WO2018116454A1 - 車両用前照灯 - Google Patents

車両用前照灯 Download PDF

Info

Publication number
WO2018116454A1
WO2018116454A1 PCT/JP2016/088443 JP2016088443W WO2018116454A1 WO 2018116454 A1 WO2018116454 A1 WO 2018116454A1 JP 2016088443 W JP2016088443 W JP 2016088443W WO 2018116454 A1 WO2018116454 A1 WO 2018116454A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
surface portion
source modules
incident surface
Prior art date
Application number
PCT/JP2016/088443
Other languages
English (en)
French (fr)
Inventor
宗晴 桑田
勝重 諏訪
直樹 澤井
足立 良人
直人 井上
Original Assignee
三菱電機株式会社
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 本田技研工業株式会社 filed Critical 三菱電機株式会社
Priority to CN201680091191.4A priority Critical patent/CN110023673B/zh
Priority to US16/471,160 priority patent/US10883689B2/en
Priority to JP2018557489A priority patent/JP6671510B2/ja
Priority to PCT/JP2016/088443 priority patent/WO2018116454A1/ja
Publication of WO2018116454A1 publication Critical patent/WO2018116454A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/26Elongated lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element

Definitions

  • the present invention relates to a vehicle headlamp.
  • ADB Adaptive Driving Beam
  • AHS Adaptive Hi-beam System
  • AFS Adaptive Front-Lighting System
  • the vehicle headlamp disclosed in Patent Document 1 includes a plurality of light source modules (ADB lamp units 41R, 42R, and 43R).
  • the plurality of light source modules are arranged along the left-right direction with respect to the vehicle (vehicle C), and a plurality of partial distribution light patterns (ADB light distribution patterns RSP1, A1) obtained by dividing the light distribution pattern for ADB.
  • ADB light distribution patterns RSP1, A1 obtained by dividing the light distribution pattern for ADB.
  • RSP2, RSP3 There is a one-to-one correspondence with RSP2, RSP3.
  • the vehicle headlamp of Patent Document 1 realizes ADB by individually turning on or off a plurality of light source modules.
  • the vehicle headlamp disclosed in Patent Document 1 is configured such that the light axes of the plurality of light source modules (optical axes Z3R, Z4R, and Z5R) are arranged non-parallel to each other so that each light source module corresponds to each portion of the light distribution pattern. (See, for example, FIG. 2 of Patent Document 1). For this reason, the space
  • the present invention has been made to solve the above-described problems, and in a vehicle headlamp that forms a light distribution pattern for a light distribution variable type headlamp using a plurality of light source modules, It aims at making the said headlamp small.
  • the vehicle headlamp of the present invention is a vehicle headlamp capable of forming a light distribution pattern for a variable light distribution type headlamp by a combination of a plurality of partial distribution light patterns.
  • a plurality of first light source modules corresponding to a light pattern and having a light projecting direction parallel to each other, a plurality of first light source modules arranged opposite to each other, and a plurality of first light source modules
  • a light guide member that forms a light distribution pattern by deflecting light projected by the light source module.
  • the headlamp in a vehicle headlamp that uses a plurality of light source modules to form a light distribution pattern for a variable light distribution headlamp, the headlamp can be made compact.
  • FIG. 6A is an explanatory diagram showing the shape of the through hole of the diaphragm included in the light source module shown in FIG. 6B is an explanatory diagram showing the shape of a light distribution pattern formed by the light source module shown in FIG.
  • FIG. 1 is an explanatory diagram showing a main part of a light source module according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram showing an optical path and the like in the light source module shown in FIG. 3A is an explanatory view showing the shape of the light emitting surface of the light source included in the light source module shown in FIG.
  • FIG. 3B is an explanatory diagram showing the shape of a light distribution pattern formed by the light source module shown in FIG.
  • the light source module 10 according to the first embodiment will be described with reference to FIGS.
  • a light source 2 is accommodated in a substantially bottomed cylindrical casing 1, and a first optical system 3 is provided in an opening of the casing 1.
  • the light source 2 has a light emitting surface 4, and the light emitting surface 4 faces the first optical system 3.
  • the housing 1 functions as a heat sink against the heat generated by the light source 2.
  • the housing 1, the light source 2, and the first optical system 3 constitute a main part of the light source module 10.
  • the light source 2 uses a light emitting diode (Light Emitting Diode, LED) or a semiconductor laser, for example. More specifically, for example, the light source 2 is a combination of a blue LED and a yellow phosphor, a combination of an ultraviolet LED and an RGB (Red Green Blue) phosphor, a combination of a blue laser and a yellow phosphor, or an RGB laser. It is comprised by. The light source 2 emits white light from the light emitting surface 4.
  • LED Light Emitting Diode
  • RGB Red Green Blue
  • the first optical system 3 includes, for example, one or more convex lenses, one or more concave mirrors, or a combination thereof.
  • the first optical system 3 is composed of a single convex lens.
  • the value of the refractive power (so-called “power”, which is expressed by the reciprocal of the focal length) by the entire first optical system 3 is set to a positive value.
  • the first optical system 3 projects light emitted from the light emitting surface 4 in a predetermined direction by optical action such as refraction or reflection.
  • A1 shown in FIG. 1 indicates the optical axis of the first optical system 3, that is, the optical axis of the light source module 10.
  • the direction in which the first optical system 3 projects light that is, the direction in which the light source module 10 projects light (hereinafter referred to as “light projection direction”) is a direction along the optical axis A1.
  • the light projected by the light source module 10 has a predetermined angular intensity distribution with respect to the light projecting direction.
  • the light projected by the first optical system 3 forms an image at a position far from the light source module 10. Thereby, the light distribution pattern P1 is formed.
  • the shape of the light distribution pattern P ⁇ b> 1 is a shape corresponding to the shape of the light emitting surface 4. More specifically, the shape of the light distribution pattern P1 is similar to the shape obtained by inverting the shape of the light emitting surface 4 with respect to the optical axis A1. For example, when the shape of the light emitting surface 4 is a substantially square shape as shown in FIG. 3A, the shape of the light distribution pattern P1 is a substantially square shape larger than the substantially square shape shown in FIG. 3A as shown in FIG. 3B.
  • FIG. 4 is an explanatory diagram showing a main part of another light source module according to Embodiment 1 of the present invention.
  • FIG. 5 is an explanatory diagram showing an optical path and the like in the light source module shown in FIG.
  • FIG. 6A is an explanatory diagram showing the shape of the through hole of the diaphragm included in the light source module shown in FIG. 6B is an explanatory diagram showing the shape of a light distribution pattern formed by the light source module shown in FIG.
  • FIGS. 4 to 6 another light source module 10a according to the first embodiment will be described. Components similar to those of the light source module 10 shown in FIGS. 1 to 3 are denoted by the same reference numerals, and description thereof is omitted.
  • a second optical system 5 is provided between the light source 2 and the first optical system 3, and a diaphragm 6 is provided between the first optical system 3 and the second optical system 5.
  • the diaphragm 6 is substantially frame-shaped and has a through hole 7.
  • the casing 1, the light source 2, the first optical system 3, the second optical system 5, and the diaphragm 6 constitute a main part of the light source module 10a.
  • the second optical system 5 is composed of one or more convex lenses, one or more concave mirrors, or a combination thereof.
  • the second optical system 5 is composed of a single convex lens.
  • the refractive power value of the entire second optical system 5 is set to a positive value.
  • the second optical system 5 projects the light emitted from the light emitting surface 4 toward the diaphragm 6 by an optical action such as refraction or reflection.
  • the first optical system 3 projects light that has passed through the diaphragm 6 in a predetermined direction.
  • A2 shown in FIG. 4 indicates the optical axis of the first optical system 3 and the second optical system 5, that is, the optical axis of the light source module 10a.
  • the direction in which the first optical system 3 projects light that is, the light projecting direction of the light source module 10a is the direction along the optical axis A2.
  • the light projected by the light source module 10a has a predetermined angular intensity distribution with respect to the light projecting direction.
  • the two-dot chain line shown in FIG. 5 indicates an optical path corresponding to a part of the light emitted from the light emitting surface 4, an optical path corresponding to a part of the light projected by the second optical system 5, and the first An optical path corresponding to a part of the light projected by the optical system 3 is shown.
  • the light projected by the second optical system 5 forms an image at a position near the diaphragm 6.
  • the light projected by the first optical system 3 forms an image again at a position far from the light source module 10a. Thereby, the light distribution pattern P2 is formed.
  • the shape of the light distribution pattern P ⁇ b> 2 is a shape corresponding to the shape of the through hole 7. More specifically, the shape of the light distribution pattern P2 is similar to the shape formed by inverting the shape of the through hole 7 with respect to the optical axis A2. For example, when the shape of the through hole 7 is a shape formed by cutting out the lower right corner of a square as shown in FIG. 6A, the shape of the light distribution pattern P2 is larger than the square shown in FIG. 6A as shown in FIG. 6B. The shape is formed by cutting out the upper left corner of the square.
  • FIG. 7 is an explanatory diagram showing a main part of the headlamp according to the first embodiment of the present invention.
  • FIG. 8A is an explanatory diagram showing a main optical path and the like in the left headlamp shown in FIG.
  • FIG. 8B is an explanatory diagram showing a main optical path and the like in the right headlamp shown in FIG.
  • the headlamp 100 of Embodiment 1 is demonstrated.
  • the headlamp 100 is composed of a left headlamp 100L and a right headlamp 100R.
  • the left headlamp 100L is mounted on the left end of the front end of a vehicle (not shown) (hereinafter simply referred to as “vehicle”)
  • the right headlamp 100R is the right end of the front end of the vehicle. It is mounted on the part.
  • the X-axis is an axis along the left-right direction with respect to the vehicle
  • the Y-axis is an axis along the front-rear direction with respect to the vehicle
  • the Z-axis is an axis along the vertical direction with respect to the vehicle.
  • 11L is a main body case.
  • the main body case 11L has a front opening, and the front opening is closed by a cover lens 12L.
  • first light source modules 13L, 14L, and 15L are accommodated in the main body case 11L.
  • Each of the first light source modules 13L, 14L, and 15L has the same structure as the light source module 10 shown in FIGS. 1 and 2, or the same structure as the light source module 10a shown in FIGS.
  • the first light source modules 13L, 14L, and 15L are arranged along the left-right direction with respect to the vehicle. That is, the first light source module 13L, the first light source module 14L, and the first light source module 15L are sequentially arranged from the inside to the outside of the vehicle.
  • the optical axes A1L, A2L, A3L of the first light source modules 13L, 14L, 15L are provided substantially parallel to each other. Accordingly, the first light source modules 13L, 14L, and 15L have light projecting directions that are substantially parallel to each other.
  • the optical axes A1L, A2L, A3L of the first light source modules 13L, 14L, 15L are provided in a direction along the front-rear direction with respect to the vehicle. Thereby, each of 1st light source module 13L, 14L, 15L projects light toward the front with respect to a vehicle.
  • the first light source modules 13L, 14L, and 15L are used for forming a light distribution pattern (hereinafter referred to as “first light distribution pattern”) PL for a variable light distribution type headlamp.
  • the first light distribution pattern PL is a light distribution pattern for ADB, for example, and is formed by a combination of three partial light distribution patterns P1L, P2L, and P3L.
  • the first light source modules 13L, 14L, and 15L have a one-to-one correspondence with the partial light distribution patterns P1L, P2L, and P3L. Specific examples of the first light distribution pattern PL and the partial light distribution patterns P1L, P2L, and P3L will be described later with reference to FIGS.
  • a light guide member 16L is provided between the first light source modules 13L, 14L, and 15L and the cover lens 12L.
  • the light guide member 16L is made of a transparent material such as plastic such as acrylic or polycarbonate, or glass.
  • the light guide member 16L can be manufactured by molding the plastic or cutting and polishing the glass.
  • the light guide member 16L has three first incident surface portions 17L, 18L, and 19L.
  • the first incident surface portions 17L, 18L, and 19L have a one-to-one correspondence with the first light source modules 13L, 14L, and 15L.
  • Each of the first incident surface portions 17L, 18L, and 19L is disposed to face the corresponding first light source module 13L, 14L, and 15L.
  • each of the first incident surface portions 17L, 18L, and 19L is planar.
  • the light guide member 16L has one exit surface portion 20L.
  • the exit surface portion 20L is shared by all the first light source modules 13L, 14L, and 15L, and is disposed opposite to all the first entrance surface portions 17L, 18L, and 19L.
  • the emission surface portion 20L has a shape having a longitudinal direction along the arrangement direction of the first incidence surface portions 17L, 18L, and 19L, that is, the arrangement direction of the first light source modules 13L, 14L, and 15L.
  • one end portion 21L of the emission surface portion 20L is disposed on the inner side with respect to the vehicle, and the other end portion 22L of the emission surface portion 20L is disposed on the outer side with respect to the vehicle.
  • the output surface part 20L is planar.
  • the main body case 11L, the cover lens 12L, the first light source modules 13L, 14L, and 15L and the light guide member 16L constitute the main part of the left headlamp 100L.
  • angles (hereinafter referred to as “inclination angles”) ⁇ 1L, ⁇ 2L, and ⁇ 3L of the first incident surface portions 17L, 18L, and 19L with respect to the emission surface portion 20L are set to different values.
  • the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L are set to values that gradually increase from one end 21L to the other end 22L of the emission surface 20L, that is, from the inside to the outside of the vehicle. .
  • the light projected by the first light source modules 13L, 14L, and 15L is incident on the corresponding first incident surface portions 17L, 18L, and 19L, respectively. At this time, each light is deflected by the first incident surface portions 17L, 18L, and 19L. Thereafter, each light that has passed through the light guide member 16L is emitted from the emission surface portion 20L. At this time, each light is deflected again by the emission surface portion 20L.
  • C1L indicated by a two-dot chain line arrow in FIG. 8A indicates an optical path (hereinafter referred to as “main optical path”) corresponding to a portion having the highest intensity among the light projected by the first light source module 13L.
  • C2L indicates a main light path corresponding to the light projected by the first light source module 14L
  • C3L indicates a main light path corresponding to the light projected by the first light source module 15L.
  • emission direction the direction along the part corresponding to the light emitted from the emission surface portion 20L in the main optical paths C1L, C2L, and C3L is referred to as “emission direction”.
  • the angles in the emission direction with respect to the light projecting direction (hereinafter referred to as “emission angles”) ⁇ 1L, ⁇ 2L, and ⁇ 3L are respectively the first light source modules 13L, 14L and 15L have different values.
  • emission angles ⁇ 1L, ⁇ 2L, and ⁇ 3L become values that gradually increase from one end 21L to the other end 22L of the emission surface 20L, that is, from the inside to the outside of the vehicle.
  • the portion of the light guide member 16L corresponding to each of the first incident surface portions 17L, 18L, and 19L has a thickness on the other end portion 22L side with respect to a thickness on the one end portion 21L side.
  • the thickness is set to a large value. Therefore, each of the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L is set to an angle in the counterclockwise direction with respect to the Z axis in the drawing. Further, each of the emission angles ⁇ 1L, ⁇ 2L, and ⁇ 3L is an angle in the counterclockwise direction with respect to the Z axis in the drawing.
  • the amount of deflection at the first incident surface portions 17L, 18L, and 19L is the value of the refractive index of the light guide member 16L with respect to the refractive index of air (usually approximately 1) and the light with respect to the first incident surface portions 17L, 18L, and 19L. Is determined by the so-called “Snell's law”. Similarly, the deflection amount at the exit surface portion 20L is determined by Snell's law based on the value of the refractive index of air with respect to the refractive index of the light guide member 16L and the incident angle of light with respect to the exit surface portion 20L.
  • the incident angles of light with respect to the first incident surface portions 17L, 18L, and 19L and the emission surface portion 20L are values corresponding to the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L. Therefore, desired emission angles ⁇ 1L, ⁇ 2L, and ⁇ 3L can be obtained by setting the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L to appropriate values.
  • the right headlamp 100R has a structure in which the left headlamp 100L is reversed left and right. That is, the main body case 11R has a front opening, and the front opening is closed by the cover lens 12R.
  • first light source modules 13R, 14R, and 15R are accommodated in the main body case 11R.
  • Each of the first light source modules 13R, 14R, and 15R has the same structure as the light source module 10 shown in FIGS. 1 and 2, or the same structure as the light source module 10a shown in FIGS.
  • the first light source modules 13R, 14R, and 15R are arranged along the left-right direction with respect to the vehicle.
  • the optical axes A1R, A2R, A3R of the first light source modules 13R, 14R, 15R are provided substantially parallel to each other.
  • the first light source modules 13R, 14R, and 15R are used to form a light distribution pattern (hereinafter referred to as “first light distribution pattern”) PR for a variable light distribution type headlamp.
  • the first light distribution pattern PR is, for example, a light distribution pattern for ADB, and is formed by a combination of three partial light distribution patterns P1R, P2R, and P3R.
  • the first light source modules 13R, 14R, and 15R have a one-to-one correspondence with the partial light distribution patterns P1R, P2R, and P3R. Specific examples of the first light distribution pattern PR and the partial light distribution patterns P1R, P2R, and P3R will be described later with reference to FIGS.
  • a light guide member 16R is provided between the first light source modules 13R, 14R, and 15R and the cover lens 12R.
  • the light guide member 16R has three first incident surface portions 17R, 18R, and 19R that correspond one-to-one with the first light source modules 13R, 14R, and 15R, and the first light source modules 13R, 14R, and 15R.
  • One end portion 21R of the emission surface portion 20R is disposed on the inner side with respect to the vehicle, and the other end portion 22R of the emission surface portion 20R is disposed on the outer side with respect to the vehicle.
  • the main body case 11R, the cover lens 12R, the first light source modules 13R, 14R, and 15R and the light guide member 16R constitute the main part of the right headlamp 100R.
  • the inclination angles ⁇ 1R, ⁇ 2R, and ⁇ 3R are set to different values.
  • C1R, C2R, and C3R shown in FIG. 8B indicate main optical paths corresponding to the light projected by the first light source modules 13R, 14R, and 15R, respectively.
  • the emission angles ⁇ 1R, ⁇ 2R, and ⁇ 3R have different values for each of the first light source modules 13R, 14R, and 15R. Desired emission angles ⁇ 1R, ⁇ 2R, and ⁇ 3R can be obtained by setting the inclination angles ⁇ 1R, ⁇ 2R, and ⁇ 3R to appropriate values.
  • FIG. 9 shows an example of the first light distribution patterns PL and PR.
  • the first light distribution pattern PL in the left half portion for the vehicle is formed by a combination of three partial light distribution patterns P1L, P2L, P3L, and the first light distribution pattern in the right half portion for the vehicle.
  • One light distribution pattern PR is formed by a combination of three partial light distribution patterns P1R, P2R, and P3R.
  • each of the partial light distribution patterns P1L, P2L, P3L, P1R, P2R, and P3R has a substantially square shape.
  • the partial light distribution patterns P1L, P2L, P3L, P1R, P2R, and P3R are arranged along the left-right direction with respect to the vehicle.
  • the partial light distribution patterns P1L, P2L, P3L, P1R, P2R, and P3R have a one-to-one correspondence with the first light source modules 13L, 14L, 15L, 13R, 14R, and 15R.
  • ADB can be realized by individually turning on or off the first light source modules 13L, 14L, 15L, 13R, 14R, and 15R according to the presence or absence of a preceding vehicle, the presence or absence of an oncoming vehicle, and the presence or absence of a pedestrian. it can.
  • the partial light distribution patterns P1L, P2L, and P3L that form the first light distribution pattern PL in the left half correspond one-to-one with the first light source modules 13L, 14L, and 15L provided in the left headlamp 100L. Yes.
