり、ポアソン比が0.33及び0.36であり、密度がそれぞれ8880及び7400(キログラム/立方メートル)である。また、図3では支持脚部3(銅)及び犠牲破断部4(鉛フリーはんだ)を互いに異なる材料により構成していたが、支持脚部3及び犠牲破断部4を同じ材料すなわち銅で構成した場合には、負荷増幅部60の固有振動数が525Hzになる。このように、材料、形状を変更することで、任意の固有振動数を有するように負荷増幅部60を構成できる。この構成により、基板2に入力される振動の周波数に負荷増幅部60の固有振動数を一致させることができるため、基板2にかかる振動が負荷増幅部60において効果的に増幅され、犠牲破断部4を確実に破断できるという効果がある。
 本実施の形態では、負荷増幅部60の固有振動数を含む帯域に渡る振動ストレスが基板2に作用した場合、負荷増幅部60は共振して犠牲破断部4に作用する変形(応力)を大きくできる。これにより、振動ストレスに対して犠牲破断部4を目的の寿命に設計でき、実施の形態1の効果に加え、振動ストレスに対する基板2と実装部品1との接合部の寿命を正確に予測することができる。
実施の形態5.
 図16は実施の形態5に係る回路基板の負荷増幅部60Dの形状を模式的に表している。実施の形態5における負荷増幅部60Dは、犠牲破断部の上面に載置体8を載置する点が実施の形態1と異なる。本実施の形態では、実施の形態1とは異なる構成のみ説明を行うこととし、同じ又は対応する構成については説明を繰り返さない。
 本実施の形態に係る回路基板によれば、犠牲破断部4の質量を増加させることができるので、基板2に振動ストレスが作用した場合、犠牲破断部4に作用する面外方向(Z方向)の変形(応力)を大きくすることができる。その結果、振動ストレスに対してより早期に犠牲破断部4を破断させることができ、実装部品1と基板2との間のはんだ接続部の破断が発生する前の段階で、より確実に犠牲破断部4を破断させることができる。これにより、犠牲破断部4の破断の前にはんだ接続部が破断してしまい、はんだ接続部の破断が検知できない可能性が一層低減できる。
 また、載置体8を設けることで架橋部6D又は負荷増幅部60Dの固有振動数を小さくすることができる。載置体8の重量を調整することで、目的とする固有振動数に容易に調整することができる。これにより、負荷増幅部60Dの固有振動数を含む広帯域の周波数の振動ストレスが外部から基板2に作用した場合、実施の形態4と同様に犠牲破断部4の変形(応力)を大きくする効果がある。なお、犠牲破断部4に貼り付ける載置体8は非導電性材料が好ましい。導電性材料の場合、犠牲破断部4が破断した後でも電流の経路となりえるため、電気的特性の変化の検知、つまり、犠牲破断部4の破断の検知が難しくなる可能性がある。従って、導電性材料を用いる場合であれば、この絶縁材料の周りを絶縁樹脂等の絶縁部材で被覆すれば載置体8が通電経路となることがなく、犠牲破断部4の破断を確実に検知できる。
 本実施の形態では犠牲破断部4の上面に配置された載置体8を備えた構成である。これにより、実施の形態1の効果に加えて犠牲破断部4が破断する前にはんだ接続部が破断する可能性を一層低減できるという効果を有する。
実施の形態6.
 図17は実施の形態6に係る回路基板の負荷増幅部60Eの形状を模式的に表している。図中、負荷増幅部60Eを構成する際、架橋連結部32Aは実線に示す位置から破線で示す位置に移動され、犠牲破断部4の両端に固定される。
 実施の形態6における負荷増幅部60Eは、弾性力が負荷された状態の一対の支持脚部3Aが犠牲破断部4に固定されて構成される点が実施の形態1と異なる。換言すると、犠牲破断部4は、弾性力が負荷された状態の一対の架橋連結部32Aで挟み込まれた状態で固定される。本実施の形態の支持脚部3Aはバネのような弾性を有する弾性部材で構成される。弾性部材からなる支持脚部3Aは、自然長よりも伸長又は圧縮された状態で犠牲破断部と接合された構成である。これにより、支持脚部3Aは犠牲破断部4から面内方向(Y方向)の応力を受けた状態で犠牲破断部4に固定される。本実施の形態では、実施の形態1とは異なる構成のみ説明を行うこととし、同じ又は対応する構成については説明を繰り返さない。