  • the arrangement order of the partial light distribution patterns P1L, P2L, and P3L in the first light distribution pattern PL matches the arrangement order of the first light source modules 13L, 14L, and 15L in the left headlamp 100L.
  • the partial light distribution patterns P1R, P2R, and P3R that form the first light distribution pattern PR in the right half portion have a one-to-one correspondence with the first light source modules 13R, 14R, and 15R provided in the right headlamp 100R. Yes.
  • the arrangement order of the partial light distribution patterns P1R, P2R, P3R in the first light distribution pattern PR matches the arrangement order of the first light source modules 13R, 14R, 15R in the right headlamp 100R.
  • the first light distribution patterns PL and PR shown in FIG. 9 are obtained by arranging non-overlapping partial light distribution patterns adjacent to each other among the six partial light distribution patterns P1L, P2L, P3L, P1R, P2R, and P3R. Yes.
  • the edges of the partial distribution light patterns adjacent to each other among the six partial distribution light patterns P1L, P2L, P3L, P1R, P2R, and P3R are arranged to overlap each other. It may be a thing.
  • Brightness unevenness in the entire first light distribution patterns PL and PR can be reduced by overlapping the edges.
  • the substantially whole partial distribution light pattern P1L arrange
  • the partial distribution light patterns P1R arranged on the innermost side may be arranged so as to overlap each other. Thereby, the area
  • the left headlamp 100L is provided with a light guide member 16L for deflection, so that the first light source modules 13L, 14L, and 15L correspond to the partial distribution light patterns P1L, P2L, and P3L, and the optical axes A1L, A2L, and A3L. Can be arranged substantially parallel to each other.
  • the left headlamp with respect to the arrangement direction of the first light source modules 13L, 14L, and 15L, that is, the left-right direction of the vehicle, as compared with a vehicle headlamp having optical axes arranged non-parallel to each other as shown in Patent Document
  • the size of 100L can be reduced.
  • the right headlamp 100R is provided with the light guide member 16R for deflection, so that the first light source modules 13R, 14R, and 15R correspond to the partial distribution light patterns P1R, P2R, and P3R, and the optical axes A1R, A2R and A3R can be arranged substantially parallel to each other. As a result, it is possible to reduce the size of the right headlamp 100R in the arrangement direction of the first light source modules 13R, 14R, and 15R, that is, in the left-right direction of the vehicle.
  • the first light source modules 13L, 14L, and 15L correspond to the partial light distribution patterns P1L, P2L, and P3L on a one-to-one basis
  • the first light source modules 13R, 14R, and 15R correspond to the partial light distribution patterns.
  • This structure has a one-to-one correspondence with P1R, P2R, and P3R.
  • the plurality of light sources 2 are partially distributed light patterns P1L and P2L.
  • P3L has a one-to-one structure, and heat radiation becomes difficult due to the denseness of the light sources 2.
  • the light source 2 is damaged by heat or the first light distribution pattern PL having sufficient brightness cannot be obtained.
  • the same problem occurs in the right headlamp 100R.
  • the plurality of first light source modules 13L, 14L, and 15L correspond to the partial distribution light patterns P1L, P2L, and P3L on a one-to-one basis, and
  • the first light source modules 13R, 14R, and 15R have a one-to-one correspondence with the partial distribution light patterns P1R, P2R, and P3R.
  • the optical axes A1L, A2L, A3L, A1R, A2R, and A3R are provided along the longitudinal direction of the vehicle.
  • the optical axes A1L, A2L, A3L, A1R, A2R and A3R may be provided to be inclined with respect to the longitudinal direction of the vehicle.
  • the number of partial light distribution patterns forming the first light distribution pattern PL is not limited to three, and the number of first light source modules included in the left headlamp 100L is not limited to three. Absent.
  • the left headlamp 100L only needs to have a plurality of first light source modules corresponding to a plurality of partial distribution light patterns.
  • the right headlamp 100R only needs to have a plurality of first light source modules corresponding to a plurality of partial distribution light patterns.
  • the light projecting directions of the first light source modules 13L, 14L, and 15L may be substantially parallel to each other, and may not be completely parallel.
  • the light projecting directions of the first light source modules 13R, 14R, and 15R may be substantially parallel to each other, and may not be completely parallel.
  • the meaning of the term “parallel” described in the claims of the present application is not limited to a completely parallel state, but includes a substantially parallel state.
  • the first light distribution patterns PL and PR formed by the headlamp 100 may be any light distribution pattern for variable light distribution type headlamps, and the light distribution patterns for ADB shown in FIGS. It is not limited.
  • the first light distribution patterns PL and PR may be, for example, light distribution patterns for AFS.
  • the light guide member 16L only needs to form the first light distribution pattern PL by deflecting the light projected by each of the first light source modules 13L, 14L, and 15L, and this principle is based on the inclination angle ⁇ 1L, It is not limited to setting ⁇ 2L and ⁇ 3L to different values.
  • the light guide member 16L includes a portion through which light projected by the first light source module 13L passes (that is, a portion including the first incident surface portion 17L) and a portion through which light projected by the first light source module 14L passes (ie, the first light source module 13L).
  • the parts including the first incident surface part 18L) and the parts through which the light projected by the first light source module 15L passes are different from each other. Different values may be set. As a result, the light guide member 16L deflects the light projected by each of the first light source modules 13L, 14L, and 15L while setting the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L to substantially the same value.
  • the pattern PL may be formed. The same applies to the light guide member 16R.
  • the left headlamp 100L of the first embodiment can freely form the first light distribution pattern PL for the variable light distribution type headlamp by a combination of the plurality of partial light distribution patterns P1L, P2L, and P3L.
  • a left headlamp 100L which corresponds to a plurality of partial light distribution patterns P1L, P2L, P3L, and has a plurality of first light source modules 13L, 14L, 15L having parallel light projecting directions;
  • a plurality of first incident surface portions 17L, 18L, and 19L that are opposed to the plurality of first light source modules 13L, 14L, and 15L and correspond to the plurality of first light source modules 13L, 14L, and 15L;
  • a plurality of first incident surface portions 17L, 18L, and 19L are arranged opposite to each other, and the output surface portion 20L is shared by the plurality of first light source modules 13L, 14L, and 15L.
  • first light distribution pattern PL by deflecting the light in which a plurality of first light source module 13L, 14L, 15L is projected.
  • interval between 1st light source module 13L, 14L, 15L can be made small, and the left headlamp 100L can be reduced in size.
  • the heat radiation of the light source 2 included in each of the first light source modules 13L, 14L, and 15L can be facilitated. The same applies to the right headlamp 100R.
  • the plurality of first incident surface portions 17L, 18L, and 19L are set to have different inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L with respect to the emission surface portion 20L. Accordingly, the light guide member 16L can form the first light distribution pattern PL by deflecting the light projected by the plurality of first light source modules 13L, 14L, and 15L. Further, by setting the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L to appropriate values, desired emission angles ⁇ 1L, ⁇ 2L, and ⁇ 3L can be obtained. The same applies to the right headlamp 100R.
  • the plurality of first incident surface portions 17L, 18L, and 19L are arranged along the longitudinal direction of the emission surface portion 20L, and the inclination angle ⁇ 1L of the plurality of first incident surface portions 17L, 18L, and 19L with respect to the emission surface portion 20L.
  • ⁇ 2L, and ⁇ 3L are set to values that gradually increase from one end 21L to the other end 22L of the emission surface 20L.
  • the emission angles ⁇ 1L, ⁇ 2L, and ⁇ 3L become values that gradually increase from the one end 21L to the other end 22L of the emission surface 20L.
  • the arrangement order of the first light source modules 13L, 14L, and 15L in the left headlamp 100L can be matched with the arrangement order of the partial light distribution patterns P1L, P2L, and P3L in the first light distribution pattern PL.
  • FIG. FIG. 12 is an explanatory diagram showing a main part of the headlamp according to the second embodiment of the present invention.
  • FIG. 13A is an explanatory diagram showing a main optical path and the like in the left headlamp shown in FIG.
  • FIG. 13B is an explanatory diagram showing a main optical path and the like in the right headlamp shown in FIG.
  • the headlamp 100a of Embodiment 2 is demonstrated.
  • symbol is attached
  • a step surface portion 31L is formed between the first incident surface portions 17L and 18L adjacent to each other, and a step surface portion 32L is formed between the first incident surface portions 18L and 19L adjacent to each other.
  • the main optical path C1L passes through the central portion of the first incident surface portion 17L
  • the main optical path C2L passes through the central portion of the first incident surface portion 18L
  • the main optical path C3L passes through the central portion of the first incident surface portion 19L. It passes.
  • the light guide member 16L shown in FIG. 13A has a thickness T1L of a portion corresponding to the central portion of the first incident surface portion 17L, a thickness T2L of a portion corresponding to the central portion of the first incident surface portion 18L, and the first The thickness T3L of the portion corresponding to the central portion of the one incident surface portion 18L is set to a value substantially equal to each other.
  • the “central portion” is a central portion with respect to the left-right direction of the vehicle (the direction along the X axis in the drawing) and the central portion with respect to the vertical direction of the vehicle (the direction along the Z axis in the drawing).
  • the light guide member 16L can be made thin. As a result, the left headlamp 100L can be reduced in weight. Further, by setting the wall thicknesses T1L, T2L, and T3L to substantially equal values, the optical path lengths OP1L, OP2L, and OP3L in the light guide member 16L in the main light paths C1L, C2L, and C3L are approximately equal to each other. be able to. As a result, the difference in the optical characteristics of the light corresponding to each of the partial distribution light patterns P1L, P2L, and P3L can be reduced, and the quality of the first light distribution pattern PL can be improved. Specific examples of the first light distribution pattern PL and the partial light distribution patterns P1L, P2L, and P3L are the same as those described in the first embodiment with reference to FIGS. To do.
  • the light guide member 16R has the same shape as the light guide member 16L. That is, in the light guide member 16R, a step surface portion 31R is formed between the first incident surface portions 17R and 18R, and a step surface portion 32R is formed between the first incident surface portions 18R and 19R.
  • the thicknesses T1R, T2R, and T3R are set to substantially the same value by the step surface portions 31R and 32R. Thereby, the light guide member 16R can be made thin and the right headlamp 100R can be reduced in weight.
  • the quality of the first light distribution pattern PR can be improved by setting the optical path lengths OP1R, OP2R, OP3R in the light guide member 16R in the main optical paths C1R, C2R, C3R to substantially the same value.
  • Specific examples of the first light distribution pattern PR and the partial light distribution patterns P1R, P2R, and P3R are the same as those described in the first embodiment with reference to FIGS. To do.
  • the wall thicknesses T1L, T2L, and T3L may be values that are substantially equivalent to each other, and may not be completely equivalent values.
  • the thicknesses T1R, T2R, and T3R may be values that are substantially equivalent to each other, and may not be completely equivalent values.
  • the meaning of the term “equivalent” described in the claims of the present application is not limited to a completely equivalent state, but includes a substantially equivalent state.
  • the headlamp 100a of the second embodiment can employ various modifications similar to those described in the first embodiment.
  • the number of first light source modules in the left headlamp 100L is not limited to three
  • the number of first light source modules in the right headlamp 100R is not limited to three.
  • the light guide member 16L passes through the plurality of main light paths C1L, C2L, C3L corresponding to the plurality of first light source modules 13L, 14L, 15L.
  • the wall thicknesses T1L, T2L, and T3L are set to equivalent values. Thereby, the left headlamp 100L can be reduced in weight, and the quality of the first light distribution pattern PL can be improved. The same applies to the right headlamp 100R.
  • FIG. 14 is an explanatory diagram showing a main part of a headlamp according to Embodiment 3 of the present invention.
  • FIG. 15A is an explanatory diagram showing a main optical path and the like in the left headlamp shown in FIG.
  • FIG. 15B is an explanatory diagram showing a main optical path and the like in the right headlamp shown in FIG.
  • the headlamp 100b of Embodiment 3 is demonstrated.
  • symbol is attached
  • each of the first incident surface portions 17L, 18L, and 19L has a planar shape
  • the emission surface portion 20L has a planar shape
  • each of the first incident surface portions 17L, 18L, and 19L has a curved surface shape
  • the emission surface portion 20L has a curved surface shape.
  • the first incident surface portions 17L, 18L, and 19L have substantially the same curvature
  • the emission surface portion 20L has a curvature substantially equal to the first incident surface portions 17L, 18L, and 19L. is doing.
  • the light guide member 16R has the same shape as the light guide member 16L. That is, in the light guide member 16R of the third embodiment, as shown in FIG. 15B, each of the first incident surface portions 17R, 18R, and 19R has a curved surface shape, and the emission surface portion 20R has a curved surface shape. In the example shown in FIG. 15B, the first incident surface portions 17R, 18R, and 19R have substantially the same curvature, and the emission surface portion 20R has the substantially same curvature as the first incident surface portions 17R, 18R, and 19R. is doing. Thereby, the freedom degree of design of the right headlamp 100R can be improved.
  • the headlamp 100b of Embodiment 3 can employ
  • the number of first light source modules in the left headlamp 100L is not limited to three
  • the number of first light source modules in the right headlamp 100R is not limited to three.
  • the plurality of first incident surface portions 17L, 18L, and 19L and the emission surface portion 20L are curved. Thereby, the freedom degree of design of the left headlamp 100L can be improved. The same applies to the right headlamp 100R.
  • FIG. 16 is an explanatory view showing a main part of a headlamp according to Embodiment 4 of the present invention.
  • FIG. 17A is an explanatory diagram showing a main optical path and the like in the left headlamp shown in FIG.
  • FIG. 17B is an explanatory diagram showing a main optical path and the like in the right headlamp shown in FIG.
  • the headlamp 100c of Embodiment 4 is demonstrated.
  • symbol is attached
  • the light guide member 16L of the second embodiment has inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L that are directed from one end 21L to the other end 22L of the exit surface portion 20L, that is, from the inside to the outside of the vehicle.
  • the value was gradually increased.
  • the emission angles ⁇ 1L, ⁇ 2L, and ⁇ 3L are gradually increased from one end 21L to the other end 22L of the emission surface 20L, that is, from the inside to the outside of the vehicle.
  • the light guide member 16L according to the fourth embodiment has the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L that are directed from the one end portion 21L to the other end portion 22L of the emission surface portion 20L, that is, inside the vehicle. It is set to a value that gradually decreases from the outside toward the outside. For this reason, the emission angles ⁇ 1L, ⁇ 2L, and ⁇ 3L become gradually smaller values from the one end portion 21L to the other end portion 22L of the emission surface portion 20L, that is, from the inside to the outside of the vehicle.
  • the left headlamp 100L of the fourth embodiment is associated with the first light source modules 13L, 14L, and 15L and the partial light distribution patterns P1L, P2L, and P3L with respect to the left headlamp 100L of the second embodiment. Will be different. That is, in the first light distribution pattern PL shown in FIGS. 9 to 11, the first light source module 13R disposed on the inner side with respect to the vehicle corresponds to the partial light distribution pattern P3L disposed on the outer side with respect to the vehicle, and the outer side with respect to the vehicle.
  • the arranged first light source module 15R corresponds to the partial light distribution pattern P1L arranged inside the vehicle, and the first light source module 14R arranged between the first light source modules 13R, 15R is the partial light distribution pattern P3L, P1L. It corresponds to the partial light distribution pattern P2L disposed between them.
  • the correspondence between the first light source modules 13L, 14L, and 15L and the partial distribution light patterns P1L, P2L, and P3L can be arbitrarily set according to the magnitude relationship between the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L.
  • the design freedom of the left headlamp 100L can be improved.
  • the optical action of the light guide member 16L varies depending on the magnitude relationship between the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L
  • the first light source modules 13L, 14L, and 15L are turned on and off.
  • the appearance of the left headlamp 100L can be made different. As a result, it is possible to obtain the left headlamp 100L having a wide variety of appearances.
  • the magnitude relationship between the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L is not limited to the relationship ⁇ 1L ⁇ 2L ⁇ 3L according to the second embodiment and the relationship ⁇ 1L> ⁇ 2L> ⁇ 3L according to the fourth embodiment.
  • the magnitude relationship between the three inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L is any of the six magnitude relationships. It may be set.
  • the magnitude relationship between the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L may be set such that ⁇ 2L> ⁇ 1L> ⁇ 3L, ⁇ 2L> ⁇ 3L> ⁇ 1L, ⁇ 1L> ⁇ 3L> ⁇ 2L, or ⁇ 3L> ⁇ 1L> ⁇ 2L.
  • the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L are set to values that change irregularly from one end 21L to the other end 22L of the emission surface 20L, that is, from the inside to the outside of the vehicle. .
  • the light guide member 16R has the same shape as the light guide member 16L. That is, in the right headlamp 100R according to the fourth embodiment, as shown in FIG. 17B, the inclination angles ⁇ 1R, ⁇ 2R, and ⁇ 3R increase from one end 21R to the other end 22R of the emission surface portion 20R, that is, from the inside to the outside of the vehicle. It is set to a value that gradually decreases as it goes.
  • the right headlamp 100R according to the fourth embodiment is a part in which the first light source module 13R arranged on the inner side with respect to the vehicle is arranged on the outer side with respect to the vehicle in the first light distribution pattern PR shown in FIGS.
  • the first light source module 15R arranged outside the vehicle corresponding to the distribution light pattern P3R corresponds to the partial distribution light pattern P1R arranged inside the vehicle, and is arranged between the first light source modules 13R and 15R.
  • One light source module 14R corresponds to a partial distribution light pattern P2R arranged between the partial distribution light patterns P3R and P1R.
  • the correspondence between the first light source modules 13R, 14R, and 15R and the partial distribution light patterns P1R, P2R, and P3R can be arbitrarily set according to the magnitude relationship between the inclination angles ⁇ 1R, ⁇ 2R, and ⁇ 3R.
  • the degree of freedom in designing the right headlamp 100R can be improved.
  • the optical action of the light guide member 16R varies depending on the magnitude relationship between the inclination angles ⁇ 1R, ⁇ 2R, and ⁇ 3R
  • the first light source modules 13R, 14R, and 15R are turned on and off.
  • the appearance of the right headlamp 100R can be made different. As a result, it is possible to obtain the right headlamp 100R with a wide variety of appearances.
  • the magnitude relationship among the inclination angles ⁇ 1R, ⁇ 2R, and ⁇ 3R is not limited to the relationship ⁇ 1R ⁇ 2R ⁇ 3R according to the second embodiment and the relationship ⁇ 1R> ⁇ 2R> ⁇ 3R according to the fourth embodiment.
  • the magnitude relationship between the inclination angles ⁇ 1R, ⁇ 2R, and ⁇ 3R may be set such that ⁇ 2R> ⁇ 1R> ⁇ 3R, ⁇ 2R> ⁇ 3R> ⁇ 1R, ⁇ 1R> ⁇ 3R> ⁇ 2R, or ⁇ 3R> ⁇ 1R> ⁇ 2R.
  • the inclination angles ⁇ 1R, ⁇ 2R, and ⁇ 3R are set to values that irregularly change from the one end 21R to the other end 22R of the emission surface 20R, that is, from the inside to the outside of the vehicle. .
  • the headlamp 100c according to the fourth embodiment can employ various modifications similar to those described in the first to third embodiments.
  • the number of first light source modules in the left headlamp 100L is not limited to three
  • the number of first light source modules in the right headlamp 100R is not limited to three.
  • the first incident surface portions 17L, 18L, 19L and the exit surface portion 20L may be curved
  • the first entrance surface portions 17R, 18R, 19R and the exit surface portion 20R are curved. It may be.
  • the plurality of first incident surface portions 17L, 18L, and 19L are arranged along the longitudinal direction of the emission surface portion 20L, and a plurality of the first incidence surface portions 20L are arranged with respect to the emission surface portion 20L.
  • the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L of the first incident surface portions 17L, 18L, and 19L are set to values that gradually decrease from the one end portion 21L to the other end portion 22L of the emission surface portion 20L.
  • the left headlamp Since the correspondence between the first light source modules 13L, 14L, and 15L and the partial light distribution patterns P1L, P2L, and P3L can be arbitrarily set according to the magnitude relationship between the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L, the left headlamp The design freedom of 100L can be improved. Further, since the optical action of the light guide member 16L varies depending on the magnitude relationship between the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L, it is possible to obtain the left headlamp 100L with abundant variations in appearance. The same applies to the right headlamp 100R.
  • the plurality of first incident surface portions 17L, 18L, and 19L are arranged along the longitudinal direction of the emission surface portion 20L, and the plurality of first incident surface portions 20L with respect to the emission surface portion 20L.
  • the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L of the incident surface portions 17L, 18L, and 19L are set to values that irregularly change from the one end portion 21L to the other end portion 22L of the emission surface portion 20L.
  • the left headlamp Since the correspondence between the first light source modules 13L, 14L, and 15L and the partial light distribution patterns P1L, P2L, and P3L can be arbitrarily set according to the magnitude relationship between the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L, the left headlamp The design freedom of 100L can be improved. Further, since the optical action of the light guide member 16L varies depending on the magnitude relationship between the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L, it is possible to obtain the left headlamp 100L with abundant variations in appearance. The same applies to the right headlamp 100R.
  • FIG. FIG. 18 is an explanatory diagram showing a main part of a headlamp according to the fifth embodiment of the present invention.
  • FIG. 19A is an explanatory diagram showing a main optical path and the like in the left headlamp shown in FIG.
  • FIG. 19B is an explanatory diagram showing a main optical path and the like in the right headlamp shown in FIG.
  • the headlamp 100d of Embodiment 5 is demonstrated.
  • symbol is attached
  • the portion corresponding to each of the first incident surface portions 17L, 18L, and 19L in the light guide member 16L according to Embodiment 2 has the other end portion 22L with respect to the thickness on the one end portion 21L side.
  • the wall thickness on the side was set to a large value. Therefore, the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L are set to counterclockwise angles with respect to the Z axis in the drawing, and the emission angles ⁇ 1L, ⁇ 2L, and ⁇ 3L are counterclockwise with respect to the Z axis in the drawing. It was an angle of direction.
  • the portions corresponding to each of the first incident surface portions 17L, 18L, and 19L of the light guide member 16L according to Embodiment 5 are compared with the thickness on the one end portion 21L side.
  • the thickness on the other end 22L side is set to a small value.
  • the thickness of the outer side with respect to the vehicle is set to a value smaller than that of the inner side with respect to the vehicle.
  • each of the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L is set to a clockwise direction angle with respect to the Z axis in the drawing, and each of the emission angles ⁇ 1L, ⁇ 2L, and ⁇ 3L is set to the clockwise direction with respect to the Z axis in the drawing. It is an angle.
  • the left headlamp 100L of the fifth embodiment forms the first light distribution pattern PR in the right half of the vehicle.
  • the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L are set to values that gradually increase from one end portion 21L to the other end portion 22L of the emission surface portion 20L, that is, from the inside to the outside of the vehicle. . Therefore, the emission angles ⁇ 1L, ⁇ 2L, and ⁇ 3L are set to values that gradually increase from the one end 21L to the other end 22L of the emission surface 20L, that is, from the inside to the outside of the vehicle. Accordingly, in the first light distribution pattern PR shown in FIGS. 9 to 11, the first light source module 13L arranged inside the vehicle corresponds to the partial light distribution pattern P1R arranged inside the vehicle, and is arranged outside the vehicle.
  • the arranged first light source module 15L corresponds to the partial distribution light pattern P3R arranged outside the vehicle, and the first light source module 14L arranged between the first light source modules 13L and 15L includes the partial distribution light patterns P1R and P3R. It corresponds to the partial light distribution pattern P2R arranged between them.
  • the correspondence between the left headlamp 100L and the first light distribution patterns PL, PR can be arbitrarily set according to the directions of the inclination angles ⁇ 1L, ⁇ 2L, ⁇ 3L.
  • the design freedom of the left headlamp 100L can be improved.
  • the optical action of the light guide member 16L varies depending on the directions of the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L, the left front of each of the first light source modules 13L, 14L, and 15L being turned on and off.
  • the appearance of the illumination lamp 100L can be made different. As a result, it is possible to obtain the left headlamp 100L having a wide variety of appearances.
  • the light guide member 16R has the same shape as the light guide member 16L. That is, as shown in FIG. 19B, the portion corresponding to each of the first incident surface portions 17R, 18R, and 19R in the light guide member 16R according to Embodiment 5 is the other end with respect to the thickness on the one end portion 21R side. The thickness on the part 22R side is set to a small value.
  • each of the emission angles ⁇ 1R, ⁇ 2R, and ⁇ 3R is an angle in the clockwise direction with respect to the Z axis in the drawing.
  • the right headlamp 100R of the fifth embodiment forms the first light distribution pattern PL in the left half of the vehicle.
  • the inclination angles ⁇ 1R, ⁇ 2R, and ⁇ 3R are set to values that gradually increase from one end 21R to the other end 22R of the emission surface 20R, that is, from the inside to the outside of the vehicle. . Therefore, the emission angles ⁇ 1R, ⁇ 2R, and ⁇ 3R are set to values that gradually increase from the one end 21R to the other end 22R of the emission surface portion 20R, that is, from the inside to the outside of the vehicle. Accordingly, in the first light distribution pattern PL shown in FIGS.
  • the first light source module 13R arranged on the inner side with respect to the vehicle corresponds to the partial light distribution pattern P1L arranged on the inner side with respect to the vehicle, and the outer side with respect to the vehicle.
  • the arranged first light source module 15R corresponds to the partial light distribution pattern P3L arranged outside the vehicle, and the first light source module 14R arranged between the first light source modules 13R, 15R is the partial light distribution pattern P1L, P3L. It corresponds to the partial light distribution pattern P2L disposed between them.
  • the correspondence between the right headlamp 100R and the first light distribution patterns PL, PR can be arbitrarily set according to the directions of the inclination angles ⁇ 1R, ⁇ 2R, ⁇ 3R.
  • the degree of freedom in designing the right headlamp 100R can be improved.
  • the optical action of the light guide member 16R varies depending on the directions of the inclination angles ⁇ 1R, ⁇ 2R, and ⁇ 3R, the right front of each of the first light source modules 13R, 14R, and 15R being turned on and off.
  • the appearance of the illumination lamp 100R can be made different. As a result, it is possible to obtain the right headlamp 100R with a wide variety of appearances.
  • the headlamp 100d according to the fifth embodiment can employ various modifications similar to those described in the first to fourth embodiments.
  • the number of first light source modules in the left headlamp 100L is not limited to three
  • the number of first light source modules in the right headlamp 100R is not limited to three.
  • the first incident surface portions 17L, 18L, 19L and the exit surface portion 20L may be curved
  • the first entrance surface portions 17R, 18R, 19R and the exit surface portion 20R are curved. It may be.
  • the magnitude relationship between the tilt angles ⁇ 1L, ⁇ 2L, and ⁇ 3L is not limited to the relationship ⁇ 1L ⁇ 2L ⁇ 3L shown in FIG. 19A.
  • the magnitude relationship between the tilt angles ⁇ 1R, ⁇ 2R, and ⁇ 3R is ⁇ 1R ⁇ 2R shown in FIG. 19B. It is not limited to the relationship of ⁇ 3R.
  • the plurality of first incident surface portions 17L, 18L, and 19L are arranged along the longitudinal direction of the emission surface portion 20L.
  • the portion corresponding to each of the plurality of first incident surface portions 17L, 18L, and 19L has a value in which the thickness on the other end portion 22L side of the exit surface portion 20L is smaller than the thickness on the one end portion 21L side of the exit surface portion 20L.
  • the directions of the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L vary depending on the thickness, and the correspondence relationship between the left headlamp 100L and the first light distribution patterns PL and PR depends on the directions of the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L. It can be set arbitrarily. As a result, the design freedom of the left headlamp 100L can be improved. Further, since the optical action of the light guide member 16L varies depending on the directions of the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L, it is possible to obtain the left headlamp 100L that is rich in variations in appearance. The same applies to the right headlamp 100R.
  • FIG. FIG. 20 is an explanatory diagram showing a main part of a headlamp according to the sixth embodiment of the present invention.
  • FIG. 21A is an explanatory diagram showing a main optical path and the like in the left headlamp shown in FIG.
  • FIG. 21B is an explanatory diagram showing a main optical path and the like in the right headlamp shown in FIG.
  • a headlamp 100e according to the sixth embodiment will be described with reference to FIGS.
  • symbol is attached
  • One second light source module 41L is provided between the first light source modules 13L and 14L adjacent to each other. Further, one second light source module 42L is provided between the first light source modules 14L and 15L adjacent to each other. Each of the second light source modules 41L and 42L has the same structure as the light source module 10 shown in FIGS. 1 and 2, or the same structure as the light source module 10a shown in FIGS.
  • the optical axes A11L, A12L of the second light source modules 41L, 42L are provided substantially parallel to the optical axes A1L, A2L, A3L of the first light source modules 13L, 14L, 15L. Accordingly, the second light source modules 41L and 42L have a light projecting direction substantially parallel to the light projecting direction of the first light source modules 13L, 14L, and 15L.
  • the second light source modules 41L and 42L are used to form other light distribution patterns (hereinafter referred to as “second light distribution patterns”) different from the first light distribution patterns PL and PR.
  • the second light distribution pattern is, for example, a light distribution pattern for a passing headlamp (so-called “low beam”) and a light distribution pattern for a traveling headlamp (so-called “high beam”).
  • one of the two second light source modules 41L, 42L corresponds to the low beam light distribution pattern
  • the other second light source module 42L corresponds to the high beam distribution pattern. It may correspond to a light pattern.
  • one second incident surface portion 43L is provided between the first incident surface portions 17L and 18L adjacent to each other, and one first incident surface portion 18L and 19L is adjacent to each other.
  • Two incident surface portions 44L are provided.
  • the second incident surface portions 43L and 44L correspond to the second light source modules 41L and 42L on a one-to-one basis.
  • Each of the second incident surface portions 43L and 44L is disposed to face the corresponding second light source module 41L and 42L.
  • the light exit surface portion 20L of the light guide member 16L is shared by all the first light source modules 13L, 14L, and 15L and all the second light source modules 41L and 42L, and all the first incident surface portions 17L, 18L, and 19L. And all the second light source modules 41L and 42L.
  • Each of the second incident surface portions 43L and 44L is provided substantially parallel to the emission surface portion 20L.
  • the emission angle (not shown) corresponding to the light projected by each of the second light source modules 41L and 42L is approximately 0 degrees. That is, the emission direction is substantially parallel to the light projection direction.
  • a step surface portion 45L is formed between the first incident surface portion 17L and the second incident surface portion 43L adjacent to each other.
  • a step surface portion 46L is formed between the second incident surface portion 43L and the first incident surface portion 18L adjacent to each other, and a step surface portion 47L is formed between the first incident surface portion 18L and the second incident surface portion 44L adjacent to each other.
  • a step surface portion 48L is formed between the adjacent second incident surface portion 44L and the first incident surface portion 19L.
  • the second light source modules 41L and 42L corresponding to the second light distribution pattern share the emission surface portion 20L, so that the left headlamp The left headlamp 100L can be reduced in size by reducing the number of parts of 100L.
  • the arrangement of the first light source modules 13L, 14L, 15L and the second light source modules 41L, 42L is arranged. Can be determined.
  • the degree of freedom of arrangement of the first light source modules 13L, 14L, 15L and the second light source modules 41L, 42L can be improved, the degree of freedom of design of the left headlamp 100L can be improved, and high A high performance left headlamp 100L can be obtained.
  • the right headlamp 100R has a structure in which the left headlamp 100L is reversed left and right. That is, the second light source module 41R is provided between the first light source modules 13R and 14R, and the second light source module 42R is provided between the first light source modules 14R and 15R.
  • Each of the second light source modules 41R and 42R has the same structure as the light source module 10 shown in FIGS. 1 and 2, or the same structure as the light source module 10a shown in FIGS.
  • the optical axes A11R, A12R of the second light source modules 41R, 42R are provided substantially parallel to the optical axes A1R, A2R, A3R of the first light source modules 13R, 14R, 15R.
  • the second light source modules 41R and 42R are used for forming another light distribution pattern different from the first light distribution pattern PR (hereinafter referred to as “second light distribution pattern”).
  • the second light distribution pattern is, for example, a low-beam light distribution pattern and a high-beam light distribution pattern.
  • a second incident surface portion 43R is provided between the first incident surface portions 17R and 18R, and a second incident surface portion 44R is provided between the first incident surface portions 18R and 19R.
  • the second incident surface portions 43R and 44R have a one-to-one correspondence with the second light source modules 41R and 42R.
  • Each of the second incident surface portions 43R and 44R is disposed to face the corresponding second light source module 41R and 42R.
  • the light exit surface portion 20R of the light guide member 16R is shared by all the first light source modules 13R, 14R, 15R and all the second light source modules 41R, 42R, and all the first incident surface portions 17R, 18R, 19R. And all the 2nd entrance plane parts 43R and 44R are arranged facing. Each of the second incident surface portions 43R and 44R is provided substantially parallel to the emission surface portion 20R.
  • a step surface portion 45R is formed between the first incident surface portion 17R and the second incident surface portion 43R
  • a step surface portion 46R is formed between the second incident surface portion 43R and the first incident surface portion 18R
  • a step surface portion 47R is formed between the first incident surface portion 18R and the second incident surface portion 44R
  • a step surface portion 48R is formed between the second incident surface portion 44R and the first incident surface portion 19R.
  • the second light source modules 41R and 42R corresponding to the second light distribution pattern share the emission surface portion 20R, so that the right headlamp The right headlamp 100R can be reduced in size by reducing the number of parts of 100R.
  • the anti-vibration performance considering the anti-vibration performance, the stability of the orientation performance, the position of the center of gravity, the heat radiation characteristics, the interference between components, and the like in the entire right headlight 100R including the second light source modules 41R and 42R, the first light distribution pattern PR and The arrangement of the first light source modules 13R, 14R, 15R and the second light source modules 41R, 42R is determined in consideration of the appearance of the right headlamp 100R during lighting and extinguishing according to each light distribution pattern of the second light distribution pattern. Can be determined.
  • the degree of freedom of arrangement of the first light source modules 13R, 14R, 15R and the second light source modules 41R, 42R can be improved, the degree of freedom of design of the right headlamp 100R can be improved, and high A high-performance right headlamp 100R can be obtained.
  • the light projecting direction of the second light source modules 41L and 42L may be substantially parallel to the light projecting direction of the first light source modules 13L, 14L, and 15L, and may not be completely parallel.
  • the light projecting directions of the second light source modules 41R and 42R need only be substantially parallel to the light projecting directions of the first light source modules 13R, 14R, and 15R, and may not be completely parallel.
  • the meaning of the term “parallel” described in the claims of the present application is not limited to a completely parallel state, but includes a substantially parallel state.
  • the second incident surface portions 43L and 44L may be in a state of being substantially parallel to the emission surface portion 20L, and may not be in a completely parallel state.
  • the second incident surface portions 43R and 44R may be in a state of being substantially parallel to the emission surface portion 20R, and may not be in a completely parallel state.
  • the meaning of the term “parallel” described in the claims of the present application is not limited to a completely parallel state, but includes a substantially parallel state.
  • the second incident surface portions 43L and 44L may be provided non-parallel to the emission surface portion 20L, that is, have a predetermined inclination angle (not shown).
  • the second incident surface portions 43R and 44R may be provided non-parallel to the emission surface portion 20R, that is, have a predetermined inclination angle (not shown).
  • the arrangement position of the second light source modules 41L and 42L in the left headlamp 100L is not limited to between the first light source modules 13L, 14L, and 15L.
  • the left headlamp 100L may be disposed, for example, inside the vehicle relative to the first light source module 13L or outside the vehicle relative to the first light source module 15L. The same applies to the right headlamp 100R.
  • the number of the second light source modules in the left headlamp 100L is not limited to two.
  • the left headlight 100L may have any number of second light source modules of one or more. The same applies to the right headlamp 100R.
  • the headlamp 100e of the sixth embodiment can employ various modifications similar to those described in the first to fifth embodiments.
  • the number of first light source modules in the left headlamp 100L is not limited to three
  • the number of first light source modules in the right headlamp 100R is not limited to three.
  • the first incident surface portions 17L, 18L, 19L and the exit surface portion 20L may be curved
  • the first entrance surface portions 17R, 18R, 19R and the exit surface portion 20R are curved. It may be.
  • the magnitude relationship between the inclination angles ⁇ 1L, ⁇ 2L, and ⁇ 3L is not limited to the relation ⁇ 1L ⁇ 2L ⁇ 3L shown in FIG. 21A.
  • the magnitude relationship between the inclination angles ⁇ 1R, ⁇ 2R, and ⁇ 3R is ⁇ 1R ⁇ 2R shown in FIG. 21B. It is not limited to the relationship of ⁇ 3R.
  • the left headlight 100L may form the first light distribution pattern PR in the right half, and the right headlight 100R may form the first light distribution pattern PL in the left half. good.
  • the left headlamp 100L of the sixth embodiment includes the second light source modules 41L and 42L having a light projecting direction parallel to the light projecting direction of the plurality of first light source modules 13L, 14L, and 15L.
  • the light guide member 16L is disposed opposite to the second light source modules 41L and 42L, and includes second incident surface portions 43L and 44L corresponding to the second light source modules 41L and 42L, and a plurality of first incident surface portions 17L, 18L, 19L and the second incident surface portions 43L, 44L, and a plurality of first light source modules 13L, 14L, 15L and a common light emitting surface portion 20L for the second light source modules 41L, 42L.
  • the second incident surface portions 43L and 44L are provided in parallel to the emission surface portion 20L.
  • the left headlamp 100L is small, has high performance, has a high degree of freedom in arrangement of the first light source modules 13L, 14L, and 15L, and the second light source modules 41L and 42L, and has a high degree of design freedom. be able to.
  • the headlamp of the present invention can be applied to vehicles such as automobiles.