 本実施の形態の支持脚部3Aは、架橋部6Eの架橋連結部32Aを実施の形態1のように基板2に対して水平にではなく面外方向(Z方向)に曲がった形状とし、この支持脚部3Aに弾性力を作用させながら犠牲破断部4の両端に接続された構成である。この構成によれば、基板2に振動ストレス、熱ストレスの片方もしくは両方が作用し、犠牲破断部4にき裂が生じた場合に、支持脚部3Aに作用する弾性力によって犠牲破断部4のき裂が破断へと進展する。これにより、き裂から破断に至るまでの時間が短縮できるので、犠牲破断部4の電気的特性の変化を検知しやすく、基板2と実装部品1との接合部の寿命をより正確に予測することができる。
 本実施の形態では、弾性力が負荷された状態の支持脚部3Aにより接合された犠牲破断部4を備える構成である。これにより、犠牲破断部4にき裂が生じた後に、き裂から破断に至るまでの時間が短縮できるため、実施の形態1の効果に加えて犠牲破断部4の破断による負荷増幅部60の電気的特性の変化が検知しやすくなるという効果を有する。
実施の形態7.
 図18は実施の形態7に係る回路基板の負荷増幅部60Fの形状を模式的に表わしている。実施の形態7における負荷増幅部60Fは、面外方向(Z方向)に対して複数設けられた犠牲破断部40A~40Cを備える点が実施の形態1と異なる。本実施の形態では、実施の形態1とは異なる構成のみ説明を行うこととし、同じ又は対応する構成については説明を繰り返さない。
 架橋部6Fにおいて、複数の犠牲破断部40A~40Cは、層状構造を形成するように基板2の面外方向(Z方向)に配置される。換言すると、複数の犠牲破断部は、面外方向(Z方向)に所定の距離を互いに離間させて配置され、図中では犠牲破断部40A、40B間、及び犠牲破断部40B、40C間には空隙が形成されている。なお、図18に示す負荷増幅部60Fとは異なり空隙を設けずに複数の犠牲破断部40A~40Cを配置しても同様の効果を有する。
 ストレス要因判別方法を説明する。複数の犠牲破断部の各々の電気的特性の変化を測定部5により測定し、複数の犠牲破断部の各々に関する測定部5の測定結果に基づき、犠牲破断部の破断状況すなわちそれぞれの破断された犠牲破断部のZ方向における配置位置等がわかる。さらに、この犠牲破断部の破断状況により、振動ストレス及び熱ストレスのうち、どちらのストレスが故障の主な要因であったかを判別することができる。
 上述したストレス要因判別方法の具体例を以下に説明する。実施の形態1で説明した通り、基板2に振動ストレスが作用すると、基板2の面外方向(Z方向)に対する犠牲破断部の表面のストレスが大きくなるので、表面の犠牲破断部40A、40Cから先に破断する。一方、熱ストレスが作用すると、犠牲破断部が基板2の面内方向(Y方向)に変形する。これにより、犠牲破断部40A、40B、及び40Cそれぞれに同程度のストレスが作用するため、それぞれの犠牲破断部40A、40B、及び40Cが同時に破断する。
 なお、上述の例では犠牲破断部40A、犠牲破断部40B及び犠牲破断部40Cを、それぞれ負荷増幅部60Fの表面側、中央部側、及び裏面側に配置した。このように、裏面及び表面側のうち少なくとも一方、及び中央部側にそれぞれ犠牲破断部を設けることで犠牲破断部の数を削減する上で望ましい。しかし、利用できる犠牲破断部を増加させることができれば、犠牲破断部を任意に配置してもよいことは言うまでもない。