Abstract

左前照灯(100L)は、複数個の第1光源モジュール(13L,14L,15L)と、導光部材(16L)とを備える。複数個の第1光源モジュール(13L,14L,15L)は、複数個の部分配光パターン(P1L,P2L,P3L)に対応しており、かつ、互いに平行な投光方向を有する。導光部材(16L)は、複数個の第1光源モジュール(13L,14L,15L)と対向配置されており、かつ、複数個の第1光源モジュール(13L,14L,15L)に対応する複数個の第1入射面部(17L,18L,19L)と、複数個の第1入射面部(17L,18L,19L)と対向配置されており、かつ、複数個の第1光源モジュール(13L,14L,15L)による共用の出射面部(20L)とを有し、複数個の第1光源モジュール(13L,14L,15L)が投射した光を偏向することにより第1配光パターン(PL)を形成する。

Description

車両用前照灯
 本発明は、車両用の前照灯に関する。
 従来、いわゆる「ADB(Adaptive Driving Beam)」、「AHS(Adaptive Hi-beam System)」又は「AFS(Adaptive Front-Lighting System)」などの配光可変型前照灯が開発されている。ADB又はAHSは、先行車両の搭乗者、対向車両の搭乗者、又は歩行者に照射される光を抑制して、これらの者が眩惑されるのを防ぐものである。AFSは、自車両の操舵角に応じて自車両の進行方向に光を照射するものである。
 例えば、特許文献1の車両用前照灯は、複数個の光源モジュール(ADBランプユニット41R,42R,43R)を有している。複数個の光源モジュールは、車両(車両C)に対する左右方向に沿って配列されており、かつ、ADB用の配光パターンを分割してなる複数個の部分配光パターン(ADB配光パターンRSP1,RSP2,RSP3)と一対一に対応している。特許文献1の車両用前照灯は、複数個の光源モジュールを個別に点灯又は消灯することによりADBを実現するものである。
特開2015-112969号公報
 特許文献1の車両用前照灯は、複数個の光源モジュールの光軸(光軸Z3R,Z4R,Z5R)を互いに非平行に配置することにより、各光源モジュールを各部分配光パターンに対応させている(特許文献1の図2等参照)。このため、互いに隣接する光源モジュール間の間隔が大きくなり、光源モジュールの配列方向、すなわち車両の左右方向に対する前照灯のサイズが大きくなる問題があった。
 本発明は、上記のような課題を解決するためになされたものであり、複数個の光源モジュールを用いて配光可変型前照灯用の配光パターンを形成する車両用前照灯において、当該前照灯を小型にすることを目的とする。
 本発明の車両用前照灯は、複数個の部分配光パターンの組み合わせにより配光可変型前照灯用の配光パターンを形成自在な車両用前照灯であって、複数個の部分配光パターンに対応しており、かつ、互いに平行な投光方向を有する複数個の第1光源モジュールと、複数個の第1光源モジュールと対向配置されており、かつ、複数個の第1光源モジュールに対応する複数個の第1入射面部と、複数個の第1入射面部と対向配置されており、かつ、複数個の第1光源モジュールによる共用の出射面部とを有し、複数個の第1光源モジュールが投射した光を偏向することにより配光パターンを形成する導光部材とを備えるものである。
 本発明によれば、複数個の光源モジュールを用いて配光可変型前照灯用の配光パターンを形成する車両用前照灯において、当該前照灯を小型にすることができる。
本発明の実施の形態1に係る光源モジュールの要部を示す説明図である。 図1に示す光源モジュールにおける光路等を示す説明図である。 図3Aは、図1に示す光源モジュールが有する光源の発光面の形状を示す説明図である。図3Bは、図1に示す光源モジュールにより形成される配光パターンの形状を示す説明図である。 本発明の実施の形態1に係る他の光源モジュールの要部を示す説明図である。 図4に示す光源モジュールにおける光路などを示す説明図である。 図6Aは、図4に示す光源モジュールが有する絞りの貫通孔の形状を示す説明図である。図6Bは、図4に示す光源モジュールにより形成される配光パターンの形状を示す説明図である。 本発明の実施の形態1に係る前照灯の要部を示す説明図である。 図7に示す左前照灯における主光路等を示す説明図である。 図7に示す右前照灯における主光路等を示す説明図である。 図7に示す前照灯が形成する配光パターンを示す説明図である。 図7に示す前照灯が形成する他の配光パターンを示す説明図である。 図7に示す前照灯が形成する他の配光パターンを示す説明図である。 本発明の実施の形態2に係る前照灯の要部を示す説明図である。 図12に示す左前照灯における主光路等を示す説明図である。 図12に示す右前照灯における主光路等を示す説明図である。 本発明の実施の形態3に係る前照灯の要部を示す説明図である。 図14に示す左前照灯における主光路等を示す説明図である。 図14に示す右前照灯における主光路等を示す説明図である。 本発明の実施の形態4に係る前照灯の要部を示す説明図である。 図16に示す左前照灯における主光路等を示す説明図である。 図16に示す右前照灯における主光路等を示す説明図である。 本発明の実施の形態5に係る前照灯の要部を示す説明図である。 図18に示す左前照灯における主光路等を示す説明図である。 図18に示す右前照灯における主光路等を示す説明図である。 本発明の実施の形態6に係る前照灯の要部を示す説明図である。 図20に示す左前照灯における主光路等を示す説明図である。 図20に示す右前照灯における主光路等を示す説明図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係る光源モジュールの要部を示す説明図である。図2は、図1に示す光源モジュールにおける光路等を示す説明図である。図3Aは、図1に示す光源モジュールが有する光源の発光面の形状を示す説明図である。図3Bは、図1に示す光源モジュールにより形成される配光パターンの形状を示す説明図である。図1~図3を参照して、実施の形態1の光源モジュール10について説明する。
 図1に示す如く、略有底筒状の筐体1内に光源2が収容されており、筐体1の開口部に第1光学系3が設けられている。光源2は発光面4を有しており、この発光面4が第1光学系3と対向している。筐体1は、光源2の発熱に対するヒートシンクの機能を果たすものである。筐体1、光源2及び第1光学系3により、光源モジュール10の要部が構成されている。
 光源2は、例えば、発光ダイオード(Light Emitting Diode,LED)又は半導体レーザーを用いたものである。より具体的には、例えば、光源2は、青色LEDと黄色蛍光体との組み合わせ、紫外LEDとRGB(Red Green Blue)蛍光体との組み合わせ、青色レーザーと黄色蛍光体との組み合わせ、又はRGBレーザーにより構成されている。光源2は、発光面4から白色光を放射するものである。
 第1光学系3は、例えば、1枚以上の凸レンズ、1枚以上の凹面ミラー、又はこれらの組み合わせにより構成されている。図1に示す例において、第1光学系3は1枚の凸レンズにより構成されている。第1光学系3の全体による屈折力(いわゆる「パワー」。焦点距離の逆数により表される。)の値は、正の値に設定されている。第1光学系3は、屈折又は反射などの光学的作用により、発光面4から放射された光を所定の方向に投射するものである。
 ここで、図1に示すA1は、第1光学系3の光軸、すなわち光源モジュール10の光軸を示している。第1光学系3が光を投射する方向、すなわち光源モジュール10が光を投射する方向(以下「投光方向」という。)は、光軸A1に沿う方向となる。光源モジュール10により投射された光は、投光方向に対する所定の角度強度分布を有している。
 図2に示す二点鎖線は、発光面4から放射された光のうちの一部に対応する光路、及び第1光学系3により投射された光のうちの一部に対応する光路を示している。図2に示す如く、第1光学系3により投射された光は、光源モジュール10に対する遠方の位置にて結像する。これにより、配光パターンP1が形成される。
 配光パターンP1の形状は、発光面4の形状に応じた形状となる。より具体的には、配光パターンP1の形状は、発光面4の形状を光軸A1に対して反転してなる形状に対する相似形状となる。例えば、発光面4の形状が図3Aに示す如く略正方形状である場合、配光パターンP1の形状は、図3Bに示す如く、図3Aに示す略正方形よりも大きい略正方形状となる。
 図4は、本発明の実施の形態1に係る他の光源モジュールの要部を示す説明図である。図5は、図4に示す光源モジュールにおける光路等を示す説明図である。図6Aは、図4に示す光源モジュールが有する絞りの貫通孔の形状を示す説明図である。図6Bは、図4に示す光源モジュールにより形成される配光パターンの形状を示す説明図である。図4~図6を参照して、実施の形態1に係る他の光源モジュール10aについて説明する。なお、図1~図3に示す光源モジュール10と同様の構成部材には同一符号を付して説明を省略する。
 図4に示す如く、光源2と第1光学系3間に第2光学系5が設けられており、かつ、第1光学系3と第2光学系5間に絞り6が設けられている。絞り6は略枠状であり、貫通孔7を有している。筐体1、光源2、第1光学系3、第2光学系5及び絞り6により、光源モジュール10aの要部が構成されている。
 第2光学系5は、1枚以上の凸レンズ、1枚以上の凹面ミラー、又はこれらの組み合わせにより構成されている。図4に示す例において、第2光学系5は1枚の凸レンズにより構成されている。第2光学系5の全体による屈折力の値は、正の値に設定されている。第2光学系5は、屈折又は反射などの光学的作用により、発光面4から放射された光を絞り6に向けて投射するものである。第1光学系3は、絞り6を通過した光を所定の方向に投射するようになっている。
 ここで、図4に示すA2は、第1光学系3及び第2光学系5の光軸、すなわち光源モジュール10aの光軸を示している。第1光学系3が光を投射する方向、すなわち光源モジュール10aの投光方向は、光軸A2に沿う方向となる。光源モジュール10aにより投射された光は、投光方向に対する所定の角度強度分布を有している。
 図5に示す二点鎖線は、発光面4から放射された光のうちの一部に対応する光路、第2光学系5により投射された光のうちの一部に対応する光路、及び第1光学系3により投射された光のうちの一部に対応する光路を示している。図5に示す如く、第2光学系5により投射された光は、絞り6の近傍の位置にて結像する。さらに、第1光学系3により投射された光は、光源モジュール10aに対する遠方の位置にて再び結像する。これにより、配光パターンP2が形成される。
 配光パターンP2の形状は、貫通孔7の形状に応じた形状となる。より具体的には、配光パターンP2の形状は、貫通孔7の形状を光軸A2に対して反転してなる形状に対する相似形状となる。例えば、貫通孔7の形状が図6Aに示す如く正方形の右下隅部を切り欠いてなる形状である場合、配光パターンP2の形状は、図6Bに示す如く、図6Aに示す正方形よりも大きい正方形の左上隅部を切り欠いてなる形状となる。
 図7は、本発明の実施の形態1に係る前照灯の要部を示す説明図である。図8Aは、図7に示す左前照灯における主光路等を示す説明図である。図8Bは、図7に示す右前照灯における主光路等を示す説明図である。図7及び図8を参照して、実施の形態1の前照灯100について説明する。
 図7に示す如く、前照灯100は、左前照灯100L及び右前照灯100Rにより構成されている。左前照灯100Lは、図示しない車両(以下、単に「車両」という。)の前端部のうちの左端部に搭載されるものであり、右前照灯100Rは、当該車両の前端部のうちの右端部に搭載されるものである。図中、X軸は車両に対する左右方向に沿う軸であり、Y軸は車両に対する前後方向に沿う軸であり、Z軸は車両に対する上下方向に沿う軸である。
 まず、左前照灯100Lについて説明する。図中、11Lは本体ケースである。本体ケース11Lは前面開口部を有しており、この前面開口部がカバーレンズ12Lにより塞がれている。
 本体ケース11L内に、3個の第1光源モジュール13L,14L,15Lが収容されている。第1光源モジュール13L,14L,15Lの各々は、図1及び図2に示す光源モジュール10と同様の構造、又は図4及び図5に示す光源モジュール10aと同様の構造を有している。図7に示す例において、第1光源モジュール13L,14L,15Lは、車両に対する左右方向に沿って配列されている。すなわち、車両の内側から外側に向かうにつれて、第1光源モジュール13L、第1光源モジュール14L、第1光源モジュール15Lが順次配置されている。
 第1光源モジュール13L,14L,15Lの光軸A1L,A2L,A3Lは、互いに略平行に設けられている。これにより、第1光源モジュール13L,14L,15Lは、互いに略平行な投光方向を有している。図7に示す例において、第1光源モジュール13L,14L,15Lの光軸A1L,A2L,A3Lは、車両に対する前後方向に沿う向きに設けられている。これにより、第1光源モジュール13L,14L,15Lの各々は、車両に対する前方に向けて光を投射するようになっている。
 第1光源モジュール13L,14L,15Lは、配光可変型前照灯用の配光パターン(以下「第1配光パターン」という。)PLの形成に用いられるものである。第1配光パターンPLは、例えばADB用の配光パターンであり、3個の部分配光パターンP1L,P2L,P3Lの組み合わせにより形成されるものである。第1光源モジュール13L,14L,15Lは、部分配光パターンP1L,P2L,P3Lと一対一に対応している。第1配光パターンPL及び部分配光パターンP1L,P2L,P3Lの具体例については、図9~図11を参照して後述する。
 第1光源モジュール13L,14L,15Lとカバーレンズ12L間に、導光部材16Lが設けられている。導光部材16Lは、アクリル若しくはポリカーボネートなどのプラスチック又はガラスなどの透明な材料により構成されている。導光部材16Lは、当該プラスチックの成型、又は当該ガラスの切削及び研磨などにより製造することができる。
 導光部材16Lは、3個の第1入射面部17L,18L,19Lを有している。第1入射面部17L,18L,19Lは、第1光源モジュール13L,14L,15Lと一対一に対応するものである。第1入射面部17L,18L,19Lの各々は、対応する第1光源モジュール13L,14L,15Lと対向配置されている。図7に示す例において、第1入射面部17L,18L,19Lの各々は平面状である。
 導光部材16Lは、1個の出射面部20Lを有している。出射面部20Lは、すべての第1光源モジュール13L,14L,15Lにより共用されるものであり、すべての第1入射面部17L,18L,19Lと対向配置されている。出射面部20Lは、第1入射面部17L,18L,19Lの配列方向、すなわち第1光源モジュール13L,14L,15Lの配列方向に沿う長手方向を有する形状である。図7に示す例において、出射面部20Lの一端部21Lは車両に対する内側に配置され、出射面部20Lの他端部22Lは車両に対する外側に配置されている。また、図7に示す例において、出射面部20Lは平面状である。
 本体ケース11L、カバーレンズ12L、第1光源モジュール13L,14L,15L及び導光部材16Lにより、左前照灯100Lの要部が構成されている。
 ここで、図8Aに示す如く、出射面部20Lに対する第1入射面部17L,18L,19Lの角度(以下「傾斜角」という。)θ1L,θ2L,θ3Lは、互いに異なる値に設定されている。図8Aに示す例において、傾斜角θ1L,θ2L,θ3Lは、出射面部20Lの一端部21Lから他端部22Lに向かうにつれて、すなわち車両の内側から外側に向かうにつれて次第に大きくなる値に設定されている。
 第1光源モジュール13L,14L,15Lにより投射された光は、対応する第1入射面部17L,18L,19Lにそれぞれ入射する。このとき、第1入射面部17L,18L,19Lにて各光が偏向される。その後、導光部材16L内を通過した各光は、出射面部20Lから出射される。このとき、出射面部20Lにて各光が再び偏向される。