 図18では3つの犠牲破断部40A~40Cを設けた構成としているが、犠牲破断部が2つの場合でも、配置場所を調整すれば故障の要因を確認することは可能である。すなわち、高さ方向(Z方向)における架橋連結部32の中央部分に犠牲破断部の一方の層を配置すると共に、犠牲破断部の他方の層を表面側又は裏面側に配置すればよい。なお、上述の説明では、破断された犠牲破断部の配置位置に応じてストレス要因を判断したが、破断された犠牲破断部の個数に応じてストレス要因を判断する構成でもよい。この場合、破断された犠牲破断部の配置位置を判別するために複数の犠牲破断部各々の電気的特性の変化を測定する必要がない。従って、複数の犠牲破断部の全体としての電気的特性を測定すればよい。これにより測定部5と複数の犠牲破断部とを接続する回路構成を簡素化できる。
 本実施の形態では負荷増幅部は、面外方向(Z方向)で層状に配置された複数の犠牲破断部を備える構成である。これにより、実施の形態1の効果に加えて破断した犠牲破断部の位置からストレス要因の判別が可能であるという効果を有する。
実施の形態8.
 図19は実施の形態8に係る回路基板の負荷増幅部60及び測定部5の構成を模式的に表している。実施の形態8における回路基板は、負荷増幅部60を複数備える点が実施の形態1と異なる。本実施の形態では、実施の形態1とは異なる構成のみ説明を行うこととし、同じ又は対応する構成については説明を繰り返さない。
 一般的に、部品にストレスが作用した場合、部品の製造ばらつきなどにより部品が破損に至るまでの寿命がばらつくことが知られている。本実施の形態の回路基板は、負荷増幅部60及び測定部5を複数有する構成であるため、犠牲破断部4の寿命のばらつきも考慮することができ、実施の形態1に比べて基板2と実装部品1との接合部の故障予測精度を向上させることができる。なお、図19では負荷増幅部60及び測定部5を2組設けた構成であるが、2組に限定されるものではなく、負荷増幅部60及び測定部5の数が多いほど故障予測精度が向上する。また、負荷増幅部60の各々に測定部をそれぞれ設けた構成であるが、複数の負荷増幅部60に対して1つの測定部がそれぞれの電気的特性を測定する構成であってもよい。
 実施の形態8の変形例を以下に述べる。図19では同様の破断寿命を有する負荷増幅部60を複数配置する構成であるが、それぞれが異なる破断寿命を有する複数の負荷増幅部を用いて、はんだ接続部の余寿命を予測する構成でもよい。例えば、破断寿命が異なる3種類の負荷増幅部を設け、破断寿命が長い順に第1負荷増幅部、第2負荷増幅部、及び第3負荷増幅部とした場合、それぞれの負荷増幅部の破断の有無により余寿命を予測できる。詳細には、第3負荷増幅部には破断が発生し、第1及び第2負荷増幅部には破断が発生していない場合、寿命は第3負荷増幅部よりも長く第2負荷増幅部よりも短いと判断でき、負荷増幅部を1つだけ設けた場合に比べて、はんだ接続部に破断が発生するまでの時間すなわち余寿命を正確に予測することができる。
 また、複数の負荷増幅部60の配置方法については、図19では複数の負荷増幅部60をそれぞれの長手方向が互いに平行になるように配置した例を挙げているが、複数の負荷増幅部60を平行に配置するだけでなく、複数の負荷増幅部60を互いにその長手方向が垂直又は交差するように配置してもよい。これにより、基板2に加わる振動の向き又は基板2上の温度勾配により、ストレスの異方性が生じる場合にも適切に対応できる。具体的には、例えば、2つの負荷増幅部60を、互いの長手方向が垂直又は交差するように配置する。すなわち、一方の犠牲破断部をその長手方向がX方向を向くように配置し、他方の犠牲破断部をその長手方向がY方向を向くように配置すると、一方の負荷増幅部60を横方向の振動、他方を縦方向の振動に対応させることができる。従って、X方向、Y方向のどちらかの方向の振動が生じた場合にも、少なくとも一方の負荷増幅部60の犠牲破断部4が破断されることになり、故障予測を行うために用いることができる。また、図19では負荷増幅部60を2つ設けた例を説明しているが、負荷増幅部60の個数は2つより多くともよいことは言うまでもない。