 図8Aに二点鎖線の矢印で示すC1Lは、第1光源モジュール13Lにより投射された光のうちの強度が最も高い部位に対応する光路(以下「主光路」という。)を示している。同様に、C2Lは第1光源モジュール14Lにより投射された光に対応する主光路を示しており、C3Lは第1光源モジュール15Lにより投射された光に対応する主光路を示している。以下、主光路C1L,C2L,C3Lのうちの出射面部20Lから出射された光に対応する部位に沿う方向を「出射方向」という。
 傾斜角θ1L,θ2L,θ3Lが互いに異なる値に設定されているため、投光方向に対する出射方向の角度(以下「出射角」という。)φ1L,φ2L,φ3Lは、個々の第1光源モジュール13L,14L,15Lごとに異なる値となる。図8Aに示す例において、出射角φ1L,φ2L,φ3Lは、出射面部20Lの一端部21Lから他端部22Lに向かうにつれて、すなわち車両の内側から外側に向かうにつれて次第に大きくなる値となっている。
 なお、図8Aに示す例において、導光部材16Lのうちの第1入射面部17L,18L,19Lの各々に対応する部位は、一端部21L側の肉厚に対して他端部22L側の肉厚が大きい値に設定されている。このため、傾斜角θ1L,θ2L,θ3Lの各々は、図中Z軸に対する反時計周り方向の角度に設定されている。また、出射角φ1L,φ2L,φ3Lの各々は、図中Z軸に対する反時計周り方向の角度となっている。
 第1入射面部17L,18L,19Lにおける偏向量は、空気の屈折率(通常は略1である。)に対する導光部材16Lの屈折率の値、及び第1入射面部17L,18L,19Lに対する光の入射角に基づき、いわゆる「スネルの法則」により定まる。同様に、出射面部20Lにおける偏向量は、導光部材16Lの屈折率に対する空気の屈折率の値、及び出射面部20Lに対する光の入射角に基づき、スネルの法則により定まる。第1入射面部17L,18L,19L及び出射面部20Lに対する光の入射角は、傾斜角θ1L,θ2L,θ3Lに応じた値となる。したがって、傾斜角θ1L,θ2L,θ3Lを適切な値に設定することにより、所望の出射角φ1L,φ2L,φ3Lを得ることができる。
 次に、右前照灯100Rについて説明する。図7に示す如く、右前照灯100Rは左前照灯100Lを左右反転してなる構造を有している。すなわち、本体ケース11Rは前面開口部を有しており、この前面開口部がカバーレンズ12Rにより塞がれている。
 本体ケース11R内に、3個の第1光源モジュール13R,14R,15Rが収容されている。第1光源モジュール13R,14R,15Rの各々は、図1及び図2に示す光源モジュール10と同様の構造、又は図4及び図5に示す光源モジュール10aと同様の構造を有している。第1光源モジュール13R,14R,15Rは、車両に対する左右方向に沿って配列されている。第1光源モジュール13R,14R,15Rの光軸A1R,A2R,A3Rは、互いに略平行に設けられている。
 第1光源モジュール13R,14R,15Rは、配光可変型前照灯用の配光パターン(以下「第1配光パターン」という。)PRの形成に用いられるものである。第1配光パターンPRは、例えばADB用の配光パターンであり、3個の部分配光パターンP1R,P2R,P3Rの組み合わせにより形成されるものである。第1光源モジュール13R,14R,15Rは、部分配光パターンP1R,P2R,P3Rと一対一に対応している。第1配光パターンPR及び部分配光パターンP1R,P2R,P3Rの具体例については、図9~図11を参照して後述する。
 第1光源モジュール13R,14R,15Rとカバーレンズ12R間に、導光部材16Rが設けられている。導光部材16Rは、第1光源モジュール13R,14R,15Rと一対一に対応する3個の第1入射面部17R,18R,19Rを有しており、かつ、第1光源モジュール13R,14R,15Rにより共用される1個の出射面部20Rを有している。出射面部20Rの一端部21Rは車両に対する内側に配置され、出射面部20Rの他端部22Rは車両に対する外側に配置されている。
 本体ケース11R、カバーレンズ12R、第1光源モジュール13R,14R,15R及び導光部材16Rにより、右前照灯100Rの要部が構成されている。
 図8Bに示す如く、導光部材16Rにおいて、傾斜角θ1R,θ2R,θ3Rは互いに異なる値に設定されている。図8Bに示すC1R,C2R,C3Rは、第1光源モジュール13R,14R,15Rにより投射された光に対応する主光路をそれぞれ示している。出射角φ1R,φ2R,φ3Rは、個々の第1光源モジュール13R,14R,15Rごとに異なる値となる。傾斜角θ1R,θ2R,θ3Rを適切な値に設定することにより、所望の出射角φ1R,φ2R,φ3Rを得ることができる。
 次に、図9~図11を参照して、第1配光パターンPL,PR及び部分配光パターンP1L,P2L,P3L,P1R,P2R,P3Rの具体例について説明する。
 図9は、第1配光パターンPL,PRの一例を示している。図9に示す如く、車両に対する左半部の第1配光パターンPLは3個の部分配光パターンP1L,P2L,P3Lの組み合わせにより形成されるものであり、かつ、車両に対する右半部の第1配光パターンPRは3個の部分配光パターンP1R,P2R,P3Rの組み合わせにより形成されるものである。図9に示す例において、部分配光パターンP1L,P2L,P3L,P1R,P2R,P3Rの各々の形状は略正方形状である。
 部分配光パターンP1L,P2L,P3L,P1R,P2R,P3Rは、車両に対する左右方向に沿って配列されている。部分配光パターンP1L,P2L,P3L,P1R,P2R,P3Rは、第1光源モジュール13L,14L,15L,13R,14R,15Rと一対一に対応している。先行車両の有無、対向車両の有無、及び歩行者の有無などに応じて第1光源モジュール13L,14L,15L,13R,14R,15Rを個別に点灯又は消灯することにより、ADBを実現することができる。
 なお、左半部の第1配光パターンPLを形成する部分配光パターンP1L,P2L,P3Lは、左前照灯100Lに設けられた第1光源モジュール13L,14L,15Lと一対一に対応している。第1配光パターンPLにおける部分配光パターンP1L,P2L,P3Lの並び順は、左前照灯100Lにおける第1光源モジュール13L,14L,15Lの並び順と一致している。また、右半部の第1配光パターンPRを形成する部分配光パターンP1R,P2R,P3Rは、右前照灯100Rに設けられた第1光源モジュール13R,14R,15Rと一対一に対応している。第1配光パターンPRにおける部分配光パターンP1R,P2R,P3Rの並び順は、右前照灯100Rにおける第1光源モジュール13R,14R,15Rの並び順と一致している。
 図9に示す第1配光パターンPL,PRは、6個の部分配光パターンP1L,P2L,P3L,P1R,P2R,P3Rのうちの互いに隣接する部分配光パターン同士が非重畳に配置されている。これに対して、図10に示す如く、6個の部分配光パターンP1L,P2L,P3L,P1R,P2R,P3Rのうちの互いに隣接する部分配光パターンの縁部同士が重畳して配置されたものであっても良い。個々の第1光源モジュール13L,14L,15L,13R,14R,15Rにおける光学的特性などに応じて、対応する部分配光パターンの縁部が当該部分配光パターンの中央部よりも暗くなる場合、縁部同士の重畳により第1配光パターンPL,PR全体における明るさのムラを低減することができる。
 また、図11に示す如く、第1配光パターンPLのうちの車両に対して最も内側に配置された部分配光パターンP1Lの略全体と、第1配光パターンPRのうちの車両に対して最も内側に配置された部分配光パターンP1Rの略全体とが互いに重畳して配置されたものであっても良い。これにより、車両に対する正面の領域が明るくなり、より遠方に対して光を照射可能な前照灯100を実現することできる。
 次に、前照灯100の効果について説明する。左前照灯100Lは、偏向用の導光部材16Lを設けたことにより、第1光源モジュール13L,14L,15Lを部分配光パターンP1L,P2L,P3Lに対応させつつ、光軸A1L,A2L,A3Lを互いに略平行に配置することができる。この結果、特許文献1に示す如く光軸を互いに非平行に配置した車両用前照灯と比較して、第1光源モジュール13L,14L,15Lの配列方向、すなわち車両の左右方向に対する左前照灯100Lのサイズを小さくすることができる。
 同様に、右前照灯100Rは、偏向用の導光部材16Rを設けたことにより、第1光源モジュール13R,14R,15Rを部分配光パターンP1R,P2R,P3Rに対応させつつ、光軸A1R,A2R,A3Rを互いに略平行に配置することができる。この結果、第1光源モジュール13R,14R,15Rの配列方向、すなわち車両の左右方向に対する右前照灯100Rのサイズを小さくすることができる。
 また、前照灯100は、第1光源モジュール13L,14L,15Lが部分配光パターンP1L,P2L,P3Lと一対一に対応し、かつ、第1光源モジュール13R,14R,15Rが部分配光パターンP1R,P2R,P3Rと一対一に対応する構造である。これにより、第1光源モジュール13L,14L,15L,13R,14R,15Rの各々に含まれる光源2の放熱を容易にすることができる。
 仮に、左前照灯100Lに1個の光源モジュール10を設けるとともに、この光源モジュール10の筐体1内に複数個の光源2を設けて、当該複数個の光源2が部分配光パターンP1L,P2L,P3Lと一対一に対応する構造を採用した場合、光源2の密集により放熱が困難となる。この結果、光源2が熱により破損したり、十分な明るさの第1配光パターンPLを得ることができなくなったりする問題が生ずる。また、右前照灯100Rにおいても同様の問題が生ずる。これに対して、実施の形態1の前照灯100は、複数個の第1光源モジュール13L,14L,15Lが部分配光パターンP1L,P2L,P3Lと一対一に対応し、かつ、複数個の第1光源モジュール13R,14R,15Rが部分配光パターンP1R,P2R,P3Rと一対一に対応する構造である。これにより、光源2の密集を回避して、光源2の放熱を容易にすることができる。
 なお、図7及び図8に示す例において、光軸A1L,A2L,A3L,A1R,A2R,A3Rは車両の前後方向に沿うように設けられているが、光軸A1L,A2L,A3L,A1R,A2R,A3Rは車両の前後方向に対して傾けて設けられたものであっても良い。
 また、第1配光パターンPLを形成する部分配光パターンの個数は3個に限定されるものではなく、左前照灯100Lに含まれる第1光源モジュールの個数は3個に限定されるものではない。左前照灯100Lは、複数個の部分配光パターンに対応する複数個の第1光源モジュールを有するものであれば良い。同様に、右前照灯100Rは、複数個の部分配光パターンに対応する複数個の第1光源モジュールを有するものであれば良い。
 また、第1光源モジュール13L,14L,15Lの投光方向は互いに略平行な状態であれば良く、完全に平行な状態でなくとも良い。同様に、第1光源モジュール13R,14R,15Rの投光方向は互いに略平行な状態であれば良く、完全に平行な状態でなくとも良い。本願の請求の範囲に記載された「平行」の用語の意義は、完全に平行な状態に限定されるものではなく、略平行な状態も包含するものである。
 また、前照灯100が形成する第1配光パターンPL,PRは、配光可変型前照灯用の配光パターンであれば良く、図9~図11に示すADB用の配光パターンに限定されるものではない。第1配光パターンPL,PRは、例えば、AFS用の配光パターンであっても良い。
 また、導光部材16Lは、第1光源モジュール13L,14L,15Lの各々が投射した光を偏向することにより第1配光パターンPLを形成するものであれば良く、この原理は傾斜角θ1L,θ2L,θ3Lを互いに異なる値に設定することに限定されるものではない。例えば、導光部材16Lは、第1光源モジュール13Lにより投射された光が通る部位(すなわち第1入射面部17Lを含む部位)と、第1光源モジュール14Lにより投射された光が通る部位(すなわち第1入射面部18Lを含む部位)と、第1光源モジュール15Lにより投射された光が通る部位(すなわち第1入射面部19Lを含む部位)とに互いに異なる材料を用いて、これらの部位の屈折率を互いに異なる値に設定したものであっても良い。これにより、導光部材16Lは、傾斜角θ1L,θ2L,θ3Lを互いに略同等の値に設定しつつ、第1光源モジュール13L,14L,15Lの各々が投射した光を偏向して第1配光パターンPLを形成するものであっても良い。また、導光部材16Rも同様である。
 以上のように、実施の形態1の左前照灯100Lは、複数個の部分配光パターンP1L,P2L,P3Lの組み合わせにより配光可変型前照灯用の第1配光パターンPLを形成自在な左前照灯100Lであって、複数個の部分配光パターンP1L,P2L,P3Lに対応しており、かつ、互いに平行な投光方向を有する複数個の第1光源モジュール13L,14L,15Lと、複数個の第1光源モジュール13L,14L,15Lと対向配置されており、かつ、複数個の第1光源モジュール13L,14L,15Lに対応する複数個の第1入射面部17L,18L,19Lと、複数個の第1入射面部17L,18L,19Lと対向配置されており、かつ、複数個の第1光源モジュール13L,14L,15Lによる共用の出射面部20Lとを有し、複数個の第1光源モジュール13L,14L,15Lが投射した光を偏向することにより第1配光パターンPLを形成する導光部材16Lとを備える。これにより、第1光源モジュール13L,14L,15L間の間隔を小さくして、左前照灯100Lを小型にすることができる。また、第1光源モジュール13L,14L,15Lの各々に含まれる光源2の放熱を容易にすることができる。右前照灯100Rも同様である。
 また、複数個の第1入射面部17L,18L,19Lは、出射面部20Lに対する傾斜角θ1L,θ2L,θ3Lが互いに異なる値に設定されている。これにより、導光部材16Lは、複数個の第1光源モジュール13L,14L,15Lが投射した光を偏向して第1配光パターンPLを形成することができる。また、傾斜角θ1L,θ2L,θ3Lを適切な値に設定することにより、所望の出射角φ1L,φ2L,φ3Lを得ることができる。右前照灯100Rも同様である。
 また、複数個の第1入射面部17L,18L,19Lは、出射面部20Lの長手方向に沿って配列されており、出射面部20Lに対する複数個の第1入射面部17L,18L,19Lの傾斜角θ1L,θ2L,θ3Lは、出射面部20Lの一端部21Lから他端部22Lに向かうにつれて次第に大きくなる値に設定されている。これにより、出射角φ1L,φ2L,φ3Lは、出射面部20Lの一端部21Lから他端部22Lに向かうにつれて次第に大きくなる値となる。この結果、左前照灯100Lにおける第1光源モジュール13L,14L,15Lの並び順と、第1配光パターンPLにおける部分配光パターンP1L,P2L,P3Lの並び順とを一致させることができる。右前照灯100Rも同様である。
実施の形態2.
 図12は、本発明の実施の形態2に係る前照灯の要部を示す説明図である。図13Aは、図12に示す左前照灯における主光路等を示す説明図である。図13Bは、図12に示す右前照灯における主光路等を示す説明図である。図12及び図13を参照して、実施の形態2の前照灯100aについて説明する。なお、図7及び図8に示す実施の形態1の前照灯100と同様の構成部材等については同一符号を付して説明を省略する。
 導光部材16Lは、互いに隣接する第1入射面部17L,18L間に段差面部31Lが形成されており、かつ、互いに隣接する第1入射面部18L,19L間に段差面部32Lが形成されている。これにより、導光部材16Lは、主光路C1L,C2L,C3Lが通る部位の肉厚T1L,T2L,T3Lが互いに略同等の値に設定されている。
 図13Aに示す例において、主光路C1Lは第1入射面部17Lの中央部を通り、主光路C2Lは第1入射面部18Lの中央部を通り、主光路C3Lは第1入射面部19Lの中央部を通るものである。このため、図13Aに示す導光部材16Lは、第1入射面部17Lの中央部に対応する部位の肉厚T1Lと、第1入射面部18Lの中央部に対応する部位の肉厚T2Lと、第1入射面部18Lの中央部に対応する部位の肉厚T3Lとが互いに略同等の値に設定されている。ここで、「中央部」とは、車両の左右方向(図中X軸に沿う方向)に対する中央部であり、かつ、車両の上下方向(図中Z軸に沿う方向)に対する中央部である。