 本実施の形態に係る回路基板によれば、負荷増幅部60を複数有する構成である。これにより、負荷増幅部60の個数、又は配置方法等を調整することで、実施の形態1の効果に加えて、故障予測の精度が向上するという効果を有する。
実施の形態9.
 図20は実施の形態9に係る回路基板の負荷増幅部60Gの形状を模式的に表している。実施の形態9における回路基板は、X方向又はY方向に複数配列された犠牲破断部4D~4Fを有する負荷増幅部60Gを備える点が実施の形態1と異なる。本実施の形態では、実施の形態1とは異なる構成のみ説明を行うこととし、同じ又は対応する構成については説明を繰り返さない。
 本実施の形態に係る回路基板は、櫛状に形成された複数の犠牲破断部4D~4Fを有する負荷増幅部60Gを備える構成である。換言すると、負荷増幅部60Gは、基板2の面内方向に配置された複数の犠牲破断部4D~4Fを備える。これにより、負荷増幅部60Gと基板2とが接合する面積を削減できるため、実施の形態1の効果に加えて一層、高密度実装を実現できるという効果を有する。
実施の形態10.
 図21は実施の形態10に係る負荷増幅部60Hの側面図を示す。実施の形態10に係る負荷増幅部60Hは、犠牲破断部4G及び4H(第2犠牲破断部)を有する点が実施の形態1と異なる。この犠牲破断部4G及び4Hは、脚体31と架橋連結部32とが連結された連結部分に設けられる。図中、脚体31と架橋連結部32との連結部分は、その全体が犠牲破断部4G及び4Hで構成されるよう図示されているが、この連結部分の全体でなく一部だけが犠牲破断部4G及び4Hで構成されていてもよい。なお、本実施の形態では、実施の形態1とは異なる構成のみ説明を行うこととし、同じ又は対応する構成については説明を繰り返さない。
 図22は基板2に面内方向(Y方向)に振動ストレスが作用した場合の負荷増幅部60Hの変形を示す模式図である。基板2に面内方向(Y方向)に振動ストレスが作用した場合、負荷増幅部60Hは図22の矢印の方向つまり面内方向に変形し、その脚体31は曲がるように変形する。なお、犠牲破断部4と同様に犠牲破断部4G及び4Hの寿命もはんだ接続部よりも短くなるように設計する必要がある。
 犠牲破断部4G及び4Hは脚体31と架橋連結部32の間に形成された部分であるため、この部分には、引張り応力と圧縮応力が繰り返し作用する。よって、犠牲破断部4G及び4Hにて、き裂が進展し最終的に破断に至る。基板2には、2方向すなわち(ア)面外方向(Z方向)と(イ)面内方向(Y方向又はX方向)の振動ストレスが作用する。上述の実施の形態では、上記(ア)の振動ストレスに対して寿命予測(はんだ接合部)を行う際に好適な構成である。一方、本実施の形態に係る負荷増幅部60Hを備えた故障予測素子は、上記(ア)に加え(イ)の振動ストレスに対しても寿命予測(はんだ接続部)を行うことが可能である。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
 上記した本発明は、プリント基板を有する装置にて実施することができ、例えば、サーバやストレージ等の情報通信機器、インバータやプログラマブルロジックコントローラ等の産業機器、電子顕微鏡や原子間力顕微鏡等の検査装置、陽子線治療装置や核磁気共鳴装置等の医療機器、エレベータやエスカレータ等の移動機器、自動車や鉄道車両の制御基板がある。また、これらに限定されず、その他プリント基板を有する電子機器に利用可能である。
1 実装部品
2 基板
3、3A 支持脚部
4、4A~4F 犠牲破断部(第1犠牲破断部)
4G、4H 犠牲破断部(第2犠牲破断部)
5 測定部
6 架橋部
8 載置体
31 脚体
32 架橋連結部
40A~40C 犠牲破断部
60、60A~60F 負荷増幅部
100 回路基板