 段差面部31L,32Lを設けることにより、導光部材16Lを薄肉にすることができる。この結果、左前照灯100Lを軽量にすることができる。また、肉厚T1L,T2L,T3Lを互いに略同等の値に設定することにより、主光路C1L,C2L,C3Lにおける導光部材16L内の光路長OP1L,OP2L,OP3Lを互いに略同等の値にすることができる。この結果、部分配光パターンP1L,P2L,P3Lの各々に対応する光の光学的特性の差異を小さくして、第1配光パターンPLの品質を向上することができる。第1配光パターンPL及び部分配光パターンP1L,P2L,P3Lの具体例は、実施の形態1にて図9~図11を参照して説明したものと同様であるため、図示及び説明を省略する。
 導光部材16Rは、導光部材16Lと同様の形状を有している。すなわち、導光部材16Rは、第1入射面部17R,18R間に段差面部31Rが形成されており、かつ、第1入射面部18R,19R間に段差面部32Rが形成されている。段差面部31R,32Rにより、肉厚T1R,T2R,T3Rが互いに略同等の値に設定されている。これにより、導光部材16Rを薄肉にして、右前照灯100Rを軽量にすることができる。また、主光路C1R,C2R,C3Rにおける導光部材16R内の光路長OP1R,OP2R,OP3Rを互いに略同等の値にして、第1配光パターンPRの品質を向上することができる。第1配光パターンPR及び部分配光パターンP1R,P2R,P3Rの具体例は、実施の形態1にて図9~図11を参照して説明したものと同様であるため、図示及び説明を省略する。
 なお、肉厚T1L,T2L,T3Lは互いに略同等の値であれば良く、完全に同等の値でなくとも良い。同様に、肉厚T1R,T2R,T3Rは互いに略同等の値であれば良く、完全に同等の値でなくとも良い。本願の請求の範囲に記載された「同等」の用語の意義は、完全に同等な状態に限定されるものではなく、略同等な状態も包含するものである。
 また、実施の形態2の前照灯100aは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。例えば、左前照灯100Lにおける第1光源モジュールの個数は3個に限定されるものではなく、右前照灯100Rにおける第1光源モジュールの個数は3個に限定されるものではない。
 以上のように、実施の形態2の左前照灯100Lにおいて、導光部材16Lは、複数個の第1光源モジュール13L,14L,15Lに対応する複数本の主光路C1L,C2L,C3Lが通る部位の肉厚T1L,T2L,T3Lが互いに同等の値に設定されている。これにより、左前照灯100Lを軽量にすることができ、かつ、第1配光パターンPLの品質を向上することができる。右前照灯100Rも同様である。
実施の形態3.
 図14は、本発明の実施の形態3に係る前照灯の要部を示す説明図である。図15Aは、図14に示す左前照灯における主光路等を示す説明図である。図15Bは、図14に示す右前照灯における主光路等を示す説明図である。図14及び図15を参照して、実施の形態3の前照灯100bについて説明する。なお、図12及び図13に示す実施の形態2の前照灯100aと同様の構成部材等については同一符号を付して説明を省略する。
 実施の形態2の導光部材16Lは、図13Aに示す如く、第1入射面部17L,18L,19Lの各々が平面状であり、かつ、出射面部20Lが平面状であった。これに対して、実施の形態3の導光部材16Lは、図15Aに示す如く、第1入射面部17L,18L,19Lの各々が曲面状であり、かつ、出射面部20Lが曲面状である。図15Aに示す例において、第1入射面部17L,18L,19Lは互いに略同等の曲率を有しており、かつ、出射面部20Lは第1入射面部17L,18L,19Lと略同等の曲率を有している。
 導光部材16Lの外形に曲面を用いることにより、左前照灯100Lに曲面主体のデザインを採用するのが容易となる。この結果、左前照灯100Lのデザインの自由度を向上することができる。
 導光部材16Rは、導光部材16Lと同様の形状を有している。すなわち、実施の形態3の導光部材16Rは、図15Bに示す如く、第1入射面部17R,18R,19Rの各々が曲面状であり、かつ、出射面部20Rが曲面状である。図15Bに示す例において、第1入射面部17R,18R,19Rは互いに略同等の曲率を有しており、かつ、出射面部20Rは第1入射面部17R,18R,19Rと略同等の曲率を有している。これにより、右前照灯100Rのデザインの自由度を向上することができる。
 なお、実施の形態3の前照灯100bは、実施の形態1,2にて説明したものと同様の種々の変形例を採用することができる。例えば、左前照灯100Lにおける第1光源モジュールの個数は3個に限定されるものではなく、右前照灯100Rにおける第1光源モジュールの個数は3個に限定されるものではない。
 以上のように、実施の形態3の左前照灯100Lは、複数個の第1入射面部17L,18L,19L及び出射面部20Lが曲面状である。これにより、左前照灯100Lのデザインの自由度を向上することができる。右前照灯100Rも同様である。
実施の形態4.
 図16は、本発明の実施の形態4に係る前照灯の要部を示す説明図である。図17Aは、図16に示す左前照灯における主光路等を示す説明図である。図17Bは、図16に示す右前照灯における主光路等を示す説明図である。図16及び図17を参照して、実施の形態4の前照灯100cについて説明する。なお、図12及び図13に示す実施の形態2の前照灯100aと同様の構成部材等については同一符号を付して説明を省略する。
 実施の形態2の導光部材16Lは、図13Aに示す如く、傾斜角θ1L,θ2L,θ3Lが出射面部20Lの一端部21Lから他端部22Lに向かうにつれて、すなわち車両の内側から外側に向かうにつれて次第に大きくなる値に設定されていた。このため、出射角φ1L,φ2L,φ3Lが出射面部20Lの一端部21Lから他端部22Lに向かうにつれて、すなわち車両の内側から外側に向かうにつれて次第に大きくなる値となっていた。
 これに対して、実施の形態4の導光部材16Lは、図17Aに示す如く、傾斜角θ1L,θ2L,θ3Lが出射面部20Lの一端部21Lから他端部22Lに向かうにつれて、すなわち車両の内側から外側に向かうにつれて次第に小さくなる値に設定されている。このため、出射角φ1L,φ2L,φ3Lが出射面部20Lの一端部21Lから他端部22Lに向かうにつれて、すなわち車両の内側から外側に向かうにつれて次第に小さくなる値となっている。
 これにより、実施の形態4の左前照灯100Lは、実施の形態2の左前照灯100Lに対して、第1光源モジュール13L,14L,15Lと部分配光パターンP1L,P2L,P3Lとの対応関係が異なるものとなる。すなわち、図9~図11に示す第1配光パターンPLにおいて、車両に対する内側に配置された第1光源モジュール13Rが車両に対する外側に配置された部分配光パターンP3Lに対応し、車両に対する外側に配置された第1光源モジュール15Rが車両に対する内側に配置された部分配光パターンP1Lに対応し、第1光源モジュール13R,15R間に配置された第1光源モジュール14Rが部分配光パターンP3L,P1L間に配置された部分配光パターンP2Lに対応するようになっている。
 このように、傾斜角θ1L,θ2L,θ3Lの大小関係に応じて、第1光源モジュール13L,14L,15Lと部分配光パターンP1L,P2L,P3Lとの対応関係を任意に設定することができる。この結果、左前照灯100Lの設計自由度を向上することができる。また、傾斜角θ1L,θ2L,θ3Lの大小関係に応じて、導光部材16Lの有する光学的作用が異なるものとなるため、第1光源モジュール13L,14L,15Lの点灯中及び消灯中の各々における左前照灯100Lの外観を異ならしめることができる。この結果、外観のバリエーションが豊富な左前照灯100Lを得ることができる。
 なお、傾斜角θ1L,θ2L,θ3Lの大小関係は、実施の形態2に係るθ1L<θ2L<θ3Lの関係、及び実施の形態4に係るθ1L>θ2L>θ3Lの関係に限定されるものではない。左前照灯100Lに3個の第1光源モジュール13L,14L,15Lが設けられている場合、3個の傾斜角θ1L,θ2L,θ3Lの大小関係は、合計6通りの大小関係のうちのいずれに設定されたものであっても良い。
 例えば、傾斜角θ1L,θ2L,θ3Lの大小関係は、θ2L>θ1L>θ3L、θ2L>θ3L>θ1L、θ1L>θ3L>θ2L、又はθ3L>θ1L>θ2Lに設定されたものであっても良い。この場合、傾斜角θ1L,θ2L,θ3Lは、出射面部20Lの一端部21Lから他端部22Lに向かうにつれて、すなわち車両の内側から外側に向かうにつれて不規則に変化する値に設定されたものとなる。
 導光部材16Rは、導光部材16Lと同様の形状を有している。すなわち、実施の形態4の右前照灯100Rは、図17Bに示す如く、傾斜角θ1R,θ2R,θ3Rが出射面部20Rの一端部21Rから他端部22Rに向かうにつれて、すなわち車両の内側から外側に向かうにつれて次第に小さくなる値に設定されている。これにより、実施の形態4の右前照灯100Rは、図9~図11に示す第1配光パターンPRにおいて、車両に対する内側に配置された第1光源モジュール13Rが車両に対する外側に配置された部分配光パターンP3Rに対応し、車両に対する外側に配置された第1光源モジュール15Rが車両に対する内側に配置された部分配光パターンP1Rに対応し、第1光源モジュール13R,15R間に配置された第1光源モジュール14Rが部分配光パターンP3R,P1R間に配置された部分配光パターンP2Rに対応するようになっている。
 このように、傾斜角θ1R,θ2R,θ3Rの大小関係に応じて、第1光源モジュール13R,14R,15Rと部分配光パターンP1R,P2R,P3Rとの対応関係を任意に設定することができる。この結果、右前照灯100Rの設計自由度を向上することができる。また、傾斜角θ1R,θ2R,θ3Rの大小関係に応じて、導光部材16Rの有する光学的作用が異なるものとなるため、第1光源モジュール13R,14R,15Rの点灯中及び消灯中の各々における右前照灯100Rの外観を異ならしめることができる。この結果、外観のバリエーションが豊富な右前照灯100Rを得ることができる。
 なお、傾斜角θ1R,θ2R,θ3Rの大小関係は、実施の形態2に係るθ1R<θ2R<θ3Rの関係、及び実施の形態4に係るθ1R>θ2R>θ3Rの関係に限定されるものではない。例えば、傾斜角θ1R,θ2R,θ3Rの大小関係は、θ2R>θ1R>θ3R、θ2R>θ3R>θ1R、θ1R>θ3R>θ2R、又はθ3R>θ1R>θ2Rに設定されたものであっても良い。この場合、傾斜角θ1R,θ2R,θ3Rは、出射面部20Rの一端部21Rから他端部22Rに向かうにつれて、すなわち車両の内側から外側に向かうにつれて不規則に変化する値に設定されたものとなる。
 また、実施の形態4の前照灯100cは、実施の形態1~3にて説明したものと同様の種々の変形例を採用することができる。例えば、左前照灯100Lにおける第1光源モジュールの個数は3個に限定されるものではなく、右前照灯100Rにおける第1光源モジュールの個数は3個に限定されるものではない。導光部材16Lは、第1入射面部17L,18L,19L及び出射面部20Lが曲面状であっても良く、導光部材16Rは、第1入射面部17R,18R,19R及び出射面部20Rが曲面状であっても良い。
 以上のように、実施の形態4の左前照灯100Lにおいて、複数個の第1入射面部17L,18L,19Lは、出射面部20Lの長手方向に沿って配列されており、出射面部20Lに対する複数個の第1入射面部17L,18L,19Lの傾斜角θ1L,θ2L,θ3Lは、出射面部20Lの一端部21Lから他端部22Lに向かうにつれて次第に小さくなる値に設定されている。傾斜角θ1L,θ2L,θ3Lの大小関係に応じて、第1光源モジュール13L,14L,15Lと部分配光パターンP1L,P2L,P3Lとの対応関係を任意に設定することができるため、左前照灯100Lの設計自由度を向上することができる。また、傾斜角θ1L,θ2L,θ3Lの大小関係に応じて、導光部材16Lの有する光学的作用が異なるものとなるため、外観のバリエーションが豊富な左前照灯100Lを得ることができる。右前照灯100Rも同様である。
 または、実施の形態4の左前照灯100Lにおいて、複数個の第1入射面部17L,18L,19Lは、出射面部20Lの長手方向に沿って配列されており、出射面部20Lに対する複数個の第1入射面部17L,18L,19Lの傾斜角θ1L,θ2L,θ3Lは、出射面部20Lの一端部21Lから他端部22Lに向かうにつれて不規則に変化する値に設定されている。傾斜角θ1L,θ2L,θ3Lの大小関係に応じて、第1光源モジュール13L,14L,15Lと部分配光パターンP1L,P2L,P3Lとの対応関係を任意に設定することができるため、左前照灯100Lの設計自由度を向上することができる。また、傾斜角θ1L,θ2L,θ3Lの大小関係に応じて、導光部材16Lの有する光学的作用が異なるものとなるため、外観のバリエーションが豊富な左前照灯100Lを得ることができる。右前照灯100Rも同様である。
実施の形態5.
 図18は、本発明の実施の形態5に係る前照灯の要部を示す説明図である。図19Aは、図18に示す左前照灯における主光路等を示す説明図である。図19Bは、図18に示す右前照灯における主光路等を示す説明図である。図18及び図19を参照して、実施の形態5の前照灯100dについて説明する。なお、図12及び図13に示す実施の形態2の前照灯100aと同様の構成部材等については同一符号を付して説明を省略する。
 図13Aに示す如く、実施の形態2に係る導光部材16Lのうちの第1入射面部17L,18L,19Lの各々に対応する部位は、一端部21L側の肉厚に対して他端部22L側の肉厚が大きい値に設定されていた。このため、傾斜角θ1L,θ2L,θ3Lの各々が図中Z軸に対する反時計回り方向の角度に設定されており、かつ、出射角φ1L,φ2L,φ3Lの各々が図中Z軸に対する反時計回り方向の角度となっていた。
 これに対して、図19Aに示す如く、実施の形態5に係る導光部材16Lのうちの第1入射面部17L,18L,19Lの各々に対応する部位は、一端部21L側の肉厚に対して他端部22L側の肉厚が小さい値に設定されている。すなわち、当該各部位は、車両に対する内側の肉厚よりも車両に対する外側の肉厚が小さい値に設定されている。このため、傾斜角θ1L,θ2L,θ3Lの各々が図中Z軸に対する時計回り方向の角度に設定されており、かつ、出射角φ1L,φ2L,φ3Lの各々が図中Z軸に対する時計回り方向の角度となっている。この結果、実施の形態5の左前照灯100Lは、車両に対する右半部の第1配光パターンPRを形成するものである。
 図19Aに示す例において、傾斜角θ1L,θ2L,θ3Lは、出射面部20Lの一端部21Lから他端部22Lに向かうにつれて、すなわち車両の内側から外側に向かうにつれて次第に大きくなる値に設定されている。このため、出射角φ1L,φ2L,φ3Lは、出射面部20Lの一端部21Lから他端部22Lに向かうにつれて、すなわち車両の内側から外側に向かうにつれて次第に大きくなる値に設定されている。したがって、図9~図11に示す第1配光パターンPRにおいて、車両に対する内側に配置された第1光源モジュール13Lが車両に対する内側に配置された部分配光パターンP1Rに対応し、車両に対する外側に配置された第1光源モジュール15Lが車両に対する外側に配置された部分配光パターンP3Rに対応し、第1光源モジュール13L,15L間に配置された第1光源モジュール14Lが部分配光パターンP1R,P3R間に配置された部分配光パターンP2Rに対応するようになっている。
 このように、傾斜角θ1L,θ2L,θ3Lの方向に応じて、左前照灯100Lと第1配光パターンPL,PRとの対応関係を任意に設定することができる。この結果、左前照灯100Lの設計自由度を向上することができる。また、傾斜角θ1L,θ2L,θ3Lの方向に応じて、導光部材16Lの有する光学的作用が異なるものとなるため、第1光源モジュール13L,14L,15Lの点灯中及び消灯中の各々における左前照灯100Lの外観を異ならしめることができる。この結果、外観のバリエーションが豊富な左前照灯100Lを得ることができる。