Claims (15)

  1.  はんだ接続された実装部品を搭載した基板に設けられた故障予測素子であって、
     前記基板又は前記実装部品に一端がそれぞれ固定された一対の支持脚部、及び前記一対の支持脚部の他端の各々により支持される第1犠牲破断部を有し、前記一対の支持脚部を介して前記第1犠牲破断部に前記基板にかかる振動を伝達する負荷増幅部を備えた、故障予測素子。
  2.  前記負荷増幅部の電気的特性を測定する測定部を備え、
     前記測定部の測定結果に基づき、前記はんだ接続のき裂又は破断に起因する故障を予測する、請求項1に記載の故障予測素子。
  3. 前記第1犠牲破断部は、前記基板又は前記実装部品に対して、前記基板の面外方向に離間して配置された、請求項1又は請求項2に記載の故障予測素子。
  4.  前記第1犠牲破断部は、前記支持脚部と異なる部材で構成され、前記支持脚部よりも破断強度が低い低強度部材である、請求項1から請求項3のいずれか一項に記載の故障予測素子。
  5.  前記第1犠牲破断部の断面積は、前記支持脚部の断面積に比べて小さく形成された、請求項1から請求項4のいずれか一項に記載の故障予測素子。
  6.  前記第1犠牲破断部には切欠きが設けられた、請求項1から請求項5のいずれか一項に記載の故障予測素子。
  7.  前記負荷増幅部の固有振動数を、前記基板に入力される振動ストレスの周波数と一致させた、請求項1から請求項6のいずれか一項に記載の故障予測素子。
  8.  前記第1犠牲破断部には載置体が載置された、請求項1から請求項7のいずれか一項に記載の故障予測素子。
  9.  前記支持脚部は、
     一端が前記基板又は前記実装部品に固定された脚体と、
     前記脚体及び前記第1犠牲破断部を連結する架橋連結部と
     を有し、
     前記第1犠牲破断部の両端に一対の前記架橋連結部が設けられた架橋部が構成された、請求項1から請求項8のいずれか一項に記載の故障予測素子。
  10.  前記架橋連結部は、弾性部材で構成され、
     前記第1犠牲破断部は、弾性力が負荷された状態の前記架橋連結部で挟み込まれた、請求項9に記載の故障予測素子。
  11.  前記負荷増幅部は、前記脚体と前記架橋連結部との連結部分に設けられた第2犠牲破断部をさらに有する、請求項9又は請求項10に記載の故障予測素子。
  12.  前記負荷増幅部は、前記基板の面内方向に配置された複数の架橋部を有する、請求項9から請求項11のいずれか一項に記載の故障予測素子。
  13.  前記負荷増幅部は、前記基板の面外方向に配置された複数の第1犠牲破断部を有する、請求項1から請求項12のいずれか一項に記載の故障予測素子。
  14.  前記複数の第1犠牲破断部のうち破断が行われた第1犠牲破断部の面外方向での配置位置又は前記破断が行われた第1犠牲破断部の個数に基づき、振動ストレス及び熱ストレスのうち、どちらのストレスが故障の主要因であったかを判別する、請求項13に記載の故障予測素子。
  15.  請求項1から請求項14のいずれか一項に記載の故障予測素子と、
     前記故障予測素子が配置された基板と
     を備えた回路基板。
PCT/JP2017/037965 2016-12-20 2017-10-20 故障予測素子及びこれを用いた回路基板 WO2018116611A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017006427.9T DE112017006427T5 (de) 2016-12-20 2017-10-20 Störungsvorhersage-einrichtung und dieselbe verwendende leiterplatte
US16/346,164 US10837997B2 (en) 2016-12-20 2017-10-20 Failure prediction device and circuit board using the same
CN201780077820.2A CN110089203B (zh) 2016-12-20 2017-10-20 故障预测元件及使用该故障预测元件的电路基板
JP2018557575A JP6573039B2 (ja) 2016-12-20 2017-10-20 故障予測素子及びこれを用いた回路基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-246616 2016-12-20
JP2016246616 2016-12-20