 導光部材16Rは、導光部材16Lと同様の形状を有している。すなわち、図19Bに示す如く、実施の形態5に係る導光部材16Rのうちの第1入射面部17R,18R,19Rの各々に対応する部位は、一端部21R側の肉厚に対して他端部22R側の肉厚が小さい値に設定されている。これにより、出射角φ1R,φ2R,φ3Rの各々は、図中Z軸に対する時計回り方向の角度となっている。この結果、実施の形態5の右前照灯100Rは、車両に対する左半部の第1配光パターンPLを形成するものである。
 図19Bに示す例において、傾斜角θ1R,θ2R,θ3Rは、出射面部20Rの一端部21Rから他端部22Rに向かうにつれて、すなわち車両の内側から外側に向かうにつれて次第に大きくなる値に設定されている。このため、出射角φ1R,φ2R,φ3Rは、出射面部20Rの一端部21Rから他端部22Rに向かうにつれて、すなわち車両の内側から外側に向かうにつれて次第に大きくなる値に設定されている。したがって、図9~図11に示す第1配光パターンPLにおいて、車両に対する内側に配置された第1光源モジュール13Rが車両に対する内側に配置された部分配光パターンP1Lに対応し、車両に対する外側に配置された第1光源モジュール15Rが車両に対する外側に配置された部分配光パターンP3Lに対応し、第1光源モジュール13R,15R間に配置された第1光源モジュール14Rが部分配光パターンP1L,P3L間に配置された部分配光パターンP2Lに対応するようになっている。
 このように、傾斜角θ1R,θ2R,θ3Rの方向に応じて、右前照灯100Rと第1配光パターンPL,PRとの対応関係を任意に設定することができる。この結果、右前照灯100Rの設計自由度を向上することができる。また、傾斜角θ1R,θ2R,θ3Rの方向に応じて、導光部材16Rの有する光学的作用が異なるものとなるため、第1光源モジュール13R,14R,15Rの点灯中及び消灯中の各々における右前照灯100Rの外観を異ならしめることができる。この結果、外観のバリエーションが豊富な右前照灯100Rを得ることができる。
 なお、実施の形態5の前照灯100dは、実施の形態1~4にて説明したものと同様の種々の変形例を採用することができる。例えば、左前照灯100Lにおける第1光源モジュールの個数は3個に限定されるものではなく、右前照灯100Rにおける第1光源モジュールの個数は3個に限定されるものではない。導光部材16Lは、第1入射面部17L,18L,19L及び出射面部20Lが曲面状であっても良く、導光部材16Rは、第1入射面部17R,18R,19R及び出射面部20Rが曲面状であっても良い。傾斜角θ1L,θ2L,θ3Lの大小関係は、図19Aに示すθ1L<θ2L<θ3Lの関係に限定されるものではなく、傾斜角θ1R,θ2R,θ3Rの大小関係は、図19Bに示すθ1R<θ2R<θ3Rの関係に限定されるものではない。
 以上のように、実施の形態5の左前照灯100Lにおいて、複数個の第1入射面部17L,18L,19Lは、出射面部20Lの長手方向に沿って配列されており、導光部材16Lのうちの複数個の第1入射面部17L,18L,19Lの各々に対応する部位は、出射面部20Lの一端部21L側の肉厚に対して出射面部20Lの他端部22L側の肉厚が小さい値に設定されている。当該肉厚に応じて傾斜角θ1L,θ2L,θ3Lの方向が異なるものとなり、傾斜角θ1L,θ2L,θ3Lの方向に応じて左前照灯100Lと第1配光パターンPL,PRとの対応関係を任意に設定することができる。この結果、左前照灯100Lの設計自由度を向上することができる。また、傾斜角θ1L,θ2L,θ3Lの方向に応じて、導光部材16Lの有する光学的作用が異なるものとなるため、外観のバリエーションが豊富な左前照灯100Lを得ることができる。右前照灯100Rも同様である。
実施の形態6.
 図20は、本発明の実施の形態6に係る前照灯の要部を示す説明図である。図21Aは、図20に示す左前照灯における主光路等を示す説明図である。図21Bは、図20に示す右前照灯における主光路等を示す説明図である。図20及び図21を参照して、実施の形態6の前照灯100eについて説明する。なお、図7及び図8に示す実施の形態1の前照灯100と同様の構成部材等については同一符号を付して説明を省略する。
 まず、左前照灯100Lについて説明する。互いに隣接する第1光源モジュール13L,14L間に、1個の第2光源モジュール41Lが設けられている。また、互いに隣接する第1光源モジュール14L,15L間に、1個の第2光源モジュール42Lが設けられている。第2光源モジュール41L,42Lの各々は、図1及び図2に示す光源モジュール10と同様の構造、又は図4及び図5に示す光源モジュール10aと同様の構造を有している。
 第2光源モジュール41L,42Lの光軸A11L,A12Lは、第1光源モジュール13L,14L,15Lの光軸A1L,A2L,A3Lに対して略平行に設けられている。これにより、第2光源モジュール41L,42Lは、第1光源モジュール13L,14L,15Lの投光方向に対して略平行な投光方向を有している。
 第2光源モジュール41L,42Lは、第1配光パターンPL,PRと異なる他の配光パターン(以下「第2配光パターン」という。)の形成に用いられるものである。第2配光パターンは、例えば、すれ違い用前照灯(いわゆる「ロービーム」)用の配光パターン及び走行用前照灯(いわゆる「ハイビーム」)用の配光パターンである。この場合、例えば、2個の第2光源モジュール41L,42Lのうちの一方の第2光源モジュール41Lがロービーム用の配光パターンに対応し、かつ、他方の第2光源モジュール42Lがハイビーム用の配光パターンに対応するものであっても良い。
 導光部材16Lは、互いに隣接する第1入射面部17L,18L間に1個の第2入射面部43Lが設けられており、かつ、互いに隣接する第1入射面部18L,19L間に1個の第2入射面部44Lが設けられている。第2入射面部43L,44Lは、第2光源モジュール41L,42Lと一対一に対応するものである。第2入射面部43L,44Lの各々は、対応する第2光源モジュール41L,42Lと対向配置されている。
 導光部材16Lの出射面部20Lは、すべての第1光源モジュール13L,14L,15L及びすべての第2光源モジュール41L,42Lにより共用されるものであり、すべての第1入射面部17L,18L,19L及びすべての第2光源モジュール41L,42Lと対向配置されている。
 第2入射面部43L,44Lの各々は、出射面部20Lに対して略平行に設けられている。このため、第2光源モジュール41L,42Lの各々が投射した光に対応する出射角(不図示)は略0度となる。すなわち、出射方向が投光方向に対して略平行となる。
 ここで、導光部材16Lは、互いに隣接する第1入射面部17Lと第2入射面部43L間に段差面部45Lが形成されている。同様に、互いに隣接する第2入射面部43Lと第1入射面部18L間に段差面部46Lが形成され、互いに隣接する第1入射面部18Lと第2入射面部44L間に段差面部47Lが形成され、互いに隣接する第2入射面部44Lと第1入射面部19L間に段差面部48Lが形成されている。段差面部45L,46L,47L,48Lを設けることにより、導光部材16Lを薄肉にすることができる。この結果、左前照灯100Lを軽量にすることができる。
 第1配光パターンPLに対応する第1光源モジュール13L,14L,15Lに加えて、第2配光パターンに対応する第2光源モジュール41L,42Lが出射面部20Lを共用する構造により、左前照灯100Lの部品点数を削減して、左前照灯100Lを小型にすることができる。
 また、第2光源モジュール41L,42Lを含む左前照灯100L全体における耐振性能、配向性能の安定性、重心位置、放熱特性、及び部品間の干渉などを考慮するとともに、第1配光パターンPL及び第2配光パターンの各々の配光パターンによる点灯中及び消灯中における左前照灯100Lの外観などを考慮して、第1光源モジュール13L,14L,15L及び第2光源モジュール41L,42Lの配置を決定することができる。この結果、第1光源モジュール13L,14L,15L及び第2光源モジュール41L,42Lの配置自由度を向上することができ、左前照灯100Lのデザインの自由度を向上することができ、かつ、高性能な左前照灯100Lを得ることができる。
 次に、右前照灯100Rについて説明する。右前照灯100Rは、左前照灯100Lを左右反転してなる構造を有している。すなわち、第1光源モジュール13R,14R間に第2光源モジュール41Rが設けられており、かつ、第1光源モジュール14R,15R間に第2光源モジュール42Rが設けられている。第2光源モジュール41R,42Rの各々は、図1及び図2に示す光源モジュール10と同様の構造、又は図4及び図5に示す光源モジュール10aと同様の構造を有している。第2光源モジュール41R,42Rの光軸A11R,A12Rは、第1光源モジュール13R,14R,15Rの光軸A1R,A2R,A3Rに対して略平行に設けられている。
 第2光源モジュール41R,42Rは、第1配光パターンPRと異なる他の配光パターン(以下「第2配光パターン」という。)の形成に用いられるものである。第2配光パターンは、例えば、ロービーム用の配光パターン及びハイビーム用の配光パターンである。
 導光部材16Rは、第1入射面部17R,18R間に第2入射面部43Rが設けられており、かつ、第1入射面部18R,19R間に第2入射面部44Rが設けられている。第2入射面部43R,44Rは、第2光源モジュール41R,42Rと一対一に対応するものである。第2入射面部43R,44Rの各々は、対応する第2光源モジュール41R,42Rと対向配置されている。
 導光部材16Rの出射面部20Rは、すべての第1光源モジュール13R,14R,15R及びすべての第2光源モジュール41R,42Rにより共用されるものであり、すべての第1入射面部17R,18R,19R及びすべての第2入射面部43R,44Rと対向配置されている。第2入射面部43R,44Rの各々は、出射面部20Rに対して略平行に設けられている。
 ここで、導光部材16Rは、第1入射面部17Rと第2入射面部43R間に段差面部45Rが形成され、第2入射面部43Rと第1入射面部18R間に段差面部46Rが形成され、第1入射面部18Rと第2入射面部44R間に段差面部47Rが形成され、第2入射面部44Rと第1入射面部19R間に段差面部48Rが形成されている。段差面部45R,46R,47R,48Rを設けることにより、導光部材16Rを薄肉にすることができ。この結果、右前照灯100Rを軽量にすることができる。
 第1配光パターンPRに対応する第1光源モジュール13R,14R,15Rに加えて、第2配光パターンに対応する第2光源モジュール41R,42Rが出射面部20Rを共用する構造により、右前照灯100Rの部品点数を削減して、右前照灯100Rを小型にすることができる。
 また、第2光源モジュール41R,42Rを含む右前照灯100R全体における耐振性能、配向性能の安定性、重心位置、放熱特性、及び部品間の干渉などを考慮するとともに、第1配光パターンPR及び第2配光パターンの各々の配光パターンによる点灯中及び消灯中における右前照灯100Rの外観などを考慮して、第1光源モジュール13R,14R,15R及び第2光源モジュール41R,42Rの配置を決定することができる。この結果、第1光源モジュール13R,14R,15R及び第2光源モジュール41R,42Rの配置自由度を向上することができ、右前照灯100Rのデザインの自由度を向上することができ、かつ、高性能な右前照灯100Rを得ることができる。
 なお、第2光源モジュール41L,42Lの投光方向は第1光源モジュール13L,14L,15Lの投光方向に対して略平行な状態であれば良く、完全に平行な状態でなくとも良い。同様に、第2光源モジュール41R,42Rの投光方向は第1光源モジュール13R,14R,15Rの投光方向に対して略平行な状態であれば良く、完全に平行な状態でなくとも良い。本願の請求の範囲に記載された「平行」の用語の意義は、完全に平行な状態に限定されるものではなく、略平行な状態も包含するものである。
 また、図21Aに示す例において、第2入射面部43L,44Lは出射面部20Lに対して略平行な状態であれば良く、完全に平行な状態でなくとも良い。同様に、図21Bに示す例において、第2入射面部43R,44Rは出射面部20Rに対して略平行な状態であれば良く、完全に平行な状態でなくとも良い。本願の請求の範囲に記載された「平行」の用語の意義は、完全に平行な状態に限定されるものではなく、略平行な状態も包含するものである。
 また、第2入射面部43L,44Lは、出射面部20Lに対して非平行に設けられたもの、すなわち所定の傾斜角(不図示)を有するものであっても良い。同様に、第2入射面部43R,44Rは、出射面部20Rに対して非平行に設けられたもの、すなわち所定の傾斜角(不図示)を有するものであっても良い。
 また、左前照灯100Lにおける第2光源モジュール41L,42Lの配置位置は、第1光源モジュール13L,14L,15L間に限定されるものではない。左前照灯100Lは、例えば、第1光源モジュール13Lよりも車両の内側、又は第1光源モジュール15Lよりも車両の外側に配置されたものであっても良い。右前照灯100Rも同様である。
 また、左前照灯100Lにおける第2光源モジュールの個数は、2個に限定されるものではない。左前照灯100Lは、1個以上の如何なる個数の第2光源モジュールを有するものであっても良い。右前照灯100Rも同様である。
 また、実施の形態6の前照灯100eは、実施の形態1~5にて説明したものと同様の種々の変形例を採用することができる。例えば、左前照灯100Lにおける第1光源モジュールの個数は3個に限定されるものではなく、右前照灯100Rにおける第1光源モジュールの個数は3個に限定されるものではない。導光部材16Lは、第1入射面部17L,18L,19L及び出射面部20Lが曲面状であっても良く、導光部材16Rは、第1入射面部17R,18R,19R及び出射面部20Rが曲面状であっても良い。傾斜角θ1L,θ2L,θ3Lの大小関係は、図21Aに示すθ1L<θ2L<θ3Lの関係に限定されるものではなく、傾斜角θ1R,θ2R,θ3Rの大小関係は、図21Bに示すθ1R<θ2R<θ3Rの関係に限定されるものではない。左前照灯100Lは、右半部の第1配光パターンPRを形成するものであっても良く、右前照灯100Rは、左半部の第1配光パターンPLを形成するものであっても良い。
 以上のように、実施の形態6の左前照灯100Lは、複数個の第1光源モジュール13L,14L,15Lの投光方向に対して平行な投光方向を有する第2光源モジュール41L,42Lを備える。導光部材16Lは、第2光源モジュール41L,42Lと対向配置されており、かつ、第2光源モジュール41L,42Lに対応する第2入射面部43L,44Lと、複数個の第1入射面部17L,18L,19L及び第2入射面部43L,44Lと対向配置されており、かつ、複数個の第1光源モジュール13L,14L,15L及び第2光源モジュール41L,42Lによる共用の出射面部20Lとを有し、第2入射面部43L,44Lは、出射面部20Lに対して平行に設けられている。これにより、小型であり、高性能であり、第1光源モジュール13L,14L,15L及び第2光源モジュール41L,42Lの配置自由度が高く、かつ、デザインの自由度が高い左前照灯100Lを得ることができる。右前照灯100Rも同様である。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本発明の前照灯は、自動車などの車両に応用することができる。
 1 筐体、2 光源、3 第1光学系、4 発光面、5 第2光学系、6 絞り、7 貫通孔、10,10a 光源モジュール、11L,11R 本体ケース、12L,12R カバーレンズ、13L,13R 第1光源モジュール、14L,14R 第1光源モジュール、15L,15R 第1光源モジュール、16L,16R 導光部材、17L,17R 第1入射面部、18L,18R 第1入射面部、19L,19R 第1入射面部、20L,20R 出射面部、21L,21R 一端部、22L,22R 他端部、31L,31R 段差面部、32L,32R 段差面部、41L,41R 第2光源モジュール、42L,42R 第2光源モジュール、43L,43R 第2入射面部、44L,44R 第2入射面部、45L,45R 段差面部、46L,46R 段差面部、47L,47R 段差面部、48L,48R 段差面部、100L 左前照灯、100R 右前照灯、100,100a,100b,100c,100d,100e 前照灯。