Publications (1)

Publication Number Publication Date
WO2018116611A1 true WO2018116611A1 (ja) 2018-06-28

Family

ID=62626214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037965 WO2018116611A1 (ja) 2016-12-20 2017-10-20 故障予測素子及びこれを用いた回路基板

Country Status (5)

Country Link
US (1) US10837997B2 (ja)
JP (1) JP6573039B2 (ja)
CN (1) CN110089203B (ja)
DE (1) DE112017006427T5 (ja)
WO (1) WO2018116611A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108901128A (zh) * 2018-08-26 2018-11-27 陈赵军 双面柔性pcb板
WO2024127623A1 (ja) * 2022-12-16 2024-06-20 三菱電機株式会社 はんだ劣化検知装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210293645A1 (en) * 2020-03-17 2021-09-23 Arris Enterprises Llc Ceramic based strain detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214160A (ja) * 1999-01-25 2000-08-04 Toshiba Corp 基板はんだ接合部の劣化検出方法
JP2010205821A (ja) * 2009-03-02 2010-09-16 Toshiba Corp 電子機器および、電子機器を用いた電子部品の接続不良検出方法
JP2013130519A (ja) * 2011-12-22 2013-07-04 Yokohama National Univ 電子装置、電源制御システム、および寿命測定ユニット
JP2015090332A (ja) * 2013-11-07 2015-05-11 株式会社日立製作所 寿命予測構造
JP2016100361A (ja) * 2014-11-18 2016-05-30 株式会社日立製作所 寿命予測機能を備えた回路基板及びはんだ接続寿命予測方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027538A (ja) * 2005-07-20 2007-02-01 Orion Denki Kk 回路基板
JP4445510B2 (ja) * 2007-03-23 2010-04-07 三菱電機株式会社 配線異常検出装置
US7924037B2 (en) * 2007-12-07 2011-04-12 Ricoh Company, Ltd. Inspection apparatus comprising means for removing flux
WO2011036751A1 (ja) 2009-09-24 2011-03-31 株式会社 東芝 電子機器および損傷検出方法
JP5092054B2 (ja) 2009-09-25 2012-12-05 株式会社東芝 実装基板及び故障予測方法
JP2011193109A (ja) * 2010-03-12 2011-09-29 Seiko Epson Corp 電子デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214160A (ja) * 1999-01-25 2000-08-04 Toshiba Corp 基板はんだ接合部の劣化検出方法
JP2010205821A (ja) * 2009-03-02 2010-09-16 Toshiba Corp 電子機器および、電子機器を用いた電子部品の接続不良検出方法
JP2013130519A (ja) * 2011-12-22 2013-07-04 Yokohama National Univ 電子装置、電源制御システム、および寿命測定ユニット
JP2015090332A (ja) * 2013-11-07 2015-05-11 株式会社日立製作所 寿命予測構造
JP2016100361A (ja) * 2014-11-18 2016-05-30 株式会社日立製作所 寿命予測機能を備えた回路基板及びはんだ接続寿命予測方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108901128A (zh) * 2018-08-26 2018-11-27 陈赵军 双面柔性pcb板
WO2024127623A1 (ja) * 2022-12-16 2024-06-20 三菱電機株式会社 はんだ劣化検知装置

Also Published As

Publication number Publication date
CN110089203B (zh) 2022-03-29
CN110089203A (zh) 2019-08-02
DE112017006427T5 (de) 2019-09-05
JPWO2018116611A1 (ja) 2019-04-04
US10837997B2 (en) 2020-11-17
JP6573039B2 (ja) 2019-09-11
US20200049758A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
JP6573039B2 (ja) 故障予測素子及びこれを用いた回路基板
JP4703702B2 (ja) 損傷指標予測システムおよび損傷指標予測方法
US20120179391A1 (en) Electronic device and damage detecting method
Zhou et al. Vibration durability assessment of Sn3. 0Ag0. 5Cu and Sn37Pb solders under harmonic excitation
JP5092054B2 (ja) 実装基板及び故障予測方法
Gharaibeh Experimental and numerical fatigue life assessment of SAC305 solders subjected to combined temperature and harmonic vibration loadings
Jayaraman et al. Response spectrum analysis of printed circuit boards subjected to shock loads
Czerny et al. Experimental and analytical study of geometry effects on the fatigue life of Al bond wire interconnects
Maniar et al. Solder joint lifetime modeling under random vibrational load collectives
Kim et al. Acoustic noise and vibration analysis of solid state drive induced by multi-layer ceramic capacitors
JP5338513B2 (ja) パターン引き出し構造体及び半導体装置
Tao et al. Harmonic vibration analysis and SN curve estimate of PBGA mixed solder joints
JP2000046905A (ja) 電子機器の信頼性評価方法、その信頼性評価装置およびその信頼性評価プログラムを記録した媒体
JP2016100361A (ja) 寿命予測機能を備えた回路基板及びはんだ接続寿命予測方法
WO2024127623A1 (ja) はんだ劣化検知装置
JP2010205821A (ja) 電子機器および、電子機器を用いた電子部品の接続不良検出方法
WO2019083807A1 (en) GAUGE SYSTEM BASED ON PRINTED CIRCUIT BOARD
Tao et al. Random vibration simulation and structural optimization for DC/DC converter modules assembly
Stoyanov et al. Modelling and testing the impact of hot solder dip process on leaded components
Botsman et al. Research of Mechanical Influences on Flexible Printed Circuits Parameters
McKinney et al. Thermally-resilient image sensor packaging approach for Mars2020 Enhanced Engineering Cameras
Bhadri et al. Impact of boundary conditions, glass fiber orientation and stress-free temperature on the performance of a plastic-enclosed electronic product in a thermal cycling environment
Trip et al. Smart Monitoring System for Reflow Soldering Equipment
Bang et al. Rate dependence of bending fatigue failure characteristics of lead-free solder joint
Duffek Effects of Combined Thermal and Mechanical Loading on the Fatigue of Solder Joints

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018557575

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17882765

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17882765

Country of ref document: EP

Kind code of ref document: A1