Claims (8)

  1.  複数個の部分配光パターンの組み合わせにより配光可変型前照灯用の配光パターンを形成自在な車両用前照灯であって、
     前記複数個の部分配光パターンに対応しており、かつ、互いに平行な投光方向を有する複数個の第1光源モジュールと、
     前記複数個の第1光源モジュールと対向配置されており、かつ、前記複数個の第1光源モジュールに対応する複数個の第1入射面部と、前記複数個の第1入射面部と対向配置されており、かつ、前記複数個の第1光源モジュールによる共用の出射面部と、を有し、前記複数個の第1光源モジュールが投射した光を偏向することにより前記配光パターンを形成する導光部材と、
     を備えることを特徴とする車両用前照灯。
  2.  前記複数個の第1入射面部は、前記出射面部に対する傾斜角が互いに異なる値に設定されていることを特徴とする請求項1記載の車両用前照灯。
  3.  前記複数個の第1入射面部は、前記出射面部の長手方向に沿って配列されており、
     前記出射面部に対する前記複数個の第1入射面部の傾斜角は、前記出射面部の一端部から他端部に向かうにつれて次第に大きくなる値、又は前記出射面部の一端部から他端部に向かうにつれて次第に小さくなる値に設定されている
     ことを特徴とする請求項2記載の車両用前照灯。
  4.  前記複数個の第1光源モジュールの投光方向に対して平行な投光方向を有する第2光源モジュールを備え、
     前記導光部材は、前記第2光源モジュールと対向配置されており、かつ、前記第2光源モジュールに対応する第2入射面部と、前記複数個の第1入射面部及び前記第2入射面部と対向配置されており、かつ、前記複数個の第1光源モジュール及び前記第2光源モジュールによる共用の前記出射面部と、を有し、
     前記第2入射面部は、前記出射面部に対して平行に設けられている
     ことを特徴とする請求項2記載の車両用前照灯。
  5.  前記導光部材は、前記複数個の第1光源モジュールに対応する複数本の主光路が通る部位の肉厚が互いに同等の値に設定されていることを特徴とする請求項2記載の車両用前照灯。
  6.  前記複数個の第1入射面部及び前記出射面部が曲面状であることを特徴とする請求項2記載の車両用前照灯。
  7.  前記複数個の第1入射面部は、前記出射面部の長手方向に沿って配列されており、
     前記導光部材のうちの前記複数個の第1入射面部の各々に対応する部位は、前記出射面部の一端部側の肉厚に対して前記出射面部の他端部側の肉厚が小さい値に設定されている
     ことを特徴とする請求項2記載の車両用前照灯。
  8.  前記複数個の第1入射面部は、前記出射面部の長手方向に沿って配列されており、
     前記出射面部に対する前記複数個の第1入射面部の傾斜角は、前記出射面部の一端部から他端部に向かうにつれて不規則に変化する値に設定されている
     ことを特徴とする請求項2記載の車両用前照灯。
PCT/JP2016/088443 2016-12-22 2016-12-22 車両用前照灯 WO2018116454A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680091191.4A CN110023673B (zh) 2016-12-22 2016-12-22 车辆用前照灯
US16/471,160 US10883689B2 (en) 2016-12-22 2016-12-22 Vehicular headlamp
JP2018557489A JP6671510B2 (ja) 2016-12-22 2016-12-22 車両用前照灯
PCT/JP2016/088443 WO2018116454A1 (ja) 2016-12-22 2016-12-22 車両用前照灯

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/088443 WO2018116454A1 (ja) 2016-12-22 2016-12-22 車両用前照灯

Publications (1)

Publication Number Publication Date
WO2018116454A1 true WO2018116454A1 (ja) 2018-06-28

Family

ID=62626047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088443 WO2018116454A1 (ja) 2016-12-22 2016-12-22 車両用前照灯

Country Status (4)

Country Link
US (1) US10883689B2 (ja)
JP (1) JP6671510B2 (ja)
CN (1) CN110023673B (ja)
WO (1) WO2018116454A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210034243A (ko) * 2019-09-20 2021-03-30 현대모비스 주식회사 헤드램프의 광학모듈
JP7471885B2 (ja) * 2020-03-24 2024-04-22 スタンレー電気株式会社 車両用灯具

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127329A (ja) * 2012-12-26 2014-07-07 Stanley Electric Co Ltd 車両用灯具
JP2015112969A (ja) * 2013-12-10 2015-06-22 市光工業株式会社 車両用前照灯
JP2015170423A (ja) * 2014-03-05 2015-09-28 株式会社小糸製作所 車両用灯具

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2137978C1 (ru) * 1998-03-26 1999-09-20 Открытое акционерное общество "ЛОМО" Осветительное устройство с несимметричным распределением светового потока относительно оптической оси
JP4514052B2 (ja) * 2005-10-14 2010-07-28 スタンレー電気株式会社 車両用灯具
JP2007213877A (ja) * 2006-02-08 2007-08-23 Koito Mfg Co Ltd 車両用前照灯
JP5675272B2 (ja) * 2010-10-28 2015-02-25 株式会社小糸製作所 車輌用灯具
CN102109132B (zh) * 2010-12-30 2013-11-13 北京朗波尔光电股份有限公司 一种应用于低位照明的led灯具
CN102853373B (zh) * 2011-06-30 2015-12-16 海洋王照明科技股份有限公司 一种透镜、led光源的配光结构及进近灯
JP2013026008A (ja) * 2011-07-20 2013-02-04 Koito Mfg Co Ltd 車両用灯具
JP5808620B2 (ja) 2011-09-06 2015-11-10 株式会社小糸製作所 車両用前照灯装置および車両用前照灯制御システム
AT512246B1 (de) * 2011-11-22 2014-02-15 Zizala Lichtsysteme Gmbh Led-projektionsmodul und scheinwerfer mit modul
US10363860B2 (en) * 2013-12-12 2019-07-30 Mitsubishi Electric Corporation Headlight module and headlight apparatus
US10018341B2 (en) * 2014-07-31 2018-07-10 JST Performance, LLC Method and apparatus for a light collection and projection system
FR3041738B1 (fr) * 2015-09-28 2020-01-17 Valeo Vision Element optique primaire pour module lumineux de vehicule automobile
CN107091443B (zh) * 2016-02-18 2019-10-18 株式会社小糸制作所 车辆用灯具
JP6832542B2 (ja) * 2017-06-09 2021-02-24 パナソニックIpマネジメント株式会社 車両用前照灯およびそれを用いた車両
US10829036B2 (en) * 2018-04-18 2020-11-10 Maxell, Ltd. Road sign projector and vehicle lamp

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127329A (ja) * 2012-12-26 2014-07-07 Stanley Electric Co Ltd 車両用灯具
JP2015112969A (ja) * 2013-12-10 2015-06-22 市光工業株式会社 車両用前照灯
JP2015170423A (ja) * 2014-03-05 2015-09-28 株式会社小糸製作所 車両用灯具

Also Published As

Publication number Publication date
US20190331309A1 (en) 2019-10-31
US10883689B2 (en) 2021-01-05
JPWO2018116454A1 (ja) 2019-06-24
CN110023673B (zh) 2021-10-01
JP6671510B2 (ja) 2020-03-25
CN110023673A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
EP2620697B1 (en) Vehicle lighting unit with projection lens and led
JP5678792B2 (ja) 車両用灯具
JP4735424B2 (ja) 車両用灯具
US11168858B2 (en) Vehicular lamp
WO2014208655A1 (ja) 車両用灯具
WO2017203749A1 (ja) 車両用前照灯およびそれを用いた車両
JP7351075B2 (ja) 車両用灯具
US10415784B2 (en) Lighting module with chromatism correction
WO2018116454A1 (ja) 車両用前照灯
JP5692520B2 (ja) 灯具ユニット
JP6303587B2 (ja) 車両用灯具
JP2021153024A5 (ja)
KR20220089942A (ko) 차량용 램프
JP2006339008A (ja) 車両用灯具
JP7275481B2 (ja) 車両用灯具
KR20220014690A (ko) 차량용 램프
JP2018142457A (ja) 車両用灯具
JP6492675B2 (ja) 車両用灯具
JP2015002128A (ja) 車両用灯具
WO2021246065A1 (ja) 照明装置
US11815239B2 (en) Vehicle light
WO2023277071A1 (ja) 車両用灯具
JP6733715B2 (ja) 車両用灯具
JP2018041623A (ja) 照明モジュール
JP2022162292A (ja) 車両用灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018557489

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16924617

Country of ref document: EP

Kind code of ref document: A1